
by

MAHBOOB HASAN CHOWDHURY

1111111111\11\1\111\\11\1\11111111 11
__ #8~1463"-- _ ~~_.J

A Thesis

Submitted to the Department of Computer Science and
Engineering , Bangladesh University of Engineering and

I

Technology, Dha~a, in partial fulfilment of the requirements
for the degree

of

MASTER OF SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

February , 1991

Bangladesh University of Engineering and Technology , Dhaka.

,

PERFORMANCE ANALYSIS OF MULTIPROCESSORS SHARING
MEMORY MODULES CONNECTED BY MULTIBUS NETWORK

A Thesis
by

MAHBOOB HASAN CHOWDHURY

Approved as to style and ct'mtents by'

, fjAA,.>1, ~, .1- t/'J--/ 1/
Dr. ~ld. Sh",msu],A],"m
Associate Professor
Department of Computer Science and
Engineering, BUET, Dhaka, Bangladesh

Dr. SYf,d Mahbubur" R.,hman
Associate Professor and Head
Department of Computer Science and
Engineering, BUET, Dhaka, Bangladesh

Dr. Md. Kaykobad
Assistant Professor
Department of Computer Science and
Engineering, BUET, Dhaka, Bangladesh

0". Md. ~-b-U-:-R-'a-"-h-m-a-n--------
Pr-OfE::-sSQr~
Department of Electrical and electronic
Engineering, BUET, Dhaka, Bangladesh

Chail'~man
e.~nd
Super-visor-

~1embel"

Member"
(E"tel"nal)

••

•

. ~

interconnection

ABSTRACT

With the availability
parallelism through fast physical devices,

of

the
high hardware

between processor and memory modules is required to be efficient
enough for high performance of a multiprocessor system. For
higher performance multiple bus interconnection can be used.

In this thesis work multiple bus interconnection
is used for processor memory interconnection in multiprocessor
system. Multiple bus connection is fault tolerant and during a
bus fault only system performance decreases by a little amount
and there remain patmto every memory module from each of the
processors. Equal priority, unequal priority and a combination of
unequal priority and random delay protocols are used for
resolving bus and memory conflicts. Both synchronous and
asynchronous timing and packet switched and circuit switched
systems are simulated for performance analysis. For performance
analysis parameters used are average queue length, processor
.utilization, memory bandwidth and bus utilization. Hardware
design of synchronous and asynchronous arbiters are presented. In
synchronous design equal priority protocol is assumed. In
asynchronous system a two level unequal priority protocol is
examined. Simulation result is validated "by analytical
solutions.

II

ACKNOWLEDGEMENT

Profound knowledge and keen interest of Dr. Md. Shamsul
Alam in the field of Multiprocessor System has influenced the
author to carry out a research work in this field. This research
work was done under his supervision. His constant guidance,
supervision, suggestion at all the stages of this research have
made it possible to complete this thesis. The author expresses
his sincere gratitude to Dr. Alam.

The author takes the opportunity to express his heartfelt
gratitude and thanks to Dr. Md. Kaykobad and Mr. Mahmood Hasan
Chowdhury of Computer Science and Engineering Department, BUET,
for their sincere cooperation and providing valuable materials
for this research.

The author is indebted to Dr. Syed Mahbubur Rahman, Head
CSE Department, Mr. Md. Musa, Director, Institute of Computer
Science(ICS), BAEC and Mr. Alamgir Sarker, Senior Scientific
officer, ICS, BAEC for their constant inspiration during the
work.

The all-out support and services rendered by the faculty
members and the staff of the department of Computer Science and
Engineering, BUET are also acknowledged with sincere thanks.

'"

I do

DECLARATION

hereby declare that neither this thesis nor
anypart thereof has been submitted or is being currently
submitted
university.

in candidature for any degree at

Candidate

IV

any other

CHAPTER 1

1.1
1.2

1.3
1.4

1.5

1.6

TABLE OF CONTENTS

Title Page
Abstract
Acknowledgment
Declaration
Table of Contents
List of Figures
List of Symbols
INTRODUCTION

General Description
Processor Characteristics
for Multiprocessing
Interconnection Networks
Parallel Memory Organizations
Operating System Requirement
for Multiprocessors
Some Examples of Multiprocessor
System

Page
i

ii

iii
iv
v

viii

)1.0"

1

6

11

15
16

19

CHAPTER 2 ARBITRATION

2.1 General Descl.'lPtion
2.2 Circuit Switched Asynchronous

System
2.3 Circuit Switched Synchronous

System

v

25
26

27

2.4 Packet Switched Asynchronous
System

2.5 Packet Switched Synchronous
System

28

29

CHAPTER 3
2.6 Arbiter Design
ANALYTICAL METHODS

31

3.1

3.2

3.3

CHAPTER 4
4.1

4.2

4.3

4.4
CHAPTER 5

CHAPTER 6

General Description
Semi-Markov Method
Probabilistic Method

SIMULATION
General Description
Developement of Simulation
Software
Circuit Switched System
Packet Switched System
RESULTS AND DISCUSSION

CONCLUSIONS ANd SUGGESTIONS

42
44
49

50

53

55

57
63

6.1 Conclusion
6.2 Suggestions for Further Research

APPENDICES

Al: Simulation Program of Asynchronous
Circuit Switched System for Random
Delay Protocol

VI

109
111

113

A2: Simulation Program of Synchronous
Circuit Switched System for Equal
Priority Protocol

A3: Simulation Program of Synchronous
Packet Switched System for Equal
priority Protocol

A4: Simulation Program of Asynchronous

123

138

154

REFERENCES

Packet Switched
priority Protocol

System for Equal

16~

I',.' j'

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4
Figure 1.5

Figure 1.6
Figure 1.7
Figure 2.1

Figure 2.2

Figure 2.3
Figure 2.4

Figure 2.5
Figure 2.6

Figure 2.7

Figure 3.1

Figure ~l..2

LIST OF FIGURES
A loosely coupled multiprocessor
system
A tightly coupled multiprocessor
system
Multiprocessor system with a single
shared bus
Hultiplebus multiprocessor system
Multiprocessor system with crossbar
interconnection network
A 2*2 switch
Omega network

Logic diagram for memory arbitration
module
Logic diagram for bus arbitration
module
Logic diagram for 2 to 1 arbiter
Logic diagram for T1 module of 6
to 4 arbiter
Block diagram of 8 to 4 arbiter
Logic diagram for T2 module of 8
to 4 arbiter
Logic diagram for T2 module of 4
to 2 arbiter
Queueing diagram of circuit
switched system
Queueing diagram of packet
switched multi processor system

vii i.
.~

'\ :..,

2

4

10

10
10

14
14

32

33

36

36

38
39

39

43

43

Figure 3.3

Figure 3.4

Figure 4.1

Semi-Harkov model of circuit

switched synchronous system

Semi-Harkov model of circuit

switched synchronous system

without residual waiting time

Components and queue used in

simulation.

45

45

52

Figure 4.2 Flowchart of simulation of circuit

switched asynchronous system.

Figure' 4.3 Flowchart of simulation of packet

switched asynchronous system.

Figure 5.1.1 Average Queue Length Vs. Number

of Buses for asynchronous circuit

switched System(unequal priority

protocol) .

Figure 5.1.2 Processor Utilization Vs. Number

of Buses for asynchronous circuit

switched system (unequal priority

protocol) .

Figure 5.1.3 Hemory Bandwidth Vs. Number of

Buses for asynchronous circuit

switched system(unequal priority
protocol)

Figure 5.1.4 Bus Utilization Vs. Number of Buses

for asynchronous circuit switched

system(unequal priority protocol).

55

60

64

65

66

67

Figure 5.2.1 Average Queue Length Vs. Number of

Buses for asynchronous circuit

switched system (random delay

protocol).

Figure 5.2.2 Processor Utilization Vs. Number of

Buses for asynchronous circuit

68

69

switched

protocol).

system (random delay

Figure 5.2.3 Memory Bandwidth Vs. Number of

Buses for asynchronous circuit

70

switched

protocol)

system (random delay

Figure 5.2.4 Bus Utilization Vs. Number of

Buses for asynchronous circuit

switched system (random delay

protocol).

Figure 5.3.1 Average Queue Length Vs. Number

of Buses for synchronous circuit

71

72

switched

protocol).

system(equal poriority

Figure 5.3.2 Processor Utilization Vs. Number

of Buses for synchronous circuit

switched system (equal priority
protocol).

Figure 5.3.3 Memory Bandwidth Vs. Number

of Buses for synchronous circuit

switched system (equal priority

protocol)

73

74

Figure 5.3.4 Bus Utilization Vs. Number of

Buses for synchronous circuit

switched system(equal priority

protocol).

Figure 5.4.1 Average Queue Length Vs. Number

of Buses for synchronous circuit

switched system(unequal priority

protocol).

Figure 5.4.2 Processor Utilization Vs. Number

of Buses for asynchronous circuit

switched system (unequal priority

protocol).

Figure 5.4.3 Memory Bandwidth Vs. Number of

Buses for synchronous circuit

switched system (unequal priority

protocol)

Figure 5.4.4 Bus Utilization Vs. Number of

Buses for synchronous circuit

switched system(unequal priority

protocol).

Figure 5.5.1 Average Queue Length vs Number

of Buses for synchronous packet
switched system(equal priority

protocol).

Figure 5.5.2 Processor Utilization Vs. Number

of Buses for synchronous packet

switched system (equal priority
protocol).

XI

75

76

77

79

80

81

Figure 5:5.3 Memory Bandwidth Vs. Number of

Buses for synchronous packet

switched system(equal priority

protocol)

Figure 5.5.4 Bus Utilization Vs. Number of

Buses for synchronous packet

switched system(equal priority

protocol) .

Figure 5.6.1 Average Queue Length Vs. Number

of Buses for asynchronous packet

switched system(equal priority

protocol) .

Figure 5.6.2 Processor Utilization Vs. Number

of Buses for asynchronous packet

switched system (equal priority

protocol) .

Figure 5.6.3 Memory Bandwidth Vs. Number of

Buses for asynchronous packet

switched system(equal priority

protocol)

Figure 5.6.4 Bus Utilization Vs. Number of

Buses for asynchronous packet

switched system(equal priority

protocol).

Figure 5.7.1 Average Queue Length Vs. Number

of Buses for synchronous circuit

switched system with variable

number of processors.

xii

82

83

84 •

85

86

87

88

Figure 5.9

Figure 5.8

Figure 5.7.3

Figure 5.7.4

93

89

95

90

91

92

94

Figure 5.7.2 Processor Utilization Vs. Number

of Buses for synchronous circuit

switched system with variable

number of processors.

Memory Bandwidth Vs. Number of

Buses for synchronous circuit

switched system with variable

number of processors.

Bus Utilization Vs. Number of

Buses for synchronous circuit

switched system with variable

number of processors.

Memory Bandwidth vs Number of

Buses for synchronous circuit

switched system (equal priority

protoco 1).

Memory Bandwidth Vs. Number of

Buses for synchronous circuit

switched system(by analysis).

Figure 5.10.1 Average Queue Length Vs. Number

of Buses for synchronous circuit

switched system

Figure 5.10.2 Processor Utilization Vs. Number

Buses for asynchronous circuit

switched system

Figure 5.10.3 Memory Bandwidth Vs. Number of

Buses for asynchronous circuit

switched system

96

xri i

Figure 5.10.4 Bus Utilization Vs. Number of

Buses for asynchronous circuit

switched system

Figure 5.11.1 Average Queue Length Vs. Number

of Buses for synchronous circuit

switched system

Figure 5.11.2 Processor Utilization Vs. Number

of Buses for asynchronous circuit

switched system

Figure 5.11.3 Memory Bandwidth Vs. Number of

Buses for asynchronous circuit

switched system

Figure 5.11.4 Bus Utilization Vs. Number of

Buses for asynchronous circuit

switched system

97

98

99

100

101

Symbol

N

M

B

Ri
Msi
Bsk

Gi
Gp
Gs
ttot
Qa
Bw
Pu
Bu
d

r

List of SYIIlbols

Meaning

Number of processors

Number of memory modules

Number of buses

Request from processor i

Status of memory module i

Status of bus k

Grant signal for processor i

Primary grant signal

Secondary grant signal

Total simulation time

Average queue length

Memory bandwidth

Processor utilization

Bus utilization

Nominal gate delay

request rate

CHAPTER .1

INTRODUCTION

1.1 General Description:

Numerous applications require ever increasing
computing power which is not possible to gain from sequential

computers [1]. Introduction of parallelism in computer can

increase this ability t.o a great extent. It Is possible to

introduce parallelism by pipelining and by using multiprocessor

machine. Then efficient algorithm for a large class of problem

can be developed by exploiting parallel hardware feature of

multiprocessor system. So improved performance of multiprocessor

system is necessary. Multiprocessors can be grossly characterized

by two attributes:

(a) A.multiprocessor is a single computer including
multiple processors.

(b) Processors may communicate and co-operate at

different levels in solving a given problem. The communication

may occur by sending messages from one processor to the other or

by sharing a common memory.

Multiprocessor system can be divided into two

archi teetural models, such as, tightly coupled multiprocessors

and loosely coupled multiprocessors [2].

Tightly coupled multiprocessors communicate through

a shared main memory. So the rate at which data can communicate

from one processor to other depends on bandwidth of the memory. A

high speed local memory or cache memory may exist with each

1

p

PrO("(;HOr

(LSI. II)

Illlerc/llS{er bUi

Krnap,.__ . ---_.. ...
,
•I,
i
L... _ __.. __.._... ._._.__.

ComrllHcr IntJulJJe

LSI.II bus

(::i) A. :Oll;PIHC[mad!.!!::

lrlle~dusler biiS

~bp bus

..... -1

...

Inpur.'
output;

. _-- .._-- ._]
:
i
,,

.....- .._-..:
COlllPUI..:r rnoJule

llllcrcluslcr buses

KrnilP=r-J
~'."~

Ch.Uler

f~--~
C~:~

Climer
~

Kmap ~ ...
Cm ... Cm

.~-._-------
CllIsler

._-._-----._-
(c) r\ nel',"'urx. of c1li.qers

Figure 1.1 A loosely Coupled multiprocessor
System. [~J

2

processor. A complete connectivity can exist between the

processors and main memory. This connectivity can be accomplished

by interconnection network- crossbar network, time shared bus,

multiple bus network or by a multiported memory. One of the

limiting factors to the expansion of a tightly coupled system is

the performance degradation due to memory contentions which occur

when two or more processo~wish to access particular memory

module simultaneously. Another limiting factor is processor

memory interconnection network.

Loosely coupled multiprocessor systems do not

generally encounter the same degree of memory conflicts

experienced by tightly coupled system. In loosely coupled

mul tiprocessor system each processor has a set o.f input output

devices and a large local memory where it accesses for most of

the instructions an~ data. Here processor, its local memory and

1/0 interfaces are known as computer module. Processor which

execute on different computer modules communicate by exchange

messages through a message transfer system(MTS) [3]. The degree

of coupling of such a system is very lo~se ..Henc~,
system is known as distributed system. Figure 1.1 shows the

loosely coupled multiprocessor system(LCS) Cm* [2]. Each computer

module of the Cm* includes a local switch Slocal. Slocal routes

the processor's requests to the memory and 1/0 devices outside

the computer module via map bus. It also accepts references from

other computer modules to its local memory and 1/0 devices. The

Kmap is a processor that is responsible for mapping addresses and

routing data between Slocals. The computer modules are connected

3

Processor5

Infrr7uPl (;Grl;,1
in I c rcnn necl inll
nrlNork (ISIN)

A
••

()

I-O/P
inter-

connection
nr[work
(I0PIN)

Input-output
channels

Disks
d-I

• •• •• •
0

Unmapped i:

local mrmory (UlM) ,

Memory hiap (~itvl) •••

• ••

. 1'IM intercol1llection
helwork (I'M IN)

•••

-QM,_.1.0

••

•••

-_ ..•~----

Pif,dil1~d '!lOr,cd
memory 1111.idllics

Figure 1.2 A tightly Coupled multiprocessor system. {2]

in hierarchical clusters by two level buses. A cluster consists

of computer module, Kmap and map bus. Clustering can enhance the

cooperative ability among the processors of a cluster. But

intercluster communication becomes time consuming. The map bus

may create a bottleneck because only one transaction can take

place at a time. Clusters communicate via .intercluster buses.

Because of large variability of interference times,

the throughput of loosely coupled multiprocessor may be too low

for applications which require high response times. If high speed

processing is desired, tightly coupled system (TCS) may be used.

Figure 1.2 shows a tightly coupled system.
In this figure processor memory inter-connection

network (PMIN) can be multiple bus or cross bar switch etc. and

its efficiency is required for good system performance [2]. Here

each processor references main memory and these memory

references contributes to the memory conflicts at the memory

modules [4]. Since each memory reference goes through the PMIN,

it encounter delay in the processor memory switch and hence the

instruction cycle time increases. This delay can be reduced by

associating a cache with each processor to capture most of the

references made by a processor. Another consequence of the cache

is that the traffic through the connecting network can be

reduced. With cache there is a problem called cache coherence

[5]. More than one inconsistent copy of data can exist in the

system. When there is a cache miss the required block can be

directly found in anyone of shared memory modules, or it can be

/ currently in other processor's cache memory. Then copy back

5

operation. is required.

1.2 Processor Characteristics for Multiprocessing [2]:

Most multiprocessors have been built using

processors not originally designed for multiprocessor

architecture. Examples of these are the C.mmp system which used

DEC'S PDP-II processors and Cm* which used LSI-II

microprocessors. So a number of desirable architectural features

are necessary for these processors and these are described as

follows :

(al Process recoverability: The architecture of a

processor used in multiprocessor system reflect fact that. the

process and the processor are two different entities. If the

processor fails, it should routinely be possible for another

processor to retrieve the interrupted process state so that

execution of process continues. Without this feature, the

potential for reliability is substantially reduced. Most

processors contain the process state of the current running

process in internal register which are not accessible outside the

processor and are not written to. memory in the event of fault.

With current technology, it should be possible to separate the

general purpose registers from processor itself without much loss

of speed. It is desired to have register file shared by all the

processors.

(bl Efficient context switching: Another reason for

a shared general purpose register is that a large register file

can be used in a multiprogrammed processor. For effective

utilization, it is necessary for the processor to support more

6

than one addressing domain and hence to ~rovide domain change or

context switching operation. Such switching requires extensive

queuing and stack operations. The context switch operation saves

the state of the current process and then switches to a selected

ready-to-run process by restoring the state of the new process.

The state of the new process is indicated by the contents of the

process registers. An example of a processor with multiple domain

is the IBM 370/168 Two domains, the supervisor and user modes

of operation are available. A user process can communicate with

the operating system by using a mechanism provided through a

supervisor call (SVC) instruction. A special instruction can be

created to accomplish the context switch efficiently. An example

of such an instruction is the central exchange jump (CEJ) in the

Cyber-170 processor, which contains a single set of registers.

The execution of the CEJ results in the saving of the context or

state. of the current process and the register set replaced by

the state of another process taken from an area of central

memory. This area is called the exchange package.

(c) Large virtual and physical address space: A

processor intended to be used in the construction of a general-

purpose medium to large multiprocessor must support a large

physical address space. Even when an algorithm is decomposed so

that it can be implemented using very small amount of code,

processes sometimes need to access large amount of data object.

The 16 bit address space used in C.mmp hampered effective

programming of the system. In addition to the need for a large

physical address space I a large virtual address space is also

7

desirable. If possible virtual address space should be segmented

to promote modular sharing and checking of address bounds for

memory protection and software reliability. For example, each

processor used in the S-1 multiprocessor system has 2 gigabytes

of virtual memory and 1 gigabyte of physical memory where each
word is 36 bits wide .

(d) Effective synchronization primitives: The

processor design must provide some implementation of indivisible

actions which serve as the basis of synchronization primitives.

These synchronization primitives require efficient mechanisms for•
establishing mutual exclusion. Mutual exclusion is required when

two or more processors are in execution concurrently and must

cooperate to exchange data during the computation. Mechanisms for

establishing mutual exclusion involve some kind of read-modify-

write memory cycle and queueing. One such mechanism is the

semaphore. Each semaphore has a queue associated with it and the

entries in the queue refer to processes which were suspended

because of the semaphore value of the variable. A semaphore

operation requires an indivisible operation, which can be

accomplished by read-modify-write memory cycle to test and update

a semaphore. The queue manipulations should also be done

indivisibly. Some instructions which are used to accomplish

mutual exclusion, such as, the test-and-set and compare-and-swap.

(e) Interprocessor communication mechanism: The set

of processors used in.a multiprocessor must have an efficient

means of interprocessor communication. This mechanism should be

implemented in hardware. A hardware mechanism is very useful for

8

drawing the attention of the target processor. The need for such

a mechanism is even more apparent, when, in a asymmetric

mul tiprocessor system, there are frequent requests for services

exchanged between different processors.

interprocessor mechanism can also facilitate
The hardware

synchronization

the

of

path in

be capable

commonaaccess

Each processor must

to

are IBM 370/168 MP, Cray X-MP, and the

that two or more processors may

between processors. This mechanism could, for example be used in

the event of a processor failure to initiate a hardware signal to

all functioning processors, which would then become aware of the

faulty processor and start an error recovery or diagonostic

procedure. Since the processors in a tightly coupled system share

memory, it is possible to have software interprocessor.

communication without an explicit hardware mechanism. This method

is inefficient as each processor will have to periodically poll

its "mailbox" to see if there is a message for it. Such polling

will result in intolerable response times for a large number of

processors. Examples of systems with hardware inter-processor
communication mechanisms

C.mmp. It is possible

simultaneously attempt

interprocessor mechanism.

participating in the arbitration of the requests to use the path.

Since arbitration implies that on simultaneous requests one or

more processors must wait, the processors must have a wait

state or some mechanism to suspend the .processor in a queue.

(f) Instruction set: The instruction set of the

processor should have adequate facilities for implementing high

level languages that permit effective concurrency at the

9

ljO
proe.

Mem.
mod.

. Shared bus

Mem.
mod.

Figure 1.3 Multiprocessor system with a single shared bus. [2}

BI
B2

Bb

MM. MM. MM.

Buses

Figure 1.4 !'lultiplc bus multiprocessor system. [4]

•••

. Mem.

•

Switch

;Mc:m. • •• .1Mcm .

