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ABSTRACT

With the availability of high hardware
parallelisa through fast physical devices, the 1interconnection
between pracessor and memory modules is required to be efficient
enough for high performance of a multiprocessor system. For
highér_performancs multiple bus interconnection can be used.

In this thesis work multiple bus interconnection
is used fnr'processor memory interconnection in multiprocessor
system. Multiple bus connection is fault tolerant and during a
bus fault only system performance decreases by a 1little amount
‘and there remain pathsto every memory module from each of the
processors. Equal priority, unequal priority and a combination of
unequal priority and random delay protocols are uséd for
" resolving bus and memory coﬁflicta. Both synchronous and
asynchronous timing and packet switched and circuit switched
systems are simulated for performance analysis. For performance
analysis parameters used are average gqueue length, processor
-utilization, ~memory bandwidth and bus utilization. Hardware
design of synchronous and asynchronous arbiters are presented. In
synchronous design equal priority protocol is sassumed. In
asynchronous system a two level unegqual priority protocol is
examined. Simulation rresult is validated by analytical

solutions.
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CHAPTER 1} - IE N
w5230
INTRODUCTION K-

1.1 General Description:

Numerous applications require ever increasing
computing power which is no; possible to gain from sequential
computers [1]. Introduction of paralleliém in computer can
increase this ability to a great extent. It Is possible to
introduce parallelism by pipelining and by using multiprocessor
machine. Then efficient algorithm for a large class of problem
can be developed by exploiting parallel hardware feature of
multiprocessor system.‘So improved performance of multiprocessor
system is necessary. Multiprocessors can be grossly characterized
by two attributes:

(a} A multiprocessor is a single computer including
multiple processors.

{b) Processors may communicate and co-operate at
different levels in solving a given problem. The communication
may occur by sending messagés from one processor to the other or
by sharing a common memory.

Multiprocessor s&stém can be divided into two
architectural models, such as, tightly coupled multiprocessors
and loosely coupled multiprocessors [2].

Tightly coupled multiprocessors communicate through
a shared main memory. So the rate at which data can communicate
from one processor to other depends on bandwidth of the memory. A

high speed local memory or cache memory may exist with each
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Processor. A complete connectivity can exist bétween the
processors and main memory. This connectivity can be accoﬁplished
by interconnection network- crossbar network, time shared bus,
multiple bus network or by a multiported memory. Oﬁe of the
limiting factors to the expansioh of a tightly coupled system 1is
the performance degradation due to memory contentions which occur
when two or more processors wish to access particular memory
module simultaneously. Another limiting factor is processor
memory interconnection network.

Loosely coupled multiproceséor systems do not
generally encounter the same degree of memory conflicts
experienced by tightly coupled system. In loosely coupled
multiprocessor system each processor has a set of input output
devices and a large local memory where it accesses for most of
the instructions and data. Here processor, its local memory and
I/o interfaces are known as computer module. Processor which
execute on different computer modules communicate by exchange
messages through a message transfer system(MTS) [3]. The degrge
of coupling of such a'syéfém is ver§ io6se:fﬁE;géL7thi§,t;;éféf
system is knowﬁ as distributed system. Figure 1.1 shows the
loosely coupled multiprocessor system(LCS) Cm* [2]., Each computer
module of the Cm* includes a local switch Slocal. Slocal routes
the processor’s requests to the memory and I/0 devices outside
the computer module via map,bus; It also accepts references from
other computer modules to its local memory and I/0 devices. The

Kmap is a processor that is responsible for mapping addresses and

routing data between Slocals. The computer modules are qonnected
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in hierarchical clusters by two level buses. A cluster consists
of computer module, Kmap and map bus. Clustering can enhance the
cooperative ability among the processors of a eluster. But
intercluster communication becomes time consuming. The map bus
may create a bottleneck because only one transaction can take
place at a time. Clusters communicété via intercluster buses.

Because of large variability of interference times,
the throughput of loosely coupled multiprocessor may be too low
for applications which require high fesponse times. If high speed
processing is desired, tightly coupled system (TCS) may be used.
Figure 1.2 shows a tightly coupled system.

In this figure processor memory inter-connection
network (PMIN) can be multiple bus or cross bar switch etc. and
its efficiency is required for good system performance {21. Heré
each processor references main memory and these memory
references contributes to the memory conflicts at the memory
modules [4]. Since each memory reference goes.through the PMIN,
‘it encounter delay in the proceésor memory switch and hence the
instruction cycle time increases. This delay can be reduced by
associating a cache with each processor to capture most of the
references made by a processor. Another consequence of the cache
is that fhe traffic through the connecting network can be
reduced. With cache there is a problem called cache coherence
[5]. More than one inconsistent copy of data can exist in the
system. When there is a cache miss the required block can be
directly found in any one of shared memory modules, or it can be

currently in other processor’s cache memory. Then copy back



operation. is required. ‘
1.2 Processor Characteristics for Multiprocessing [2]:

Most multiprocessors have been built wusing
processors not originally designed for multiprocessor
architecture. Examples of these are the C.mmp system which used
DEC’S PDP-11 procegsors and cm® which used LSI-11
microprocessors. So a number of desirable architéctural features
are necessary for thesé'processors and these are described as
follows

(a) Process recoverability: The architecture of a
processor used in multiprocessor ﬁystem reflect fact that the
process and the processor are two different entities. If the
processor fails, it should routinely be possible for another
processor to retrieve the interrupted process state so that
execution of process continues. Withput this feature, the
potential for reliability is substantially reduced. Most
processors contain the process state of the current running
process in internal register which afe not accessible outside the
processor and are not written to memory in the event of fault.
With current teéhnology, it should be possible to separate the
general purpose registers from processor itself without much loss
of speed. It'is desired to have register file shared by all the
processors,

{b) Efficient context switching: Another reason for
a shared general purpose register is that a large register file

can be used in a multiprogrammed processor. For effective

utilization, it 1s necessary for the processor to support more



than one addressing domain and hence to provide domain change or
context switching operation. Such switching requires extensive
queuing and stack operations. The c¢ontext switch operation saves
the state of the current process andlthen switches to a selected
ready-to-run process by restoring the state of the new process.

