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ABSTRACT

Tn this work various searching algorithins have been stucdied both theoretically and

experilnélll;ally. There are a large number of searching algorithms: some of them are
suitable for static tables, some other are suitable for dvnamic tables with frequent in- -
sertions and deletions. and vet some other employ transformation of keys to locate an
ltem in a table. For the majority of algorithms presented in this thesis dlﬂ'erent varia-
tions of each category have been compared in terms of com;;-fatlonal cost. Therefore,

rhere is a qcope to select the best one a.rnong a nuinber of alternatives for a particular

application. Attempts have been made to glve detailed mathematical a.na,lvsm of each

algorithm, and in cases where exact mathematical analysis is lat‘kmg empirical results

have been obtained through expertment. Furthermore, mathematudl analysis of each

algorithm has been supported by experimental results.

This thesis begi.ns with the algorithms dealing with static tables. The Binary search
algorithm along with different variations thereof have been dealt with both analytically
and experimentallv. In order to make Binary search algorithm faster. another algorithm
called Fibonaccian search which uses the Fibonaccian tree as its decision tree and which
avoids the division operatioﬁ in its implementation have also been introduced along with
other search alg_orithms fdr static table.

The behaviour of a dynamic search tree assuming the input keys are random has

been extensively studied both theoretically and experimentally. There has been an

endeavour to analvze the behaviour of a random search tree after random deletions

made on it. Hibbard's theorem on the behavtour of random search trees obtained from



deleting a key randomly has been pfoved to be incorrect. The detailed procedure to
build np an optimal search tree given the snccessfitl and unsuccessful frequencies of each
kev has been studied extenstvely and verified experimentally.

In order to have a guarantee against bad worst case performance when the search
kevs are nonrandom. two restricted tree structures namely Balanced tree and 2-3-4
tree have been introduced. Unfﬁrtunate[_v the avera.gerbeha.viour of these trees are still

unknown. The empirical results about the average behaviour of these trees has been

" found out through simulation experiments.

Bevond the searching algorithms which work by comparison between keys, a new
dimension in this arena has been added recently by a new class of algorithms called

Hashing. This class of algorithms have been extensively studied and verified through

both mathematical analysis and experiments.
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INTRODUCTION.

GENERAL.

A fundame.nta! operation intrinsic to a great many corﬁputational tasks is searching:
retrieving some particular piece or pieces of information from a large amount of previ-
ously stored information. Applications of searching are widespread and involve a variety

of different operations. For example, a bank needs to keep track of all its customers’

account balances and to séarch through them to check variojusi_vpes of transactions.
An airline reservation system has similar demands, in some ways, but most of the data
is rather short-lived. Searching is the most time consurﬁing part of many programs and
the substitution of a good search method for a bad one often leads to a substantial
increase in speed. Statistical data shows that about two thirds of computation time 1s
spent for sea,rching. Since searching is siich a common task in computing, & knowledge
of search algorithms goes a long way toward making a good programmer.

Sea.rching' mav be classified in several ways. We might divide them. into static
vs. dynamic searching, where “static” means that the contents of the search table are
essentially un'cha.lnging {so that it is important to minimize the search time without
regard for the time required to set np the table}. and “dvnamic” means that the table is
subject to [requent insertions (and perhaps also deletions). Another possible scheme 1s
to classify search methods according to whether they are based on comparisons between

the kevs or on digital properties of the keys. A third possibility is to divide search

methods into internal vs. external searching. Searches In which the entire table is

constantly in main memory are called internal searches. whereas those in which most



of the table 1s kept in external storage are called external searches. Finally we might

classify searching into those methods which use the actual kevs and those which work

with transformed kevs.

et us now bring together the terminology commonly used in searching. Through-
out this thests we will assiume that a table or a file 13 a group of elements, sach of which
is called a record. Associated with each record is a key, which is used to differentiate

among different records. The association between a record and its key may be simple or

complex. In the simplest form, the key is contained within the record at a specific offset
from the start of the record. Such a key is called an internat!.Ié?or an embedded kev. In
other cases there s a separate table of keys that includes pointer to the records. Such
keys are called external. A search algorithm is an algorithm that accepts an argument
K and tries to find a record whose key is K. The algorithm may return the entire record
or, more commonly, it may return a pointer to that record. The task of comparing the
argument key with a table location is called a probe. It is possible that the search for
a particufar argnment in a table is unsm:c:essful: that is. there is no record in the table

- with that argument as its key. Verv often. if a search is nnsuccessful it may be desirable -

to add a new record with the argument as its key. An algorithm that does this is called

a search and insertion algorithm.

Note that we have said nothing about the maunner in which the table or file is
organized. [t may be an array of records, a linked list. a tree or even a graph. Because
different. search techniqties may be suitable for different table organizations. a table is
often designed with a specific search technique in mind. The table may be contained
completely in memory, completely in auxiliary storage or it may be divided between the

two. Clearly different search techniqiies are necessarv under these different assumptions.
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. HISTORICAL PERSPECTIVE.

Before making any further comment on search algorithms, it may be hetpful to put
things in historical perspective. It is the Binary search algorithm mentioned by John
Mauchly what was perhaps the first published discussion of nonnumerical programming
methods. The method became well known. but nobody seems to have worked out the
details of what shonld be done in general situations. H. Bottenbruch [JACM 9(1962),
914] was apparently the first to publish a binary search algorithm which works for all
N He presented an interesting variation which avoids a beparate test for equality until
the verv end. K. E. Iverson [A Programming Language ( Wiley,1962), 141] gave the
detailed procedure of Algorithm Binary search, but without considering the possibtlity of
an unsuccessful search. D. E. Knuth [CACM 6(1963), 556-558) presented Binary search
algorithm as an example used with an automated flowcharting system. The Uniform

Binary search algorithm was suggested by A. K. Chandra of Stanford university in 1971.

Fibonaccian search was invented by David E. Ferguson [CACM 3(1960), 684], but his
flowchart and analysis was Incorrect.
The first published descriptions of tree insertion were by P. F. Windley [Comp.

J. 3(1960), 84-88], A. D. Booth and A. J. T. Colin [Information and Control 3(1960},

327.534], and Thomas N. Hibbard [JACM 9(1962), 13-238). All three of these authors

“seem to have developed the method independently of one another and all three authors

gave some difterent proofs of the average number of comparisons. The three authors also

went on to treat different aspects of the algorithm: Windley gave a detailed discussion

of tree insertion sorting; Booth and Colin discussed the effect of preconditioning by

making the first 2 — 1 elements form a perfectly balanced tree: Hibbard introduced the

idea of deletion and showed tire connection between the analysis of tree insertion and



- analysis of quicksort.

The 1dea of optimum binarv search tree was first developed for the special case
P = = p, = 0. in the context of alphabetic binary encoding. A very interesting
paper by BE. N. Gilbert and E. F. Moore [Bell system Tech. J. 38(1959), 933-968]
discussed this problem and its relation to other coding problems. Gilbert and Moore
observed, among other things, that an optimum tree conld be constructed in Q(n%)
steps. K.E. Iverson [A Programming Language {Wiley, 1962), 142-144] independently
considered the other case, when-a.ll the q's are zero. He sugégﬂ:ﬂd thﬁt an optﬂnum
tree would be obtained if the root is chosen so as to equalize the left and right subtree
probabilities as much as possible; unfortunately it was seen ‘that this idea does not
work. D. E. Knuth [20] subsequently considered the case of géneral p and q weights
and proved that the algorithm conld be reduced to (Qf{n?) steps; he also presentéd aﬁ
example from a compiler application, where the keys in the tree are reserved words in
an ALGOL like language. T. C. Hu had been studying I;is own algorithm for the p=0
case for several vears: a rigorous proof of the validity of that algorithm was difficult, to

find because of the complexity of the problem, but eventually obtained: a- proof joimntly

with A. C. Tucker in 1969 [SIAM J. Applied Math, 21(1971), 514-532].

C. C. Foster [11] has studied the generalized balanced trees which arise when we -
allow the height difference of subtrees to be greater than one, but at most four(say).
Another interesting alternative to balanced trees. called 2-3 trees was introduced by John
Hopecroft in 1970 {unpublished). The idea is to have either 2-way or 3-way branching at
each node. and to stipulate that all external nodes appear on the same level. Hopcroft
has observed that deletion. concatenation and splitting can all be done with 2-3 trees. in

a reasonably straight forward manner analogous to the corresponding operations with

;;n\'



‘balanced tices. R. Bayer [Proc. ACM - SIGFIDET workshop (1971), 219-235] has
suggeéted an interesting binary tree representation for 2.3 trees. The concept of 2-3-4
trees is attributed to Guibas and Sedgewick’s 1978 paper [14] which shows how to fit

many classical balanced tree algorithms into the red-black framework and gives several

other implementations.

Hash coding was first published in the open lirature by Arnold I Dumey. Computers

and Antomation 5, 12(December, 1956), 6-9. He was the first to_mention the idea of

interesting article mentioned chaining but not open addressing. ":RObert Morris [26}
wrote a very influential survey of the subject in which he introduced the idea of random
probing. Morris’ paper touched off a flurry of activity which éulminateéi in Double
hashing algorithm and its refinements. A comprehensive discussion of hash functions
has been introduced by Knott, G. D., [17] and a complete analysis of ordered hash
tables has been-carried out by Amble, O. and D. E. Knuth [3]. Guibas, L. J. and E.
Szemeredi [13] have analyzed the Donble hashing miethod in their 1_971% paper. A different .
zéelordéfingr scherfﬁe, a.tfriblitaBl:e;' to Brent {b] can be used to improve the avera_gé search
time for successful search when Double hashing is used. Brent’s method reduces the
average mimber of comparisons for successful retrievals but has no effect on the number
of ecomparisons for unsuccessful searches. Nishihara. S. and K. Ikeda in their paper [27]
focussed the idea of reducing the retrieval time by using predictor and their method is
parti\c:ularly applicable to linear probing. The advantage of their method is that it can

be adapted quite easily when only a few extra bits are available in each table position.

One technique for reducing access time in external hash tables at the expense of

increasing insertion time is attributable to Larson [23]. His algorithm ensures the ability



to access any record in the file with only a single external memory access. The extendible
hashing algorithm comes from Fagin. Nievergelt, Pippenger and Strong's 1979 paper
[10]. This paper is 2 must for anyone wishing further information on external searching

algorithms. The paper also contains a detailed analysis and a discussion of practical

ramifications.

THESIS ORGANIZATION AND OBJECTIVE.

This thesis comprises five chapters. Chapter one discusses the improvements which can

be made over sequential methods of searching, based on comparison between keys, using. ..

alphabetic or numeric order to govern the decisions. Therefore, in this chapter we shall
concentrate on methods which are appropriate for searching a static table whose keys
are.in 6rder making random accesses to the table entries.

The methos of chapter one are appropriate mainly for fixed size tables, since the
sequentiai allocation of records makes insertions and deletions rather expensive. If the
table is dynamically changing, we might spend more time maintaining it using the
methods of chapter one than searching it. As a result chapter two evolves to facilitate .
the searél;ing ina dynamic table. In this chapter we will diS(;l—lSS the search, insertion
and deletion algorithms using d-ynamic data structure and at the very end of this chapter
we will enlighten an algorithm to build an optimal search tree of minimum cost.

The algorithms presented in chapter two work very well for a wide variety of ap-
plications, but they do have the problems of bad worst case performance depending on
the nature of the keys. The algorithms presented in cﬁapter three is an endeavour to
Aprovide insurance against a bad worst case performance at relatively little cost. Two
different tree structures have been used to achieve the aforesaid goal

Chapter four discusses an important class of methods called hashing techniques.
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results: For example, deletion in a dynamic binary search.tre

based on arithmatic transformation of the actual keys. This contrasts sharply with the
techniques presented in previous chapters which were based on comparisons but in this
chapter we discuss techniques based on directly trarnsl'orrning the keys into an address
at which it will be stored.

Chapter five is intended to present the experimental results based on the algorithims

Jiscussed so far in the previous chapters. This chapter compares the various searching

———

and verifies the theoretical aspects of each

——

strategies based on the experitnental results
e .

algorithm. - B
—_ L

This thesis is an attempt to walk through the realm of searching. But the field of

searching is so enormous in its entireity that only some selective searching algorithms

PR

having wide range ol applicability have been chosen for the topics of this work. There

——

exists a large number of searching algorithms without exact theoretical analysis. In such
S e s

cases we have tried to investigate the behaviour of such algorithms in terms of time and

space complexity and developed sunulation programs in order to have some empirical
pace tolapeEr . !

e does not have sufficient

theoretical a.naly.sis for its performance. We have, in this case, tried to explain the
behaviour of deletion algorithm in a simplified way. In particular we have shown that
Hibbard's theorem related ‘to deletion of an element from a randomly generated tree is:
in‘correct. We have pointed out in chapter two what is wrong with his theorem and why

his theorem does not reflect the true practical sitnation. Again the average behaviour

er three is unknown. Here also we have

of balanced tree algorithms discussed in chapt

investigated, through simulation experiments. the average behaviour of balanced tree

S

algorithms. We have also investigated the average performace of 2-3-4 trees and have

enlightend seme empirical behaviour.
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-Nearly all of the algorithms in this thesis have been verified extensively to see if they
actually follow the theoretical results if there is any. Many of the algorithms have similar
characteristics such that there are many alternatives to use one of them in a particula.r
applua.tlon This thesis, among many other things, will help to choose the best of them
tor optimum performame of a particular application. Exact mathematical analysis for
the majority of the algorithms have been presented along with the constraints and
|irnit;ﬂ.ioﬁs thereof so that the reader can easily aware himself. of the suitability of a
pa.rtinula.r algorithin in a particular application. All of the siminlation experiments have

been carried out on IBM PC compatible machines having 80286 processor of 16 MHz.

speed.

Almmt every branches of searching have been travelled through by this thesis, but
emphasis has been given prlmarllv on internal searching; however we mention sorme

techniques of external searching when they relate closely to the—methods we study.
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‘table we either have

CHAPTER 1
SEARCHING BY COMPARISON OF KEYS

" 1.1 Introduction.

In this chapter we shall discuss search methods which are based on a linear ordering
of the kevs. When a large nimber of records must be searched sequential scanning 1s
out of the question and an ordering relation simplifies the job enormonsly. Of course,

if we only need to search a few times, it is faster to do a sequential search than to do

a compIPtP qort nf fhe I'PCOI‘dﬁ but if we need to make repeated qearchea in the same

records, we are hPH’Pl‘ off having these in order. Therefore in this chapter we shatl

concentrate on methods which are appropriate for searching a table whose keys are in

order,

making random accesses to the table entries. After comparing a key K to K; in such a .

'+ K<K: [R.Rigy. ... Ryare eliminated_ from consideration |;
or + K =K; [thesearchisdonel};

or + K>K; [Ry.Ra . ... R;areeliminated from consideration I

In each of this cases. substantial progress has been made. unless i i3 near one end
of the table: this is why the ordering leads to an éf’ﬁcieﬁt algorithm. The seqnential
search method is essentially limited to a two way decision ( K = K; vs. K #£ K;). but-if
we free ourselves from this restriction of sequentiai access it becomes possible to make

effective nse of an order relation.
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1.2 Binary Search.

If the set of records ia large, then the total search time can be significantly reduced
by nsing a search procedure based on the application of divide and conquer paradigm:
divide the set. of records into two parts, determine which of the two parts the kev songht

belongs to. then concentrate on that part. A reasonable way to divide the set of records

into parts is to keep the records sorted, then use indices into the sorted array to delimit

_ the part of the array being worked on. To find if a given key K is in the table, first

'rompare it with the element at the middle position of the table. If K is smalter, then it

man be in the first half of the table; if K is greater, thn it muqf be in the second half

of the table Then we can applv this method recurswelv Tfﬁ' binary qpareh a.lgonfhm

makes use of two pmnters, left and right, which indicates the current, Iower and npper

limits of the search, as follows:

ALGORITHM 1.1 ( Binary Search ): s

Given a table of records Ry, Ra, ..., . R whose keys are in increasing order K; <

Ky <o < K, this algorithm searches for a given argument K.

left = 1; right” = N; [{ Initialize |}

while ( right > left ) do
middle = [ ( left + right ) /2] {[ Get midpoint ]]
if (K < Kp;q41.) Tight = middle — 1 [[ Adjust right ]}

else if (K > Kmidate) left = middle + 1 [ Adjust left ]

else return {[ the algorithm terminates suceessfully }]

endif

10
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" 1.3 Analysis of Binary Search Algorithm. | ==

repeat
exit [[ At this point the algorithm terminates unsuccessfully ]|

End Algorithm 1.1

Tree Representation of Binary Search:
In order to really understand what is happening in algorithm 1.1, it is best to think
of it as a binary decigion tree as shown in Fig 1.1 for the case N = 16. When N = 16, the

first comparison mn.de by the algorithm is K : Kg; this 18 errésenEéd by the root node

(8) in the figure. Then if K < Kj, the algorithm follows the le{t subtrf-e comparing -

K to K4; Similarly if K > Ky the right subtree is nsed. An iisecessful search will.

lead to one of the external square nodes numbered 0 through 16: for example we reach

[5} 2f and only if Ks < K < K.

It is evident from the decision tree of Fig. 1.1 that the number of records is at. least

halved at each step and consequently this method of searching never uses more than

lov +1 comparisons for either successful or unsuccessful search If 2k-1 <N <2 ot a
, P

successful search requires (min 1, max K) comparisons. If N ot _ 1, an unsuccessful

search requires K comparisons; and if 2t~ < N < 2t —1, an unsuccessful requires

‘either K - 1 or K comparisons. An upper bound on the number of comparisons satisfies

the recurrence Cy = Cnyz + | with €y = L which implies the stated result.

The tree representation also shows us how to compute the average number of com-
parisons in a simple way. Let Sy be the average number of comparison in a successful
search, assuming that each of the N keys is an equally likely argument; and let [/y be

the average number of comparisons in an unsuccessful search, assnming that each of the

11
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-Fig. 1.1 A binary tree corresponding to binary search with N = 18

12
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N + | intervals between keys is equnally likelv. Then we have

Sum of levels of the (N + 1) external nodes ‘
Un = — -
N+1

5 Sum of (1 + level of each of the internal nodes)
N =
N

fet us deﬁne the external and internal path Iength of a search tree. External path

zero. . ) LT

| ' E(T) nT)——*
~ and Sy =1 =

N1y =it o

Hence Uy =

From the above relations we see that the best way to search by comparisan is one for

which corresponding search tree has minimum path length. over all binary trees with

N mrernal nodes. A hmarv tree has minimum path !ength if and nniv if all its external

nodeq ocenr in at most two adjacent levels. Let us verify this statement by considering

the problem of discovering such a tree with N nodes having minimum pa.'rh length.

Clearly only one node (root) can be zero distance from the root; at most twa nodes can

be at a distance one from the root, at most four can be two away. etc. So the internal

path length is always at least as big as the sum of the first N terms of the series

0,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4, 4,4
Therefore the tree all external nodes of which occur in at most, two adjacent levels has
minimum path length among ali possible trees. Tn the binary search procedure all the

external nodes appear at two adjacent levels of the tree making external path length of

the tree mintmum.

13



Il day Un41 be the levels of the ( N + 1 ) external nodes in a binary tree then

it. can be shown by induction that

N4t

Yoot =1 (1.1)

=1
Now we are readv to compute the minimum external path length of a binary search tree
with N internal nodes and (N + 1) external nodes. Let there be K external nodes on

level land N+ 1-Konlevel | + 1.1 £ K < N+ 1 (that is. all the external nodes may

he on level Y. From equation (1.1} we can write
Kol (g1 KVoSi=1 = 1 and hence
K = o+l _ (N 4 1) - ' (1.2)
Since K > 1, 22+1 > N 4+ 1 and since K < N 41, we have 20 < N 4 1;that is

[ =|logy(N + 1}} (1.3)

Corﬁbining (1.2) and (1.3) gives K = ollesr-5°1+1 _ & 1 and the minimum path length

is thus
K (DN 4L -K) = (N4 D logy(N+ 1] +2(V + 1) -

H

Let 8 = log,{N + 1) — |logo{V + 1)}.0 € 6 < 1, the mimmum external pat‘h'length

beromes

AN L HIN $1)(2 -4 2170 (1.1)

The finction FIAY = 2 — @ — 217¢ s cmall in the interval 0 < # < I} more nrecisely

() < f(8) < D.0861 in this interval. In the light of the above computations we conclude

rthat
E(T)
" = og N+ )+ 2—6—2""7 and
N1 fog, 1V + 1)+ an«

Un =

14
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5 —l+lI(T-)"1 I‘U 1
N = N = { +’1-\7') y—1

1 . . _ -
= (1 + ) [loga(N t+2-0=-2"" -1
2

where .= log,(N + 1) — [ log2(IN + 1) | To summarize: algorithm 1.1 never makes more

than | logo NV | + 1 comparisons and it makes about log, N —1 comparisons in an average

successful search.
It is important to note that the time required to insert, new records is high for

18t be moved to make

binary search: the array must be kept sorted, so some records mi

ALV,

=

the average. Thus it is best suited for sitnations in which the table can be built.ahead of

time, perhaps nsing shellsort ar quicksort algorithms, and then nsed for a farge number

of searches.

1.4 Variation of Binary Search algorithm.

Instead of nsing three pointers left, right and middle in the search we can use only

two, the current position i and the rate of change of &: after each unequal comparison,

. we could -then set 1 =

Binary Search .results:

Algorithm 1.2 (Uniform Binary Search)

Given a table of records By, Ro. ool R~ whose keys are in increasing order
Ki<RKa< ooonn < K n. this algorithm searches for a given argument K. If N 1s even,
et —oo. We

~ the algorithm will sometimes refer to a dummy key Ko which should be s

- assume that N > 1.

i= [N/2}: m= | Nf2| {[ [nitialize ]}

15
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while (m #£ 0) do

if (K < K;) thent =1— [m/?].;m = |m/2] [[ Decrease i |]
else if (K > K;) then 2 =.a' +[mf2l:m=|mf2) [[ Increase i ]]
else return [[ the a]gorithﬁ,terminatés successfully ]
endif -
repeat J;
exit T[ At Fhis point the algorithm términates l_m.;g;essfully 1l

_End Algorithm 1.2

Fig. 1.2 shows the corresponding binary tree for the search when N = 10. - In

an unsuccessful search, the algorithm may make a redundant comparison just before

termination; these nodes have been labeled in the figure. This search has been termed

uniform because the difference between the numberof a node on level  and the number of

its ancastor on level I-1 has a constant. value & for all nodes on level . [tis to be observed

that the lengths of two intervals at the same level differ by at most unity; this:makes .. - .« ...

it. possible to choose an appropriate middle element. withont keeping track of the exact
tengths. The principal advantage of algorithm 1.2 is that we need not maintain the valne
of m at all: we need only refer to short table of the various 4 to use at each level of the
tree. Thus the rinning time decreases considerably as compared to binary search. In a
successful search, this algorithm corresponds to a binary tree with the same internal path
length as the tree of algorithm Binary Search, so the average number of comparisons for
successful search is the saﬁ]e as before. Tn an unsuccessful search algorithm 1.2 always

makes exactly | log; N | +1 comparisons. Another modification of Binary Search 1s one
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in which it is uniform after the first step and it is still faster than the Uniform Fﬁﬁa.i'y

search.' The first step is to compare K with K;, where i = 2%, K = |log, N| f K < K,

we nse a uniform search with the &’s equal to 28-1 26=2 1,0. On the other hand

HK>K and N >2 wesetitoi' =N +1- oA where [ = |log,(N —2%)] + 1,
" and pretend that the first comparison was actually K > K, using a uniform search
wif;h the #’s equal to 2/=1 21-2 , 1,0. The binary tree for this variation is shown
in fignre 1.3. Like previons algorithms this method never makes more than llogy N1 +1

comparisons, but it occasionally goes throngh several redundant steps in suecession.