Fig-ure 1.5 !,Iultiprocessor sys tern with crossbar interconnec tio
network. [4]

10

procedure level and for .
efficiently manipulating data

structures. Instruction should be provided for procedure linkage,

looping constructs, parameter manipulation, Multidimensional

index computation, and range checking of addresses. Furthermore,

the instruction set should also include instructions for creating

and terminating parallel execution paths within a program. Thus a

full set of addressing modes are desirable. Hardware counters and

real-time clocks should be provided to generate a unique name of

process identification and time-out signals required for process

management. These times can also be used in a multiprocessing

system to detect many errors by associating a "watchdog"timer

with important system resources, as done in the C.mmp. A

multiprocessor system provides a natura~ environment where each

component can monitor each other relatively easily.
1.3 Interconnection Networks:

The principal characteristics of a multiprocessor

system [2,5-8) is the ability of each processor to share a set of

main memory modules. This sharing capability is provided through
a interconnection network. Different types of interconnection
networks are described below:

(al Time shared or common buses: The simple
interconnection system for multiple processors is a common

communication path connecting all,.of the

examples of a multiprocessor system
functional units. An

using the common
communication path is shown in figure 1.3 The common path is
often called a time shared or common bus. This organization is

the least complex and the easiest to reconfigure. Such an

11

interconnection network is often a totally passive unit having no

active component such as switches. Transfer operations are

controlled completely by the bus interface~ of the sending and

receiving units. An arbiter determines which processor will get

controL of the bus .in case of more than one processor requesting

concurrently. If there are a large number of processors in a

system then single bus reduces the system performance because of

long delay experienced by a processor waiting in queue in time of

need of a bus. So to achieve greater system performance multiple

bus system can be used which is also the simplest form of

interconnection network. Then for a certain system with some

processors and a number of memory modules, the number of buses

required to achieve best system performance should be determined

so that optimum bus utilization is achieved. The multiple bus

multiprocessor system is shown in figure 1.4 .

(bl Cross bar switch and multiport memories:. In a

crossbars system separate path is available from each memory to

the processors as shown in figure 1.5 The crossbar switch

possesses complete connectivity with respect to the memory

modules because there is a separate bus associated with each

memory module. So in crossbar system there is no bus conflict.

Only conflict is memory contention when two or more processors

request the same memory. The important characteristics of a

system utilizing a crossbar interconnection matrix are the

extreme simplicity of the swi tch-to-functional unit interfaces

and the ability to support simultaneous requests for all memory

modules. To provide these features requires major hardware

12

capabilities in the switch. Not only must each cross point be
capable of switching parallel transmissions, but it must also be
capable of resolving multiple requests for access to the same
memory module occurring during a single memory cycle. These
conflicting requests are usually handled on a predetermined
priority basis. The result of inclusion of such a capability is
that the hardware required to implement the switch can become
quite large and complex. Although very large scale integration
(VLSI) can reduce the size of the switch, it will have little
effect on its complexity.

(c) Multistage interconnection networks(MIN): The
construction of a simple crossbar switch is shown in figure 1.6.
Consider the 2*2 crossbar switch in this figure. This 2*2 switch
has the capability of connecting the input A to either the output
labeled 0 or the output labeled 1, depending on the level of some
control bit cA of the input A. If cA =0, the input is connected
to the upper output, and if cA is 1, the connection is made to
the lower output. Terminal B of the switch behaves similarly with
a control bit cB' The 2*2 module also has the capability to
arbitrate between conflicting requests. If both inputs A and B
require the same output terminal, then only one of them will be
connected and the other will be blocked or rejected. By
introducing buffers within switches its performance can be
increased [2-3]. With this basic module it is possible to built a
MIN. In figure 1.7. a 8 by 8 omega network is shown build from
these basic modules.

13

Aft°
D~Ly'

Control
bil of /1
C=,O
"

An°
n.r-~I

Conlrol
bit of A
Cit = I

Figure 1.6

1100

OiD

ll~

1~1

Inputs

Figure 1.7

A 2x2 switch. [4]

100

101

110

III

Outpts

Omega network

14

1.4 Parallel memory organizations [2]:

Low order interleaving of memory modules is

advantageous in multiprocessing system when the address space of

the active processes are shared intensively. If there is very

little sharing, low-order interleaving may cause undesirable

conflicts. Concentrating a number of pages of a single process in

a given memory module of a high-order interleaved main memory is

sometimes effective in reducing memory interference. In this

case, a specific memory module Mi may be assigned to place most

of the pages belonging to a process executing on processor i.

Such a memory module is called the home memory for processor i.

If the entire set of active pages of a process being executed on

processor i is contained in memory Mi, and if memory Mi contains

no pages belonging to processes running on other processors, then

processor i encounters no memory conflicts. If every processor

has the entire set of active pages of those processes that are

running on it in its home memory, there will be no memory

conflicts. The concept of home memory can be extended so that a

set of modules {Mi} are assigned as the home memories of

processor i. This assumes that there are more memory modules than

processors, so that at all times each memory module is associated

with one processor. That is {Mi}and{Mj} = 0 for i != j. The home-

memory organization for multiprocessors has an additional

architectural

interferences

advantage beyond the reduction in memory

The processor-memory interconnection network (PMIN)

of a multiprocessor system may be expensive, slow, and

complicated. So there can be an alternative organization in which

15

each memory has two ports, one of which connects to the PMIN and
one of which connects directly to the home processor. This

topology permits enhanced access by each processor to its home

memory by frequently avoiding switching time through PMIN and

permitting decreased cable lengths between processors and their

home memories. Since PMIN participates in only a minority of all

memory accesses with this organization, its speed become less

critical and substantial cost savings may also be possible. The

concurrent (C) access memory configuration used for pipeline

processors can also be used by multiprocessors. For tightly

coupled multiprocessors, a single C access configuration can be

designed to match the bandwidth requirements of the processors.

In this case, the main memory and the processors are on the

opposite sides of the PMIN and references to memory by tlie

processors must traverse the PMIN. Therefore, the processor

encounter memory conflicts as well as transmission delays. To

reduce these effects, a private cache is usually used associated

with each processor in multiprocessor so that most of the

referenced data and instruction can be found in the cache.

However, the data bus width may affect the cost and transfer time

of a block of data.
1.5 Operating system requirements for multiprocessor:

There is conceptually little difference between a

operating system requirements of a multiprocessor and those of a

large computer system utilizing multiprogramming. However, there

is the additional complexity in the operating system when

multiple processor must work simultaneously. This complexity is

16

also a result of the operating system being able to support

multiple asynchronous tasks which execute concurrently. The

functional capabilities which are often required in an operating

system for a multiprogrammed computer include the resource

allocation and management scheme, memory and data set protection,

prevention of system deadlocks and abnormal process termination

of exception handling. In addition to these capabilities,

multiprocessor system also need techniques for efficient

utilization resources and, hence, must provide input-output and

processor load-balancing schemes. One of the main reasons for

us ing a mul tiprocessor system is to prov ide some effec t ive

reliability and graceful degradation in the event of failure.

Hence, the operating system must also be capable of providing

system reconfiguration schemes to support graceful degradation.

These extra capabilities and. the nature of the multiprocessor

execution environment places a much heavier burden on the

operating system to support automatically the exploitation of

parallelism in the hardware and the programs being executed(l).

~ operating system which operates poorly will

negate other advantages which are associated with

multiprocessing. Hence, it is of utmost importance that the

operating system for a multiprocessing computer be designed

efficiently. The presence of more than one processing unit in the

system introduces a new dimension into the design of the

operating system. The influence of large number of processor on

an operating system is still a research problem. The modularity

of processors and the interconnection structure among them affect

17

the system development. Furthermore communication schemes,

synchronization mechanisms, and placement and assignment policies

dominate the efficiency of operating system. There are basically

three organizations that have been utilized in the design of

operating system for multiprocessor, namely master slave

configuration, separate supervisor for each processor, and

floating supervisor control [~l.

For most multiprocessors, the first operating

system available assumed the master-slave mode. This mode in

which the supervisor is always run on the same processor, is

certainly the simplest to implement. Furthermore, it may often be

designed by making relatively simple extensiOns to uniprocessor

operating system that include full multiprogramming capabilities.,

Although the master slave type of system is simple it is

generally inefficient in utilization of system resources. In a

master slave mode, one processor called the master maintains the

status of all processors in the system and distributes works to

slave processors. An example of the master slave mode is in the

Cyber-l70, where the operating system is executed by one of the

peripheral processor. All other processors are treated as slaves.

When there is a separate supervisor running in each processor,

the operating system characteristics are different from the

master slave. system. This is similar to the approach taken by the

com~uter networks, where each processor contains a. copy of a

basic kernel. Resource sharing occurs at a higher level, say via

a shared file structure. Each processor services its own need •.

However, since there is some interaction between the processors,

18

it is necessary for some of the supervisory code to be re-entrant

or replicated to provide separate copies for each processor. The

floating supervisor control scheme treats all the processors as

well as other resources symmetrically or as an anonymous pool of

resou~ces. This is the most difficult mode of operation and most

flexible. In this mode, the supervisor floats from one processor

to another, although several of the processors may be executing

supervisory service routine simultaneously. This type of system

can attain better load balancing over all type of resources[21.

1.6 Some Examples Of Multiprocessor Systems[1-3]:
(i) The 'C.mmp System: The C.mmp is composed of 16

PDP-ll/40E(slightly modified) minicomputers sharing a 16 memory

banks via crossbar ..The average time to execute an instruction on

a PDP-11/40 is approximately 2.5 us. Each processor has an 8K-

byte local memory that is used primarily for operating system

functions. The principle secondary memories of the C.mmp consists

of four drives of 40M-byte disk controllers, three drives of

130M-byte disk controllers, and fixed head disks with zero

latency controller that are used for paging space. The peripheral

devices are assigned to the Unibus of specific processors. Hence

there is no physical sharing of peripherals. A processor cannot

ini tiate an I/O operation on a peripheral that is not on its
\Unibus ..An interprocessor bus which connects the entire set of

processors is used to perform the general function of

interprocess communication. The bus provides a common lock as

well as an interprocessor control. These two logically and

functionally separate features travel separate data paths,

19

although they share a common control. Each processo.r has an

interbus interface that defines the processor's bus address and

makes available the bus functions to the software (2.}.

(ii) The S-l Multiprocessor System: The S-l

consists of 16 uniprocessors which share 16 memory banks via a

crossbar switchl~l.Each memory bank can up to 230 bytes of

semiconductor memory and hence a total physical address space of

16 gigabytes (234). Each processor has a private cache. The S-l

multiprocessor system is developed to perform computations at an

unprecedented aggregate rate on a wide variety of scientific

problems. The S-l is implemen.ted with the S-l uniprocessors

called Mark lIAs. The uniprocessor is designed especially to

facilitate pipelined parallelism in the fetching and decoding of

instructions, the associated fetching of instruction operands,

and the eventual execution of instructions. The preparation and

execution of instructions that specify both scaler and vector

operations are pipelined. Every instruction proceeds through

multiple pipeline stages, including instruction preparation,

operand operation, and execution.
(iii) PASM: PASM is a multifunction partitionable

SIMD/MIMD system being designed at Purdue for image

understanding l31.It is to be a large scale, dynamically

reconfigurable multiprocessor system, which will incorporate over

l,OOO complex processing elements. Other than image processing

and pattern recognition it can also be applied to speech

understanding and biomedical signal understanding. PASM can also

serve as a research tool for parallel processing with emphasis on

20

large-scale SIMD/MIMD parallelism. This system has hierarchical

control with a system control unit responsible for process

scheduling, resource allocation, parallelism mode and overall

coordination. Microcontrollers act as the controllers for the

processor memory pairs in SIMD mode and orchestrate the

activities of processor memory pairs in MIMD mode. Each

microcontroller consists of a microprocessor and two memory units

so that memory loading and computations can be overlapped. There

are four microcontrollers in the prototype system that are able

to control upto four processors each. The microcontroller

processors and memories are connected by a shared reconfigurable

bus. Control storage contains the programs for the

microcontrollers. Their loading is controlled by the system

control unit. PASMs multistage network is a generalized cube with

straight, exchange and broadcast capabilities. The network uses a

commutati ve routing algorithm which is an improvement over the

packet switching routing algorithm used in Texas Reconfigurable

Array computer (TRAC). PASM uses different network for each

function, such as, data access, instruction sharing and I/O. The

PASM represents a mix of special and general purpose architecture

and therefore it may be prove to be efficient for some ev.enly

partitionable problems such as image processing, but not adequate

for some real-time processing tasks because of hierarchical

control and complex scheduling.

(i v) The HEP Multiprocessor System: The

Heterogeneous Element Processor is a large-scale Scientific

multiprocessor system which can execute

21

a number of

sequential (SISD) or parallel (MIMD) programs simultaneously. The

system consists of upto 16 processor execution modules(PEM) and

upto 128 data memory modules(DMM). The PEM is designed to execute

multiple independent instruction streams on multiple data stream

simultaneously and it consists of its own program memory and an

instruction processing unit(IPU). The program memory in each PEM

has a capacity ranging from 1 to 8 megabytes. Instructions of

active processors which are allocated to a PEM are buffered in

the program memory. The HEP is the first commercially MIMD

multiprocessor system. In the HEP system, a set of cooperating

processes constitute a task. Tasks and processes are of two

types: user or supervisor. The execution environment of a task. is

its task domain, which is defined by 64-bit task status word

(TSW). The TSW provides protection and relocation for each task

by a ,specification partition of the program, constant, register

and data memories into areas. In addition to TSW There is a

process status word (PSW), which contains a 20-bit program

counter and other state information for a HEP process. Each PSW

points to an instruction that is ready for execution. There is a

process tag (PT) in the task queue for each PSW that points to an

instruction that is ready for execution. When a task is first

initiated, it has only one PSW; that is, one process. The

software creates additional PSWs as new processes are created to

initiate parallel processing within. a task. There is a PSW queue

which can hold a total of 128 PSWs: 64 for user processes and 64

for supervisor processesL~l.
(v) The IBM 370/168MP system: IBM 370/168

22

Multiprocessing(MP) consists of two IBM 370/168 uniprocessor

systems. The two CPUs are mutually exclusive and can not

communicate each other directly. The two processors in in the

370/168 MP share from 2 to 16 million bytes of main storage. each

CPU has either 8K-byte or 16K-byte cache with reduced 80-ns

access time of 8 bytes. It has 22 block multiplexer channels. The

block multiplexer channels permit concurrent processing of

multiple channel programs for various speed peripheral devices.

The multisystem control unit(MCU) provides the necessary

interconnection hardware between the two CPUs and shared

memories. It also contains a configuration control panel for the

purpose of manual system reconfiguration. The 370/168

configuration is considered loosely coupled because two separate

copies of operating systems are running in the two CPUs.

(vi) The Univac 1100/90 system: This is the most

recent system by Sperry Univac. The system permit one, two, three

or four central processing units(CPU) as 1100/91, 1100/92,

1100/93, and 1100/94 systems respectively. The 1100/9x is an x by

x system containing x CPU and x I/O processors which can be

tightly coupled. However,' loosely coupled systems are also

possible in which there are two independent systems sharing one

mass storage subsystem. The 1100/94 system configuration, in

addition to having four CPUs and four I/O processors, contains

four main storage units and two system support processors. Each

CPU is pipelined with an 8K word instruction and an 8K word data

cache. A word is 36 bit wide. Each cache is organized into 256

sets with four blocks per set. Each block contains eight words.

23

The CPU uses a virtual addressing scheme with 236 words of

address space. The initial address is divided into four portions.

A segmentation scheme is used with a maximum of 262,144 segments.

CHAPTER Z

ARBITRATION

2.1 General Description:
In a multiprocessor system processors share

memories through buses. When a processor requests a memory module

there may be two types of conflicts.

(i) Two or more processors can request the same

memory module. So it is required to decide which. processor will

access the memory.

(ii) The number of processors requesting buses is

, .

greater than the number of available buses. Here also it is

required a method to decide which processors will get buses.

The hardware which decides which one of the

competing processors will win the resource when conflicts arise

is known as arbiter and the process of making the decision is

known as arbitration.
Arbiter resolves a memory or a bus conflict

depending on some rules [q] which are called arbitration protocol.,
Appropriate protocol should be chosen for achieving high level of

system performance. Five arbitration protocolsDO;.'l commonly used

are:
(1) Equal priority protocol.

(2) Unequal priority protocol.

(3) Rotating priority protocol.

(4) Random delay protocol.

(5) Queuing protocol.

For asynchronous circuit switched system equal

25

priority protocol and a combination of unequal priority and

random delay protocol are used. For synchronous circuit switched

system equal priority protocol and unequal priority protocol are

used. For packet switched synchronous. and asynchronous system

equal. priority protocol is used.

2.2 circuit switched asynchronous system:

~ Unequal priority protocol:
Processor can generate request after end of

processing or during a cache miss. When a processor generates

request it checks the state of requested memory and buses. If the

requested memory and any of the buses are free then the processor

goes for memory arbitration. Otherwise it waits until the

requested memory and any of the buses are free. If there are more

than one processor requesting one memory module then the arbiter

selects the highest priority processor from them. The processors
-which fail in memory arbitration waits until that memory module

becomes free and there is at least one free bus. After the wait,

the processors resubmit requests for memory and bus arbitration.

If the nUliberof free buses is less than .the number of processors

which have won in memory arbitration then the arbiter selects a

number oi'processors equal to the number of free buses from

winning processors. Also in this selection the. higher priority

processors win. The processors which fails in bus arbitration

waits until any of the buses become free. Then they resubmit and

again go through memory and bus arbitration.

iQ) Random delay protocol:
Processors can generate request at any time after

26

end of processing or at a cache miss. When a processor generates

request it scans the state of requested memory and buses. If

the requested memory and any of the buses are free, it proceeds

for memory arbitration. Otherwise it waits for a random amount of

time. This random delay is generated by a random number

generator. After waiting it resubmits request and go through

memory and bus arbitration. In memory arbitration, if there are

more than one processor requesting a particular memory module

then the memory arbiter selects the highest priority processor.

The winning processor goes for bus arbitration and the processors

which have failed in memory arbitration waits a random amount of

time generated by a random number generator. Then it resubmits

the request for the memory module and again go through memory and

bus arbitration. In bus arbitration, if the number of free buses

is less than the number of processors which have won in memory

arbitration then the arbit~r selects a number of higher priori~y

processors equal to the number of free buses from winning

processors. But if the number of winning processors are less than

the number of free buses all the processors which have won in

memory arbitration win in bus arbitration. The processors which

have failed in bus arbitration wait a random amount of time

generated by a random number generator. And then they resubmit

requests and repeat memory and bus arbitration.

2.3 Circuit switched synchronous system:

~ Equal priority protocol:
Processors can generate requests at the beginning

of system cycle. If two or more processors submit request for a

27

particular memory module, anyone of the processors may win in
the arbitration. A memory arbiter selects one processor from all
requesting processors with equal probability. All the processor
which win in memory arbitration go for bus arbitration. Here
atmost Bf processors out of Mr processors are selected (Bf =
number of free buses, Mr = number of winning processors in
memory arbitration, Mr<=M and M=total number of memory modules)
by a M to B arbiter(or bus arbiter). Those processors which win
in both arbitration occupy buses and perform memory operation for
a number of system cycles for block replacement. Those processors
which have failed in arbitration resubmit requests at the
beginning of next clock. The main difference between
asynchronous and synchronous system is that in synchronous system
processors can generate requests only at the beginning of system
cycIe. ill. Unequal priority protocol:

Processor can generate requests at the edge of
clock. Every processor has unique prio~ity number. If more than
one processor request a particular memory module the memory
arbiter selects the highest priority one. In bus arbitration
atmost Bf higher priority processors win out of Mr winning
processors in memory arbitration. Those processors which win in
both arbitration occupy buses and do memory operation for a
number of system cycle(1 to 6 slots) for a block replacement.
Those processors which have failed in arbitration resubmit their
requests at the beginning of next system cycle.
2.4 Packet switched asynchronous system(Hqual priority protocol):

A processor submits request when there is a cache

26

miss or that it has finished processing (in a non cache system).
At this time processor looks for free buses. If one or more
buses are free processor goes for bus arbitration. From
requesting processors atmost Bf processors are selected by
arbiter with equal probability and send their requests for cache
block for replacement through the occupied buses to the. IMP
(Intermediate message processor or controller) and then
controller recognizes that a memory module have to be requested.
Controller tracks the requested memory status. When a memory
module becomes free and requested by more than one processor then
the memory arbiter selects one of the requesting processors with
equal probability. Then the winning processor"s block read or
write operation takes place. When memory operation ends, IMP
checks if there is any bus free to transfer the requested block.
If there is free bus and the request wins in bus arbitration the
block is transferred through bus. Resubmission of request for bus
occurs when any free bus is found and resubmission for memory
occurs when requested memory again becomes free.
2.5 Packet switched synchronous systeu(Rgual priority protocol):

A processor submits request when there is a cache
miss or it finishes processi~g and it is a beginning of system
cycle. The main difference between synchronous and asynchronous
system is that in synchronous system request for any bus or a
memory module can be generated at the beginning of system cycle.
The sequence of operation in arbitration is same as that
described in previous section. Resubmission of request for qus
occurs at the beginning of system cycle and resubmission for
memory also occurs at the beginning of system cycle.

29

'.

2.6 Arbiter Design:

Lal Asynchronous system:

For asynchronous system a two level unequal

priority arbitration logic is used for achieving equal priority

protocol. When a processor needs resource it raises its request

signal high. Let Ri is the request line of processor Pi' where

i=I,2, N. When a processor submits request' it finds if

requested memory and any of the buses are free. Logic equation

for generating request for memory module j by the processor i is,
- -Cij = RiMsJ.(Bs1

+. Bs2 + Bsk).

Where, Bs1' Bs2' ... Bsk are bus status signal, Msj is the jth

memory status signal.
If(}.' . is-high then' the processor sends its arbitration number. ~J

to arbitration lines of the requested memory. For jth memory each

processor has a module to see whether it has won in first level

of arbitration or not. The logic equation [10] for this module is

as follows:

Cn =Cij(~l + ~l)'

Aul+ =Aul + Cij ~l'
Where, .~l is lth bit of arbitration number. Cij is compete

signal for this module. an:is the next state of line Aut after

application of arbitration number by a processor. In figure 2.0
the logic diagram for first arbitration module is shown

If a processor wins first level of arbitration it

has Y ij equal to 1 and it sends this Y ij as compete signal to

second arbitration module. In second level each memory module has

31

------ .

c.
If

AnI

LS8

Figure 2.1 Logic diagram for memory arbitration modulelDO]
. I

'32

mj4

mjl

Mj4

Mj3

Mjl

Figure. 2.2 Loqic diaqram for bus arbitration rnodule.(cont.)
/

33

Y;j 0 GJ
~.
J

YJj
o-BJy,.

BsJJ

V;j
Yj

~
Bs;

Bs2
B2

V;j

BSJ YTI B]

~~

Bs]

Figure 2.2 Logic diagram for bus arbitration module.

