
PERFORMANCE ANALYSIS OF
SEARCHING ALGORITHMS

BY
CHOWDHURY MOF'IZUR RAHMAN

/

A THESIS SUBMITTED TO THE DEPARTMENT OF
COMPUTER SCIENCE AND ENGINEERING, BUET, .IN PARTIAL
FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN ENGIN~;BIUNG

DEPARTMENT OF COMPUTER SCIENCE AND ~~NGINEERINl.
HANGLAIJESH [INIVF:ItSITY OF' ~~NGINE~;RING AND T~~CHNOLOGY

.JULY, 1992

-- -~.

1IIIIIIII""IIIII"llllmfll-lf ~
1/85012#

001. 6'1'2.-3
/'j92-
MOF

PERFORMANCE ANALYSIS
OF

SEARCHING ALGORITHMS

A thesis submitted by

CHOWDHURY MOFIZUR RAHMAN
Roll No. 891820P, Regist.-ation No. 82111,

fo.- the pa.-tial fulfillment of the deg.-ee of
M.Sc. Engg. in Compute.- Science & Enginee.-ing.

Examination held on: July 28,1992.

App.-oved as to style and contents by:

•

______~_?:~L"1l WH...
DR. MOHAMMAD KAYKOBAD
Assistant P.-ofesso.-,
Depa.-tment of Compute.- Science & Enginee.-ing
B.U.E.T., Dhaka-1000, Bangladesh.

-----~~~~-----
DR. SYED MAHBUBUR RAHMAN
Head,
Depa.-tment of Compute.- Science & Enginee.-ing
B.U.E.T., Dhaka-1000, Bangladesh.

--'1Ja~&1~M..~-U:Plr)->--
DR. MD. SHAMSUL ALAM

DR. KAZI MOHIUDDIN AHMED
Associate Professor,
Depa.-tment of Elec~.-ical & Elect.-onic Enginee.-ing
B.U.E.T., Dhaka-1000, Bangladesh.

Chai.-man
and

Supervisor

Membe.-

Membe.-

Membe.-
(Exte.-nal)

•

CERTIFICATE OF RESEARCH

Certified that the work presented in this Thesis is the result of
the investigation carried out by the candidate under the
supervision of Dr. Mohammad Kaykobad at the Department of
Computer Science and Engineering, Bangladesh University of
Engineering and Technology, Dhaka, Bangladesh.

Date Signature of the
Candidate

DECLARATION

I do he~eby decla~e that neithe~ this thesis no~ any pa~t the~of
has been submitted o~ is being concu~~ently submitted in
candidatu~e fo~ any deg~ee at any othe~ unive~sity.

RZ. D1' ~Q.;
Date Signatu~e of the

Candidate

ACKNOWLEDGEMENTS

The author would like to express his indebtedness and gratitude to his supervisor Dr.

Mohammad;.Kayk()bad,. Assistant Professor of Computer Science and Engineering De-
. -

- partment, BUET,. for his endless patience, friendly supervision and invaluable assistance

in making a difficult task a pleasant one.

The author wishes to express his thanks and regards to the Head of the Department

of Computer Science and Engineering, BUET, for his support during the work. Sincerest

thanks to friends and colleagues for their constant support and criticism of the research

work.

ABSTRACT

In this work various searching alg'orithms have been studied both t.heoretically and

experimentally. There are a large number of searching algorit.hms: some of t.hem are

snit.able for st.atic t.ables. some other 1l.resuitable for dynamic tables with frequent in.

sertions and deletions. and yet some other employ transformation of keys to locate an

item.in a table. For the. majority of algorithms presented inthi~ thesi~ different ,varia-

tions 9r~achcat~gory have been compared in terms of comp'0ational cost. Therefore,

there is a scope to select the best one among a number of alternatives for a particular

application. Attempts have been made to give detailed mathematical analysis of each

algorithm. and in eases where exad mat.hemat.ical analysis is lacking. empirical resnlts

have been.obt.ained throngh experiment. Furthermore. mathematical analysis of each

algorithm has been supported by experimental results.

This thesis begins with the algorithms dealing with static tables. The Binary search

ale:orithm alone: with different variations thereof have been dealt with both .analvtic1l.llv~ ~ - . ., -, - . .
and experimentally. In order to make Binary search algorithm faster. another algorithm

called Fibonaccian search which uses the Fibonaccian tree as its decision tree and which

avoids the division operation in its implementation have also been introduced along with

other search algorithms for static table.

The behaviour of a dynamic search tree assuming the input keys are random has

been extensively studied both theoretically and experimentally. There has been an

endeavour to analyze the behaviour of a random search tree after random deletions

made on it. Hibbard's theorem on the behaviour of ranJolll search trees obtained from

,
"

deleting a ke~ randomly has been proved to be in(~orrect. The detailed procedure to

buildllp an optimal search tree given the successful and unsuccessful frequencies of each

key has been studied extensively and verified experimentally.

In order to have a guarantee against bad worst case performance when the search

keys are nonrandom. two restricted tree structures namely Balanced tree and 2-3-4

tree have been introduced. Unfortunately the avera.ge behaviour of these trees are still

unknown. The empirical results about the average behaviour of these trees has been

found out through simulation experiments.

Beyond the searching algorithms which work by comparison between keys. a new

dimension in this arena has been added recently by a new class of algorithms called

Hashing. This class of algorithms have been extensively studied and verified through

both mathematical analysis and' experiments.

f

,'.

CONTENTS

INTR.ODUCTION.

CHAPTER. 1. SEARCHING BY COMPARISON OF' KEYS

1.1 Introduction

L2 Binary Search

1.3 Analysis of Binary Search Algorithm

1.4 Variation of Binary Search Algorithm

1.5 F'ibonaccian Search

CHAPTER Z. SEARCH TREES

2.1 Introduction

2.2 Dynamic Trees

2.3 Dvnamic Tree Analysis

2.4 Deletion from Dynamic Tree

2.4.1 Analvsis of Deletion

2.5 ~tatic Trees

2.6 Heuristicson Optimality

CHAPTER 3. BALANCED TREE

3.1 Introduction

3,2 Definition of a Height Balanced Tree

3.2.1 Height of a Balanced Tree

3.3 Balanced Tree Search. Insertion and Deletion

3.4 Balanced Tree Search and Insertion without using stack

3.5 Some interesting ernpirical resnlts abont Balanced Trees

3.6 2-3-4 Trees

3.7 RED BLACK Trees

1

9

9

10
11

15
20

25
25
27

30
34

36
40,

46

49

49
50

50

54
60
66
68
74

CHAPTER 4. HASHING TF;CHNIQUES

4.1 Introduction

4.2 Collision Resolution

4.3 Chaining

4.4 Linear Probing

4." Oouble Hashing

4.n Brent's Algorithm

4.7 Ordered Hash t.ahle

4.~IlI1provell1ent wit.h addit.ional rnemory

4.9 Hashing in ext.el'l1alstorage

4.l0 The Separator method

.tt 1 Dynamic Hashing and Extendihle Hashing

4.12 Choosing a Hash funct.ion

CHAPTER 5. RESULTS AND CONCLUSIONS

'''.1 Int.roduction

'''.2 Searching hy comparison of keys

".3 Search Trees

.".4 Balanced Trees

.".." Hashing Techniques

".6 Conelusions

".7 Suggestion for furt.her study

BIBLIOGRAPHY.

95
95
96
97

106
116
118
122
126
.129

.. 131
133

138

143

143
143
;1.54
;1.77
183
206

208

210

INTRODUCTION

j

,

GENERAL.

A fundamental operation intrinsic to a great many computational tasks is searching:

retrieving some particular piece or pieces of information from a large amount of previ-

ously stored information. Applications of searching are widespreag and involve a variety

of different operations. For example. a bank needs to keep trllclt of all its customers'

account balances and to search through them to check variousJypes of transadions.

An airline reservation system has similar demands, in some ways. but most of t.he data

is rat.her short-lived. Searching is the most time consuming part of many programs and

t.he suhstitution of a good search met.hod for a bad one often leads to a subst.antial

increase in speed. St.atistical data shows that about t.wo t.hirds of computation t.ime is

spent for searching. Since searching is s.lich a common task in computing, a knowledge

of search algorit.hms goes a long way toward making a good programmer.

Searching may be dassified in several ways. We might. divide them int.o st.at.ic

vs. dynamic searching, where "static" means that t.he contents of the search table are

essent.ially unchanging (so t.hat it. is important to minimize the search time without

regard for the time required to set up the table). and "dynamic" means that the table is

subject to frequent insertions (and perhaps also deletions). Another possible scheme is

to classify search methods according to whet.her they are based on comparisons between

t.he keys or on digital properties of the keys. A third possibility is to divide search

met.hods into internal vs. external searching. Searches in which the entire table is

constantlv in mall1 memory are called intel'llal searches. whereas those in which most

1

of t.he t.~,ble is kept. in ext.ernal st.orage are calbi external searches, Pinally we might.

classify searching into t.hose met.hons which use t.he actual keys ann those which work

wit.h t,'ansformen ke.\'s,

Let. us now bring t.oget.her t.he t.erminology com/nonly used in searching. Thl'Ough-

out. t.his t.hesis we will assume t.hat. a t.able or a file is a group of element.s. each of which

is callen a record. Associat.en wit.h each recorn is a key. which is used to differentiat.e

among different records. The ~ssociat.ion between a record and its key may be simple or

complex. In the sim plest form, the key is' contained within .t.b_~:record at a specific offset.

from the start of the record. Such a key is called an int.ernaL~y or an embedded key. [n

other cases t.here is a separate table of keys that includes pointer to the records. Such

keys are called external. A search algorit.hm is an algorithm' t.hat accept.s an argument

K and tries to find a record whose key is K. The algorithm may return the entire record

or, more commonly, it may return a pointer to that record. The task of comparing the

argument key with a table locat.ion is called a probe. It is possible that the search for

a particular argument in a table is unsuccessful: that is. there is no record in the table

with that. a:rgument as it.skey, Very often. if a search is unsuccessful it. may be desirable

to add a uew record with t.he argument as its key. An algorithm that does t.his is called

a search and insert.ion algorit.hm.

Not.e that. we have said nothing about the manner in which the t.able or file is

organized. It. may be an array of records. a linked list.. a tree or even a graph. Because

different. search t.echniques may be suitable for different table organizations. a t.able is

often designed wit.h a specific search technique in mind. The table may be cont.ained

complet.ely in memory. completely in auxiliaryst.orage or it may be nivided bet.ween t.he

two. Clearly different search tec1l1liques are necessary under these dift'erent ~ssulJlptions,

2

,

HISTORICAL PERSPECTIVE.

Before ma.king any further comment on search algorithms, it may be helpful to put

things in historical perspective. It is the Binary search algorithm mentioned bv John

Mauchly what was perhaps the first published discussion of nonnumerical programming

methods. The method became well known. but nobody seems to have worked out the

details of what should be done in general situations. H. Bottenbruch [JACM 9(1962),

214] was apparently the first to publish a binary search algorithm which.works for all

N. He presented an interesting variation which avoids a separate tes~ for equality until

the very end. K. E. Iverson [A Programming Language (Wiley,1962), 141] gave the

detailed procedure of Algorithm Binary search, but without considering the possibility of

an unsuccessful search. D. E. Knuth [CACM 6(1963), 556-5.58] presented Binary search

algorithm as an example used with an automated flowcharting system. The Uniform

Binary search algorithm was suggested by A. K. Chandra of Stanford university in 1971.

Fibonaccian search was invented by David E. Ferguson [CACM 3(1960), 684]' but his

flowchart and analysis was incorrect.

The first published descriptions of tree insertion were by P. F. Windley [Camp .

.1.3(1960).84-881, A D. Booth and A. J. T. Colin [Information and Control 3(1960),

327-~~34Land Thomas N. Hibbard [JACM 9(1962), 13-28]. All three of these authors

seem to have developed the method independently of one another and all three authors

gave some different proofs of the average number of comparisons. The three authors also

went on to treat different aspects of the algorithm: Windley gave a detailed discussion

of tree insertion sorting: Booth and Colin discussed the effect of preconditioning by

making the first 2n -1 elements form a perfectly balanced tree: Hibbard introduced the

idea of deletion and showed tire connection between the analysis of tree insertion and

3

analysis of quicksort.

The idea of optimum binary search tree was first developed for the special case

PI = = p" = O. in the context. of alphabet.ic binary encoding. A very interesting

paper by E. N. Gilbert and E. F. Moore [Bell syst.em Tech. J. 31';(1959), 933-968J

discllssed this problem and its relation to other coding problems. Gilbert and Moore

ohsprvpr!, among ot.hpr t.hings, t.hat. an optimnm t.rpe conlr! be construct.ed in O(n.')

st.eps. KE Iverson [A Programming Language (Wiley, 1962). 142-144J independently

considered the other case. when all the q's are zero. He suggested that an optimum

tree would be obtained if t.he root is chosen so as to equalize the ieft and right subtree

probabilities as much as possible: nnfortunat.ely it. was seen that this idea does not

work. D. E. Knuth [20] subsequently considered the case of general p and q weights

and proved that. the algorithm conlr! be reduced to O(n2) steps; he also present.ed an

example from a compiler application. where the keys in t.he t.ree are reserved words in.

an ALGOL like language. T. C. Hu had been st.ndying his own algorit.hm for t.he p=O

case for several years: a rigorous proof of the validity of that algorithm was.difficult to

find because of the complexity of the problem. but eve,itually obtained. a pl"Oofjointly

with A. C. Tucker in 1969 [SIAM J Applied Math. 21(1971) .. 514-532].

C. C. Foster [11] has studied the generalized balanced trees which arise when we .

allow t.he height difference ofsubt.rees t.o be greater t.han one. but at most fonr(say).

Anot.her interest.ing alt.ernative to balanced trees. called 2-3 trees was introduced by John

Hopcroft in 1970 (unpublished). The idea is to have either 2-way or 3-way branching at

each node. and to stipulate that all external nodes appear on the same level. Hopcroft

has observed that deletion. concatenation and splitting can all be done with 2-3 trees. in

a reasonably st.raight forward nlanuer analogous t.o t.he corresponding operat.ions with

4

,

balanced trees. R. Bayer [Proc. ACM - SIGFIDET workshop (1971), 219.235] has

suggested an interesting binary tree representation for 2.3 trees. The concept of 2-3-4

trees is attributed to Guibas and Sedge wick's 1978 paper [14] which shows how to fit

many dassical balanced tree algorithms into the red. black framework and gives several

other impleme ntations.

Hash coding was first published in the open lirat.ure by Arnold I. Dumey. Computers

and Automation 5, 12(December, 1956). 6-9. He was the first to ..mention the idea of

dividing by a prime number and usitlg t.he remainder as the hastl:address. Dumey's

interesting article mentioned chaining but not open addressing. '"Robert Morris [26]

wrote a very influential survey of the subject in which he introduced the idea of random

probing. Morris' paper touched oft' a flurry of activity which culminated in Double

hashing algorithm and its refinements. A comprehensive discussion of hash functions

has been introduced by Knott, G. D., [17] and a complete analysis of ordered hash

tables has been carried out by Amble, O. and D. E. Knuth [3J. Guibas, L. J. and E.

Szemeredi [13] have analyzed the Double hashing method in their 1978 paper. A different .

. ;eorderirig sche~e, attributable t~Brent [6]' can be used to improve the average search

time for successful search when Double hashing is used. Brent's method reduces the

average nnmber of comparisons for successful retrievals but has no erred on the number

of comparisons for unsuccessful searches. Nishihara. S. and K. Ikeda in their paper [27J

focussed the idea of reducillg the ret.rieval tinle by using predictor and t.heir method is

particularly applicable to linear probing. The advantage of their method is that it can

be adapted quite easily when only a few extra bits are available in each table position.

One technique for reducing access time in external hash tables at the expense of

increasing insertion time is attributable to Larson [23J. His algorithm ensures the ability

5

to access any record in the file with only a single external memory access. The extendible

hashing Itlgorithm comes from Fagin. Nievergelt. Pippenger and Strong's 1979 paper

[10!. This paper is a must for anyone wishing further information on external searching

algorithms. The paper also contains a detailed analysis and a discussion of pradical

ramifications.

THESIS ORGANIZATION AND OBJECTIVE.

This thesis comprises five chapters. Chapter one discllsses the-improvements which can

be made over sequenti'al methods of searching, based on comparison between keys. using

alphabetic or numeric order to govern the decisions. Therefore. in this chapter we shall

concentrate on methods which are appropriate for searching a static table whose keys

are, in order making random accesses to the table entries.

The methos of chapter one are appropriate mainly for fixed size tables. since the

sequential allocation of records makes insertions and deletions rather expensive. If the

table is dynamically changing, we might spend more time maintaining it using the

methods of chapter one than searching it.. As a result chapter two evolves to facilitate,

the searching in a dynamic table. In this chapter we will discuss the search. insertion

and deletion algorithms using dynamic data structure and at the very end of this chapter

we will enlighten an algorithm to build an optimal search tree of minimum cost.

The algorithms presented in chapter two work very well for a wide variety of ap-

plications. but they do have the problems of bad worst case performance depending on

the nature of the keys. The algorithms presented in chapter three is an endeavour to

provide insurance against a bad worst case performance at relatively little cost. Two

different tree structures have been used to achieve the aforesaid goal.

Chapter four discusses an ~mportant class of methods called hashing techniques.

6

based on arithmatic transformation of the actual keys. This contrasts sharply with the

techniques presented in previous chapters which were based on comparisons but in this

chapter we discuss techniques based on directly transforming the keys into an address

at \7d' it will be stored.

~ Chapter five is intended to present the experiment.al results based on the algorithms

discussed so far in the previous chapters. This chapter compares the various searching

strategies based on the experimental results and verities the theoretical aspects of each
~ - ---------~-----

algorithm.

This thesis is an attempt to walk through the realm of searching. But the field of

searching is so enormous in its entireity t~ only some selective searching algorithms

having wide range of applicabili':,v have been chosen for the topics of this work. There

exists a large number of searching algorithms without exact theoretical analysis. In such.-- ----- -----....

cases we have tried to investigate the behaviour of such algorithms in terms of time and

space complexity and developed simulation programs in order to have some empirical

.results, For example. deletion in a dvnamic binarv search. tree does lIot have sufficient. . . _.

t.heoretical analysis for its performance. We have. in this case. tried to explain the

behaviour of deletion algOl"ithm iu a simplified way. In particular we have shown that

Hibbard's theorem related to deletion of an element from a randomly generated tree is.

incorrect. \Ve have pointed out in cluipt,er two what is wrong with his theorem and why

his theorem does not retlect the true practical situation. Again the average behaviour

of balanced tree algorithms discussed in chapter three is unknown. Here also we have

investigated. through simulation experiments. the average behaviour of balanced tree

algorithms. We have also investigated the average performace of 2.3-4 trees and have

enlightend some e.mpirical behal(iour.

7

.\,
\

Nearly all of the algorithms in this thesis have been verified extensively to see if they

actually follow the theoretical results if there is any. Many of the algorithms have similar

characteristics such that there are many alternatives to use one of them in a particular

application. This thesis, among many other things, will help to choose the best of them

for optimum performance of a particular application. Exact mathematical analysis for

the majol'ity of the algorithms have been presented along with the constraints and

limit,al.ions thereof so t.hat t.he reader' can easily aware himself of the'suitability of a

pal,ticula.r algorithm in a particular application, All of t.he siniiJlation experiments have

been carried out on IBM PC' compatible machines having .80286 processor. oL16 ,MHz

speed.

Almost every branches of searching have been travelled through by this thesis, but

emphasis has been given primarily on internal searching; however we mention some

techniques of external searching when they relate closely to the.methods we study .

8

)

CHAPTER. 1

SEAR.CHING BY COMPARISON OF KEYS

1.1 Introduction.

Tn this ~hapter we shall dis~uss sea~h methods whi~h are based on a linear ordering

of t,he keys. When 8. large number of re~ords must be sear~hed sequenti~,1 s~anning is

out of the question and 8,n ordering relation simplifies the job enormously. Of COUl'lle,

if we only need to sear~h a few times, it is faster to do a s~quential sell.r~h than to do

a compiete sort of the records; but if we need to make rep-eated sear~hes in the same

re~ords, we are better off having these in order. Therefore in this ~hapter we shall

~on~entrate on methods which are appropriate for sear~hing a table whose keys are in

order,

making random a~cesses to the table entries. After l'omparing a key K to Ki in su~h a

'table we either have

* K < Ki [Ri.Ri+l .HI'{ a.re eliminated from consideration J;

or * K = Ki [the search is done J:

or * K > Ki [R\. R2. ' "'.'" Ri are eliminated from consideration J .

Tn ea~h of this cases. substantial progress has been made. unless i is near one end

of the table; this is why the ordering leads to an effi~ient algorithm. The sequential

search method is essentially limited to a two way decision (K = Ki vs. K l' Ki). but if

we free ourselves from this restriction of sequentialllt:~ess it becomes possible to make

efl'edive use of an order relation.

9

1
.\

1;2 Binary Search.

If theset of records is large, then the total search time can be significantly reclllcecl

by IIsing a search proceclllre ba.secl on the application of divide and conqller paracligm:

clivide the set of records into two parts, cletermine which of the two parts the key sOllght.

belongs to, then concentrate on that, part. A reasonable way to clivicle the set of records

into parts is to keep the records sortecl, then lise inclices into the sorted array to delimit,

the part of the array being workecl on, To find if a given key K is in the table, first

compare it with the element at the middle position of the table, If K is smaller, then it

mllst be in the first half of the table; if K is greater, then iLrnllst be in t.he second half
~=---, -

of the table, Then we can' apply this method recursively. 'Tli"e binary searc~ algorithm

makes lise of two pointers, left and right, which indicates the current lower and upper

limits of the search, as follows:

ALGORITHM 11 (Binary Search):

Given a table of records R.I, R2, ,." .. '" RN whose keys are in increasing order KI <

K
1
< " .."" < KN, this algorithm searches for 8. given argument K.

left = 1: right' = N; [! Initialize]J

while (right ~ left) do

middle = l (left + right) /2 J [[Get midpoint I]

if (K < Kmiddle) right = middle - 1 [! Adjust right Jl

else if (K > Kmiddle) left = middle + 1 ![Adjust left Jl

else return [[the algorithm terminates successfully Jl

endif

10

repeat.

exit [[At this point the algorithm terminates unsuccessfully Il

End Algorithm 1.1

Tree Representation of Hinarv Search:

In order to really understand what is happening in algorithm 1.1, it is best. to t.hink

of it a..~a binary decision t.ree as shown in Pig 1.1 for the case N = 16. When N = 16. t.he

first comparison made by the algorithm is K : Kg; this is represented by the root node

(8) in the figure. Then if K < Ks, the algorithm follows the left subtree. comparing

K t.o K1; Similarly if K > Kg t.he right subtree is used. An uns'}ccessflll search wilL

lead t.o one of the ext.ernal square nodes nllmbered 0 through 16; for example we reach

[.5]ifandonlyifKo; <K < K,.

1.3 Analysis of Binary Search Algorithm. --==-

,
\

It. is evident from the decision tree of Pig. 1.1 t.hat the number ofrecords is at least.

halved at each step and consequently this met.hod of searching n:-ller uses more than

log: +1 comparisons for either successful or unsuccessful search .. If 2i -1::::; N < 2i ,a
,.. ;-

successful search requires (min 1, max K) comparisons. If N = ~=1, an unsuccessful

search requires K comparisons; and if 2i-1 ::::; N < 2i - 1, an unsuccessful req11ires

eit.her K - 1br K comparisons. An upper bound on the number of comparisons sat.isfies

t.he recurrence CN = C,"l/2 + 1 wit.h C1 = I.. which implies t.he st.ated result..

The t.ree representation ~.Isoshows liS how to compute the average nllmher of com-

paris6ns in a simple way. Let S.,! he the average nllmber of comparison in a successful

search. ~ssllming t.hat each of the N keys is an eqllally likely argument.; and let Vv be

t.he Itverltl!:enllmber of comoarisons in an IInslleeessflll search, ~_~sllmine:t.bat. each of t.he
.".)' ""

11

"'I,
j

",
\

.Fig. 1,1 A binary tree corresponding to binary search with N = 16

12

,

Sum of l~v~ls of t.h~ (N + 1) ~xt.~rnal nod~s, ,
N+l

. Sum of (l + level of ~ach of t.he internal nodes)
8N = ' 'N

Let us rlefine the external anrl internal path length of a search tree, External path

length E(T) is the sum of levels of all the external nodes whereas internal path length

I(T) is the sum of levels of all the internal nodes assuming thattheJevel of the root is

zero,
E(T)

Hence UN ='
N+1

~I

From the abov~ relations' we see that t.h~ b~st way 1.0 s~arch by comparison is on~ for

which corresponding search tree has minimum path length, over all hinary t.re~s with

N illt.~rna.l norl~s. A binary t~e has minimum path I~ngth if anrl-orrly if "II its ~xternal

norl~s occur in at most two arljacent l~v~ls. Let us verify this statem~nt by consirl~ring

th~ probl~m of rliscov~ring such a tr~e with N norl~s having minimum path length.

Clearly only one node (root) can be zero distance from the root;!l.~.most t",o nodes can. ",' ,

b~ at a rlistance one from the root, at most four can be two away. etc. So the internal

path length is alwa.ys at least a.. big as the sum of the first N terms of the series

0,1,2,2,2,2,3,3,3,3,3,3,3,3,4,4,4,4 .

Therefore the tree all external norles of which occur in at most two arljacent levels has

minimum path length among 1\11 possible tre~s. In the binary search procerlure all the

external norles appear at two arljacent lev~ls of the tree making external path length of

the .tree minimum.

13

If II .12, , IN +I be the levels of the (N + 1) external nodes in a binar~' tree then

it ca.n be shown hy induct.ion that

N+IL T" = 1
.=1

(11)

Now we a.re ready to compute the minimum external pat.h length of a hina.ry search tree

wit.h N internal nodes and (N + 1) external nodes. Let there be K external nodes on

level I and N + 1 - K on level I + L I ~ [(~ N + 1 (that is. all the external nodes may

be on level I), From eqnation 11.1) we can write

(1. 2)

Since J(::: 1, 2'+1 > N + 1 and since J(:::;N + 1, we have '2' ~ N + 1;that is

(1.3)

Combining (1.2) and (1.3) gives K = 211oK~+1 - N -1 and the minimum path length

is thns

Let Ii = IOg2(N + 1) - llog2(N + 1)J. 0 $ /}< 1. the minimum external path length

hpcomes

?

(11)

0$ fl!:!\ $ I}0861 in this interval. In the light of the above computations wecondude

that
EIT)
N + 1

14

UT)
= 1+ ;V'

where IJ= log2 (N + 1) - L log2(N + 1) J To summarize: algorithm 1.1 never makes more

than L IOg2N J + 1 comparisons and it makes about IOg2N -1 comparisons in an average

successful search.

It is important to note that the time required t,o insert new recorns is high for

hinary search: the array must he kept sorten, so some recorns ml~~~he moven to make

room for any new record. A random insertion requires that N /2:re.cords be moved, on

the average. Thus it is hest suiten for situations in which the tahle can he huilt.ahead of

time, perhaps using shellsort or quicksort algorithms, ann then usen for It. large numher

of searches.

1.4 Variation of Binary Search algorithm.

Instead of using three pointers left, right ann mindle in the search we can use only

two, the current position i and the rate of change of 6; after each unequal comparison,

we could then seti = i::l: 6 and 6 = ~.Using this approach.the following v~riat_i,:m.?f

Binary Searct1results:

Algorithm 1.2 (Uniform Binary Search)

Given a tahle of recorns R1, R2 •...............• R.f'{ whose keys are in increasing orner

K] < K2 < < K,v. this algorithm searches for a given argument K. If N is even.

the algorithm will sometimes refer to a nummy key Ko which should he set -00. We

assume that N> I.

\

1= rN/21:, " . m = IN/'ll, . ~

15

[! Initialize]]

,

while (m i 0) do

if II(< J(;) then i = i- rm121: m = I m /21
• ',' , • •• ..' oJ,

else if II(> I(o) then i = i+ fm/2l: m = Lm/2J

[[Demase i JJ

[[Increase i]]

else return

endif

exit

[[the algorithm terminates successfully Jl

repeat

[[At this point the algorithm terminates unsl~~essfuJJy Jl

. Rnd Algorithm 1.2

. " I

Pig. 1.2 shows the corresponding binary tree for the search when N = 10.. In

an unsuccessful search, the algorithm may make a redundant comparison just before
- ---=----. ~

termination: these nodes have been .Iabeled in the figure. This search has been termed

uniform because the difference between the number of a node on level I and the num ber of

it.s ancestor on level 1-1ha.s a const.ant value Ii for all nodes on level!. It. is t.o be observed

tha! the lengths of two ini,ervalsatthe same level differ by at most unity: this -wakes .," --.' .'A ,-".-

it. possible to choose an appropriate middle element, without keeping track of the exact.

lengt.hs. The principalaclvant,age of algorithm 1.2 is that we neecl not maintain t.he value

of m at all: we neecl only refer to short table of the various Ii to use at each level of the

tree. Thus the running time decreases consiclerably a.qcompared to binary search. In a

successful search, this algorithm corresponcls to a binary tree with the same internal path

length as the tree of algorit.hm Binary Search, so the average number of comparisons for

successful search is the same as before. In an unsucceRsful search algorithm 1.2 always

makes exactly L log2N J .+ 1 comparisons. Another modification of Binary Search is one

16

. ". ,
" ;

,'.-,' ,. \ ~ '" '1. ," "

~,

Fig. 1.2 Uniform search tree corresponding to N = 10
! :""

17

in which it i.s uniform after the first step and it is still faster than the Uniform Binary

search. The first step is to compare K with K;, where i == 24, K == llog~NJ. If I(< I(i,

we Ilse a uniform search with the 6's equal to 24-1, 24-J,1, O. On the other h"md

if I(> Kj and N > 2t, we set i to i' == N + 1 - -j, where I == llog~(N - 2t)J + 1,

and pretend that the first comparison was actually K > KI, using a uniform search

with the 6's eq1.lal to -j-1,21-2, ,1, O. The binary tree for this variation is shown

in figure 1.3. Like previous algorithms this method never makes more than llog2 N J + 1

compa.risons. hut it occasiona.lly goes through several redundant s!,.eps in succession.