An interesting variation of algorithm hinary search is that we can avoid-a separate

TEnel

test for equality until the very end of the algorithm. This algorithm is as follows:

Algorithm 1.3

while (u # ) do

i= [+ w)/2]

if (K <K;)  thenu=i~—1endif ([ Adjust u ]}
else if (K > K;) then! =1 [l Adjust 1]]
endif
repeat

18
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if (K = Ki) then return; [[ The search is successful ]] |

else exit {[ At this point the algorithm terminates unsuccessfully ]

endif

End Algorithm 1.3.

In the above algorithm nsing ¢ = [({ + u)/2] inside the while loop we have set | = 7

i wht;.never K > K;: then u - | decreases at every step. Fventually when | = u, we have
Ki <K< ‘I‘i}_l_l and we can test whether- or not the search was successfil by making

| ~one more comparison. Such a trick will make Binary search a little bit faster for large

"N. We would need N > 23 in arder to compensate for the extra iteration necessarv.
P v

1.5 Fibonaccian Search.

Fibonaceian numbers provide us with an alternative to binary search and it involves

- only ‘addition and subtraction, not. division by two. So it. may be preferable on some

ez computers. If we start to ‘explain the method simply from programming: point of view, - -« :

it seems to work by magic. But the mystery disappears as soon as the corresponding
search tree is displayed.

_ In general the Fibonaccian tree of ordér K has Fp4y — | internal nodes and Fyy,
external nodes and it is constructed as follows:
[f K= 0orK =1, the tree is simply [0]. If K > 2, the root is (F;_._)_:' the left subtree is
the Fibonaccian tree of order K - | and the right subtree is the Fibonaceian tree of order
K - 2 with all num.ber's increased by Fy. Using this rule we can construct the tree of

figure 1.4 of order 6. From the tree structure it is evident that the numbers on the two
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nodes of each internal node differ from the father's number by the same-amount and the
arnounrr. is a Fibonaccian number. Thus 3 =5—F; and 7 = F'.%-+5 in tig. 1.4. When the
differenlf:e is Fi, tlhe corresponding Fibonacct difference for the ﬁext branch on the left
is F;_; while on the right it skips down to Fi_, These observations can be combined

with an appropriate mechanism for recognizing the external nodes and initialization we

can arrive at the following algorithm.

Algorithm. 1.4 ( Fibonaccian Search )

Given a table of records Ry, Rs, ................ Bx whose kevs are in increasing order

Ky < K3 < ........... < Ky, this algorithm searches for a given argnment K. For con-

venience in description, this algorithm assnmes that N + 1 is a perfect Fibonaccian

namber, Fiyq. It is not difficult to make the method work for arbitrary N, if a suitable

“initialization is provided which will be focused after the degr_:ri;ﬂtion of the algorithm.
i = F, p=Fra.  q=Fi
[[ Throughont the Algorithm, p a.nd q will be consecutive Fibonacci numbers ]]
while (K # K} do

-
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if {K < K;) then
if (g = 0) then exit; endif [ The algorithm terminates unsuccessfully |]

i=i—¢  (pq) e (g.p—q) [ Decreasei]]

else if (K > K;) then

if (p = 1) then exit; endif {[ The algorithm terminates unsuccessfully’]]
i=i+qp=p—q g=g—p|[[ Increaseil]]
endif

Ehl‘ﬁf

repeat
End Algorithm 1.4

If N 4 1 is not a perfect Fibonacci number then we have to find thé least M > 0
such that N + M has the form Fi - L, then to start with i = F} — M and to insert
“fe<0,1 =1+ é;p =p—q,q9 = g— p" at the very beginning of the first if structure
inside the while loop in the above algorithm. Another idea-is to check the result of the
very first comparison. If it comes true that K > K, then we can set i=1i-Mand
proéeed normally thereafter. |

The number of comparisons required in ‘binary search is approximately loga N

whereas in Fibonaccian search it is approximately (4 /B log, N. Fig. 1.4 shows that
PP ¥y 7 ¢ S X

a left branch is taken somewhat more often than a right branch — which we might have

guessed. since each probe divides the remaining interval into two parts, with the left

part aboit. & times as large as the right.

The external nodes appear on levels | K/2| through K - 1 in the Fibonaccian tree of

order K. The difference between these levels is greater than unity except when K = 0,

23



1.2, 3. 4. Thus for this values of K, the Fibonaccian tree offers an optimal search path

tn the sense that fewest comnparisons are made on the average.

24



CHAPTER. 2
SEARCH TREES

2.1 Introduction.

'As we saw in cha.pt.er one, the order in which thé elements are examined by binary
search 13 governed by an tmplicit binary tree on the table elements. Tn this chapter
we will discuss fl.he benefits of making such a binary tree structure explicit instead of
implicit. These benefits are two fold. For tables in which the elements do not change-
through insertions and deletions (static ta;bles), an explicit tree structure can be nsed
to take advantage of a known distribution of the frequency access of the elements.
For dynamic tables that change throngh the insertions and deletions, an explicit tree
structure gives us the flexibility to search the table in logarithmic time and to make
insertion and deletion also in logarithmic time. |

A binary search tree is a binary tree in which the inorder traversal of the node
gives the elements stored therein in the natural order. In other words, every node P.
_in the tree has the property that elements in its left subtree are before KEY(P) in the
natural order and those in its right subtree after KEY(P) in the natural order. Figure
2.1 shows a binary search tree for the set of names { A, E, I, O, U }.

If we now search for K. starting at the root or apex of the tree, we find it is less
than (. so we move to the left; it is greater than E. so we move to right; it is greater
than 1. so we move to the right ﬁgain and arrive at an external nﬁde. The search was
unsuccessful. In a similar way we can search for any of the existing keys in the tree and

in that case the search will be successful terminating at an internal node.
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Fig. 2.1 A binary search tree
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2.2 Dynamic trees.

For any given value of N, the tree corresponding to binary search achieves the
theoretical minimum number of comparisons that are necessary to search a table by
means of key comparisons. But the methods of chapter one are appropriate mainly

for fixed size tables, since the sequential allocation of records makes insertions and

deletions rather expensive. If the table ia dynﬁmically changing, we rﬁight spend more

time maintaining it than we save in binary-searching 1.

The use of an .explicit binary tree structure r;nal-:es it possible to insert and delete
records quickly, as well as to search the table efficiently. A's a result we essentiaily have
a method wh.ich 'is useful both for searching and for sorting. This gain in flexibility is
achieved by adding two link fields to each record of the table. Techniques for searching a
growing table are often called symbol table algorithms, becanse assemblers and compilers
and other system routines generally use such methods to keep track of the user defined
symbols. The search and insertioﬁ techniques to be described in this section are quite
efficient for use as symbol table algorithms, especially in applications where it is desirable

to print out a list of the symbols in alphabetic order.

Inserting a new element 7 into an existing binary search tree T is not difficult -
if we do not care what the effect is on the shape of the tree. If the elements in the
tree are £y < T2 < 3 < ..o < z,and z; €z < zi41, 0 <2 < n {with 2o and
T,41 considered as —oo and oo, respectively). then the ith external node can simply be
replaced with the new element 7. For example, adding the letter Y to the tree of figure
2.1 vields the tree of figure 2.2. Thus given a binary search tree and a new element. 7,

to be inserted. there is a nnique external node at which to insert the element becanse

the element falls into a unique gap between some r; and z;y1.

-
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Fig. 2.2 The tree of fig. 2.1 with the letter Y added at its proper place
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Ail of the kevs in the left subtree of the root in fig. 2.2 are alphabetically less than
the root and all keys in the right subtree are alphabetically greater. A similar statement
holds for left and right subtrees of every node. Tt follows that the keys appear in strict
alphabetic sequence from left to right if we traverse the tree.in symmetric ordér, since
§vrﬁrwterrir order is based on rravprqing the left subtree of each node just before that

- node then rraversmg the nght subtree. The followmg algorithm spells out the searching

" and ‘nsertion process in defa;l

A!Eofithnl 2.,1' Tree Seamﬁ and ‘Tnsertion =

G*ven & table of re"ordq whlch form a hmarv qearr'h tree as dpsrnbed above, this

algorithm qearrhes for a given argument K. K is not in the ta.ble anew node ronrmnmg

"Kis inserted_into the tree in the appmprin.te place.
The nodes of the tree assumed to contain at least the following fields :
KEY(P) = kev stored in NODE(P)
LLINK(P_)“ = Pointer to the left subtree of NODE(P)
- RLINK(P) = Pointer to the right subtree of NODE(P).. - i 14wy

The variable ROOT points to the root of the tree. For convenience we asasnme that

the tree is not empty
LINK P, @

P — ROOT

29
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loop

case

'K < KEY(P): if LLINK(P) = A exit endif
| P — LLINK(P) |

: K > KEY(P): if RLINK(P)= A exit endif

| | P — -RLINKA(_P )
: elge :retyrn |
endcase

repeat

Q — AVAIL; KEY(Q) — K: LLINK(Q) — RLINK(Q) — A

if K < KEY(P) then LLINK(P) — Q
else
RLINK{P) — Q

endif

End Algorithm 2.1

2.3 Dynamic Tree Analysis,

What happens if we use the above algorithm to construct search trees ? In the worst
case, of course, the tree can degenerate into a linear list; this happens, for example, if
the order of insertion is A, F. I. O. U. which specifies essentially a séquential search,
Are things really that bad on the average ? If we have a random insertion order what

will be the average search time in the tree constrncted ? To answer, we recall that the
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external path length is the measure of the average search time. We want to compute
the expected external path length in a tree constructed by algorithm 2.1 for random
insertion order wilthout. further information, we may as well assnme that each of the n!
permutations of the n elements is equally Iikéiy as the insertion order. Let F. be the
expected external path length in a tree constructed from n elements taken at random
order. To develop a recurrence relation fbr E, we observe that if the n elements are
in ra,naom order, then the probability that any pérticular one is first is 1/n and the
;'em'aining elements are again in random order. F‘Urthérmore, if the first one ha.ppené to
be z;. the ith element of the n elements iﬁ the natural order, then those e!ementé less
than z; te, 1. < 29 < 3 < ........... < x;_1 are in a random order a.s-are those larger
thlan E; 1,8, 8id 1, Tiddy coeeeeennnn ,Zn. Thus if z; happens to be the first element inserted
‘into the tree as the root, it will have, by the nature of insertion process, a random tree

made npofl 21 < Z3 < 23 < ... < z;_1 as its left subtree and a random tree made

up of Zig1, Tiga, cvreeerenne .y as its Tight subtree.

This gives us

Eq

™ °

”n

E.=)Y in+14+E:_y+E,_;) Pr (i will be the root)

1=1

Since the probability that i will be the root is equal for all 1. it is 1/n and the above

equation becomes
n

1, :
En =) ~(n+1+Fii1+Eni)

i=1
which by using some elementary algebra can be wnitten as

o n—1

1=
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To solve this recurrence relation we will make a short detonr to solve

" =1
at L .
tnza-n+b+';;2‘ti, ‘nZno (21)
=0
for t, in terms of n,a, b ng, ty, ty,......... ty,—1 To eliminate the summation from (2.1)

we first multiply each side by n to obtain

r

-1
nt, = an’ + bn + 2 Z ti, n > ng (2.2)
‘ s=0
Replacing n by n-1, we get
=3
(n=Dt-r=an—1 +bn—-1)+2%"t;, n2ne+1 (2.3)
=0
Subtracting (2.3) from (2.2) gives
nt, —(n— 1),y =2, . +2an + b a, n>no+1
or nt, —(n+ 1}, .1 =2an+b—a,  n>ne+1
Dividing this by n{n+41) we have
t, th—1 Ada—~b bh—a > +1
— — ) 13 T4
n+1 n n+1 n =0

Replacing n by 1 and summing gives

. " t; i1\ |« 3a-bh bh—aq
| Z(Hl"a')“z (s’+1+ i) (2.3)

ng+1 1=ng+1
The left hand side is the telescoping sum
tn fp-1 ln-1 byw2 tng+l tno+] tng
—-——t—— —t .- : -
n+1 1 i i ho+2 no+2 np+1
_tn ta
T+l g+ 1
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and the right hand side gives

i
3a—hb b-n
'y ( L)
. et 1+ 1 r )
s=ng4+l - -

1 1 1
= (3a—0b) -~ + — F . + —
- . no+2 no+d - oon+1

o 1 -1 : 1
b—al| ——p ———— ... -
+( a)(no+1+.no+2'+ +n)

_ ' C - ' A |
. - g+ L N

" where H, = %jis called the harmonic function. Thus (2.3) yields

tn, —3a+b
ng+1

ta, —3a+ b
ng+1

tn = 2anH, +n ( - 2aH,.a) + 2afy,
+3a+b—2H,,

9 ng—1

h tp, = @ b+ = ¢,
| where &g, an9+ +n0§
Since H, = Inn 4+ Q(1), (2.4) tells us that
tn = 2anInn + Q(n)
=(anin2inlgn+ O(n)
For F, this vields -

E,=(2In2)nlgn+ Ol(n)

=~ 1.38nlgn

(2.4)

(9.5)

(2.6)

Equation (2.6) tells us that in binary search trees built at random, the average

search time will be about 1.381g 2 or about 38 percent longer than in an optimal tree.

The simplicity of a.lgnri'thm T awould make it acceptable in spite of the increase over
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the minimum search time. except for an important fact. Our analysis assumed that the
insertion order was random and this is almost never true in practice, since there are
often sequences of elements arriving in their natural order. Thus, despite equation (2.6),

algorithm 2.1 must be considered unreliable except in truly random circumstances.

| 2.4 Deletion from a Dynamic Tree.

So far we have considered only insertions. What about deletions 7 Deletions are

- somewhat more complex than insertions. becanse insertions canse chariges only in the

- external nodes., but a deletion affects the internal nodes as well. There is no problem if

the element to be deleted has two nil sons: we just replace the pointer to it by nil. Atso,

if the element to be deleted has only one nil son. we replace the pointer to it with a

pointer to its single son. But when both I.I.INK and RLINK are non null pointers, we

have to do something special. Since we cannot point two ways at once, Such an element

has an inorder predecessor which has null right son and it has an inorder successor

* which has a null left son. Thus we can replace the element. to be deleted by either its

predecessor ar its successor, deleting that node from its original place. This operation
preserves the essential left-to-right order of the table entries. The fnllowing:a.lgorithm _

gives a detailed description of the general way to do this.

Algorithm 2.2 Tree Deletion

let Q be a variable which points to a node of a binary search tree. This algorithm

deletes that node. leaving a binary search tree.

LINK T.R S
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if RLINK(T)= A then Q — LLINK(T); AV AIL T
return ([ Is RLINK null ? ||

endif -
if LLINK(T)= A then Q «— RLINK(T); AVAIL — T

return i[Is LLINK-null,? JJi

endif

~ [[ Find Successor ]j

. R+ RLINK(T)

if LLINK(R)= A then LLINK(R) — LLINK(T);Q — R
A I&UL — 7T
feturn
endif
([ Find null-LLINK ]
S — LLINK(R)
while (LLINK(S) # A) do
fR— 5
S «— LLINK(R)
repeat

LLINK(S) «— LLINK(T), LLINK(R) «— RLINKI(S)
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RLINK(S) — RLINK(T)
Q — §: AVAIL — T
End Algorithm 2.2

2.4.1 Analysis of deletion.

Since Algorithm 2.2 is .q'uité unsymmetrical between left and right, it stands to
reason that a sequence of deletions will make the tree get out of balance, so that the
efficiency estimates we have made will be invalid. T. N. Hibbard‘l'[l%z] has proved that
after 2 random element is deleted from a random tree by a]gnrit!}m 2.2, the resulting tree
is still random. If this statement is true tree behaviour will remain same after random.
deletions, i.e, the average number of of probes will remain same in both successfiul and
unsuccessful searches as it would be if the tree were built afresh by inserting random
keys. The tree behaviour will also remain same if some random keys are inserted after
the tree haa got experience of some random deletions. But in practice tree behaviour
deteriorates after deletion of some random nodes and this deterioration becomes sévefe,
when insertions are made in the same tree after random deletions. The . analvsis of .
) this behaviour is still unknown, but the aforesaid picture indicates that if -Hibbard's-
statement is true we cannot expect such anomalous behaviour from a dynamic tree
whatever operations are carried on upon this tree. It can be inferred from the aforesaid
behaviour that there is something missing in Hibbard’s theorem which is stated in Knuth
[19. pp. 429] as follows.

Theorem H (T.N. Hibbard, 1962). After a random element is deleted from a random

tree by Algorithm 2.2, the resulting tree is still random.

et us first follow the arguments stated in the above-mentioned reference. “This state-

ment of the theorem is. of course. very vagne. We can summarize the situation more

-
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precisely as follows: Let T be a tree of n elements, and let P(T) be the probability that
T occurs if its keys are inserted in random order by Algorithm 2.1. Some ftrees a.l'e more
probable than others. Let Q(T) be the probability that T will oécur if n+1 elements
are inserted in random order by the same algorithm and then one of'these elements is
chosen at random and deleted bv Algorithm 2.2. In calenlating PlTl we assume that
the n' permutations of the kpve are equally likely; in calculating OlT), we assume fhat
the (n+1)*(n+1)! permutations of kevs and selections of the key .to_delete are equally
likely The theorem states that P(T)=Q(T) for all T” Knuth fﬁf’i’}lef remarks that ”
Alfhough Theorem H is rigorously true, in the precise form we have qtared it, it cannot,

‘be applied, as we might PXpP(‘t, to a sequence of deletions followed bv insertions. ..."

Let na now consider his theorem more rigorously. According to his theorem, after
a random element is deleted from a random tree the resulting tree remains random.

He proved that deletion of a random element. from a random permntation results in

a random permutation. [In particular, nsing the hypothesis of Theorem H that all

(n + ll' pPrmutat}ons and ln+1) deletions from each permuranon are Pquallv prnbable
he showed tha.f F'&(‘h of the n! permutations can be generated in anrtlv (n + 1\3 ways.
Therefore, each of the pertnutations has probability (;;:_—';—')Tfl;’-ﬁ-)—. = 2, whicl is equal to
the probability if the n! permutations were generated by taking elements randomly from
n elements. He eoncluded that alike permutations, the probability of a tree generated
by delet.ing a random node from a tree of (n+1) nédes will be equal to that of a tree
originated from the insertion of n random keys one by one. The corflicting point is that
Hibbard is carrying out ali his arguments and assumptions based on the permutations
and deletions to trees. In spite of the equiprobability of permutations, trees generated

are not necessarily equiprobable as remarked by them and noted earlier. The point is
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that if we pick np permutations from a tree from which to delete an element randomly,
probabilities of permutations do not remain equal, because probability of eacﬁ permu-
‘tation generating the same tree is exactly equal to the probabihty of occurrence of that
tree, which varies from tree to tree. That is why their assumption of equiprobability of

permutations and deletions do not remain valid. We can also see this fram the following

examiale.

et us consider the tree T of Fig. 2.3. This five-naded tree cah i')"e; generated from 3

different. permutations,-‘and a total of 120 permutations are possible from 5 distinct kevs.

Therefare, the pmbability of tree T is T%G = 1‘—5 Let ns now consider the 6-noded trees

A through G which are the only possible trees capable of generating T through deletion
of a node, each of which has been shown in the corresponding figure with an arrow. The
fI;EQIlenCY of each tree has been shown in brackets. Thus by deleting & random node from
6-nodea trees T can be generated in (3%1+20%3+20%3+15+3415¢3+15+2+15+2) = 273
ways, whereas there are altogether 6 # 6! trees (5-noded) possible by the deletion of a

random node from all 6-noded trees. Therefore, tree generated in, this way. has the

e 278
probability v

This example clearly shows that the assertion of Theorem H that P(T)=0(T) 1s
incorrect. It may be noted here that the statement P{T)=0(T) is valid for trees with
upto 4 nodes, which may well have misled them. Tn order to compute the number of

permutations which can generate a particular tree {which we have used in the above

example) we have derived the following recursive formula.

Let Ty and Ts be the left and right subtrees of tree T. By T, Tl and T, we denote

both corresponding trees as well as number of internal nodes. Let N(T) be the number
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Fig. 2.3 All possible 6-noded trees generating tree T
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of permutations generating T. Then

i IT1X Frg sy T1+T2
N{TY=N(T1 )+ N(13} * T
1

Subtrees Ty and T» can be obtained by N(Ty) and N(T3) permutations respectively.

Again T; + T positions can be filled up by 77 elements in (T'T'!;T’) ways. For each Ty

" .and T; their keys can appear in {(T1A7?) ways. So product of N(Tl), N(T3)and (7127)
gives the result. - | |
2.5 Static trees.
" The a.pplicﬁrtion of binary search trees to static tables is concerned entirely with
" arranging the tree so as to minimize search f.ime. ) wé want'tﬁs&‘n?nimize the worst
case search time, we can simply use the treé éorresprnnding to binary search and we
do not need an explicit tree at all because we have assuméd that the table has been
constructed once and that its contents will change either never or so infrequ‘ent[y that
it will be possible to reconstruct the entire table to make a change.
The more difficult problerﬁ is'm-minimize the average search time, given some
distribution of how the search will end. If the table consists of elements z;-< 7y <23 <
. < 2., then the search can end successfully at any of the z; (internal nodes) and
unsuccessfully in any of the n + 1 gaps between the z; and at the endpoints; Let us
assume that we have vahlies pl,p-_,..pa, v Ppand g0, q1. G2, - .qn where p; is the relative
frequency with which a search will end snccessfully at z; and g; is the relative frequency
with which the search for 7 will end unsuccessfully at . ie, with z; < Z < z;44
(defining g = —co and z, 4y = o).
The problem is to choose among the many possible binary trees wit}'; n internal
nodes for a particular set of values p; and ¢;. We will measure the desirability of a tree

by the cost of an average search: the cost will be the number of probes. In chapter one
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we introduced such a measure, the internal path length or the related external path
length. That measure is not sufficient for our purpose becanse it does not take the
varying frequencies into account. However we can generalize the path length as follows

. the required path length of a binary tree T with internal nodes 1.2, 23, ......... Fn,

external nodes i, 1, ...oon,

yn and p; and g defined above is

n n
Zp:--[l + level(r; )] + Z q;level(1;) ‘ 7{'2.7)

As in-the cases of external and internal path lengths, it is convenient to define weighted

path fength recursively.
B

Winull) =10

W(T)= W) +W(T)+ Y pi+ D6 (2.8)

~ Where the summations )" p; and }_ ¢; are over all p; and ¢; in T.

Our problem is to determine the binary search tree that will have an nbtimal
(minimal) weighted path length, given the frequencies p; and g;. Since the number of
possible treés is exponentially large as a flmctioﬁof n we cannot do the obvious way
of examining all possibilities, computing the weighted path length of each and choosing
the smallest. Tn fact. the large number of possibilities makes it seem doubtful that
there is any reasonable way to ma.rke the determination. However a simple but crucial
observation about the nature of the weighted path length of a tree will show us the way
to proceed.