"
34

different arbitration number. The module which has highest
arbitration number will win in second level of arbitration. If a
processor wins in second level of arbitration it gets its grant
signal high and the bus number is send to the processor so that
it can occupy the bus for data transfer. The bus number for a
winning processor is determined by the following equations:

B1 = yijbs1'
B2 = Yijbs1bs2'

Bk = ~ijbs1bs2bs3 ...bsk'
The logic diagram of second arbiter arbiter module

for memory module j is shown in fig 2.?Jl'Ol.Fromthese figures
it is seen that total number of gate required for an asynchronouS

arbiter is:
M*N*[6 + 4*log2(N)] + M*[4*log2(M) + 1] + M*N*(B + 1)
=M*N*(B + 7) + M*(4*log2(M*NN + 1)
And delay experienced by this arbiter is

(log2(N)*3 + 3) + (10g2(M)*3 + 1) + 1

= 3log2(MN) + 5.

Where N = total number of processors

M = total number of memory modules

B = total number of buses
(hl Synchronous system:

(i) N to 1 arbiter: It is for memory

arbitration. A N to 1 arbiter is made of a number of 2 to 1
arbiters. A 2 to 1 arbiter is shown in fig 2.~i [11-12]. Here RO
and R1 are two request lines. And GO and G1 are two grant back
signal to previous level and Gc is grant line from next higher

35

Figure 2.J Loe;ic diagram for 2 to 1 arbiter~12J

Bs(l)

BoO) Bp (I)

Gp
a

Go R1
Gs

Logic diae;ram of T1 module of 8 to 4 arbiterqj2],

36

signal to previous level and Gc is grant line from next higher

stage. Line Rc is request transferred to next higher level. If RO

is high and R1 is low then GO will be high. If R1 is high and RO

is low then G1 will be high. If both RO and R1 are low then GO

and G1 are don't care terms, because there are no request to

monitor the grants. If both RO and R1 are high then which request

will get grant will depends on Gc' grarit back from next higher

level. If Gc is low then Q remains unchanged. But if Gc is high Q

toggles. When RO and R1 are both high then if Q is reset then GO

will be high i.e. request RO will be serviced, and when Q is set

G1 will be high, 1.e., request R1 will be serviced. Number of

gate required by a N to 1 arbiter is

gates = 14*(N-1)

delay = Z*[logZ(N/Z) + 1]

Where N = total number of processors.

(ii) M-tO-B arbiter: If there are M memory modules

and B buses only B of M requests can be serviced. There is needed

a module T1, where there are two request lines RO and R1. Two

grant back 1ines GO and G1 to previous lower level, Two grant

lines Gs and Gp from next higher level. BO and B1 are bus numbers

sent to lower level, and Bp and Bs are bus numbers from higher

level.
If from RO and R1 only one request is high then

this request monitor the condition of grant back line Gp'

If both RO and R1 are high and if state of flip-

flop Q is reset, then request RO monitors grant back Gp and

request R1 monitors grant back Gs' Again .when both RO and R1 are

37

"

f"" • Bj< i) Ri Gki Bj(i) Ri aj< i) Gk Bj< i) Ri> j(I Gk Ri

J .~ .~

f2 T2 f2 T2

Bs
Gp ap

B~,
Gp Bp Bs Bp

B I R II'll! BOa I I'll

1 I

Ra aaBI I'll

11

Ra aa
Gel G 1 GO G 1.

1;9 GI G0 1;1

Figure 2.50 Block diagram of 8 to 4 arbiter.

38

G"I -_-1__ [-
R --- -

- 10 r----JR
II

G --I
'1<2 R --==0---- -3---

R21 --

G ---I
1'3 _ _ [) [)--R --- --- -
Ii _:'~r----' ---

'31

Fiqure 2.6 Logic diagram of T2 module of 8 to 4 arbiter.

Fiqure 2;7 Logic diagram of T2 module of 4 to 2 arbiter.

39

high and Q is set then request R1 monitors grant b~ck Gp and

request RO monitors grant back Gs' So the logic equation[I~] is

as follows:

Go = QR1Gp + QR1GS '-G1 =. ~ROGp + <moGs

When a request is made and a grant signal is available, the

number(in binary) of the available bus received from'the last

higher stage through the input bus port bits will be transmitted

through the output bus port bits to the next lower stage, the

boolean equations of a bit say biti are similar to boolean

equation for grant signals GO and G1 with GS' Gp replaced by BS'

Bp' So the logic equation

follows:

BO = QR1Bp + QR1BS
B1 = 'QROBp + QROBS

for ith bit of bus number is as

The logic diagram of Tl block is shown in figure 2,~ '

For 8 to 4 arbiter Gp and Gs signals can be

generated in advance, If this module is called T2 [12] then the

equations for four T2 modules are as follows:

GpO = GkO'

GsO = GklFrl0Rli + Gk3R20R21~30R31

+ Gk2R20R21R30R31Rl0Rll'
Gp1 = Gk1,

Gs1 = GkOROOROI + Gk2R20lr21R30R31
+ Gk2lr30~31R20R21ROOROl'

Gp2 = Gk2,

Gs2 = Gk3R30R31 + GklRl0R11ROOROI

40

+ Gk2ROO~01~11~31'
Gp3 = Gk3.

Gs3 = Gk21r20E21 + GkORooR01R1QR11

+ Gk1R10R11ROOR01R20R21'
GkO' Gk1, Gk2 and Gk3 etc. are grant signal back

from higher stage, the block diagram and logic diagram of this

arbi ter is given in figure 2,5 and in figure 2.6. In this

design gate delay is 5d , where d is nominal gate delay and total

number of gate required is 304.

For 4 to 2 arbiter logic equations for T2 modules

are as follows:

GpO = GkO'
GsO = 1<10 RllGk1,

Gp1 = Gk1,

Gs1 = "'!rOOR01GkO'

The logic diagram of this arbiter is given in

figure 2.7 '

'"

CHAPTER a

ANALYTICAL KETHODS

3.1 General Description
For determining performance of a system

analytically it is necessary to model the system by some
mathematical methods. Multiple bus multiprocessor system can be
analyzed by queueing theory. The queuing model of circuit
switching and packet switching multibus multiprocessor is shown
in fig. 3.1 and 3.2 respectively. Depending on control strategy,
switching methodology and timing philosophy there can be
different kind of analysis techniques. The system where events
can occur at the beginning of system cycle, i.e. synchronous
system ,can be represented by discrete Markov process [13] or
semi-Markov process [8,14]. Synchronous system can be solved by
probabilistic methods and combinatorial analysis [9] . The system
where event can happen at any time, can be represented by queuing
networks with infinite buffers or by queuing network with flow
equivalent service center[15,18]. Equilibrium point analysis(EPA)
[14] is also a good analysis tool for multiple bus
multiprocessor system because it represents complicated
stochastic systems with less complexity. But EPA may not be
accurate enough. The rate of request is determined by local
codes, cache mises and the processor speed. In asynchronous
system this rate is described in terms of think time and common
approximation for this time is negative exponential distribution.

L2

~}-

=mJ- -~--(]')-------
QUEUE

Fiqure 3.1 Queueing diagram of circuit switched system.

III
QUEUE

Figure 3.2 :Que'uE"iog Diagram of Packet SHit(hed Multipro(E"sSor

Sy S 1 ~ ""

43

The usual approximation of the multiprocessor system is the

uniform reference. of the memory module. Thus a request is

directed to a particular memory module with a probability 11M.

This symmetric assumption makes the analysis tractable. In case

of biased access to a particular memory module, the performance

is expected to deteriorate because of longer queuing delay.

3.2 Semi-Markov process:.

Multiprocessor system with uniform memory reference

can be characterized by the following assumptions [8]:

(i) The behavior of the active element i.e.

processor can be modeled as identical stochastic process.

(ii) The processor think for an integer number of

system cycles before cache miss and this time is characterized by

a discrete independent random variable t(t is average of t).

(iii) Each processor will submit a memory request

after its thinking period; the request originating from the

processor are independent of each other provided they are not

is

be

nonthe

will

which

resubmitting requests. The destination memory module of

resubmitted requests originating from any processor

determined by a discrete independent random variable

uniformly distributed between 1 and M.

(iv) When requesting processor finds that requested

memory module is busy then that processor has to wait until the

connection is completed, i.e. it has to wait until the end of

remaining memory connection time.

(v) When requested memory and anyone of the buses

are free but more than one processor submit request to get a

5,

52 5, 5,
53

53 S2 50
52
53

---_.
Figure 3.3 Semi,-_markovmodel of circuti sl'/itchedsynchronous system;

5,

~------------

Figure 3.~ Semi-markov model of circuti switched synchronous system
without residual waitin~state.

45

particular memory module then one processor is selected from the

requested processors and other remain waited until memory

connection is completed. i.e. other processor wait for a full

memory connection time. So a circuit switched synchronous

multiple bus system can be represented by the semi-Markov process

of figure 3.3 . State 0 is processor's thinking state, state 1 is

accessing or memory connection by the processor, state 2 is full

wai t (i.e. J total memory connection wait) of the processor and

state 3 is residual wait i.e. a part of memory connection wait.

Let S's are state transition probabilities. So is

the probability that a processor come back to thinking state

after memory accessing. So So = 1. S1 is the probability that a

processor goes to state 1 for memory access. S2 is the transition

probabili ty a processor fails in arbitration and hence has to

wait for full memory connection. S3 is the transition probability

that a processor finds requested memory module busy servicing

another processor. These transition probabilities can be find

from the following equations[i]:

So = 1

Sl = (1 - BUSY) WINl *WIN2

S2 = (1 - BUSY) (1 - WIN1)WIN2

S3 = BUSY + (1 - BUSY)(l - WIN2) ,

Where, BUSY = ((N -l)/M) (El - 1)L1

... (1)

WINl = (1 - (1 - R)N)/ (N*r) = p/(N*r)
B

WIN2 =1;X(k)*Y(k)
1<=1

N = Total number of processors

M = Total number of memory modules

46

B = Total number of buses.

EO = Average processing time.

El = Average memory connection time = C (say)

E2 = Full waiting time = C

E3 = Residual waiting time = (CZ - C)/(C - 1) •

r = Probability that a processor generates request to a

particular memory module at the beginning of system cycle.
X(k) = fmin(k,i)li .r:'.J),p(i-li(l _ p)(M-l)

',<1 . ~.J
Y(k) = BCkq(B - k)(l : q)k

q = (n - l)(El - l)LllB

p = 1 - (1 - r)N

£1 = PllEl

After defining the proper semi-Markov process it is

necessary to find PO' P1' Pz and P3 which are the probability

that a processor will be in state 0 or state 1 or state 3

respectively. And these probabilities can be deduced as follows:

PO = EO.Sl.M.r

Pl = El.Sl.M.r

.P2 = E2.S2.M.r

P3 = E3.S3.M.r

For iteration Ll = 0 and r = 11M is used.

(2)

Now, bandwidth, Bw = N*P1, where n is the total number

of processor and P1 is the probability that a processor is

accessing a memory module.
Processor utilization, Pu = Po + Pl' i.e. processor

is thinking or accessing a memory module.
Bus utilization, Bu = N*Pl IB, the number of bus is

47

utilized.

processor is

Average queue length, Qa
waiting (full or a part of

=

memory

+ P3)' i.e. a

connection) for

requested memory module.
If memory word size is equal to number of data

line, then memory connection and bus cycle time both equals. Then

at the beginning of system cycle when processors may submit

request the memory modules remain. free. So, a processor which

fails in arbitration has to wait for full memory connection and

residual waiting state 3 of previous representation could be

eliminated. With this the semi markov representation of circuit

switched synchronous system becomes as shown in figure 3.4

Where So is =1, the transition probability that a processor

returns to thinking state after accessing .

Sl = the probability of success that a processor

become successful in memory or bus arbitration and access a

memory module. It is the transition probability that from state 0

or state 2 to state 1.
S2 = the probability that a processor fails in

memory arbitration or bus arbitration. It is transition

probability from state Oor state 2 to state 2.

Then, bandwidth, Bw = N*P1.

Processor utilization, Pu = Po + Pl.

Bus utilization, Bu = N*P1/B.

Average queue length, Qa = N*P2.

3.3 Probabilistic method:
Let the probability that a particular processor Pi

submits request at the beginning of system cycle is r. Then, if

there are M memory module, then the probability that a particular

memory module Mj is requested by Pi is riM, where M is the total

number of memory modules. Then probability that M.
J is not

requested by Pi is (1 - riM), if there are total N number of

processors. Then, the probability that no processor request Mj is

(1 r/M)N. And then probability that at least one processor

submit request to memory module Mj is (1 - (1 - r/M)N). It is the

probability that memory module Mj is requested and one of the

requesting processor definitely wins it. Let, it is denoted by

Pr[Ej]. Then,

Now, the probability that, i memory modules out of

M memory modules is requested is given by,

f(i) = MCiPr[Ej]i(1 - Pr[Ej])(H-i).

So, memory bandwidth, which is dependent on the

number of buses is

of buses.

given as [~]:
B '"= L. i*f(i) +L B*f(i);

i.=J L=S+(

49

Where B = total number

CHAPTER .1.

SIMULATION

4.1 General Description:
To determine characteristics and performance of a

system it can be possible to make a model that resembles the

actual system. This model can be built by software programming.

Also a small version of actual system can be pursued to determine

the system performance. In computer, by simulation it implies to

simulation by software. Simulation is pursued when actual

measurements .are time consuming and complex. By simulation it is

possible

modeling

to predict system performance accurately. Mathematical

is another way to evaluate system performance without

going into actual design. But exact mathematical model of some

practical system becomes much difficult; whereas the performance

of these systems can be evaluated almost accurately by.

simulation.
There are three types of simulation [18-19].

(i) Time driven simulation.

(ii) Event driven sjmulation.

(iii) Process driven simulation.

In time driven simulation all parameters are to be

updated after a specific time interval. Simulation runs for a

specific amount of time, say, ttot and starts at some time, say

tinit. Beg inning from initial time all the processors, memory

modules and bus conditions are to be updated after each unit time

50

of the system (1 slot).
In event driven simulation all parameters are to be

updated when new event occurs. An event is said to have occurred,

when an active element(i,e, processor) starts some processes or

finishes .them, i.e. when active elements changes state. There is

a total specific amount of time. As simulation proceeds the

events are updated and statistics are collected when an event

occurs. Simulation ends at ttot.
In the process driven simulation it is needed to

prescribe the condi tions (process) which cause an acti vit,' to

start or end. The events which start or end the activity are not

scheduled but are initiated from the conditions specified for the

activity.
Simulation can be classified as discrete simulation

and continuous simulation [19].

In discrete simulation the dependent variables,

i.e. variables to be updated or calculated, changes discretely at

specific point in simulated time referred to as event times. The

time variable is either continuous or discrete depending on

whether the discrete changes in the dependent variable can occur

at any point in time or at specific points. In continuous

simulation the dependent variables of the model may change

continuously over simulated time. A continuous model may be

either continuous or discrete in time, depending on whether the

values of the dependent variables are available at any point in

simulated time or only at specified points i,nsimulated time.

4.2 Development of Simulation Software:

In the simulation program (AI - A4) four components

51

" "
,-, ,..., ,..., ;.;
0 0 0 CJ
>:: ~ ;: M~
~ .d

, Mti 0
'-' '-' '-' ;.; -'-'..., :..
0 to EI >:: rj
;.; ;5 :ll 0 ...,
0.. ::c t,) ~)

-,...
:l
;::

.- ~I~ iE
..-!...,

"xs:~ -',._,,.,
.U

v -'-';: --<
(l) i ...,

S'" " ;(0-
,~ .-< (l) .~..., ~ ;: 1J1

~, ::J~ E c::~, '-< ,.,
,0' ...,

f '-:.:'
Zlj

.•..-."--
,.v

-'-' '.V
X
:;J ,'Jj

'J
c c 0 ~
c ,- ;: ;: i••.•~
i

, -E ~ ~'

! (:}.~ ~
'"' ;...:,

"l;' ,.:'
C ~
,~ ;.-::

" ._.- ..., Co]: c'

...•
";l'

'1J
.,

'~ oW'~~ -'-' :;J X Cj
CO ," 6 ~ ~..., ..., ,-<
:Il .:0 ..., Sii,-<

,ex.

52

4.2 DevelopDent of SiDulation Software:
In the simulation program (AI - A4) four components

are simulated by structures and those are Processor(pro), bus,

memory(mem) and controller(cont) as shown in figure 4.1. Event

queue is formed by controller. In controller structure there are

three fields. Processor number(p-no), where identification number

of processors are kept, current time field and next field to keep

track of next member in the event queue. In processor

structure{pro) there are five fields. The field next event(n_e)

is for making decision what next event should be done. The field,

memory number (m-no) is for deciding the memory number

occupied by a processor and the field, bus number(b-no) is for

the number of buses occupied by a processor. In memory structure

there are three fields. State field shows memory status i.e. it

shows if the memory is free or being occupied by a processor. In

bus structure there are three fields. State field shows bus

status i.e. it shows if the bus is busy or idle. Current events

are taken from front of event queue. Processed events are placed

in proper place in event queue by a routine(insert). Different

types of protocols are simulated by sorting the position of the

processors in the event queue or by logic actually used in the

programs (A1 - A4).
Number of busy processo~, queue length, number of

busy memory modul~ number of busy bus are taken after end of

each event. Here is an example :
Say ni is the number of busy processor at time ti,

then the number of average busy processor, navg is:

navg = (n1(tz - t1) + nZ(t3 - tZ) +

+ ni(ti+1 - ti»/ttot ... (1)

53

The input paramete~ of the simulation are the

processing time(geometric distribution and uniform distribution),

memory connection time(constant) for circuit switched systemj .and

processing time(uniform), bus connection time(constant) and

memory connection time(constant) for packet switched system. For

random delay protocol random delay time(uniform) should be

supplied as an input parameter.

The output parameters are Average queue length,

Processor utilization, Memory bandwidth and Bus utilization

These are evaluated as follows:

Where, NWi = is the number of processors waiting in

queue in time ti and

ttrans = Some initial or transient time which is

not taken into account in collection of statistics. This time is

allowed to bring the simulated system into steady state

condition. Now,

Processor utilization,Pu = navg/N (3)

+ (4)

+ (5)

t.
1.

Where, Mbi = Number of busy memory module at time

Bbi = Number of busy bus at time t .

54

<ondition

Sft lotol simulo_
tion timp' t101

Y.s

Prorrssor t-nds proCt-SS ing

Ch(>c k th" ,.,. SOU"'("

condition

Updat~ ~V~nt qu~ue

Tok" r'Su11S

No
1St op

rfSourc"S

updot.
,-V.n!
\Jueue

10k,
rf'Su I IS

Figure 4 •.ZFIOH-thart of s-ilftuJat;on
E asynchronous SySTem.

55

.f c i,., cui t

4.3 Circuit Switched SysteD
La) Asynchronous System:

First an event queue is formed where processor
number and current time of processor are kept. At the beginning
all the processors have been kept in processing state. Occurrence
of a new event and the kind of new event are checked.

The system (Processors, Memory modules and buses)
can experience three events by which simulation is performed.
These are described in the following paragraphs.

(i) Bnd of processing: when a processor ends
processing it goes for arbitration. First step is memory
arbitration followed by bus arbitration. The performance
parameters should be updated according to success and failure in
arbitration. Its time is incremented to update simulation. And it
is assigned the next event, n_e = 1 (fig 4.1), release of memory
and bus(i.e. resource release), if it have won in arbitration and
occupied resources. Otherwise, it should be the end of waiting
for resubmission. All statistics are to be collected for
performance evaluation.

(ii) Processor has just ended DeDory connections:
When memory connection ends busy bus and memory are .freed and
performance parameters and number of busy bus and memory are
updated. Processor"s time is incremented to run the simulation
and to make the processor busy. Its next event is given l(end
of processing).

(iii) ResubDission of request by processor: The
processor is given memory connection through bus if it wins
arbitration. Then its time will be incremented by an amount equal
to the connection time and next time it will cause an event after

56

ending memory connection i.e. its next event will, n_e = 2. But

if the processor fails in arbitration its time is incremented by

an amount equal to waiting time(according to protocol) and it its

next event will, n_e = 3.

These three states are repeated until total

simulation time is completed. At each event performance measures

number of busy buses, number of busy memory modules and number

of busy processors are updated. The simulation flowchart is shown

in figure 4.2 .

(hl Synchronous System:

First an event queue is formed, taking all the

processor information as queue element. At the beginning all

processors are kept in processing state. Occurrence of new events

and their numbers are checked to serve them appropriately.

If processor ends processing or there is a cache

miss at any time other than at the beginning of system cycle then

processor goes to wait state. In this case processor"s time is

incremented so that it can submit request at the beginning of

next clock. Processor keeps on waiting. Its next event is set to

be the end of waiting,i.e. state 3. Queue length increases:

number of busy buses and memory modules are not changed.

As the processor ends processing at the beginning

of system cycle then there can be three events as described in

asynchronous system.

4.4 Packet Switched System:
Lal Asynchronous system:

First an event queue is formed keeping all the

processor information as queue element. At the beginning all the

57

processors are kept in processing state. Occurrence of new events

and their numbers are checked to serve the events properly. There

are seven events in which a processor can be present.

(i) End of processing(eop): When a processor ends

processing it submits request to get a bus. If it wins in bus

arbitration it keeps the bus busy for packet transfer for a fixed

bus transfer time, say .05 s. Processor time is updated by bus

transfer time so that it can release bus after end of packet

transfer through bus and next event is set to 1, i.e. end of bus

transfer in forward direction. Number of busy processors remains

the same and number of busy bus~is increased by one. If it fails

in bus arbitration it will resubmit request when anyone of the

buses become free and processor time is incremented so that it

can resubmit when a free bus is found. Processor's next event is

set to 2. The number of busy processor is decreased by one.

(ii) End of bus transfer in forward

direction:(eobf) The processor releases bus so number of busy bus

is decreased by one. If it wins in memory arbitration it keeps

the requested memory busy for a fixed memory connection time, and

next event is set to 4, i.e. end of memory connection. The number

of busy processor is decreased by one. If the processor fails in

memory arbitration it has to wait until the requested memory is

released by winning processor, i.e. the memory becomes free

again. The processor time is updated so that it can resubmit

request when requested memory become free and next event is set

equal to 3, i.e. end of wait for memory. The number of busy

processor is decreased by one and queue. length is increased by

58

one.