An interesting variation of algorithm hinll.ry search is that we ca.n avoid.a separate

t.est for equality unt.il t.he very end of the algorithm. This algorithm is as follows:

Algorithm U

1==1; u==N [II nitialize]].:=

while (u '" I) do

i == r(l + u)/21 .~--- t" -,

--

if (I(< K;) then u == i - 1 endif [[Adjust u II

else if (K ~ K;)

endif

repeat

then I == i

18

[[Adjust III

Fig. 1.3 Tree corresponding to variation of Uniform search

19

"\-.

if (K = K,) then return; [[The search is successful JJ

else exit ff At this point the algorithm terminates unsuccessfully JJ

endif

End Algorithm 1.3.

In the above algorithm using i = r(l + It)/21 inside the while loop we have set I =

i whp.never K ;:::Kj: then u - I de~reases at. p.very step. F:ventually whp.n I = U, WP. havp.

K, S K < K1'H and wP. ~an t.p.st whethp.r or not the sp.ar~h was succp.ssful hy making

.onp.morp. comparison. Such a trick will makp. Rinary sp.arch a little bit faster for largp.

N. We would np.p.c1 N > 236 in order to mmpp.nsa.te for the extra iteration necessary.

1.5 Fibonaccian Search.

Pibonaccian numbers provide us with an altp.rnativp. to binary sp.arch and it involves

.'only'addition and subtraction, not division by two. So it may bp. prp.fp.rable 01180me

'. " .""computp.rs. If wp.start to explain thp.method simply fromprogrll.mming' pointofvip.w, . . 'c.

it seems to work by magic. Rut the myst.p.ry disa.ppears Il.~soon a.~ t.hp. corresponding

search tree is displayed.

In general the Fibonaccian trep. of order K has Fk+! - I intp.rnalnodes and Fk+!

external nodp.s and it is ~l'lnst.rudp.d Il.~follows:

If K = 0 or K = L thp. tree is simply [OJ. If K ;:::2, t.he root is (Fk): the left subtree is

t.hp.Pihonac~ian t.rp.p.of ordp.r K - I and t.hp.right. subt.ree is I.he Pibona~cian t.rep.of ordp.r

K - 2 wit.h all numbp.rs incrp.asp.d by Fk. Using this rulp. WP. can constrllct thp. t.rp.p.of

figure 1.4 of ordp.r 6. Prom thp. trep. strllct.ure it is evidp.nt. that t.he numbers on t.he two

20

,.

Fig. 1.4 A Fibonacci tree of order 6

21

. . "," ..

nodes of e"ch intern,,1 node differ from the f"ther'snumber by the s"me,amount and the

amount is a Fibonaccian number. Thus:l = S - F'l "nd 7 = F',+.•.,in fig. 1.4. When the

difference is Pi, the corresponding Fibonacci difference for the next branch on the left

is Pi-I white on the right it skips down to Pi-2. These observations can be combined

with an appropriate mechanism for recognizing the external nodes and initialization we

can arrive at the following algorithm.

AII:"0rithm1.4 f Fibonaccian Search)

Given R. table of records HI. H?, ... 0' ••••••••••• HN whose keys are in increasing order

KI < K2 < < K", this algorithm searches for a given argument K. For con-

venience in description, this algorithm assumes that N + 1 is a perfect Fibonaccian

number. Fk+I' rt is not difficult to make the method work for arbitrary N, if a suitable

initialization is provided which will be focused after the description of the algorithm.

p = Fk_l, q = H-2

[[Throughout the Algorithm, p and q will be consecutive Fibonacci numbers lJ

while (K "I Ki) do

22

if (K < K;) then

if (q = 0) then exit: endif IT The algorithm terminates unsuccessfully II

I = I - q; (p, q) <- (q,p - q) [[Decrease i JJ

else if (K > K;) then

if (p = 1) then exit; endif [[The algorithm terminates unsuccessfully]]

i = i + q: p = p - q; q = q - p IT mcrease i JJ

enoif

endif

repeat

Rnd Algorithm L.4

If N + I is not a perfect Fibonacci number then we have to find the leIL~tM ~ 0

such that N + M has the form Fk+l - 1, then to start with i = Fk - M ano to insert

"if i ~ O. i = i + q;p = p - q: q = q - p" at the very beginning of the first if structure

inside the while loop in the above algorithm. Another ioea is to check the result. of the

very first comparison. If it. comes t.rue t.hat K > KF,. t.hen we can set. i = i - M and-

proceed normally thereaft.er.

The number of comparisons re'1uireo in binary search is approximately log2 N

whereas in Fibonaccian search it is approximately (1/,/5) log.; N. Fig. 1.1 shows that

a left branch is t.aken somewhat. more oft.en t.han a right. branch - which we might. have

guesseo. since each probe oivides t.he remaining interval into two part.s. with the left

part. about. <h times ILqlarge as the right..

The external nodes appear on levels LK/2J through K - lin the Fibonacdan tree of

oroer K. The oifference bet.ween t.hese levels is great.er than unit.y except. when K = O.

23

r

'.

I. 2. ~. 4. ThuR for thiR valueR of K. the PihonacciR.n tree offers an optimal search path

in the Rense that feweRt comparisons are made on the average.

24

.-

,

CHAPTER 2

SEARCH TREES

2.1 Introrllletion.

As Wf'.sa.w in ehaptf'.r onf'.. thf'. order in whieh the elements are examined hy hinary

sea.reh is governed hy an implieit. hinary t.ree on t.he t.ahle element.s. Tn t.his ehapt.er

we will dise"ss the henf'.fit.s of making sueh a hinary t.ree struct.ure explieit instead of

implieit. These benefits are t.wo fold. For tables in whieh t.he element.s do not change

through insertions and deletions (static tables), an explicit tree structure can be used

to t.ake advant.age of a known dist.rihution of the frecl'lf'.ney aceess of the elements.

For dynamic tahles that ehange through t.hf'.insertions and deletions. an explicit tree

structure gives us thf'. flf'.xihility to sf'.areh thf'. table in logarithmic t.ime and to make

insertion and delf'.t.ion also in logarit.hmic timf'..

A binary seareh trf'.f'. is a binary t.ref'. in whieh t.hf'. inorder traversal of t.hf'. nodf'.

gives t.hf'. element.s st.ored therein in I.hf'. natural order. Tn ot.her words. every node P

in the tree has t.he property that elements in its left subtree are before KEY(P) in the

nat.ural order and those in its right subtree after KEY(P) in the natural order. Figure

2.1 shows a binary search tree for the set of names { A, g. I, 0, U }.

TfWf'.now seareh for K. start.ing at. t.he root. or apex of t.he t.ree. we find it is less

t.han O. so we move t.o thf'. left.; it. is great.er t.han E. so we move to right.; it. is greater

t.han r. so we move to the right. again and arrive at an external node. The seareh was

unsuecessful. Tn a similar way we ean seareh for any of thf'. exist.ing keys in t.he t.ree and

in that case the seareh will be successful t.erminat.ing at an internal node.

25

Fig. 2.1 A binary search tree

26

2.2 Dynamic trees.

For any given value of N. the tree ~orresponding to hinary sear~h a~hieves the

theoreti~al minimum number of comparisons that are necessary to sell..r~h II. table by

means of key ~omparisons. But the methods of chapter one are appl'Opriate main Iy

for fixed si7.e tables, since the sequential allocation of records makes insertions and

deletions rather expensive. Tf the table is dynamically changing, we might spend more

time mll..intaining it than we save in binary-searehing it.

The use of an explicit bimu'.v tree stmdure makes it possible to insert and delete

records quickly. as wellll..s to search t.he table efficiently. As a result we essentially have

II. met.hod which is useful both for searching and for sorting. This gain in flexibility is

achieved by adding two lin k fields to each record of the t.able. Techniques for searching a

growing table are often ~alled symbol table 1l..lgorithms.because ll..'lSemblers and compilers

and other system routines generally use such methods to keep track of the user defined

symbols. The search and insertion techniques to be descri hed in this section are quite

efficient for use Msymbol table algorithms, especially in appli~ations where it is desirable

to print out a list of the symbols in alphabetic order. . ".'

Tnserting a new element Z into an existing binary search tree T is not difficult

if we do not care what the effect is on the shape of the tree. Tf the elements in the

tree are XI < X2 < X3 < < Xn and Xi < Z < Xi+l, 0 ::5 i ::5 n (with Xo and

xn+1 considered as -00 and 00. respectively). then the it.h external node can simply be

replaced wit.h the new element. 7.. For example. a.dding t.he letter Y to the tree of figure

2.1 yields the tree of figure 2.2. Thus given a binary search tree a.nd a new element Z

to he inserted. there is a unique external node at which to insert. the element hecause

the ele.ment falls into a unique gap hetweensome Xi and Xi+I'

27

,:.

Fig. 2.2 The tree of fig. 2.1 with the letter Y added at its proper place

28

AII of t.he keys in t.he left subt.ree of t.he root in fig. 2.2 are alphabetically less than

t.he root ano all keys in the right. subtree are alphabet.ically greater. A similar stat.ement.

holos for left. ano right. subt.rees of every nooe. Tt.follows that the keys appear in strict.

alphabetic sequence from left. t.o right if we traverse the t.ree .in symmetrie orop-r. since

symmet.ric oroer is baseo on t.raversing t.he left. subtree of each nooe just. before that

node. then t.raversing the right subtree. 'fhe following algorithm spells out the searching

II.noinsert.ion process in detll.,il.

AI[orit.hm 2..1 Thee Search ail0 Tnsert.ion .

Given'" table of records which form a binary search tree II.Soescribed above .. this
. ."

algorit.hm searches for a given argument K. TfK is not in the table, a new node containing

. Kis inserteo into t.he tree in t.he appropriate place.

'fhe nooes of the tree assumeo t.o contain 1I..t.least. the following fielos :

KEY(P) = key stored in NODEIP)

LLINK(P) = Pointer to the left subtree of NODE(P)

. RLINK(P) = Pointer to thee right. subtree ofNODE(P). . <."",, '. . ~- ..

The variable ROO'f points to the root of the tree. Por convenience we assume thll.t

the tree is not empty

LINK P.Q

P +-- ROOT

29

loop

case

: K < K EY(P): if LLIN K(P) = A exit endif

P +- LLINKIP)

:K > KEY(P): if RLINK(P) = A exit endif

P +- RLINK(P)

: else

endcase

repeat

:return

Q +- AVAIL: KEY(Q) +- K: LLINK(q) +- RLINK(Q) +- A

if K < KEY(P) then LLINK(P) +- Q

RLINK(P) +- Q

end if

End Algorithm 2.1

2.3 Dynamic Tree Analysifl.

What. happens if we use the above algorithm to constnJd search trees? fn the -worst

Cll.Se,of course, the tree can degenerate into II. linear list: this happens, for example, if

the order of insertion is A. Fl. r. O. U. which specifies es.~entially II. sequential search.

Are things really that bad on the average? ff we have a random insertion order what

will be the average search time in the tN'e construded ? To answer. we reca.!1 that the

30

ext.ernal pat.h lengt.h is t.he measure of the av'erage search time. We want. t.o comput.e

t.he expect.edexternal pat.h lengt.h in a t.ree const.ructed ny algorithm 2.1 for random

insertion omer without. furt.her informat.ion, we may a.~well assume t.hat. each of t.he n!

permut.ations of t.he n element.sis equally likely a.s t.he insert.ion order. Let. FIn ne t.he

expected ext.ernal pat.h lengt.h in a t.ree const.ruct.ed from n element.s t.aken at. random

omer. 1'0 develop a recurrence relat.ion for FIn we onserve t.hat if t.he n element.s are

in random order, then the probability t.hat any particular one is first is l/n and the

remaining elements are again in random order. Furthermore, if the first one happens t.o

be Xi, the it.h element. of t.he n element.s in t.he nat.ural order, t.hen those element.s less

t.han Xi i,e, ;1:1< X2 < X.3 < < Xi-I are in a random order as are t.hose larger

t.han Xi i,e, Si+l, Xi+2, , x". Thus if Xi ha.ppens to be t.he first element insert.ed

into the t.ree as the mot, it will have, ny t.he nat.ure of insertion process, a random t.ree

made up of XI < X2 < X3 < < Xi_I as its left suntree and It random t.ree made

up of Xi+l, Xi+2, , x" as its right. sunt.ree.

This gives us

Eo =0

"
En = L(n + 1+ Ei_! + Fln-;)

;=j
Prli will be the root.). .

Since the probability that will be t.he root is equal for all l. it IS 1/11, and the above

equat.ion hecomes
n 1

E" =:L -(n + 1+ Ei-I + E"_i)
. II,=1

which hy using some elementary algebra can he writ.ten as

")n-l

En = n + 1+ :. LEo
n .•=0

31

To solve this rer.urrence rda,tion we will make a short detollr to solve

u-l2 ~
t" = an + b + - L ti,

n, .=0
(2,1)

for tn in terms of n, a, b, no, to, tl, ' ,t",_1 To eliminate the summation from (2,1)

we first multiply earh sie!e oy 11 to ootain

u-l

nt" = an) + bl! +::!L ti,
1=0

Replaring n oy n-l, we get

(::!,::!)

n-2
(n - 1)1,,_1 = a(n - 1)) + b(n - 1) + 2 L>j,

1=0

Subtracting (2,3) from (2,2) gives

nt" - (n - 1)tn _ 1 = 2t,,_ 1 + 2all + b - fl,

11 ;::: 110 + 1

n ;:::no + 1

or nt" - (n + l)t"_1 = 2an +b - a,

Dividing this by n(n+1) we have

t" t"_1 :{a-h h-a
--- --= ---+--,
n+1 n n+1 n

Replacing II by i and slimming gives

The left hane! side is the telesroping slim

tn tn_I t"_1 t"_2 tno+1 tn,+1 tn,----+---+ ---+-- --n+1 Il Il n .." 1l0+2110+2 110+1

32

(2,3)

;lOd t.he right. hand side gives

f, (30 - b + b ~ a \
L.J /+1' I J

'.=no+1 . .

== (3a _ b) (,1. + 1 + + _1_)
. . no + :t no + 3 n + 1

+ (b~ a) (_1_+ _1_ + +!.)
no + 1no + 2 n

. (I 1)=2a(Hn-H,'o)-(:Ja-b) " .. --
'no + 1 11

where Hn ;"L:~=1f is called t.he harmonic function Thus (2.3.) yields

, (~o-3a+b)tn = 2anHn + n ~~--- - 2aHno + 2aHn
no + 1

t - 3a + b+ n, + 3a + b - 2aH
no + 1 no

.., no-l

where tn. = ano + b + ~ L t;
. no .=0

Since Hn = In n + 0(1), (2.4) t.ells us that

tn = 2an In n + O(n)

= (an In 2)n 19 n + O(n)

Por I':n t.his yields'

En =(2In2)nlgn+O(n)

"" 1.38n Ig n

(2.4)

(2 ..5)

(2.6)

/ ..

Equation (2.6) tells us that in binary search trees built at random, t.he average

search time will he ahout. 1.31llg n or ahout 31l percent longer t.han in an opt.imal tree.

The simplicity of algorit.hm T -would make it. acceptable in spite of the increase over

33

the minimum Rearch time. except foran important fact. Our analYRiRaRsumed that the

insertion order was random and this is almost never true in practice. since there are

often sequences of elements arriving in their natuml order. Thus, despite equation (2.6),

algorithm 2.1 must be considered unreliable except in truly random circumstanceR.

2.4 Deletion from a Dynamic Tree.

So far we have considered only inRertionR. What R.hout deletionR ? OeletionR are

Romewhat more complex than inRertionR. hecaURe inRertionR caliRe ehR.rtgeRonly in the

external nodeR. but a deletion affertR the internal nodeR aR well. "f.rere iRno prohlem if

the element to he deletedhaR two nil RonR:we jURt replace t.he point.er to it by nil. Also.

if the element to he deleted haR only one nil Ron. we replace t.he point.er to it with R.

pointer to its Ringle Ron. Rut. when bot.h LLINK and RLINK are non null pointers. we

have to do Romething speci,,1. Since we cannot point. two waYRat. once, Such an element

has an inoroer predecefl.~or which hM null right son and it. ha..~an inorder successor

which hM'" null left Ron. Thus we can replace the element. to be deleted by either its

predecessor or it.s succeSRor, deleting th"t node from its original place. ThiR operation.

preserves t.he eRReriballeft-to-right. order of the tahle entries. The following algorithm

giveR a netailed deRcription of the general way to do this.

Algorit.hm 2.2 Tree Deletion

Let q be a variahle which point.R t.o " node of a binary Rearch t.ree. ThiR algorit.hm

nelet.eR t.hat none. leaving a hinary Rearch t.ree.

LINK T. R, S

34

,

if RLIN K(T) = A then q +- LLIN K(T): AV AIL +- T

return [[Is RLINK null ? JJ

endif

if LLINK(T) = A then q +- RLINK(T); AVAIL +- T

return [[Is LLINK null? JJ

endif

[[Find Successor JJ

R +- RLIN[(IT)

if LLINK(R)= A then LLIN K(R) +- LLINK(T); Q +- R

AVAIL +- T

return

end if

[[Find null ,LLINK JJ

S+- LLINK(R)

while (LLINK(S) '" A) do

R+-S

S +- LLINK(R)

repeat

LLINKIS) +- LLINK(T\: LLIN[((R) +- RLINKIS)

35

.C

,

,

RLINK(S) <- RLINK(T)

Q <- 5'; AVAIL <- T

End Algorithm 2.2

2.4.1 Analysis of deletion.

Since Algorithm 2.2 is quite unsymmetricll.l hetween left Il.nd right, it stands to

rea.~on thll.t a sequence of deletions will make the tree get out of bll.iance, so that the

efficiency estimates we have made will be invalid. T. N. Hibbard[1962] has proved that

after a random element is deleted from a.ra.ndom tree by algorithm 2.2, the resulting tree

is still random. rf this statement is true tree hehaviour will remain sa.me after random

deletions, i,e, the average numher of of prohes will remain same in hoth successful and

unsuccessful searches as it would he if the tree were huilt Il.fresh hy inserting random

keys. The tree hehaviour will also remain same if some random keys are inserted after

the tree has got experience of some random deletions. But in practice tree behaviour

deteriorates after deletion of some random nodes and this deterioration hecomes severe

when insertions are made in the same tree Il.fter random deletions. The. analysis of.

this behaviour is still unknown, but the aforesaid picture indicates that if-Hibha,rd 'g.

stll.tement is true we cannot expect such anomll.lous hehaviour from Il. dynamic tree

whatever operations are carried on upon this tree. rt can he inferred from the aforesaid

behaviour that there is something missing in Hihhard's theorem which is stated in Knuth

[19, pp. 429] as follows.

Theorem H (T.N. Hibbard, 1962). After a random element is deleted from a random

tree hy Algorithm 2.2, the resulting tree is still random.

Let us first follow the arguments stated in the ahove-mentioned reference. "This state-

ment of the theorem is.of cours". v"ry vague. We can summarize the situation more

36

precisely as fallaws: Let T be a tree af n elements, and let P(T) be the prabability that

T occurs if its keys are inserted in random order by Algorithm 2.1. Some trees are more

prabable than athers Let Q(T) be the probability that T will accur if n+1 element.s

are inserten in rannom orner by the same algorithm ann then one of these elements is

chasen at randam and deleted by Algarithm 2.2, In calculating P(T) we assume that

t.he nt permlltat.ians of the keys are equally likely; in calculating Q(T), we assume t.hat

the (n+ 1)*(n+1)! permutatians af keys and selectians af the keyt.adelete are equally

.likely. The theorem states that P(T)=q(T) for all T." Knuth fJlrther remarks that"

AIthough Theorem H is rig'orously true. in the precise form we have sta,ten it, it cannot

be applied, as we might expect, to a sequence af neletions followen by insertions. ,.."

Let us now consiner his theorem more rigorously. Accorning to. his thearem, after

a rannom element is deleten from a rannom tree the resulting tree rema.ins rannom.

He praved that deletion af a rannom element from a ran nom permutation results in

a rannom permutation. Tn particular, using the hypothesis of Theorem H that all

(n + 1)' permutatians and (n+1) deletions from each permutatian are equally probable,

he showen that each of the 0' permutations can be generated in exadly (n + 1)2 wa.ys,
. . 2

There£'Te each .r the nerwutatiuu,s lias nwl.>alJility (n+1)u, V l" r (n+l)(n+t)! l w hid. is equal ton!J

the probability if the n! permutations were generaten by taking elements rannomly from

n elements. He concluded that alike permutations, the probahility of" tree generaten

by deletin!1; a randam node fram a tree af (n+1) nades will be equal to. that af a tree

originated from the insertion of n rannom keys one by one. The conflicting point is that

Hihharn is carrying out alf'his arguments and I,.••sumptions hased an the permutations

and neletions to trees. In spite of the equiprohahility of permutations, trees generated

are not necessarily equiprobable.as remarked by them ann noted earlier. The point is

37

that if we pi~k up permutations from a tree from whi~h to delete an element randomly,

probabilities of permutations do not remain equal, be~allse probability of ea~h permu-

tation generating the same tree is exa~tly equR.Ito the probability of occurren~e of that

tree, whi~h varies from tree to tree. That is why their assumption of equiprobability of

permutations and deletions do not remain valid. We can also see this from the following

example.

Let us consider the tree T of Pig. 2.:t This five-noded tree ~an be generp..t.edfrom 1l

different permutations ..and a total of 120 permutations are possiblefrom5 distinct keys .

.Theref0re, the pr0b~bility nf tree T i~l~U = /,. Let us nnW c0fiSider the 6-noded trees

A through G whi~h are the only possible trees ~R,pR.bleof generating T through deletion

of a node, each of whi~h has been shown in the ~orresponding figure with an arrow. The

frequen~y of ea~h tree has been shown in bra~kets. Thus by deleting a random node from

ways, whereas there are altogether 6* 6! trees (-'i-noded) possible by the. deletion of a

ra.ndom node from all 6-noded trees. Therefore. tree generated in, this way .has the

b b'l' 278pro a Illy 6.6!.
: ,'-

This example dearly shows that the assertion of Thenrem H that P(T)=Q(T) is

incorrect. It mav be noted here that the statement PIT)=OIT) is valid for trees with. " ... ,

upto 4 nodes, whi~h may well have misled them. In order to ~ompute the number of

permutations which can generate a pa.rticular tree (which we have used in the above

example) we have derived the following recursive formula.

Let, T1 and T~be the left and right su btrees of tree T. Ry T. T1 and T~we denote

both correspondi~g trees as wei! as number of internal nodes. Let N(T) be the number

38

A (8) .B (20)

Tree T

C (20). D (15)

. E(15) F (15) G (15)

Fig. 2.3 All possible 6-noded trees generating tree T

39

of pennnt.lttions generating 1'. Then

Subt.rees Tl and T2 can be obtained by N(TJl and N(T2) permutations respectively.

Again T1+ T. positions can be filled up by Tl elements in (T,;!;T,) ways. For each T1

and T. their keys can appear in (T,;!;T,) ways. So product of N(T1),N(T.) and (T,;!;T,)

gives t.he resnlt..

2.5 Static trees.

The a,pplicat.ion of binary search trees t,o st.a.tic tables is concerned entirely with

arranging the tree so a.. to minimize search time. If we want to,~inimize the worst

case search time, we can simply use the tree corresponding to binary search a,nd we

do not need an explicit t.ree at all because we have assumed that t.he table has been

constrncted once and thltt its cont.ents will chltnge either never or so infrequently that

it wiII be possible to reconstruct. the enti re table to mltke a change.

The more difficult. problem is t.o minimize the average search t.ime, given some

dist.r.ibution of how the search will end. If the table consists of element.s Xl'<'X2<'x} <
....... < Xn, then the search can end successfully at any of the Xi (internal nodes) and

unsuccessfully in any of the n + 1 gaps between the Xi and at the endpoint.s. Let us

assume that. we have values PI, 1'2.P3' , Pn and qo, ql, q2' '.qn where Pi is the relat.ive

freqnency with which a search will end successfully at Xi and qi is the relat.ive frequency

with which the search for Z will end nnsnccessfully at Yi, i,e, with Xi < 7, < Xi+l

(defining Xo = -'00 and Xn+1 = 00).

1'he problem is to choose among the many possible binary trees with n internal

nodes for a particular set of values Pi and qi' We will mea..ure the desirabilit.y of a tree

hy the cost of an average search: t.he cost will he the numher of prohes. In chltpter one

40

we int.roouceo such a meaSllre, t.he int.ernal pat.h length or t.he relat.eo ext.ernal pat.h

length. That. me~.,ure is not sufficient for our purpose because it ooes not. t.ake t.he

varying frequencies into account. However we can gener~.lize t.he path length a.s follows

: t.he requireo path length of It bina.ry t.ree T with internal nooes X], X2, X3, , :r",

external nooes Yo, v], , V" ano Pi ano 'I; oefineo above is

n
(2.7)

As in the cases of ext.ernal anoi~t.ernal path lengt.hs, it is convenient. t.o oefine weighteo
. .~.

pat.h lengt.h recursively .
.,

W(null) = 0

W(T) = W(1}) +W(Tr)+ I> + L:qj
Where the summations L Pi and L qi are over all Pi and qi in T.

(2.8)

Our: problem is to oetermine the binary search t.ree that will have an opt.imal

(minimal) weighted path length, given the frequencies Pi and 'Ii. Since the number of

possible t.rees'is exponentially large as a funct.ion of n we cannot. 00 t.he obvious way

of examining all possibilit.ies. comput.ing the weighteo pat.h length of each ano choosing

t.he smallest: Tn fad. t.he large number of possibilit.ies makes it. seem ooubtful that.

t.here is any reasonable way to make t.he oet.ermination. However a simple but. crucial

observat.ion about t.he nat.ure of t.he weight.eo path lengt.h of a t.ree will show us t.he way

t.o p roc eeo .

The observat.ion is t.hat. subt.rees of an opt.imal t.ree must themselves be optimal.

More precisely. if Tis an optimal binary search t.ree on weight.s qo,p], 'I], Pn' 'In

ano it. hM weight. Pi at. t.he root., t.hen the left subtree must be opt.imal over t.he

weight.s '10, p], 'I], Pi _I. 'Ii-;] ano t.he right. sllbt.ree mllst be opt.imal over weight.s

41

1i, Pi+l, 1i+1> , pn, 1n. 1'0 see why t.his opt.imalit.y principle must hold, suppose t.hat.

some tree over 1]0, PI, 11, ,Pi-I, 1i-1 had lower weighted pat.h lengt.h t,hs.n t.he one

that is t.he left subtree of T. Then bv (2.8) we could 1!'et.a t.ree T' wit.h 10wer wei1!'ht.ed•...• v v

pat.h lengt.h than l' oy replacing t.he left. suotree of l' oy t.he one of lower weight.ed pat.h

lengt.h we have supposed t.o exist. 1'his cont.radicts t.he assumed opt.imalit.y of 1'. We

. can argue simils,rly aoout. t.he right. suot.ree of l' and in fad any suot.ree of 1'. This

opt.imalit.y principle is t.he oasis of a t.echni'llle called dynamicprrigrsnnnillg, which we

will use t.o comput.e optimal oina,ry search t.rees.

The optimality principle together with (2.8) allows us to write the following recur-

sive description of optimal oinary search t.rees : Let Ci,i' 0 $ i $ n, oe the cost of an

optimal t.ree over t.he frequencies 1i. Pi+l, Pi, 1i. 1'hen

Cii = 0 . .
J J

andCii=9.i~(Ci,i-l+Cii)+Lql+ L PI
.< _J t:; 1=;+1

.. by (2.8), since the optimality principle guarantees that if Xi is the root of the optimal.

d, 't.ree;then Ci,i-l amI Cijare t.he costs of the left and. right suotrees respectively,: , .. -~

Defining Wii = 1i

-. :' .. t

We get Ci; = 0

i<j (2.9)

(2.10)

Equation (2.9) and (2.10) form the basis of onr computation of the optimal search trees.

iIi. evaluating (2.10) to get Con,.the cost of the optical tree over qO,PI, 'pn'qn' we

42

need only keep track of the choice of K that achieves the minimum in 12.10). We thus

define

Rij = a value of k that minimizes Cd -1 + Clj in (2.10) (2.11)

R-ii is the root of an optimal tree over qi,Pi+t, ,pj,qj.

We are left with the problem of organizing the mmputation from (2.9), (2.10)

.and (2.11). Of course we could simply make (2.9) and (2.10) into recursive procedures

A.~ they stand, but that would lead to an exponential time algorithm because many

comput.ations would be repeated over and over again. The obvious we.:' t.O avoid this

difficulty is to insure tha.t each Gij is computed only once. We do this by observing

that the value of Cij in (2.10) depends only on values below and / or to the left of Gij

in the matrix from all combinations of i and j. We thus mmpute the matrix C (and in

parallel. Wand R) st.arting from the m~,in diagonal and moving up one diagonal at a

time. First Gii = 0, 0 ~ i~11. by (2.10). Then we compute Gi.i+1, 0 ~ i ~11. - 1, then

Gi,i+2' 0 ~ i ~11. - 2 and so on. Algorithm 2.3 embodies this idea.