The observation is that subtrees of an optimal tree must themselves be optimal.
More precisely. if T'is an aptimal binary search tree on weights o, P1. 1o oo Pn: Gn
and it has weight p; at the root, then the left subtree must be optimal over the

weights Q0. P1: Q15 oo Pi=1- Qi1 and the right subtree must be optimal over weights
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G Dit1, Bit1s <oones Prs @n- To see why this optimality prineiple must hold, suppose that

some tree OVeT o, P1, 1y creeveeeny . Pi-1, Qi1 had lower weighted path length than the one

that is the left subtree of T. Then by (2.8) we could get a tree T' with lower weighted

path length than T by replacing the left subtree of T by the one of lower we'ighted path

length we have supposed to exist. This contradicts the assumed optimality of T. We

_can argue Gnmlfarlv abont the r!ght qnbfree of T and in fact any subtree of T. This -

onhmahtv prmcmle is the basis of a technique called dynamic’ pmgrammmg whwh we

wull nse to rnmpute nphmai binary search trees.
The optimality principle together with {2.8) allows us to ‘write the following recur-

sive description of optimal binary search trees : Let C;;.0 < i < n, be the cost of an

optimal tree aver the frequencies ¢. pig1........p;.q;- Then

Cii=0

i i
and C;; = ,ﬂm (Cie-1 + Cuil+ fz-.: e tgi:qpi

~ by (2.8), since the optimality principle gnarantees that if z3 is the root of the optimal ..

w1 'tree; then Ciz~i and Cyj -are the costs of the left and.right subtrees respectively. - ;.. .-

Defining Wi; = ¢;

=W, +pi+q. 1<J - (29)

We get C; =20

Cij=W,; + mm (Ci. k= 1+ Cyj) (2.10)
i<kLj

Equation (2.9) and (2.10) form the basis of our computation of the optimal search trees,

in evaluating (2.10) to get Cop, the cost of the optical tree over go, P1,.........Pn. @n, We
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need only keep track of the choice of K that achieves the minimum in {2.10). We thus

deﬁne

Ri; = a value of k that minimizes Cix_1 + Cl;j in (2.10) (2.11).

R;; s the root of an optimal tree over g, pig1: .-, P 05

We are left with the problem of organizing the corﬁputation from (2.9), {(2.10)
~ and (2.11). Of course we could simply make.(2.9) and (2.10) into recursive procedures
as_they stand, but tﬁat wonld lead to an exponential time algorithm because many:
éhmpuf.ations would Be ‘repeated over and over again. The obvious way to avoid this
| difﬁcu!ty is to insure tha.t. each Cij is computed only once. We do this by observing
that the Qaiue of C;; in (2.10} depends only on valu.es beloﬁ_ and [ or té the left of Ci;
in the matrix from all combinations of i and ). We thus compnte the matrix C { and in
parallel, W and R ) starting from the mzin diagonal and moving up one diagonal at a
time. First C;; =0, 0 < i < n by (2.10). Then we compute Cjiy1, 0 <1< n-1 then
Ciipa. 0<1 < n—2and soon. Algorithm 2.3 embodies this idea.

Algorithm 2.3 Optimal tree

= {['Initialize the main diagonal]] -

fors =0 to n do

Repeat

[ Visit each of the n npper diagonals i}
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for{=1tondo
[ Visit.each entry in tﬁe ith diagonal ||
fori=0ton-1do
Je— i+l

[ The elements on the Ith diagonal have j - =)

[[ Compute (i]) entries; Ry is a vahie of k. § <A<y
minimizingCi g ~1 + Ci ;]
R —1+1

fork=:+2to; do

if C;y—1 + Chj < Cip,;—1+Cr,j then Rij «— k
endif
repga.t
Wi — Wi iatpi+ 4
Cij «— Ci,r,; -1+ Cryj + Wij
repeat

repeat

End Algorithm 2.3
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The running time of a.lgoﬁthm 2.3 will be roughly proportional to the number of

comparisons * Cii—1 + Ckj < Cir,,_, + Cr,;j " made in the innermost loop which is

executed
n n—=i i4{ n n={

> 2 =2 2=
= la=9 k=i42 l—ll_O

n

EDICEIRSVIESY

i=1
= én3+()( ..' o {2.12)

) r?rnéi;.,';Algorithm 2.12 thus runs in time proportional to n® nat very acceptable in

7 rd Sstructing search trees of several thousand elements. A f:ir?'rh'r‘“‘of n can actually
‘be removed from the running time if we' make use of a monotommry pmperfv Let

r(i,j) denote an element of R(i,j); we need not compute the entire set R(ij), a single

representative is sufficient. Once we have found r(ij-1) and r(i+1J) we may always

assume that
when the weights are nonnegative, This limits the search for the. minimum, since only ..
ri+1]3)- rf_i_._i'+1) + 1 values of K need to be examined in algorithm 2.3 instead of j - 1. .
The total amount of work when j - i = d is now bounded by the telescoping series
> (i +1,4)=r(i, i1 +1)

d<j<n

1=y —d

=rin—d+1ln)—-r{0,d=1)+n—-d+1<2n
hence the total mmning time is reduced to (n?). Based on this observation we can
" and the innermest loop “for

replace the statement “R;; «— i+ 1" by “R;; — R; j_,

k=i+2toj" by “flork = R; ;_; to R;4,;"in the above al orithm for the construction
J Y =1 t4+1,; £

of optimum binary search.
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2.6 Heuristics on Optimality.

Even the improved version of the optimal binary search algorithm may no: be

efficient enough in certain circumstances. I n is several thousand, it may be quite
A a

expensive to constrict the optimal tree: furt..hermore, the frequencies p; and g; are rarely
known with any accuracy and it wonld be foolish to invest much compntation time to
get an optimal tree from inaccurate fréquehcfes. In such cases a tree that apprﬁximatea
the optimal tree may be satisfactory and will certainly be less expensive to construct.

We now examine henristics for the construction of "near optimal” binary search trees.
] p b

Yiven freqnencies p; and g4;. two henristics immediately suggest themselves; we
discuss f.hem‘ in term. The monotonic rule constructs a binary search tree by choosing
the root to be z;, where p; is the largest p value and proceeding recursively on the left and
right subtrees. This may causre poor performance becanse we have totally disregarded
unsuccessfitl search frequencies. This suggests that perhaps the monotonic rule may
work very well in the special case of only successful searches occuring. Unfortunately
that is not the case : the monotonic rule produces poor trees in general, even when all
t.h_t_e g = 0 :on the average a tree constructed accm:'ding to the m_onotoni;: rule 1a no
better than a tree at random. S |

The second heuristic is the balancing rule : Choose the root so as to equalize as

much as possible the sum of the frequencies in the left and right subtrees, breaking ties
arbitrarily. The cost of the tree resulting from the balancing rule is always extremely
close to the cost of the optimal tree. The balancing rule can be implemented in time
proportional to n. the nimber of elements in the table. We want to choose the root

to equalize as much as possible the total frequencies of the left and right subtrees. In

other words we need to find an i such that [(go + P1 + ... + pic1 +¢i-1) — (¢ +
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Pig1 + oo + Pn + Gn )| is minimized and we must repeat the computation recursively

for g0.p1, oo Pi=1, Qi1 ANd G Pig1, e, p,;,qn to find the left and right subtrees,

respe.ctiveiy. The computtation is organized as follows. We first compute the
Wn,'=q‘)+p1'+ ............ +p"+q'..' OSlSﬂ

by-the recurrence relation .

‘ ;'Vnn = gn

Woit1 = Woi + pig1 + Gi41

The computation of the Wy, thus requires only time proportional to n. Given the Wy,

- we can immediately get any needed W;; with two subtractions, since

To find where [Woi.1 — Wi,| is minimized we need to find where Wo,i—1 — Win changes
+~sign: the 1 we want will be on eitherside of the sign chaﬁge. .More exactly, if Wy gy = ...
Win <0< Wour —-WHLY, then we want eitheri=kori=k + 1 depending on whether
or not W g_1 — Wi | is less than |Wy y — Wiy1,n|. We can find K by a binary search
tvpe of process. Initially we know that 1 < & < n;In general if | < k < h, check the sign
of Wom—1 — Wnn where m = [{{ + h)/?J. If it is positive, set h «— m or if negative
Set | «— m and continue, if it is zero we are done. Finding 1 in this way will require
work proportional to Ign and the total amount of work will be given by the recurrence

refation :

T(n) < max [T(i —~ 1)+ T(n—1i) + clgn]
. 1<i<n .
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where T(i-1) and T(n-i) are the work to find left and right subtrees respectively, once
the root is found. The ¢lgn term is the time required to find the root i. T(0) is some
constant. The solution to this recurrence relation gives T(n) proportional to nign. We
can reduce the computation time needed by searching for i in a slighﬂy different way.

We find the spot where Wy — Wy, changes sign by checking k = L.k = 2,k

n ~ ‘L k=4k=n—-3k=38%k =.“'3.:i"—'-' 7...... Tn other words, we check from the left
and nght. simnltaneousiyl. doubling the inte'rvél at each step. Tn this way we spend
time pmportional-to min [lg4. lg(n — 1)} to find an interval containirng i. This interval
has length proportional to min {i,n-i] and i can be located by binary séa,rr:h in time

proportional to min[l + mih[ﬂgﬂ, [lg(n + i — 1)].] The recurrence relation for T(n)

becomes

T(n) < max {T(1 - 1)+ T(n—1)
1<i<n - '

+ d(1 + min[[lg1], [lg(» — ¢ + 1)1}

and the solution of this gives T(n) proportional to n, as desired.
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CHAPTER 3
BALANCED TREE

3.1 Introductidn.

The blnarv tree algorithms work very well for a w1de variety of applications, but
they do have the problems of bad worst case perform&nce Files already in order, files in
reverse order or files with alternating large and small keys canse the binary-tree search
algorithm to perform very badly. The tree insertion algorithm will produce a good
search tree when the input data is ra.ndﬁm. but there is still the annoying possibility
that a degenerate tree will occur. Perhaps we conid devise an algorithm which keeps the
tree optimum at a}i times: but nnfortunately that seems to be very difficult. Another
idea is to keep track of the total path length and to cﬁmpletely reorganize the tree
whenev.er 'its ;;ath 7length ex.ceeds a certain limit. but this a.ppfoach might rrreqmre a

large number of reorganizations as the tree is being built.

A very pretty soliition to the problem of maintaining a good search tree can be =

achieved by keeping the tree ﬁerfectly balanced at all times. Unfortunately when the

tree 18 thus constrained, it is more costly to insert or delete an element than to rearrange
]

elements in the sequentially allocated arrays required by linear search. Instead our goa.l
is to allow more flexibility in the shape of the tree so that insertions and deletions will not

be so expensive yet search times will remain logarithmic. The method for achieving all

this involves what we shall call "balanced trees”. The height of search trees of n elements

will be O(logaN). so that search times are logarithmic and insertions and deletions will

require only local changes along 2 single path from the root to a leaf. requiring only
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time. proportional to the height of the tree - that is, O(leg2/V). Furthermore, there is
no advantage to balanced trees unless N is reasonably large; thus if we have an efficient.
method that takes 64log, N units of time and an inefficient method that takes 2N units
of tire, we should use the inefficient method unless N is greater than 256. On the
other hand N éhould not be too large, either; balanced trees are appropriate chiefly for.
iﬁtefﬁal storé.ge of data. Since internal rﬁeﬁxories Seem to be .getting la.rge and la.ré;e as

" time goes by. balanced trees are becoming more and more important.

3.2 Definition of a height b.a.lanc.é:::} tree.

The height of a tree ris defined to be its maximum levei. the length of the longest
path form the root to an external node. A binary tree is called balaﬁcéd if the absolute
diﬁ'erence of heights of left and rig‘ht subtrees does not exceed one. Fig. 3.1 Shows a
balanced tree wi'th 17 internal nodes and height 5:; the balance factor within each node

is shown as +, ., or - according as the right snbtree height minus the left subtree height

is +% 0. or -1.

3.2.1 Height of a halanced tree :.

" The deﬁni.ti'oﬁ' of balance representé a compromise between optimum binary tfeeé_
( with all external nodes required to be on two adjacent levels and arbitrary trees
{unrestricted). It is, thefefore, natural to askl how far from optimum é. balanced tree
can be.

Once we have shown that a height balanced tree of n nodes has height OQ(log, V),
then the worst case search times is (O{log2/N) and since the insertion / deletion time
will also be proportional to the height, we will be done with the satisfaction that we
can safely use height-bﬂanced trees as a storage structure for dvnamic tables.

What is the height of the tallest height-balanced trees containing N internal nodes
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| Fig. 3.1 A balanced binary tree
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and N+ 1 external nodes ? To answer this question we will turn it around and ask what
is the least number of internal nodes necessary to achieve height h in a height-balanced

tree.

Let T be a height balanced tree of height h with nj internal nodes, the fewest

possible. Obviously. |

np=0 and n; =1 (3.1)
[-\‘._ow lét us consider Ty, A >.2. Since T is height balanced and has height h, it must
have -a tree of height h-1 as its left or right subtree and a tree of height h-1 or h-2 as
its other subtree. For a.-ny k. a tree of height k has a subtree of height_k- I aﬁd this
ng > ny_y: this tells us that Ty has one subtree of height h-1 and the other of height
h-2, for if Ty had two subtrees of height h - 1, we would replace one of them by Th_2
and, since ng_y > 1y _a, this would contradict the assumption that Tj had as few nodes
| as possible for height balanced tree of héight h. Similarly the two subtrees of Tj must
be height - balanced and have the fewest nodes possible, for otherwise,' we could replace

one or both subtrees with same height. subtrees of fewer nodes; again contradicting the

assumption that Ty has as few nodes as possible. Thus Ty has Tj_4 as one subtree and

Th_, as the other,

ngy = np_y + np_a + 1 (3.2)

To find np in terms of h we will deviate a little from the current topic. let us consider

the recurrence relations

Q=T Q1 = 8§, Gn42 = Ony1 T Cn, n>0 (3.3)

bg——“o_. b =1, bn+'_)“—" Do 4 1 + b, + ¢, _n_)_:D (3.4)

From the first relation [eq. (3.3)] it is easy to show that a, = rF,_; + sF, where F}, is

the Fibonaccian number of order n.
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Now (3.2) and (3.4) is simrilarrin the sense that ¢ = 1 gives (3.3) from (3.4). Let us

try to solve relation (3.4). From (3.4)

(bnta+¢) = (bpr+c)+ by +¢)

which can be written as

hfw‘-i = K +h . hy=c and .”'1 =r+]

From the solution of relation (3.3) it is evident that

b, =cF,_q +{c+1)F,

ie b, =cFh_1+(c+1)F, —c

Replacing ¢ with 1 we get

ny=Fy_1+2F, -1

= Frya—1

1 1+ BT 1—-\/3"+2 - I

Since

: X —\ h+2
(1—5)/ 2' < 1, the term (1—'3&) / /5 is always quite small. so that |

' L)
d

WITTARE
b ] \
nhgl = —7= ( ) + O(1)

Since the tree of height h with the fewest nodes has ns nodes. it follows that any tree

with fewer than ns nodes has height less than h, then

| 1 1'J’AH
£5 ,
“leHHf=;§( 5 ) + O(1)

-
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implying that

1 y .
h & ———=ioga{n + 1) + Q(1)
log; 100 |
= 1.44loga{n + 1)

Thus in the worst case the number of probes into a height balanced tree of n internal

nodes will hever bé more than 45 percent higher than the optimum.

3.3 Balanced tree Search, Insertion and Deletion.
To make an insertion or déjetion we will nse the :;pproach of normal dynamic tree in-
. sertion and deletion respectively when the tree can rchange in an unconstrained manner;
then ;ve will follow it with a rebalancing pass that verifies or restores the height balanced
state of the tree. In order to verif;v / restore the tree we need to be able to test whether
the element inserted or deleted has changed the relationship between the heights of the
subtrees of a node so as fo violate the height constraints. For this purpose, we will store
a condition coﬂé i‘n each .node (;f a I]eight balanced tree as described earlier. Storing
condition codes requires an exira two-bit field per node in the tree. .

lRolughly speaking, the. lrebaia.ncing pass consists of retracing path upward from the

newly inserted node {or from the site of the deletion) to the root. Here we will store

the path node by node. on a stack as we go down the tree from the root to .the site of .

the rmodification.

As the path is followed upward. we check for instances of the taller subtree growing
taller fon an insertion) or the shorter subtree becoming shorter (on a deletion). When
we find such an occurrence., we apply a local transformation to the tree at that point.
In the case of an insertion it will turn ont that applying the transformation at the

first such occurrence will completely rebalance the tree. In the case of a deletion the
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transformation may need to be applied at rﬁa.n_v points aléng the way up to the root.
Since the i‘ebalancing after an insertion 1s a little, bit simpler than after a deletion we
consider it first. [t fna_v happen that the new item has been added to the bottom of

.. the taller of two ;ubtrees of some node. Without loss of gehera[ity suppose the right
- -isubtree was taller before the insertion as shown in fig. 3.2. The way to repair the newly
created i'mbalance depends on where within the taller subtree T the insertion was made.

" Suppose it was in the right subtree of T; we then have a situation that can be repaired
. as shown in fig. 3.3.

The'ti'anéformation shown in fig. 3.3 is called a rotation and if, is considered to be
applied to the element A. Obviously, if the left subtree of fig. 3.2 had been taller and
the insertion made it even taller, we would have to rotate in the other direction, using
the mirror-image of the transformation shown in fig. 3.3. [If the insertion had been to
the left subtree of T in ﬁg. 3.2 i.e. to T in fig. 3.3 then the repair is made as shown
.in fig. 3.4. This ffansfolrmation called a double rotation, -is considered to be applied
at A. The new element can be at the bottom of either T, or Ty. Again a mirror-image

transformation would bé needed in the comparable case where the.left.subtree.in fig. .
3.2 was the taller.

The transformations of fig. 3.3 and fig. 3.4 have two critical properties : the inorder
of the elements of the tree remains the same after the transformation as it was before,
and the overall height of the tree is the same after the transformation as it was before

the insertion.

Now we are in a position to state the insertion algorithm which is as follows :
We will use dynamic tree insertion algorithm to insert the new element to its proper

place. setting its condition code to .. and storing the path folowed down the tree. node
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h+2

Fig. 3.3 Single Rotation in a Balanced tree
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h+2

h+1

Fig. 3.4 Double rotation in a balanced tree

57




-. by nodg,- in a;sta.ck. Then, we will retrace that path backward, up the tree, popping
nodes off the stacl.('and correcting the height condition codes until either the root is
reached and its Height condition code corrected. or we reach a point at which a rotation
or double rotation is n.ecessary to rebalance the tree. More speéiﬂcally, we follow this
path backward, node by node, taking actions as defined by the following rules, where
current ig the current node on the path, son is the node before current on th.erpath
and grandson is the node before son on the path. ihitially. son 18 the new element just

inserted.. current 1s its father and grandson is nil :

(1) If current has height condition ., cha.née it to + if son = RIGHT {current) and to -
if son = LEFT (current). In this case the subtree rooted at son grew taller by one unit,
causing the subtree rooted at current to grow taller by one unit, so we continue up the
path, unless current is the root. in which case we are done. To continue up.fhe path

we set grandson +~— son, son +«— current, and current to the top stack entry, which is.
‘removed from the stack.

-

(2) If current has height condition - and son = RIGHT {current) or current has height

condition + and son = LEFT {current). change the height condition of current to .,
and the procedure terminates. In this case the shorter of the two subtree of current has

grown one unit taller. making the tree better balanced.

(3) If current has height condition - and son = LEFT (current} or current has height
condition + and son = RIGHT f{current), then the taller of the two subtrees of cur-

rent has become one unit taller. unbalancing the tree at current. A transformation is
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performed according to the following four case :

Grandson = RIGHT (son} Grandson = LEFT {son)

Double rotation around

Son = Right'(current) :Single rotation at
current using fig. 3.3 current using fig 3.4
Son = LEFT(current) Double rotation around Single Rotation around
' current using the current using the mirror
mirror image of fig. 3.4 image of fig: 3.3

The deletion process is more complicated than insertion because it will not always be
sufficient to apply a transformation only at the lowest point of imbalance; transforma-
tions may need to be applied at many levels between the site of the deletion and the
root. To delete a node from a height-balanced tree, we proceed as for unconstrained
trees : if the node is on leafi just delete it: if it has one nonnil son, replace it with its
| son: if it. has two nonnil sons, i‘éplace it by its inorder predecessor which will have a null
right son or replace it by its inorder successor which will have a null left son.

As in the ins_eftion algorithm‘- we store on & stack the path followed down the tree to
the site of the node fo be dele.ted. then we retrace the path backward up the tree, popping
nodes off the stack. correcting height condition codes and making transformations as .
n-eeded- As we go baci-c up the path actions are taken as defined by the following rules,..
where current is the 'éurrént node on the path and son is the node before current.
Initialiy current is the father of the node deleted and son is the node deleted : .

(1) If current has height condition code .. then shortening either subtree does not affect
the height of the tree rooted at current. The condition code of current is changed to
+ if son = LEFT (current) and to - if son = RIGHT (current). The procedure then

terminates.

{2) If current has height condition + and son = RIGHT {current} or current has height

irrent). then condition code of current is changed to ..

condition - and son = LEFT {ct
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The subtree rooted at current has become shorter by one unit. so we continue up the
path, unless current is the root. in which case we are done. To continue up the path we
set son «~— current and cﬁrrent to the stack entry, which is removed from the stack.
(3)‘ If current has height condition + and son = LEFT (current), then the height con- -
h;rstraint is violated at current. There are three su'b-cases. depending on the height con-
dition code at RIGHT (current), the'broth‘er of son. The subcases are as given in fig.
3.5.3.6, and 3.7. | | |

In fig. 3. 7. the height condition codes of A and C are both .. if that of B was .. If

lB was 4, then A is: am:! Cis: H B was -V the‘n Ais. énd Cis +.

For both conﬁgumhon in ﬁg 3.6 and 3.7 the he}ght of the subtree is one less
than 1t was before deletlon Thus 1f current is the root we can terminate the procedure
otherwme we have to continue up the path forwards the root.

(4) If current has height condition - a.nd son = RIGHT (current), then the height
| .constra.lnt 1 violated at current. There are three subcases, dependmg on the height
- condition code LEFT (current), the brother of son. The subcases are the mirror tmages
~of those given in ﬁg. 3.5, 3.6 and 3.7.
7 The deletion algorithm will clearly require only time proporr.ionalr to' the height’
of the tree; the deletion can be accomplished in Q(legan) time, as rcan insertion. An
insertion, however, will need at most one rotation / double ro'tation to rebalance the
tree, while a deletion from a height balanced tree of height h can requu'e as many as

[h/2j rotations / double rotations but no more.

3.4 Balanced Tree search and insertion without using stack.
The backward scan up the tree from the site of the insertion in a height balanced

~ tree can be eliminated at the expense of retracing part of the path down the tree. This
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h+2 -

h+2

Fig. 3.5 Single rotation in times of deletion ‘when condition code is *.’
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502,

Fig. 3.6 Single rotation in times of deletion when condition code is 4!
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T1

, {deleted}

' Fig. 3.7 Double rotation in times of deletion from a Balanced tree
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' c:aﬁ be dqné roughly as follows. As we go down in the tll'.ee to the site of the insertion,
keep track of the nodé S that is the latest one along the path to have height condition + .
or -. When the insertion is done, each of the elements between 8 and the newly inserted
element "has height condition code . and each must be changed to + or -. It ts at S
that a rdtati,c-)h'or double rotation may be needed. Let us work dut the details of the

algorithm.