(iii) End of wait for bus in forward direction

(entbf): The processor resubmit request for bus. If it wins in

arbitration it keeps bus busy for a specific amount of time, say

so that processor can release bus after end of bus transfer and

processor's next event is set to 1, i.e. end of bus transfer in

forward direction. The number of busy processors and the number

of busy bu~es are increased by one. If it fails in arbitration it

will resubmit request when anyone of the buses become free and

processor time is incremented so that it can resubmit when a free

bus is found. And processor's next event is set to 2, i.e. end of

wait for bus.
(iv) End of wait for memory module (entm): The

processor resubmit request for memory. If it wins in memory

arbitration, it keeps the requested memory busy for a fixed

memory connection time say 6 slots. So the processor time is

incremented by the memory connection time, and next event is set

to 4, 1.e. end of memory connection. If the processor fails in

memory arbitration it has to wait until the requested memory is

released by the winning processor, i.e. the memory module becomes

free again. The processor time is updated so that it can resubmit

request when requested memory module becomes free and next event

is set to 3, i.e. end of wait for memory module. Queue length is

increased by one.

(v) End of memory connection(eom): The processor

releases memory so the number of busy memory is decreased by one.

59

St"t Starting
condi1ions

Sf t tot a Isi,nu I a_
,ion tiM. IIot

1St a p

No
Y.s

Get ,he cu~rent pr
c~SSor frOM ~V.nt

eop

e-obf e-ntb eom e-ntbb

en t m

Figure 4.3 ..5 i m u I a , i on flo"" C h a" t 0 f p a, k. t S "" i , c h • cl

system.

60

It wants bus for turning back requested block to cache. If the

processor wins in bus arbitration, it keeps a bus busy for packet

transfer for a fixed bus transfer time say 5 slot~ Processor time

is updated by bus transfer time so that it can release bus after

end of packet transfer through bus and next event is set to 6,

i.e. end of bus transfer in returning of requested block (in
,

backward direction) operation. Number of busy processor and busy

bus are increased by one. If it fails in bus arbitration it will

resubmit request when anyone of the' buses, become free and

processor time is incremented so that it can resubmit when a free

bus is found. And processor's next event is set to 5, i.e. end of

wait for bus.

(vi) End of wait for bus in reverse direction

(entbb): The processor resubmit request for bus. If it wins in

bus arbitration it keeps the bus busy for returning requested

packet to processor cache for a fixed amount of time say 5 slot~

Processor's time is updated by this transfer time and 'its next

event is set t6 6, i.e. end of bus transfer in reverse direction.

The number of busy processors and busy buses are increased by

one. If it fails in bus arbitration it will resubmit request when

anyone of the bus become free. And processor time is incremented

so that it can resubmit request when a free bus is found. And

processor's next event is set to 5, i.e. end of wait for bus in

reverse direction.
(vii) End of bus transfer ,in reverse

direction(eobb): The processor releases bus and enters into

processing state. The number of busy bus is decreased by one. The

61

processor time is updated so that it can submit request after it

ends processing. Its next event is set to 0, i.e. processor ends

processing. The simulation flowchart is shown in figure 4.3 •

1Ql Synchronous System:

First an event queue is made, taking all the

processor information as queue element. At the beginning all the

processors are kept in processing state. Occurrence of new events

and their processor number is checked to serve the processors

appropriately. Initialization of clock time is made. If processor

ends processing at a time other than at the beginning of system

cycle, processor has to wait until beginning of next clock.

Processor time is updated so that it can submit request at the

beginning of next system cycle and. next event is set equal to

2,i.e. end of wait for bus in forward direction. The number of

busy processors is decreased by one and queue length is increased

by one. If a processor ends processing at the beginning of system

cycle it can go to anyone of the seven states as described in

asynchronous packet switched system.

62

CHAPTER Q

RESULTS AND DISCUSSION

Multiprocessor systems with 16 memory modules,

number of processors upto 128 and number of buses in the range 1-

16 are investigated. For synchronous system, system cycle is

assumed one slot(minor cycle). Uniform and geometric distribution

of processing time are considered. Memory connection time is

assumed to be constant. For packet switched system bus connection

time is also assumed to be constant.

Performances of multiprocessor system with multiple

buses are evaluated as shown in graphs 5.1.1 through 5.11.4

The performance measures plotted in

below:

different graphs are shown

No. of Figures

5.1.1, 5.2.1
5.3.1, ... 5.7.1
And 5.10.1, 5.11.1

5.1.2, 5.2.2
5.2.2, •.• 5.7.2
And 5.10.2,5.11.2

Description of Figures

Average Queue Length vs. no of Buses

Processor Utilization vs. no of Buses

Memory Bandwidth vs. no of Buses
5.1.3, 5.2.3
5.3.3, ... 5.7.3
And 5.8, 5.9, •.5.11.3

5.1.4, 5.2.4
5.3.4, •. 5.7.4
And 5.10.4, 5.11.4

Bus Utilization vs. no of Buses

In crossbar interconnection network there is no bus

conflict. The only conflict is memory conflict, which happens

63

Unequal. priority protocol

20.00

:5 15.00
01
c
0)

0)
:J
0)
:J 10.00
0-

0)
01
o....
0)
1(5.00

Q

p - 16
M - 16

...•. T = 5
aooca T = 2.5 ~••••• T = 50 to

Figure 5.1.1: Average queue
circuit switched svstem.

buses for asynchronous

0.00
0.00 4.00 8.00

No of Buses
length vs number of

12.00 16.00

•

Unequal priority protocol

If)
to

•
D

.••.• T=5
D D D DDT = 2.5
••••• T = 50

P = 16
M = 160.80

c:
o

1.00

I.-g 0.40
(f)
Q)
()o
I.-

0.. 0.20

.•....
o
N 0.60

..•...•
::>

0,00
0.00

Figure 5.1,2:
(lsvnChrOnOIJS

4.00 8.00 12.00
No of Buses

Processor utilization vs number of buses for
circuit switched system.

16.00

20.00

P = 16
M = 16

~

Figure 5.1.3: Memory bandwidth
circuit switched svstem,

8.00 12.00 16.00
No of Buses

vs number of buses for asynchronous

15,00..c.•....
-0.~
-0
c
o
..Cl 10,00

~o
E
Q)

::::iE
5,00

0,00
0.00

Unequal priority protocol

4,00

•

..... T=5
QQQQQ T = 2.5
, •• , , T = 50 <D

<D

16
16

1.00

0.80

c
.20.60
-+-'o
N

:;:;
::::l
0.40

(f)
::::lm

0.20

..... T = 5
D D D DDT = 2.5
" , •• T = 50

t'--
CD

Unequal priority protocol

Figure 5.1.4: Bus utilization vs
circuit switched system. ~.

0,00
0.00 4.00 8.00 12.00 16.00

No of Buses
number of buses for asynchronous

Random delay protocol

20.00

..c
-0-,15.00
c
Q)
..J.

Q)
:J
Q)
:J 10.00
a
Q)