Algorit.hm 2.~Optimal tree

[['Initialize the main diagonal]) ,'" "

for i = 0 to 11. do

R-if +-- i

Gii <-- 0

Repeat

[[Visit each of the n upper diagonals Jl

43

for I = 1 t.o n do

[[Visit each entry in the Ith diagonalll

for i = 0 t.o n - / do

j<-i+/

[[The elements on the Ith diagonal have j - idl]]

[[Compute (ij) entries: Rij is a value of k, i < kS j

minimizingCi,k_1 + Ck,j]]

for k = i + 2 to j do

if Cj k-I + CkJ. < Cj R -I + CR. "]. then R;J. .-- k
1 , 'J 'J

endif

repeat

Wjj <- Wj,j-l + Pi + %

repeat

repeat

End Algorithm 2.3

44

The running time of algorithm 2.:'l will he roughly proportional to the number af

comparisons" C.,l_1 + Ckj < C"R;i_: + CR;)j " made in the innermost loop which is

executed
n n-l ,+1 n n-l2::2:: 2:: = 2::2::(1-1)
1=1 ,=0 k=i+~ 1=1.=0

n

= 2::(n -I + 1)(1-1)
1= I

/~ ..

1 3 0(;"= -n + n-)
6

(2.12)

times. Algorithm 2.12 thus runs in tiTne proportion "I to n3 nqt. \'ery accept,a.hle in

ci)'i,structingsearch trees of 'sev~tal thousand elements. A fact%f n ca.n actually

be removed from the running time if we make use of a monotonicity property. Let

r(i,j) denote an element of R(i,j); we need not compute the entire set R(i,j), a single

representative is sufficient. Once we have found r(i.j-1) and r(i+1j) we may always

assume that

r(i,j -1) ~r(i,j) ~ r(i + Lj)
when the weights are nonneg"t,ive, This limits the search for the minimum, since only.

r(i+1j) - rlij+1) + 1 values of K need to be examined in algorithm 2.3 instead of j- i.

The total amount of work when j - i = d is now bounded by the telescoping series

L (r(i + 1,j) - r(i,j- 1) + 1)
d<j<n
I=J=J

= r(n - d + L n) - riO. d - 1) + n - d + 1 < 2n

hence the total running time is re<luce<l to O(n~). HMed on this observation we CRn

replace the st"tement "R.;j +-- i + 1" by "Rij +-- R;.j-I" and the innermost loop "for

k = i + 2 to j" by "for k = R;,j-I to Ri+I,/'in the above algorithm for the construction

of optimum binary search.

45

. ,;.

2.6 Heuristics on Optimality.
,

Even the improved versIon of the optimal binary seR.rch algorithm may no~ be

efficient enough in certain circumstances. If n is several thousand, it. may be quit.e

expensive to construct. the optimal t.ree; furt.hermore, the frequencies Pi R.nd'li are rarely

knnwn with any accl,racy and it would be foolish to invest much comput.ation t.ime t.o

get an optimal tree from inaccurate frequencies. Tn such cases a tree that approximat.es '"

t.he opt.imal tree may besatisfact.ory and will cert.ainly be less expensive to const.rlIct.

We now examine heurist.ics for t.he const.ruction of "near optimal" binary search t.rees.

Given frequendes Pi and 'Ii, t.wo heuristics immediately suggest. themselves; we

discuss them in term. The monotonic rule const.ructs a binary search tree by choosing

the root to be xi, where Pi is the largest p value andproceeding recursively on the left and

right subtrees. This may cause poor performance because we have totally disregarded

unsuccessful search frequencies. This suggests that perhaps the monotonic rule may

work very well in the special case of only successful searches occuring. Unfort.unately

t.hat is not the case: the monotonic rule produces poor trees in general, even when all

t.h~ .'Ii = 0 : on the average a t,:,e construct.ed according to the monotonic rule is no

bet.ter than a t.ree at random.

The second heuristic is t.he balancing rule: Choose the root so Il.q to equalize as

much as possible t.he sum of the frequencies in the left and right subt.rees, breaking ties

arbit.rarily. The cost of the tree resulting from t.he balancing rule is always extremely

dose t.o t.he c,?st of the optimal tree. The balancing rule can be implemented in time

proportional t.o n, t.he number of elements in the table. We want t.o choose the root

t.o equalize liS much as possible the t.otal frequencies of the left and right subtrees. [n

other words we need to find an I such that 1('10+ PI + + Pi-I + '1i-Jl- ('1i +

46

pi+l + ' ,..+pn + qn)1 is minimized and we must repeat the computation recursive.ly

for qo,Pl, .."" .. ,pi-l,qi-l R,nn qi,Pi+l,,,,,,,,,.,pn,qn to finn the left ann right subtrees,

respedively. The romput.ation is organi7.en as follows. We first comput.e t.he

WOi = qo + PI + + Pi + qi.

: ~'

by. the recurrence relation

Woo = qo

The computation of the WOi thus requires only time proportional to n. Given the WOi,

we can immediately get any needed Wij with two subtractions, since

Wij = qi + pi+l + .."" .." ..". + Pj + qj

= WOj - WO,i_l - Pi

To find where IWO,i-1 - Win I is minimized we need to find where WO,i-1 - Win changes

sign: -thei we want will be on either'side of the sign change. ,More,exactly, if.WO.~~1 ~.

W~.n ~ 0 < Wo,. - WHI,n then we want either i = k or i = k + 1 depending on whether

or not IWO.k-l - W~,n I is less than IWo.~ - Wk+l,n I, We can find K by a binary search

type of process. Initially we know that 1 ~ k ~ n; In general if I ~ k ~ h, check the sign

of WO,m-l - Wm,n where m = l(l + h)/2J. If it is positive .. set h ..- m or if negative

Set I ..- m and continue, if it is zero we are done. Finding i in this way will require

work proportional to Ig n and the total amount of work will be given by the recurrence

relation:

T(nl< max(T(i-ll+T(n-i)+c1gnJ
, ' - lSi5n' .

47

I;.'

where T(i-l) and T(n-i) are the work to find left and right subtrees respectively, once

the root is found, The c 19n term is the time required to find the root i. T(O) is some

constant, The solution to this recurrence relation gives T(n) proportional to n Ign. We

CRn reduce the computation time needed hy searching for i in a slightly diJferent way.

We find the spot where WO,k-1 - Wk," chltnges sign hy checking k = l. k = 2, k =

n - L k = 4. k = n - 3. k = 8. k = -; :...7 Tn other words. we check from the left

and right simultaneously. douhling the intervltl Itt .el>ch step. Tn this way we s!'Jend

time proportional to min [Ig;, 19(n - 1)] to find an interval containing i. This interval

has length proportional to min [i.n-i] and i can be located by binary search in time

proportional to min[l + min[ngll ng(n + i-Ill.] The recurrence relation for T(n)

hecomes

T(n) :::;l~;'5xn{T(i-I) + T(n - i)

+ d(l + min[ng'l, ng(n - i + Ill])}

and the solution of this gives T(n) proportional to n, as desired,

.,C.

48

CHAPTER 3

BALANCED TREE

3.1 Introduction.

The binary tree algorithms 'Nork. yery well for a wide variety of applications, but

they do have the problems of bad worst case performance. Files already ill order, files in

reverse order or files with alternating large and small keys cause the binary-tree search

algorithm t.o perform very badly. The tree insertion algorit.hm will produce a good

search tree when the input. data is random, hut. t.here is st.ill t.he annoying possihilit.y

t.hat. a degenerat.e t.ree will occur. Perhaps we could devise an algorit.hm which keeps t.he

t.ree optimum at all times; but unfort.unat.ely that seems t.o be very difficult.. Another

idea is to keep track of the tot.al path length and to completely reorganize the tree

whenever its path lengt.h exceeds a cert.ain limit, but this approach might require a.

large numher of reorganizations as the tree is being built.

A very pretty solilt.ion to' the problem of maintaining a good search tree c.an he .. '

achieved by keeping the tree perfectly balanced at all times. Unfortunat.ely when the

tree is thus constrained. it is more costly to insert or delete an element than to rearrange
. n

elements in the sequentially allocat.ed arrays required by linear search. Inst.ead our goal

is to allow more flexihility in t.he shape of t.he t.ree so that. insertions and delet.ions will not

he so expensive yet search t.imes will remain logarithmic. The met.hod for achieving all

this involves what we shall call" halanced t.rees". The height. of search t.rees of n element.s

will be O(log2N), so that search times are logarithmic and insertions and deletions will

reqlllre only local changes along a single pat.h from t.he mot. t.o a leaf. requiring only

49

..0 .. ,.

time proportional to the height of the tree - that is, O(lc>g2N). Furthermore, there is

no advantage to balanc.ed trees unless N is reasonably large; thus if we have an effi"ient.

method that takes 6410g2 N units of time and an inefficient method that takes 2N units

of time, we should use t.he inefficient method unless N is greater than 256. On the

other hand N should not be too large, either; balanced trees are appropriate chiefly for

internal storage of data. Since internal memories seem to be getting large and large as

time goes by. balanced trees are becoming more and more important.

3.2 Definition of a height balanc",.]Jree.

The height of a tree is defined to be its maximum level, the length of the longest

path form the root to an external node. A binary tree is called balanced if the absolute

difference of heights of left and right subtrees does not exceed one. Fig. :U Shows a

balanced tree with 17 internal nodes and height .'>; the balance factor within each node

is shown a.q+, .,or - ac.c.ording as the right subtree height. minus t.he left. subtree height.

is +1, O. or-1.

3.2.1 Height of a balanced tree :.

The definit.ion 'of balance represent.s a c.ompromise bet.ween optimum binary tree~

(with all ext.ernal nodes required to be on two adjacent levels and arbitrary trees

(unrestricted). It is. therefore, natural to ask how far from optimum a balanced tree

can be.

Once we have shown that a height balanced tree of n nodes has height O(log2N),

then the worst case search times is O(log2N) and since the insertion / deletion time

will also be proportional to the height. we will be done with the satisfaction that we

can safely use height-balanced t.rees as a storage structure for dynamic tables.

What is the height of the t~lIest height-balanced trees containing N internal nodes

50

Fig. 3.1 A balanced binary tree

51

and N+ 1 external nodes '! To answer this question we will turn it around and ask what

is the least number of int.ernal nodes necessary tb achieve height h in a height-balanced

tree.

Let Th be a height balanced tree of height h with nh internal nodes. the fewest

possible. Obviously.

no = 0 and nI = 1 (3.1)

Now let us consider Th, h > 2. Since Th is height balanced and has height h. it must

have a tree of height h-l as its left or right. subtree and a tree of height h-l or h-2 as

its other subtree. For any k. a tree of height k has a subt.ree of height. k-I and t.hus

n~> nk-I: this tells liS that Th has one sllbtree of height h-I and the other of height

h-2. for if Th had two sllbt.rees of height h - I. we wOllld replace one of t.hem by Th_2

and. since nh_1 > nh_2. t.his would contradid t.he assllmption that Th had as fe.w nodes

as possible. for he.ight balance.d t.re.eof height h. Similarly the. two sllbtre.es of Th mllst

be. he.'ight - balance.d and have the fewest nodes possible. for ot.herwise. we could replace

one or bot.h sllbtre.e.s with same height subtre.e.s of fewer nodes. again contradicting the

assumption that Th has as few nodes as possible. Thus Th has Th~I'as one subtre.e and

"Th-2 a.. t.he other.

(32)

To nnd nh in terms of h we will deviate a little from the current topic. let us conside.r

the re.currence re.lat.ions

bo = O. bI = 1.. bn+2 = bn+1 + bn + c.

(33)

(3.4)

From t.he first relation [eq. (3.3)] it is easy to show that an = rFn_I + ~Fn where Fn is

the Fibonaccian number of order n.

52

Now (3.2) and (3.4) is similar in the sense that c = 1 gives (3.3) from (3.4). Let us

try to solve relation (3.4). From (3.4)

(bn+3 + c) = (bn+1 + c) + (bn + c)

which cim be written as

h' ., = h' . I + h' .UT~ '~-r u. h~= c ~.nd h~= c + 1

From the solution of relation (3.3) it is evident that

Le. bn = cFn_1 + (c+ l)Fn - c

Replacing c with 1 we get

Since 1(1 - ..,15) /2/ < 1. the term (1-,&) h+. / ..,15 is always quite small. so that

f "") h+.11+":) ,
"HI = r. (.., +Oil)

vo \ ~

Since the tree of height h with the fewest nodes has nh nodes. it follows that any tree

with fewer than nk nodes has height less than h. then

. h+21 (1+ ,;5) ,
II + 1~ "HI. = ..j5 2 + 0(1)

53

.-,

implying that

Thus in the worst case the number of probes into It height balanced tree of n internal

nodes will never be more than 45 percent higher than the optimum.

3.3 Balanced tree Search. Insertion and Deletion.

To make an insert.ion or deletion We will use t.he approach of norn1al .dynamic t.ree in-

sert.ion a.nd delet.ion respectively when t.he t.ree can change in an unconst.rained manner;

then we will follow it. with a renalancing pa.•s that verifies or restores t.he height na.lanced

stat.e of the tree. In order to verify / restore the tree we need to be able to test whether

t.he element insert.ed or deleted has changed t.he relat.ionship netween the heights of t.he

suntrees of a node so as to violate the height constraints. For t.his purpose, we will store

a condit.ion code in each node of a height nalanced tree as described earlier. St.oring

condit.ion codes requires an e'xtra two-nit. field per node in the tree.

Roughly speaking, t.he renalancing pass consists of retracing path upward from the

newly inserted node (or from the site of the deletion) to the root. Here we will store

the path node by node, on a stack as we go down the tree from the root to the site of

the modification.

As the path is followed upward, we check for instances of the taller subtree growing

taller (on an insertion) or the shorter subtree becoming shorter (on a deletion). When

we find such an occurrence., we apply a local transformation to the tree at. that point.

[n the ca~e of an insertion it will turn out that applying the transformation at the

first such occurrence will complet.ely rebalance the tree. In the case of a deletion the

54

transformation may need to be applied at many point.s along the way up to the root.

Since the rebalancing after an insertion is a little, bit simpler than after a deletion we

consicler it. first. [I, may happen that. the new it.em has been aclcled t.o the bottom of

. t.he taller of t.wo subtrees of some node. Without loss of generality suppose the right

'.subtree WitStaller before the insertion as shown in fig. 3.2. The way to repair the newly

created imbalance depends on where within the taller subtree T the insertion was made .

. Suppose it was in the right subtree of T; we then have a situation that can be repaired

as shown in fig. 3.3.

The transformation shown in fig. 3.3 is called a rotation and it is consiclered to be

applied to the element A. Obviously, if the left subtree of fig. 3.2 had been taller and

the insertion made it even taller, we would have to rotltte in the other direction, using

the mirror image of the transformation shown in fig. 3.3. [f the insertion hltd been to

the left subtree of T in fig. 3.2 i.e. to T2 in fig. 3.3 then t.he repair is made as shown

in fig. 3.4. This transformation called a dou ble rotation, is considered to be applied

at A. The new element can be at the bottom of either T2 or T,. Again a mirror-image

transformation would be needed in the comparable case where the,left. subtree in. fig..

3.2 was t.he taUer.

The transformations offig. 3.3 and fig. 3.4 have two critical properties: the inorder

of the elements of the tree remains the same after the t.ransformation as it was before.

and the overall height of the tree is the same Itfter the transformation as it was before

t.he insertion.

Now we are in a position to state the insertion algorithm which is as follows:

We will use dynamic tree insertion algorithm to insert the new element to its proper

place, setting its condition code to '. and storing the path followed down the tree. node

55

Fig. 3.2

htl

B

A

li'H
Fig. 3.3 Single Rotation in a Balanced tree

56

h+1

h+2

b+2

.-, -; .'

A

h+l

h

h+ 2

Fig. 3.4 Double rotation in a balanced tree

57
•

by node, in a stack. Then, we will retrace that path backward, up the tree, poppmg

nodes off the stack and correcting the height condition codes until either the root is

reached and its height condition code corrected, or we reach a point at which a rotation

or double rotation is necessary to rebalance the tree. More specifically, we follow this

path backward. node by node, taking actions as defined by the following rules, where

current is the current node on the path, son is the node before current on the path

and grandson is the node before son on the path. Initially, son is the new element just

inserted" current is its father and grandson is nil :

(1) If current has height condition ',' change it to + if son = RIGHT (current) and to-

ifson = LEFT (current), In this case the subtree rooted at son grew taller by one unit,

causing the subtree rooted at current to grow taller by one unit, so we continue up the

path. unless current is the root. in which case we are done. To continue up the path

we set grandson ...- son, son t--- current, and current to the top stack entry, which is,

removed from the stack.

(2) If current has height condition - and son = RIGHT (current) or cnrrent has height

condition + and son = LEFT (current), change the height condition of current to "

and the procedure terminates. In this case the shorter of the two subtree of current has

grown one unit taller. making the tree better balanced.

(3) If current has height condition - and son = LEFT (current) or current has height

condition + and son = RIGHT (current), then the taller of the two subtrees of cur-'

rent has become one unit taller, unbalancing the tree at current. A transformation is

58

,

performed according to the following four case:

Grandson = RIGHT (son) Grandson = LEFT (son)

Son = Right(current)

Son = LEFT(current)

Single rotation at
current using fig. 3.3

Double rotation around
current using the
mirror image of fig. 3.4

Double rotation around
current using fig 3.4

Single Rotation around
current using the mirror
image of fig: 3.3

The deletion process is more complicated than insertion because it will not always be

sufficient to apply a transformation only at the lowest point of imbalance: transforma-

tions may need to be applied at many levels between the site of the deletion and the

root. To delete a node from a height-balanced tree, we proceed as for unconstrained

trees: if the node is on leaf; just delete it: if it has one nonnil son, replace it with its

son: if it has two nonnil sons, ~eplace it by its in order predecessor which will have a null

right son or replace it by its inorder successor which will have a null left son.

As in the insertion algorithm, we store on a stack the path followed down th.e tree to

the site of the node to be deleted, then we retrace the path backward up the tree, popping

nodes off the stack. correcting height condition codes and making transformations as.

needed. As we go back up the path actions are taken as defined by the following rules, .

where current is the current node on the path and son is the node before current.

Initially current is the father of the node deleted and son is the node deleted:,

(1) If current has height condition code .. then shortening either subtree does not affect

the height of the tree rooted at current. The condition code of current is changed to

+ if son = LEFT (current) and to - if son = RIGHT (current). The procedure then

terminates.

(2) If current has height condition + and son = RIGHT (current) or current has height

condition - and son = LEFT (current), then condition code of current is changed to ..

59

The subtree rooted at current has become shorter by one unit. so we continue up the

path. unless current is the root. in which case we are done. To continue up the path we

set son +-- current and current to the stack entry, which is removed from the stack.

(3) If current has height condition + and son = LEFT (current), then the height con-

o straint is violated at current. There are three subcases, depending on the height con-

dition code at RIGHT (current), the brother of son. The subcases are as given in fig.

3..5.3.6, and 3.7.

In fig, 3.7 the height cOIidition codes of A and C are both .. if that of B was .. [f

B was +. then A is>alidC is :.fr B was -. then A is. and Cis +.

For both configuration in fig. 3,6 and 3.7. the height of the subtree is one less

tha.n it was before deletion. Thus if current is the root we can terminate the procedure;

otherwise we have to continue up the path forwards the root.

(4) If current has height condition - and son = RIGHT (current), then the height

constraint is violated at current. There are three subcases, depending on the height

condition code LEFT (current), the brother of son. The subcases are the mirror images

of those given in fig. 3.5. 3,6 and 3.7.

The deletion algorithm will clearly require only time proportional to fhe height- '.,

of the tree: the deletion can be accomplished in O(/og2n) time, as can insertion. An

insertion, however, will need at most one rotation / double rotation to rebalance the

tree. while a deletion from a height balanced tree of height h can require as many as

lh/2J rotations / double rotations but no more.

3.4 B~anced Tree search and insertion without using stack.

The backward scan up the tree from the site of the insertion in a height balanced

tree can be eliminated at the expense of retracing part of the path down the tree. This

60

h t "-,
h

h+2.

h+2

- '. \ .. ,.~.

<Fig. 3.5 Single rotation in times of deletion 'when condition code is ' .•

61

h+l

h+2

Fig. 3.6 Single rotation in times of deletion when condition code is'+'

62

h+2

h

h-

A c
h+ 1

... ":-

Fig. 3.7 Double rotation in times of deletion from a Balanced tree

63

can be done roughly as follows. As we go down in the tree to the site of the insertion,

keep track of the node S that is the latest one Itlong the path to have height. condition +

or -. When the insertion is done, each of the elements between S and the newly inserted

element. hits height condition code .. and eltch mnst be changed to + or -. It is at S

that a rotation or double rotation may be needed. Let us work out the details of the

algorithm.

AIu:orithm ;U Balanced tree search Itnd insertion

Given a table of records which form a balanced binary tree as described earlier,

this algorithm searches for a given argument k. If k is not in the table, a new node

containing k is inserted into the tree in the appropriate place and the tree is rebalanced

if necessary. The nodes of the tree are assumed to contain KEY, LLINK. and RLINK

fields. We also have a new field B(P) = balance factor of NODE(P), the height of the

right subtree minus the height of the left subtree; this field always contains either +1, 0

or -1. A special header node also appears at the top of the tree, in location HEAD; the

value of RLINK(HEAD) is a pointer to the root of the tree and LLINK(HEAD) is used

to keep track ,of the overall heil!:ht'of the tree. We assume that the tree is.nonemptv,. .. . •... , .' -' ',. '. . :

i,e, that RLINK(HEAD) f= A. For convenience in description, the algorithm uses the

notation LINK(a.P) as a synonym for LLINK(P) ifa = -1 and for RLINK(P) if a = +

1.

This algorithm is rather long,. bllt it divides into three simple parts: Steps Al -

A4 do the search. steps A5 - Al insert a new node and steps All - AlO rebalance the

tree if necessary.

AI. [[Initialize lJ Set T <-- HEAD, S <-- P <-- RLINKIHEAD) (The point.er variable

P will move down the tree; S will point to the place where rebalancing may be necessary

64

and T always points to the father of S.)

A2 [[Compare]] If K < KEY(P), goto A3: if K >KEYIP), goto A4 and if K =

KEY(p), the search terminates successfully.

A3 [[Move left Il Set Q +- LLINK(P). If Q = A, set q +- AVAIL and LLINK(P)

+- Q and goto step AS. Otherwise if B (Q) l'0, set T +- P and S +- Q. Finally set

P +- q and return to step A2.

A4. [[Move right lJ Set Q +- RLINK(P). If Q = A, Set Q +- AVAIL and RLINK(P)

+- q and goto step AS. Otherwise if B(Q) l' 0, set T +- P and S +- Q. Finally set

P +-Q and return to step A2.

AS. [[Insert II (We have just linked a new node, NODE(Q). into the tree and its fields

need to be initialized) set KEY(Q) +- K. LLINK(Q) ...:- RLINK(Q) +- A, B(q) +-

o.

A6. [[Adjust balance factor lJ (Now the balance factors on nodes between Sand q need.

to be changed from zero to :1:1.) If K < KEY(S), Set R +- P +- LLINK(S), otherwise

set R +- P +- RLINK (S). Then repeatedly do the following operations zero or more

times until P= Q. If K < KEY(P) set 'B(P) +- - 1 andP+- LLINK(P): If,K >
,

KEY(P), set BfP) +- + 1 and P +- RLINK(P) (If K = KEY(P), then P = Q and

we may go on to the next step.)

A7. [[Balancing act. lJ If K < KEY (S) set a = - 1. otherwise set a = +1. Several

cases now arIse :

i) If B(S) = 0 (The tree has growth higher), set BIS) +- a, LLINK(HEAD) +-

LLINKIHEAD) + 1 and terminate the algorithm.

ii) If B(S) =' a IThe tree has gotten more balanced). set B (S) == 0 and terminate

the algorithm.

65

.. -: J',

iii) If 8(S) = a (The tree has gotten out of balance). goto step AS if 8(R) = a, to

A9 if BIR) = - a.

AS. [[Single rotation]] Set P _ R, LINK(a,s) <- LINK (-a,R). LINK (-a.R) <--'- S,

8(S) - SiR) <- 0, goto A10.

A9. [[Double rotation JJ set P - LINK (-a.R), LINK (-a.R) _ LINK (a.P), LINK

(a.P)_ R, LINK (a,S) _ LINK (-a,P), LINK (-a, P) _ S. Now Set

{

(-a,o) ifB(P)=a
(B(5'),B(R» - (O,O)ifE(P) = 0

(0, a) ifB(P) = -a
and then set SIP) _ O.

AlD. [[Finishing touch]] (We have completed the rebalancing transformation. with P

pointing to new root and T pointing to the father of the old root.) If S = RLINK(T)

then set RLINK(T) - P, otherwise set LLINK(T) +-- P.

3.5 Some interesting empirical results about balanced trees.

In the first place we can ask about the number R"~of balanced binary trees with

n internal nodes and height h. It is not difficult to compute the generating function

B.I (z) = L,,;::o BnAZ" for small h, from the relations

Equation (3.6) derives itself from the fact that the coefficient of z" inzBi(z)Bj(z)

is the number of n node binary trees with left subtree of heigbt i and with right subtree

of height j.

Thus

66

The total number of balanced trees with height h is Bh = Bh(l) ..which satisfies the

recurrence

B - 'fF, _IF,_, '1F, .1F•h -.J.' 0 ...• _1• h-1 ...•h

(37)

(3.8)

The sequencesBh and Ah grow very rapidly,. in fact they are doubly exponential.

If we consider each of the Bh trees to be equally likely. we can roughly compute the

av~rage number of nodes in a tr~e of h~ight has (0.70118)2h (3.9)

This indicates that the height of a balanced tree with n nodes usually is much closer

to IOg2n than to log;!n. Unfortunately these results do not bear the true picture of the

above mentioned algorithm, since this algorithm makes some trees much more probable

than others. For example consider the case N = 7 , where 17 balanced trees are possible.

There are7! = 5040 possible orderings in which seven keys can be inserted and the

perfectly balanced complete tree is obtained 2160 times. The fact that perfect balanced

tree is obtained with such high probability together with (3.9) . which corresponds to

the case of equal probability- makes it extremely plausible that the average search

time for a balanced tree is about log, N + C comparisons for some small constant C.

Empirical tests support this conjecture. The average number of comparisons needed to

insert the Nth item seems to be approximately log2N + .2.'>for large N.

An approximate model of the behaviour of algorithm 3.1 can be established which

is not rigorously accurate .. but it is close enough to the truth to give sOllie insight. Let

us assume that P is the probability that the balance factor of a given node in a large

67

tr~~ huilt by~!g"rithm 31 is 0: thpn th~ b~l~ne~ faet"r is + 1 with pmbabi!ity !(1. - Pl.
~nd it is - 1 with th~ sam~ prnbability 1(1- P)

Let us assume further (without justifieation) that the balance factors of all nodes

are indepenclent. Then the probability that step AR set exactly k - 1 balance ffU'tors

n"nzer" is pk-1(1 - p); so the average value of K - 1 is P/(l- Pl. The pf0bability.

that we need to rotate part of the tree is 1/2. Inserting a new node should increase the

number of balanced nodes by P, on the average; this number is actually increased by 1

in step Af>,by -P/(l- P) in step A6, by 1/2 in step A7 and by ~.2 instep A8 or A9,

so we should have

P 1
P=1---+-+1

1- p 2

Solving P we have P "'l 0.649 and /:p "'l. 1.8,51 This agrees with the faet that about

68% of all nodes were found to be balanced in random trees built by algorithm 3.1.

Some other ways of organizing trees, so as to guarantee logarithmic access time,

have been proposed. We can promote the height balanced trees which arise when we

allow the height difference of subtrees to be greater than one: but at most four (say).

Another.alternative to balanced trees called 2-3 trees incorporates the iclea that they .. ',."

have either 2-way or 3-way branching at each node and to stipulate that all external

nodes appear on the same level. An interesting tree representation for 2-3 trees has also

been suggested by using one extra bit per node. The next section of this chapter travels

through these variations of balanced trees.

3.6 2-3-4 Trees.

In order to construct the top - down 2-3-4 trees some flexibility in the data struc-

tures are needed. To get this flexibility, let us assume that the nodes in the trees can

hold more than one key. Specifically. we will allow 3-nodes and 4-nodes. which can hold

68

two and three keys respectively. A 3-node has tree links coming out of it. one for all

rec~rds with keys smaller than both its keys. one for all records with keys in hetween its

two keys and one for all records with keys larger than both its keys. Similarly, a 4-node

has four links coming out of it, one for each of the intervals defined hy its three keys.

We will see below some efficient ways to define and implement the basic operations on

these extended nodes: for now, 'let us assume we can manipulate them conveniently and

see how they can he put together to form trees,

For examp'le Figure 3.8 shows, a 2-3-4 tree. It is easy to see how to search in such a

tree, For example, to search for 15 in the tree in figure 3,8. we would follow the middle

link from the root, since 15 is between 12 and 40, then terminate the unsuccessful search

at the left link from the na'de containing 20, 30. and iI.~.

To Insert a new node in a 2-3-4 tree, we would like to do an unsuccessful search

and then hook the the node an. It is easy to see what to do if the node at which the

'search terminates is a 2-node: we can just turn it into a ii-node. For example, ,~ocould

'be added to the tree in figure 3,8 by adding it to the node containing 45., Similarly, a,'

ii-node can easily be turned into a 4-node'. Hut what should we do if we need to insert

new node into a 4-node '! For example. how will this be done if we insert 15 into the

tree in Figure 3.8'! One possibility would be to hook it on as a new leftmost child of

the 4-node containing 20. 30. and 3,~ but a better solution is shown in Figure 3.9 : first

we will split the 4-node into two 2-nodes and pass one of its keys up to its parent. First

the 4-node containing 20. 30. and 35 is split into two 2-nodes (one containing 20, the

other containing 35) and the" middle key" 30 is passed up to the 3-node containing 12

and 40. turning it into a 4-node. Then there is room for 15 in the 2-node containing 20.,

But what if we need to split a 4-node whose parent is also a 4-node ? One method

69

, .