Algorithm 3.1 Balanced tree search and insertion

Given a table of records which form a baianced binary tree as described earlier, '
this algorithm searches for a given argument k. If k is not in the table. a new node
co.n_tainihg kis inserted. into the tree in the appropriate place and the tree is rebalanced
if necessary. The nodes of the tree are assumed to contain KEY, LLINK; and RLINK
fields. We also have a m;,“; field B(P) = balance factor of NODE(P), the height of the
right subtree minus the height of the left subtree; this field always é:ontain's either +1, 0
or-1. A special hea&er nddé é.lso appears at the top of the tree, in location HEAD; the |
value of R.L[NK(HEAD) is a pointer to the root of the tree and LLINK(HEAD) is nsed
to keep track of the overall height of the tree. We assume.ﬁ,hat‘ the tree is;nonempty,
. i, that RLINK(HEAD) # A. For convenience in description, tﬁe-algorithm nses the |
" notation LINK(a.P) as é. s_vnén_vm for LLINK(P) fa = -1 and for RLINK(P)if a = +
1.

This algorithm is rather long,. but it divides into three simple parts : Steps Al -

A4 do the search. steps A5 - AT insert a new node and steps A3 - Al0 rebalance the

tree if necessary.

AL [[ Initialize ] Set T «— HEAD, § «— P «— RLINK(HEAD) (The pointer variable

il point to the place where rebalancing may be necessary

P will move down the tree; S w
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and T always points to the father of S.)
A2 [ Compare |] If K < KEY(P), goto A& if K> KEY{P), goto A4 and if K =
KEY(P), the search terminatés successfully.
A3 [l Move-left [ Set Q@ «— LLINK(P). If @ = A, set Q — AVAIL and LLINK(P)

— Q and gotb step A5, Otherwise if B (Q) # 0, set T «— P and § «— Q Finally set
- P—Q énd return to step A2. | |
A4 [[ Move rig’ht ]l Set Q «— RLINK(P). If @ = A, Set Q «— AVAIL and RLINK(P)
«— O and goto step A5. Otherwise if B(Q) # 0, set T— Pand S «— Q. Finally set
Pe«—Q 'a..nd return to step A2.
A5, ([ Insert ]} (We have jnst linked a new node, NODE(Q). into the tree and its fields
need to be initialized)_set KEY(Q) 4——K LLINK(Q} «— RLINK(Q) — A, B(Q) —
0. |
AG. [ Adjust balance factor |} (Now the balance factors on nodes between S and Q need -
to be changed froﬁ: zero to +1.) HK < KEY(S), Set R «— P «— LLINK(S), otherwise
set R ‘-.—' P — B.L]N!‘(-(S). Then repeatedly do the following operations zero or more
times until P = Q. If K < KEY(P) set B(P) «— - 1 and P «— LLINK(P); LK >
KEY(P), set B(-P') «— + 1and P «— RLINK(P) ( If K = KEY(P), then P = Q and'
we may go on to the next step.)
A7. [[ Balancing act. ]] If K < KEY (S) seta = - 1, otherwise set a = +1. Several
cases now arise : |

i) If B(S) = 0 ( The tree has growth higher), set B(S) «— a. LLINK(HEAD) «—

LLINK!HEAD) +1 and terminate the algorithm.

it} If B(S) =+ a (The tree has gotten more balanced). set B (S) = 0 and terminate

the algorithm.
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i) If B(S) = a (The tree has gotten out of balance). goto step A8 if B{R} = a, to
A9if BR) =-a.
.AS. [[ Single rotation J] Sét P «— R, LINK(a,;s} «— LINK (-a2,R), LINK (-a.R) +—= §,
B(S) — B(R) «— 0, goto A10. |
A9. [[ Double rotation ]] set P «— LINK (-a,R), LINK (-a,R) e LINK (a,P), LINK

(a.P) — R, LINK (a,S) «— LINK (-a, P), LINK (-2, P) «— S. Now Set
' f | (—a,0) ifB(P)=a
(B(S), B(R)) — { (0,0) iB(P)=0
(0,a) ifB(P)= —a

and then set B(P) «— 0.

A10. [[ Finishing tou_chrjj (We have completed the rebalancing transformation, with P
pointing to new root and T pointing to the father ofr.r,he old root.) If § = RL[NK(T)
then set RLINK(T) «— P, otherwise set LLINK(T) «— P.
3.5 Some interesting empirical results about balanced. trees,

In th-e ﬁrﬁt place we cé.n ask about the number R, of bﬁlanced binarj;r trees with
n internal nodes and height h. It is not difficult to compute the generating' function
- B, (z) = Z"Z';' B, ;2" for small h, from the relaﬁons_ S
B@(z}% 1_-31(2) =z, Bp41(2) = 2By (2)(By(2) + 2By _4(2)) (3-6’)7 |

Equatiorn-(_3.6} derives itself from the fact that the coefficient of 2™ in z2B;(z)B;{ z)
is the number of n node binary trees with left subtree of height i and with right subtree
of height j. |

Thus

By(z2) = 22!72 + 2°

By(z) =424 + 655 + 425 4 57

By(z) =162 £ 328 444,94 . R 18
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The total number of balanced trees with height his By = Bx(1). which satisfies the

recurrence

By = B, =1,Bs,; = B} +2ByBy_; (3.7)
so that .Bg-= 3.B, =35 B, =3257 B = 3252 7.23 and in general

By =4 1;“‘ f’_i.;lﬁ | (3.8)
Where 4y = 1. 4, = 3. Ar=5 Ay =T, A; = 23. As = 347.7._..... Ay =-A;5_1B;,_9 +2.

The éé’quence’s_BJ, and Ay grow very rapidly. in fact they are doubly ekponential.
i we consider each of the By trees to be equally likely, we can roughly compute the
average number of nodes in a tree of height h as (0.70118)2% ... ORI (3¢ |
This indicates th;].t the height of a balanced tree with n nodes usually is much closer
to log, n than té 1og¢ n. Unfortunately these results do not bear the true picture of the
above mentfﬁned aigbﬁthm, since this algorithm makes some trees much more probable
than others. For example considef t‘hé case N=7, where 17 balanced trees are bpssiblé,
There are 7! = 5040 possible ordrerings in which seven keys can .be inserted-and the
B perfectly balanced complete tree is obtained 2160 'times., The fact that perfect =ba.la.ncéd-
tree is obtained with such high probability together with (3.9) . which corresponds to
the case of equal probability - makes it extremely plausible that the average search
time for & balanced tree is about log, N + C comparisons for some small constant C.V
Empiﬁcal tests s;Jpport this.coniectitre. The. average number of comparisons needed to
insert the Nth item seems toA be approximately log, V + .25 for large N..
“An approximate model of the behaviour of a}gbrithm 3.1 can be established which
is not rig@)rouslyr aécufa.te, but it is close enough to the truth td give some insight. Let

us assume that P is the probability that the balance factor of a given node in a large
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tree huilt by algorithm 2.1 is 0; then the balance factor is 4+ 1 with pm-babili.t.y 11— P),
lr,md. it is - 1 with the same probabtlity 21-P) |

Let us assume further {withont justification) that the balance factors of all nodes
are independent. Then the probabilif—,y that step A6 set exactly k - 1 balance factors
“nonzero is PE=1(1 — p); so the average value of K - 1is P{(1 — P). The probability-
that we need to rotate part of the tree is 1/2. Inserting a new node should i increase the

number of balanced nodes by P, on the average; this number 1s actually increased by 1

in step A5, by —P/(1 — P) in step A6, by 1/2 in step A7 and hy .2 in step A8 or A9,

so we shonuld have

| P 1
P=l-——+4-+1
1-—p+2

Solving P we have P = 0.649 and if;P = 1.851 This agrees with the fact that about

68% of all nodes were found to be balanced in random trees built by algorithm 3.1.
Some other wavs of organizing trees. so as to guarantee logarithmic access time,
have been proposed. ‘We can promote the height balanced trees which arise when we

“allow the hetght difference of subtrees to be greater than one; but at most four {say).

Another_altemat_ive to balanced trees called 2-3 trees incorporates the idea that they ..~ .- -

“have ‘either 2-way or 3-way branching at each node and to stipulate that all external
nodes appear on the same level. An interesting tree representation for 2-3 trees has also

been suggested by using one extra bit per node. The next section of this chapter travels

through these variations of balanced trees.

3.6 2-3-4 Trees.

In order to construct the top - down 2-3-4 trees some flexibility in the data struc-
tures are needed. To get this flexibility. let us assume that the nodes in the trees can

hold more than one kev. Specifically, we will allow 3-nodes and 4-nodes. which can hold
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two and three keys respectively. A 3-node has tree links coming out of it, one for all
records with keys smaller than both its keys. one for all records with keys in between its
two keys and one i'or all records with kevs larger than both its keys. Similarly, a 4-node
has four links coming out of it, 6'11e for each of the intervals defined by its three -ke_vs.
We will see below some efficient w-'a.vs to define aﬁd im—plement the basic operations on
.the-se e.xt.ende;:l;nAod-es: fof now. let us assume we can manipulété them conveniently and |

see how they can be put together to form trees.

For example Figure 3.8 shows a 2-3-4 tree. It 1s easy to see how to search in such a
tree. For example , to search for 15 in’the tree in figure 3.8, we wauld follow the middle

link from the root, since 15 1s between 12 and 40, then terminate the unsuccessful search

-at the left link from the node c'o-ntaining 20, 30 and 35.

To Insert a new nod_e in a 2-3—4-tree_, we would like to do an unsuccessful search
and then hook the the node on.’ It‘ is easy to see v;hat to do if the node at which the
‘search terrﬁi_nates 1sa ;?-node: we can Just turn i;; into a 3-node. For example, 50 could
| "bé added to:.the tree in figure 3.8 by a.dd'in_g it to the node con-tainin,g 45.. Similacly, a
3-node can easily be turned into a 4-node. But what should we do if we need to insert
new node into a 4node ? For .e-xample. how will this be done if we insert 15 into the
tree in Figure 3.3 7 One poss’.ibilit:_\;r would be to hook it on as a new le.ftn-lost child of
the 4-node containing 20, 30, an& 35 but a better solution is shown in Figure 3.9 : first
we will split the 4#-node into two 2-nodes and pass one of its keys up to its parent. First
- the 4-node containing 20, 30, and 35 is Sblit into two 2-nodes {one containing 20, the
other containing 35) and the "middle key” 30 is passed up to the 3-node containing 12

and 40, turning it into a 4-node. Then there is room for 15 in the 2-node containing 20.

But what if we need to split a 4-node whose parent is also a 4-node ? One method
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Fig 3.8 A 2-3-4 Tree

Fig 3.9 Insertion of 15 into a 2~3—4 tree . -, . .
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wotld be to .split the parent also, but we could keep having to do this all the way back

up the tree.. An easier way is to make sure that the parent of any node won't be a

4-node by splitting any 4-node we see on the way down the tree.

All what we needr to do is to insert new nodes into 2-3-4 trees by doing a search
- and splitting 4-nodes on the way down the tree. Specifically, ever_vltime we encounter
a 2-node-connected fo a '4-hode; we should transform it into a 3-node conhected to
two 2-nodes and every time we encounter a 3-node connected to a 4-node, we should

transform it into a 4-node connected to two 2-nodes which are shown in the figure 3.10.

The crucial rpoinrt is that these transformations are purely "focal” : no part of the
tree need be examined or modified other than that shown in Figure 3.10. Each of the
transformations passes up one of the keys frém a 4-node to its parent in the tree and
restructures links éccordingly. Note that we needn’t worry explicitly about the parent
being a 4-node, since o-ur transformations ensure us that as we pass through each‘no‘de
in the tree. we come out on a node that is not a 4-node. In particular, when we come out

the bottom of the tree, we are not on a 4-node, and we can insert the new node directly

by tra.nsfomiing either a 2-node to a 3-node or a 3-node to a 4-node: Actually.-it is.oooo o

convenient fo_treatr the insertion as a split of an imaginary 4-node at the bottom which
passes up the new key to be inserted.. Whenever the root of the tree becomes a 4-node,
we'll split it into three 2-nodes, as we did for our first node split in the example as

shown in the Figure 3.11. This (and only this ) makes the tree grow onérlevel "higher”.

The algorithm sketched above gives a way to do searches and insertions in 2-3-4
trees: since the 4-nodes are split up on the way from the top down: the trees are called
top down 2-3-4 trees. What's interesting is that. évenr though we haven'’t been worrving
about balancing at all. the resulting trees are perfectly balanced !

-
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Fig. 3.11 Splitting of root node in a 2-3-4 tree
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The distance from the root to evervy external node is the same: the transformation
that we perform have no effect on the distance from any node to the root. exceét when
" we split the root. and in this case the distance from all nodes to the root is increased
by one. If all the nodes are 2-nodes then searches in N-node trees never visit more than

log, N + 1 nodes, since the tree is like a full binary tree; if there are 3-nodes and 4-nodes,

the height can only be lower. .- '

_ Insértioﬁs into N-node 2-3-4 trees require fewer than log, ¥V 4+ 1 node split in the
worst case and seem to require less than one node split on the aver;age. The worst thing
that can happen is that all the nodes on the path to the insertion point are 4-nodes. all -
which would be sblit. But in a tree built from a random permutation of N elements,
not only is this worst case unlikely to occur. but also few splits seem to be required
on the average. because there are not mény 4-nodes. Analytical results on the average
case pérformancg of 2-3-4 trees have so far eluded the experts, but empirical studies

.-

consistently show that very few splits are done.

3.7 RED BLACK Trees. . - .

The description given in section 3.5 is sufficient to define an algorithm for searching .
using 2-3-4 trees which has guaranteed good worst case performance. ‘IHowever,_we are
only halfway towards an actual implementation. While it would be possible to write
algorithms which actually perform transformations on distinct data fypes r;epresenting
2., 3. and 4-nodes, most of the things that need to be done are very inconvenient
" in this direct representation. Furthermore, the overhead incurred in mani_pulat-ing the
more complex node structures is likely to make the algorithms slower than standard
binaryl-tree search. The primary purpose of balancing is to provide " insurance” against

a bad worst case. but it would be unfortunate to have to pay the overhead cost for

-
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that insurance on every run of the algorithm. Fortunately, as we'll see below there is a
relativelv simple representation of 2-, 3-, and 4-nodes that allows the transformations to

be done in a uniform way with verv little overhead beyond the cost incurred by standard
binary tree-search.

Remarkably, it is possible to represent 2-3-4 trees as standard binary trees {2-nodes -

nnlv\ by using onlv one extra bit per node: The idea is to renrese-nt 3-nodes and 4-nodes
as small binary trees bound together by "red” links; these contrast with the ”black”
links that bind the 2-3-4 tree together. The representation is simple : as shown in Figure

3.12, 4-nodes are represented as three 2-nodes connected by red links and 3-nodes are

represented as two 2-nodes connected by a red link {red links are drawn as thick lines).

(Either orientation is legal for 2 3-node.)

Figure 3.14 shows one way to represent the tree of Figure 3.13. If we eliminate the
red links and' collapse together the nodes they connect, the result 18 2- 3—4 tree in Figure
3.13. The extra bit per node is used to store-the color of the link pointing to that node

: we'll refer to 2-3-4 trees represented in this wa.y as red black trees. )

Thése 't_rees,have many structural -properties that follow directly from __-the_waﬁr in.
which they are defined. For example. there are never two red links in a row along anv
path from the root to an external node, and all such paths have an equal number, of
black links. Note that is is possible that one path (alternating black-red) be twice as

fong as another {alt black), but that all path lengths are still proportional to log, V.

" One very nice property of red-black trees is that the treesearch procedure for stan-
dard binary tree search works withont modification {except for the matter of duplicate
keys). We will implement the link colors by adding a boolean field red to each node

which is true if the link pointing to the node is red: false if it is black: the treesearch pro-
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Fig. 3.12 Red-—Blnck Representation of B-nodes and 4-nodes

(59
®) @ W G Gue ) G

JoOoOo0 o000 DO 00O O 0O o000 o
Fig. 3.13 A 2-3-4 Tree )
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Fig. 3.14 A Red-Black tree
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"cedure simply never examines that field. Thus, no "overhead” is added by the balancing
merhanlsm to.the time taken by the fundamental searchmg procedure Smce each key

is inserted just once, but may be searched for many times in a typical application, the
end result is that we get improved search times {because the trees are balanced) at
rela.twelv little cost {because no work for balancmg i done during the searchPs) Below

i8 the descnptlon of searching algorlthm for Red - Black trees which in turn calls the

necessar_v procedures as described later on. -

Algorithm 3.2 (Red Black Tree Search and Insertion)

type hink = -[ node

node = record key : integer: llink. rlink : link;
. red : boolean end; . | |

var head. z, x : link:

searchkey : integer

 new (z); z | .Mink = z; z 1 .rlink = z zT.red = rfalse
new (head): head | key = 0; head ["rlink = 2
searchkey = rand()

z = search {head. searchkey)
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.if (z# 2) pﬂnf. : ’]‘Heheérch_ i.slrsm':c.éssff.ll B
else rbtréeinsert (se;'cl.rr:hl-:ey_. ﬁead)-[[' T‘h"e search is 111‘1511'(:::9551'11!1 1l
endit

End Algorithm 3.2

Moreover. the overhead for insertion is very small: we have to do something different
only when we see 4-nodes, and there aren’t many 4-nodes in the tree because we're
always breaking them up. The inner loop needs only one extra test (if a node has two

red children, it’s a part of a 4-node), as shown in the following implementation of the

insert procedure :

rbtre'einsgrt (searchkey : integér; heaa : link)
gg, g, p. X @ link |
.x.=' head; p = head: g = head:
while (x # z)r do
yg=y;9=pip==.
if (searchkey <z 1 Vkey) then z=1z1 llink
elsez = z | rlink |
endif
| if(z | link 1 }ed)and(zrrlinkrred) then
z = split (searthkey. gg_.g,p,xj; |

endif
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re-pea,t

new(x); 1 key = .searchke‘v;x']‘ ink = z;x T rlink = z;

if (searchkey < p | key)then ptllink ==z
Velsep‘[ rlink = z |

endif

v e

End Procedure rbtreeinsert

In this progra\_m, x moves down the tree and gg, g. p are kept pointirig to‘x’s great
' .grandfather, grandparent, and parent in the tree. To see why all these links are needed,
let us consider the addition of 120 to the tree of Fig. 3.14. When the the external node
at the right of the 3-node containing 100 and 110 is réa.ched, gg is 90, g 18 100 and p.is

110. Now 120 must be added to make a 4-node containing 100, 110 and 120, resulting

v

in the tree shown in Fig. 3.15. -
We need a pointer to 90 {gg) hecanse 90’s right link must be changed to point to 110,

not 100. To see exactly how this comes about, we need to look at the operation of the
split procedure. Let us consider the red-black representation for the two transformations

we must perform: if we have a 2 node connected to a 4-node, then we should convert

them into a 3-node connected to two 2-nodes : if we have a 3-node connected to a

4-node, we should convert them into a 4-node connected to two 2-nodes. When a new
node is added at the bottom, it is considered to be the middle node of an imaginary

4-node (that is, think of z as being red, though this is never explicitly tested).
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Fig. 3.15 Insertion of 120 into a Red-Black tree
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Fig. 3.15 Insertion of 120 into a Red-Black tree
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The transformation required when we encounter a 2-node connected to a 4-node is -

. .easy, and the same transformation works if we have a 3-node connected to a 4-n6de in

fhe %;{‘-ight” way, as sho.wn.in_Figure 3.16. Thus, split begins by marking x to be red
" and the children of x to be black. - - |

- This leaves the two other situations that can arise if we encounter a 3-node con-
ﬁected to a 4-node, 'aé shown in Fig;_lre 3.17. (Actually. there are four situations, since
the mirror images of these two can also occur for 3-nodes qf the other orientation.) In

rhespmseq 'sp_lir.t.iﬁg the 4—noae Eaé l'e-ft:'two red links in a row, an illegal -situation which
must be corrected. This is easily tested for in the code : we just marked x red, so if x’s
parent is also red. we must té.ke further action. The situﬁtion is not too bad because

we do have three nodes connected by red links : all we need do 1s transform the tree so
that the red links poiht down from the same node.
There is a simple operation which achieves the desired effect. Let us begin with the

“easier of the two, the first (top) case from Figure 3.17, where the red links are oriented

" ‘the same way. The problem is that the 3-node was oriented the wrong way : accordingly,

~ we-restructure the tree to switch the orientation of the 3-node and.thus reduce this case .- -

‘to be the same as the second case from Figure 3.16, where the color flip of x and its
children.was sufficient. Restructuring the tree to reorient a 3-node involves changing
three links. as shown in Figure 3.18; note that Figure 3.18 is the same as Figure 3.15,
but with the 3-node containing 70 and 90 rotated. The left link of 90 was changed to
point to 30, the righf link of 70 was changed to point to 90, and the right link of 50

was changed to point to 70. Also note carefully that the colors of the two nodes are

switched.

on is defined on any binary search tree (if we disregard

This stngle rotation operati
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Fig. 3.168 Splitting 4-nodes with a color flip
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'Fig. 3.17 Splitting 4-nodes with color flip: Rotation needed
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Fig. 318 Rotating a 3-node in fig. 3.15

- 85



npe--r'mnr;s involving the colors) anri is the basis for several balanced-tree algorithms,
because it preserves the essential characters of the search tree a.nd is local modification
~ involving only tree link changes. [t is important that doing a single rotation does not
nermsarllv improve the balance of the tree. In Figure 3.13. the rotation brings all the
nodes to the le{t of 70 one step closer to the root, but all the nodes to the right of 90 are
lowered one step In this case the rotation makes the tree less, not more balanced. Top-

down 2-3-4 trees may be viewed simply as a convenlent way ' to identify single rotations

which are likél_v to improve. the balance.

" Doing a single_rotation involves modifyiﬁg the structure of the tree, something
fha.t éhould be done with caution.. When considéring the rotation algorithm, the code
is more complicated than might seem necessarv because there are a number of similar
cases with left-right symmetries. For example. suppose that the links v, c, and ge point
to 50. 90. and 70 respectively in Figure 3.15. Then the tmnsf_orm-at’ion to Figure 3.13 is
effected by the link changes ¢ [ Alink = gc | .rrlink;gc | rrlink = ey | rlink = ge.

There are three other analogous cases : the 3-node could be oriented the other way

or it conld be on the left side of v (oriented other way). A convén_ient__ way to handle
these four different cases is to usé the search key u to rediscover the_relevant child (c)
é.nd grand-child (ge) of the node y, (we know that we will only be reorienting a 3-node
if the search took us to its bottom node.) This leads to some what simpler code than
alternative of remembering during the search not only the two links corresponding to ¢

and gc but.also whether they are right or left links. We have the following function for

reorienting a 3-node along the search path for v whose parent is y:

rotate ( v : integer: v : link} : link
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c. gc : link

if(v <y1 key) then ¢ =y | llink
e?se c=y [ riink. |
éndif_ B
-if(tr <.c T key then )
ge=c [ llink;c | link = ge [ rlink: ge | rlink = ¢
else
| ge=c [ rlink;c | rlink_= ge | llin-k:gc [ lliﬁk =c-
endif
if(v <yt key) then y 1 llink = ge
el;e |
y [ rlink = ge
endif
return (gc)

End Procedure rotate

If v points to the root. ¢ is the right link of y and gc is the left link of ¢, this makes
exactly the link transformations needed to produce theé tree in Figure 3.13 from 3.15.