0'o'--Q)
~ 5.00

P = 16
M = 16

••••• T = 5.
00000 T = 2.5
~~~.~ T = 50

Q

co
to

No
Figure 5.2.1 Average queue length vs
chronous circuit switched system.

0.00
0.00 4.00 8.00

of Buses
number of

12.00

buses for asyn-

16.00



1.00

0.80

c
.2
-+-'o
N 0,60

-+-'
::::>
I....g 0.40
(f)
Cl)
()o
I....

[L 0,20
Random delay protocol

P = 16
M = 16

a

...•. T=5
a a a a a T = 2.5
••••• T = 50

Ol
U)

0,00 . . . .
0.00 4.00 8.00 12.00

No of Buses
Figure 5.2.2:Processor utilization vs number of buses for asyn-
-chronous circuit switched system.

16.00



20.00

..c 15.00
-+-'-0OJ
-0
c
o
CD10.00

Co
E
OJ
~

5.00

.Random delay protocol

P = 16
M = 16

..... T=5
D D D DDT = 2.5
•••••••••• T = 50

•

o•...

Figure 5.2.3: Memory bandwidth
circuit switched system.

0.00
0.00 4.00 8.00 12.00

No of Buses
vs number of buses for asyn-

16.00



P = 16
M = 16

•....
..... T=5

= 2.5
50

0.80

1.00

....,
::) 0.40
(f)

:Jen

c
00.60:;:;
o
N

0.20
Random. delay protocol r"

0.00
0.60 4.00 8.00 12.00

No of Buses
Figure 5.2.4: Bus utilization vs number of buses for asyn-
chronous circuit switched system.

16.00



Equal priority protocol16.00

14.00

..c:
+'0112.00
c
Q)

~ 10.00
Q)
:J
c:r

8.00
Q)
01
o•...
~ 6.00
«

4.00

••••• r = .1
••••• r = .2
ooooor=1

J)

•
•

N
t--

Figure 5.3.1; Average queue
circuit switched svstem.

2.00
0.00 4.00 8.00 12.00 16.00

Number of buses
length vs number of buses for synchronous



1.00

0.80

co
:;:;
00.60
N

.....,
::J
~
00.40(J)
(J)
Q)
<.)o
I-

0.. 0.20

Equal priority protocol

••••• r = .1
•.••• * r = .2
••••• r = 1

•
Mr:--

0.00
0.00

Figure 5.3.2: Processor
circuit switched system.

4.00 8.00 12.00
Number of buses

utilization vs number of buses for

16.00

synchronous



Equal priority protocol
15.00

..c
-to'
"0

.~ 10.00
"0

c
a
..0

~o
E
l])~ 5.00

••••• r = .1
.•..,..•.•.• r = ..2
••••• r=1

""

0,00
0.00 4.00 8.00 12.00 16.00

Number of buses
Figure 5.3.3: Memory bandwidth vs number of buses for synchronous
circuit switched svstem.



1.00

0.80

.c:c
00.60

:;:;
o
N

.....,
:J 0.40
(f)

:Jm

••••• r = .1
QQQQQ r = .2
•• -.!......!_.r=1

Equal priority protocol

l!"l

e--

.;..-~~

Figure 5.3.4: Bus utilization vs
synchronous system.

0.20

O.OQ);eJO 4.00 8.00 12.00
Number of buses
number of buses for circuit

16.00

switched



-~,
•••

Unequal priority - protocol

8.00 12.00 16.00
Number of buses

length vs number of buses for synchronous

4.00
0.00

0.00

16.00

~ 12.00 ] \ ~

••••• r = .01
nnnnn r = .1
••..•• r = .2

-1 \ "-" toa! e--
:J
a! 8.00:J
0-

a!
0'
0
L-

a!
4.00 .~ \ ~ ---. •

>« l\ A •/:. fl._ /:.

Figure 5.4.1; Average queue
circuit switched svstem.



c--
c--

- .01= .1
= .2

••••• r
a~~~4 r
~Ur

Unequal ../ prIOrity.• • -.... t protocol
t • .•1 ••....•, ~

// ~::::.::r::
/' ./ y/'/' /

//h
//

0.80

co

1.00

.•...•
8 0.60

.•...•
:J
I-g 0.40
if)
Q)

oo
I-

CL 0.20

0.00 .
0.00. 4.00 8.00 12.00 16.00

r'Jumber of buses
Figure 5.4,2; Pt'ocessor utilization vs number of buses for synchronous
circuit switched sl,Istem.



20.00 Unequal priority protocol

R

16.0012.00

•

i •••• r = .01
[Hillllil r = .1
" ,.." ..." r = .2

4.00 8.00
Number of buses

5.4.3: Memory bandwidth vs number of buses for synchronous
switched svstem.

0.00
0.00

5.00

15.00..c
-+-'v
~v
c
o
.D 10.00

C-
O
E
Q)

:2

Figure
circuit

,



)

1.00

0.80

c
.Q 0.60
+-'o
N

+-'
:J
0.40

if!
:J
CD

\

~~

~

Unequal priority protocol

&$'" r = .01
= .1
= .2

.----------.

Cf>
e--

0.20

4.00

Figure 5.4.4: Bus utilization vs
circuit switched svstem.

8.00 12.00
[\lumber of buses
number of buses for synchronous

16.00



20.00

:S 15.00
01
c
Q)

Q)
::J
~ 10.00
0-

Q)
01
o
L
Q)

~ 5.00

Equal priority protocol

'~

ttt ••
9999Q.....

r = .1
r = .2
r = 1

o
<0

0.00 , , ' '
0.00 4.00 8.00 12.00 16.00

Number of buses
Figure 5.5.1: Average queue length 'IS number of buses for packet
switched svnchronous svstem.



1.00

0.80

c
o:,::;
00.60
N

..•.....
::J
Lg 0.40
(J)
Q)
oo
'-
CL 0.20

Equal priority protocol

11111 r = .1
QQ<;IQQ r = .2
-.- • ,.. r = 1

:. : :~::;;:;;:~::V.
/,
f/
':I1-/

<0

0.00
0.60 4.00 8.00 12.00 16.00

r'~umber of' buses
Figure 5.5.2: Processor utilization 'IS number of buses for packet
switched s'InchronolJ3 svstem.



20.00

15.00.r.•...
\J
~
\J
c
o

..0 10.00

C'o
E
QJ

:2
5.00

Equal priority protocol

••••• r = .1
OOliOO r = .2
..••. r=1

•

Nco

0.00
0.60 4.00 8.00 12.00 16.00

Number of buses
Figure 5.5.3: Memorj bandwidth \JS number of buses for packet switched.

synchronous system.



1.00

0.80

c
00.60
4-'o
N

4-'

:J 0.40
(J]

:Jen

0.20

\ Eqoo' peioeily pcoto,oI

~\
\~\\

\,

lttll r = ,1
QQQQQ r = .2
••••• r == 1

M
Q)

Fiaure 5.5.4: Bus utilization 'IS
switched svnchronous s'/stem.

0.00
0.00 4.00 8,00 12,00

r~umber of buses
number of buses for pocket

16.00



'-

20.00 Equol priority protocol

"

...ct15
.
00 j ••••• r = .1

Q Q Q Q Q r = .2
••••• r = .5
+++++ r = 1

Q)

~ \ '"::J coQ)::J 10.00
0-

Q)
CJ)
0
l- 5.00Q)
> "1 .,~ ~ + • • •<J::

0.00
0.00 4.00 8.00 12.00 16.00

Number of buses
Figure 5.6.1; Average queue length vs number of buses for packet
switched asvncchronolJs system.



1.00 Equal priority protocol

0.80 ,
••••• r = . 1
QQQQQ r = .2c 3 ••••• r= .50 ••••• r = 1:;:;

~ 0.60
ll'l'-= j <0.•...

:J
I..-

g 0.40

/~:~ ~ • . - •• •(,)
0
l..

0...0.20

0.00
0.00 4.00 8.00 12.00 16.00

Number of buses
figure 5.6.2: Processor utilization vs number of buses for packet
?fwitched asvncchronous system.



20.00

..c 15.00.•....
-0
~

-0
c
o
.0 10.00

~
o
E
Q)

:2
5.00

Equal priority protocol

",., r = .1
00000 r = .2
••••• r = .5
•• +.+ r = 1

<0
co

0.00 , . . . ., . .
0.00 4.00 8.00 12.00 16.00

Number of buses
Figure 5.6.3: Memory bandwidth vs number of buses for packet
switched asvncchronous system.



Equal priority protocol1.00

0.80

c
.20.60....,
o
N

....,
:J
0.40

(f)

:Jco

0.20

0.00 , . , . .. .". ' '
0.00 4.00 8.00 12.00 16.00

Number of buses
Fiqure 5.6.4: Bus utilization vs number of buses for packet
switched asvncchronous system.



Equal priority protocol

co
co

••••

For 16 memory modules
••••• P=64
••••• P= 72
•• 0 •• P=128
o Q Q 0 Q P=16

~~

120.00

.s:
-+-'
01
C
Q)

80.00
Q)
:J
Q)
:J
0-

Q)
01
0

40.00•...
Q)
>«

Figure 5.7.1: Average queue
number of processors.

v,.....\Qr--"O-~Q~-Q9-_.J;nL...-JQIL_.on'-......(O •..•..._Q;_-'i9>--.....,vr----

buses with variable

0.00
0.00 4.00 8.00

No of buses
length vs number of

12.00 16.00



1.00

0.80

For 16 memory modules
••••• P=64
•••.• P=72
••••• P=128
00000 P=16

No
Figure 5.7.2: Processor utilization vs
number of processors.

8.00. 12.00 16.00
of buses
number of buses with variable

en
<0

••
o

Equal priority protocol

4.00
0.00

0.00

-+-'::J
I-g 0.40
(j)
(l)
(.)

2
0....0.20

co
:;:;
~ 0.60



Figure 5.7.3: Memory bandwidth
number of processors.

For 16 memory modules Equal priority
••••• P=64
••••• P= 72
00000 P=128
00000 P=16

o
'"

16.00

variable

8.00 12.00
No of buses

vs number of buses with

4.00
0.00

0.00

20.00

5.00

15.00..c.•...
\J.~ .
\J
c
o

.D 10.00

Co
E
Q)

2



1.00

0.80

c
.20,60
+'o
N

+':l
0.40

If)
:l
CD

0.20

••••• P=64
••.•• P=72
00000 P= 128
Q Q 0 0 0 P=16

Equal priority protocol

For 16 memory modules

a>

(

\.,.

Figure 5.7.4: Bus utilization vs
number of processors.

0.00
0.00 4.00 8,00 12.00

No of buses
number of buses' with variable

16.00



20.00 Equal priority protocol

16.00

o

o

o

000000.20
•..•. 0.50
00000 1.00

12.00

for circuit switched

o

8.00
No of buses
number of buses

~- _i' . . . . --

4.00
0.00

0.00

5.00

15.00..c..•...
-0.~
-0
c
o
.D 10.00

C
o
E
Q)

~

Figure 5.8 Memory bandwidth vs
synchronous system •.

<0
N



6

20.00

M
Ol

"'" r = 0.2
QQQQQ r = 0.45
••••• r = 0.9

.~ 9 9 9 ; 9 Q

4.002.00
0.00

0.00

5.00

J:: 15.00
-0-'-0.-
~
-0
C
o
.!:J 10.00
2:-o
E
(j)

:::;;:

6.00 8.00 10.00 12.00 14.00 16.00
Number of buses

Fiaure 5.9: Memorv bandwidth vs number of buses (By analvsis),



60.00

..c
-+-'
0'>
C
(J)

40.00
(J)
:::J
(J)
:::J
v
(J)

0'>20.00o
L
(J)
>«

For 16 memory modules

Random delay protocol and
Uneqyal pririty protocol
for b4 processors

~ .
• • • =:t

Random delay protocol
And Uunequal priority protocol
for 32 processors

"f
Ol

Figure 5.10.1; Average queue
circuit switched s,!stem.

buses for asynchronous

0,00
0.00 4,00

No
length

8,00
of buses
vs number- of

12.00 16.00



1.00

0.80
c
o

-+-'o
.N 0.60

-+-'::l
L.
00.40
(f)
(f)
(])
()

oL 0.20
0...

For 16
memory
modules

Random delay protocol
Ane Unequal priority protocol
for 32 processors

Random delay protocol and
Unequal pririty protocol
for 64 processors

tn
a>

0.00 I ' , , I , I , I , I • , • • • •• I , .

0.00 4.00 8.00 12.00 16.00
No of buses

Figure 5.10.2: Processor utilization vs number of buses for
asynchronous circuit switched system.



20.00

to
a>

Random delay protocol
Ane Unequal priority protocol
for 32 processors

Random delay protocol and
Unequal pririty protocol
for 64 processors.......... ::

•
For 16
memory
modules

...c=0 15.00

~
V
C
o
..0 10.00

>,
~o
E
Q)
2: 5.00

0.00
0.00

Figure
circuit

4.00
No

5.10.3: Memory bandwidth vs
switched svstem.

8.00 12.00
of buses
number of buses for

16.00

asynchronous



•.....
Cil

Random delay protocol
Ane Unequal priority protocol
for 32 processors

Random delay protocol and
Unequal pririty protocol

for 64 processors1.00

0.80

-C
C
.00.60..•....
o
N

..•....:J 0.40
(f)
.:J
OJ

0.20
For 16 memory modules

Figure 5.10.4: Bus utilization
circ.uit switched svstem.

0.00
0.00 4.00 8.00 12.00 16.00

No of huses
vs number of buses for asynchronous



'16.00
~

..c

1"°°1 ~,

~ • ..!! •...!' r = 0.1 tAnOlyticOI)
••••• r = 0.1 Simulation) co

O'l

(J)
::::l
(J)

8.00::::l
0
(J)

'CJ)
0
I.-

4.00 ~ ~
QJ

~ ...•.•- ..g. -I)- --0- .• - a

0.00
0.60

Figure 11.1:
synchronous

2.00 4.00

Average queue
system.

6.00 8.00 10.00 12.00 14.00

len~W~~e~u~be~l6fetruses for circuit

16.00

switched



_D- __ - 11- _a_ ....fiI - Cl

1.00

0.80

c
o

:;:;
a
.~ 0.60.-+-':::J

•....
g 0.40
(f)
Q)
uo•....
CL 0.20

.•..

'!. D~ 0-E r
••••• r

= 0.1 (Analytical)
= 0.1 (Simulation)

Ol
Gl

.~~

0.00
0.00 2.00

Figure 11.2: Processor
synchronous system.

4.00 6.00 8.00 10.00 12.00 14.00 16.00

utilizatio~ 4"rpbn1J~&Jr~~1>1J~esfor circuit switched



:;..

15.00

.J::...•...
-0.-
~-010.00
c
o
II)

~
o
E
Q)~ 5.00

~D..£a~ r
••••• r

~ 0.1 (Analytical)
= 0.1 (Simulation)

_ ~ _0- ~ - ~ -D- ~ oo-

0.00
0.00 2.00 4.00

Figure 11.3 Memory bandwidth
synchronous system.

6.00 8.00 10.00 12.00 14.00 16.00

~sU?;tP~bepfof8Mrs~~ for circuit switched



e:

= 0.1 (Analytical)
= 0.1 (Simulation)

<3

'-•••
......•..

:--.,.,,
a.... ,

••• '-

...•. .....
-•.........••...

.....••.

~0.E.lJ,2J r
••••• r

..•..

0.90

1.00

0.80

(f)

::J
CO0.50

:;:;
::::> 0.60

co
:;; 0.70o
N

0.40

Figure 11.4 Bus utilization vs
synchronous system.

0.30
0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

n~i4JVe~ebf qfus~~Sf6r circuit switched



when more than one processor request the same memory module

simul taneously. If the interconnection network is multiple bus

connection, then it is expected that as the number of buses

increases performances will improve upto certain level. Because,

when there is only one available bus then only one of the

requesting processors may win in bus arbitration. Performance

degradation occurs because the memory modules requested by the

processors, may remain unoccupied, as they have failed in bus

arbitration. That is there remain free memory modules because of

unavailability of a bus. So average queue length become high,

because processors have to wait for availability of both bus and

memory module. As the number of buses are increased from one to

two, bus conflict reduces. Average queue length decreases upto

certain number of buses and then a saturation value is attained.

After that value the increase of number of buses does not

decrease average queue length. This is shown in fig 5.1.1, where

it is seen that the saturation bus numbers are 9, 10 and 5 for

processor think times of 2.5, 5, 50 slots respectively. It is

possible to find out an optimum number of buses, because there is

an average number of processors which generate request

simultane6usly in a specific system depending on average

processing or think time of the processors of the system. And the

optimum number of buses is a function of average number of

processors ~nd total number of memory modules. If think time is

large then average number of processors which can generate

request simultaneously decreases, that is, bus conflict

decreases. So less number of buses can bring the system into

102



saturation region as in fikure 5.1.1. There it is seen that when

processor think time is 50 slots then only 5 buses can bring the

system to crossbar performance level.

Also it is expected that processor utilization will

increase with increase of number of buses [b]. Because then less

number of processors have to wait in queue. But this increase in

utilization also become flat after an optimum number of buses

where bus conflict is almost absent. This is shown in processor

utilization vs. number of buses curve in different graphs.

Also for memory bandwidth the same effect is seen,

that is, memory bandwidth increases upto certain number of buses.

This situation is shown in di£ferent graphs (Figure no. 5.1.3,

5.2.3) where memory bandwidth is plotted against number of buses.

For bus utilization it is expected [6] that when there is only

one bus then request rate is higher, so this bus is always busy.

hence bus utilization remains almost 100 percent. When the number

of buses increases bus utilization remains flat in 100 percent

utilizat ion upto certain number of buse.s. Then, after optimum

number of buses bus utilization decreases slightly.- Looking at

figures 5.3.1 to 5.3.4 for probability of cache miss = 0.1, it

is seen that optimum number of b~s~s is 8. And at this value bus

utilization becomes around 0.97 which is slightly less than 100

percent efficiency. After then if the number of bus.sis increased

bus utilization gradually decreases and at 16 buses i.e. when

there is physically total connection between processor and memory

modules, it is seen that bus utilization is very low. In figure

5.3.4 it is 0.48 and in figure 5.1.4 it is 0.57. So it is seen

103



that in these cases approximately 50 percent of the buses are

unutilized.
In the multiprocessor system it is possible to

remove bus conflict totally. The simulation is carried out for

finding the number of buses when, there is no bus conflict.

Average queue length, processor utilization, memory bandwidth and

bus utilization are plotted against the number of buses, because

for a system all these parameters are needed for determining the

system performance [6]. For example, a circuit switched

synchronous system with probability of cache miss of 0.2, it is

required that memory bandwidth will be in the range of 5-6. Then

from figure 5.3.3, for equal priority, it is found that the

memory bandwidth of 5 occurs at number'of buses equal to 5. So,

these graphs can be used in system design. Bus requirements can

be kept within the limit of cost by fixing other performance

requirements. Figure 5.8 and figure 5.9 are for synchronous

circui t switched system, where equal priority is considered. In

figure 5.8 simulation is carried out for finding memory bandwidth

as number of buses is varied with the probability of request at

the beginning of system cycle as the parameter. In figure 5.9 the

curves of figure 5.8 are validated by probabilistic analysis

method. In figure 5.11.1 through 5.11.4 synchronous circuit

switched system is validated by semi-Markov analytical method.

In these figures, the probability generating a request or cache

miss is considered to be 0.1. From both probabilistic and semi-

Markov analysis it is seen that simulation results differ by 5-7

percent from the analytical solutions.

104



From figures 5.10.1 through 5.10.4 it is seen that

for large number of processors random delay protocol and unequal

priority protocol give the same performances. It may be said that

random delay protocol is in some cases slightly better. From

figure 5.10.1 for 32 processor the average queue length curve of

random delay protocol in flat region is a little below than that

of unequal priority protocol.

Study of figures 5.1.1 through 5.1.4 and figures

5.2.1 through 5.2.4 show that unequal priority protocol is better

for lower processor think times, such as for T = 5 or T = 2.5.

But for larger think time random delay protocol is as good as

unequal priority protocol.
Random delay protocol works well in some cases.

When there are larger number of processors (32 or 64) request to

a particular memory module is large compared to lower number of

processors, say 16 processors. In the simulation with large

number of processors (32 or 64) lower processing time is

considered. So request rate is very high. For very high think

time request rate is very low. So it can be concluded that random

delay protocol works as good as unequal priority protocol for

very low and very high request rate. For intermediate think time

unequal priority protocol is better. The cause that random delay

protocol works good for some region is that resubmission of

request after random delay decreases the probability of

collision among processors submitting requests simultaneously.

Random delay protocol is better than unequal

priority protocol because it is closer to equal priority
'.',

105



protocol. With respect to hardware it is easier to implement

[10]. When there is bus or memory conflict resubmission of

request is required, which causes this protocol to become closer

to equal priority protocol.

From figure 5.7.1 to figure 5.7.4 requirement of

bus .for optimum performance is very high for large number of

processors. But from these figure it is possible to take a less

number of buses while keeping performances in acceptable region.

For example, if acceptable memory bandwidth for 64 processor and

16 memory module system is 8 then from figure 5.7.3 the number of

buses needed is 9.

Performances in asynchronous system are better than

those of synchronous system. Because in asynchronous system

requests can be generated at any moment and so if resources are

available processors do not have to wait for the next clock. But

In synchronous system request can be generated only in the

presence of clock. So a processor has to wait for a positive

clock edge. This situation can be examined by comparing the

graphs. (figures 5.1.1-5.1.4 and 5.3.1-5.3.4) of synchronous and

asynchronous systems.

Packet switched synchronous and asynchronous system

are also studied. Figures 5.5.1 through 5.5.4 are for various

performances of packet switched synchronous system. And figures

5.6.1 through 5.6.4 are for packet switched asynchronous system.

In both synchronous and asynchronous systems equal priority

protocol is considered. Because in a multiprocessor system if it

is required that all the processors have equal priority then

106



this protocol is desirable.
From figure 5.5.1 through 5.5.4 for packet switched

synchronous system, it is seen that probabilities of cache

miss (or probability that a processor ends processing for non-

cache system) of 0.1, 0.2 and 1.0 are used. From these figures it

is seen that all the curves are closely spaced, which implies

that there are little performance differences for the given

probabilities of cache misses. But for circuit switched

system(figure 5.4.1-5.4.4) these differences are not as small as

in packet switched system. To see the effect of probability of

cache miss more clearly (figures 5.6.1 through 5.6.4) four

different cache misses namely 0.1, 0.2, 0.5, 1.0 are taken for

packet switched asynchronous system. Here also differences in the

performances are not so prominent as compared to the circuit

switched system.
From figures 5.5.1 to 5.5.3 and figures 5.6.1 to

5.6.3, i.e. for packet switched synchronous and asynchronous

system it is seen that absence of bus conflicts occurs at 4

buses. The performances attain saturation value at 4 buses and

then remains flat. And from figures 5.5.4 and 5.6.4 it is seen

that after 4 buses bus utilization gradually decreases and

reaches around 0.2 at 16 buses (total connection).

In packet switched system when a processor submits

requests, it first checks for a idle bus. If there is any idle

bus and it wins in bus arbitration it occupies the bus. And when

transfer of request through bus is complete then IMP\controller

[5] tracks the requested memory status. If that memory module i's

107



free and the processor wins in memory arbitration then memory