....

_l

Fig 3.8 A 2-:3-4 Tree

Fig 3.9 Insertion-of 15 into a 2-3-4 tree_

70

would be to split the parent also, but we could keep having to do this all the way back

up the tree. An easier way is to make'sure that the parent of any node won't be a

4-node by splitting any 4-node we see on the way down the tree.

All what we need to do is to insert new nodes into 2-3-4 trees by doing a search

and splitting 4-nodes on the way. down the tree. Specifically. every time we encounter

a 2-node'connected to a 4-node, we should transform it into a 3-node connected to

two 2-nodes and every time we encounter a 3-node connected to a 4-node. we should

transform it into a 4-node connected to two 2-nodes which are shown in the figure 3.10.

The crucial point is that these transformations are purely" 10ca.I" : no part of the

tree need be examined or modified other than that shown in Figure 3.10. Each of the

transformations passes up one of the keys from a 4-node to its parent in the tree and

restructures links accordingly. Note that we needn't, worry explicitly about the parent

being a 4-node. since our transformations ensure us that as we pass through each node

in the tree. we come out on a node that is not a 4-node. In particular. when we come out

the bottom of the tree. we are not on a 4-node. and we can insert the new node directly

by transforming either a 2-node toa 3-node or a 3-node to a 4-node: ,Actually,"it is.,: ' .', .

convenient to treat the insertion as a split of an imaginary 4-node at the bottom which

passes up the new key to be inserted" Whenever the root of the tree becomes a 4-node.

we'll split it into three 2-nodes. as we did for our first node split in the example as

shown in the Figure 3.11. This (and only this) makes the tree grow one level "higher",

The algorithm sketched above gives a way to do searches and insertions in 2-3-4

trees: since the 4-nodes are split up on the way from the top down: the trees are called

top down 2-3-4 trees. What's interesting is that. even though we haven't been worrying

about balancing at all. the resulting trees are perfectly balanced!

71

. ~, :

..•
\

Fig. 3.10 Splitting 4 nodes

. 72

-,,

Fig. 3.11 Splitting of root node in a 2-3-4 tree

73

The distance from the root to every external node is the same: the transformation

that we perform have no efl"ect on tile distance from any node to the root. except when

we split the root. and in this case the distance from all nodes to the root is increased

by one. If all the nodes are 2-nodes then searches in N-node trees never visit more than

log2N+ 1 nodes. since the tree is like a full binary tree; if there are 3-nodes and 4-nodes.

the height can only be lower.

Insertions into N-node 2-3-4 trees require fewer than log2 N + 1 node split in the

worst case and seem to require less than one node split on the average. The worst thing

that can happen is that all the nodes on the path to the insertion point are 4-(1odes. all

which would be split. But in a tree built from a random permutation of N elements.

not only is this worst case unlikely to occur. but also few splits seem to be required

on the average. because there are not many 4-nodes. Analytical results on the average

case performance of 2-3-4 trees have so far eluded the experts. but empirical studies

consistently show that very few splits are done.

3.7 RED BLACK Trees.

The description given in section 3..6 is sufficient to define analgorithm forsearching:

using 2-3-4 trees which has guaranteed good worst case performance. However. we are

only halfway towards an actuai implementation. While it would be possible to w.rite

algorithms which actually perform transformations on distinct data types representing

2-. 3-. and 4cnodes. most of the things that need to be done are very inconvenient

in. this direct representation. Furthermore. the overhead incurred in manipulating the

more complex node structures is likely to make the algorithms slower than standard

binary-tree search. The primary purpose of balancing is to provide "insurance" against

a bad worst case. but it would be unfort1ll1ate to have to pay the overhead cost for

74

that insurance on every run of the algorithm. Fortunately, as we'll see below there is a

relatively simple representation of 2-, 3-, and 4-nodes that allows the transformations to

be done in a uniform way with very little overhead beyond the cost incurred by standard

binary tree-search.

Remarkably, it is possible to represent 2.3-4 trees as standard binary trees (2-nodes

only) by using only one extra bit per node, The idea is to represent 3-nodes and 4-nodes

as small binary trees bound toe:ether bv "red" links; these contrast with the" black"
• oJ. •

links that bind the 2-3-4 tree together. The representation is simple: as shown in Figure

3.12, 4-nodes are represented as three 2-nodes connected by red links and 3-nodes are'

represented as two 1-nodes connected by a red link (red links are drawn as thick lines).

(Either orientation is legal for a 3-node.)

Figure 3.14 shows one way to represent the tree of Figure 3.13. If we eliminate the

red links and collapse together the nodes they connect, the result is 2-3-4 tree in Figure

3.13. The extra bit per node is used to store the color of the link pointing to that node

we'll referto 2-3-4 trees represented in this way as red black trees.

These trees have many strueturalproperties that follow directly .from ,the way in.

which they are defined. For example. there are ne\'er two red links in a row along any

path from the root to all. external node. and all such paths have an equal number,pf

black links. Note that is is possible that one path (alternating black-red) be twice as

long as another (all black). but that all pat.h lengths are still proportional to log2 N.

One very nice property of red-black trees is that the treesearch procedure for stan-

dard binary tree search works without modification (except for the matter of duplicate

keys). We \vill implement the link colors by adding a boolean field red to each node

which is true if the link pointing to the node is red: false if it is black: the treesearch pro-

75

or

Fig. 3.12 Red-Bleck Repressnt&t.ion of 3-nodes end 4-nodes

Fig. 3.13 A 2-3...,.4 Tree

76

;'
!

Fig. 3.14 A Red-Black tree

77

cedure simply neverexamines that field. Thus, no "overhead" is added by the balancing

mechanism to the time taken by the fundamental searching procedure. Since each key

is inserted just once, but may be searched for many times in a typical application, the

end result is that we get improved search times (because the trees are balanced) at

relatively little cost (because no work for balancing is done during the searches), Below

is the description of searching algorithm for Red - Black trees which in turn calls the

necessary procedures as described later on.

Aig-orithm 3,2 (Red Black Tree Search and fnsertion)

type link = ! node

!lode = record key: integer: !link. dink: link:

red: boolean end: ,

var head, z, x : link:

searchkey : integer

new (z): z t .lIink = z: z T .rlink = z: z T .red = false

new (head): head T key = 0: head r .rlink = z

search key = randO

x = search (head, searchkeyl

78

,

if (x ,; z) print: The sei'.fch is slll:cessf'll .

else rbtreeinsert (sear~hkey, head) [[The search is unsuccessful JJ

endif

End Algorithm 3.2

Moreover: the overhead for insertion is very small: we have to do something different

only when we see 4-nodes. and there aren't many 4-nodes in the tree because we're

always breaking them up. The inner loop needs only one extra test (if a node has two

red children. it's a part of a 4-node). as shown in the following implementation of the

insert procedure:

rbtreeinsert (searchkey : integer: head : link)

gg, g. p. X : link

x = head: p = head: g = head;

while (x 'I z) do

119 = 11;9 = p;p = x.

if (search key < x 1 key) then x = x 1 Ilink

else x = x f rlink

endif

if(x r Ilink r red) and(x r rlink i red) then

x = split (searchkey. gg,g,p.x);

endif

79

. '.' - ...~:'.-;','.-:

,", .:

repeat

new(x); :r: t key = searchkey;:r: t !link = z;:r: t rlink = z;

if (searchkey < p t key) then p t !link = :r:

else p f rlink =:r:

endif

:r: = split (search key, gg. g, p. :r:)

End Procedure rbtreeinsert

In this program, x moves down the tree and gg, g, p are kept pointing to x's great

grandfather, grandparent, and parent in the tree. To see why all these links are needed,

let us consider the addition of 120 to the tree of Fig. 3.14. When the the external node

at the right of the 3-node containing 100 and 110 is reached. gg is 90, g is 100 and p. is .

110. Now 120 must be added to make a 4-node containing 100. 110 and 120,resulting

in the t.ree shown in Fig. 3.15. . ,

We need a pointer to 90 (p;p;) b"<:aus,, 90's rip;ht link must be changed to point to 110.

not lOO. To see exactly how this comes about. we need t.o look at t.he operat.ion ohhe

split. procedure. Let us consider the red-black representation for the two t.ransformations

we must perform: if we have a 2 node connected to a 4-node. then we should convert

them into a 3-node connected to two 2-nodes ; if we have a 3-node connected to a

4-node. we should convert them into a 4-node connected to two 2-nodes. When a new

node is added at the bottom, it is considered to be t.he middle node of an imaginary.

4-node (that is. think of z as beinp; red, though this is never explicitly tested).

80

Fig. 3.15 Insertion of 120 into a Red-Black tree

81

,
. ,<,'"

Fig. 3~15Inse.rlion of 120 into a Red-Black tree

81

The transformation r"quired when we encounter a 2-node connected to a 4-node is .

easy, and the same transformation works if we have a 3-node connected to a 4-node in

. ,t,he "right" way, as shown in Figure 3.16. Thus, split begins by marking x to be red

and the children of x to be black,

.This leaves the two other situations that can arise if we encounter a 3-node con-

nected to a 4-node, as shown in Figure 3,17. (Actually, there are four situations, since

the mirror images of t.hese two ran also occur for 3-nodes of t.he other orientation,) In

these~';s~s. splitting the 4-node has left 'two red links in a row. an illegal situation which

must be corrected .. This is easily tested for 'in the code: we just marked x red, so if x's

parent is also red, we must take further action. The situation is not too bad because

we do have three nodes connected by red links: all we need do is transform the tree so

that the red links point down from the same node.

There is a simple operation which achieves the desired effect. Let us .begin with the

easier of the two. the first (top) cas,e from Figure 3.17, where the red links are oriented

the same way. The problem is that the 3-node was oriented the wrong way: accordingly,

we.restructure the tree to switch the orientation of the 3-node and. thus' reduce this case.

to be the same as the second case from Figure 3.16. where the color flip of x and its

children was sufficient. Restructuring the tree to reorient a 3-node involves changing

three links. as shown in Figure 3.18: note that Figure 3.18 is the same as Figure 3.1.~,

but with t.he 3-node containing 70 and 90 rotated. The left link of 90 was changed to

point t.o so. the right link of 70 was changed to point to 90. and the right link of 50

was changed to point to 70. AIso note carefully that the colors of the two nodes are

switched,

This single rotation operat.ion is defined on any binary search tree lif we disregard

82

.. ". ,.. ' _, t" ..,,.-, .: ..,(, .. '.' . '. c" -

Fig. 3.16 Splitting 4-nodes with a color flip

83

',',; ,

,.' -

-",,-- ,

;". ; .'.

Fig. 3.11 Splitting 4-nodes with color flip: Rotation needed

84

I -

8

Fig. 3.18 Rotating a 3-node in fig. 3.15

85

operations involving the colors) and is the ha$is for several balanced-tree algorithms ..

because it preserves the essential characters of the search tree and is local modification

involving only tree link changes. [I. is important that doing a single rotation does not

necessarily improve the balance of the tree. [n Figure 3.18. the rotation brings all the

nodes to the left of 70 one step closer to the root, but all the nodes to the right of 90 are

lowered one step. In this case the rotation makes the tree less, not more balanced. Top-

down 2-3-4 trees may be viewed simply as a convenient way to ident.ify single rotat.ions

which are likely t.o improve. the balance.

Doing a single rotation involves modifying the structure of the tree, somet.hing

that should be done wit.h caution. When considering the rotation algorithm, the code

is more complicated t.han might seem necessary because t.here are a number of similar

cases with left-right symmetries. For example. suppose t.hat the links y. c. and gc point

t.o W. 90. and 70 respectively in Figure 3.15. Then the t.ransformation to Figure 3.18 is

effected by t.he link changes c t ./link = gc t .rr/ink: gc I .rr/ink =Jc: y t.r/ink = gc.

There are three other analogous cases: the 3-node could be oriented the other way

or it could be on the left side of y (oriented other .way). A convenient way to handl"

these four different cases is to Ilsethesearch key u toredi$c~ver thecr~Ieval.\t,.child (c;)

and grand-child (gc) of the node y, (we know that. we will only be reorienting a 3-node

ift.he search took us to its bottom node.) This leads to some what simpler code than

alt.ernative of remembering during t.he search not only the two links corresponding t.o c

and gc but also whether they are right or left links. We have t.he following function for

reorienting a 3-node along the search pat.h for v whose parent. is y :

rotat.e (v : int.eger: y: link) : link

86

c. gc : link

if (v < y r key) then c = y tHink

else c = !I f rlink

endif

if(v <c t key then

gc = c f llink; c f llink = gc f rlink: gc f rlink = c

else

gc = c f rlink: c f rlink = gc f lIink: gc f Ilink = c .

endif

if (v < y r key) then y r llink = gc

else

y f rlink = gc

endif

return (gc)

End Procedure rotate

If Y points to the root. c is the right link of y and gc is the left link of c. this makes

exactly the link transformations needed to produce the tree in Figure 3.18 from 3.15.

We may check the other cases. This function returns the link to the top of the 3-node.

bu t does not do the color switch itse If.

Thus. to handle the third case for split (see Figure 3.17), we can make g red. then

set x to rotate (v.gg), then make x black. This reorients the 3-node consisting of the

87

two nodes pointed to by g andP and reduces this case to be the same as the second

case, when the 3-node was oriented the right way.

Finally. to handle the case when the two red links are oriented in different directions

(see Figure 3.17), we simply set P to rotate (v,g). This orients the "illegal" 3-node

consisting of the two nodes pointed to by P and x. These nodes are the same color, so no

color change is necessary, and we are immediately reduced to the third case. Combining <'

. this and tlie rotation for the third case is called a double rotation for obvious reasons.

Figure 3.19 shows the split occurring in our example when 40 is added. First. there

is a color flip to split up the 4-node 'containing 45. 50, and 70. Next. a double rotation is

needed: the first part around the edge between 50 and 90. and the second part around

the edge between 30 and .50. After these modifications, 40 can be inserted on the left

of 4.5, as shown in the tree in Figure 3.20.

This completes the description ofthe operatjons to be performed by split. It must

switch the colors of x and its children, do the bottom part of a double rotation if

necessary and then do the sinl':le rotation if necessary. as follows:. .., . . '.

split (v : integer; gg, g, p, x : link) : link

x I red = true: x , lIink r red = false; x f rlink r red = false;

88

Fig; 3.19 Splitting a node in a Red-Black tree

89

,

Fig. 3.19 continued

90

~' . .
- ~- -~ '

000

Fig. 3.19 continued

91

. .

,

Fig. 3.19 continued

92

Fig. 3.20 The resulting tree of Fig. 3.19 after 40 is inserted

93

,

if (p T red) then

9 ! red = tme

if (v < 9 r key) 1: (v < p f key) I,he n

p = rotate(v, g)

endif

:l: = rotate(v,gg)

x fred = false

endif

return (x)

End Procedure split

This procedure fixes the color after a rotation and also restarts x high enough in

the tree to ensure that the search does not get lost due to all the link changes, The long

argument list is inCluded for clarity: this procedure should more properly be declared

local to rbtreeinsert, with access.to its variables .

. .. If the root is a 4-node then the split procedure makes the root red.: ..this corresponds.

to transforming if. along with the dummy node above it, into a 3-node. Of course, there

is no reason to do this. so a statement is included at the end of split to keep the root

Assembling the code fragments above gives a very efficient, relatively simple alga-

rithm for insertion using a binary tree structure that is guaranteed to take a logarithmic

number of steps for all searches and insertions. This is one of the few searching alga-

rithms with that property, and its use is justified whenever bad worst case performance'

simply cannot be tolerated.

94

CHAPTER 4

HASHING TECHNIQUES

4.1 Introduction.

In this chapter we will examine a special class of table organization in which we attempt

to store elements in locations that are easily computed from the value or representation

of the elements. This contrasts markedly with .the techniques presented in previous

chapters: in those chapters we based a search on comparisons .and the locations m

which an element was stored depended on its position in an ordered arrangement of

the elements. In this chapter we discuss techniques based on directly transforming the

elements into an address at which it will be stored.

More generally, we will suppose that, we have an array of m table locations T[O], T(l),. .

..... T[m - 1]' say, and given an elementz to be inserted we transform it to a location

h(z), O~h(z) < m: h is called the hash function. We then examine T[h(z)] to see if

. it is empty. Most of the time it will be", so we set T[h(z)] <----'- z.and.lVe ,are done .. If

T[h(z)] is not empty, a collision has occurred, and we must resolve it .somehow. Taken

together. the hash function and the collision resolution method are referred to as hashing

or scatter storage schemes.

Under the proper conditions. hashing is unsurpassed in its efficiency as a table

organization. since the average time for a search or an insertion is generally constant.

independent' of the size of the table. However. some important caveats are in order.

First. hashing requires a strong belief in the law of averages. since in the worst case

collision occurs every time. and hashing degenerates into linear search: Second. while it

95

is easy to make insertions into a hash table. the full size of the table must be specified a

priori. because it is closely connected to the hash function used; this makes it extremely

expensive to change dynamically. If we choose too small a size the performance will be

poor and the table may overflow, but if we choose too large a size much memory will be

wasted. Third deletions from the table are not easily accommodated. Finally, the order

of the elements in the table is unrelated to any natural order that may exist among the

elements. and so an unsuccessful search results only in the knowledge that the element

sought is not in the table. with no information about how it relates to the elements in

the table.

4.2 Collision Resolution.

Typically. the number of possible elements is so enormous compared to the relatively

small number of table locations that no hash function, not even the most carefully

designed one. can prevent collisions from occurring in practice. In fact. the likelihood of

collisions under even the most ideal circumstances suggests that the collisiqn resolution

scheme is more critical to overall performance than the hash functions. provided at least

minimum care is taken to avoid primary clustering.

When a collision occurs. and the location T[h(z)) is already filled at the time we

try to insert z, we must have some method for specifying another location in the table

where z can be placed. A collision resolution scheme is a method of specifying a list of

table location 0'0 = h(z), 0'1.' 0'2, , am-l for an element z. To insertz, the locations
, '

are inspected in that order imt'il an empty one is found. Our two choices are to store

pointers describing the sequence explicitly or to specify the sequence implicitly by a

fixed relationship between z. ai and i. Techniques for collision resolution based on these

two possibilities are explored in the following sections.

96

'l -: ""')

4.3 Chaining.

In t.his s~heme a sequence of pointers is built going from the hash lo~ation h(z) to the

lo~ation in whi~h z is ultimately stored. In seoarate chainine: each table location Tfil.~

is a list h~ader. pointing to a linked list of those elements z with hlz) = i. A link field

should be included in each record. and there will also be M list heads. If the list is

unordered we insert z just after the list header T[h(z)), before the first element on that

list. A search for Z in this case is done by applying algorithm 4.11,0 the list T[h(z)).

Algorithm 4.1 Unordered list search.

q:.-NULL: p ~ T[h(z))

while . (p,!,NULLandzIKEY(p))do

q-p; p _ LINK(p)

repeat

if (p I NULL) then return [[Found: p points to the element]]

else

$ = getnode(): $(KEY) = z; .

LINK($) = NULL:' [[Not found: z is not in the list]] .

if (q = NULL) then T[h(z)) = s

else

LINK(q) = $

endif

endif

97

End Algorithm 4.1

The time for unsuccessful searches can be reduced by keeping each of the lists ordered

by key. Then only half of the list need to be t.raversed on the average to determine that

an item is missing. If the list is ordered insertion of 7, is done by applying algorithm

4.2 to the list T[h(z)] and a search for Z is done by applying algorithm 4.3 to the list

T[h(z\].

_Algorithm 4.2 Ordered list insertion

pred <-- T[h(z)]; p <-- pred

while I(pf NULL)and(KEY(p) < z))do

pred <-- p

p <-- LINK(p)

repeat

KEY(new) <-- z

LINK(new) <-- LINK(pred)

LINK(pred) <-- new

End Algorithm 4.2

Algorithm 4.3 Ordered list search

p <-- T[h(z))

while (z>KEYlp))do p<--LINK(p) repeat

98

if (z = KEYlp)) return [[I:"ound: p points to the element JJ

else call Algorithm 4.2 [[Not found: z is not in the list II

endif

End Algorithm 4.3

Chaining is quite fast. because the lists are short. If 365 people are gathered together in

one room. there will probably be many pairs having the same birth day. but the average

number of people with any given birthday will be only one. In general if there are N

keys and M lists the average list size is NfM: thus hashing decreases the amount of

.WOi'l1 needed for sequential searching by roughly a factor of M. One technique that can

be used to reduce the number of probes in separate chaining is to maintain the records

that hash into the same value as a binary search tree emanating from the hash bucket

rather than as a linked list .. However. this requires two pointers to be kept with each

record. Since chains are usually small. the added space and programming complexity

do not seem to be warranted.

For the sake of speed we would like to makeM rather large. But when M is large.

many of the lists will be empty and much of the space for the M list heads will be
.

wasted. This suggests another approach. when the records are small: we can overlap

the record storage with the list heads. making room for a total of M records and M

links instead of for N records and M + N links. In this case. the overhead of the M

list headers needed by separate chaining can be eliminated by using coalesced chaining,

in which each table location T[i! is used to store a re~ord. ~6ntaining within it a field

LlNK[i!. When T[h!z)) is found to contain another element on an attempted insertion

of Z. we follow the LINK tields until we reach one that is NULL: then .we take an empty

location T[free), set the last NULL LINK field to point to it and store Z in T[free!.

99

Th~ se.1reh for empty locations originally begins at T[m-I] and goes backward in the

tabl~ toward T[O]. Each time an ~mpty location is needed, We continue backward from

where we stopped on the previous occasion: to stop this search, we introduce a dummy

element that is always empty. The table will overflow when all the locations are full.

The details of such a search and insertion process for coalesced chaining, is as' follows:

Algorithm 4.4 (chained scatter table search and insertion)

This algorithm searches for an M-node table. looking for a given key K-. If K is not

in the table. and the table is not full. K is inserted. The nodes of the table are denoted

by T!i], for 0 ::; i~M. and they are of two distinguishable types. empty and occupied ..

An 'occupied node contains a key field KEY[iJ. a link field LINK[i] and possibly other

fields.

The algorithm makes use of a hash function h(k). An auxiliary variable R is also

used. to help find empty spaces: when the table is empty. we have R = M + 1 and

as insertions are made it will always be true that T[i] is occupied for j m. the range

R::; j :;:;M. By convention. T[O] will always be empty.

i +- h(k) +1: Now I ::; i ::;M

if (T[i] = empty) then

([Insert new key JJ

Mark T[i] occupied: KEY[i] = K

LINK!i] +- 0

return

endif

100

while (LINK[i] i' 0) do

if (f(= K EY[iJ) ret.urn: endif [[The algorit.hm t.erminat.es successfully]]

i +--- LIN K[iJ

repeat

[[Find empty nodes II

Decrease R one or more times until T!R] = empty

if(R = 0)

else

turn on overflow' flag and return

LIN K!i] +--- R; i +--- R [[Insert new key J!

Mark T[i] occupied

KEY[i] +--- K

LIN K[i] +--- 0

endif

.End Algorithm 4.4

When collisions are resolved by separate chaining with unordered lists. the average

number of probes in a successful search in a table of M locations containing N elements

can be shown to be
'-,.." ' n -1' ex
.)(a) = 1+ --:::; 1+-

2o~ 2

and in an unsuccessful search

.'" ' 1 '" N _,Uta) = (1- pt' + -:::;e ~ +a
lyj 1.\1

101

When (l = ~. is called the load factor. It is customary to express the ..behaviour of the'

collision resolution in terms of 0 rather than Nand M because the behaviour of the

algorithms is typically governed more by the fullness of the table in relative, rather than

absolute terms. If the lists are kept in order, then the average number of probes for an

unsuccessfu I search is decreased to

. 1N M [. '. I. N+1J . I . r'IU(o) = 1+ -- - -- 1-(1- -) . + (1- -)'. . 2M N + I . M . . iVI

.. 1 I(a) m== 1+ -0 - - 1- e- + e-. . 2 a

Let us investigate the average number of probes in a chained scatter table when the

lists are kept separate as in algorithm 4.1. The probabilistic model we shall use for this

purpose assumes that each of the fI.!N possible "hash sequence" 0-1a2... aN ():$ (lj <
M, is equally likely, where aj denotes the initial hash address of the jth key inserted

into the table. The average number of probes in a successful search is assumed to be

the average number of probes needed to find the kth key, averaged over 1 :$ k :$ N with

each key equally likely and averaged over all hash sequences with eadl sequence equally

likely. Similarly, the average number of probes needed when the Nth key is inserted,

considering all. sequences to be equally likely is the average. mpnber, of probe.s in. an

unsuccessful search starting with N-l elements in the table. Let PN K be the probability

that a gi'ren list has length K. There are (Z) ways to choose a set of K elements having

it pa.rticnlar value, and (fl.! - 1)N-K ways to assign values to other a's. Therefore,

The generating function for this probability distribution is

()

N
K .J-1

P,y(z) = L P;m~ = 1+-;;[
k~O '

102

An unsuccessful search in a list of length K requires K + 6.0 probes. Therefore aye rage

number of probes required in unsuccessful search is

But from the above written generating function P,~(1) = :~ and P,v(O) = (1 - I~)N

lnserting these values we have

For successful search let us consider the total number of probes to find all t he keys. A

list of length K contributes (Kt1) to theto.a!; hence

~ (K + 1) .5'(a)=jHL 2 P,vKIN

= (~) Gp.~(l)+ p,;.,(o)
=(M (~N(N-l) N)

N) 2 lvI1 + !VI

N-l a
=1+--::01+-.. 2lvI 2

On the other hand, when the lists are kept ordered average number of prob.es required.

in an unsuccessful search becomes

~(K •. \> 11+--:--(K+l)-'+Olo)PNT<:
£.-J , :t

1~ "P L P,VK L"P=1+-J.}\ ,vK- .. + OkO,vT<:
. 2'"-" K+1

1p' . , (.) . '"' P,vK=1+2" Nl1J+P,v0 -LK+1

N 1" 1'vI (1 "+1\= 1+ -.- + (l - -)" . 1 - (1 - -)" I
'1.AI M . IV+ 1 ,H . J

~ 1+ ~ - (1 - ea)/a + e-a
2

103

But. since t.he search keys are purely random. ordered list.s do not affect. t.he behaviour

in case of successful searches. t.hat. is. it. remains at. t.he same level as that. for unordered

lists.

[n coalesced chaining the average number of probes required 111 an unsuccessful

search is

. . 1. . 2)N 2N.Ural = 1+ -((1+ - -1--)4 ,VI ,VI

1('");:= 1 + - e- - 1 - 2a
4

Thus when the table is half full. the average number of probes made in an unsuccessful

sf'arch is ahout ~(e + 2) ;:= l.lil "nd f'ven when t.he t"hle gf'ts full, the "verage numher

of prohf's made jnst heforf' insf'rt.in,g thf' fiMI itf'tn will hf' only "hout He2 + l) "" 2.1 n.
Thf'sf' statist.ics prove t.hat the lists stay short. even t.hollgh t.he algorithm occasionally

allows them to coalf'scf'. whf'n the hash fllnct.ion is random.

The average number of probes in a successful search may be comput.ed by summing

the quant.ity C + A over the first. N unsuccessful searches and dividing by N. if we assume

that each key is equally like ly, where

C = number of t.able entries probed while searching

A = 1 if t.he initial probe found an occupied node.

In a successful search we always have A = L Thus we obtain

sla) = ~ '" (Uk + K). j'i LJ },f
O~j;<N

1M (. 2 . v 2N) 1N - 1
= 1+ 8' -N (1 + -jIt1)' - 1- -1Y.-{ + -4-1\\-{-

1 , >) 1
;:= 1+ -\ e-" - 1 - 2a +-a

Su 4

as the average number of probes in a random s\lccessflll search. -Even a filII table will

require only abO,ut. LilO pro he".. on t.he average. t.o find an it.em. At t.he first. glance it.

104

may appear that number of table ent.ries probed while looking for an empt.y space is

inefficient., since it has to search sequentia.lly for an empty position. But actually the

total number of table probes for an emptv position as a table is being built will never

exceed the number of items in t.he.table: so we make an average of at most one of these

probes per insertion. This figure is actually ae" in a random unsuccessful search.

Another major advantage of coalesced chaining method is that they permit efficient '

deletion without penalizing the efficiency of subsequent retrievals. An item being deleted

can be removed from its list, its position in the table is freed and free location pointer

is reset to the following position. This may slow down the second subsequent insertion

somewhat by forcing the search for free location through a long series of occupied

positions, but that is not very significant. If the free table positions are kept in a linked

. list, this penalty also disappears.

A generalization of the standard coalesced hashing method, which we call general

coalesced hashing, adds extra position to the hash table that can be used for list nodes

in the case of collisions, but not for initial hash locations. Thus the table would consist

of I. entries (numbered I) t.o 1.-1 I. but keys would h'sh only one of m < t values (0 to

m-1 I. The extra t-m positions are called t.he cellar, and are available for storing items

whose hash positions are full.

Using a cellar result.s in less contJict between list of items with different hash values,

and therefore, reduces the length of the lists. However, a cellar that is too large could

increase list lengths relative to what they might be.if the cellar positions were permitted

as hash locations. Higher values of mit produce lower successful and unsuccessful search

times for lower load factors. Value of tim between 15 to 20% is optimum both for

successful and unsuccessful searches.

105

If the number of records grows beyond the number of table positions, it is impossible

to insert them without allocating a larger table and recomputing the hltsh values of keys

of all records already in the tlthle using It new hltsh function.