We may check the other cases. This function returns the link to the top of the 3 node,

but does not. do the color switch itself.
“Thus. to handle the third case for split (see Figure 3.17), we can make g red, then

set x to rotate (v.gg). then make x black. This reorients the 3-node consisting of the
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two nodes pointed to by g and P and reduces this case to be.the same as.the second

case, when the 3-node was oriented the right way.

F‘inélly. to handle the case when the two red links are oriented in different directions
~ {gsee Figure 3.17{. we simply set P to rotate (v:g).' This orients the ”illegal”".'if_nlode
consisting of the two rodes pointed to .b.v P and x. These nodes are the same color. so no
éblof clhanrge is necessary, and we are immédiatély reduc.ed to the third case. Combining

" this and the rotation for the third case is called a double rotation for obvious reasons.

Figure 3.19 shows the split occurring in our exarple when 40 is added. First. there
is a color ﬂip to é_blit up the 4-node containing 45, 50, and 70. Next, a double rotation is
needed: the first part around the edge between 50 and 90, and the second part around

the edge between 30 and 50. After these modifications, 40 can be inserted on the left

of 45, as shown in the tree in Figure 3.20.

This completes the description of the operations to be pefformed by split. It must
switch the colors of x and its children, do the bottom pai't of a double rotation if

necessary and then do the single rotation if necessary, as follows :

~split ( v : integer; gg. g, p. X! l'irik) . link

z | red = true: z | Hink | red = false;z | rlink [ red = false;

-
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Fig. 3.19 Splitting a node in a Red-Black tree
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Fig. 3.19 continued



Fig. 3.19 continued
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Fig. 3.20 The resulting tree of Fig. 3.19 after 40 is inserted
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if {p T red ) then

g red = true

ifv<gtl ke;y )£ (v<pl keé) then
p = rotate(v, g}
| endif

= rotate(u,-gg) :

z | red = false

endif

return (z)
End Procedure split

This procedure fixes the color after a rotation and also restarts x high enough in

the tree to ensure that the search does not get lost due to all the link changes. The long-

argument list is mcluded for clarity : this procedure should more properly be dec!ared

local to rbtreeinsert, with access ‘to its variables.

.. If the root is a 4-node then the split procedure makes the root.red : this cor.respohds R

to transforming if, along with the dummy node above it, into a 3-node. Of course, there

is no reason to do this. so a statement is included at the end of split to keep the root

black.

Assemb]ing the code fragﬁ'nents above gives a very efficient, relatively simple algo-
rithfn for insertion using a binary tree structure that 13 guaranteed to take a log;':trithmic
number of steps for all searches and insertions. This is one of the few searching algo-

rithms. w1th that propertv and its use is justified whenever bad worst case performance -

simply cannot be t‘.o_lera.ted.
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CHAPTER 4
HASHING TECHNIQUES

4.1 Illtroduetion'.
In thlslchaprer we will examine a speual class oftable organization in which we attempt
to store elements In locations that are easily computed from the value or representation
" of the elements. This contrasts markedly with ‘the techniques presented in previous
chapters:A in those chapters we based a search on comparisons.and the locations in
which an element was sto:ed depended on its position in an ordered arrangement of
‘the elements. In this chapter we discuss techniques based on directly transforming the
elements into an address at which it will be stored. |
More genérallv, we will suppose that, we have an array of m table locations T[D], T[1},..
..... T[m — 1), say, and given an element z to be inserted we transform it to a location
h(z),l)__(_-h(z) < m: h is called the hash function. We then examine T[h(z)] to see if
it is empty. Most of the time it will be, so we set Tfh(z)] 4—jrz,_'zg.rpd.we -are done.. If
T[h(2)] is not empty, a collision has occurred, a.nd‘ we must resolve it somehow. Taken
together. the hash function and the collision resolution method are referred to as hashing
or scatter storage schemes.

Under the proper conditions. hashing is unsurpassed in its efficiency as a table

organization. since the average time for a search or an insertion is generally constant,

independent of the size of the table. However, some important caveats are in order.

First. hashing requires a strong belief in the law of averages, since in the worst case

collision occurs every time. and hashing degenerates into linear search: Second. while it
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is easy to make insertions into a hash table. the full size of the table must be specified a
priori. because it is closely connected to the hash function used; this makes it extremely
_ekpellsive to change dynamically. If we choose too small a size the performance will be
poor and the table méy overflow, but if we choose too iarge a size much memory will be
* wasted. Third deietions from the table- are not easily accommodated. Finally, thle order
of ther'elerhe'nts in the table is unrelated to any natural order that may exist among the
elements, aﬁd S0 z;n unéuccésgfui search results only in the kﬁowledge-that the element

sought is not in the table. with no information about how it relates to the elements in

the table.

4.2 Collision Resolution.’

Tvpically, the number of possible elements is so enormous cr-)mp-ared to thé relatively
small number of table locations that no hash function. not even the most carefully
designed one. can prevent collisions from occurring in practice. In fact, the likelihood of
collisions uﬁder even the most ideal circumstances suggests that the collision resolution
séhem_.e is more criticaﬂ to overall performance than the hash functions. pr_;ovide,d at, least
mintmiim care is tz;ken to avoid primary clustering.

When a collision occurs, and the location'T[h(z)]' is a.lready. filled at the time we
try- to insert 2, we must have some method for specifying another location in the table
where z can be placed. A collision resolution scheme is a method of specifying a list of
table location an = h{2), ay, as, ..., ay_; for an element z. To insert 'z, the locations
are inspectgd in that order until an empty one is found. Our two choices are to store
pointers déscribing the sequence explicitly -or to specify the sequence implicitly b'y- a
fixed relationship between z.. a; and 1. Techniques for c-ollision resolution based on these

two possibtlities are explored in the following sections.
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4.3 Chaining.

In this scheme a sequence of pointers is built going from the hash location h(z) to the
location in which z is nltimately stored. In separate chaining each table location T[i]
is a list header, pointing to a linked list of those elements z with hfz) = i. A link field
should be included in each record, and there will also be M list heads. If the list is
nnordered we insert z just afte:.thé list header T[h{z)], before the first element on that

list. A search for Z in this case is done by applying algorithm 4.1 to the list T[H(z)].

Algorith'm 41 Unordered list search.
g — NULL: p+= T{h{2)]

while . (p# NULL and 2z # KEY(p)}do
q— p; p— LINK(p)

repeat

if {(p# NULL) then retufn [l Found: p points to the element I] o
else

s = getnodel):- s(KEY) =2z

LINK{(s)= NULL;" H Not found: z 18 not in the list ]]

if (g = NULL) then T[h(z2)] = s

else

LINK{g) = s

endif ,7 o

endif
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End Algorithm 4.1

‘The time for unsuccessful searches can be reduced by keeping each of the lists ordered
by key. Then onl'y‘ half of the list need to be traversed on the average to determine that
an item is missing. If the list is ordered insertion of 7 is done.by applying algorithm
4.2 to the list Tih(z)] and a search for Z is done by applying algorithm 4.3 to the list

Tzl

Aigorithm 4.2 Ordered list insertion
préd — Tlh(z)]; - pe pred

while ((p# NULL)and(KEY(p) < z))do
pred «— p

p— LINK(p)
répeat
"KEY(new) «— z-
LINK (new) «— LINK(pred)
LINK (pred) «— new
-End Algoritl.nn 4.2

Algorithmm 4.3 Ordered list search

p— T[}Z(Z)]_

while (2> KEY(p)) do p «— LINK(p) repeat.
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if {z= KEY(phH ret.l‘lrn [ Found: p points to the element ]
else call Algorithm 4.2 [[ Not found: z is not in the list ]|
endif

End Algorithm 4.3

Chainipg .is qui'ter fa.st; because the lists are short. If 365 people are ga.threrf;-drtogether in

one room, there will probably be ‘manylpairs having the same birth day, but the average

number of people with a,ny. given birthday will be only one. In general if there are N

kevs and M lists the average list size is N/M: thus hashing decréaﬁes the amount of
' .w‘ot'k‘l needed for sequential searc%ﬁﬁg by roughly a factor of M. One technique that can

Be used to reduce the number of prﬁbes in separéte chalning 18 to maintain the records

that hash into the same value as a binary search tree emanating from the hash bucket

' rather thaln as a linked list. However, this requires two pointers. to be lkept with each

record. Since chainrs are usually small. the added space and programming complexity

do ﬁot seert to be warranted.

~ For the sake of speed we would like to make-M rather large. But when M is large,

ri‘1a.riy of the lists will be empty and much of the space for the M list heads will be . .
wasted. This ‘suggests another approach, when the records are small : wé can overlap
the record stc&rage with the list heads. makiné room for a total of Mrrecordrs and M
links instead of for N records and M 4+ N tink;. In this case, the overhead of the M
list headers needed by separate chaining can be eliminated by using coalesced chaining,
in which each table location Tl'll is nsed to store a record, containing within it a field
LINK[i). When Tfhiz}] is found to r:rontain another element on an atterﬁpted insertion
of Z. we follow the LINK fields until we reach one that is NULL: then we take aﬁ empty

location Tlfree}, set the last NULL LINK field to point to it and store Z in T]free].
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The search for emp‘t_\' Ioc:'ations originally begins at T[m-1] and goes backward in the
table toward T{0]. Each time an empty location is needed, We continue backward from
where we stopped on the previous occa'sion; to stop this search, we introduce a dummy
element that is always empty. The table will overflow when all the locations are full.

The details of such a search and insertion process for coalesced chaining is as follows :

Alzorll:hm 4.4 (chained scatter table search and msertlon)

“This algorlthm searches for an M-node table, looking for a glven kev K. If K is not
in the table, and the table is not full, K is inserted. The nodes of the table are denoted
by TIi]. for 0 <+ < M, and they are of two distinguishable types, empty and occupled '

An‘occupied node ;ontains a key field KEY[i], a link field LINK[i] and possibl_v;o'r,her

fields.

The algo'rith‘m r_na,kes- nse of a hash function h{k). An auxiliary variable R is also
- used. to help find empty spaces; when the table is empty, we have R = M '+ 1 and

as insertions are made it will alwayvs be true that T{i] is occupied for j in.the range

R < j < M. By convention;, T[0] will always be empty.
't~ hik) 4+ 1: Now 1l <: <M

if (T[i] = empty) then

| [[ Insert new key ]]
Mark T[:] occupied; KEY[i] = K
LI.NK[t"] 1—'0

return _

endif
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| whiie (LINK[1] #£0) do
if (K = KEY[i]) i‘eh1.1rn; endif {[ The algorithm terminates successfully ]]
i — LINK[i] |
repeat
[[ Fi;'ld- empty- nodes ]]

Decrease R one or more times until T[R] = empty

if (R= 0)7 © turn on overflow flag and return
else | |
LINK[i} «— R; 4 «— R ([ Insert new key 11
Mark T1i] .occupied
KEY[] — K
LINKI:] +— 0
endif

‘End Algorithm 4.4

When collisions are resolved by separate chaining with unordered lists. the average

number of probes in a successful search in a table of M locations containing N elements

can be shown to be

S(ay=1+

and in an unsuccessful search

N
+ = e’ ?

Ula)= (1= 3207 + 32 +a
) . .l'VJ ) 1‘0
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When o = ;‘-} is called the load factor. It is customary to express the behaviour of the

collision resolution in terms of a rather than N and M because the behaviour of the
algorithms is typically governed more by the fullness of the table in relative. rather than

ahsolute terms. If the lists are kept in order. then the average number of probes for an

unsuccessful search is decreased to

o AN M [ Lyl Loy
,U(a)-1_+2M_-NH[1 (-3 _]+(1 )"

| 1
1 — ___1._ -_—x -
5.3' +2a a( e ) te

Let us investigate the average number of probes in a chained scatter table when the
lists are kept éepa.rate as in algorithth 4.1. The probabilistic model we shall use for.this
purpose a.ssumés that each of the ]_\JN possible "hash sequence” ayaq..ax 0L a; <
M, is equally.lik-ely: where a; denotes the initial hash acddress of the jth key inserted
| into the table. The average number of probés in a successful search i3 assumed to btla
the average number of probes needed to find the kth key, averaged over < £ < N with
each key equally likely and averaged over all hash sequenées wli'r.h each sequence equally
likely. Similarly, the average number of probes needed when the Nth key is inserted,
considerihg all sequences to-be equally likely is the average-number. of probes in.an . ..

~ unsuccessful search starting with N-1 elements in the table. Let Py be the probability

that a given list has length K. There are () ways to choose 2 set of K elements having

a particnlar value, and (M — 1)V =K ways to assign values to other a’s. Therefore,
. NY. N
PNK = (K)(Jw _ 1)"_I‘/1’VIJV

‘The generating function for this probability distribution is

=1 v
Pylz)= ZPJ'KZK = (1 + —if#)

£20 .
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An unsuccessful search in a list of length K requires K + 4¢o probes. Therefore average

number of probes required in unsuccessful search is

Cch o= Z(K + 610)Pvr = P (1) + P (0)

’ L . : ] R | - 1\N
But {rom the a_bove written generating function Py(1) = 37 and Py (0) = (1 — 570"
[nserting these valies we have

n 1 .
(Jm)- “1_"1}’ ‘at+e®

For successful search let us consider the total number of probes to find all the kevs. A

list of length K contributes (K;'l) to 't}.)e‘torta!; _heﬁce
" K+1
) — p ,
§(a) MZ ( 5 ) N i I
M (1, -
- &) (3rucn+ pi)

_ M, 1M_-_1_)+£V_)
TIN'\2 M M

—1+N 1==i+9—
2M 2

On the other hand, when the lists are:kept ordered average number of probes required-

in an unsuccessful search becomes

'T[1+K (K+1)“+6'\P
‘__‘k 3 ] ko) N K

1 - 1
=1+};ZAPNK" e :_w]_+ZOkGPNK

1_,.. : Pyk
=1+ =-Pxyil Prn(0) —
7 +2 wil)+ N() KTl

N 1 v M 1 v
= . - N _ _f] — —
Lo Y337 N+1(1 v )

-

z1+;-—(1—5")/a—+a

-
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But since the search keys are purely random. ordered lists do not affect the behaviour

in case of successful searches, that is, it remains at the same level as that for unordered

lists.

In coalesced chaining the average number of probes required in an unsiccessful

gearch is
1 2.4 . °N
Ula)=1+4+=((1+ )N -1- =
() =1+3((1+ 37 il
1 i
L+ (e’ — 1 —2a)
4 -
Thus when the table is half full, the average number of probes made in an unsuccessful

search is about e +2) =~ 1.18 and even when the table gets fnll, the average number

of probes made jnst before inserting the final item will be only abont 2(e? +1) & 2.70.

These statistics prove that the lists stay short even thongh the algorthm nccasionally
allows them to coalesce, when the hash function is random.

Tlhe average number of probesina successful search m'&y be cémputed by summing
the qu'a.ntrit_v C+A ﬁver the first N unsuccessful searches and dividing by N, if we assume
that each key 18 eﬁually likely, where |

C = number of table entries probed while éearching

A = 1 if the initial probe found an occupied node.

In a successful search we always have A = 1. Thus we obtain

o 1 K
= —p—— [ ——tp
: s(a) N Z (L Pt JW)

0Lk <N , i
1M [ 2 .~ 2N 1N-1

=14 —-—— = ] - — ——
+'N ((1+ﬂf.{) 1‘/1)+4 M

as the average number of probes in a random successful search. Even a full table will

require only abont 1.30 probes. on the average, to find an item. At the tirst glance it
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may a.ppeaf that number of table entries probed while looking for an empty space 1s
inefficient. since it_ha.s to searph sequentially for an empty position. But actually the
total number of table probes for an empty position as a table is being butt will never
exceed the nur_nbér of items in thetable; so we make an average of at, most one of these

probes per insertion. This figure is actually @e® in a random unsuccessful search.

Another major advantage of coalesced chaining method is that they p-ermit efficient
deletion without pénalizing the etficiency of subsequent retrievals. An item being deleted
can be removed from its list, its position in the ta.b.fe s freed_.and free location pointer
is reset to the following pesition. This may slow down the second subsequent insertion
s;)mewhét by-forcing the search for free l<‘>catio-n through a long series of occupied

positions. but that is not very significant. If the free table positions are kept in a linked
“hst, this p'enalty also disappears.

A generalizatfon of the staﬁdgrd coalesced hashing method, which we call general
coalesced hashing, adds extra position to the ha.sﬁ table that can be used fc?r iist nodes
in the case of collisions, buf not. for initial hash locations. Thns the table would consist
" of t entries (numbered 0 to t-1). but keys would h-sh only one of m < ¢ -v.alues {0 to

m-1). The extra t-m positions are called the cellar, and are available for storing items
whose hash positions are full.

Using a cellar results in less conflict betweeﬁ list of items with different hash values.
and therefore, reduces the length of the lists. However, a'céllar that is too lai'ge_couid
increase list lengths relative to what thel_v might be.if the cellar positions were permitted
as hash locatioﬁs. Higher-values of m/t produce lower successful and unsuccessful sez;trch

times for lower load factors. Value of t/m between 15 to 20% is optimum both for

successful and unsuccessful searches.
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If the number of records grows beyond the number of table positions, it is impossible
to insert them without allocating a larger table and recomputing the hash values of keys
of all records already in the table nsing a new hash function.

The above statements are tTue for most of the hashing schemes. But in general
coalesced hashing, the old table can be copied into the first half of the new table and

‘the remaining position of the new table used to enlarge the cellar so that items do not

have to be rehashed.

A brief anmmahon of the d.bOV(-‘ formulas indicates that separate chaining is su-

perior to coalesced chaining which in turn is superlor to other methods of collision

resolutions as we will see soon in our next discussion. In separate chaining we also have

the advantage of ignoring the table of overflowing its allocated storage. This means that
we.can even have N > M, giving a > 1; the formulaé for separate chaining are also valid
| .in this case. A further advantage of separate chaining is that it atlows Qery easy deletion
of elements, something difﬁeult or 'imp.ossibl'e with other collision resolution schemes.
The aisadvantage of chaining compared to other schemes is that it requires additional

storage overhead for the link fields: this makes the other schemes more desirable in some

circumstances.

4.4 Linear probing.
The simplest alternative to chaining that does not require the storage of LINK fieldsis
to resolve collisions by probing sequentially, one location at a time, starting from the’

hash address. untll an empty location is found. This is called open addressing with

linear probing or 31mplv hnear probmg

The idea is to formulate somne rule by wh:ch every key k determines a "probe

sequence” . namelv a sequence of table posntlons which are to be inspected whenever k

-
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is inserted or leoked up. If we encounter an opes position while searching for k, using
the probe sequence determined by k. we can comclude that k is not in the table, since
the same sequence of probes will be mad.e every time k is processed. The simplest épen
addreséing scheme, known as linear probing, usesthe cyclic probe sequence A(k), h(k}—

1, <....._....Q.J".ff—-l,ftd.r -2, . h(kY}+ 1 as in the following algorithm,

Algorithm 4.6 { Open scatter table search and insertion) :

This algdrfthm searches for an M-node table. looking for a given key k. 1f k is not
in the table and the table 1s .hot full, k is linsertf‘:d_ )

The nodes of the table are denoted by TABLE i}, for 0< t < M, and they are
of two distinguiéhable tvpes, empty and occupied An occupied node contains a key,
called KEY[i] and 4poss_i-b]_v other ﬁeldé. An anxiliary variable N is used to keep tack of
h(m.r many nodes are m‘.cubied; this variable is conadered to be part of the table and 1t

ts increased by 1 whenever a new key is mserted.
- This algorithm makes use of a hash function hfk), and it uses the probing sequence

Ch(EYAR) =L OM~1M—-2 ..  h(k)+ 1to address the table.

i — Rk [ Néw 0< 3< Ml
while (KEY[?] #k ;nd ITA-BLE[E] is’noﬂempf}-’ )do
Pe—iml
if (i < 0) then i — i M endif
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repeat

if (keyi] = k) then return; endif [ The algorithm terminates successful}y 1]

if (N = M —1) then return: [[ The aleorithm tei‘minafes lv\'itHO‘I.’el'..ﬂow )

else |
N = N+ 1: Mark TABLEIs] occupied
KEYH] —k |
‘endif o
End A]goi‘ithﬁl 4.6

Experieﬁce with linear probing shéws that the algorithrh works fine rurntil the table
begins to get {ull; but eventuaiiy the process slows down, with Ib_ng rdra.rw;vn—o'ut searches
. becoming increasingly fredue’nt. The reason for this behaviour can be understood bv

considering the hypothetical scatter table in ﬁgure 4.1 withM = .lé, N =9 Shadéd
squares represent occupied positions. The next key k to be inserted in the table will 7
‘go into oﬁé of the ten empty spaces. but these are not ec’;ugl!y hikely: in fact, k will
be-inserted into posttions 11 if 11 < Afk) < 15 while it wi]]rfe;ll into pbﬁition onlyif
h(k) = & Therefore position 11 is ﬁve. timés as Iike]y as positions 8;'iong lists tend to
grow even longer. |

This phenomenon is not enough by itself to account for the relatively poor behaviour
.of linear probing, since a Similaf thing 'oc‘cursrin co&lesééd chaininé. The real problem
occurs wheura cejl like 4 or 16 is filled in the given ﬁgu.re; then two separate lists
“are combined. while the lists in coalesced chaining never grow by more than one stepv ‘

at a time. Consequently the performance of linear probing degrades rapidly when N

approaches M.
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Fig. 4.1 Pile up -p"henom_enon‘ in Linear open addressing .
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Now we shall prove that the average number of probes needed by linear probing is

approximately
1 L
Cly = = (1 + ( ]3) (Unsuccesstul search)
0 2 l—a _
- | 1 ] |
- O™ = (1 + —--) (Successful search)
T 2 l—-aj _

Where a = N/M is the load factor of the table. -
The probabilistic model we shall use for_thi§ purpnse assiimes that each of the MY

ossible "hash sequence’s ay@s....ax 0 <a; <M. is equally likely, where a; denotes
1 ! ; !