operation is performed. So here it is not required for a

requesting processor that both the requested memory and any of

the buses to be. free simultaneously. So there is less conflict in

packet switched system and performances attain optimum value with

less number of buses(4-5) •

Hardware design of arbiter of asynchronous circuit

switched system is shown in figures 2.1 through 2.3 If there

are 8 processors, 8 memory modules and 4 buses, then total number

of gates required for this arbiter is 1576 and the delay is 23d.

If 16 processors are used then total number of gates required for

this arbiter is 7184 ana. delay becomes 29d. Design of 2 to 1

arbiter of synchronous circuit switched system is shown given in

[11.]. Number of gates required for 8 to 1 memory arbiter is 98

and delay is 6d. And number of gates required for 16 to 1 memory

arbiter is 210 with delay 8d. An improved design of 8 to 4

arbiter for bus arbitration is shown in figure 2.~ • The 8 to 4

arbiter in [12]. requires 4 level logic. Total number of gates

required are 248 and delay is lId. In the design given in section

2.6, a lookahead approach is used and delay is reduced to 5d, but

total number of gates required is 304. In [lZ] it is said that if

this 8 to 4 arbiter is implemented using 3 level logic then delay

can be reduced to 5d wit~ only 268 gates. But in that case

maximum fan-in of some gates becomes 8 whereas in the design

presented here maximum fan-in is only 3.

108



. CHAPTER 6.

CONCLUSIONS AND SUGGESTIONS:
6.1 Conclusion:

In the multiprocessor systems studied, it is seen
that when there is only one time shared bus performance
parameters are not so high. If number of buses is increased
performance increases upto certain number. of buses. Crossbar
performance can be achieved with lower number of buses. For fast
operation it is possible to increase number of processors to an
optimum value. For this an adequate number of buses are also
necessary. Performances observed are relatively better in
asynchronous system, because conflicts are comparatively lower.
But asynchronous system design is complex and its analytical
model development requires a great deal of computations. Whereas
synchronous system design is less complex and an equal priority
assignment on all processors is easily possible with the aid of
flip flops.

In packet switched system performances reach
saturation values with only 3 to 5 buses (for 16 processor and 16
memory module) depending on cache mises. Whereas in circuit
switched system saturation values are reached at 5 to 10 buses
depending on cache mises. In packet switched system extra
overhead ,required is intermediate message processor(IMP)/
controller. In asynchronous circuit switched system with 16
processors and 16 memory modules. unequal priority protocol is
better than random delay protocol when processing time is short.
But for larger processing time (50 slot) random delay protocol is

109

",



as good as unequal priority protocol. With 16 memory modules, if
number of processors are increased(32,64) then it is seen that
random delay and equal priority protocol has almost, equal
performances. Random delay protocol is easy to implement and it

introduces almost equal priority to processors [12] . In
synchronous circuit switched system equal and unequal priority
protocol is used. In unequal priority protocol lower priority
processors have to wait in queue a longer time which is not
desirable but this does not affect overall performances.

Multiple bus system is fault tolerant and cost effective than
MINs. Simulation and analytical results of the multiprocessor
system differed by 5-6 percent only. Various simulation results
could be helpful in actual system design. With specific load

"
condition and depending on synchronous or asynchronous system and
packet switched or circuit switched system, one can easily select
the best number of buses for the system.

Delay in arbitration in 8 to 4 synchronous arbiter
can be reduced as explained in arbiter design to 5d ( d is
nominal gate delay). Similarly 4 to 2 arbiter design is also
presented and from these other combinations can be made. Total
number of gates required for designing arbiter of an asynchronous
system with 8 processors and,4 buses is 1576 and it results in a
delay of 23d. Whereas for synchronous system with equal number of
processors and buses total number of gates required is 1088 with

delay lld.

110



6.2 Suggestions for Further Research:

1. Performance study of multi-bus multiprocessor

system considering different cache protocols can be pursued as a

continuation of this thesis work . The extent to which references

have to be made to shared memory depends a lot on the cache

algorithm used. A key aspect of this algorithm is the policy for

updating the shared memory when a request is addressed to the

cache. Copy back divides the references to shared memory into two

categories: those due to cache misses and those due to the copy

back process. A cache miss occurs when a processor generates a

read or write request for data or instructions that cannot be

satisfied by the cache.

2. Analytical modeling of multiple bus

multiprocessor system for those connections not covered in

chapter 3 can be pursued. It is possible to use semi-Markov

model, product form solution or closed queuing model for

analysis. Combinatorial analysis approach can also be taken. For

analysis it is possible to use packet switched multiple bus

multiprocessor system. Also in chapter 3 a simplified model of

semi-Markov process is presented. It is required that this model

is justified by analysis and simulation.

3. Performance analysis of multistage

interconnection network can be studied. Multistage

interconnection networks are cost effective. But in MIN there is

only one path from a processor to a memory module, i.e. it is not

fault tolerant. So it is necessary to make them fault tolerant.

For this it would be useful to study Omega Network or Delta

111



Network.

4. The study of synchronization and program partitioning methods

in multiprocessor system would be also interesting. In order to

use multiprocessor effectively program should be partitioned so

that all portions can be processed in different processors.

Processes must be able to communicate and to synchronize with

each other. For synchronization bit map method can be used [1].

Communication among processors can be better done by message
passing method.

112



"

A-1
/*Simulation program for asynchronous circuit switched system
with random delay protocol */
#include <stdio.h>
#include <math.h>
#include <alloc.h>
#include <time.h>
#include <stdlib.h>
#include<conio.h>
#include<graphics.h>
/* Different structures and globals are defined */
#define no 16
ildefine mo 16

typedef struct processor{
unsigned n_e;
unsigned m_no;
uns igned b_no;
unsigned time;

}pro;

typedef struct buses {
unsigned state;
unsigned p_no;

}bus;

typedef struct memory{
unsigned state;
unsigned P-ftO;

}mem;

typedef struct controller {
unsigned time;
unsigned p_no;
struct controller *next;

}con;

unsigned ko,*q,*m1,*n1,*k1;
unsigned *ttot,rcount,t1,t2,q_last,n1_last,m1_last,k1_last;

/* Subroutine end of processing has described below. A proceessor comes
in this routine when it ends processing or there is a cache miss */

eop(unsigned *sl,unsigned *t,con *start,pro p[],mem me],
bus b[],unsigned *e_count)
{
/* *sl is number of current processor. */
/* *t is current time. */
/* start is first element in the event queue */
/* *e count is the number of simultaneous request */
unsigned i,j,del;

j=random(mo); /* Select with equal priority any memory module */
1* Assuming equal memory reference probability */

113



/* If the required memory is busy then processor waits for next
transition */

if(m[j].state ==1 )
{

del=random(4)+1;
p[*sl].time+=del;
p[*sl].n_e=2;
p[*sl].mJIo=j;
*q+=1;*n1-=1;
printf("%d %d %d %d %d -\n", *t,*q,*n1,*m1,*k1

/* Update the time */
/* Insert the processor in event queue */

*t+=del;
insert(sl,t,start);

}
/* Also if there is no bus

transition */
else
{

for(i=O;i< ko;i++)
{

if(b[i].state -- 0)
break;

}

if(i== ko)
{

free then processor waits for next

/* If there is any bus free */

/* There is no free bus */

•

del=random(4)+1;
*q+=1;*n1-=1;
p[*sl].time+=del;
p[*sl].mJIo=j;
p[*sl] .n_e=2;
printf("%d %d %d %d %d

/* The processor has won in both arbitration */

*t+=del;
insert(sl,t,start);
}

else
{

b[i].state=l;
m[j] .state=l;
b[i].PJIO = *sl;
m[j].PJIO = *sl;
p[*sl] .mJIo=j;
p[*sl].bJIo=i;
p[*sl].n_e=l;

/* Make the occupied bus busy */
/* Make the requested memory module busy */

/* Make the processor busy in memory access */
del=20;
p[*sl].time+=del;
*m1+=1;
*k1+=1;,
printf("%d %d %d %d %d
*sl,p[*sl].mJIo,p[*sl].bJIo);

111

%d %d



}

*ml+=l ;
*kl+=l;
printf("Xd Xd %d %d

. *t,*q,*nl,*ml,*kl,
*sl,p[*sl].m-no,p[*sl].b-no);

*t+=del;
insert(sl,t,start);

}
}

%d %d Xd Xd\n" ,

/* Subroutine processor releases memory is described below */

prm(unsigned *sl,unsigned *t,con *start,pro p[],mem me],
bus b[],unsigned *e_count)
{
unsigned del;
del=random(101)+1; /* Return the processor to
processing state */
p[*sl].time+=del;
p[*sl].n_e=O;
b[p[*sl].b-no].state=O; /* Make the occupied bus */
m[p[*sl].m-no].state=O; /* and memory module free */
b[p[*sl].b-no].p-no=O;
m[p[*sl].m-no].p-no=O;

*kl-=l;*ml-=l; /* Update number of busy bus */
/* busy memory module and busy and */
/* waited processors */

printf("Xd %d Xd %d %d %d %d %d\n",
*t,*q,*nl,*ml,*kl, *sl,p[*sl].m-no,p[*sl].b-no);

*t+=del;
insert(sl,t,start);
}
/* Subroutine end of next transition is described below. A
processor comes here when it fails in arbitration and
resubmits request after waiting arandom amount of time */

ent(unsigned *sl,unsigned *t,con *start,pro p[],mem me],
bus b[],unsigned *e_count)
{

unsigned i,del;
for(i=O;i< ko;i++)
{
if(b[i].state==O)
break;
}

if(i== ko)
{
del=random(4)+1;
p[*sl].time+=del;
p[*sl] .n_e=2;

11 5

l'



printf("%d %d %d %d
*t,*q,*n1,*m1,*k1);

*t+=de 1;
insert(sl,t,start);
}

else
{
if(m[p[*sl].m-no].state==l)
{
del=random(4)+1;
p[*sl].time+=del;
p[*sl] .n_e=2;

printf("%d %d %d %d
*t,*q,*n1,*m1,*k1);

*t+=del;
insert(sl,t,start);
}
else
{
*q-='l;

%d

%d

\ "- n ,

-\n" ,

}

del=20;
p[*sl].time+=del;
b[i].state=l;
p[*sl] .n_e=l;
p[*sl].b-no=i;
m[p[*sl].m-no].state=l;
b[i].p-no = *sl;
m[p[*sl].m-no].p-no = *sl;
*n1+=1;*m1+=1;*k1+=1;
printf("%d %d %d %d %d %d %d %d\n",

*t,*q,*n1,*m1,*k1,*sl,p[*sl].m-no,p[*sl].b-no);
*t+=del;
insert(sl,t,start);
}

}

/* subroutine insert is stated below. After finish of an
event a processor is to be inserted in proper position
of the event queue */

insert(unsigned *sl,unsigned *t,con *start)
{
FILE *f2;
.con *prev,*new,*current,*inter;
current=start->next;
if(*t < current->time)
{
start->p-no = *sl;
start->time = *t;
}
else
{
if«new=( con*)calloc(l,sizeof( con»)==NULL)

{
printf( "No memory .available for allocation \n");

116



exit(1);
}

start->p-no=current->p-no;
start->time=current->time;
start->next=current->next;
free(current);
current=start->next;
prev=start; _
while(current->next != NULL && *t >= current->time)
{
prev=current;

inter=eurrent->next;
current=inter;
}
new->p-no = *sl;
new->time = *t;
if(eurrent->next != NULL)
{
prev->next=new;
new->next=eurrent;

}
else
{

if(*t >= current->time)
{

eurrent->next=new;
new->next=NULL;

}
else

{
prev->next=new;
new->next=current;

}
}

}
current=start;
f2=fopen("file2.dat","a+");
while(eurrent)
{

fprintf(f2," %u
current->p-no) ;

eurrent=current->next;
%u\n" ,current->time,

}
fprintf(f2," END OF SERVICE \n");
felose( f2);
}

/* subroutine for random number generation */
g_rand( )
{

double r,log();
unsigned X;
r=(double)(random(1000)/10000);
r-=l;
x=-log(-r)/log(.49);

11 7



return(x);
}

/* This subroutine is for calculating statistics of simulation
*/

result(unsigned *tq,unsigned
*tkl,unsigned *t)
{
unsigned sub;
if(rcount == 0)

{
tl=*t;
q_Iast = *q;
nl_Iast = *nl;
ml_Iast = *ml;
kl_Iast = *kl;
rcount+=l;

}
else

{
t2 = *t;
sub = t2-tl;
*tq+= q_Iast*sub;
*tnl+= nl_Iast*sub;
*tml+= ml_Iast*sub;
*tkl+= kl_Iast*sub;

*tnl,unsigned *t!!,l,unsigned

tl=t2;
q_Iast = *q;
nl_Iast = *nl;
ml_Iast = *ml;
kl_Iast = *kl;

}

program is started below */

*fl;
*start,*prev,*new,*current;
p[no];
memo];

.b[l6];

con
pro
mem
bus

}
/* Main
main()
{
FILE

unsigned *tq,*tnl,*tml,*tkl;
unsigned i,j,*s_c,*e_count,r[l6],*sl,count,scr_cnt;
unsigned *t;
float ttq,ttnl,ttml,ttkl;
void *calloc();
void *malloc();
ko=l;
clrscr();
fl=fopen("filel.dat","a+");
for(ko = l;ko < l7;ko++)

118



{
rcount=O; tl=O; t2=O;
q_last=O; nl_Iast=O; ml_Iast=O; kl_last=O;
ttot=(unsigned*)malloc(sizeof(unsigned»;
nl=(unsigned*)malloc(sizeof(unsigned»;
ml=(unsigned*)malloc(sizeof(unsigned»;
kl=(unsigned*)malloc(sizeof(unsigned»;
q=(unsigned*)malloc(sizeof(unsigned»;
t=(unsigned*)malloc(sizeof(unsigned»;
sl=(unsigned*)malloc(sizeof(unsigned»;
tq=(unsigned*)malloc(sizeof(unsigned»;
tnl=(unsigned*)malloc(sizeof(unsigned»;
tml=(unsigned*)malloc(sizeof(unsigned»;
tkl=(unsigned*)malloc(sizeof(unsigned»;
e_count=(unsigned*)malloc(sizeof(unsigned»;
s_c=(unsigned*)malloc(sizeof(unsigned»;
*nl=l6; *ml=O; *kl=O, *q=O; *ttot=3000;
*tq=O; *tnl=O; *tml=O; *tkl=O;
if«start=( con*)calloc(l,sizeof( con»)==NULL)
{
printf("No memory available for allocation \n");
exit(l);

}

/* Random numbers are generated below */
randomize() ;
for(i=O;i < no;i++)
{
r[i]=random(lOl)+l;

}
/* Event queue is formed below */
start->next=NULL;
start->PJlo=O;
start->time=r[O];
for(i=l;i<no;i++)
{ ,
if«current=( con*)calloc(l,sizeof( con»)==NULL)
{
printf("No memory");
exit(l);

}
current->time=r[i];
current->PJlo=i;
if(current->time < start->time)
{
prev=start;
current->next=prev;
start=current;

}
else
{
prev=start;
new=start->next;

119



, while(new != NULL && current->time >= prev->time)
{
if(current->time < new->time)
{
current->next=newl
prev->next=currentl
prev=neWl

}
else

{
prev=newl
new=new->nextl
}

}
if(new == NULL)
{
prev->next=currentl
current->next=NULLl

}
}

}
fl=fopen("filel.dat","a+")l
current=startl
while( current)
{

fprintf(fl," %u
current->PJ1o) l

current=current->nextl
%u\n" ,current->time,

K P K B\n");
no no no\n");

A random starting time
processor */

}
fclose(fl)l
/*initialization of
for(i=Oli<noli++)
{
p[i] .n_e=Ol
p[i].mJ1o=Ol
p[i].bJIo=Ol
p[i].time=r[i]l
}
for(i=Oli<moli++)
{
m[i].state=Ol
m[i].PJ10=Ol
}
for(i=Oli< kOli++)
{
b[i].state=Ol
b[i].PJ10=Ol

}
printf(" Time P
printf(" Waiting

arrays

/*

Busy

are done below */

P B
busy Busy

is for each

gotoxy(2,24);
printf( "PRESS ANY KEY TO SEE NEXT PAGE");
/*Finding of current event\events are started below */

120



number of processors which submit
and check the condition for give them

window(1,3,79,20);
scr_cnt=O;
clrscr();
gotoxy(l,l);
*t = start->time;
while(*t < *ttot)
{
*e_count= 1;
current=start;
new=current->next;
while(current->time --
{
*e_count+=l;
current=new;
new=current->next;

}
/* Look the
simultaneously
*/

new->time)

request
service

while(*e_count)
{
*e_count-=l;
*sl=start->p-no;
*s_c=p[*sl].n_e;
switch(*s_c)
{
case o:{

eop(sl,t,start,p,m,b,e_count);
break;

}
case l:{

prm(sl,t,start,p,m,b,e_count);
break;

}
case 2:{

ent(sl,t,start,p,m,b,e_count);
break;

}
}/*switch*/
*t = start->time;
if(*e_count==O && *t>lOOO)

result(tq,tnl,tml,tkl,t);
scr_cnt+=l;
if(scr_cnt >=20)

{
getch();
clrscr();
scr_cnt=O;
}

}
}

getch( );

121



window(1,1,79,24);
clrscr();
printf("X6d X6d X6d X6d \n",*tq,*tnl,*tml,*tkl);
*ttot-=lOOO;
ttq=«float)(*tq»/«float)(*ttot»;
ttnl=«float)(*tnl»/«float)(*ttot»;
ttml=«float)(*tml»/«float)(*ttot»;
ttkl=«float)(*tkl»/«float)(*ttot»;
printf("\n\tAverage Queue Length=%f\n",ttq );
printf("\n\tAverage No of busy Processor =%f\n",ttnl);
printf("\n\tAverage No of Busy Memory =Xf\n",ttml);
printf("\n\tAverage No of Busy Bus =Xf\n",ttkl);
printf("\n\tProcessor Utilization =%f\n",ttnl/no);
printf("\n\tMemory Bandwith=%f\n",ttml/mo);
printf("\n\tBus Utilization=%f\n",ttkl/ko);
getch();
*ttot+=lOOO;
fprintf(fl,"%u Xf
ttnl/no,ttml,ttkl/ko);
} /* for different no.
fclose(fl);
}

%f %f
of buses */

122

%f\n",ko,ttq,



A-2
/*This Simulation has been done for Performance Analysis of
Circuit Switched Synchronous System. Equal Priority protocol
has been used. */
#include <stdio.h>
#include <math.h>
#include <alloc.h>
#include <time.h>
#include <stdlib.h>
#include<conio.h>
#include<graphics.h>
#define no 16
#define mo 16
#define PT 10
#define CT 20
#define CLT 5
typedef struct processor{

unsigned n_e;
unsigned mJlO;
unsigned bJlo;
unsigned time;

}pro;

typedef struct buses {
unsigned state;
unsigned PJlO;
unsigned time;

}bus;

typedef struct memory{
unsigned state;
unsigned PJlO;
unsigned time;

}mem;
typedef struct controller {

unsigned time;
unsigned PJlO;
struct controller *next;

}con;

FILE *fg;
unsigned *ko,*q,*m1,*n1,*k1,rcount,t1,t2,q_last,n1_last,

m1_last,k1_last, *ttot,pr;
/* Subroutine for memory update */

ud-m(mem m[],unsigned *t)
{
unsigned i;
for(i=O;i<mo;i++)
{
if(m[i].state==O)

123

-.
.L)



m[i]. time = *t;
}

}

/* Subroutine for bus update */

ud_b(bus b[],unsigned *t)
{
FILE *f3;
unsigned i;
for(i=O;i < *ko;i++)
{
if(b[i].state==O)

b[i].time = *t;
}

f3=fopen("file3.dat","a+");
for(i=O;i < *ko;i++)
{
fprintf(f3,"b[%u].time = %u b[%u].state = %u \n",i,
b[i].time,i,b[i].state);

}
fprintf(f3,"\n\n");
fclose(f3);
}

/* Subroutine for smallest bus time */
unsigned s_time(bus be])
{

unsigned smallest,i;
i=O;
smallest=b[i].time;
for(i=l;i < *ko;i++)
{
if(smallest>b[i].time)

{
smallest=b[i].time;
w=i;

}
}

printf("\n*** 'smallest = %u bus no.= %3d \n",smallest,w);
return smallest;

}

/* If a processor submit request at a time other than at the
begining of system cycle processor has to wait and the routine
below takes account for that */
wait(unsigned *sl,unsigned *t,con *start,pro pc],

unsigned clock) .
{
unsigned del, i;
i=random(mo) ;
del = clock - p[*sl].time; /* wait del time */

12 L.



\
\

p[*sl].time+=del;
*t+=del;
*q+=l; /* put the processor in queue */
*n1-=1;
p[*sl].mJlo=i;
p[*sl].n_e = 2; /*it's next event will be end of next

transition */

/* Put the processor in appropriate position in event queue */
insert(sl,t,start);
}

/* When processor ends processing it has to perform the
following things */

eop(unsigned *sl,unsigned *t,con *start,pro p[],mem me],
bus b[],unsigned clock)
{
unsigned i,j,del;
j=random(mo);
/* If the required memory is busy then processor waits for
next transition */
fg = fopen("fileg.dat", "a+");
fprintf(fg,"-eop- processor ended processing\n");
fprintf(fg, "*t = %u *sl = %u mJlO = %u mem->state = %u\n",

*t, *sl,j,m[j].state);
fclose(fg) ;
if(m[j].state ==1 )
{

fg=fopen("fileg.dat" ,"a+");
fprintf( fg, "requested memory is busy\n");
del = clock - p[*sl].time;
fprintf(fg," del = %u\n" ,del);
p[*sl].time+=del;
p[*sl].n_e=2;
p[*sl].mJlo=j;
*q+=1;*n1-=1;
if(pr==l)

printf("%3d %3d %3d %3d %3d -\n" ,*t, *q,
*n1,*m1,*k1);

*t+=de I;
fprintf(fg,"processor %3d memory %3d bus %3d occupied",
*sl,p[*sl].bJlo,p[*sl].mJlo);
fclose(fg);
insert(sl,t,start);

}
/* Also if there is no bus free then processor waits for next

transition */
else{

for(i=O;i < *ko;i++)
{
if(b[i].state == 0)
break;

}

125

'.



if(i == *ko)
{

fg=fopen(" fileg. dat" ,"a+");
fprintf(fg,"There is no free bus \n");
del = clock - p[*sl].time;
fprintf(fg, "here = %u\n" ,s_time(b»;
fprintf(fg,"del = %u\n",del);
*q+=1;*n1-=1;
p[*sl].time+=del;
p[*sl].mJlo=j;
p [*sl] .n_e=2;
if(pr==l)

printf("%3d %3d %3d %3d %3d
*n1,*m1,*k1) ;

fc lose( fg);
'.*t+=del;

insert(sl,t,start);
}

-\n",*t, *q,

else
{ .
fg=fopen("fileg.dat" ,"a+");
fprintf(fg,"It is a success\n occupied bus no = %u\n" ,i);
b[i].state=l;
m[j] .state=l;
b[i] .pJlo=*sl;
m[j] .PJlo=*sl;
p[*sl].mJlo=j;
p[*sl].bJlo=i;
p[*sl] .n_e=l;
del = CT;
fprintf(fg," del = %u\n ",del);
p[*sl].time+=del;
m[j] .time+=del;
b[i].time+=del;
fprintf(fg,"b[%u].time = %u del = %u\n",i,b[i].time,del);
*m1+=1;
*k1+=1;
if(pr==l)

printf(" %3d %3d %3d %3d %3d %3d %3d %3d\n",
*t,*q,*n1,*m1,*k1, *sl,p[*sl].mJlo,p[*sl].bJlo);

fclose(fg);
*t+=del;
insert(sl,t,start);

}
}
fg=fopen( "fileg .dat", "a+");
fprintf(fg,"Insertion time = %u\n",*t);
fprintf(fg,"eop ended\n\n\n");
fc lose( fg);
}

/* subroutine processor releases memory has started */
prm(unsigned *sl,unsigned *t,con *start,pro p[],
mem m[],bus b[],unsigned clock)

126



releases memory\n");
%u m-no = %u \n" ,*t,*sl,p[*sl] .m-no);

%u\n",p[*sl].b-no);

{
unsigned del;
fg=fopen( "fileg.dat" ,"a+" );
fprintf(fg,"-prm- processor
fprintf(fg,"*t = %u *sl =
fprintf(fg,"freed bus no =
del=random(PT)+l;
fprintf(fg,"del = %u\n",del);
p[*sl].time+=del;
p[*sl].n_e=O;

b[p[*sl].b-no],state=O;
m[p[*sl].m-no].state=O;
b[p[*sl].b-no].p-no=O;
m[p[*sl].m-no].p-no=O;
*k1-=1;*m1-=1;