The above statements Itre t'rue for most of the hashing schemes. But in genet,ltl

coalesced hashing, the old t.able can be copied into the first half of t.he new table and

the remaining position of the new table used to elliarge the cellar so that items do not

have t.o be rehashed.

A brief examiuation of the above formulas indicates that separate chaining is su-

perior to coalesced chaining which in turn is superior to other methods of collision

resolutions as we will see soon in our next discussion. In separat.e chaining we also have

the advantage of ignoring the table of overflowing its allocated storage. This means that

we can even have N > M, giving a > 1; the formulas for separate chaining are also valid

in this case. A further advantage of separate chaining is that it allows very easy deletion

of elements, something difficult or impossible with other collision resolution schemes.

The disadvantage of chaining compared to other schemes is that it requires additional

storage overhead for the link fields; t.his makes the other schemes more desirahle in some

circumstances.

4.4 Linear probing.. .

The simplest alternat.ive to chaining that does not require the storage of LINK fields is

to resolve collisions by probing sequentiltlly, one location at a time, starting from the

hash address, until an empty location is found. This is called open addressing with

lillear probing or simply linear probing.

The idea is to formulate some rule by which every key k determines a "probe

sequence", namely a sequence of table positions which are to be inspected whenever k

106

is iuserted or looked up. If we encouuter an opell position while searching for k. using

the probe sequence det.ermined by k. we can condtlde t.hat k is not in the table. since

t.he same sequence of probes will be made every time k is processed. The simplest. open

addressing scheme. known as linear probing, uses the cyclic probe sequence h(Ie), h(Ie)-

1,. . O.M -1, M - 2 h(Ie) + 1 as in the following algorithm.

Algorithm 4.6 (Open scatter table search and imertion) :

This algorithm searches for an M-node table. looking for a given key k. If k is not

in t.he t.able and the table is not full. k is insert.ed-

The nodes of the table are denoted by TABLE [iI, for 0 :::; ; < M, and they are

of t.wo dist.inguishable types. empty an'd occupied. An occupied node contains a key.

called KEY[i] and 'possibly other fields. An auxiliary variable N is used to keep t.ack of

how many nodes are o,~cllpied: t.his variable is considered t.o he part. of t.he t.able and it.

is increased by I whenever a new key is insert.ed.

This algorithm makes use of a hash function h(k), and it uses the probing sequence

h(Ie). MIe) - 1. : O. M - 1.M - 2, , h(le) + lto address the table.

; +--- hrle) [[Now 0:::; i<M II

while (K EY[i] f. Ie and T ABLE!ij is nonempty)<;10

;+---;-1

if (i < 0 l then; +--- ; +M endif

107

repeat

if (key[i] = k) then return: end if [[The algorithm terminates successfully JJ

if (N = 111- 1) then return:' [[The algorithm terminates with overflow JJ

else

N = N + 1: Mark TAB LE[i] occupied

KEY[i] <- k

endif

End Algorithm 4.6

Experience with linear probing shows that the algorithm works fine until the table

begins to get full: but eventually the process slows down, with long drawn-out searches

becoming increasingly frequent. The reason for this behaviour can be understood by

considering the hypothetical scatter table in figure 4.1 with M = .19, N = 9. Shaded

squares represent occupied positions. The next key k to be inserted in the table' will

go into one of the ten empty spaces. but these are not equally likely: in fact, k will

be inserted into positions 11 if 11 ~ hlk) ~ 15 while it will fall into position 8 only if

h(k) = 8..Therefore position 11 is five times as likely as positions 8: long lists tend to

grow even loilger.

This phenomenon is not enough by itself to account for the relatively poor behaviour
.-'

of linear probing, since a similar thing 'occurs in coalesced chaining. The real problem

occurs when a cell like 4 or 16 is filled in the given figure: then two separate lists

are combined, while the lists in coalesced chaining never grow by more than one step

at a time. Consequently the performance of linear probing degrades rapidly when N

approaches M.

108

o 1 2 3 4 5 .. 6 7 8 9 10 11 12 13 14 15 16 17 18

Fig. 4.1. Pile up phenomenon in Linear open addressing .

109

Now we sball prove that the average number of probes needed by linear probing is

approximately

" 1 (1 2)C,.,":l- 1+(--)
: . 21- a

, 1(1)eN ":l - 1+ --. 2 1- a

(Unsuccessful search)

(Successful search)

Where a = NIM is the load factor of the table.
. .

The prob~bilistic model we sh"lIuse for I.his purposp assumes that each of the MN

possible "hash sequence"s aJa2 a.,.; O:S ai < M. is equally likel,y. where aj denotes

the initial hash address of the jth key inserted into the table. The average number of

probes in a successful search is assumed to be the average number of probes needed to

find the kt.lr key. averaged over 1 :S k :S N with each key equally likely and averaged over

all ha.sh sequences with each sequence equally likely. Similarly, the average number of

probes needed when the Nth key is inserted, considering all sequences to be equally likely

is the average number of probes in.an unsuccessfuLsearch starting with N-1 elements in

the table. When open addressing is used

n 1 E.. C'
("N = ~ 1,'Ii .'

O~l<N

so that we can deduce one quantity from t.he other.

(0)

Let f(M,N) be the number of hash sequences sucn that position 0 of the table will

be empty after tbe keys have been inserted by algorithm 4.6. The circular symmetry of

linear probing implies that position 0 is empty just as often as any other position. so it

is empty with probability 1 - N!M: in other words

j(M, N) = (1 _ N)MN
. ,i,[

110

(4.2)

Now let g(M,N.K) be the number of hash sequences such that the algorithm leaves

position 0 empty, position l through K occnpied and position K + I.empty. We have

gf.lvl,N,K) = (:)f(K + 1,lOjfM -1(-I,N - K) (4.3)

because all such msh sequences are composed of two subsequences, one(containing K

.. elements a; ~ K) that leaves position 0 empty and position 1 through K occupied and

one (containing N - K elements aj ~ K + 1) that leaves position K + 1 empty.: there are

f(K+l.K) subsequmces of the former type and f(M~K:I,N.K) of the latter and there are

(z) ways to interperse two such subsequences. Finally let Pk be the probability that

exactly K+I probei will be needed when the (N+1!st key is inserted: it follows that

Pl = .If"N (g(M,N,K) +.g(M,N,1(+1)+ +g(M;N,N» (44)

Let

sen, r.y) = I: (;)(X + 'd+1(y - kr~~-l(y - n)
l~D .

= I: (;)x(x + k)k(y - krk-1(y - n)
k~O

+ n I:(n - 1)(x + kl(y ":'k)"-k-l(y - n) (4.5)
k-I ..

k~O _.

Replacing k by n. kin the first sum of equation (4.5)and finally applying Abel's formula

in the first sum gives

S(n. x. yl = xix +y)" + nsln - lx + 1.Y - 1)

111

(4.6)

Now from equation (4.3), putting the value off(M,N) from equation (4.2) we get
,

g(M, N,K) = (:) I(K + 1,I().f(M - K -I,N - K)

. (N) f(' ,- N - f(.- [.-= _ (1- _)(K+l)"(l- _)(M-J(-l)"-'
[~.. A +1' . M-[~-l

= (~)(K + I)K-l(M - K _l)'l:"-K-l(M - N ~ 1) (4.7)

Now

c~v= L: (K + I)P.
O~K~N

Let us calculate the value of M N 2:([(+ I)P•. This can be evaluated as follows:

(1.8)

MNL:(K+l)P •

.= MN L:(K+ I)M-N(g(M,N,K) + g(M,N, K + 1) ++ geM, N, N)

= L: (K :2)g(M,N,K)
[(2:0

= ~ (L:(K+l)gV>,f,N,K)+ L:(K+1?g(M,N,K»)
K>O K>O . . .- . : -

= ~(AfNLPd L (~)(K;_.)K+t(Af_K_l)N_K_t(Af_N~1))
2 A. .-

- K~l) . . -

= ~ (J'vIN +s(N, l,lvI - 1))
2

= ~ (ivfN +MN + N(21v1N-t + (N _1)\'3A1N-1 + .._..)))2 .

= ~ (2v1N+ J-IN qtUvf, N») (4.9)

where

q.(M,N) = (~) + (r: 1)Z + (r; 2) N(:; 1) +

_ ~ (r+k)NN-1 N-K+l (4.10)- ~ k M M M
.' [(2:0

112

: c ,

Therefore from (4.8) the average number of probes needed for unsuccessful search is

Now from (4.10) it can be shown that

q!(J.f N) = (N + 1)qo(M,N) - NqoI,M,N -1)

(4.11)

(4.12) .

A\'era~e number of probes required for successful search thus follows from equation (4.1)

1 '" 1, Q (")'= " L., ;; (1+ t IvI,I\ J1Y ~
. OS!«N

= 2~ .L 1+ Qt(jvI,K)
°SK<N

= 2~ L l+(K+l)Qo(M,K)-KQo(lVI,K-1)
OS!«N . .

l' '_
= 2N(N + Qo(M,O)':'"0 +- 2Qo(M,1) - Qo(i\lI,0) + 3Qo(M, 2)

- 2Qo(M, 1)+ + NQo(M,N -1) - (N-1)Qo(M, N- 2))
1

= -(1+Qo(M,N-1)) (4.13) .2 .

The rather strane:e lookine: function O.11"1. Nl is not reallv hard to deal with. We have., .~ ;,I -. • • •

N1• _(K)NK-t < NIN _ 1).....(N - K + 1) < N1(2 .. - . -

H 'f N -I:'nCf~ 1 M - .(t,

113

I.e.

] 1 (r + 2) 0'

(1-a)'+'-M 2 (1-0'),+3 ~ '-I,(M,aM)

< 1
- (1- 0')'+1

(4.14)

This relation gives us a good approximation of Q,(M, N) when M is large and 0' is not

too close to unity and the :lower bound is a. better approximation than the upper bound.

Thus

or

'M A') l' l' 0' .Q,\ ,,-1 l:: -- - ----
, I-a M(I-a)3
. 1

QI(M,N -1) l:: , '2
\1-0')

If we take the second approximation then obviously

--./ 1 , I 1 ~...,
'--'N l:: -(1+ \--rJ

2 I-a

as said earlier.

Similarly 1 . 1)eN l:: - (l + -- .
. 2 I-a

So algorithm 4.6 is almost as fast as algorithm 4.4. when the table is 75 percent full. On

the other hand when a approaches unity. its performance degrades very rapidly. When

N = M - 1 we have

QI(M,M -1) = M - (M - M + 1-I)QQ(.M.M -1) = M

114

using the relation QI(M, N) = M - (M - N -l)qo(M, N). Therefore when N = M -1

i.e. t.he t.able is full t.hen

c;., = ~(1 + QIU'vI, M -1)) = ~(1 + j'vI)

Now

Qo(M, M ...:1)

M(M - 1) M(M -1)(M - 2)=1+, 0 + u" +
l~I~ ' ltl"

= q(M)

The asymptotic value of t.his series is

(4.15)

Using this value we get that. t.he average number of probes required for successful search

when t.he table is completely full is

(4.16)

, ,

The pile up phenomenon which makes Jinearprobing costly on a nearly full table is

. aggravated by the use of division hashing if consecutive key values are likely.to occur.

since these keys 'will have consecutive hash codes. Multiplicative hashing will break up

these c1ust.ers satIsfactorily. A not her way t.o protect against consecutive hash code is t.o

set i +-- i- c instead of i +-- i-I in algorithm 4.6..

Any posit.ive value of c will do. so long as it is relat.ively prime to M. since the

probe sequence will still examine every posit.ion of the table in this case. It does not

alter t.he pile up phenomenon since groups of c-apart records will still beformed; but.

t.he appearance of consecut.ive keys K. K+ l, K+2 will now actually be a help

instead of hindrance.

115

". ;.'., ,.

4.5 Double !ulshing.

Part of the problem with linear probing is the phenomenon of secondary chlstering :

the tendency of two elements that have collided to follow the same sequence of locations

in the resolution of the collision of location. Clearly such a tendency will aggravate the

unavoidable fact that long lists are more likely to grow than short lists. 'This suggests

that the sequence' of locations followed in resolving a collision of z should be a function of

the.element z. This can he accomplished very easily by only a minor change to a.lgorithm

4.6: instead of decrementinlt i bv 1, we decrement it bv an amount 6, 1 < 6 < M. _. •... . . -

where 6 is a fundion of Z. In order to ensure that every location in the table will be

probed on collisions, we must have A and M relatively prime. Since we want 6 to have

pseudorandom beha.viour. we can use another hash function o(z), 1::; OIz) < M as our

value for A. This means that we will now have to -compute two functions instead of

one but the resulting improvement in behaviour will be more than compensate for the

extra calculation. As a practical matter, it is easiest to guarantee that o('z) and Mare

relatively prime for all z by insisting that M be a prime number.

Algorithm 4.7 (Open addressing with double hashing)

This algorithm uses two hash functions hI!k) and h2(k). As usual hr(k) produces .

a value between 0 and M.l, inclusive. but h2(k) m!.!tl-produce a value between 1 and

M.l that is relatively prime to M.

while If(EY[i] "I k and TAB LE[iJ is nonempty)do

116

[[Second Hash JJ

Zf--!-C

if (i < 0) then i +-- i+M endif

repeat

if (key[i] = k) then return; endif [[Terminates successfully JJ

if (N = M - 1) then return: [[Terminates with overflow II

else

N = N + 1: Mark TABLE[i] occupied

KEY[i] +-- k

endif

End Algorithm 4.L._

Several possibilities have been suggested for computing h2(k). If M is prime and hl(k)

= K mod M. we might let h2(k) = 1 + (K mod (M.1)): but since M-1 is even. it .would

be better to let h2(k) == l+(K mod (M.2)). This suggests choosing !VIso that M and

M-2 are twin primes like 1021 and 1019. If M = 2~ and we are using multiplicative

hashing, h2(k) can be computed simply by shifting-14m more bits and ORing in a 1,

and this is obviously faster than the division method.

In each of the techniques suggested above. hl(k) and h2(k) are independent in

the sense that different keys will have same value for both hI and h2 with probability

0(1 /M1) instead of 0(1 /M). Empirical tests show that th •• h••h:wiour of algorithm 4.7

with independent hash functions is essent.ially indistinguishable from number of probes

117

whir.h wonkJ be re'1nired if the keys wer'e insert.ed at. ra-noom int.o t.he t.able; there l'

pradir.ally no piling np or dust.ering as in algorithm 4~

A r.omplet.e analysis of t.he average behaviour of donble hashing has not. yet been

made, bnt. both empirical results and some fragmentary theoretical result.s indicate that.

it behaves approximately like uniform hashing, an idealizat.ion of donble hashing that.

we r.an analyze. In our model we assume t.hat the keys go into random locations of the

table. so that each of the 1,~)possible configurations of N occupied cells andr-'I-N empty

cells is equally likely_ This model ignores any effect of primary or secondary clustering:

the occupan<:y of each cell in the table is essentially illJkp.endent of the ot.hers_ For this

model the probability that exactly l' probes are needed to insert t.he (N+l)st. it.em is

the number of configurat.ions in which r-t given cells are- occupied, and another one is

(M-1')/(M)P1' = N _ l' + I N
~,

t.herefore the average number of probes for uniform hashing is

c:v= 2:rP1'=M+l-'L: (M+l-1')Pr
1~r5J\l 1,:5r5M

=M+l- ~ (M+1-1')(M-:1':\j(ll,f)
~ ivI-ili-11 NI:;,:;M

, ' '2: (M + 1 - 1') t7(M)= M + 1 - (AJ - NJ _ / _,vI - iii jIi
1.:5' ::;.\/

= 1111 + I _ (1\11 _ N)(1\1+. 1) /' (M)
\M - TV + I jIi

, _ j'y[+ 11U + 1
= M +1 - (IH - j\i).. ._ _ = ---- forI :S N < M

iH - i'" T 1 ill - 1~'V~-t 1
(4_17)

118

sponding average number of probes for It successful search is

= ,,,-,,+ 1 (1 + _, + + 1.)\
N \M+l jl-f Jj,f-N+2

M+L _ .
= N (HM+! - HM-N+Ii

1 1~-,ln-
u: 1~u: (4.18) .

-
..~

Asremarked above extensive tests show that algorithm 4.7 with two independent hash

functions behaves essentially like uniform hashing for all practical purposes.

4.6 Brent's Algorithm.

This algorithm modifies 4.7 so that the averll.ge successhJl search time remains bounded

as the table gets full. This method is ba.sed on the facLthat successful searches are much

more common than insertions, in may applications; uiherefore it is logical to do more

work when insert.ing an item, moving records in order to reduce the expected retrieval

time. St.andard compilers use its symbol table algoriTllm a large number of times when

compiling a program. But on t.he average make an insertion into the table per 10 to.

[5 successful searches. Sometimes a table is actuallv created' only olice 'and It is' used
. .'.

thereafter purely for retrieval. The idea of Brent's all!:orithm is to change the insertion

process in algorit hm 4.7 as follows:

Suppose an unsuccessful search has probed location!Fpo,Pl,P2' Pf-!.P1 where

Pi = (hItk) - jh2(k» mod M and TABLE[Pd is empty. ft t ~ 1. we insert. K in

position PI as usual: but if t ~ 2, we comput.e Co = h2(Ko), where Ko = K EY[po], and

see if T ABLE[(po -co)modM] is empty, If it is, we set it to T ABLE[po] and then insert

K in position Po. This increases the ret.rieval t.ime for Ko by one step. but it. aecrell.Ses'

t.he ret.rieval time for K by t ~ 2 st.eps, so it result.s ~ net. improvement. Similarl,v.

119

if TABLE[(po - Co)modMj is occupied and t ~ 3, we try T ABLE[(po - 2co)mod M];

if that is full too, we compute G! = h~(J(EY[Pd) and--ltry T ABLE[(PI - cIlmodM]:

etc. In general. let Gj = h2(K EY[pjJ) and Pj.! = (Pj - kGj) modM; if we have found

TABLE[Pj,!) occupied for all indicesj,k such thatj + k < r. and ift ~ r+l. we look at

T ABLE[Po,r]. T ABLE[P!,r_!), , TABLE[Pr-!,d. If the first empty space occurs

at position Pj.r':'; we set TABLE[P;.r_;) ~ TABLE[P;) and insert K in position Pi'

Algorithm 4.8 (Brent's variation of double hashing)

t <-- 0:

WhilelKEY[ij t K andTABLE[i] is nonempty)do

t <-- t + 1;
. .
t+--~-C

if (i < 0) then i <-- i + Meftdif

repeat

ifIK EYfil = K) .then return: rr The al{writhm terminates successfullv 11
, . '" .." . ..

120

..:.;:,. .,

'.

... if(N =M -J) t.henret.urn: [[Tahle o\'erftowsjJ

... else

. N = N + J: . t = t +1: r = t,... 1

. forj = 0 to r ,... I do

. P = (h1(K) - jh2(K))modM;c=h2(KEY(P))

. for [(=01.0 j+ K < r do

. PI =P-Kc

. if T ABLE[PI] is empty then

TABLE[P1] = T ABLE[P]

...T ABLE[PJ =[(

retUrn

repeat

repeat ~.'

for.1 = 0 to r - I do

if TABLE[P] isempt.y then --- - ..

TABLE[P] = T ABLE[(h1(K) - jh2(K)trrrodM] = K
.~

return

end!f

.repeat

endif.

121

. --
-,,~-;;.

.,=

,

~~nd Algorithm 4.8

Arent.'s algorithm reduces the average number of probes per successful sea.rch WI!h a.

ni/'Xinlllni vlilue "f :2.49: but. number of probes in an unsuccessful search is no! reduced I.,'
,Brent.'s variation. it. remains at the same level as uniform hashing. The avemge number

of times h needs to be computed per insertion is /)'2 +/)'~+ ~/)'6 +. arrording 1:0Brpnl.'s

lInalysis, el'cntually approaching thc order of VM, 'and the number of lIdditionnl I"l,1e

posit.ions probed while deciding how to make the insertions is about aJ + 0'4 + ~O'0 +

a6 + ..
An t~xten8ioll of Brent's n~ethod that yields even greltter illlprOV~llIt~III.N III rt'l.rlt'\'ul

t.imes at. the expense of correspondingly greater insertion times mvolves recms;I'I' in-

sert.ion of it.ems rlisplltcerl in the tlthle: 1'hltt is. in rletermining t.he minimum nlllnbpr

()f rehashes re'1uired 1.0 elispla,ce lin item on " rehltSh p"th. "II the it.e",s 0" I.ha! iI.'"" 's

sllbsf'(IUenl, rehash pat.h are considered. for rlisplaeement. as well. and so <'lI1. 1-\OWl' 1'1' I'

t.h~ !'f:C1JrRinn CRTlTlOt, b~ allnwerl to proceed to lts na.t.ural cOllcllJRiolJ, SIIlCP. in"serl.ion

t.imes woulrl t.hen become so large "" t.o heenme imprltct.icltl. even though insertioll is

i"frequenf.. A minimum recursion dept.h must be defined to yield averltge retrieva.ls verI'

close t.o opt.imal With reasonable efficiency. St.at.ist.ics shows t.hat. /is t.h" 1."1,1,, 1',,,:o"I"S

full. approximately 2.5 probes per retrieval are required on the average. regarrlless of

t.he table size. This compares very favorably with ordinary double hashing. in which

retrieval from a full table requires O(log n) probes.

4.7 Orcl.erecl. i"•..•1t tahleR.

In many. if not. most.. cases there is an ordering of the elements that. may be "sef,,1

in speeding up searches in hash tables just as it is for linear lists. We will now investigat.e

how such Itn ordering can be utilized in conjunction with a hltShing scheme. The lele"

122

will be appliCitble to chaining, linear probing or double hashing, but we will conslrler

it only ill tlie context of rlouhle ha,hing, hecause chaining is so fR.st that. it needs no

1I11PI'()V(>IIH~11I.. \,,'hilt~ linear prohing is so inefficient we. would prohRhl~' llt~VPI' {.llonsl' II.

o\'f'r dnllhlf> ha~hing if f':rnnomy \'\1f':rr Ft,far.t.or.

If we Iiad beell extremely lucky in algorithm 4.7 and the keys arrived III decreaslIlg

order to be il"el'ted I.hen each of the lists built up through collisions would be decreaSlllg

order bv eleillent. Assuming that an empty location had a value less thall that of any

elellJeIlI. III tlie table. we conld do a search by algorithm 4.9. This algorithm stops a

search /IS soon as it reaches an element less than the search object z.

Of cou,,"e. we ea.llllot count. on t.he elements being inserted into the t.able ill de<:reas-

ing order. making algorithm 4.9 useless we can somewhat keep the hash table ornered

110 matter in what order the elements are inserted.

When an insert.ion is mane. and there is no collision or when the element being

mserten is less than the elements it collides with, algorithm 4.7 works fine anel t.he hR.sh

table remains orrleren. When an insertion leads to a collision wit.h a smR.ller element ..

1,1]f', R.lg:nrit.hm rnlJ~t rpR.ct. aR though the smaller element. were not ill thp. t.1ihlp III such

a colliSlon.t.hen. t.he ielea is to have t.he larger element being insert.ed blimp the smaller

rpsidplIl. f-'IPllIPlll it, (~()lIidprl\~,Til:h t.emporarily out. of the t.R.hle: t.he In.rg/~r p.1f'IlIp.nl, 1.1ikf'S

r.!W Incat,inn forme!'l? ocrllpied by t.hr. slnR,IIp.r. To reinsp.rt. t.hp. displFU'pci f'1f'Illf'nt, Int.o

Ihe lab Ie. we simply apply t.he insertion algorithm to it.: if that leads 10 R, collision wilh

R slllalle.r eleTTIent. t.he smaller element. is bumped from it.s location anrl t.hen-reinsert.ed.

P,Rch element, t.llllS bUTTIpen is smaller than t.he previous one, so the process TTIlJslend.

AIg:orithm 48 (Ordered double hashing)

i +- hdk) [[Now 0 ::; i < M II

123

while (TABLE[i] > k)do

[[Second Hash II

if (i < 0) then i +- i + M endif

repeat

if (TABLE[i] = k) then return: endif [[Terminates successfull~' J]

if (N = I'd -I) then return: [[Terminates with ovedlow JJ

else

while TA ALE [iJ is not empty do

if (TABLE[i] < k) then TABLE[i] •..•k: c +- h2(k) endif

Ilj---t-C

if (j < 0) then i <-- i+ M endif

repeat

endif

N = N + l;TABLE[i] <-- k

End Algorithm 4.9

We <:8.11 give HIl a.pproximate analysis of the number of prohes needed Oil the H.vem!,e

1.0 seHcd, HIl ordered hash tRble: as in dOlI ole hashing t.his analysis is based "" 1,1i"

Ilsp.d In

illsel'l, lill eiemelll 7. into the table has t.he property that. each a, is equa.lly likelv t.o I",

124

n. 1.2 M - I ino~p~no~l1t.ly of t.h~ ot.h~r a; 's. In 1\ t.l\bl~ wit.h 101\0 fad. 0 I' (l' Ih~

pr"r,ahlitj' (If at Ipast k pr0bes in an unsuccessful search is a1-1 /k, c(lmpntpd as f"llmv,'

,•• -1 = Prrobnbilit)' t.hnt Ar.t k. 1 l(lention. prob~d will b~ fnll.

t = Prohabilit.y t.hal. (If t.he k. 1 elements. thus probed the search object. is smnlb ttl/In

all of them.

It. is ~qually likely for the search objectto,be.larger than all of the k-1 elements probed.

larg~r t.han only k.2 of them,• larger thanonly one of them or smaller t.hl\n 1\11

of them. Of these k equally likely possibilities, only in the last ca.,e will more t.han k.[

probes be needed. The probability of at least k probes is thus the product try1-1

The exper.t~o numb~r of probes for an unsuccessful 8~areh in lUI ord~reci ha,sl, table

<:I\n IIOW be com pu t.ed as follows:

00

U(a) = 2::> pt (exactly k probes)
1=1

= ~ (~pr (exactly i probes))

00

= 2:pr ('at ieastk probes)
1=1 .

00 1-1=L~Ie
1=1
1 00 1=-L~
a 1=1 Ie

This final snmmat.i(ln is t.he Taylor series expansion for In 2a so t.hat

U(o) = ~ In_1_
o 1- 0

For S(a). we arp;ue that it is exactly same as for double hashinp;. Since the ult.imat.e

contents of the t.able are as if the elements had been inserted in decrea.sing order by

125

double hashing, we may assume that they were so inserted. In this case t.he expect.ed

number of probes for Ii successful search is .!.In -II from our previo',s dis<:l.lssinn
0" -0'

COluparing t.his to double hashing, we see that successful searches are liD dilferelll ..

but. unsuccessful searches require many .fewer probes on the average as the t.able fills

up. Specially. ordered hash tables are to be recommended over convent.ional hash I.Hhles

when unsuccessflll searches are common and h2(k) can be computed wit.hout much

expellse.

• .' •• ,. ,~,-'~ .",,':'}C.';,;r"
4.8 Improvement WIth addlhonalmemory.

Thus fltr we ha.ve a.Rsumed t.hatno additional memory is Itvltilltble in eltch tlthle el"llIelll..

If H.dd,t.,oual memory is available. we can maint.ain some informat.ion in eltch ellt.ry t.o

reduce t.he number of probes reqnired to find a'record or t.o determine that. the desirecl

record is absent.

Before looking a.t. specific techniques, we should make one observation. The most.

ohvious lise t.o which adclitional memory can be put. is t.o expand the size of t.he hash

tahle. This reduces the load factor and immediately improves efficiency. Therefore in

evaluating any efficiency improvements caused by adding more information to each table

entry. one must. consider whether thif;itnp~()i~ine'nt outweighs utilizing the memory to

ex pH.nd the table.

On the other hand. the benefit of expanding each table entry by one or t.wo b),tes

mH.)' indeed be worthwhile. Each table item (including space for key and record) may

re(!'lIfe to. SO. 100 or even 1000 bytes. so that utilizing the space to expand the t.able

I1lRV not buy as mudl as utilizirig the space for small increments in each table elemeut.

(In reality. long records would not be kept within a hash table, since empty table entries

wast.e too much space. Instead each table entry would contain a key and a pointer to

126

I.l,e ,'pcord. This could still require 30 or 40 bytes if the key were large and 10 to 15

byt.es for t.ypica'! key sizes).

The first improvement that we'considerreduces the time required for an unsuccess-

ful sellrch. but not that for a retrieval. It involves keeping with each tllble ent.r)' 1\ one

bit field whose value is initialized to zero and is set to 1 whenever a key to be insert.erl

hashes or rehashes to that position but theposition is found occupied. When hashing or

rehl\shiug Il key during Il search "nd finding the bit still set to O. we iinn",di/lf.,d.v k"ow

that. t.he kev is not in the table, since if it were, it would either be found in thllt position

or the bit. would have been reset to 1 when it or some other key had been inserted. This

met.hod IS ,,,,lied t.he pa.ss-bit method~ since the additionlll bit indicllted whet.her Il t.llhlp

element. hM been passed over while insertingan\item,

The "ext met.hod can be used with linear rehashing. In this case we clln define /l

funct.ion prb(j,key) that directly computes the position of the jth rehash of key. which

is the position of t.he jth probe in searching for key. Prb(O,key) is defined as h(key).

For linear rehllshing [rh(i) = (i + c) modtablesize, whether c is constant], prb(j. key)

is defined as [h(key) + j * c] mod tablesize .. Note that, no such routine can be defined

for double hllshing; therefore the method is not applicable to that technique.