- the initial hash address of the jth kev inserted into the table. The average number of

probeq in a successfu! search is agsumed fc be the average number of probes needed to

find the kth key, averaged over L < k < N w1th each kev equally likely and averaged over
l a.II ha_sh sequences w1rh each sequence equallv hkelv Simtilarly, the average number of
probes needed when the Nth kev is inserted, considering all sequences to be equa[lv llkelv

18 the average number of probes in.an unsuccessfuksearch starting with N-1 elements in

the table.. When open a.ddressmg is used

1 ~ ;g

0<k<N

so that we can deduce one quantity from the other.
" Let f(M.N) be the number of hash sequences such that position 0 of the table will
be empty aftér the keys have been inserted by algorithm 4.6. The circular symmetry of
linear probing implies that position 0 is empty just as often as any other position, so it

is en’ipt_v with p_robaBility 1 — N/M: in other words

j(ﬂd,ﬁ(’):(l—%)M” S (4.2} -
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Now let g{M.N.K) be the number of hash sequences such that the algorithm leaves

position 0 empty, posttion | through K occupied and position K + ! empty. We have

| N o |
GM, N, K) = (A) FIK + LEYM ~ K —1,N — K) (4.3)

because all s'uf:h ash sequences are composed of two subsequences, one( containing K
.. elements a; S'K)'that 'lea.if-es'posii:ion 0 empty and position 1’ t.hfough K occupied and
“one (containing N- K elements_ a; 2 K +1) that leaves posiiion K + 1 empty; there are
f(K+1.K) subsequences of the former tvpe and f(M-K-1,N-K) of the latter and there ar(;,
(f) ways. to interperse two such subsequences. Fmaﬂy let P be the probability that

'elxaétly K+1 probes will be needed when the (N+1)st key is inserted; it follows that

Po=MY(g(MNK)+gMNK+0)+ ..+ g(M,NN))  (44)

S(ney) =y (n)(z+k)"“(y—-k?‘""’lfy—ﬂ) o

£>0 -

k>0 k )
=3y (;:.)a:(x+ k)t (y = kYt (y — n)
20 M |
. . ' n-—1\. vy o n—k— . o
+"Z (k—l)(m-’-k‘) f!.'—"ﬂ . I(yj-_") o (4.5)

.Rep‘laci.hg k by n- kin the first sum of equation (4.5) and finally applying Abel's formula |

(z+y) = Z'(;)x(z — kz')k"(’y+ kzy %
: & g 7 ,

in the first sum gives

S(n.;r.y):g:(;r+.y)" +ns(_n—!.z+1.y'— 1)
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Now from .equation {4.3), putting the value of {{M,N) from equation (4.2) we get

N\ | , 5
M N K)= (R_) FIK+1.KVfIM-K—-1,N—K)

K K+1" ‘ M-K -1

= (}‘_)(K + 1M K -1 M- N -1

Now

Ch= Y (K+1)P

0CKLEN

" Let us calculate the value of My 3K + 1)P:. This can be evaluated as follows:

‘M” Z(K +1)P

(N ‘S ’ N-K e
()(1— d WK + 1l = —— )M — K — 1)¥-h

(4.7)

(18)

=MV S(KRE )M (g(M, N E) + g(M,NK + 1) + ...+ g(M,N,N))

=y (.K ;2) g(M.N.K)

K20 7
=3 Z(K+1 Yg(M, N, K)+ Y K+1)’g(M N K)|
o T \K20 K»0 . . . R ‘
. | A
==z M”ZP,, +y ( )u\ A+ ,K“(M K —1)V-K-Y M -N<-1)
2 5o N x T
1, T, ;l \ ’ . '
=§|1¥IN+311V,1,1‘J—1)) - -
1
= -2-(MN + MY L NEMY ! 4 (V-1 ;\SMN 2l
1 .
= 5(1«1’" + MY QM. NY) (4.9)
where 7
: r r+ 1\ N r+2\ N(N - 1)
(M,N) = — i S R
= () + (") (1) TS
r+k\NN-1 N-K+1 .
-y ( ! )M e | (4.10)

" K>0
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Therefore from (4.8) the average number of probes needed for unsuccessful search is

1 | - -
Cy =5 (1 + QnM N)) | (4.11)
Now from (4.10) it can be shown that
QM. N)= (N +1)Qo( M, N) ~ NQolM,N — 1) (4.12)

Average number of probes required for successful search thus follows from equation (4.1)

. 1
(./N=R.: Z

0K <N

1
v Y -u +Q1(M K)

O<H <N “

1 -
=5 2 L+ QAL K)

0<K<N 7 _
== ¥ 1+ (K +1)@o(M, K) - KQu(M, K - 1)
0SK<N . ' _ '
2\,(1\: + QO(M 0) 0+ 2Q0(M 1) = Qo(M, 0) + 3Q0(M 2).
—2Q0(M, D)+ ..., +NQO(M,N—-1)—(N.‘- 1)Qo(M, N — 2)) -
1 ' : o
(4.13) - -

5 (1 + Qo(M, N — 1)}

The rather'sti'ange looking function Q. (M, N} s not really hard to deal with. We have

. _
Hence if =

o (’1”“) (Nt B (;)M_l) /M." < Q.(M,N)
<y (r+k)

E20

K>
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This relation gives us a good approximation of @, (M, N} when M is large and a is not

- too close.to-unity and.the lower bound is a better approximation than the upper bound.

Thus
11 a
s v_]- —_——
QM N -1 = I~ ey
or Q](f‘VI,Iy —-— 1) =] '(1—_(1)2

If we take the second approximation then obviously
Cy = 1(l+ (L )
N =g (1 T ))
as said earlier.

- 1, 1
_ Similarly Cn = 5(1 + T

)

-
So algorithm 4.6 is almost as fast as algorithm 4.4. when the table is 75 percent full. On'
the other hand when « approaﬁhes unity. its performance degrades very rapidly. When

N=M-1 we have

QIMM-1)=M-(M-M+1-1)0s(MM~-1)=M
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using.r,.he relation Q,(M, N) =M — (M — N - 1)Qo(M, N). Therefore when N = M -1

i.e. the table is full then

Cn = % 14+ Q (M, M—l)) | % + M) | (4_‘15)7
| .'Now
QoM M -1) o |
=1+ M(ﬁ; 1)-+'M(M :&%M_ Dy
= (M)

The a.s_vmptotic valize of this series is

=Af ™ 7r” -3
QM) = V "3t 2M 135M V 5 +OM™)

Using thls value we get fhat the average number of pmbes required for successful sea.rch

-when the table 18 completelv full is

M o ' '
| (4.16)

The ,bile up phenomenon which makes linear probing costly on a nearly full table is

< - .aggravated by the use of division hashing if consecutive key--values are likely-to occur.

“since these k_eys'will have consecutive hash codes. Multiplicative hashing will break up
‘these clusters satisfactorily. Another way to protect against consecutive hash code is to
set 1 &— i —c instead of # «— ¢ — { in algorithm 4.6. :

Any posétive’ value of ¢ will do. so long as it is felatively prime to M, since the
probe sequence will still examine every position of the table in this case. [t does not
alter the pile up phenomenon since 'groups of c-apart records will still be'fm.'med; but

the appearance of consecutive keva K, K+1. K+2......... will now actually be a help

instead of hind rance.
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4.5 Double hashing.

_ Part of the problem with linear probing is l;hé phenomenon of secondary clustering :
the tendency of two elements that.have coHic_ied to follow the same sequence of locations
in the resolu-t-i(m of the collision of location. Clearly such a tendencv will aggravate the
unavmdable fact that long lists are more likely to grow than short hqts This suggests
that the sequence 'of locations followed in resolvmga collision of z should be & function of

the element z. This can be accomplished very easily by onl_v a minor change to algorithm

4.6 : instead of c_lecrementingli by 1, we de?:rement tt Ey an amount A, L < A < M
whei'e A 113 a function of z. In order to én.sure that every !ocation in the table will be
probed on colhstons we must have A and M relatively prime. Since we want A to have
' Dsendora,ndom behav:our we can nse another hash function 8(2).1 < 48(z) < M as our
value for A. This means that we will now hav_e to -compute two functions instead of
one but the resuiting improvement in behavioﬁr lwill_t-)e nore fhan compensate fbr-the
extra calculation. As a practical matter, it is easiest to guarantée tha;t 4(z) and M are

relatively prime for all z by insisting that M be a prime number.

Algorithm 4.7 (Open addressing with double hashing)

I This algorithm uses two hash functions A,{k) and A.(k). As usual hy(k) 'producés-

a value between 0 and M-1, inclusive, but ha(k) muaLproducre a value between 1 and

M-I that is relativély prime to M.

i e hytk) [[Now D < i< M ]]

while (K EY ] # k& and TABLE[&].is nonempty Mo
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. hath) ] Second Hash ]}
te—1t—c¢ |
if (¢ < () then ¢ «— 1 4+ M endif
repeat

" if (key[i) = k) then return; endif {| Terminates successfully |)

il (N'= M ~ 1) then return: [ Terminates with overflow ]]

elsé
N = N +1; Mark TABLE[i] occupied
KEY(i] — &

endif
End Algorithm 4.7 .

Several poqsibilities have been sugge'sted for computing ha(k). H M is prime and hl(k)

= K mod M. we might let ha{k) = 1 + (K mod (M-1)}: but since M-1 is even, .it would.

be better t‘o‘le-et ha(k) = 14(K mod (M-2)). Thié_ suggests choosing M so that M and

~ M-2 are twin primes hke 1021 a.ntj 1019. M = 2;’?-a;.nd we ﬁre using -r-nu]tiplicatirve

| hashing, h2(k) can be‘computed simply by shifting-left=m more bits and ORing in a 1,
and this is obvimlzsfy faster than the division method.

In each of the techniques suggested above, h;(k) and hi(k) are independent in

the sense that different keys will have same value f-or both h; and A, with p'roba-,-bilit_v

O iM% instead of Q(1/M). Emb’irical tests show that the hehavionr of algorithm 4.7

with independent hash functions is essentially indistinguishable from number of probes
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which would be required if the kevs were inserted at random into the table: there is

practicallv no piling up or clustering as in a.lgr;rithm o

A complete éna.[ysis of the average behaviour of double hashing has not yet been
-made. bt both empirical results and some fragmenfar_v theoretical results indicate that
it behaves approximately like unifo-[;m hashing, an idealization of double hashing that
we can analvzé In our mf;dell we assume that the rk-evs go into random locations of the
table, so that each of the {N) possible ¢ onﬁffuratlﬂns of N oce '.lpl“d cells and M-N empty
Lells i3 equally likely. Thls model lgnores any effect of primary or secondary clustering:
the occupancy of each cell in the table is éssentially independent of the others. For this
model the probability that exactly r prohes are needed to insert the (N+1)st; item is

the number of configurations in which r-1 given cefls are occupied, and another one is

JI\ — .

e (),

therefore the average number of probes for uniform hashing is

pwp—.hr Aivided bv

cl =" z rPr = M+1-— Z (~M’+ I —-r)Pr

1<r <M 1<r <M _
M—r - M
=M+1- Vi+1— ——
. + 1<rz<:1r“ + r)(‘v’[ N - 1)/(1\)’)
- ' ’ JM+ 1—?' ‘7—(M)
=M+1~- M- N
+ K'zgu{j J( M-N )/ N

M+ S (M
M+ 1— (M=
M+l-U (M—m + 1)/(1\«')

. M+1 M 1 . . ) .
=M+1-iM-N)y;77mr— = T — forl < N < M {(4.17)
M-N+1 M-N+1

Satting a4 = & thic ayact formnla for €74 is appraximately equal ta = The corre.
; v ; - . ~a :
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sponding average number of probes for a successful search is

Cy = “:1— Y i T

; s
iV N

i\

04}
__'M+l( 1 il 1 N PN

N \M+t M M’-1\f+2)
M +1 ' -

= "T“(HMH - Hpr ny1)

= —In

a  1l=u
As remarked above extensive tests show that algorithm 4.7 with two independent hash

functions behaves essentlallv like uniform hashmg for all practical purposes

4.6 Brent’s Algonthm

VThls algorithm modifies 4. 7 so that fhe average successinl search time remains bonnded

as the table gets full. This method is based on the facg_hat successful searches are much -

more common than insertions. in may applications: therefore it is logical to do more

work when inserting an item, moving records in order"to reduce the expected retrieval

time. Standa.rd compilers use its symbol table a.lgonTh; m a large number of times when

rommlmz a program. But on the ; average make an mnsertion into the table per 10 to.

15 successful searches bometlmes a table is actuali\'

thereafter purely for retrleval The idea of Brent'’s alzonthm 1s to change the insertion

1 \

process in alEorlthm 4.7 as followa
bupp.ose an unsuccesss_ful search has probed ior:a.tior1‘s;-:_§.-_..p1.pg. e Pr—1. 2 where
.p,- = fhl(k) — Jha(k)) mod M and TABLE[p,] is empty. It ¢t < 1. we insert K in
position p, as: usual: but if ¢ > 2. we compute Cp = fthg) where Ko = KEY [p,), and

‘gee if TABLE[(pO—c@)modM] Is empty. If it is, we ‘59!: it.to TABLE[pOJ and then insert

K in position Po. This Increases the retrieval time for Rn bv one step, but it decreases -

the retneval time for K bvt > 2

-
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cxeated only otice 'and it is used

steps, so it results_ina net improvement. Similarly |
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if TABLE[(po — co)Ymod M) is occupied and ¢ > 3, we try TABLE([(po — Zco)mod M];

©if that is full too, we computer(_l"l = ha( K EY[p1]) and+v TABLE((py — ¢1)modM];

etc. In general, let C; = ha(K EY [p;]) and Pj 4 = (P; — kCj)modM; if we have found

TABLE[P; ] occﬁpied:for all iﬁdice_sj,k such thatj+k <r,and if t > r+1, we look at

TABLE|Ps .. TABLE[Py,_1), .........., T ABLE[P,_,.1). If the first empty space occurs
at position P;,_; we set TABLE[P;,_;] «— TABLE[P;] and insert K in position P;.

Algorithm 4.8 (Brent’s variation of double hashing)

While( K EVIi] # K andT ABLEI] is nonempty)do

ce—holK): te—t+1; fe—i=c

if (i < 0) then i «—— i + Mendif

|

repeat

iflf K EY{i) = K) then return: [[ The algorithm terminates successfully ]
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A else

" PL=P-Kc

| IHN M’- - J\ rhen rerurn [[ F'ahif- overﬂows j]

UN=N+4L t=t+l r=t-1

- f-or:j =0tor—1do

'HﬂﬁﬁKEumj+Kkr®_-

i i‘

i TABLE[Pi] is émptv then
g TABLE[Pl] TABLEIPI L

TABLE fPl

return  —
- repeat o .. S

- repeat"‘""“ SR

' fory:Omr—ldo

P h (K)—;h (I\)—(r-—;)*ho(KEY{(hl(K)—Jhg(K))modw]) ‘

!f T‘iBLEfP] s emprv then

| TABLE[P] TABLE[ hi(K) —Jha(ﬁ j‘rdeM']
| retqrn CoT 2 j

répéa!;

*endif
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End Algorithm 4.3

Brent's algorithm reduces the average number of probes per successful search with a
maxitmum value of 2.49; but number of probes in an unsuccessful search is not reduced by
‘Brent's variation, it remains at the same level as uniform hashing. The average number
of times h needs to be computed per insertioh isat+a’+ %ry“+ ..... according to Brent's
analysis, eventually approaching the order of \/H_, and the number of additional talle
pos.itions probed while deciding how o make the insertions is about o’ +at 4+ 3a% +
af 4+

An extension of Brent’s method that yields even greater improvements i retrieval
times at the expense of correspondingly greater insertion times mvolves recursive in-
sertion of items displaced in the table. That is, in determining the miniminn ninber
of rehashes required to displace an item on a rehash path. all Lthe items on Lhat itein's
subsequent rehash path are considered-for displacement as well, and so on. However
the recursion cannnt be allowed to proceed to its natural conclusion, sinee insertion
times would then become so large as to become impractical. even thongh insertion is
infrequent. A minimum recursion depth must be defined to yield average retrievals very
close to optimal with reasonable efficiency. Statistics shows that as the table becomes
full, appro#imately 2.5 probes per retrieval are required on the average, regardless of
the table size. This compares very favorably with ordinary double hashing, i which

retrieval from a full table requires O(logn) probes.

4.7 Ordered hash tables.
In many, if not most, cases there is an ordering of the elements that may be usefut
in speeding up searches in hash tables just as it is for linear lists. We will now investigate

how such an ordering can be utilized in conjunction with a hashing scheme. The idea
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will he applicable to chaining, linear probing or double hashing, but we will consider
it only in the context of double hashing, because chaining is so fast that it needs no
mmprovement.. while linear probing 1s so inefficient we wonld probably never choose i
over double hashing if economy were a factor.

If we had been extremely lucky in algorithm 4.7 and the keys arrived i decreasmg
order to be inserted then each of the lists built up through collisions would be decreasing
order by element. Assuming that an empty location had a value less than that of any
elemment. in the table. we could do a search by algorithin 4.9. This algorithm stops »
search as soon as it reaches an element- less than the search object z.

Of course, we cannot count on the elements being inserted into the table in decreas.
ing order. making algorithm 4.9 useless we can somewhat keep the hash table ordered
no matter in what order the elements are inserted.

When an insertion is made, and there i8 no collision or when the element being
inserted is less than the elements it collides with, algorithm 4.7 works fine and the hash
table remains ordered. When an insertion leads to a collision with a smaller element.
the algorithm must react as t.hough‘the smaller element were not in the table. [ such
a colliston.-then. the idea is to have the larger element being inserted buinp the smaller
resident element it collided with temporarily ont of the table: the larger element takes
the location formerly occupied by the smaller. To reinsert the displaced element mito
the table. we simply apply the insertion algorithm to it: if that leads 1o a, collision with
a sinaller element. the smaller element is bumped from its location and then reinserted.

Fach element thus bumped is smaller than the previous one, so the process must end.

Algorithm 4.9 {Ordered double hashing)

i — h(k)[[Now 0<i < M|
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while (TABLE[i] > k)do
¢ — ho(k) I Second Hash ])
| ——t—¢C
if (1 < 0)‘t,hen i +— 1+ M endif
repeat

if (TABLE[] = k) then return; endif {{ Terminates successfully ]|

if (N = A — 1) then return; {[ Terminates with overflow ||

else

while TABLE [i] is not empty do

if (TTABLE[1} < k) then TABLE[i] & k: ¢ «— ha(k) endif
1 e—t—c |

if (1 <0) then 4 «— i+ M endif

repeat

endifl

N=N+1,TABLE}] +— k
End Algorithm 4.9

We can give an approximate analysis of the number of probes needed on the average
to search an ordered hash table: as in double hashing this analvsis i3 based on the

imiform hashing assumption: the sequence of locations an = MY a; a0 used 1o

insert an element 7 into the table has the property that each a; is equally likely to be
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0.1.2, M — | independentiy of the other a; ’s. In & table with load factor a the
praohability of at least k probes in an unsuccessful search is af~1/k, computed as follows:
A= = Probability that first k - t locations probed will be full.

t = Probability that of the k - 1.elements thus;_prbbed the search object is smailer than
all of them.

It is equally likely for the search objéct'—t&,;b'é.'lt.zrge'r'than all of the k-1 elements probed.
larger than only k-2 of them, ......'.....,‘la.rg'ei"th'a.n"oﬁly one of them or smaller than all
of them. Of these k equally likely 'pos'sibilitie's,lonly in the last case will more than k-1
1

The expected number of probes for an unsuccessful search in an ordered hash table

can now be computed as follows:

M

Ula) k pr ( exactly k probes )

oC ) .
(E‘pr ( exactly i probes ) )

i=k-

.ol
i
-

M

-
i

i
gk

pr ':(/at l'ea.sé'k probes )

k=1

ph
k=1 k
al:] k

This final summation is the Taylor series expansion for In 2= so that

1
-«

Ula) = i—lnl

For S(«). we argue that it is exactly same as for double hashing. Since the ultimate

contents of the table are as if the elements had been inserted in decreasing order by
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double hashing, we may assume that they were so inserted. In this case the expected

number of probes for a successful search is iln == ftom our previous discussion
Comparing this to double hashing, we see that successful searches are no dillerent.
but wunsuccessful searches require many fewer -probés on the average as the table fills
up. Specially. ordered hash tables are to be recdfrl:lr'lelllded over conventional hash tables
when unsuccessful searches are common and ha(k} can be computed withont much

expense,

NS

4.8 Improvement with addxtlonalmemory. .
Thus [ar we have assumed that no add.itional rﬁemory is available in each table element.
If additional memory is available, we can ma.inta.in some information in each entry to
reduce the number of probes required to find é,-'record or to determine that the desired
record 1s absent.

Before looking at specific techniqu:e's_. we should make one observation. The most,
abvious use to which additional memory can be put is to expand the size of the hash
table. This. reduces the load factor p.nd immediately improves efficiency. Therefore in
evaluating any efficiency improvements caused by adding more information to each table
entry. one must consider whether thelmprovement outweighs utilizing the memory to
expand the table.

On the other hand, the benefit of expar:c\iin:gr.éa.ch table entry by one or two bytes
may indeed be warthwhile. Each table item (including space for key and record) may
require 10. 50, 100 or even 1000 bytes. so that utilizing the space to expand the table
may not buy as much as utilizirig the space for small increments in each table element.

(In reality. long records would not be kept within a hash table, since empty table entries

waste too much space. Instead each table entry would contain a key and a pointer to
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the record. This could still require 30 or 40 bytes if the key were large and 10 to 15

bytes for typical key sizes).

The first improvement that we‘co_risidef".feducéa the time required for an unsuccess-
ful search, but not that for a retrieval. ‘It involves keeping with each table entry a one
bit field whose value is initialized to zero and is set to 1 whenever a key to be inserted
Ihashes or rehashes to that positior-l-.but the‘plosition is found occupied. When hashing or
rehashing a key during a search and ﬁn;‘iiné tﬁe bit still set to 0. we immediately know
that the key is not in the table, since if it were, it would either be found in that position
or the bit. would have been reset to | when it or some other key had been inserted. This
method 13 called the pass-bit method. since the additional bit indicated whether a table

element has been passed over while inserting an'item.

The next method can be used -witii;"linedrji;eha.shing. In this case we can define a
function prb(j key) that directly computes the position of the jth rehash of kev, which
1s the position of the jth probe in searéhin_g: for key. Prb(0,key) is defined as h(kev).
For linear rehashing [rh(i) = (i + ¢) mod-ta;blesize, whether ¢ is constant], prb(j, key)
15 defined as [h(key) + j * c.] mod tablesize. .Note that no such routine can be defined

for double hashing; therefore the method is not applicable to that technique.

The method uses an additional integer field, called a predictor. in each table posi-
tion. Let prd(i) be the predictor field in table position i. Initially all predictor fields are
0. Under linear rehashing, the predictor field is reset as follows. Suppose tilat key k1 is
- being inserted and that j is the smallest integer.such that prb(j, k1) is & probe position
whose predictor field prd [prb(j, k1)] is 0-. Then after k1 is rehashed several rhore times
and 1s inserted in position prb(p.k1), prdiprb(j, k1}] is reset from 0 to p-j. Then during

a search. when position prbij k1) is found not to contain k1, the next position examined
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is prhfj + prd(prb(]. k1), k1] or prb(p, k1) rather than prb(j + 1, k1). This eliminates
p-1-1 probes.

An advnntage of Lhis approach ia that it can be adapted quite easily when only »
few extra bits are available in each table'posit.ion. Since the predictor field contains the
number of additional rehashes needed, in most cases this number 1s low and can fit i.n
the available space. If only b bits are available for the prd ‘ﬁeid. and the predictor field
rannot fit, the field value can be set to.2® — 1 (the largest integer representable by b

hits) Then we would skip at least 2% — 2 probes after reaching such a position

Unfortunately the predictor method cannot be applied at all under double hashing.
The reason for this is that even secondary clustering is eliminated. so that there is
no guarantee that prb(n+x,K1)‘equals__prb(nfilx,KQ),even if h(K1) equals h{K2) and

prb(n.K1) equals prb{n,K2).

An extension of the predictor method is the ﬁultiple predictor method. Under this
technique. np predictor fields are maintained in each tahle position. A predictor hash
rontine phikey), whose value is between 0 and np-1, determines which predictor is nsed
for a particular kev. The jth predictor in ta.blt; position 1 1s referenced as prd{i,j). When
a kev probes an occupied slot 1 that equals prb (3, key) such that ph(kii)) equals phikeyv),
the next position probed is prblj + prb(i, ph(key), key]. Similarly if ph (k(1)) equals
phikey) and prd(i,ph(ke}.r)) is 0, we know that key'is not in the table. If key is inserted

at prb (1 + x. kev)}, prd{i,ph(kev)} is set to x.