if(pr==l)

printf("%3d %3d %3d %3d %3d %3d %3d %3d \n",
*t,*q,*n1,*m1,*k1,*sl,p[*sl].m-no,p[*sl].b-no);

*t+=del;
fclose(fg) ;
insert(sl,t,start);
fg=fopen("fileg.dat","a+");
fprintf(fg,:'Insertion time = %u\n",*t);
fprintf(fg,"prm ended\n\n\n");
fprintf(fg,"processor %3d memory %3d bus %3d released",
*sl,p[*sl].b-no,p[*sl].m-no);
fclose(fg) ;
}

/* subroutine end of next transition has started */
ent(unsigned *sl,unsigned *t,con *start,pro pC],
mem m[],bus b[],unsigned clock)
{

extern unsigned *ko,*q,*n1,*m1,*k1;
unsigned i,del,del1;

fg=fopen("fileg.dat", "a+");
fprintf(fg,"-ent- end of next transition\n");
fprintf(fg, "*t = %u *sl = %u m-no = %u mem->state=%u\n",

*t, *sl,p[*sl].m-no,m[p[*sl].m-no].state);
fclose(fg) ;
for(i=O;i < *ko;i++)
{
if(b[i].state==O)
break;

}
if(i == *ko)
{
fg=fopen("fileg.dat","a+");
fprintf(fg,"There is no bus free\n");
dell= s_time(b);
del = clock - p[*sl].time; /* dell - (*t); */
fprintf(fg,"here1 = %u\n",del1);
fprintf(fg,"del = %u\n",del);
fprintf(fg,"del = %u\n",del);
p[*sl].time+=del;
p[*sl].n_e=2;

127



if(pr==l)
printf("%3d %3d %3d %3d %3d

*t,*q,*nl,*ml,*kl);
fclose( fg);
*t+=del;
insert(sl,t,start);

}
else

{

\ "- n ,

\ "- n ,

else
{

if(m[p[*sl].m-no].state==l)
{

fg=fopen( "fileg .dat", "a+");
fprintf(fg,"requested memory is still busy\n");
fprintf(fg, "and memory time = %u\n" ,m[p[*sl] .m-no]. time);
del=clock - p[*sl].time;
fprintf(fg,"del = %u\n",del);
p[*sl].time+=del;
p[*sl] .n_e=2;
if(pr==l)

printf("%3d %3d %3d %3d %3d
*t,*q,*nl, *ml,*kl);

fclose( fg);
*t+=del;
insert(sl,t,start);
}

fg=fopen("fileg.dat", "a+");
fprintf (fg, "N ow it is a success\n");

fprintf(fg, "Occupied bus no = %u and smallest =
i,dell);

%u\n",

*q-=l ;
del = CT;
fprintf(fg,"del = %u\n",del);
p[*sl].time+=del;
b[i].state=l;
m[p[*sl].m-no].time+=del;
b[i].time+=del;
p[*sl] .n_e=l;
p[*sl] .b-no=i;
m[p[*sl].m-no].state=l;
b[i] .p-no=*sl;
m[p[*sl].m-no].p-no=*sl;

*nl+=l;*ml+=l;*kl+=l;
result(tq,tnl,tml,tkl,t);

if(pr==l)
printf("%3d %3d %3d %3d %3d %3d %3d %3d \n",

*t,*q,*nl,*ml,*kl,*sl,p[*sl].m-no,p[*sl].b-no);
fclose(fg);
*t+=de I;
insert(sl,t,start);

}
}

fg=fopsl'l("fi leg. dat" ,"a+" );
fprintf(fg,"!nsertion time = %u\n",*t);

126



else

fprintf(fg,"ent ended \n\n\n");
fclose(fg) ;
}

/* subroutine insert has started below */
insert(unsigned *s1,unsigned *t,con *start)
{
con *prev,*new.*current;
current=start->next;
if(*t < current->time)

{
start->p-no = *s1;

start->time = *t;
}

{
if«new=( con*)malloc(sizeof( con»)==NULL)

{
printf("No memory available for allocation \n");
exit(l);

}
start->p-no=current->p-no;
start->time=current->time;
start->next=current->next;
free(current);
current=start->next;
prev=start;
while(current->next != NULL && *t >= current->time)
{

prev=current;
current=current->next;

}
new->PJlo=*s1;
new->time=*t;
if(current->next != NULL)
{
prev->next=new;
new->next=current;

}
else

{
if(*t >= current->time)

{
current->next=new;
new->next=NULL;
}

else
{
prev->next=new;
new->next=current;

}
}

}

129



fg=fopen(" fileg .dat" ,"a+");
current=start;
fprintf(fg,"statistics on insertion\n");
l'Ihile(current)
{
fprintf(fg," %u %u\n" ,

current->time,current->p-po);
current=current->next;
}
fclose(fg) ;
}
/* subroutine for random number generation */
g_rand(num)

{
double r,log();
unsigned X;
randomize( );
r=(double)(random(100)/100.00);
r-=l;
x=-log(-r)/log(.49);
return(x) ;

}

result(unsigned *tq,unsigned *tnl,unsigned *tml,
unsigned *tkl,unsigned *t)

{
unsigned sub;
if(rcount == 0)
{

tl = *t;
q_last = *q;
nl_last = *nl;
ml_last = *ml;
kl_last = *kl;
rcount+=l;

}
else

{
t2 = *t;
sub=t2-tl;
*tq+=q_last * sub;
*tnl+=nl_last * sub;
*tml+=ml_last * sub;
*tkl+=kl_last * sub;

/* ***************** */tl=t2;
q_last = *q;
nl_last = *nl;
ml_last = *ml;
kl_last = *kl;

}
}
/* For equal priority protocol */
eq_sort(con *tag,unsigned *e_count)

130



{
con *current,*inter.*first;
int i,store;
first = tag;
current = tag;
inter=(con*)malloc(sizeof(con»;
for(i=*e_count;i>O;i--)
{
store=random(i);
while(store)

{
store-=l;
current=current->next;
}

inter->p-no=first->p-no;
first->p_no=current->p-no;
current->p-no=inter->p_no;
first=first->next;
current=first;
}

free(inter);
}

/* For palcing processors in appropriate position in event
queue */

sort(pro p[],con *start,unsigned *e_count)
{
FILE *fpl;
unsigned back,store,prm_cnt;
con *current,*inter,*tag;
back=O;prm_cnt=O;
tag=start;
current=start;
store=*e_count;
if«fpl=fopen("fl.dat". "a+" »==NULL)
{
printf("file error");
exit(l);
}
while(*e_count)
{
*e_coun t-= 1;
if(p[current->p-no].n_e==l && back==O)
{
tag=tag->next;
current=current->next;
prm_cnt+=l;
}

else if(p[current->p-no].n_e==l && back>O)
{
inter=(con*)malloc(sizeof(con»;
inter->p-no=tag->p-no;
tag->p-no=current->p-no;
current->p-no=inter->p-no;
free(inter);

131



prm_cnt+=l;
tag=tag->next;
current=current->next;

}
else

{
current=current->next;
back+=l;

}

,.. ,

}
fprintf(fpl, "\t\t%u
current=start;

%u\n",store,prm_cnt);

while(current)
{
fprintf(fpl, "\t%u %u %u\n" ,p[current->p.Jlo] .n_e,
current->time,current->p.Jlo);
current=current->next;
}
fclose(fpl);
*e_count =store;
*e_count-=prm_cnt;
eq_sort(tag,e_count);
*e_count=store;

}

/* Main program is started below */
main()
{
FILE *fp;
con *start,*prev,*new,*current;
pro p[no];
mem m[mo];
bus b[16];
unsigned *tq,*tnl,*tml,*tkl,clock,*e_count,num;
unsigned i,j,*s_c,r[no],*sl,count,scr_cnt,*t;
float ttq,ttnl,ttml,ttkl;
void *calloc();
void *malloc();
if «ko=(unsigned*)malloc(sizeof(unsigned»)==NULL)
{
printf("No memory");
exit(l);

}
if«fp=fopen("f .dat", "a+" »==NULL)
{
printf("file error");
exit(l);
}

*ko=O;
pr=O;
for(*ko = l;(*ko) < l7;(*ko)++ )
{

132



clrscr();
rcount=O; t1=O;t2=O; q_last=O; clock=CLT;
n1_last=O; m1_last=O; k1_last=O;
ttot=(unsigned*)malloc(sizeof(unsigned»;
n1=(unsigned*)malloc(sizeof(unsigned»;
m1=(unsigned*)malloc(sizeof(unsigned»;
k1=(unsigned*)malloc(sizeof(unsigned»;
q=(unsigned*)malloc(sizeof(unsigned»;
t=(unsigned*)malloc(sizeof(unsigned»;
sl=(unsigned*)malloc(sizeof(unsigned»;
tq=(unsigned*)malloc(sizeof(unsigned»;
tn1=(unsigned*)malloc(sizeof(unsigned»;
tm1=(unsigned*)malloc(sizeof(unsigned»;
tk1=(unsigned*)malloc(sizeof(unsigned»;
e_count=(unsigned*)malloc(sizeof(unsigned»;
s_c=(unsigned*)malloc(sizeof(unsigned»;
*n1=no;*m1=O;*k1=O;*q=O;*ttot=3000;
*tq=O;*tn1=O;*tm1=O;*tk1=O;
if«start=( con*)malloc(sizeof( oon»)==NULL)

{
printf("No memory available for allocation \n");
exit(1);

}

/* Random numbers are generated below */
randomize ();
num = PT;
for(i=O;i < no;i++)

r[i]=g_rand(num)+l;
/* Controllar linked list is formed below */
start->next=NULL;
start- >p_no=O;
start->time=r[O];
for(i=l;i<no;i++)
{
if«current=( con*)malloc(sizeof( con»)==NULL)
{
printf("No memory");
exit(1) ;

}
current->time=r[i];
current->p-no=i;
if(current->time < start->time)
{
prev=start;
current->next=prev;
start=current;

}
else
{
prev=start;
new=start->next;

133



while(new != NULL && current->time >= prev->time)
{
if(current->time < new->time)
{
current->next=new;
prev->next=current;
prev=new;

}
else
{
prev=new;
new=new->next;

}
}
if(new == NULL)
{
prev->next=current;
current->next=NULL;
}

}

}

fg=foperi("fileg.dat" ,"a+"); .
fprintf(fg,"statistics on enter\n");
current=start;
while(current)
{
fprintf(fg," %u %u\n" ,

current->time,current->p-no);
current=current->next;

}
fclose(fg);
/*initialization of arrays are done below */
for(i=O;i< no;i++)
{
p[i] .n_e=O;
p[i].m-no=O;
p[i].b-no=O;
p[i].time=r[i]; /* A random number */

}

for(i=O;i<mo;i++)
{
m[i] .state=O;
m[i].p-no=O;
m[i].time=O;

}

for(i=O;i < (*ko);i++)
{
b[i].state=O;
b[i].p-no=O;
b[i].time=O;

}

134



B \n");
no \n");

MM
no

PE
no

In
MMIn

bus
busy
PEIn

Q

if(pr==l)
{
printf("Time

printf("
gotoxy(2,24);
printf( "PRESS ANY KEY TO SEE NEXT PAGE");
/*Finding of current event\events are started below */

window(1,3,79,20);
scr_cnt=O;
clrscr();
gotoxy(l,l);

}
*t=start->time;
for(i=O;i<mo;i++)

m[i].time = *t;
for(i=O;i < *ko;i++)

b[i].time = *t;
while(*t < *ttot)
{
*e_count= 1;
current=start;
new=current->next;
while(current->time -- new->time && new != NULL)

{
*e_coun t+= 1;
current=new;
new=current->next;

}

sort(p,start,e_count);
if(clock < *t)

{
while(clock < *t)
clock+= CLT;
}

if(*t == clock)
{

clock+=CLT;
ud:...m( m, t) ;
ud_b(b, t);
while(*e_count)
{
*e_count-= 1;
*sl=start->p-no;
*s_c=p[*sl].n_e;
switeh(*s_c)

{
case 0:
{
eop(sl,t,start,p,m,b,eloek);
break;
}

135



case 1:
{
prm(s1,t,start,p,m,b,clock);
break;

}
case 2:
{
ent(s1,t,start,p,m,b,clock);
break;

}

}

*t=start->time;
if(*e_count == 0)

{
if(*t>1000)
result(tq,tn1,tm1,tk1,t);
ud..Jl\( m, t) ;
ud_b(b, t);

}
scr_cnt+=1;
if(pr==1)
{
if(scr_cnt -- 17)

{
getch() ;
scr_cnt=O;
clrscr() ;
gotoxy( 1,1);
}

}

fg=fopen("fileg.dat", "a+");
fprintf(fg,"\nb[O]=%3d b[1]=%3d b[2]=%3d b[4]=%3d\n",
b[0].state,b[1].state,b[2].state,b[3].state);
fprintf(fg,"\ntb[0]=%3d tb[1]=%3d tb[2]=%3d tb[4]=%3d\n",
b[0].time,b[1].time,b[2].time,b[3].time);
fprintf(fg,"************************************\n");
fclose(fg) ;

}
}
else
{
while(*e_count)
{
*e_conn t-= 1;
*s1=start->p-no;
wait(s1.t,start,p,clock);
*t=start->time;
}

if(*t>1000)
result(tq,tn1,tm1,tk1,t);
}

136



}

getch( );
window(1,1,79,24);
clrscr();
*ttot-=lOOO;
ttq=«float)(*tq»/«float)(*ttot»;
ttnl=«float)(*tnl»/«float)(*ttot»;
ttml=«float)(*tml»/«float)(*ttot»;
ttkl=«float)(*tkl»/«float)(*ttot»;
printf("\n\tAverage Queue Length=%f\n",ttq );
printf("\n\tAverage No of busy Processor =%f\n",ttnl);
printf("\n\tAverage No of Busy Memory =%f\n",ttml);
printf("\n\tAverage No of Busy Bus =%f\n",ttkl);
printf("\n\tProcessor Utilization =%f\n",ttnl/no);
printf("\n\tMemory Bandwidth=%f\n",ttml/mo);
printf("\n\tBus Utilization=%f\n",ttkl/(*ko»;
*ttot+=lOOO;
getch();
fprintf(fp,"%u %f %f %f %f\n",*ko,
ttq,ttnl/no,ttml,ttkl/(*ko»;

}
flcose(fp);
}

,

137



A-3
/*This Simulation program is for Packet Switched Synchronous

System. Equal priority protocol is used*/
#include <stdio.h>
#include <math.h>
#include <alloc.h>
#include <time.h>
#include <stdlib.h>
#include<conio.h>
#include<graphics.h>
#define no 16
#define mo 16
#define PT 1
#define BUST 5
#define MEMT 20
#define CINC 5
typedef struct processor

{
unsigned n_e;
unsigned mJlo;
unsigned bJlo;
unsigned time;
}pro;

typedef struct buses {
unsigned state;
unsigned PJlO;
unsigned time;

}bus;
typedef struct memory{

unsigned state;
unsigned pJlO;
unsigned time;
unsigned q;

}mem;
typedef struct controller {

unsigned time;
unsigned p_no;
struct controller *next;

}con;

FILE *fg;
unsigned *ko,*q,*ml, *nl,*kl, rcount, tl,t2 ,q_Iast, nl_last,

ml_last,~l_last;
unsigned *ttot,q_flast,q_blast,*qbf,*qbb,*q,pr;
Subroutine for memory update
ud~(mem m[],unsigned *t)
{
unsigned i;

138



for(i=O;i<mo;i++)
{

if(m[i].state==O)
m[i].time = *t;

}
}

/* Subroutine for bus update */
ud_b(bus b[],unsigned *t)
{

FILE *f3;
unsigned i;
for(i=O;i < *ko;i++)
{

if(b[i].state==O)
b[i].time = *t;

}

f3=fopen( ..file3.dat ..•..a+ ..);
for(i=O;i < *ko;i++)
{

fprintf(f3, "b[%u]. time = %u
b[i].time,i,b[i].state);

}
fprintf(f3,"\n\n");
fclose(f3);

}

b[%u].state = %u \n",i,

/* Subroutine for smallest bus time */
unsigned s_time(bus b[])
{

unsigned smallest,i;
i=O;
smallest=b[i].time;
for(i=l;i < *ko;i++)
{

if(smallest>b[i].time)
{ ,

smallest=b[i].time;
/* w=i; */
}

}

printf("\n*** smallest = %u bus no.= %3d \n",smallest,w);
return smallest;

}
/* ************************************************** */

wait(unsigned *sl,unsigned *t,con *start,pro p[],
unsigned clock)

139



{
unsigned del, i;'
i=random( mo) ;
del = clock - p[*sl].time;
p[*sl].time+=del;
p[*sl].n_e=2;
p[*sl].mJ1o=i;
*qbf+=l;
*q+=l;
*t+=del;*nl-=l;
insert(sl,t,start);

}

1* After think time processor comes here *1
eop(unsigned *sl,unsigned *t,con *start,pro p[],mem me],

bus b[],unsigned clock)
{
unsigned i,del;
for(i=O;i<*ko;i++)
{
if(b[i].state==O)
break;

}
if(i==*ko)
{

del= clock-p[*sl].time; I*CINC increment of clock*1
p[*sl].time+=del;
*qbf+=l;*nl-=l;
*q+=l;
p[*sl].n_e=2; l*entbf()*1

if(pr==l)
printf("%5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,*nl,*ml,*kl);
*t+=del;
insert(sl,t,start);

}
else
{

del= BUST;
p[*sl].time+=del;
p[*sl].n_e=l;l*eobf*1
*kl+=l;
b[i].state=l;
b[i] .pJ1o=*sl;
p[*sl] .bJ1o=i;
b[i].time+=del;
if(pr==l)

printf("%5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,
*nl, *ml, *kl);

*t+=del;
insert(sl,t,start);

}

}

140



/* After transferring informations through bus
processor comes here */

eobf(unsigned *sl,unsigned *t,con *start,pro p[],mem me],
bus b[],unsigned clock)
{

unsigned i,del;
b[p[*sl].b_no].state=O;
*nl-=l; /* whether or not free memory is found processor

remains idle */
*kl-=l; /* and bus is freed */
i=random( mo) ;
if(m[i].state==l)
{

del=clock-p[*sl].time;
p[*sl].time+=del;
p[*sl].n_e=3;
p[*sl].m....no=i;
m[i] .q+=l;
*q+=l;

if(pr==l)
printf("%5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,

*nl,*ml,*kl) ;
*t+=del;
insert(sl,t,start);

}
else
{

m[i] .state=l;
m[ i] .p....no=*sl;
p[*sl].m....no=i;
p[*sl].n_e=4; /*prm*/
del=MEMT;/*memory access time */
p[*sl].time+=del;
m[ i].time+=del;
*ml+=l;

if(pr==l)
printf("%5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,

*nl,*ml,*kl) ;
*t+=del;
insert(sl,t,start);

}
}

/* If once in forward direction busy bus condition is
found processor comes here */

entbf(unsigned *sl,unsigned *t,con *start,pro p[],mem me],
bus b[),unsigned clock)
{

unsigned i,del;
for(i=O;i<*ko;i++)
{

if(b[i].state==O)
break;

}

141



if(i==*ko)
{

del=CINC;/*increment of clock*/
p[*sl].time+=del;
p[*sl].n_e=2; /*entbf()*/

if(pr==l)
printf("%5u %5u %5u %5u %5u %5u \n" ,*t,*sl,*q,*nl,

*ml, *kl);
*t+=del;
insert(sl,t,start);

}
else

{
del= BUST;
p[*sl].time+=del;
p[*sl].n_e=l;/*eobf*/
*kl+=l;*nl+=l;
*qbf-=l; /* this processor was in bus queue */
*q-=l;
b[i].state=l;
b [i] .p....no=*s1;
p[*sl]. b....no=i;
b[i].time+=del;

if(pr==l)
printf("%5u %5u %5u %5u %5u %5u \n",*t;*sl,*q,

*nl,*ml,*kl) ;
*t+=del;
insert(sl,t,start);

}
}

/* If once -required memory is found in busy state then
processor comes here */

entm(unsigned *sl,unsigned *t,con *start,pro p[],mem me],
bus b[],unsigned clock)
{

unsigned i,del;
i=p[*sl] .m....no;
if(m[i].state==l)
{

del=clock-p[*sl].time;
p[*sl].time+=del;
p[*sl] .n_e=3;
if(pr==l)

printf("%5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,
*nl,*ml,*kl) ;

*t+=del;
insert(sl,t,start);

}
else
{

m[i].state=l;
m[i] .p....no=*sl;
p[*sl] .m....no=ij
p[*sl].n_e=4; /*prm*/

142



del=MEMT;/*memory access time */
p[*sl].time+=del;
m[i].time+=del;
m[i].q-=l;
*q-=l;
*ml+=l;

if(pr==l)
printf("%5u %5u %5u %5u %5u %5u \n".*t.*sl.

*q.*nl.*ml.*kl);
*t+=del;
insert(sl.t.start);

}
}

/* When memory access ends processor comes here to see
if there is any bus free */
prm(unsigned *sl.unsigned *t.con *start,pro p[],mem m[].
bus b[].unsigned clock)
{
unsigned i.j.del;
j=p[*sl].m:...no;
*ml-=l; /* memory goes to idle state */
for(i=O;i<*ko;i++)
{

if(b[i].state==O)
break;

}
if(i==*ko)
{

del=clock-p[*sl].time; /*CINC is increment of clock*/
p[*sl].time+=del;
*qbb+=l;
*q+=l;
p[*sl].n_e=5; /*entbb()*/
if(pr==l)

printf("%5u %5u %5u %5u %5u %5u \n".*t.*sl.*q,
*nl.*ml.*kl) ;

*t+=del;
insert(sl.t.start);

}
else
{

del= BUST;
p[*sl].time+=del;
p[*sl].n_e=6; /*eobb*/
*kl+=l;
*nl+=l;
b[i].state=l;
b[i] .pJlo=*sl;
p[*sl].bJlo=i;
b [i].time+=del;

if(pr==l)
printf("%5u %5u %5u %5u %5u %5u \n".*t.*sl.*q.

*nl.*ml.*kl);
*t+=del;

143



insert(sl,t,start)j
}

}

/* If in backward direction busy bus condition is
found then processor comes here */

entbb(unsigned *sl,unsigned *t,con *start,pro p[],mem me],
bus b[],unsigned clock)
{

unsigned i,j,delj
for(i=Oji<*koji++)
{

if(b[i].state==O)
break;

}
if(i==*ko)
{

del=CINC;/*increment of clock*/
p[*sl].time+=del;
p[*sl].n_e=5; /*entbb()*/

if(pr==l)
printf("%5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,*nl,

*ml,*kl);
*t+=del;
insert(sl,t,start);

}
else
{

del= BUST;
p[*sl].time+=del;
p[*sl].n_e=6;/*eobb*/
*kl+=l;*qbb-=l;
*q-=l;
b[i].state=l;
*nl+=l;
b[i] .PJ1o=*slj
p[*sl].bJ1o=i;
b[i].time+=del;

if(pr==l)
printf("%5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,

*nl,*ml,*kl);
*t+=del;
insert(sl,t,start)j

}

}

/* In backward direction after getting bus processor
comes in thinking state */
eobb(unsigned *sl,unsigned *t,con *start,pro p[],mem me],

bus b[],unsigned clock)
{

unsigned i,del;

I L. 4



b[p[*sl].b-oo].p-oo=O;
del=random(PT) + 1;
p[*sl].time+=del;
p[*sl].n_e=O;
*k1-=1;
if(pr==l)

printf("%5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,
*n1,*m1,*k1) ;

*t+=del;
insert(sl,t,start);

}

/* subroutine insert has started below */

insert(unsigned *sl,unsigned *t,con *start)
{
con *prev,*new,*current;
current=start->next;
if(*t < current->time)

{
start->p-oo = *sl;
start->time = *t;

}
else
{

if«new=( con*)malloc(sizeof( con»)==NULL)
{
printf("No memory available for allocation \n");
exit(l);
}

start->p-oo=current->p-oo;
start->time=current->time;
start->next=current->next;
free(current);
current=start->next;
prev=start;
while(current->next != NULL && *t >= current->time)
{

prev=current;
current=current->next;

}
new->p-oo=*sl;
new->time=*t;
if(current->next != NULL)
{
prev->next=new;
new->next=current;
}
else
{
if(*t >= current->time)
{

current->next=new;
new->next=NULL;

14.5



}
else
{
prev->next=new;
new->next=current;
}

}
}

fg=fopen( ..fileg.dat ..•..a+ ..);
current=start;
fprintf(fg. "statistics on insertion\n");
while(current)
{
fprintf(fg." %u %u\n" .current->time.

current->PJlo) ;
current=current->next;

}
fclose(fg) ;
}

result(unsigned *tq.unsigned *tqf.unsigned *tqb.unsigned *tnl.
unsigned *tml. unsigned *tkl.unsigned *t)
{

unsigned sub;
if(rcount == 0)
{
tl = *t;
q_Iast = *q;
q_flast= *qbf;
q_blast= *qbb;
nl_last = *nl;
ml_last = *ml;
kl_last = *kl;
rcount+=l;

}
else

{
t2 = *t;
sub=t2-tl;
*tq+=q_Iast * sub;
*tqf+=q_flast * sub;
*tqb+=q_blast * sub;
*tnl+=nl_last * sub;
*tml+=ml_last * Bub;
*tkl+=kl_last * sub;
tl=t2;
q_Iast = *q;
qJlast = *qbf;
q_blast = *qbb;
nl_last = *nl;
ml_last = *ml;
kl_last = *kl;

}

1L. 6



•

}
/* This sor is for equal priority protocol */
eq_sort(con *tag,unsigned *e_count)
{

con *current,*inter,*first;
int i,store;
first = tag;
current = tag;
inter=malloc(sizeof(con»;
for(i=*e_count;i>O;i--)
{

store=random(i);
while(store)

{
store-=l;
current=current->next;

}
inter->p-oo=first->p-oo;
first->p_no=current->p-oo;
current->p-oo=inter->p-oo;
first=first~>next;
current=first;
}

free(inter);
}

/* This sort is for arrangement in event queue */
sort(pro p[],con *start,unsigned *e_count,mem me], bus be])
{

FILE *fpl;
unsigned back,store,prm_cnt;
con *current,*inter,*tag;
back=O;prm_cnt=O;
tag=start;
current=start;
store=*e_count;
if((fpl=fopen(" f1.dat ","a+") )==NULL)
{
printf("file error");
exit(l);
}
whi le(*e_count)
{

*e_count-=l;
if«p[current->p-oo].n_e==l :: p[current->p-oo].n_e==4 ::

p[current->p-oo].n_e==6)&& back==O)
{

if(p[current->p-oo].n_e==l :: p[current->p-oo].n_e==6)
b[p[current->p-oo].b-oo].state=O;

else
m[p[current->p-oo].m-oo].state=O;

tag=tag->next;
current=current->next;
prm_cnt+=l ;

147

,"



}
else if«p[current->p-no].n_e==l :: p[current->p-no].n_e==4

:: p[current->p-no].n_e==6 )&& back>O)
{
if(p[current->p-no].n_e==l :: p[current->p-no].n_e==6)

b[p[current->p-no].b-no].state=O; ,
else

m[p[current->p-no].m-no].state=O;
inter=(con*)malloc(sfzeof(con»;
inter->p-no=tag->p-no;
tag->p-no=current->p-no;
current->p-no=inter->p-no;
free(inter);
prm_cn t+= 1;
tag=tag->next;
current=current->next;

}
else

{
current=current->next;
back+=l;

}
}

fprintf(fpl, "\t\t%u
current=start;

%u\n",store,prm_cnt);

while(current)
{
fprintf(fpl, "\t%u %u %u\n" ,p[current->p-no] .n_e,
current->time,current->p-no);
current=current->next;
}
fclose(fpl) ;
eq_sort(tag,e_count);
*e_connt=store;

}
/* Main program has started below */
main() .
{
FILE *fp;
con *start,*prev,*new,*current;
pro p[no];
mem memo];
bus b[16];
unsigned *tq,*tnl,*tml,*tkl,clock,*tqb,*tqf;
unsigned i,j,*s_c,*e_count,r[no],*sl,count,scr_cnt,*t;
float ttq,ttnl,ttml,ttkl,ttqb,ttqf,ttmq;
void *calloc();
void *11a11oc0 ;
if «ko=(unsigned*)malloc(sizeof(unsigned»)==NULL)
{
printf( "No memory" );

1L. 8



exit(l);
}
if«fp=fopen("f.dat","a+"»==NULL)
{
printf("file error");
exit(l) ;
}

*ko=O;
pr=O;
for(*ko = l;(*ko) < 17;(*ko)++ )
{
clrscrO;
rcount=O; tl=O;t2=O; q_flast=O; q_blast=O;q_last=O;clock=5;
scr_cnt=O;nl_last=O; ml_last=O; kl_last=O;
qbb=malloc(sizeof(unsigned»;
qbf=malloc(sizeof(unsigned»;
tqb=malloc(sizeof(unsigned»;
tqf=malloc(sizeof(unsigned»;
ttot=(unsigned*)malloc(sizeof(unsigned»;
nl=(unsigned*)malloc(sizeof(unsigned»;
ml=(unsigned*)malloc(sizeof(unsigned»;
kl=(unsigned*)malloc(sizeof(unsigned»;
q=(unsigned*)malloc(sizeof(unsigned»;
t=(unsigned*)malloc(sizeof(unsigned»;
sl=(unsigned*)malloc(sizeof(unsigned»;