The method uses an additional integer field, called a predictor. in each table posi-

tion. Let prd(i) be the predictor field in table position i. Initially all predictor fields are

o Under linear rehashing, the predictor field is reset as follows. Suppose that key kl .is

beinl\ inserted Ilnd thllt j is the smallest' integer such that prb(j, kl) is a probe position

whose predktor field prO [prb(j, k1\] is O. Then after kl is rehllshed several more t.ime.

and is insert.ed in position prb(p.kl), prd[prb(j,kl)j is reset from 0 to p-j. Then during

a search. when position prb(j.kl) is found not to contain kl. the next position examined

127

is prbU + prd(prblj. kl»), klJ or prb(p, kl) rather t.han prb(j + 1, kl) This eliminates

r>-j-I probes.

l\ II ndv1tIll:11.g'P of l.hiR n.ppron.ch iA tha.t. 'it call h~ nOltpted quit,l-'! f'R~iI.\' '.•..'I}f.11 nil I," .'1

few pxt.ra bit.s IHe available in each t.able position. Since the predictor field contains the

Illllilber of additional rehashes needed. in most cases this number is low lind clin IiI. III

1.I,eavailable space. If only b bits are available for the prdfield. and the predict.nr field

cannot fit., t.he field value can be set to 2~ - 1 (the largest integer rppresentable by b

bit.s) Then we would skip at. least 2~ -.2 probes after reaching such a position

Unfortunately the predictor method cannot be applied at all under double hashing.

The reason for this is that even secondary clustering IS eliminated. so that there IS

no guarantee that prb(n+x,Kl) equals.prb(n+x,K2) even if h(Kl) equals h(K2) and

prb(n.K 1) equals prb(n,K2).

An ext.ension of the predictor method is the multiple predic!.or method. Under this

t.eclllllqlJe. np predict.or fields are. ma.int.aine.d in each table. position. A predictor hash

r,,,,tine phlkeyL whose v"lue. is be.t.ween 0 and np-I. determines which predlctor is IJsed

for a particnlltr ke~' The jth predictor in table position i is reference.d as prd! i,j). When

"kpv probes an occnpied slot i that equalsprb (j,key) such that ph(k(i)) equals phlke.y),

Lho 'H'xt postl.ion probed is prbU + .prb(i, ph(key), key]. Similarly if ph (k(il) equals

ph(key) and prd(i,ph(key») is 0, we know that key is not in the table. If key is inserted

at prb (i + x. key), prd(i,ph(key)) is set to x.

The advantage of multiple predictor method is similar to the advantages of dOlJble

hashing; it. eliminates the efrects of secondary clustering by dividing the list of element.s

t.hat hash or rehash into a particular location int.o np separat.e and short.er list.s. The

predictor method also reduces the average number of probes for unsuccessful searches.

128

.., ..., .

. ,;, '..
4.9 HMhing in external storage.

'.
If a hash table is maintained in'.eXte;ii8i:~torage on a disk or some of.her clirecf.

~. '(". ,

access device. time rather than spae'ids'the c'ritical 'factor. Most systems hs.ve 'sufficienf.
" .. ' .:

externs.1 stors.ge to s.lIow the IUxifry'j(j~f1I.~V~~~t~llp}a;ted:spacefor growth hut cannot.
~ ~" ". ",:. ,'e •.<\ :t~:~r~._~.,'.,. !

afford the time needed to perform:'an~.llO:"'op'eratlo'n7f6r. every eleinents on a linked list.

In such a sit.uation the t.ablein ex~e;r;~t~;();~i¥~~;'~i~ided into Ii number of hlocks call'ed
, :.;,:<'.";,"-,":'~~~~;'~.i~~i/i'~.J;~,',-~.>.. '

Ouckef.s. Fis.ch oucket consist.s'.0f'a'''iJ8eful])hy~i~'ahs.egment'of external storage such as

Ii page or a clisk track or track fraction: The.bticket~ are usually contiguous and can be
. .,. .:'

accessed hy hucket offsets from 0 to tablesize •..1 that serves lUIhlUlh vs.lues, milch like

inclexes of an array in internal storage..
. ,.
'i"

A It.ernatively. one or.-more contiglipus stor.age:bi.ocks can be used as a hash table

conta.ining point.ers t.o buckets distributed nOri~ontiguously .. In that situation the hash

t;able is most likely read into memory ..:i\s"SOOll.as'tthe' file is opened and remains in
':"~"".,.\."., .

memory until the file is closed. When a r~ca'rd:is,requested, its key is hashed and the

ha.~h t.able is used to locate the exterlllli s'to~&g~:addres~of the appropriat.e bucket. Such
.,,':,

a ha.~h table is oft.en called an'index.
.:~.. '.'

Each external memory bucket'contains,'rOom for a moderate number of records (in

pract.icnl situat.ion, from 10 to 100). An entire'biJcket is'read.into memory at once ancl

sequent.ially searched for the appropriate recora.(of course a binary search or some,

ot.her appropriate search mechanism' baseif. on the:'iriternal' organization of the records

with.in t;he bucket can be used. bUl the number of.records in a bucket is usually small

enou!1;h that. no significant advantage is gainedL ... ",
. . ..". . ','.' ~,..',. :.::./ .

We should nole that when dealing wit~. ~ternal storage. ,the computational effi.
:. . . •• :.', ~ ••• ;_ I

ciency of a hash function is not ~ .import~t,as: its ,success at avoiding hash clashes. It
, '"

1~9-,..'''',:,.
. .:-;' ~:: (' ".~...

IS more efficient to spend micro seconds computing a complex hash function at int.er-

nal CPU speeds than milliseconds or 10ngeI: accessing additional buckets at I/O speeds

when a bucket overflows. We also note ~hat external storag~ space is inexpensive. Thus. .,

t.he number of contiguous initial buckets or the size of the hash table should be chosen

such that it is unlikely that any of the buckets become full, even though this ent/tils

/tlloc/tt.ing unused space. Then when a new record must be inserted, there usu/tlly IS

room III the appropriAte bucket, and an additional expenaive I/O i. not. r~quil'f'd.

If a bucket is full. /tnd a record must be inserted, Il.ny of t.he rehR..~hor ell/tilling

1.f,,'hlliqlleRdisr-IIRS~dpreviously can be used. Of course, aclditional I/O op~rllt.ioll IIC<'

requlrecl when sell.rching for records that are not in the buckets direct.ly corresponding

1.0 the h/tsh value. The size of the hash table is crucial. A hash tll.ble that is too

IHr~,>1I11pliesI.h,d, 1I100t.buckets will be empty, and a great deal.of slmce i. wlt.I.,.d. A

11I,ght.able that is too small implies that buckets will be full, and large number of I/O

operations will be required to access many records, If a file is very vol/ttile. growing

and sh rinking rapiclly and .unpredictably, this simple hashing technique is inefficient in

either spll.ce or time. We will see how to deal with this situat.ion shortly.

Whell dealillg with ext.ernal storage such lUIa disk. the numl",r of buck"". 1.1.111.

111"'0.t.o be reB.d from external storage is not the only determinant of access efficiency.

A not.her importltnt. fll.ctor is dispersal of the buckets Il.ccessed that is. how fa.r ap/trt the

b,)('ket.RIt('cessecl B.re from each other.' In general a major factor in the t.ime it. tltkes t.o

reRC!a block from a disk is the seek time. This is the time it takes for the disk head

1.0 move t.o t.he lo,:ation of the desired data on the disk. If two buckets accesRed Olio.

after other a.re far apart.. more time is required then if they are close together. Given

t.h,s fltct.. it. would seem that linear rehashing is the most effective technique because

130

alt.hough it may require accessing more buckets, the bucket it accesses are contiguous,

If separat.e chaining is used, it is desirable, to reserve an overflow area in each

cylinder of the file so that full buckets in that cylinder can link to the overtJow records

III the same cylinder. thus minimizing .seek time and essentially eliminating the dispersal

penalty, It. should be noted that the overflow area. need not be organized into buckets.

and should be organized as individual records with links. In general few records overflow

and there is only a sm,,11e1l/l.ncethat sufficiently many will overflow from a single hud"t.

to fill an additiOll/l.1 complete bucket. Thus by keeping individual overflow records. more

bucket.s will overflow into the same cylinder. Since space is reserved witJiin the fiIe for

overflow records. the load factor does not represent a true picture of storage ut.ilization

for t.his version of separat.e chaining. Then.umber of accesses in separat.e chaining is

therefore higher for a given amount of external storage.

AIthough double hashing requires fewer accesses than linear rehashing, it disperses

t.he buckets that must be accessed to'a 'degree that may overwhelm this advll.ntage,

However. in systems where dispersal 'is not a factor, double hashing is preferred, TillS is

I.:ue of modern large multi'user systems in which many user may be requesting access to

a disk sillwltaneously, and the requests are scheduled by the operating system based on

the way the data is arrauged in the disk. Iusuch situations, waiting time for disk accesses

is required in any case, so that dispersa.lls riot'a significant factor. The major drawback

in using hashing for external file storage is that sequential access in not possible. since

a good hash funct.ion disperses the keys without regard to order.

4.10 The Separator method.

One technique for reducing access time in external hash table at the expense of incl'easing

insertion is the separator method. The method uses rehashing (either linear rehaBhing

131

or double hashing) to resolve collisions but also uses an additional hash routine, S. called

the signature function. Given a key key,. Let h(key, i) be the ith rehash of key and let.

Slkey.i) be the it.h signature of key. If a record with key key is stored in bucket number

hi ke!' ..i\. t.he current. signature of the record and the key, sig(key) is defined I\R S (key.j)

Thltt is if It record is placed iIi a 'bucketcorresponding to its key's jth rehltsh. its current

signature is its keys jth signature.

A separator table. sep. is maintained in internal memory. If b is a bucket nUlnhel'

sep(b) rontltins a signature value greater than the current signature of every rerord in

bucket, b. To access the record with key key. repeatedly hash key until obtaining a

value j such that sep(h(key, j)) > S(key, j). At that point, if the record is in the file It.

must be in bucket (h (key, j». This ensures the ability to access any record in the file

Wlt.h only" single ext.ernal memory access.

If m is the number of bits allowed in each item of the separat.or t.ltble. t.he Hignll.t.lIl'c

function. S. is restrided t,o producing values between 0 and 2m - 2. Initially. before ".ny

overflows have occurred in bucket b, the value of sep(b) is set to 2m - 1. so t.hat. any

record whos" ke!' hashes t.o b can be inserted. directly int.o bucketlb) regardless ofit.s

sip;nat.llre. Now, suppose that blickeHk»)s.fulland.a new record to be insert.ed hi\she •
. _',:'

1111..0 b. Then the records in b with.the largest current signature (les) must be removed

from bucket b to make room for the new record. The new record is then inserted into

bucket.(b I. and t.he old records with current signal,ure lea t.hat were removed from bucket.

b are rehashed and relocated into new buckets. Sept b) is then reset to Ies, since the

,;urrent. signature of all records in bucket(b) are less thanles, Note that more than

one record may have to be removed from a bucket if they have equal maximal current

siguat u re values.

132

.. :~',,'. .-.: i:
Records that overflow from "a bucket'diiri~g an .insertion may cause ca.~cading over-

!iows in other buckets when attempting ,to ~,eiocatethem, This means that an insertion
,,< >

may cause an indefinite number o(EidditionaF'extermil s~orage reads and writes, In

pmct.ice, ll. limit. is placed on the number of:such ,cascading overflows beyond which t.he
;, '

insert.ion fails, If the insertion fails;it is' necessarv to restore the file to the Mtl\t.Mit.
, , '-. , . ~ .

was in before inserting the new record that:caused -the original overflow. This is usually

done by delaying writing modifled"buckets,to, external storage, keeping the n,odif1ed

versions in internal ":I.ern?rr ~.;~t,~Li~~~~~t!;~~~i,~f~f{~r,~~.t1~/n,sertion can be completed

successfully. If the insertionis'a.bort~dTbe~~~8'~,tHi~a8cadelimitis reached no writes are

done. leaving the file in its origiiialfiit'8:ee'.',Ttie'.nu'mbe'r of modifled pages per insertion

rises rapidly as the load factor:i~ i~cre~'~d;~~\~;e'te~hniciue is impractical with a load

factor greater than 95 percei1t,,:.r,;a:rg~t\~ign;~~r~rV~~~8 and larger ,bucket sizes permit
" .. ',,'; ~::~:-.,::.;"~,.:(..•'-; ,-~

t.he method to be used with larg~r.loa4.'fac.tors.,
,. ".' ".' -' ,

,~,.-::~

, ,~';,:); ...~;,>-.~',~'. .
4.11 Dynamic Hashing and Exte~.dible ij:ashing.

,
, .' . ";' \; .:'.' '. . : '

One of the most serious draw backs"cif hashirig for extemal storage is that it is insuf.

ficient,ly flexible, Unlike internal data s.t'j.'uct'iii:es:':filelfand databases are semipermanent
,. ~,' - , .> • ."

dat.a structures that are not usually createcl ..and-d.estroyed within the lifetime of a single
, ' '. .

.'.' "

program, Further the contents 'of 8.n':eict~rniL1',~'tor8.gestructure tend to grow and shrink

un predictably, A II the hash table struc~uring:l1l~thods that' we have examined have a

sharp space/time trade-off, Either. the>table"uses a 'large amount of space for efficient
.', . '.;,''''.i>',"1' •..•",'-. ; ~<..,.,..

access, resulting in much wasted spa'cew~~n .th~'structure shrinks, or it uses a small
, , '

amount of space and accommodates growth very poorly by sharply increasing the access

time for overflow elements. We would. like tq develop a scheme that does not utilize

too much extra space when
-.',-.

- :..,;.;.{;:,\.:'<;/.~

. :.> '::i~'i':'~:'-::~~~:':"'::"":c." .

larp;er. Two such schemes are called dynamic hashing, attributable to Larson [31]' and

extendible hashinp;, attributable to Fagin, Nievergelt, Pippenger, and Strong [28}.

The basic concept under both met!)oc! is. the same. Initially, m buckets and a h"sh
" .--":: ",: :.' ;,- . ~,.

tohlp (nr indpx) "f size m are allocated. Assume that'm equals 26 and aSS'.Ime It hash

routine h that produces hash values that arll w >b bits inlength. Let hb(key) be the

IIlt"p;"" hetween () "nd m represented by the first b bits of h(key). Then, initially, hI, is

used a.., hash routine. and records are inserted into the m'buckets as in ordinary external

storage ha..shing.

When a bucket overflows. the bucket is split in two and its records are assigued to

the two new buckets based on the (b+l)st bit of h(hey). If the bit is zero, the record

is a.ssip;ned to the first (or left) new bucket; if the bit is 1. the record is assip;ned to the

second (or right) bucket, The records in each.of the. two new buckets now all have the

same first b+1 bits in their hash keys, h(key), Similarly, when a bucket representing i

bits overflows, the bucket is split and'the(i+l)st key bit of h(key) for each record in
,

the' bucket is used to place the record in the left or right new bucket. Both new buckets

then represent i+ 1 bits of the hash key. We call the. bucket whose keys have 0 in their

(i+ 1)st bit the {)-bucket and the other oucket the I-bucket.

J)ynllmic and extendible hashing differs as to how' the index is modified when a

bucket sphts. Under dynamic hashing, each of the m original index entries represents

the !'Oot of a binary tree of whose leaves contains a pointer to a bucket. Initially each

tree consists of only one node (aIeaf node) that points to one of the m initilllly allocated

buckets. When a bucket splits. two new leaf nodes are created to point to the two new

buckets. The former leaf that had pointed to the bucket being split is transformed into

a non leaf node whose left son is the leaf pointing to the O-bucket and whose right son

134

, ,". , ,,".

01 11

1000.. I 1001.. Ql.. II 1000"1 11001 .. , 161.. I I 11..

Fig. 4.2 Dynamic Hashing Scheme
. -'!,' .. F

135

Depth = 4

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 4.3 Extendible Hashing Scheme

136

IS 1.1",I,,,,f pointing t.o t.he i.bucket. Dynamic hashing with b=2 (m=4) is i1lnst.rhl.ed in

Fig. 4.2.

To locat.e a record unrier dynamic hashing, compute h(key) and us,' t.he firRt.h hit.,

t.o locate a root. node in the original index. Then use each successive bit. of h(key\ 1.0

move down the tree, going left if the bit is zero and right if the bit iH I. IIl1til /I 1",,1'IS

reached. Then use the pointer in the leaf to locate the bucket that contains the desired

record, if it exists.

h, extendible hashing, each bucket contains an indication of the number of bits

nf h(key.) t.hat. riet.er'mine which records are in that bucket. This number is called Ihe

hnck,,1. depth. InItially. this nllmber is b for all bucket entries: it is increased by 1 each

I.inw " hllcket splits. Associated with the index is the index depth.d. which is the

m",xirmlm nf all the bucket. depths. The size of the index is always 2d (initially, 26)

SlIppose that" tHIcket. of depth i is to be split. Let at. a2 ai be the first. I

bits of h(key.\ for the ,'erords In the bucket beinp; split. There are two cases 1.0consider:

i < d and i = d. If i < d all index positions with bit values ai, a2 ai 0 0 0

(n p to a bi t. size d) t.hrough al, a2, , ai 0 1 1 ... 1 of the index (that. is all positions

st.art.ing with a1. ..alO) are reset to point to the O-bucket. and the index positions wit.h

bit. values 801, a2 ai 1 0..... 0 through aI,a2, , ai 1 1 1 (that. is, all posit.ions

st.art.in!'; with aL.ai 1) are reset. to point to the I-bucket. If i = d the index 'R doubled

in .i7,.' frnm 2d t.n 2d+1 ; t.he old contents of index positions xl.. ..xd are copiec! int.o the

new poslt.iollS xl xd 0 and xl.. ..xd 1; the contents of index positions a! ... ad n is set

I.n pnllll t.n the 11<''''O-hlJckef, "nd the contents of index posit.ion 801 ad I 1.0 point t.n

t.he new I.-bucket. Extendible hashing is illustrated in Fig. 4.3.

To locat.e a record under extendible hashing, compute h(key) and IlSP t.he first. d

137

..

hits (where ci is the index depth) to obtain a position in the index. The contents of this

posd,ion point to the bncket containing the desired record. if it exists.

I" ",,'np/lring dYluullic alld extendible hashing, we 1101." thnt rxtrndiblr' i1/1M"nl~

IS more time efficiellt. since a tree path need not, be traversed as in dynamic hashing.

However. if the entire index is kept in memory, the time spent in traversing the tree path

does not involve any I/Os, Traversal time is therefore likely to be negligible compared

with the time for accessing the bucket. The maximum number of tree nodes required in

dyn/lmic hashing is 2n-l. ItSsllming n buckets, whereas there may he I\S Illany M 2,,-1

inciex entries required under extendible hasHing. However. usually fewer than twice

11$ Illllny extenciihle h/l.shing index entries"," dynamic hashing h/lshing t.ree nodes R""
r"'luir"d R,nd the tree nodes require two pointers compared with one for e/lch ext.endible

h/l.shing index entry. Thus the two methods are comparable III average internal space

u t. 11 i'1.H.tion,

It is /l.lsopossible to compress very large extendible hashing indexes by keeping only

one copy of each bncket pointer and maintaining from/to indicators. Another point to

note is l,h/l.t.extendible hashing performs the same way regardless of the valne of m. t.he

initial number of index entries, whereas dynamic hashing requires longer tree paths if

Tn iA RTTlR.ller.

4.12 Choosing a Hash Function.

Let. us now t.urn to the question -of how to choose a goon hash function. eleR,rly.

t.he fundion should produce as few hash clashes as possible; that is. it. should spread

t.he keys uniformly over the possible array indices. Of course. unless the keys are known

in advance. it. cannot be determined whether a particular hash function disperses them

properly. However. although it is rare to know the keys before selecting a hash function.

138

it. is fliirly common t.o know some propertieB of the keYBthlit liffed t.heir dispel'slil.

In general. Ii haRh function Bhould depend ,on every Bingle bit of t.he key. so t.hat.

t.wo keys t.hat differ in only one bit or.one group of bits (regardlesB of whet.herthe group

's at. t.he heginnim; .. end. or middle of the key or Btrewn throughout the key) hash i,nt.o

dilrerent. locat.ions. Thus a hash function that simplyextractB a portion of a;key is nol.

slJil.lihle. Similarly. if two keYB are simply digit or character permutations of each other

(such I\R 139 and 319 or meal aridla.me);t'h~~':8ffo\ild/aIBo hash into different values,

The ''eason for t.his is that key sets frequently have cluBterB or permutations that might

otherwise result in collisions.

For example, the most common hash function (which we have used in the examples
. ' '.\

"
of this chapter) UBes the diviBion method, in which an integer key in divided by the table

size and t.he remainder iB taken as the hash value, ThiB iB the haBh function h(key) =

key % tableBize. Suppose, however, that tableBize equals 1000 and that all the keys

end in the same three digitB (for exampleithe last three digits of a part number might
, .

represent. a plant number and the programiB being written for that plant). Then the

relnltinder on dividing by 1000 yieldB ,the same value for all the keys, so that a hash

clash occurs for each record except the first. Clearly, given such a collection of keys. a

dillel'elll. hash flJncl.ioll should be used,.

It. has been found that the beBt reBults with the division method are achieved when

t.ltblesize is prime (t.hat is .. it is not divisible by any positive integer other than 1 and

it.self\. However. even if tabJesize iB prime. an additional restriction is called for. If

r is the number of possible character codes on a particular computer (assuming an 8-

bit byte, r is 256) and if tablesize iB a prime such that r % tablesize equals L the hash

function key % tablesize is simply the sum of the binary representation of the characters

139

-' I.

. '.'
,/.:.-), ',~

in the key modulo tablesize. For e~arripJe,,~\IPP.os!ithat r equals 256 and that tahlesize
~.. ~.: .--,' . \'" ,.,', ,. ,

equals 17, in which case r % tablesize :;:;1. ~Then,the key '27956, which .equals 148 *. ".~ ' ,

256 + 68 (so that the first byte of its representation is 148 and the second byte i. 68),
, '

hashes into 37956 % 17, whichequ~IS:.j2;f.'bich;eciual~,(148 :f- 68) % 17. Thus two keys
, , . ~. . ..

that are simply permutations (sitcha.s"8te~ri.t'and:m~fes) will hash into the same value,

Thi. 1M)' promote collisiori~:aii<:\t8@~Jd~be!a:v~ili~~WSimililrproblemsoccur if tablesize
~'~~'~':-':~"":-,~~:~:~~'"J'.. '. _"~'-:"',-_I'~;' . ,"

j. rh".en 60 that rt % t,ablesize is verysmilll or very close to tablesize for some smnll

value of k. , ",:.'
, ..•• ,' . , " :~,.

A nother hash method is tlie';1Jlulti,?licativemethod. In this method a real number

c between 0 and 1 is selected,'h(key'):'is d.efine_~as ,floor(ril-:* frac(c * key»), where the. '. . \. . .

function fioor(x), available in the:standafd,library m~th.h,yields the integer part of the. ' -': .": ,;."-::<, ;:-,":.\::' /j;~~':'. "
real number x and frac(x) yields the.frac~ioiial.~!I;rt,":(Note 'that frac(x) = x - f1oor(x),

That is. multiply the key by a ,-real ~~nih~:r;6~n<L:l," take the fractional part of the

product yielding a random number be't~ee~"O'arid'1deperident on every bit of the key

and multiply by m to yield anindh]:>etw~~'ir9'a~d~iri'"1?'Ifthe word size of the computer
" ,

is b bits, c should chosen ,so that'2h:~'~;i~:.ihi\iiii.t~~,r,relatively prime to ,2b and c should
., " - -. '. - .' ,

.
, not be too close to either 0 or 1.' Also:if'r;~8.l!before..'is the number of possible character

'." . .

~o,je6. avoid yalll~~ of c snch that frac ((r~).:d).istoo .closeto 0 or 1 for som~ _mall vnlne

of k (t.hese values yield similar,hashesfor:k'eys with, the same last k charact.ers) and of

Val"eRC nf the form i/(r • 1) or i/(r~ •. 1) (these valne. yield .imilar hMhes fnr keys

thllt. are character permllt.ations). Valuesp(c that yield good theoretical properties are

0,6180339887 [which equals (sqrt(5) .1)f2)or 0.381966113 [which equals 1 . (sqrt(5)-

J) /2J, If m is chosen as power of.2 such as 2P" the computation of h(key) can be done

quite efficiently by multiplying the one~word:integer key by the one-word integer c. * 2"
,<:A . - .' " •

'," .

-, "

to yield a two-word product. The integer represented by the most significant p bits of

t.he int.eger in t.he second word of this product is than used as the value of h(key\.

,

In anot.her hash function. known as the midsquare method. the key is multiplied-

by it.self a.nd t.he middle few digits (the exact number on the number of digits allowed in

t.he inrlex \ of the square are used as the index .. If the square is considered as a decimal

nlllnber. t.he table size must. be a power of 10. whereas if it is considered a.s a blllary

11111,,1.,'1'. t.he t.llble size must. be a power of 2. ,Alternatively, the number repr""ellt.e" 101'

t.he middle digit.s can be divided by the table size and the remainder used as the hash

I'alue. Unfortunat.ely. the midsquare method does not yield uniform hash values and

does not. perform as well as the previous two techniques.

The folding method breaks up a key 'into several segments that are added or ex-

clusive ORed together to forma hailli"ah.ie.~For"example. suppose that the internal

bit. st.ring representation of a key is 010111001010110 a.nd that 5 bits are allowed in

the index. The three bit stringsOfOll}lQOlO,"ll.iJ.dl0110are exclusive ored to produce

01111. which is 15 as a binary integer; .(Tlieexclusive or of two bits is 1 if the t.wo bit.s

are different and a if they are the same. It ..is the same as the binary sum of the bits.

ignorini!: t.he carry). The disadvantage 'of the folding method is that two keys that are

k. hit. permut.at.ions of each ot.her. (that'.iil/.where\b'oth' keys consist of the same p;rou!",

of k bit.s in a different order) hash into the samek-bit value. Still another t.echnique is

t.o Implv 8 mult.iplicltt.ive hash function to each segment individually before folrling.

There a.re ma.ny other hash functions. each with its own advantages and disadva.n-

t.ltlles depending all t.he set. of keys to be hashed. One considerat.ion in choosing a hltsh

function is efficiency of calculation; it does no good to be able to find an object on the

first try if that try takes longer than several tries in an alternative method.

,141

,.

".~.. .,'.,:, '. " ~';;:.~$.' ..
. ,,'; ..

;;~('i~ii:f$}~:,~'~,~ii;;,~'>'•..•...
~': .~::;~:\..;~~;:;i~i... :f':~>{,,'

\.,' ,"",.~M,.,;.~;;.\::;...tM\cl.l~~~~.t:;~~1;':-:-::_,!">l.:-;.~ /',~-, ".
, ~~.:."':'''~:.;1';::If\~;.~S;.?f:Jj~~-#t~~t~,)};~,;,~~,V~'- -.

. .: ..::t:':'.•':::\~'~:;:f~~"'m,'::::::;~~?.':
If the keys are not integers;tthey''.muil~;;b(~pn''':ei.ted into integers before applying

one of the foregoing hash.function'8.;:The"i'e~~(s~vet~1,waysto do this. For example. for a. :.;'--.. ',"":-..,".::-::>~">;~':~:-. ";," ' ..', :
<:haroct.erst.ring the internal bit representation of each character can be int.erpreted /I.' a

"-,' . ~.i .', . -.," -: ~

binary number. One disadvantage o(thisis tHat the bit representations of all the let.t.ers
.; .'. <.' !.,':: '1.",

or digits tend to be very similar on:!post co~P.uter.~.:Jrt~e keys co.nsist of letter alone. the
:'. '.' '." .',' . ',". I' • ~, ,

innex of each letter in the atphabetcanb,~{used to <;reatean integer. Thus the first lett.er. . .,._,

of the alphabet (a) is represented by the digits 01;and the fourteenth (n) is represent.ed by

the nigits 14. The key 'hello' is~~p.res.e,I.M9.!>Y"til~.iI!t.~gerPil05121215. Once an integer
. ". :'. '. ;~;.'~~;:--:-', - .~. ' :.:. -

represent.ations of a character string exits. the folding method can be used to reduce it.

t.o m~nageable size. However,_.here't~~;.~ie~y,'o'~h~I'~(ligitis:~ 0,1 or 2, which may result.

in nonuniform hashes. Another;.p'oliliibility<is:;t'p"view"each':.lett~ras a digit in base-26

nnt.nt.inn.n I.hnt.'hpllo' ;. viewed.ast.hk:i~teger13~ 264+ +5* 265 + 12*2n~+ 12* 2n + 1.~.

One of the drawbacks of all'.these;hash'duncti.ons ..is that they are not order pre-
• . • :•• ' .~ ;.' ~.,.~~ '.:'_~}.:'~ ::~./"~.:,,~: '.~ .~ • ~ • ' .• 1

serving: that is. the hash values~f,.the!,ti:o;Keys;tfi:e'ii6t necessarily in the same order
. "-," :-':.\'-''':'.,i:,t"<, \,~.~.._.•.•,..~'•. _ .' :,,"

as the keys themselves. It is. therefo~.~k~~'t"po~Bibie.to t~averse the hash table in se.
. . . ":~:"'\7.. -.'--,:,-'. :::: ~:-.-<~J ~..:. -..' . .

quential order by key. An example.~.(~~h~';!un~ti()n.that:isorder preserving is h(ke)')
. ";' .f,... : .,

= key/c, where c is some constant cho8,e.~.sot~at"the highest possible key divided by c

equals tablesize - L Unfortunately, org~l';pres.erving.hash functions usually are severely
'. ,.". '

nonuniform, leading to manyhash.cla8h~8 a~d a .Iarger average number of probes to

access an element. Note also that to' enable sequential access to keys. the separate

chaining method of resolving collisions must be used.'

. '.', . .r" .J'

142

. . .~

" ,-'.-

.-:~~.".:' -'

, .•..