The advantage of multiple predictor method is similar to the advantages of double
hashing; it eliminates the effects of secondary clustering by dividing the list of elements
that hash or rehash into a particular location into np separate and shorter lists. The

predictor method also reduces the average number of probes for unsuccessful searches.
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4.9 Hashing in external storﬁgé.’

If a hash table is maintained in. extérnal storage on a disk or some other direct
. . A, . oty X : H .
access device, time rather than space'1s.the-cr1t1cal-factor. Most systems have sufficient.

external storage to allow the luxury“?of" "u"éai located space for growth but cannot

afford the time needed to perform an IIO'operatlon for every elements on a linked llst

In qurh a sitnation the table.in externa! storagen _dmded into a number of blocks called

J o

hurketq Fiach bucket consists of a*useful phvsxcal segment of external storage such as

a page or a disk track or track fragt_lqn. Thgrbpgl_r_etg are usually contignous and can be
accessed by bucket offsets from 0 to tablesize --1 that serves as hash values, much like

indexes of an array in internal storage.
. T -, . '.'__\_ i

Ty . ,
Alternatively, one or more contigiious storage'blocks can be used as a hash table
containing pointers to bucketsdistribute‘d honcoh't'iguously.-- In that situation the hash

table is most likely read into memory::as- soo’n ag'the’ file .is opened and remains in

R '.'I\-"l

memory until the file ia closed. When a record is requested ita key is hashed and the
hash table is used to locate the external atorage address of the appropriate bucket. Such

." i s '\,‘:

a hash table is often called an- mdex

Each ercternal memory buckét‘contai'ns"'rbom' for a moderate number of records {in
practical situation, from 10 io 100). An entlre bucket is- rea.d into memory at once and
sequentmilv searched for the appropriate record (of course a binary search or some
other appropriate search mechanism based. on the'}ihternai'organization of the records
within the bucket can be used. but the number of.rt_zcords in a bucket 18 usually small

enough that no significant advantage is gained).. - y

gt )

We should note that when dealing,wi.tl:;‘qj_'(tgmal storage, the computational effi-

ciency of a hash function is not as jmporta.r):t‘ﬂ._g.g;_i__ts-;huc,qess at avoiding hash clashes. It




is more efficient to spend micro seconds computing a complex ha.;h function at inter-
nal CPU speeds than milliseconds or longer accessing additional buckets at I/O speeds
when a bucket overflows. We also note that ¢xlt‘¢‘a;'1_u‘.:.l storage space is inexpensive. Thus
" the number of contiguous initial bucketﬁ or th.é-s‘i.ze of the hash table should be chosen
such that it is unlikely that any of the buckets become fuil, ‘even though this entails
allocating unused space. Thén when a new record must Be inserted, t.hcére usually is

room in the appropriate bucket, and an additional expensive I/O is not required.

If a bucket is full. and a record must be insertéd, any of the rehash or chaiming
techmeanes discnssed previously can be used. Of course, additional 1/O operation are
required when searching for records that are not in the buckets directly corresponding
to the hash value. The size of the hash ta.blie is crucial. A hash ﬁable that is too
large wunplies that niost buckets will be empty, and a great deal of apace is wasted. A
~hash. table that s too small impl_ies that buckets will be full, and large number of 1/0
operations will be required to access rﬂ;ny records. If a file is very volatile. growing
and shrinkiﬁg rapidly n.nd,unpredictabl)'r_,”'thip-l;imple hashing technique is inefficient in

either space or tine. We will see how to deal with this situation shortly.

When dealing with external storage such as a disk. the number of buckets that
have to be read from external storage is not the only determinant of access efficiency.
Another important factor 18 dispersal of the bu.ckets accessed that s, how far apart the
bickets accessed are from each other. In general a major factor in the time it tukes to
rend a block from a disk is the seek time. Thisis the time it takes for the disk head
to move to the location of the desired data on the disk. H two buckets accessed one
after other are far apart. more time is required then if they are close together. Given

this fact. it would seem that linear rehashing is the most eflective technique because
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although it may require accessing more buckets, the bucket it accesses are contiguous-.

Il separate chaining 1s used, it'-iis.desirable.‘to,reserve an overflow area in each
cvlinder of the file so that full buckets in that cylinder can link to the overflow records
m the same cylinder, thus minimizing seek time and essentially eliminating the dispe‘rsal
penalty. [t should be notéd that the overflow'area need not be organized into buckets.
and should be organized as individual recorda with links. In general few records overflow
and there is only a small chance that sufficiently many will overflow from a single bucket
to fill an additional complete bucket. Thus by keeping individual overflow records, more
biickets will overflow into the same cylinder. Since space is reserved within the file for
overflow records, the load factor does not represent a true picture of storage utilization
for this version of separate chaining. The number of accesses in separate chaining 1s
therefore higher for a given amount of external storage.

Although double hashing requires fewer accesses than linear rehashing, it disperses
the buckets that must be accessed :t'o"a. ‘degree that may overwhelm this advantage.
However. in systemis where dispersal is'not a factor, double hashing is preferred. This is
true of modern large multi-user systems in which many user ma._v. be requesting access to
a disk sumultaneously, and the requests are scheduled by the operating systein based on
the way the data is arranged in the diék..r In such si'tuations,:waiting time {or disk accesses
1s required in any case, so that dispél.'s"d.li-i:s ﬁét::‘a significant factor. The major drawback
in using hashing for external file storage is that sequential access in not possible. since

a good hash function disperses the keys without regard to order.

4.10 The Separator method.
One techmque for reducing access time in external hash table at the expense of increasing

- insertion is the separator method. The method uses rehashing (either linear rehashing
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or double hashing) to resolve collisions bht:'also uses an ad.ditional hash routine, S, called
the signature function. Given a key key,. Let h(key, i) be the ith rehash of key and let
S(key.i) be the ith signature of key. If a record with key key is stored in bucket number
hikev.i). the current signature of the record and the key, sig{key) is defined as S (kev.j).
That is if a record is placed in abucketcorrespondmg to its key's jth rehash, its current

signature 1s its keyvs jth signature.

A separator table. sep, is mainfainea in intell"n‘alr memory. If b is a bucket number
sepf b} contains a signature value gr'eater'than the current signature of every record in
bucket b. To access the record with key key, repeatedly hash kev until obtaining a
value ) such that septh(key, j)) > S('key, j). At that point, if the record is in the file 1t
must be in bucket (h (key, j)). This ensures iﬁlhe ability to access any record in the file

with only a single external nemory access.

If m1s the number of bits allowed in each item of the separator table, the signature
function, S, is restricted to producing values between 0 and 2™ — 2. Initially. before any
overflows have occurred in bucket b; the value of sep(b) is set to 2™ — 1. so that any
recerd whose key hashes to b can be inserted-directly into bucket(b) regardless of its
signature. Now, suppose that buckie‘t‘:_(;?):";jgjfUII:‘_a.n_d'__La new record to be inserted hashes
mto b, Then the records in b with-the jaf:ge;ﬁt currént signature {lcs} must be removed
from bucket b to make room for the new recérci. The new record is then inserted into
bucket(). and the old records with current signature lcs that were removed from bucket
b are rehashed and relocated into new buckets. Sep(b) is then resef to les, since the
current, signature of all recox;ds in. bnckef(b) are leés than lcs. Note that more than
one record may have to be removed: from a.bucket if they have equal rﬁa.ximal current

signature values.
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Records that overflow from a bucket diiting an insertion may cause cascading over-
Hows in other buckets when at.ternptmg to relocate them. This means that an insertion

tnay cause an indefinite number of a.ddxtlonal externa.l stora.ge reads and writes. In

practice, a limit is placed on the number of such cascadmg overtlows bevond which the

A

insertion fails. 1f the msertlon fails;.it is° neceasaw to restore the file to the staten it
was in before inserting the new recdrd 'that-:ca.used-the,origina.l overflow. This is usually
done by delaving writing modiﬂedt'bucketa to-extemal storage, keeping the modified

versions in internal memory untll it is determmed tha.t the msertnon can be completed

successfully. If the insertion is- abortedl,because,-the ca.acade hrmt is reached no writes are
done. leaving the file in its ongma.l st&te. The number of modifled pages per insertion

rises rapidly as the load factor'y i3 mcreased ao\the techmque 18 impractical with a load

ro

factor greater than 95 percent Large gnature,\values and larger bucket sizes permit

the method to be used with la.rger load fa.ctors.

4.11 Dynamic Hashing and ExtendlbleHa.shmg

One of the most serious drawbackffcf-hu.éhin'é‘ifor external storage is that it is insuf-

ficiently flexible. Unlike internal data structiitea, filés and databases are semipermanent

" Lo
- oy

data structures that are not, usuallv created and.deatroved within the lifetime of a single
program. Further the contents of an’ external etorage structure tend to grow and shrink
unpredictably. All the hash table st.ructuring-'methods that we have examined have a
sharp space/time trade-off. Elther themtable use_s a l&rge amount of space for efficient
access. resulting in much wasted space w'hen the structure shrinks, or it uses & small
amount of space and accommodates growth very poorly by sharply increasing the access

time for overflow elements. We would. hke to deve10p a scheme that does not utilize

too much extra space when a‘ﬁle 18 snLall b_ut permlts efficient access when it grows

» : e
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larger. Two such schemes are called dynamic hashing, attributable to [.arson [31), and

extendible hashing, attributable to P‘agin,'iﬁie';rergéllp,-Pippenger, and Strong [28].

The basic concept under both mgﬂ_]gg wthe saéne_. Initially, in buckets and a hash
tahle for index) of size m are alloca;fe'd. Aésuiﬁé thatm equals 2% and assume a hash
rontine h that produces hash values that are wr>'b'bits in length. Let hb{key) be the
integer between 0 and m represented by the first b bits of h(key). Then, initially, hb is

used as hash routine, and records are inserted into the m'buckets as in ordinary external

storage hashing.

When a bucket overflows. the bucket is split in two and its records are assigned to
the two new buckets based on the {b+1)st bit of h(hey). If the bit is zero, the record
15 assigned to the first (or left) new bucket; if the bit is 1, the record is assigned to the
second (or right) bucket. The records in eachof the two new buckets now all have the
.samerﬁrst b+1 bits in their hash keys, h(key). Simi]arlly_. when a bucket representing i
bits overflows. the bucket is split and the (i+1)st key bit of h(kev) for each record in
the bucket is used to place the record in the left or right new bucket. Both new buckets
then represent i+1 bits of the hash key. We call the bucket whose kevs have 0 in their.

(i+1)st bit the O-bucket and the other bucket the 1-bucket.

Dynamic and extendible hashing diﬁ'érs-‘a.s'to"}idw-thé index is modified when a
bucket splits. Under dynamic hashing, each of the m original index entries represents
the root of a binarv tree of whose leaves contains a pointer to a bucket. Initially each
tree consists of only one node (a leaf nbdé);_thap points-to one of the m initially allocated
buckets. When a bucket splits, two new leaf nodes are created to point to the two new
buckets. The former leaf that had pointed to the bucket being split is transformed into

a nonleaf node whose left son is the leaf pointing- to the O-bucket and whose right son
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Fig. 4.3 Extendible Hashing Scheme
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is the leafl pointing to the 1-bucket. Dynahic hashing with b=2 (m=4) is illustrated in
Fig. 4.2,

To locate a record under dynamic hashing, compute h(key) and use the firat b bits
to locate a root node in the original index. Then use each successive bit of h{kev) 1o
move down the tree, going left if the bit is zero and right if the bit s |, until » lenl w
renched. Then use the pointer in the leaf to locate the bucket that contains the desired

record, if it exists.

Iu extendible hashing, each bucket contains an indication of the number of bits
of hfkev) that determine which records are in that bucket. This number is called the

bucket depth. Imtially, this number is b for all bucket entries: it is increased by 1 ench

time a bucket splits. Associated with the index is the index depth. .d. which is the

maximum of all the bucket depths. The size of the index is always 2¢ (initially, 2%)

Suppose that a bucket of depth i is to b;e split. Let al, a2, ... al be the first 1
bits of hikey) for the records in the bucket being split. There are two cases to consider:
i<dandi=d Ifi<dallindex positions with bit values al, a2, ... at 00 ... 0
(np to a bit slize d) through al, a2, ..., ai 01 1 ....1 of the index (that is all positions
starting with al...al0) are reset to point to the O-bucket, and the index positions with
bit values al. a2, ... ai 10...0 through al, a2, ..., ai 1 1 ...1 {that is, all positions
starting with al..ai 1) are reset to pointlto the 1-bucket. If i = d the index is donbled
in size from 2% to 29%7 . the old contents of index positions x1....xd are copied into the
new positions x!1...xd 0 and x1...xd 1; the -content-s of index positions al....ad () is set

Lo pomt to the new 0-bucket. and the contents of index position al....ad 1 to point Lo

the new I-bucket. Extendible hashing is illustrated in Fig. 4.3.

To locate a record under extendible hashing, compute h(key) and use the first d
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hits [where d is the index depth} to obtain a position in the index. The contents of this
position point to the bucket containing the desired record. if it exists.

In comparing dvnamic and extendible hashing, we :lml.u that extendible linshing
is more time efficient, since a tree: path need not be traversed as in dynamic hashing.
However, if the entire index is kept in membltf_v,-'tl-\e time spent in traversing the tree path
does not involve any I/Os. Traversal time is therefore likely to be negligible compared

with the time for accessing the bucket. The maximum number of tree nodes required in

dvnamic hashing is 2n-1, assuming n buckets, whereas there may be ns many as 27!
index entries required under extendible hashing. However, usually fewer than twice
as many extendible hashing index entries as dynamic hashing hashing tree nodes are

required and the tree nodes require two pointers compared with one for each extendible
hashing index entry. Thus the two methods are comparable in average internal space |
utthzation,

It is also possible to compress very large extendible hashing indexes by keeping only

one copy of each bucket pointer and maintaining from/to indicators. Another point to

note is that extendible hashing performs the same way regardless of the value of m. the

initial number of index entries, whereas dynamic hashing requires longer tree paths if

m 18 smaller.

4.12 Choosing a Hash Function.

Let us now turn to the question of how to choose a good hash function. Clearly,
the function sh(.mld produce as few hash clashes as possible; that is. it should spread
the kevs uniformly over the possible array indices. Of course, unless the keys are known
in advanée. it cannot be determined whether a particular hash function disperses them

properly. However, although it is rare to know the keys before selecting a hash function.
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it is fairly common to know some properties of the kevs that affect their dispersal.

In general. a hash function should depend on every single bit of the key. so that
two kevs that differ in only one bit or.one gréup of bits (regardless of whether'the group
is at the beginning, end. or middle of the'ke}r or strewn throughout the key) hash into
different locations. Thus a hash function that_slimply',lextra(:ts a portion of a key 1s not
suitable. Similarly. if two keys are si'mpl.\.r 'diéit’.of character permutations of each other
{such as 139 and 319 or meal andlame),they’ahou]d/also hash into different values.
The reason for this is that key sets fréquently have clusters or permutations that might.

otherwise result in collisions.

ion (which we have used in the examples

x.
~

ch an integer key in divided by the table

For example, the most common hg.sh fupc_t_
of this chapter) uses the division métﬁéd, m .v;vhi
size and the remainder is taken as the-hash'\;alue..- This is the hash function h(key) =
kev % tablesize. Suppose, however, that tablesize equals 1000 and that all the keys
end in the same three digits (for exa;:i_pleé‘i.'thg last three digits of a part number might
represent a plant number and the pro:lé;i'a.mflis bemg written for that plant). Then the
reinainder on dividing by 1000 yielés the same value for all the keys, so that a hash
clash occurs for each record except the first. Clearly, given such a collection of keys, a

different hash function should be used,.

It has been found that the best results with the division method are achieved when
taﬁlesizp is prime (that is, it is not divisible by any positive integer other than 1 and
itse!f).. However. even if tablesize is prime. an additional restriction is called for. If
r is the number of possible character codes on a particular computer {assuming an 8-
bit bvte, r is 2566) and if tablesize is a prime such that r % tablesize equals 1, the hash

function key % tablesize is simply the sum of the binary representation of the characters

139



in the key modulo tablesize. Fo'r example,suppose that r equals 256 and that tablesize
equals 17, in which case r % tq.l?‘_le_s:i:ze =,1-Then the kej'r ‘27956, which-equals 148 *
256 + 68 (80 that the first byte of its repreﬂelntation is 148 and the second byte is 68),
hashes into 37956 % 17, which. equala 12 whlch equa.ls (148 + 68) % 17. Thus two keys

that are simply permutations (such 8s° steam and mates) will hash into the same value.

This may promote collisions; and h_ uld be avotdedff’Slmllar problema occur 1f tablesize

ia chaarn so that rf % tahlﬂ‘nze is very small of w-ry close to tablesize for some small

P

value of k. 'j,';--f'_ e

Another hash method is tﬁe.:gnuiti;?licative method. In this method a real number
¢ between 0 and 1 is selected'*’hlkev)’ia'deﬁned as 'ﬂoor(x‘n“l"l frac(c * key)), where the
function floor(x), avallable in the standard llbra.ry math h, v1elds the integer part of the
real number x and frac(x) yle]da the fra:::xo'n;al ;)art (Note ‘that frac(x) = x - ﬂoor(x))
That is. multiply the key by a’ real number 0 and '1,- take the fractional part of the
product vielding a random number between 0 p.ndi‘l deperident on every bit of the key
and multiply by m to yield an indéx bet’vbéé’ﬁ"b‘aﬁdf';}i“' 17 If the word size of the computer

is b bits, ¢ should chosen so that 2‘ :c lsyan mteger relatwely prime to 2* and ¢ should

- not be too close to elther Oorl. Alao i r. a.s before. is the number of possible character

endes, avoid values of ¢ auch that {rac ('(rf)-l_-'c').ls too close to 0 or 1 for some amall valur
of k {these values vield similar.hashes for keys with-the same last k chm"acters) and of
values ¢ of the form if{r - 1) or if{#% --1) (these values yield similar hashes for keys
that are character permutations). Valu.es_of'c.tha.-t vield good theoretical properties are
(1.6180339887 {which equals (sqrt (5) -.1)/2]:or 0.381966113 [which equals 1 - (sqrt(5) -

11 /2]. If m is chosen as power of 2 such as 2P, the computation of h(kev) can be done

quite efficiently by multiplying the one.word:integer key by the one-word integer ¢« 2°




to vield & two-word product. The inieger répresented by the most significant p bits of

the integer in the second word of this product is than used as the value of h{key).

In another hash function. known as the :midsquare method, the key 1s ‘multiplied“
by itself and the middle few digits (the exact number on the number of digits allowed in
the index) of the square are used as the index. i the square is considered ag a decimal
mnnber. the table size must be a power of 10, whereas if it is considered as a binary
mumnber, the table size must be a power of 2.:Alternatively, the number represented by
the middle digits can be divided by the table size and the remainder used as the hash

valre. Unfortunately, the midsquare method does not yield uniform hash values and

does not perform as well as the previous two techniques.

The folding method breaks up a key 'into several segments that are added or ex-
clusive ORed together to Iform-'a;' h'a.'sl'i::f:\"aQ_l'l.l'e‘.':_‘Fb'f;*exa.mple,. suppose that the internal
bit string representation of a ke'y. is 010111001010110 and that 5 bits are allowed in
the index. The three bit strings. '01'0_1i:;g‘-lOOlO:frg.ﬁd;10110‘é.re exclusive ored to produce
01111. which is 15 as a binary integgr"; :'("The exclusive or of two bits is 1 if the two bits
are different and O if they are the éamq It is the same as the binary sum of the bits,
ignoring the carry). The disadvantage"bfltlﬁe _.folding method 18 that two keys that are
k-bit. permutations of each other. ('thht"-.'iis}";ijw-l;.ere‘-‘?;b'o,tlllfkeys consist of the RAme Eroups
of k bits in a different order) hash-into the same k-bit value. Still another technique is

to applv a multiplicative hash function to each segment individually before folding.

There are many other hash functions. each with its own advantages and disadvan-
tages depending on the set of keys to be hashed. One consideration in choosing a hash

function is efficiency of calculation; it does no good to be able to find an object on the

first try if that try takes longer than several tries in an alternative method.



If the keys are e not mtegers they mustr-.be converted mto integers before applving

one of the foregoing hash. functlons There hre several ways to do this. For exs.mple fora

\"

character string the internal bit representatron of each character can be interpreted as a

t.-

binary number One dlssdvanta.ge of thls 1s that the b]t representations of all the letters

or digits tend to be very similar on; moat computers. If the keys consist of letter alone, the
index of each letter in the alpha.bet can be used to create an integer. Thus the first letter
of the alphabet (a) ia represented by the dlgnts 01 a.nd the fourteenth {n) is represented by
the digits 14. The key ‘hello’ is. represented by the lnteger 0805121215. Once an integer
representations of a character stnng exlts the foldmg method can be used to reduce it
to mana.gea.ble size. However.-here too" every other dlglt is 80,1 or 2, which may result

in nonuniform hashes. Another ,lposslhlhty-us;tp .V|ew-es.ch'--letter as a digit in base-26

natation s that ‘helln’ 18 viewed .as thé&i'ﬁteger_8;26‘:+ +5» 2(‘35 +12%262 4 12%26 415

One of the drawbacks of s.ll these ha.sh functlons 18- that they are not order pre-

as the keys themselves. It is, therefore.,not posalble to tiaverse the hash table in se-

\n

quential order by kev An example 0 ' hash furn:tlon that is. order preserving is h(key)

. ':

= kev/c, where c 1s some constant chosen 80 that the hrghest possible key divided by ¢

equals tablesize - 1. Unfortunately, order-preservlng hash functions usually are severely
nonuniform, leading to many hash. c!ashes and a larger average number of probes to

access an element. Note also that to-enable sequentisi access to keys, the separate

chaining method of resolving collisions must be used.
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"the experimental results’ w1th th'e_

CHAPTER 5

RESULTS AND CO CLUSIONS

1_; 4{*.'1

5.1 Introduction.

This chapter is intended to pree;ent"thél eitpex;li-me_nt;a.l results based on the algorithms
discussed so far in the previous. chapters. This cha.pter comprises four mnain aections
of which the first one deals with the Tesults of chapter one, the second discusses the
experiments on chapter two and;,_i_ab:l:?r}_: .Bach seét;'ién.begins with a brief description
of the experimental setup a.nd"veri_ﬁ.czi'tio:h;.pl_-'oéea:uréi for each of the algorithms and
justifies why a particular way of doing the"aexp;eriments has been chosen when others

have been discarded. Finally for the majorltv of the algonthms we will try to correlate

algorithm has already been cstabllﬂhed In caaes when sufﬁment theoretical results are
lacking. we will try to est.ablish some.emp_mcal‘reldtionships. It should be emphasized

that one can go a long way’ w1thout llmlt lf"one likeés ‘to experiment the algorithms

#U?‘“‘E\"*pleaentatlve propertlea of -the

L e

in all. possible: respects “But*we?f?lfﬁ' g,,chosé

algorithma as the basis of our experlmenta' In*an'actual?implementation of an algorithm

time and space r‘omplexny are the,major\fact.ora .to be considered for its acceptance.

Consequently, these factors’ hav_q.t_),ge_q;_gwen#the’rhlghesg;pnoylty for algorithm evaluation.