tq=(unsigned*)malloc(sizeof(unsigned»;
tnl=(unsigned*)malloc(sizeof(unsigned»;
tml=(unsigned*)malloc(sizeof(unsigned»;
tkl=(unsigned*)malloc(sizeof(unsigned»;
e_count=(unsigned*)malloc(sizeof(unsigned»;
s_c=(unsigned*)malloc(sizeof(unsigned»;

*nl=no;*ml=O;*kl=O;*qbb=O;*qbf=O;*q=O;*ttot=3000;
*tq=O;*tqf=O;*tqb=O;*tnl=O;*tml=O;*tkl=O;

if«start=( con*)malloc(sizeof( con»)==NULL)
{

printf("No memory available for allocation \n");
exit(l);

}

/* Random numbers are generated below */
randomize( );
for(i=O;i < no;i++)

r[i]=random(PT)+l;

/* Controllar linked list is formed below */
start->ne~t=NULL;
start->PJ1o=O;
start->time=r[O];
for(i=l;i<no;i++)
{
if«current=( con*)malloc(sizeof( con»)==NULL)
{

149



printf("No memory");
exit(l)j

}
current->time=r[i]j
current->p-oo=ij
if(current->time < start->time)
{
prev=startj
current->next=prevj
start=currentj

}
else
{
prev=startj

new=start->nextj
while(new != NULL && current->time >= prev->time)
{
if(current->time < new-ttime)
{
current->next=newj
prev->next=currentj
prev=new;

}
else
{
prev=newj
new=new->nextj

}
}
if(new == NULL)
{
prev->next=current;
current->next=NULL;
}

}
}
fg=fopen("fileg.dat","a+")j
fprintf(fg,"statistics on enter\n")j
current=startj
while(current)
{
fprintf(fg," %u %u\n",current->time,

current->p-oo)j
current=current->next;
}
fclose(fg)j
/*initialization of arrays are done below */
for(i=Oji< nOji++)
{
p[i] .n_e=Oj
p[i.] .II-J1o=Oj.
p[i].b-oo=Oj
p[i].time=r[i]j /* A random number */

}
for(i=Oji<moji++)

150



{
m[i].state=O;
m[ i] .PJlo=O;
m[i].time=O;
m[i] .q=O;

}

for(i=O;i < (*ko);i++)
{
b[i].state=O;
b[i] .PJlo=O;
b[i].time=O;

}

if(pr==l)
{
printf(" Time PE BUSY In In \n");
printf(" no PE MEM BUS \n");
gotoxy(2,24);
printf( "PRESS ANY KEY TO SEE NEXT PAGE");
I*Finding of current event\events are started below *1
window(1,3,79,2~);
scr_cnt=O;
clrscrO;
gotoxy(l,l);

}

*t=start->time;
for(i=O;i<mo;i++)

m[i].time = *t;
for(i=O;i < *ko;i++)

b[i].time = *t;
while(*t < *ttot){
*e_count= 1;
current=start;
new=current->next;
while(current->time -- new->time && new != NULL)

{
*e_count+= 1;
current=new;
new=current->next;
}
sort(p,start,e_count,m,b);
if(*t==clock)
{
clock+=5;
while(*e_count)
{
*e_count-= 1;
*sl=start->PJlo;
*s_c=p[*sl].n_e;
switch(*s_c)
{
case 0:

151



{
eop(sl,t,start,p,m,b,clock);
break;

}
case 1:
{
eobf(sl,t,start,p,m,b,clock);
break;
}
case 2:
{
entbf(sl,t,start,p,m,b,clock);
break;

}
case 3:
{

entm(sl,t,start,p,m,b,clock);
break;

}
case 4:
{
prm(sl,t,start,p,m,b,clock);
break;
}

case 5:
{
entbb(sl,t,start,p,m,b,clock);
break;

}
case 6:
{
eobb(sl,t,start,p,m,b,clock);
break;

}
}
*t=start->time;
if(clock < *t)

{
while(clock < *t)
clock+=CINC;

}
if(*e_count == 0)
{
if(*t > 1000)
result(tq,tqf,tqb,tn1,tm1,tk1,t);
udJl(m, t);
ud_b(b, t);
}

scr_cnt+=l;
if(pr==l)
{
if(scr_cnt __ 17)

{
getch();

.scr_cnt=O;

152

.,



clrscr( );
gotoxy(l,l);

}
}

fg=fopen("fileg.dat", "a+");
fprintf(fg, "\nb[0]=%3d b[l]=%3d b[2]=%3d
b[4]=%3d\n",b[0].state,b[l].state,b[2].state,b[3].state);
fprintf(fg,"\ntb[0]=%3d tb[l]=%3d tb[2]=%3d tb[4]=%3d\n",

b[O].time, b[l].time,b[2].time,b[3].time);
fprintf(fg,"************************************\n");
fclose(fg) ;

}
}
else
{

while(*e_count)
{
*e_count-=l;
*sl=start->p-no;
wait(sl,t,start,p,clock);
*t=start->time;

}
if(*t >1000)

result(tq,tqf,tqb,tnl,tml,tkl,t);
}

}
getch( );
window(l,l,79,24);
clrscrO;
ttq=O;
for(i=O;i<mo;i++)
ttq+=m[i).q; */
*ttot-=lOOO;
ttq=«float)(*tq»/«float)(*ttot»;
ttnl=«float)(*tnl»/«float)(*ttot»;
ttml=«float)(*tml»/«float)(*ttot»;
ttkl=«float)(*tkl»/«float)(*ttot»;
ttqb=«float)(*tqb»/«float)(*ttot»;
ttqf=«float)(*tqf»/«float)(*ttot»;
*ttot+=lOOO;
printf("\n\tAverage Queue Length=%f\n" ,ttq );
printf("\n\tAverage forward Queue Length=%f\n",ttqf );
printfC\n\tAverage backward Queue Length=%f\n" ,ttqb );
printf("\n\tAverage No of busy Processor =%f\n",ttnl);
printf("\n\tAverage No of Busy Memory =%f\n",ttml);
printf("\n\tAverage No of Busy Bus =%f\n",ttkl);
printf("\n\tProcessor Utilization =%f\n",ttnl/no);
printf("\n\tMemory Bandwidth=%f\n",ttml/mo);
printf("\n\tBus Utilization=%f\n",ttkl/(*ko»;
getch( );
fprintf(fp, "%u %f %f %f %f\n" ,*ko,ttq,
ttnl/no,ttml,ttkl/(*ko»);
}

153



A-4
/* Simulation program for asynchronous packet switched system

with equal priority protocol. */
#include <stdio.h>
#include <math.h>
#include <alloc.h>
#include <time.h>
#include <stdlib.h>
#include<conio.h>
#include<graphics.h>
#define no 16
#define mo 16
#define BUST 5
#define MEMT 20
#define CINC 5
#d~f~ne PT 1
typedef struct processor{

unsigned n_e;
unsigned m.JlO;
unsigned b.Jlo;
unsigned time;

}pro;

typedef struct buses {
unsigned state;
unsigned p.JlO;
unsigned time;

}bus;

typedef struct memory{
unsigned state;
unsigned p_no;
unsigned time;
unsigned q;

}mem;

typedef struct controller {
unsigned time;
unsigned p.JlO;
struct controller *next;

}con;

unsigned *ko,*q,*m1,*n1,*k1,rcount,t1,t2,q_last,n1_last;
unsigned *ttot,q_flast,q_blast,*qbf,*qbb,*q,pr;

/* Subroutine for memory update */

ud~(mem m[],unsigned *t)
{
unsigned i;
for(i=O;i<mo;i++)
{
if(m[i].state==O)

m [i] .time = *t;
}

154



}

/* Subroutine for bus update */

ud_b(bus b[],unsigned *t)
{
/*FILE *f3; */
unsigned i;
for(i=O;i < *ko;i++)
{

if(b[i].state==O)
b[i].time = *t;

}
}

/* Subroutine for smallest bus time */
unsigned s_time(bus be])
{

unsigned smallest,i;
i=O;
smallest=b[i].time;
for(i=l;i < *ko;i++)
{

if(smallest>b[i].time)
{

smallest=b[i].time;
}

}
return smallest;

}

/* After think time processor comes here */
eop(unsigned *sl,unsigned *t,con *start,pro p[],mem me],
bus b[],unsigned clock)
{

unsigned i,del;
for(i=O;i<*ko;i++)
{

if(b[i].state==O)
break;

}
if(i==*ko)
{

del= s_time(b) - p[*sl].time; /*CINC increment of clock*/
p[*sl].time+=del;
*qbf+=l;*nl-=l;
*q+=l;
p[*sl].n_e=2; /*entbf()*/
if(pr==l)

printf("%5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,
*nl,*ml,*kl);

*t+=de I;
insert(sl,t,start);

, 5 5



}
else
{

•

-

del= BUST;
p[*sl].time+=del;
p[*sl].n_e=l;/* next event is eobf*/
*kl+=l;
b[i] .state=l;
b[i] .p_no=*sl;

p[*sl].bJlo=i;
b[i].time+=del;

if(pr==l)
printf("%5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,

*nl,*ml,*kl) ;
*t+=de I;
insert(sl,t,start);

}

}

/* After transferring informations through bus processor
comes here */

eobf(unsigned *sl,unsigned *t,con *start,pro p[],
mem m[],bus b[],unsigned clock)
{

unsigned i,del;
*nl-=l; /* whether or not free memory is found
processor remains idle */
*kl-=l; /* and bus is freed */
i=random( mo) ;
if(m[i].state==l)
{

del=m[i].time - p[*sl].time;
/* until that memory is freed */
p[*sl].time+=del;
p[*sl] .n_e=3;
p[*sl] .mJlo=i;
m[i] .q+=l;
*q+=l;

if(pJ:==l)
printf("%5u %5u %5u %5u %5u %5u \n" ,*t,*sl,*q,

*nl, *ml, *kl);
*t+=del;
insert(sl,t,start);

}
else
{

m[i].state=l;
m[i] .pJlo=*sl;
p[*sl] .m--!1.o=i;
p[*sl].n_e=4; /*next event is prm*/
del=MBMT;/*memory access time */
p[*sl].time+=del;
m[i].time+=del;
*ml+= 1;

156



if(pr==l)
printf("%5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,

*n1,*m1,*k1) ;
*t+=del;
insert(sl,t,start);

}
}

1* If once in forward direction busy bus condition is found
processor comes here *1

entbf(unsigned *sl,unsigned *t,con *start,pro p[],
mem m[],bus b[],unsigned clock)
{

unsigned i,del;
for(i=O;i<*ko;i++)
{

if(b[i].state==O)
break;

}
if(i==*ko)
{

del=s_time(b) - *t; 1* until that bus is freed *1
p[*sl].time+=del;
p[*sl].n_e=2; l*entbf()*1

if(pr==l)
printf("%5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,

*n1,*m1,*k1);
*t+=del;
insert(sl,t,start);

}
else

{
del= BUST;
p[*sl].time+=del;
p[*sl].n_e=l;l*eobf*1
*k1+=1; *n1+=1;
*qbf-=l; 1* this pe was in bus queue *1
*q-=l;
b[i].state=l;
b[i].p.Jlo=*sl;
p[*sl].b.Jlo=i;

b[i].time+=del;
if(pr==l)

printf("%5u %5u %5u %5u %5u %5u \n" ,*t,*sl,*q,
*n1,*m1,*k1) ;

*t+=del;
insert(sl,t,start);

}
}

1* If once required memory is found. in busy state then
processor comes here */~

entm(unsigned *sl,unsigned *t,con *start,pro p[],
mem m[],bus b[],unsigned clock)

157

,/
( ,...



{

}

unsigned i,del;
i=p[*sl].mJlo;
if(m[i].state==l)
{

del= m[i].time - p[*sl].time;
/* until that memory is freed */
p[*sl].time+=del;
p[*sl] .n_e=3;
if(pr==l )
printf( n%5u %5u %5u %5u %5u %5u \nn ,*t,*sl,*q,

*n1,*m1,*k1);
*t+=del;
insert(sl,t,start);

}
else
{

m[i]. state=l;
m[i] .p_no=*sl;
p[*sl].mJlo=i;
p[*sl].n_e=4; /*prm*/
del=MEMT;/*memory access time */
p[*sl].time+=del;
m[i]. time+=del;
m[i].q-=l;
*q-=l ;
*ml+=l;
if(pr==l )

printf("%5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,
*n1,*m1,*k1) ;

*t+=del;
insert(sl,t,start);

}

•

/* When memory access ends processor comes here to
see if there is any bus free */
prm(unsigned *sl,unsigned *t,con *start,pro pel,
mem m[],bus b[],unsigned clock)
{
unsigned i,j,del;
j=p [*sl] .mJlO;
*m1-=1; /* memory goes to idle state */
for(i=O;i<*ko;i++) .
{
if(b[i].state==O)
break;

}
if(i==*ko)
{
del=s_time(b) - p[*sl]. time;/* until a bus. is freed */
p[*sl].time+=del;
*qbb+=l;
*q+=l;
p[*sl].n_e=5; /*entbb()*/

158

'.rJ



if(pr==1)printf("%5u %5u %5u %5u %5u %5u \n",*t,*s1,*q,
*n1, *m1, *k1);

*t+=del;
insert(s1,t,start);

}
else
{

del= BUST;
p[*s1].time+=del;

p[*s1].n_e=6; 1* next event is eobb*1
*k1+=1 ;
*n1+= 1;
b[i].state=1;
b[i].PJlo=*s1;
p[*s1].bJlo=i;

b[i]. time+=del;
if(pr==1)

printf("%5u %5u %5u %5u %5u %5u \n",*t,*s1,*q,
*n1,*m1,*k1);

*t+=de 1;
insert(s1,t,start);
}

}
1* If in backward direction busy bus condition is

found then processor comes here *1
entbb(unsigned *s1,unsigned *t,con *start,pro p[],

mem m[],bus b[],unsigned clock)
{

unsigned i,j,del;
for(i=O;i<*ko;i++)
{

if(b[i].state==O)
break;

}
if(i==*ko)
{

del= s_time(b) - *t; 1* until a bus is freed *1
p[*s1].time+=del;
p[*s1].n_e=5; l*entbb()*1
if(pr==1)

printf("%5u %5u %5u %5u %5u %5u \n",*t,*s1,*q,
*n1,*m1,*k1);

*t+=del;
insert(s1,t,start);
}

else
{

del= BUST;
p[*s1].ti~e+=del;
p[*s1].n_e=6;I*eobb*1
*k1+=1;*qbb-=1;
*q-=1;
*n1+=1 ;
b[i] .state=1;

159



b [i].PJlo=*sl;
p[*sl] .bJlo=i;
b [i].time+=deI;
if(pr==l)

printf("%5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,
*n1,*m1,*k1);

*t+=del;
insert(sl,t,start);

}
}

/* In backward direction after getting bus processor
comes in thinking state */
eobb(unsigned *sl,unsigned *t,con *start,pro p[],
mem m[],bus b[],unsigned clock)
{
unsigned i,del;
del=random(PT)+l;
p[*sl].time+=del;
p[*sl] .n_e=O;
*kl-=l;
if(pr==l)

printf("%5u %5u %5u %5u %5u %5u \n" ,*t,*sl,*q,
*n1,*m1,*k1);

*t+=del;
insert(sl,t,start);

}

/* subroutine ,insert has started below */
insert(unsigned *sl,unsigned *t,con *start)
{
con *prev,*new,*current;
current=start->next;
if(*t < current->time)
{
start->PJlo = *sl;
start->time = *t;
}

else
{
if«new=( con*)malloc(sizeof( con»)==NULL)
{
printf("No memory available for allocation \n");
exit (1);
}
start->PJlo=current->PJlo;
start->time=current->time;
start->next=current->next;
free(current) ;
current=start->next;
prev=!;tart;
while(current->next != NULL && *t >= current->time)
{
prev=current;

160



\

current=current->next;
}

new- >PJlo=*sl;
new- >time=*t;
if(current->next != NULL)
{
prev->next=new;
new->next=current;
}
else
{
if(*t >= current->time)
{
current->next=new;
new->next=NULL;
}
else
{
prev->next=new;
new->next=current;
}

}
}
/* Results and statistics are calculated in the

rontine result */
result(unsigned *tq,unsigned *tqf,unsigned *tqb,

unsigned *tn1,unsigned *tm1, unsigned *tk1,
unsigned *t)

{
uns igned sub;
if( rcount == 0)
{
t1 = *t;
q_Iast = *q;
q_flast= *qbf;
q_blast= *qbb;

'n1_last = *n1;
m1Jast = *m1;
k1Jast = *k1;
rcount+=l;

}
else
{
t2 = *t;
sub=t2-t1;
*tq+=q_Iast * sub;
*tgf+=q_flast * sub;
*tgb+=q_blast * sub;
*tnl+=nl_last * sub;
*tm1+=m1_last * sub;
*tk1+=kl_last * sub;
t l=tZ;
q.J;ist = *q;
qJlast = *qbf;
q...,.blast= *qbb;

161



,

nl_last = *nl;
ml_last = *ml;
kl_last = *kl;
}

}
/* For equal priority assignment to all the processors */
eq_sort(con *tag,unsigned *e_count)
{
con *current,*inter,*first;
int i,store;
first = tag;
current = tag;
inter=malloc(sizeof(con»;
for(i=*e_count;i>O;i--)
{
store=random(i);
while(store)
{
store-=l;
current=current->next;
} .

inter->p-fio=first->p_no;
first->p_no=current->p_no;
current->p-fio=inter->p-fio;
first=first->next;
current=first;
}

free( inter);
}
/* To place the processors in proper position in

event queue */
sort(pro p[],con *start,unsigned *e_count,mem m[],bus be])
{
unsigned back,store,prm_cnt;
con *current,*inter,*tag;
back=O;prm_cnt=O;
tag=start;
current=start;
store=*e_count;
while( *e_count)
{
*e_coun t-=1;
if«p[current->p-fio].n_e==l :: p[current->p-fio].n_e==4 ::
p[current->p-fio].n_e==6 && back==O»
{
if(p[current->p-fio].n_e==l :: p[current->p-fio].n_e==6)

b[p[current->p-fio].b-fio].state=O;
else

m[p[current->p-fio].m-fio].state=O;
tag=tag->next;
current=current->next;
prm_cnt+=l;

}
else if«p[current->p-fio].n_e==l :: p[current->p-fio].n_e==4::
p[current->p-fio].n_e==6) && back>O)

162



{
if(p[current->p-oo].n_e==l :: p[current->p-oo].n_e==6)

b[p[current->p-oo].b-oo].state=O;
else

m[p[current~>p-oo].m-oo].state=O;
inter=(con*)malloc(sizeof(con»;
inter->p-oo=tag->p-oo;
tag->p-oo=current->p-oo;
current->p-oo=inter->p_no;
free(inter);
prm_cnt+=l;
tag=tag->next;
current=current->next;
}
else
{

current=current->next;
back+=l;
}

}
current=start;
*e_count=store;
eq~sort(start,e_count);
*e_count=store;

}
/* Main program is started below */

main()
{
FILE *fp;
con *start,*prev,*new,*current;
pro p[no];
mem m[mo];
bus b[16];
unsigned *tq,*tnl,*tml,*tkl,clock,*tqb,*tqf;
unsigned i,j,*s_c,*e_count,r[no],*sl,count,scr_cnt,*t;
float ttq,ttnl,ttml,ttkl,ttqb,ttqf,ttmq;
void *calloc();
void *Ilalloc();
if «ko=(unsigned*)malloc(sizeof(unsigned»)==NULL)
{

printf( "No memory");
exit(l);

}
if«fp=fopen("fpa.dat","a+"»==NULL)
{
printf("file error");
exit(l);
}

*ko=O;
pr=O;
for(*ko =l;(*ko) < 17;(*ko)++ )
{
clrscr() ;
rcount=O; tl=O;t2=O; q_flast=O; q_blast=O;q_last=O;

163



\

clock=5;scr_cnt=O;
nl_last=O; ml_last=O; kl_last=O;
qbb=malloc(sizeof(unsigned»;
qbf=malloc(sizeof(unsigned»;
tqb=malloc(sizeof(unsigned»;
tqf=malloc(sizeof(unsigned»;
ttot=(unsigned*)malloc(sizeof(unsigned»;
nl=(unsigned*)malloc(sizeof(unsigned»;
ml=(unsigned*)malloc(sizeof(unsigned»;
kl=(unsigned*)malloc(sizeof(unsigned»;
q=(unsigned*)malloc(sizeof(unsigned»;
t=(unsigned*)malloc(sizeof(unsigned»;
sl=(unsigned*)malloc(sizeof(unsigned»;
tq=(unsigned*)malloc(sizeof(unsigned»;
tnl=(unsigned*)malloc(sizeof(unsigned»;
tml=(unsigned*)malloc(sizeof(unsigned»;
tkl=(unsigned*)malloc(sizeof(unsigned»;
e_count=(unsigned*)malloc(sizeof(unsigned»;
s_c=(unsigned*)malloc(sizeof(unsigned»;
*nl=no;*ml=O;*kl=O;*qbb=O;*qbf=O;*q=O;*ttot=30000;
*tq=O;*tqf=O;*tqb=O;*tnl=O;*tml=O;*tkl=O;
if«start=( con*)malloc(sizeof( con»)==NULL)
{
printf("No memory available for allocation \n");
exit(l);

}

/* Random numbers are generated below */
randomize( );
for(i=O;i < no;i++)

r[i]=random(PT)+l;
/* Controllar linked list is formed below */
start->next=NULL;
start->PJlo=O;
start->time=r[O];
for(i=l;i<no;i++)
{
if«current=( con*)malloc(sizeof( con»)==NULL)
{
printf("No memory");
exit(l);
}

current->time=r[i];
current->PJlo=i;
if(current->time < start->time)
{
prev=start;
current->next=prev;
start=current;

}
else
{
prev=start;
new=st~t->next;
while(new 1= NULL && current->time >= prev->time)

16t.

•



{
if(current->time < new->time)
{

current->next=new;
prev->next=current;
prev=new;

}
else
{

prev=new;
new=new->next;
}

}
if(new == NULL)

{
prev->next=current;
current->next=NULL;
}

}
}
I*initialization of arrays are done below *1
for(i=O;i< no;i++)

{
p[i] .n_e=O;
p[i].mJlo=O;
p[i].bJlo=O;
p[i].time=r[i];

}
for(i=O;i<mo;i++)

{
m[i].state=O;
m[i].PJlo=O;
m[i].time=O;
m[i].q=O;

}

for(i=O;i < (*ko);i++)
{

b[i].state=O;
b[i].p_no=O;
b[i].time=O;

}
if(pr==l)
{
printf(" Time PE BUSY In In \n");
printf(" no PE HEH BUS \n");
gotoxy(2,24);
printf( "PRESS ANY KEY TO SEE NEXT PAGE");
I*Finding of current event\events are started below *1
}

window(1,3,79,20);
scr_cnt=O;
clrscr();
gotoxy(l,l);
*t=start->time;

165



for(i=O;i<mo;i++)
m[i].time = *t;

for(i=O;i < *ko;i++)
b[i].time = *t;

while(*t < *ttot)
{

*e_count=1;
current=start;
new=current->next;
while(current->time -- new->time && new != NULL)
{
*e_count+=1;
current=new;
new=current->next;
}
sort(p,start,e_count,m,b);
whi le(*e_count)
{

*e_count-=1 ;
*s1=start->p-no;
*s_c=p[*s1].n_e;
switch(*s~c)
{

case 0:
{
eop(s1,t,start,p,m,b,clock);
break;
}
case 1:
{
eobf(s1,t,start,p,m,b,clock);
break;
}
case 2:
{
entbf(sl,t,start,p,m,b,clock);
break;
}
case 3:
{
entm(sl,t,start,p,m,b,clock);
break;
}
case 4:
{
prm(sl,t,start,p,m,b,clock);
break;
}
case 5:
{
entbb(s1,t,start,p,m,b,clock);
break;

}
case 6:
{

166



eobb(sl,t,start,p,m,b,clock);
break;
}

}
*t=start->time;
if(*e_count == 0)
{
if(*t>lOOO)

result(tq,tqf,tqb,tn1,tm1,tk1,t);
udJl(m, t);
ud_b(b, t);
}

scr_cnt+=l;
if(pr==l)
{
if(scr_cnt -- 17)
{
getch( );
scr_cnt=O;
clrscr();
gotoxy(l,l);
}

}
}

}
clrscr();
*ttot-=lOOO;
ttq=«float)(*tq»/«float)(*ttot»;
ttn1=«float)(*tn1»/«float)(*ttot»;
ttm1=«float)(*tm1»/«float)(*ttot»;
ttk1=«float)(*tk1»/«float)(*ttot»;
ttqb=«float)(*tqb»/«float)(*ttot»;
ttqf=«float)(*tqf»/«float)(*ttot»;
*ttot+=lOOO;
printf("\n\tAverage Queue Length=%f\n",ttq );
printf("\n\tAverage No of busy Processor =%f\n",ttn1);
printf("\n\tAverage No of Busy Memory =%f\n",ttm1);
printf("\n\tAverage No of Busy Bus =%f\n",ttk1);
printf("\n\tProcessor Utilization =%f\n",ttn1/no);
printf("\n\tMemory Bandwidth=%f\n",ttm1/mo);
printf("\n\tBus Utilization=%f\n",ttk1/(*ko»;
getch( );
fprintf(fp, "%u %f %f %f %f\n" ,
*ko,ttq,ttn1/no,ttm1,ttk1/(*ko»;

}
fclose(fp) ;

}

167



REFERENCES
[1] M. Auguin and F. Boeri,"Presentation of the LASSY'S Work in

the field of Parallel Architecture" ,Supercomputing, Ed. A.
Lichnewsky, C. Saguez, North-Holland, 1987.

[2] Kai. Hwang and Faye A. Briggs," Computer Architecture .and
Parallel Processing" , McGraw-Hill Book Company, 1985.

[3] G. Jack Lipovski and Miroslaw Malek, " Parallel Computing
Theory and Comparisons", John Wiley & Sons, 1987.

[4] John P. Hayes, "Computer Architecture and Organisation
McGraw-Hill Book Company, 1978.

. ,

[5] L.N.Bhuyan, Q. Yang and D.P. Agrawal, " Performance of
Multiprocessor Interconnection Networks", IEEE Computer,
February 1989,pp. 25-37 .

[6] M.H.Chowdhury and Md. S.Alam, "Shared Bus Multiprocessor, "AIT-
BUET Joint Conference Proceedings", 25th August, 1990, pp.
42-65.

[7] Andrew S. Tanenbaum, "Computer Networks", Prentice Hall of
India Private Limited, New Delhi 1987.

[8] T.N.Mudge and H.B. AI-Sadoun, " A Semi-Markov Model for the [,
Performance of Multiple Bus Systems", IEEE Trans. .:~:.on ..~7.

','

Comput. , Oct. 1985, 934-942. ;,pp.
[9] T.N. Mudge, J.P. Hayes and D.C. Winsor, "Multipe Bus

Architectures", IEEE Computer,June 1987, pp. 42-48 .

168



.,

[10] D. M. Taub, "Arbitration and Control Acguisition in the

proposed IEEE 896 Futurebus", IEEE Micro, August 1984, pp.

28-41.

[11] F. EI Guibaly, "Design and Analysis of Arbitration

Protocols", IEEE Trans. on Comput., vol.C38, no.2, Feb.

1989. pp. 161-171.

[12] S.M. Mahmud and M.S.U. Alam, ,.A new arbitration circuit for

synchronous multiple bus multiprocessor system", Electrical

and Computer Engineering Department, Wayne State University.

U.S.A.

[13] J.H.Patel,"Analysis of Multiprocessors with private cache

memories",IEEE Trans. on Comput.vol C31, April 1982, pp.

296-304.

[14] A.Fukuda, "Egu 1ibrium Poin t Analysis of Memory Interference

in Multiprocessor System " IEEE Trans. on comput., Vol. C37,

No.5, May 1988.

[15] J.K. Fisher, D.D.Gajski, M.Y.Wu, "Programming Environments

for Multiprocessors", Supercomputing, Ed. A.Lichnewsky, C.

Saguez, North-Holland, 1987.

[16] M.A.Marson and M.Gerla,"Markov Model for Multiple Bus

Multiprocessor System",IEEE Trans. on Comput. vol C-31,

March 1982, pp. 239-248.

169



[17] L.N. Bhuyan, "An ,Analysis of Processor Memory Interconnection
,.. -< •

Network",IEEE Trans. on Comput., Vol. C-34, No.3, Mar.
I

1985, pp. 279-283.

[18] N. ~~berts, D.F. Anderson, R.M. Deal, M.S. Garet, ¥I.A.

Shaefer, "Introduction To Computer Simulation: The System

Dynamics Approach", Addison-Wes ley Pub lishing Company, 1983

[19] A.A.B. Pritsker, C.D. Pegden, " Introduction to Simulation

and SLAM", A Halsted Press Book, John Wiley & Sons, New

York, 1979.

17 a


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147
	00000148
	00000149
	00000150
	00000151
	00000152
	00000153
	00000154
	00000155
	00000156
	00000157
	00000158
	00000159
	00000160
	00000161
	00000162
	00000163
	00000164
	00000165
	00000166
	00000167
	00000168
	00000169
	00000170
	00000171
	00000172
	00000173
	00000174
	00000175
	00000176
	00000177
	00000178
	00000179
	00000180
	00000181
	00000182
	00000183
	00000184
	00000185