", ..

5.1 Introduction.

:.'.:;;i:j7;1t:.~~-f.f,{;?;:r~':;w'~.
. . "•••.. ,.-., .-" : ",\, '" .. ",':~..~~~?'~;f.!:~*t~~:::t~:,.~,~;:'

'\"~;':"_"l.:-'~..'-':"-~.'':~_-'.:_... ','

; '.: •.'~.,

CHAPTER II

••

This chapter is intended to present'the experfmental results based on the algorithms

discussed so far in the previous. chapters. This chapter comprises four main sedious

of which the first one deals with theresulte of-'chapter one, the second discusses the

experiments on chapter two and~.8oon; .Each section begins with a brief description
.

of the experimental setup and'verific~ti~n;.procediJre: for each of the algorithms and

just.ifies why a particular way oC doing the!experiments has been chosen when others

have been discarded. Finally for the majority of the.algorithms we will try to comdnt. •

. the experimental resulte:wit'h,the~:~~~~iht~it~~&?e~a.!;~~~uiKwhen the behaviour of an
-, . .' -!; ",' . -. '. • • ,...

. , ~~.'"

algorithm has already been established-;'i,Iil'.:i:ases'wheil'suffiCienttheoretical results are
. ,., '.".

Inc.king.we will try t,o establish some empirical' relationships. It should be emph/t.size<l

t.hat. one can go a long way withotit)imit~'ii~~ne'~kesto' experiment the algorithms

in all, possil:ileirespech: '1)Btitt~~~t~,~~~it~tit$tre,Pf~~~tatiye'''Ptopei'ties of the

algorithms as the basis of our ~xpe.rjWllntB;;:!~ian'iu:~uapmplementation of an algorithm
. . ,"-'.,-.':"."', :..:_::~,.,~/.. "", .:. -'. '

t.ime and space complexity are theimajo.,,'factPrs',tll" be considered for its acceptance.
- '. -

Consequently. these factors'have~~e.'!iglr.~.!l',thl!"h~g~.~,st,prio.rityfor algorithm evaluation,. ;. .'~':~',.:--.:«:::,..~{:'.,~)[:;..l~_::",~:.-: :,'

11.2 Searching by comparison Qf.keys... " .
~ '':l :"r,'; '::~'~\~);;~~:::?f~1~:.:~~:<~;f:~~~1:;;;:--~::',,:' :.~;,~:'.

The first chapt.er of this tnesis disCusses the search argorithms baReo on t.he com-

parison of keys kept ordered in ast~tJ,<t8,J>le.i;:-'I'h~:reason'for the search table to be

st.at.icis that. both insertion and deletion Croman ordered table is too costly to be worthy

,'

~""

143
. :.' .',

in practical sit.uation, Moreover, the B;lgo~ithins6f chapt.er one depend on t.he orderly

relat.ion among the keys so that the table should be kept. ordered for t.he algorit.hms t.o

work as int.ended, An ordered table of 987 elements has been chosen in order 1.0 evalu-

at.e the algorithms presented in chapter one. The basis for t.his choice is that 9~7 is a

pHfed fihonaccian numher and t.he same t.able will be used to evaluat.e the performance

of Fi honaccian search algorithm.

'1'1", pmgl'lill!s of chapter one have be.ell,designed to obtain tlw following d/\I./\:

Ii) Average number of probes required ina successful search.

(ii) Average nl!m bel' of probes required in an unsuccessful search,

(iii) Average time required for a successful search and

liv) Average time required for an unsuccessful search.

To determine the average number of probes required. att.ention hM been given so

t.hat. experiment.al result.s hear a true reflection of the approximat.e t.rue average. For

this reason t.hirt.y sets of data, each set comprising a sufficient number of trials (t.he

first set. consists of SO triala, t.he second ..one consists of 100 trials and so on) have been

employed to plot curves depicting the averag~behaviour of the algorithms. Each set

of .1,,1,/\ hll_8been collect.ed "ft.er 10 it.el'1tt.ions for the same re/I.Bons. Since t.ime for e/\ch

probe is 1.00 slll,,11t.o be counted. one thousand it.erations for each probe have beel! !'"ken

to oht."in a sufficient,ly accul'ltt.e data to be relied upon.

The curves of Graph t.1 t.hrough .1.4 show the average behaviour of Binn.ry search

IIlgol'lt.hm. As derived in section 1.3. the average number of probes required for a

successful search and unsuccessful search are

144

14

12

oa
~ 10
if)
w
m
~ 8
a-
u..o
o 6
z

~
4

2

--------•••••••••

. BINARY SEARCH
AVERAGt BEHAVIOUR IN SUCCESSFUL SEARCH

o

NO'OF TRIAL.S.

1000 1200 1400 16

-.\•

I
I

GRAPH 1.1 Average no. ofprobesreqd. in successful search in a Binary~,:

tree

145

\

14

12

oa
g;'lO

VJ
w
ma? B
0-

'-'-o
o 6
z

~
4

2

BINARY SEARCH
AVERAGE BEHAVIOUR IN UNSUCCESSFUL SEARCH

o 2 0 4 0 6 0 8 0 1000 1200 1400 16

,

NO OF TRIALS

GRAPH 1.2 Average no. of probes reqd. in unsuccessful search in a
Binary tree

146

0.8

0.7

<..)
w
(/)
::;:
z 0.6

oaw
0::

'=i 0.5
>-
w
<:>~eo; 0.4
~

0,3

\ A
V

c---, <> tC:'>. .0"==""" V V' .•••••••••••..

BINARY SEARCH
AVERAGE BEHAVIOUR IN SUCCESSFUL SEARCH

0.2

NO OF TRIALS

10 0 12 0 1400 16

GRAPH 1.3 Average time reqd. in successful search in a Binary tree

147 '

0.8

07
=== ..c ••••••

Uw_
(f)

::::;;
z 0.6

oa
w
n:::
~ 0.5
;::::

w
~n:::w 0.4
~

0.3

BINARY SEARCH
AVERAGE BEHAVIOUR IN UNSUCCESSFUL SEARCH

0.2

NO OF TRIALS

1000 1200 1400 16

GRAPH 1.4 Average time reqd. in unsuccessful search in a Binary tree

148

/tne!

UN = Ig~(N + 1) + 2 - 0 _ 21-8

For t.he above ment.ionea t.able size the average number of probes re'lnirec! are 11.97"6"

and \'962.'>2 for snccessfnl ana unsuccessful searches respectively. AcC(\raing 1.0 I.he

curves of G mph I. lane! 1.2. t.hese values are 8.947.';1 and 9.95256 respectively which bear

Il close resemblance with t.he theoretical result~. The average time requirea for successful

and IJIlsuccessful seal'ches are 0 ..'>656917 ana 0.6788918 msec respecl.ivelv as shown in

1.I,e "'JI'''''S of Gl'aph 1.:1 and 1.4. These values are somewhat larger in magnitude I.hall

t.he I.rlle average because for the program requirement some extra inst.ructious have been

IJllIllt.ent.lona.liy embedded in the search loop which could not be avoided in the time

calc,Jiation.

The uext a.lgorithm which has been tested is the uniform binary search. As st.atea

In sect.ion 1.4. the ext.ernal nodes all appear on the outermost level of the seltrch tree.

Thltt. is why the average number of probes for unsuccessful search remains const.ltnt. in

t.his si tulttion, Itnd t.he averltge number of probes for a successful search should be remltin

sltnle as t.hat. for the binltry search algorithm. As shown in the curves of Graph 1..1 and

1.6. t.he experlment.ltl results conform with this theoretical observlttion .. Here averltge

oumber of probes required for successful and unsuccessful searches are 9.00,'>818:1 ane!

10 respect.ively.

A table of "Mious vltlues of b has been \lsed to mltke t.he uniform seltrch Itlgo-

rithlll faster. The experiment.al curves of Graph l. 7 and 1.8 show thR!. a"efllge time

reoul,'ement. in uniform seltrch algorithm is lower than that for binary seMeh algorithm.

149

\

14

12

oa
g:!10
(/)
w
m
6;? 8
0-

LLo
o 6
z

~
4

2

-=-

UNIFORM SEARCH
AVERAGE BEHAVIOUR IN SUCCESSFUL SEARCH

o 2 0 4 0 6 0 8 0 1000 1200 14 0 16

,
•

NO OF TRIALS

GRAPH 1.5 Average no. of probes reqd. in successful search in a Uni-

form search tree

150

1 4

12

oo
~ 10

(f)
w
m
ii:? 8
G-

L>-
a
a 6
z

4

2

o 2 0

UNIFORM SEARCH
AVERAGE BEHAVIOUR IN UNSUCCESSFUL SEARCH

'466' j i I I I '666' I I 'j j I '866' i j i I j 1000 iii j i 12'06 I I , I j 1400 I I j j j 16'

NO' OF TRIALS

GRAPH 1.6 Average no, of probes reqd. in unsuccessful search in a

Uniform search tree

151

)

0.8

0.7

uw
U)

="z 0.6

c.iaw
0::

w 0.5
="I-
W

~
0::
w 0.4
~

0.3

UNIFORM SEARCH
AVERAGE BEHAVIOUR IN SUCCESSFUL SEARCH

0.2 6 0 8 0 1000 1200 1400 16

NO OF TRIALS

GRAPH 1.7 Average time reqd. in successful search in a Uniform search

tree

.152

0.7
/ ---- 7

0.6u
w
(f)
:::;;
z

0 0.50w
Cl::

w
:::;;
;:::
w 0.4 UNIFORM SEARCH0« AVERAGE BEHAVIOUR IN UNSUCCESSFUL SEARCHCl::w
;;;

0.3

0.2 2 0 4 a 6 a 8 a 1000 12 a 1400 16

NO OF TRIALS

GRAPH 1.8 Average time reqd. in unsuccessful search in a Uniform

search tree

153

These values for successful and unsuccessful searches are 0.551766 and 0.116263/\ msec

respecllvely. This ISdue to the fact that in the binary search algorithm. every iteration

,'e(jlmes a dlVisioli operation to determine the middle element of an interval. But in

nniform search and in Fibonaccian search only addition' operation are required in each

iterat.ion. In our experiments division operation has been avoided in uniform search by

using a t.able of b valnes to be used in each subsequent iteration of the algorithm.

We will terminate this section after a brief look on F'ibonaccian search algorit.hm.

As t.he experiment.al curves in Graph 1.9 and 1.10 show, the average number of probes reo

quired In successful search is 9.3932727 and that for an unsuccessful search is 10.353305

The curves in Graph 1.11 and 1.12 verify the fact that although F'ibonaccian search

reqllll'e Ii la.rger number of probes for both successful and unsuccessful searches, yet.

Ihe time requireo for Ii single it.eration is much lower t.han that. for binary search al.

g''''It.hm because elich it.erat.ion requires only addition and subtract.ion operations ano

these oDera.t.ions Ii!,emuch cheaper than division operations required in the bInary search

1l.lg'or'll.hlll.

5.3 Search Trees.

As oiscusseo in chapter two an explicit binlU'Y tree is the appropriate dat.a st.rndure

for t.he flexibility of frequent insertion and deletion. and the shape and size of t.he t.ree

is ext.remely sensitive to the nature of insertions and deletions, In the worst case the

dyna.mic t.ree can degenerate into a linear list if the search keys come into their nat.ural

order. lind if we are extremely lucky the tree can become a perfect balanced tree. Aut.

we are inl.erest.eo ill t.he average beha.viour when the search keys come int.o t.ruly ralldom

malineI'. Thus ill t.he experiments on dynamic tree. a number of search t.rees of vlirious

sizes have been const.ructed on the assumption that the incoming keys are truly rlindom

154

14

12

oo
~ 10
(/)
w
CDa? 8
0-

LLo
o 6
z

~
4

2

FIBONACCIAN SEARCH
AVERAGE BEHAVIOUR IN SUCCESSFUL SEARCH

o
2 0

NO OF TRIALS

1000 1200 1400 16

GRAPH 1.9 Average no. of probes reqd. in successful search in a Fi-,
bonaccian search tree

155

14

12

oa
~ 10
U1wen
i? 8
0-

LLo
a 6
z

?i.
4

2

7<='-

FIBONACCIAN SEARCH
AVERAGE BEHAVIOUR IN UNSUCCESSFUL SEARCH

o 2 0 4 0 6 0 8 0 1000 1200 1400 16

NO OF TRIALS

GRAPH 1.10 Average no. of probes reqd. in unsuccessful search in a
.,

Fibonaccian search tree

156

0.8

0.7

uw
(f)
::l;
z 0.6
oa
w
0::

~ 0.5
I-

w
Si?
t5 0.4
~

0.3

A /\ <">:;TV V

FIBONACCIAN SEARCH
AVERAGE BEHAVIOUR IN SUCCESSFUL SEARCH

0.2 2 0 40 6 0 8 0 1000 1200 1400 16

NO OF TRIALS

GRAPH 1.11 Average time reqd. in successful search in a Fibonaccian

search tree

157

FIBONACCIAN SEARCH
AVERAGE BEHAVIOUR IN UNSUCCESSFUL SEARCH

0.8

0.7
(,)
w
if)
::::;
z 0.6
oo
w
0::

~ 0.5
;:::

w
~
a:w 0.4
~

0.3

~ I\A
7 "'-lV L>V

0.2

NO OF TRIALS

1000 1200 1400 16

,
Ii

'.

GRAPH 1.12 Average time reqd. in unsuccessful search in a Fibonaccian

search tree

158

and after a successful construction of such a tree sufficient number of trials have been

taken t.o count t.he following measures:

(i) Average number of probes required in a successful search.

Iii) Average number of probes required in an unsuccessful search,

(iii) Average t.ime required for a successful search and

liv) Average t.ime required for an unsuccessful search.

E;ach of the above average measures for a t.ree o(certain size were averaged for t.en

set.s of dat.a in order to satisfy t.he requirement. that the experimental data should reflect

t.he t.rue "verage behaviour of a dyna.mic tree. For time calculat.ion the same procedure

as adopted in chapter one has been reinforced. The curves in Graph 2.1 through 2.4

depict. t.he average behaviour of a dynamic search tree built from random keys. The

average ext.ernal path lengt.h of a dynamic tree is approximately 1.38109'" lUl derived

in section 2.3. This means t.hat the average number of probes required in a successful

search is very close to this figure. and the'experimental curves bear a close resemblance

wit.h t.his fact.

Next. comes t.he question of random deletions from a dynamic search t.ree. From

t.he discussions of chapt.er two it. iseviclent that the average behaviour of /I search

t.ree after random deletions cannot be predicted to be the same as can be obtained if

t.he t.ree is built a.fresh from random keys. The tree structure deviates slightly when

random delet.ions are made asve;'ifi~aby'the~xi>entnentarcurves of Graph 2.5 and 2.6,

There IS no known analvsis of t.he average search time when random delet.ions and t.hen

II)sf>rt.ioJ)s aft> n)fl.,d~ int.o a. dynamic t.re~. We tried to investigat.e t.he R.vetage behaviour

of a dynamic t.ree after random deletions and insertions are made. The expertment.al

result.s SllOWt.hat. a.s soon as random insertions are made into a dynamic tree having

159

14

12

oa
li!10
if)
wro
~ 8
a..
l.Lo
o 6
z

4

2

SUCCESSFUL 'SEARCH
IN ADYNAMIC TREE
y=.1.93579 In(x) - 1.38171

o
1000 12PO 1400 1600 1800 20

NO. OF NODES IN THE TREE

GRAPH 2.1 Average no. of probesreqd:in successful search in a Dy-
munic search tree

160

14

12

oa
~ 10
r.nw
CD

~ 8
a.
•....o
o 6
z

4

2

UNSUCCESSFUL SEARCH
IN A DYNAMIC TREE
y = 1.96581 In(x) - 0.629998

o 1000 1200 1400 1600' 1800. 20

NO OF NODES IN THE TREE

GRAPH 2.2 Average no. of probes reqd. in unsuccessful search in a

Dynamic search tree

161

.', .•..•. ...aI

.. '

;,:", '..

SUCCESSFUL SEARCH
IN A DYNAMIC. TREE
Y = 0.0293697 LN(X) - 0,0176175

8 0 1200 1600 20

NO OF NOOES IN THE TREE

GRAPH 2.3 Average time reqd. in successful search in a Dynamic search

tree

162

" . :'; ,

UNSUCCESSFUL SEARCH
IN A DYNAMIC. TREE
Y ~. 0,0294313 LN(X) + 0,00683618

8 0 1200 1600 20

NO OF NODES IN THE TREE

GRAPH 2.4 Average time reqd. in unsuccessful search in a Dynamic

search tree

163.

r

20

18

15
oow
a::
(/)13
w
CD
o
IX
0.10
'-'-o
g 8

=i
5

3

SUCCESSFUL SEARCH INA DYNAMIC TREE
AFTER RANDOM DELETION
Y = 2.02576In(x) - 1.97335

o
5 0 1000 .1500 2000 2500 3000 35

\

NO OF NODES IN THE TREE

GRAPH 2.5 Average no. of probes reqd. in successful search in a Dy-
namic search tree after random deletions

164

I

20

18

15

8w
0:::
(j)13
weno
0:::
0-10
•.....og 8
:;i

5

3

UNSUCCESSfLiL'SEARCHIN A DYNAMIC TREE
AFTER RANDOM'DELETION '
Y = 2.03307 LN(X) - 1.24876

o
5 0 1000 1500, 2000

"

2500 000 5

NO Of ,NODES ;IN'THE TREE

GRAPH 2.6 Average no. ofprob~sreqdi."in unsuccessful search in a
Dynamic search tree after random deletions

.' ':' .

. ,<f\;.". . "'"

165

I

20

18

15
aa
w
cr
(/)13
w
moa::
0..10
~o
.0 8z
~.

5

.3

SUCCESSFUL SEARCH IN A DYNAMIC TREE
AFTER RANDOM DELETION AND INSERTION
y = 2.17622 In(x) - 2.54639

a
1000 1500 2000 2500 3000 3500. 40 .

NO OF NODES IN THE TREE

GRAPH 2.7 Average no. of probes reqd. in successful search in a Dy-
namic search tree after random deletions and insertions

166

,I

of.",

20

18

15
oa
w
a::
(/)13
w
Q)

aa::
0.10
L>-a
g 8

~
5

3

UNSUCCESSFUL SEARCH IN A DYNAMIC TREE
AFTER RANDOM DELETION AND INSERTION
y = 2.33332 In(x) - 1.77205

o
5 0 1000 1500 2000 2500 3000 3500 40

NO OF NODES IN THE TREE

GRAPH 2.8 Average no. of probes reqd. in unsuccessful search in a
Dynamic search tree after random deletions and insertions

167

20

18

15
0
0
W
0::
(/)13
w
CD
0
0::
0.10
l.L
0

0 8if z
:><

5

./

SUCCESSFUL SEARCH IN A DYNAMIC TREE
AFTER SYMMETRIC RANDOM DELETION AND INSERTION
y - 2.19759 In(x) - 2.72653

3~ .

o I , , I , j I '566' j j I , I i boo' ii' i 15'dd i , ii' 2686 I Iii' 2500 i , i , '3080 ii' I '.:35'06 r I i I '..tb'

NO.OF NODES IN THE .TREE

GRAPH 2.9 Average no. of probes reqd. in successful search in a Dy-

namic search tree after symmetric random deletions and insertions

168

20

18

15
oow
a:
(/)13
w
mo
a:
eL10
u..og 8

5

3

UNSUCCESSFUL SEARCH IN A DYNAMIC TREE
AFTER SYMMETRIC RANDOM DELETION AND INSERTION
Y = 2.39268 In(x) - 2.26827

o
5 0 1000 1500 2000 2500 .3000 .3500 40

-)

\

NO OF NODES IN THE TREE

GRAPH 2.10 Average no. of probes reqd. in unsuccessful search in a

Dynamic search tree after symmetric random deletions and insertions

169

"X !wnellced a I"lJllher of random deldions, the tree structure sharply deteriorates. and

the «I'e,'age beha"Iour becomes worse as the curVeS of Graph 2.7 thl'Ougl, 2.11l sl",w.

froll' II", fad that random deletions change the relative distribution of valu~H of a gll'~11

t,'ee sl,a.pe a.lld a ralldom illsertioll after a number of random deletions d"Htl'O~'" 1,\",

ralldomlless pmperty of the tree.

,
A 1I0de ca.n be deleted from a tree either by replacing it with its prede~e,"or or

bv its successor. If onlv successor or predecessors are chosen for replacement the dele-

tlOll procp.ss Cft.1l h~~t.ermed 1\.S ftAYIllIlH~tric. Rut. if predec.essor R.nd S1Jl~CeSA()r It.rf' Chnl'Wll

alt"ruately for replacement then the deletion process can be termed as symmetric dele-

1.1001."1'he curves of Gra.ph 2.7 through 2.10 show that symmetric <1eletion causes no

llllprovprnPIlt. in performance..

I",rldillg a billal'l' search tree that will he.ve an optimal weight.ed path length g"'en the

fn""",nCles Pi alld q,. Algorithm 2.3 with the appropriate modification as enlig'htened

"I. I I". l'e"1' 1'1,,1"f sect.lon 2.4 has heen employed to construct the optil"ai searei, tre" of

'.r<'" of Fig .. '>.2 reslllt.s when all t.he external frequencies a.re made 7.el'Oal,,1 thaI. of Fig.

:).:1 results when all t.he i"t.Hnal frequencies are made 7.ero. The t.rees of Fig. 5.2 and

!).:I show that. bot.h int.ernal and ext.ernal frequencies influence t.he tree st.rllct.ure h)' a

considerahle amount. The average cost of the trees are 4.147506.2.99[,'>6.'> and 4.436492

respedlvely. Tahle .'>.1. ;'.2 H.nd ;'.3 shows t.he average cost. for difrerent. sel"ct.,o" of 1,1",

root.s for t.he t.rees of figure 5.1. 5.2 and .'>.3 respectively. These t.ables show tlm.t. t.he roots

"f t,j", optimal I.r"es give t.he minimum cost. as expected since t.he opt.imalit.y has heen

170

'\

.oo

OF

•••.• 0 ." 0

Fig. 5.1 An optimal Binary search tree

171

I

,

e

Fig. 5.2 Optimal tree of Fig. 0.1 with all external frequencies equal to
zero

172

c,

",

Fig. 5.3 Optimal tree of Fig. 5.1 with ail internal frequencies equal to

zero

173

ROOT 1"1I N I 1"1UMAVERAGE COST, INTERNAL FRELILJENCY EXTERNAL FREQUENCY

---------- -------------------- ------------------- -------------------
1

:5

7
8
9
10
11
12
13
14
1:~
.1.6
17
18
19

24
25
26
27
2EJ
2~-?
30
3j
.~'')
'-',--

4.895986
4.796533
4.684915
4.6B6436
4.603406
4 .::,',6411
4.559002
4.476277
4.343370
4.396289
4.230536
4.3T75'H
4.2fJl630
4 ..324209
4 ..325426
.'f •. 377433
4.391119
4.417275
4.417883
4.4:~3090
4 . .147~,Ob
4 • :::''':;::~0900
4 ..4:29440
4 If 45:',O(~70
4 . :,fJl (I8~,
4 ..482664
4 ..5'713674
4. 5921 ~i3
4 ..550487
4.652677,
4.92487B
4 .f~9B114
4.9Ell'148
5 ..(15839~l
5 ..06.1436

142
.r, . ::.'.~,,'35...
•1. 58

5
20
5
10
9
15
23
129
4
52
5
38
18

," 9,
" 7

"'L
4
266
93
:5
18
18
27
5
10
11
180
4~,.,
~'L
21
~
"21

TABLE 5.1

174 "

5~\
27
36
[J :)
31
58
3

98
27
113
B9
180
o
62
12
o
37
(I

3
bit
70
(I

277
o
(I

(I

17(1
(I

lEl
76
27

29

ROOT
t' "" 1,.',

MIN Ii'lUM AVERAGE COST" ':'1NTERNAL FREQUENCY
-~....--- _. _.--- --_.------ _.::....;,.~..:_---'-- •...:..------- EXTERNAL FREQUENCY

~ 4436m2" .. " " "",m>''''''''':''''''",,, ',' ,', ' ,.,:.' • ~ \;,1 ,,;,(,,;."r>',~~;,.~~~r:;::;;$:~~/~f~1P~t~Si+,~\it1.~l(~~~i~~;t~t;r":,;,l1~::,':-tj: •

3 •4210 1~t', '. "-'1;:,,;i~;~~':~:?::\~'~r;t1\~.:.:~~~',<:r~:~:IT:l,:~.,~~"<>::L~~,'~~~'>',.,.'nr~m"S1:10\~'~~:
3.4455~2' ..,l::~.'..:.4",'
3.331288 '>'5:2'
3.440951 '.~ .~
3.368865',,;38" '
3.44478518
3.483896 9
3.490798 7
3R511503 2
3.511503 4
2.991565266
3.291411 93
3.490031 5

(l

0
(l

0
0
~). ,.: 0
(I

0
(I

0
(I

(l

(I

0
(I

(I

0
(I

(I

(>

(I

(>

(I

(>

(I

(>

(I

(I

0
(I
(I

(I

0
(I

32

18
18
27
.5
to
11
180
4

142,

, ,21 ..

21,
"':'"'3;~ ,

,:-.35
.,', ,,:j,58
;::~;.;,.:.<' .;''':'''::.-,5
,< ,,;."" ,20

• > :.'-':'

3.522239

3,,570552

3.450153

3.384202
3.480828 '
3.412577

3.529141

3.467791
~.:;~47ei460
3~~t70552

3. ~598926
3R447853
3.858129
2;~8182~52'
3.(:160439
3.920245
3.915644

1.

3
2

30

23
24

4
5
6
7
8
9
10
11.
1.2
1.3
14
15
16
17
10
.t9
.20
'21
22

.27
28
29

.34
35

.'
"

'. ,';

175 ..., ..•.. ',"--.

ROOT MINIMUM AVERAGE COST INTERNAL FREGIUENCY------------------- EXTERNAL FREQUENCY

2

"

6
7

8
9
to
U
.12
.1 ::::
14
1~\
16
17
18
19
20
2J
",'")..:.~..•.
.2::::;
.24
25
26
27
28
29
::",0
::\j
32

5.408770
5 ..2:i1512
5.193044
5 ...1093'75
".993952
".97-'1798
4.959677
4.822077
4.509073
4.628024
4.:\24191..').
',.4B'';>415
4~4~)0605 .
4 ..44556~5
4.436492
4.495968
4.471774
'L4B9415
4.476B15
4.481351
4.498488
4.470766
4 ..525202
4 ..628024
4"523690
4.793851
4.933468
4.9:53468
4.847782
5 ..05141.t
~j.12£3024
5.116935
5.249496
~l •• 336190
5..342742

o
o
o
o
(>

o
o
'0
'0
o
(>

(>

(>
(>

o
o
o
o
o
'0
o
(I

o
,'0
o
o
o
(I

o
o
(>

o
o
o
o

55
27
36
B5
31
58

334
(I

98
27
113
89
180
(I

62
12
(>

37
'0
.3
64
7(>
(>

277
(>

(>

(I

170
o
1B
,76

27
3
29

TABLE 5.3

176

defined in terms of minimum averagecost.,.As calculated in section 2.4, the construction
. . . c':' '. ,. :.,;~':.". _ > _'. ,"..:< :,,' . .
of t.hp opt.ima,1 "parch t.reps of Fig .. ~.J, .~.2and"S.3required 0(n1) operat.ions for t.heir

cn II At, rue t. ion.

11.4Balltnced Trees.

The tree insertion algorithm discussed in chapter two will produce a good search

tree when the input dat.a. is random. but there is still the annoying possibility thaI. A

dep;enerate tree will occur. The height of a balanced tree of n elements will be O(11';2 n).

so tha.t search times are logarithmic, and insertion and deletions will require only local

changes along a single path from the root to a leaf. requiring only time proportional to

the height of the tree that is, O(lg211). We have followed the same style in doing the

experiments with balanced and 2.3.4 trees as done with dynamic trees in chapter two.

Sed;on 3.2.1 verifies the fact that in the worst case the number of probes required in A.

height halallced tree of n internal nodes will never be more than 4S percent higher than

the optimum. As discussed in section (3.5), the fact that there are 11!possible orderings

in which n keys call be inserted. and the perfectly balanced tree is obta.ined 'moRt. of the

tllnes makes it extremely plausible that the aver!1ge search time for !1 balanced tree IS

aboilt ig'oN + C compa.risons for sOIlle small Ct;lllstant C.

~;xperirnental Cilrves 3.1 and 3.2 support this conjecture. The timing curves shown

In Gmph :~.:~and :j.4 show the average time required for successful and unsuccessful

seaI'd, rPspedively, The real significance of balanced trees is their worse-CAse perfor-

mance. and the fact that this performance is achieved at a very little cost. Experimental

curves 3..~ show the percentage of times balancing required together wit.h percent.age of

t.imes single and dOllble rot.ation required in times of insertion into a balanced tree.

These figures support the fact that it is logical to, construct balanced trees which has

177

20

'8

'5
<:)
8cr
Vl '3
w
m
a?
n. '0
1.Lo
g 8

~
5

3

SUCCESSFUL SEARCHIN.A BALANCE TREE
y = 1.44761 In(x) - 0.801535

o -,-r-r-~I~~-4~1'~(5-o~~~~~'-"~8~(5-0"'"....,-r-, T'...,,~,.,-r-, ,""1"' 2-"OTb-,,--r1.,-r, .,-,rr, -','-srb'b-,rr--.,,-r"-i"o'

NO OF NODES' IN THE TREE

GRAPH 3.1 Average no. of probes reqd.in successful search in a Bal-
anced tree

178

20

18

=, 15
0aw
0::
(/)13
w
CD
0
0::
0..10
l.L
0

0 8z

?i:
5

3

UNSUCCESSFUL SEARCH
. IN A BALANCE TREE.
y = 1A6646In(x) + 0.0473769

o
4 d r i , Bod J i , I , , I 12bb' iii

NO OF NODES IN THE TREE

iii i i
1600

ii,20

-

GRAPH 3.2 Average no. of probes reqd. in unsuccessful search in a
Balanced tree

','", .