’.;n-

5.2 Searching by comparison of keys

. l,-..
el A

The first chapter of this thesis' discusses: the sean:h a]gonthms based on the com-
parison of keys kept ordered in a.'s_;tq.tj"t_:'g-'t.&,bl_e;.f--‘.a'l‘:hg: reason'for the search table to be

static is that both insertion and deletion from an ordered table is too costly to be worthy




in practical situation, Moreovér,r thealgorlthmsof 'ché.pt.er one depend on the m‘de‘r!y
relation among the keys so that the table should be kept ordered for the algorithms 't.n
work as intended. An ordered table of 937 élérhéntz; has béen chosen in order to evalu-
ate the algorithms presented in chapter one. ‘The basis for this choice is that 937 i1s a

perfect fibonaccian number and the same table will be used to evaluate the performance
of Fibonaccian search algorithm.
The programs of chapter oue ha.ve‘bg_e.l‘;;desig-lled:tp, obtain the following data:
(1) Average number of probes rea_uil"ea'inr'al. t'i'uc:'t.;ehsfu.l search.
(11} Average nmber of probes required in an unsuccessful search.
(1) Average time required for a successful search and
(iv) Average time required for an 'unsut‘:é'essﬁll séarchl

To determine the average number of probes required, attention has been given so

that experimental results bear a true reflection of the approximate true average. For

this reason thirty sets of data, each set comprising a sufficient number of trials (the
first set consists of 50 trials, the second one con.sists' of 100 trials and so on) have been
emploved to plot curves depicting the ‘ayeraiggqbe_haviour of the algorithms. Each set
of data has been collected after 10 iterations for the same reasons. Since time for each
probe is too small to be counted, one thousand iterations for each probe have been Laken
to obtain a sufficiently accurate da-ta.r{o be'rélied upon.

The curves of Graph t.1 throug.h ‘1.4 show tht;. average behaviour of Binary search
algorithm. As derived in section 1.3. the average number of probes required for a

stccesstul search and unsuccessful search are

Sn 1+—-—)[1g,N+1)+2 0-2""%-

144



-l

H

14—

—
N
SIS A A IS O A R IR e

(@]

AV. NO. OF PROBES REQD.
¢

i ‘ . BINARY SEARCH
6 AVERAGE. BEHAVIOUR IN SUCCESSFUL SEARCH
=1
4]
2 'j (,’ L R
i i
O : rrri [ lllllll]

I!FlllllzlélolirrjfTJéloi IIIf"'[éél'o'l.'rlfl.lsléblllllliblddl"lliIZHOII
© 'NO‘OF: TRIALS’ -

GRAPH 1.1 Average no. of px:qbéé_réqd.' in successful search in a Binary

tree

145



|

i4

L

L

L

N
|

-
<

[ S S I A AN A U S IR I O N A A A |

BINARY SEARCH
AVERAGE BEHAVIOUR IN UNSUCCESSFUL SEARCH

AV. NO. OF PROBES REQD.
o o

FS

N

TTTTTTT1]

o

JllFll'yll2lélol'lIIIIT‘;é‘IDFIJIll'slélolllllllslélollflllil’oHOllllllilzfoiol :1_00'
NO OF TRIALS

GRAPH 1.2 Average no. of probes reqd. in unsuccessful search in 4

Binary tree

146



IN MSEC

o
o

AVERAGE TIME REQD.

o
o

e
~

\/\'/‘—‘\A/\A,—l,k

/

o
n

o
B

O
"

0.2

oMyt byt by i b ey e s bt

p— e RV e

BINARY SEARCH
AVERAGE BEHAVIOUR IN SUCCESSFUL SEARCH

1200 1400 16

NO OF TRIALS

GRAPH 1.3 Average time reqd. in successful search in a Binary tree

147



IN MSEC

AVERAGE TIME REQD.

0.8

0.7 3 ,
] S T
]
0.6
0.5 3
. BINARY SEARCH
] AVERAGE BEHAVIOUR IN UNSUCCESSFUL SEARCH
0.4 ~
3 )
0.3
]
—*
3
0.2 _‘lTlllilll TFTTTTITTo TYTT T 11T} l‘]’llllll' J"l'll]l[llfllll'Tl[Il'lll'lll’l{F]III'IFII[
200 400 600 "800 1000 1500 1400 16

NO OF TRIALS

GRAPH 1.4 Average time reqd. in unsuccessful search in a Binary tree

148



and

Uy =g, (N+1)+2-0—21-F

respectively where

§ =g (N +1) = [lg;(N +1)]

For the above mentioned table size the average number of probes required are 8.47262
and 4996252 for successfil and unsuccessful searches respectivelv. According to the
vurves of Graph 1.1 and 1.2, these values are 8.94751 and 9.95256 respectively which bear
a ¢lose resemblance with the theoretical results. The average time required for successful
and unsuccessful searches are 0.5656917 and 0.6788918 msec respectivelv as shown in
ilte curves of Graph 1.3 and 1.4, These values are somewhat larger in magnitude than
the troe average because for the program requirement some exira instructions have been
mnntentionallv embedded in the search loop which could not be avoided in the time
calenlation.

The next algorithm which has been tested-is the uniform binary search. As atated
in section 1.4, the external nodes all appear on the outermost level of the search tree.
That s why the averagé number of probes for unsuccessful search remains constant in
this situation, and the average number of probes for a successful search should be remain
same as that for the binary search algo.rithm. As shown in' the curves of Graph 1.5 and
1.6. the experimental resnlts conform with this theoretical observation.. Here average
number of probes required for successful and unsuccessful searches are 9.0058183 and
10 respectively.

A table of various values of 4 has been used to make the uniform search algo-
rithm faster. The experimental curves of Graph 1.7 and 1.8 show that average time

requirement in uniform search algorithm is lower than that for binary search algorithm.
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These valies for successful and unsuccessful searches are 0.551766 and 0.662638 msec
respectively. This 19 due to the fact that in the binary search algorithm. ‘ever_v iteration
reqinres a division operation to determiné the middle element of an mterval. But n
uniform search and in Fibonaccian sear;clll only'addition'opération are required in each
iteration. In our experiments division operation has been avoided in uniform search by

using a table of 4 values to be used in each subsequent iteration of the algorithm.

We will terminate this section after a brief look on Fibonaccian search algorithm.
As the experimental curves in Graph 1.9 and 1.10 show, the average number of probes re-
quired 1n successful search s 9.3932727 and. that for an unsuccessful search is 10.353305.
The curves in Graph L.11 and 1.12 verify the fact that although Fibonaccian search
require a larger number of probes for both successful and unsuccessful searches, vet
the time required for a single iteration i8 much lower than that for binary search al-
gorithim because each iteration requires only addition and subtraction operations and
these operations are much cheaper than division operations required in the binary search

algorithin.

5.3 Search Trees.

As discussed in chapter two an explicit binary tree is the appropriate data structure
for the flexibility of frequent insertion qnd deletion, and the shape and size of the tree
i3 extremely sensitive to the nature of insertions and deletions. In the worst case the
dvnamic tree can degenerate into a hinear list if the search keys come int.ol their natural
arder. and if we are extremelv lucky the tree can become a perfect balanced tree. But
we sre -im.erested in the average behaviour when the search kevs come into truly random
manner. Thus in the experunents on dvnamic tree, a number of search trees of various

sizes have been constructed on the assumption that the incoming keys are truly random
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and after a successful construction of such a tree sufficient number of trials have been

taken to count the following measures:

(i) Average number of probes required in a t.;uccessfu] search.

(ii) Average number of probes required in an unsuccessful search.
(111} Average time required for a successful search and

(iv) Average time required for an unsuccessful search.

sach of the above average measures for a tree of certain size were averaged for ten
sets of data in order to sa.tlsfv the requu'ement that the experimental data should refiect
the true average behavmur of a dvnamlc tree For time calculation the same procedure
~as adopted in chapter one has been reinforced. The curves in Graph 2.1 through 2.4
depict the average behaviour of a dynamic search tree built from random keys. The
average external path length of a d_vn&mic tree is approximately 1.38logon as derived
in section 2.3. This means that the average number of probes required in & guccessful
search is very close to this figure, and the experimental curves bear a close resemblance

with this fact.

Next comes the qﬁestion of random délétions from a dynamic search tree. From
the discussions of chapter two it is evident. that"t'he average behaviour of a search
tree after random deletions cannot be predicted to be the samne as can be obtained f
the tree is built afresh from random keys. The tree structure deviates slightly when
random deletions are made'a.s-vé{'iﬁ}é’a.-:fgf";‘f}f]:é';'é}:)ébéi‘iin'ental"¢i1r\?es of Graph 2.5 and 2.6.
There 15 no known analvsis of the average search time when random deletions and then
insertions are made into a dynamic tree. rWe tried to investigate the average behaviour
of a dynamnic tree after ra.nd‘om‘deletions and insertions are made. The experimental

results show that as soon as random insertions are made into a dynamic tree having
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experienced a mieber of random deletions, the tree structure sharply deteriorates. and
the average hehaviour becomes worse as the curves of Graph 2.7 through 2.10 show.
The theoretical aunlviis of this worse behaviour is still Incking but this can be nferred
from the fact that random deletions change the relative distribution of values of a given
tree shape and a random insertion after a number of random deletions destrovs Lhe

randomness property of the tree.

A node can be deleted from a tree either by replacing it with its [’)I"F!dﬂ(:(‘..‘lﬁ(rr or
by its successor. llf only successor or predecessors. are chosen for replacement the dele.
tion process can be termed as nsymmetric. But if predecessor and successor are chosen
alternately for replhcement then the deletion process can be termed as symmetnc dele-
tinn. ‘The curves of Graph 2.7 through 2.10 show that symmetric deletion causes no

improvement i performance.

The rest of chapter twn beginning from section 2.4 describes the procednre for
brifding a binary search tree that will have an optimal weighted path length given the
freauencies p; and g;. Algorithin 2.3 with the appropriate modification as enlightened
at the very end of section 2.4 has been employed to construct the optimal search tree of
Fig 5.1 Vhe [requancies of secess of each element have heen shown in this tignre. The
trée of Fig. 5.2 results when all the external frequencies are made zero and that of Fig.

3 results when all the internal frequencies are made zero. The trees of Fig. 5.2 and

A}

5.4 show that both internal and external frequencies influence the tree structure by a
considerable amount. The average cost of the trees are 4.147506, 2.991565 and 4.436492
respectively. Table 5.1, 5.2 and 5.3 shows the average cost for different selection of the
roots for the trees of figure 5.1, 5.2 and 5.3 respectively. These tables show that the roots

of the aptimal trees give the minimum cost as expected since the optimality has been
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defined in terms of minimum average cost.; As calculated in section 2.4, the construction

of the optimal search trees of Pi\gi 5.1, 5.2:_and“5,.3.- required O(n?) operations for their

constriction.

5.4 Balanced Trees.
The tree insertion algorithm discussed in chapter two will produce a good search
tree when the input data is randem. but there is still the annoving possibility that a
degenerate tree will oceur. The height of a balanced tree of n elements will be QO(lg, n).
so that search times are Iogarithmic‘, and inge}'tionr.and deletions will require only local
changes along a single path froin the root tor;a.'lezif.r requiring only time proportional to
the height of the tree that is, Q(ig;n). We have followed the same style. in doing tl;le
experiments with balanced and 2-3-4 frees as done with dvnamic trees in chapter two.
Section 3.2.1 verifies the fact that in the worst case the number of probes required in a
height balanced tree of n internal nodes will never be more than 45 percent higher than
“the optimnm. As discussed in section {3.5), the fact that there are n! possible orderings
in which n kevs can be inserted, and the perfectly balgnced tree 1s obtained most of the
times makes it extremely plausible that the average search time for a balanced tree 1s
about lg, N + C comparisons for some ﬂtnaii ;ilph.ﬂ-,t@al.-nt C
Experimentél curves 3.1 and 3.2 support fhis conjecture. The timing curves shown
m Graph 3.3 and 3.4 show the average time required for succéssful and unsuccessful
search respectively. The real significance of balanced trees 18 their worse-case perfor-
mance, and the fact that this performanceis achiéved at a very little cost. Experimental
curves 3.5 show the percentage of times balancing required together with percentage of
times single and double rotation required in times of insertion into a balanced tree.

These figures support the fact that it is logical to. construct balanced trees which has
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guaranteed good worst-case performance because the insertion cost is not too high to
discourage its use.

Next comes the 2-3-4 trees presented in section 3.8, The overhead incurred in
manipulating the more complex 2-3-4 node structures in their direct representation is
likely to make the algorithms slower than standard binary search. The primary purpose
of using 2-3-4'Lrees is to provide insurance aga.iﬁst a bad worst-case performance, but
tt. would be unfortunate to have to pay the overhead cost for that insurance on every
run of the algorithms. That is why we have ;'epreaented 2-3-4 trees as standard binary
trees by using one extra bit per node. The curves in graph 3.6 through 3.9 shows the
average behaviour of 2-3-4 search tree. The behaviour is‘almost analog(-)ua to that of
a balanced tree. But the behaviour of unsuccésgful search is better for a 2-3-4 tree as
verified by the experimental curves. The cu.t"\'res 3.'10'sllows the balancing requirement
in times of insertion into a 2-3-4 séamh_trée.‘ '_Thé_'ﬁg(u'es for single rotation and double
rotation per insertion are significantly hi.gher than those for balanced tree. But it should
be noted that the algorithm to build a 2-3.4 search tree s much simpler than that of a
balanced tree. Also a significant amount of overhead is required to adjust the batance
factors along the search 'path Pin:a‘b'zilé-.lic'éa?yt“ree':;?h'éii'f a new node is inserted into it.
3onlsidering all these factors it can be concluded that total overhead requirement to
insert, a new node either into & balanced tree or into a 2-3-4 tree is almost identical.
Since each kev is inserted just once, but nﬁay be searched for many times in a tvpical

applicaiion. the end resuli is that we get improved search times at relatively little cost.

5.5 Hashing Techniques,

Chapter four deals with the various hashing techniques based on different collision

resolution schemes. Collision resolution schemes can be classified into three categories
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(1) Chaining scheme,
(i1) Linear open addressing,
(111} Double hashing

We have examined each of the above schemes along with variations thereof to

nuprove certain properties of the corresponding hashing strategy.

A search table of length 1021 has been used lt'o‘impl;sment the algorithm presern!.ed
in chapter four. Division hash function has been us;ed to transform the keys into real
addresses for sunplicity and accuracy. Let us begin with the chaining method. Separate
chaming is the natural starting point for the discussion of chaining method. As pointed
out in section 4.3. if we keep each of the lists ord‘ered by key, then time for unsuccessful
searches can be reduced by a.,considerablé:'a.m,ou.nt.'jB ut since the keys come into random
order. therefore time for successful search should not be affected by this variation. Graph
4.1 and 4.2 reflect these facts. Graph 4.2 shows that nearly any load factor convinces
the use of ordered chain though each insertion. in an ordered table is much costlier
than that of in unordered chaining. Since insertion is a rare event in most practical
situation. therefore. ordered chaining lis' pi'e'ferja.ble trcl.v unordered one specially when a
larg:e number of keva hashes into a short taEle. and unsuccessful searches are more
common. In separate chaining, for the sake of speed we would like to make the no of list
heads M rather large. But when M 1s large most of the lists will be emptyl and much of
the space for the M list heads will be wasfea, Thié‘auggests another approach named
coalesced chaining which eliminates the overhead of the M list heads. Graph 4.7 and 4.8
compares the different collision resolution schemes. Here we see that rseparate chaining

18 faster than coalesced chaining for both successful and unsuccessful searches at any
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load factor, but if space is the major consideration then coalesced chaining is superior.

After chaining, the next collision resollutionrls-cheme 1s the linear pmhing which is
the simpleat of all the available methods. As discussed in section 4.4 in Iinen.‘.r' probing
the performance degrades rapidly when the table gets full. To have a better performance
we have examined this technique with two variations. The firat one is the ordered linear
probing where we have maintained an ordering relation among the elements in the
table amounting to a considerable saving in unsuccessful searches, but like the ordered
chaining method this does not make any change in performance for successful search.
The next variation is the pass bit method which has been discussed in section 4.6. A
one bit field in each table location can improve thg performance in case of unsuccessful
search under linear probing. Equation (4.15) shows that in linear probing when the
table is full the average no of probes required in unsuccessfui search is 1/2 (1 + M)
where M 1s the table size. That is why we have tri.ed to improve the performance giving
strength on the unsuccessful search. Graph: 4.3 and 4.4 shows the performance. of the
variations of linear probing in ca.ef.': of s-ﬁccessfijl and unsuccessful searches respectively.
Since each insertion in the ordered table istmu'ch costly, hence it is preferable only when
insertion is less frequent event. Since a Bingl;a bit in each table location improves the
performance considerably and since a bit coxr;parison is not so expensive compared to
kev comparison. therefore, pass bit method i§ the natural selection strategy in most of

the situations.

Double hashiug eliminates the problem of secondary clustering in linear probing
nsing independent hash functions which is essentially indistinguishable from number
‘of probes which would be required if the keys were inserted at random into the table.

Section 4.5 deals with the behaviour of double hashing. Brent's algorithm on the other
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hand is a variation of double hashing which redu-ces the average number of probes per
successful search but number of probes in an. unsuccessful search is not reduced by
Rrent's variation. it remains at the same level as uniform hashing. Brent's algorithm is
etnployed when successful searches are muc'hlmoré common than insertion as in the sym-
bol table algorithm. Another variation of double hashing is the pass bit method which
emplovs a single bit in the tablé lélca‘tiql‘l,t;oiimprélv; the performance of u:nsuccessful
search. Graph 4.5 and 4.6 shows the results for this different variations and conform to
with the theoretical results. Here also if unsuccessful searches are more common then
pass bit method is superior to ordered _doubie hashing because the latter meathod is too

costly to be worthy in practice, and the former one needs only an extra bit of memory

for its realization.

Next we have shown the performance of all the major hashing schemes in graph 4.7
and 4.8. These figures show that when space is not the critical {aclor separate chaining
is the best poussibie choice. Bt this methordlis particutarly important when number of
elemsents is greater than the table size.«i.e-., when the load factor is greater than unity.
Linear probing on the okther hand is the simplest to implement, but its average behaviour
when the table is nearly fuil discourages its use. In this situation double hashing comes

to help us because it is the best among all the hashing methods if both space and time
are taken into consideration although‘«rehashing of the keys require a little bit. more

computational cost.

We will finish our discussion after a'little remarks about external hashing. We
were mainly interested in internal hashing, but have carried out some experiments out
of curiosity. Attempt has been made. to compare the behaviour of linear probing and

double hashing in the context of external hashing. Tn our experiments bucket sizes of
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5. 10 and 15 have been used. The experimental curves 4.9 through 4.14 show that
déuble hashing is superior to linear probing_at almost any load factor if mn‘n.ber of
disk accesses is the prime consideration. When dealing with external storage such as a
~disk, the number of buckets that have to be read from éxternal storage is not the only
‘determinant. of access-efﬁciency. Another important factor is dispersg.! of thre buckets

aécessea that is. how ff;Lr éparf. the buckets accessed are from each other. 'In general

a major factor in the time it takes to read a block from '.a. disk is the seek time. This
is the timme it takes for the disk head to move to the location of the desired data on
the disk. If two buckets accessed one after other are far apart. more time is required
than if they are close together. Given this fact! it would seem that linear rehashing is
the most effective technique because although it may require accessing more buckets.r
the buckets it accesses are contjguous, At the very end of chapter four dynamic and
extendible hashing techniques have been introduced to show that a single access is

suffictent to bring any record from external memory with an appropriate modification

of index structure.

5.6 Conclusions
' The experimental results on static table a.[gorithmssugges_t the use of Uniform and Fi-.
bonacecian search techniques in cases where a particular processor saves considerably in
doing addition and subtraction operation than doing division operations. 'T'h.is concl-
sion has been drawn from the fact that the formertﬁo algorithms need only addition
and subtraction operation for fhe’ir implementation whereals. the commonly used Binary
gearch procedure uses division operation for every iteration and in moﬁt of the cases

division operation is much costlier than addition and subtraction operation.

The simplestalgorithm we have discussed for dmamic tables is dynamic tree search
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 algorithm. T}us algorithm is very simple to 1mplement and ils average search time is
logarithmic when the input keys are perfectly random as verified by simulation experi-
menats. But the tree shape dt_eteriorates sharply as the input keys become nonrandom in
nature. This' worse beha}'libut becomes severe when some new keys are inserted after tﬁe
" deletion of sc;me; random keys; Therefore the ad;)piion of dynamic search tree depends

~ solely on the randomness property of the incoming keys and the fréquency of deletions
made uponr it.

Two restricled tree siructures namely, Ba.lan;ed and 2-3-4 tree have been intro-
- duced to overcome ;he difficalties which may arise when the input keys- are nonrandom
in nature. It has been shown both analytically and experimentally that these algorithms

behave logarithmically even when the input keys are nonrrandom in nature. Moreover,
' the mserhon cost in such trees is reasonably low so that one can easily adopt these

' algonthms in order to have aii insurance against the bad worst case performance.

Under the proper conditions, hashing is unsurpassed in its efficiency as a table
organization, since the évefage time for a search or an insertion is generally constant,

independent of the size of the table. Howev'er, some importani caveats are in order.

' First, hashing requires a stmng belief in the law of averages, since in the worst case _'
collision occurs every time, and hashing degenerates into lineal; search. Se‘cond,' while it
is easy to make insertions into a hash table, the full size of the table must be specified a

priori, because it is closely connected to the hash function used; this makes it extremely |
expensive 1o change dynamically. If we choose too small a size the performance will be
poor and the table may overflow, but if we choose too large a size much memory will be
wasted. Third deletions from the table are not easily accommodated. Finally, the order

~of the elements in the table is unrelated to any natural order that may exist among the
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' elements, and so an unsuccessful search results only in the knowledge that the element

s'ought. is nroi in the table, with no information about how it relates to the elements
in the table. If the problem at hand is not related to the above mentioned difficulties,
Hashing technigue is the appropriate choice without any question.

Among the various collision resolution schemes, separate chaining is the best choice
i space is 'not a critical factorl. In this scheme there 13 no difficulty with deletion and

there is no chance of ovefﬂowing the table and it has the the least search time among

‘all possible Hashing schemes. If space is the principal consideration then we can avoid

the chaining method and adopt either Linear probing or Double Hashing scheme. Again

Linear jambing shows a poor behaviour as the table gets full even though this scheme is
the simplest to implement. Therefore, if computation cost for second hash is reasonable,
Double Hashing is more efficient than Linear probing. Moreover, after selecting any

pﬁrticular Hé.shing scheme, different variation thereof can be adopted as per requirement

of the problem at hand It should be mentioned that Hashing is parhcularly suited to -

external searr:hmg and with proper modification of the index table, any record can be

retrieved from secondary storage device in only one access.

5.7 Suggestion for further study.

There are a large number of searching algorithms depending on the nature and char-

_ acteristics of search procedare. Only some representative searching algorithms having

wide applicability have been studied in this thesis. For example, algorithms using the

digital properties of keys, algorithms related to graph search and algonthms commonly

used in Artificial Intelligence have not been included in this thesis. So there is a wide
scope to study these algorithms in future. Also the analytical results for the average

behaviour of Balanced and 2-3-4 trees are still unknown. Only the empirical behaviour
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. has been obtained by simulation experiments. One can attempt to find the behaviour
of these algorithms analytically. Again the incorrectness of Hibbard’s theorem has been
poiﬁted out through real examples and by logical reﬁsoning. Attempt should be done

to introduce mathematical support in this regard:
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