179

1.0

0.9

0.8

u 0.7
wen:::i
~

0.6

0 0.50w
0::
w 0.4:l!
F

?i 0.3

0.2

0.1 -----
0.0 40d

SUCCESSFUL SEARCHIN.A BALANCE TREE
Y = 0.0296432.:LN(X) - 0.0256985

... ~.'

'1666 '

NO .OF NODES IN THE TREE

J I I20

GRAPH 3.3 Average time reqd. in successful search in a Balanced tree

180

1.0

0.9

0.8

u 0.7
w
(/)
:::>
~

0.6

0 0.50w
C>::
w 0.4::1'
l-

~ 0.3

0.2

0.1

0.0

UNSUCCESSFUL SEARCH
IN A BALANCE TREE
Y = 0.0303328 IN(X) + 0.00 143054

.'T'....,.....,...,4-CST"o"-.-..,...,c-r.-r-r-sCS..,...,dc-r.-r-r....,....,.....,'-1T"'2"'b-0~''T'....,....,.....,~~'~1'T' 6-b~b""~~---' 2-'-0'

NO ,:OF ' NODES, IN,' THE TREE

GRAPH 3.4 Average time reqd. in unsuccessful search in a Balanced

tree

181

.:; '.-

50

~ A ~"..,. .<:*::-1 • t • • , ••7-7 ...-=r 'V''' I

40

•• • •

zo
~
~ 30
l.Lo
w
<.:>
~
Q 20
ucr.
W
0..

10

BALANCE TREE

.!!! ., PERCENTAGE. OF BALANCING REQD.
"" ,•••• (PERCENTAGE OF SINGLE ROTATION REQD.
AA~~.!.PERCENTAGE OF DOUBLE ROTATION REQD.

o
o 400 Ii' ii' i , , i i j i I I

800 1200
.NO OF NODES

i , I I J
1600

i , I
20

GRAPH 3.5 Percentage of rotation reqd. in a Balanced tree in times of

insertion

182

guarant.eed good worst.-case performance because the insertion cost is not too high to

discourflge its use.

Next comes the 2-3-4 trees presented in section 3.6.. The overhead incurred in

manipuiltting the more complex 2-3-4 node structures in their direct represent.ati~n is

likely to make the algorit.hms slower t.han standard binary search. The primary purpose

of using 2-.1-4 trees is to provide insurance against a bad worst-ca.qe performance. but

II, would Iw unfol'l.unate to have to pay t.he overhead cost for that insurance on every

I'UII of t,he algorithms. That is why we have represented 2-3-4 trees as st.andard binary

trees by using one ext,'a.bit per node. Th!,. curves in graph 3.6 through 3.9 shows the

avel'ag'e behaviour of 2-3-4 search tree. The behaviour is almost analogous 1,0 that of

Ii balanced tree. But the behaviour of unsuccessful search is better for a 2-3-4 tree as

verified by the experimental curves. The curves 3.10 shows the balancing requirement.

in times of insertion into a 2-;~-4 search tree. 'The,figures for single rotation and double

rot.ation per insertion are significantly higher than those for balanced tree. But it should

be noted that the algorithm to build a 2•.3.4 search tree is much simpler than that of a

balanced tree. Also a significant amount of overhead is required to adjust the balance

fact.ors along the search path 'in ab8.1a.nce«(treE:'~wheii a :new node is inserted into it.

Considering all t.hese fact.ors it can be concluded,that total overhead requirement I."

insert a. new node eit.her int.o a balanced't.ree or into a 2.3.4 tree is almost identica.1.

Since each key is insert.ed just. once. but may be searched for lIlany times in a typical

application. the end result is that we get improved search times at relatively lil.tle cost..

5.5 Hll8hing Techniques.

Chapter foul' deals with the various hashing techniques based on difl'erent collision

resolution schemes. Collision resolutionschem~scaIibe classified into three categories

183

20

18

15
ciawcr
VI 13
w
CD

£
0..10
•....o
g 8

~
5

3

SUCCESSFUL\SEARQH IN A 234 TREE
Y '" /.44707 '. LN(X) - 0.743557

o ,
4 0 ii' 86d ' , '. ' , I , 1'2bb iii I

NO OF NODES.INTHETREE

, , I , I
1600 J I I20

GRAPH 3.6 Average no. of probes reqd. in successful search in a 2-3-4

tree

184

20

18

15
oow
cr
(/)13
w
CD

~
0-10
L>-a
g 8

~
5

3

o 46d

UNSUCCESSFUL .SEARCH
IN A 234 TREE
y "" 1.44842 In(x) + 0.236563

• NO OF NODES ,IN THE TREE

GRAPH 3.7 Average no. of probesreqd. in unsuccessful search in a

2-3-4 tree

185

SUCCESSFUL SEARCH
IN A 234 TREE
Y = 0.0262565 LN(X) - 0.0150372

1.0

0.9

0.8

(J 0.7
w
V>
::li

~
0.6

0 0.50w
0::
w 0.4::li
;::::

;;i 0.3

0.2

0.1 ----
0.0

4 0 8 0 1200

<>

1600 20

NO OF NODES IN THE TREE

GRAPH 3.8 Average time reqd. in successful search in a 2-3-4 tree

186

\)

/

UNSUCCESSFUL SEARCH
IN A 234 TREE
Y = 0.025612 LN(X) + 0.0212198

i , '. aDd' .' I , i J i 1'2bb ' iii

NO ..OF NODES. IN '.THE TREE

I I , j i
1600

I i I20

GRAPH 3.9 Average time reqd. in unsuccessful search in a 2-3-4 tree

187

80

60
zo
g
n:
•.....o
w 40
<.:>
~z
w
(Jcr
W
0-

20

234 TREE

'! ! ! ! " PERCENTAGE. OF TIMES BALANCING REQD.l'"'' '''' PERCENTAGE OF TIMES SINGLE ROTATION REQD.
~ PERCENTAGE. OF TIMES DOUBLE ROTATION REQD,

o
a 400 800 1200

NO OF NODES
1600 20

GRAPH 3.10 Percentage ot" rotation reqd. in a 2-3-4 tree in times ot
insertion

188

(i) Chaining scheme.

(ii) Linear open ae!e!ressing,

(iii) Double hashing

We have examinee! each of the' above schemes along with variations thereof to

Improve certain propert.ies of the corresponding hashing strategy.

A search table of len!(th J02J. has been used to implement the algoritlun present.ed~ --
III chapter' four. Division hash function has been used to transform the keys into real

!
addresses for simplicity and accuracy Let us begin with the chaining method. Separate r

chaining is the natural starting point for the discussion of chaining method. As pointed

out. in section 4.3. if we keep each of the lists ordered by key, then time for unsuccessful

searches can be reducee! by aconsiderableamount ..But since the keys come into random

order. therefore time for successful search should not be affected by this variation. Graph

4.1 R.nd 4.2 relled t.hese fads. Graph 4.2 shows that nearly any load factor convinces

the use of ordered chain though each insertion in an ordered table is milch cost.lier

than t.hat. of in unordered chaining. Since insertion is a rare event in most practical

sit.uation. t.herefore. ordered chaining is prefera.ble to unordered one specially when a

large number of ke~/B hfi.5hes into a short. table. a.nd unsuccessful searches a.re more

common. In separate chR.ining, for t.he sa.ke of speed we woule! like t.o make the no of list

heads M rat.her large. But whenM is large most of.the lists will be empty and much of

t.he space for the M list heads will be wasted. This suggests another approach named

coalesced chaining which elimina.tes the overhea.d of the M list heads. Graph 4.7 A.ne!4.8

compR.res the different collision resolution schemes. Here we see that separate chaining

is faster than cOR.lesced chaining for both successful and unsuccessful searches at. any

189

5

4

oaw
Ct:

(1)3
w
(D

°Ct:
0-
•.....
°2
°z

SUCCESSFUL SEARCH

_ S£PARAIT CHAINING WITHOUT DRDDl
__ SEPARATE: CHAINING WITH ORDER

a
0,00 1,00

-'j~j~j~~I~I~j ~j~j~j ~j-j~j~j~j ~~~j~j 'j-j~~~~~j-j~j 'j~~~

2,00 ,3.00 4,00 5.00
• LOAD ,FACTOR

GRAPH 4.1 Average no. ofp:robes reqd. in successful search in separate
chaining

190

......

6

5

ci
8 4 UNSUCCESSFUL SEARCH
a:::
(I)w
CD __ SEPARATE CHAINING WfTHOUT ORDER
~ 3 ••••••••••SEPARATE CHAINING WITH ORDER
Q.
u..o
o
Z2

1

a
0.00 1.00 2.00 3.00

LOAD FACTOR
4.00 5.00 6.(

GRAPH 4.2 Average no.. of probes reqd. in unsuccessful search in
separate chaining

191

10l\d fl\etor, but. if spaee is the ml\jorconsideration.then coalesced chaining is superior.

Aft.er chaining, the next collision resolution scheme is the linear probing which is

the simplest. of all t.he I\vl\ilable met.hods. As discussed in seetion 4.4 in linear prohing

the performl\nee degrades rl\pidly when the table gets full. To hl\ve a better performance

we hl\ve eXl\mined this technique with two variations. The first one is the ordered linear

probing where we have maintained an ordering relation among the elements in the

table amount.ing t,o a considerable saving in unsucces.~ful searches, but like the OI'(lel'ed

chaining method this does not make any change in performance for successful search,

The next. varia.tion '8 th~ pass bit method which has been discussed in section 4.6. A

one bit field in each tl\ble location can improve the performance in case of unsuccessful

search under linear probing. Equation (4.15) shows that in linear probing when the

table is fnll t.he averl\p;e no of probes required in unsuccessful search is 1/2 (1 + M)

where M is t.he table si7,e. That is why we have tried to improve the performance giving

st.rength on the unsuceessful search. Graph,4.3 and 4.4 shows the performance of the

variations of linear probing in case of successful and unsuccessful searches respectively.

Since ea.ch insertion in t.he ordered table is much costly, hence it is preferable only when

insertion is less frequent event. Since a single bit in each table location improves the

performance considerably and since a bit comparison is not so expensive compared to

key comparison. therefore, pass bit method is the natural selection'str1itegy in most of

the situations.

Double hashing eliminates the problem of secondary clustering in linear probing

IIsmg independent hash functions which is essentially indistinguishable from number

'of probes which would be required if the keys were inserted at random into the table,

Section 4.5 deals wit.h the behaviour of double hashing. Brent's algorithm on the other

192

23

20

18
CJwa::
:::> 15aw
0::
U1 13wro
0
<Y
a.. 10
LL
0

0 8z

5

SUCCESSFUL SEARCH

.....- LINEAR OPEN ADDRESSING WITH PAS$ BIT
•••..••..• LINEAR OPEN ADDRESSING
~ ORDERED LINEAR OPEN ADDRESSING

o
0.00 0.20 0.40 0.60

LOAD FACTOR
0.80 1.00

GRAPH 4.3 Average no. of probes reqd. in successful search in different

variations of Linear probing

193

30

25

.•..

UNSUCCESSFUL SEARCH

iii
1.;

I r I j I
1.00

i j j , j , i , I j I j j iii I

0.60 0.80
.LOAP. FACTOR

j j I I ,
0.40

j I I I

0.20

-- liNEAR OPEN "'ADDRESSING 'WJnf.PASS' 8JT
~ LINEAR OPEN ADDRESSING
-MobW. ORDERED LINEAR OPEN ADDRESSING

5

a
0.00

80::
:::> 20
ow0::
if)
w
~ 15
0::
a..
LLo
o 10z

GRAPH 4.4 Average no. of probes reqd. in unsuccessful search in

different variations of Linear probing

194

hand is a variation of double hashing which reduces the average number of probes per

successful search but number of probes 'in an. unsuccessful search is not reduced by

HI'pnt'. variation, it remains at the same level a. uniform hashing, Brent's aigorithm is

employed when successful searches are much more common than insertion a. in the sym-

bol table algorithm, Another variation of double hashing i,s the pass bit method which
. . ,. -: . - .

employs a single bit in the table location to improve the. performance of unsuccessful

search. Graph 4,5 and 4.6 shows the results for thiS different variations ~ndconform to

with the theoretical results. Here also if unsuccessful searches are more 'common then

pass bit method is superior to ordered .double hashing .because the latter method is too

costly to be worthy in practice. and the 'former one needs only an extra bit of memory

for its realization,

Next we ha,ve shown the performance of all the major ha.hing schemes in graph 4,7

anel 4.1\. These figures show that whenspace is not the critical factor separate chaining

is the best possible choice, Hut this method is particularly important when number of

element. is greater ths,n the table size i.e., when the load factor is greater than unity.

Linear probing on the at,her hand is the simplest to implement. but its avera,ge behaviour

when the table is nearly fill! discourages it. use. In this situation double hashing comes

tei help us because it is the best among all the hashing methods if both space and time

are taken into consideration although rehashing of the keys require a little bit. more

computational cost.

We will finish our discussion .after a little remarks about external ha~hing, We

were mainly interested in internal hashing, but have carried out Bome experiments out

of curiosity. Attempt' has been made, to compare the behaviour of linear probing and

c10uhle hashing in the context of external hashing. In ollr experiments bucket sizes of

195

7

6

.j
I

.5
<:)

8a::
~4
rnoa::
a..
~.3
oz

2

1

SUCCESSFUL SEARCH

- DOU8LE HASHING WITH P,t.SS SIT
-- ORDERED HASHING
~ BRENT'S VARIATION
~ DOUBLE HASHING

o
0.00

r-TI ,
0.20

rrrr, I
0.40

, i i.l i I Ii, J or , iii I i

.' 0.60 0.80LOAD FACTOR
I J I I ,

1.00
J I I
1.L

GRAPH 4.5 Average no. of probes reqd. in successful search in different
variations of Double Hashing

196

.,

12

o
owcr:
(/)wCD 8ocr:
0..

LLo
oz

•

UNSUCCESSFUL SEARCH

-- DOUBLE HASHING WITH PASS BIT
~ ORDERED HASHING
~ BRENT'S VARIATION
~ DOUBLE HASHING

o
0.00 o."~-O~I~I~~I~I~I~'O~I.-4~O~I~j~~j-j~j~IO-'-.6~iO~I-I~j'I-j~j~jO~j.8'i~O~j~~~~ll~j.~(5-o~'~I-~-~Il-'.-~

lOAD FACTOR

GRAPH 4.6 Average no. of probes reqd. in unsuccessful search in
different variations of Double Hashing

j.. : ,:;.-.

197

..

10

8

2

u..
o 4
oz

o
&1
0::
Vl
Weno
<ra.

6
SUCCESSFUL SEARCH

_ LINEAR OPEN ADDRESSING
""""'" DOUBLE HASHING
~COAL£SCED CHA!NING
~ SEPARATE Ct-WNING

o
0.00 0.20 0.40 0.60

LOAD FACTOR
0.80 1.00

GRAPH 4.7 Average no. of probes lreqd. in successful search in different
Hashing schemes

198

2.10

ci
0w
0::
(/)

1.70w
Vl
Vlw
U
U~
::,(.••••••••••• LINEAR OPEN ADDRESSING
(/) ~ DOUBLE HASHING
0 1.30
LL
0

ci
:z •• •• 111 •• to "'
0.90 SUCCESSFUL SEARCH

BUCKET SIZE = 5

0.50
0.00

",--r-J~~~~I ~/~I ~I~I~I~I ~,~I"~I 'I~I '/~~"'-'~~'-I 'I~, 'r~~"'-'~~'-r "-,,
0.20 0.40 0.60 0.80 1.(

LOAD FACTOR

GRAPH 4.9 Average no. of disk access reqd. in successful search when

Bucket size = 5

200

3.50

,4.50
,
,

oow
0::

U1
W
(J)

~I
u
u
<1:

Y:
(/1 2.50 _.
o
•..•..
o
o
zi

1.50

.••••••••••••LINEAR OPEN ADDRESSING
~ DOUBLE HASHING

UNSUCCESSFUL SEARCH
BUCKET SIZE. = .5

0.50
I 0,00

I I I j

0.20
j I I ' I I , I I I j I j I
0.40 0.60

LOAD FACTOR

j I I I

0.80
i r I
1.(

GRAPH 4.10 Average no. of disk access reqd. in unsuccessful search
when Bucket size = 5

201

'.. :.

. ~.- "

1.35

c:ia
w
a:::

1.25

SUCCESSFUL SEARCH
BUCKET SIZE = 10

V1
W

~
W
U
U-0:
:><:

1.15V1
(5

LL.0,
ciz

1.05

•••••••••••. LINEAR OPEN ADDRESSINC
~ DOUBLE HASHING

O. 95 ,. ...,.....,.-r, -,--r-,,-,, '1-'-' .,,-,-,--r-,,-,-,-.,-, .,,..,.,,-,, .,,-,, "'"""'.,-", .,-.-, """"-,--r-,,",,"-,-.,-,.,-.-, .,,",,"-,-.,-,-.,--,-.,-,.,""
0.00' 0.20 0.40 0.60 0.80 1.(

.LOAD .FACTOR

GRAPH 4.11 Average no. of diskaccessreqd. in successful search when
Bucket size = 10

, ... 202"0

10.00

8.00

6.00

~ LINEAR OPEN ADDRESSING
•••••••••• DOUBLE HASHING

c:iow
0::
U1
w
~w
U
U~
::x:
V1
5
•.....o
oz

4.00

2.00
UNSUCCESSFUL SEARCH
BUCKET SIZE = 10

0.00
0.00

, I J

0.20
j i , I j , I
0.40

LOAD

I ii' Iii
0.60

FACTOR

j ii'
0.80

I j I
1.C

GRAPH 4.12 Average no. of disk access reqd. in unsuccessful search
when Bucket size = 10

203

',' "

. :"':~."

,',
' ..

1..30

ciawa:
1.10

V1
W

~
W
U
U~
~
V1 0.90
is
L<-a
ciz
0.70

•••••••••••. LINEAR OPEN ADDRESSING
~ DOUBLE HASHING

SUCCESSFUL SEARCH
BUCKET SIZE = 15

0.50
0.00 0.20 0.40 0.60

. LOAD FACTOR
0.80 1.C

GRAPH 4.13 Average no, of disk access reqd. in successful search when
Bucket size = 15

204

6.50
oaw
IX

(/)
w
(/)
(J)
w
~ 4.50
«
::<:
(/)

is
•..•...o
o
z 2.50

•••••••••••• LINEAR OPEN ADDRESSING
~ DOUBLE HASHING

UNSUCCESSFUL SEARCH
BUCKET SIZE = 15

0.50
0.00 0.20 0.40 0.60

LOAD FACTOR
0.80 1.(

GRAPH 4.14 Average no. of disk access reqd. in unsuccessful search

when Bucket size = 15

)~.. .~' .

!;. 10 and 15 have been used. The experiment.al curves 4.9 through 4.l4 show t.hat.

double hashing is superior t.o linear probing.at. almost. any load factor if number of

disk accesses is the prime considerat.ion. When dealing wit.h ext.ernal storage such as a

disk. t.he number of buckets that have t.o be read from external storage is not t.he only

. determinant of access efficiency. Another important factor is dispersal of the buckets

accessed t.hat is. how far apart the bucket.s accessed are from each other.!n general

a major factor in t.he t.ime it. t.akes to read a block from It disk is t.he seek t.ime. This

is the time it takes for the disk head to move to the location of t.he desired dat.a on

t.he disk. !f t.wo buckets accessed one after other are far. apart. more time is required

than if t.hey are close together. Given this fact: it would seem that linear rehashing is

the most effective technique because although it may require accessing more buckets.

the buckets it accesses are contiguous. At the vety end of chapter four dynamic and

extendible hashing techniques have been introduced to show that a single access is

sufficient to bring any record from external memory with an appropriate modification

of index structure ..

5.6 Conclusions.

The experimental results on static table a.lgorit.hmssuggest the use of Uniform and Fi •.

bonacc:ian search technic!,les in cases where It particnlar processor saves considerably in

doing addit.ion and subt.raction operat.ion t.han doing' division operations. This conclu.

sian has been drawn from t.he fact. t.hat. the former two algorit.hms need only addit.ion

and subt.raction operat.ion for t.heir implement.at.ion whereas the commonly used Binary

search procedure uses division operation for every iteration and in most of the cases

division operation is much costlier than addition and subtraction operation.

The simplest.,algorithm we have discussed for dynamic tables is dynamic tree search

206

algorithm. This algorithm is very simple to implement and its average search time is. .

logarithmic when the input keys are perfectly random as verified by simulation experi:

ments: But the tree shape deteriorates sharply as the input keys become nonrandom in,

nat ure. This worsebehaviour becomes severe when some new keys are inserted after the

. deletion of sOmerandom keys. Therefore the adoption of dynamic search t.ree.depends

solely on the randomness property of the incoming keys and t.he freqnency of deletions

made upon it.

Two restricted t.ree structures namely, Balanced and 2-3-4 tree have been intro-

duced to overcOmethe difficulties which may arise when the input keys are nonrandom

in nature. It has been shown bot,h analytically and experimentally that t,hese algorithms

behave logarithmically even when the input keys are nonrandom in nature. Moreover,

theinserl.ion ebst in such trees is reasonably low so that one can easily adopt these

algorithms in order to have an insurance against the bad worst case performance.

Under the proper conditions, hashing is unsurpassed in its efficiency as a table
- .. ' ...

organization, since the average time for a search or an insertion is ,generall.x,c::'on~.~t". . ' ,., - ,~';, ..'. '

independent of the size of the t.able. However, some important caveats are in order.

First, hashing requires a strong belief in t,he law of averages, since in the worst case

collision occurs every time, and hashing degenerates into linear seareh. Second, while it

is easy to inake insert,ions into a hash table, the f1l11slze of the table must be specified !to

priori, because it is closely connected to t,he hash function used; this makes it ext.remely

expensive to change dynamically. If we choose too small a size the performance will be

poor and the table may overflow, but if we choose too large a size much memory will be

wasted. Third deletions from the table are not easily accommodated. Finally, the order

.of the elements in the table is linrelated to any natural order that may exist among the

207

-

~Iements,and so an unsuccessful search r~ults only in th~ knowledge that th~ element

sought is not in the table, ",-ith no informal,ionabout how it relat~ to the el~m~nts

in the l,abl~. If the problem at hand is not relal,ed l<:> the above mentioned difficulti~,

Hashing technique is the appropriate choicewithout any question.

Amongthe various collision resolution schem~, separate chaining is thebest choice

if space is not a critical factor. In this scheme there is no difficulty with d~letion and

there is no chance of overflowing l,he l,abl~and it has the the least search time among

all possible Hashing schemes. If space is the principal consideration then we can avoid

the chainingmethod and adopt eil,her Linearprobing or Double Hashing scheme. Again

Linear probing showsa poor beha,,-iouras th~ table gets.full even though this scheme is

the simplest l<:> implement. Therefore, if computation cost for second hash is reasonable,

Doubl~ Hashing is more efficient than Lin~ar probing. Moreover, aft,~r~Iecting any

particular Hashingscheme,different variation thereofcan be adopted as per requirement

of th~ problem at hand. It should be mentioned that Hashing is particularly suited l<:>

external searching and wil,hproper modification of the index table, any record can be

retrieved from secondary storage device in only one access.

5.1 Suggestion for further study.

There are a largenumber ofsearching algorithmsdepending on the natnre and char-

. acter:isticsof search procedure. Only some repr~ntative ~arching algorithms having

wide applicability have been studied in this th~is. For example, algorithms using the

digital properti~ of keys, algorithms related to graph search and algorithms commonly

used in Artificial Intelligence have not been included in this thesis. So there is a wide

scope 1.0 study these algorithms in future. Also th~ analytical results for the average

behaviour of Balanced and 2-3-4 trees are still unknown. Only the empirical beha,,-iour

208

-

. has been obtained by simulation experiments. One can attempt to find the behaviour

of these algorithms analyticall.)'.Again the incorrectness of Hibbard's theorem has been

pointed out through real examples and by logical reasoning. Attempt should be done

to introduce mathematical support in this regard.

209

BIBLIOGRAPHY

[1]. Aho, A. V., J. E.Hopcroft and J. D. Ullman: Data Structures and Algorithms,

Addison - Wesley, Reading, Mass. 1983.

[2]. Aho. A. V., J. E. Hopcroft and J. D. Ullman: The Design and Analysis of Computer

Algorithms. Addison - Wesley. Reading, Mass. 1974.

, [3]. Amble. O. and D. E. Knuth: "Ordered Hash tables," Computer J., 18: 135-42,

1975.

[4]. Amsbury. W : Data Structures from Arrays to Priority Queues, Wadswo'rth, Bel-

mont. Ca .. 1985.

[5]. Baer, J. L. and B. Schwab: "A comparison oftree balancing Algorithms," Comm.

ACM, 20(5), May 1977.

[6]. Brent, R. P. : "Reducing the retrieval time of scatter storage techniques,' Comm.

ACM. 16(2). Feb. 1973.

[7J. Brown, M : "A storage scheme for height- balanced trees." Inf. Proc. Lett., 7(5) :

231-32. Aug. 1978.

[8J. Carter, J. L. and M. N. Wegman: "Universal classes of Hash functions." J. Camp.

Sys. Sci. 18: 143-154. 1979.

[9J. Clampett. H. : "Randomized binary searching with tree structures." Comm. ACM.

7(3). 163-65. Mar.1964.

[lOJ. Fagin, R., J. Nievergelt, N. Pippenger and H. R. Strong: "Extendible hashing - A

fast access method for dynamic files." ACM transactioll on Database Systems. 4.

3 (September. 1979),

210

)l1J. Foster. C. C. : "A generalization of AVL t.rees.." Comm. ACM .. 16(8) .. Aug, 1973

[12J. Gannet. G. H. and J. I. Munro: "Efficient ordering of Hash tables." SIAM J.

Comp .. 8(3), Aug. 1979

[13J. Guibas, L. J. and E. Szemeredi: "The analysis of Double Hashing," J. Camp. Sys.

Sci.. 16 : 226-74.1978

[14J. Guibas. L. and R. Sedgewick: "A dichromatic framework for balanced trees." 19th

Annual symposium on foundations of Computer Science. IEEE, 1978.

[15J. Horowitz, E. and Sartaj Sahni : Fundamentals of Computer Algorithms, Galgotia

Publications. 1990.

[16J. Karl ton. P. L. and S. H. Fuller, R. E. Scroggs, E. B. Kaehler: "Performance of

height-balanced Trees," Comm. ACM, 19(1) : 23-28, Jan, 1976.

[17). Knott .. G. D. : "Hashing functions," Computer Journal, 18, Aug, 197.5.

[18]. Knuth. D. E. : The Art of Computer Programming, Vo!.l. Addison - Wesley /

Narosa. Indian Student Edition. 1989.

[19J. Knuth. D. E. : The Art of Computer Programming, Vo1.3, Addison. Wesley, 1973.

[20J. Knuth. D. E. : "Optimum binary search trees," ACTA Information, 1:15-25, 1971.

[21]. Larson. P, A. : "Analysis of uniform Hashing," J. ACM. 30(4) : 805 - 819 .. Oct,

1983.

[22J. Larson. P. A. : "Dynamic Hashing," BIT. 18 : 184-201. 1978.

[23). Larson, P. A.: "Linear hashing with separators - A dynamic Hashing scheme

achieving one access retrieval." Technical Report CS-84-23. Uni versity of Waterloo.

Nov. 1984.

[24]. Maurer W. and T. Lewis: "Hash table methods." Compo Surveys. 7(1): .')..19,

Mar. 1975.

211

~',.

!~f>J.Mp.hlhorn, K. : "Dynami<: biDllr~'sp.arch," SIAM J. Comp., 8(21, May, 1979.

[26]. Morris. R. : "Scatter storage techni'1"p.s." Comm. ACM. 11(1),38-44, Jan.19t38.

[27J. Nishihara. S. and K. Ikeda: "Reducing t.he retrieval time of hashing mp.thod by

11singpredi<:tors," Comm. ACM, 26(12), Dec, 1983.

[28). Reingold, E. M. and Willfred J. Hansen : Data Structures, Little, Brown and

Company. 1983.

[29]. Sedgewick. R. : Algorithms. Second Edition, Addision - Wp.sley, 1988

[30J. Tanenbaum. A. M., Yedidyah Langsam. Moshe S. Augenstein: Data Structurp.

Using C. Prentice - Hall. Inc. 1990.

[31J. Vitter:J. S. : "Analysis of the sp.arch pp.rformance of Coalesced Hashing," .1. ACM.

30(2), April, 1983.

-
212

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147
	00000148
	00000149
	00000150
	00000151
	00000152
	00000153
	00000154
	00000155
	00000156
	00000157
	00000158
	00000159
	00000160
	00000161
	00000162
	00000163
	00000164
	00000165
	00000166
	00000167
	00000168
	00000169
	00000170
	00000171
	00000172
	00000173
	00000174
	00000175
	00000176
	00000177
	00000178
	00000179
	00000180
	00000181
	00000182
	00000183
	00000184
	00000185
	00000186
	00000187
	00000188
	00000189
	00000190
	00000191
	00000192
	00000193
	00000194
	00000195
	00000196
	00000197
	00000198
	00000199
	00000200
	00000201
	00000202
	00000203
	00000204
	00000205
	00000206
	00000207
	00000208
	00000209
	00000210
	00000211
	00000212
	00000213
	00000214
	00000215
	00000216
	00000217
	00000218
	00000219
	00000220
	00000221