The state of the new process is indicated by the contents of the
p;ocess reéisters. An example of a processor with multiple domain
is the IBM 370/168 . Two domains, the supervisor and user modes
of operation afe available. A user process can communicate with
the operating system by using a mechanism provided through a
supervisor callr(SVC) instruction. A special instruction can be

created to accomplish the context switch efficiently. An example
of such an instruction is the central exchange jump (CEJ) in the.
Cyber-170 processor, which contéins a single set of registers.

The execution of the CEJ results in the saving of the context or
.state of the current process and the register set replaced by
the state of another process taken from an area of central

memory. This area is called the exchange package}

(c) Large virtual and physical address space: A
processor intended to be used in the construction of a general-
purpose medium to large multiprocessor must support a large
physical address space. Even when an algorithm is decomposed so
that itrcan be implemented ﬁsing very small amount of code,
processes sometimes need to accéss large amount of data object.
- The 16 bit address space used in C.mmp hampered effective
programming of the systeﬁ. In addition to the need for a large

physical address space, a large virtual address space is also



desirable. If possible virtual address space should be segmented
to promote modular sharing and checkiﬁg of address bounds for
memory protection and software reliability. _For example, each
processor used in the S-1 multiprocessor system has 2 gigabytes
of virtual memory and 1 gigabyte of physical memory where each
word is 36 bits wide . |

(d) Effective synchronization primitives: The
ﬁrocessor design must provide some implementation of indivisible
actions which serve as the basis of synchronization primitives,
These synchronization primitiveg require efficient mechanisms for
establishing mutual exclusion. Mutual exclusion is required when
téo Or more processors are in execution concurrently and must
cooperate to exchange data during the computation. Mechanisms for
establishing mutual exclusion involve some kind of read-modify-
write memory cyéle and queueing. One such mechanism is the
semaphore. Each semaphore has a queue associated with it and the
entries in the queue refer to Processes which were suspended
becausé of the semaphore value of the variable. A semaphore
operation requires an indivisible operation, which can be
accohplished by read-modify-write memory cycle to test and update
‘a semaphore, The queue manipulations should also be done
indivisibly. Some instructions which are used to accomplish
mutual exclusion, such as, the test-and-set and compare-and-swap.

(e) Interprocessor communication mechanism: The set
of processors used in a multiprocessor must have an efficient
means of interprocessor communication. Thié mechanism should be

implemented in hardware. A hardware mechanism is very useful for

8



drawing the attention of the target processor. The need for such
a mechanism is even more apparent,-when, in a asymmetric
multiprocessor system, there are frequent requests fo; services
exchanged. between different processors. The hardware
interprocessor mechanism can also facilitate synchronization
between processors. This mechanism could, for example be used in
the event of a processor failure to initiate a hardware signal to
all functioning processors, which would then become aware of the
faulty processor and start an error recovery or diagonostic
procedure. Since the pProcessors in a tightly coupled system share
memory, it is possible to have software interprocessor.
communication without an e&plicit hardware mechanism. This method
is inefficient as each processor will have to periodically poll‘
its "mailbox" to see if there is a message for it. Such polling
will result in intolerable response times for a large number of
processors. Examples of systems with hardware inter—proceésor
communication mechanisms are IBM 370/168 MP, Cray X-MP, and the
C.mmp. It is possible that two or more processors may
simultaneously attempf to access a common path in the
interprbcessor mechanism. Each processor must be capable of
participating in the arbitration of the requests to use the path.
Since. arbitration implies that on simultaneous requests one or
more processors must wait, the processors must have a wait
state or some mechanism to suspend the .processor in a queue.

(f) Instruction set: The instruction set of the
proceésor should have adequate facilities for implementing high

level languages that permit effective concurrency at the

S
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Procedure level and for efficiently maniphlating data
structures. Instruction should be provided for procedure linkage,
looping constructs, parameter manipulation, Multidimensional
index computation, and range checking of addresses._Furthermore,
the instrucfion set should also include instructions for creating
and terminating parallel execution paths within a program. Thus a
full set of addressing ques are desirable. Hardware counters and
real-time clocks should be provided to generate a un;que name of
process identification and time-out signals required for process
management. These times can also be used in a multiprocessing
system to detect many -errors by associating a "watchdog"timer
with important systen resources, as done-in the C.mmp. A
multiprocessor system pro#ides a natural_environment where each
component can monitor each other-relatively easily.
1.3 Interconnection Networks:

| The principal characteristics of a multiprocessor
system [2,5-8] is the ability of each Processor to share a set of
main memory modules. This sharing capability is provided through
a intepconnectioh netwopk. Different types of interconnection
networks are describéd below:

(a) Time shared or common buses: The simple
interconnection system for multiple processors is a COmmon
communication path connecfing élL.of the functional units. An
examples of a multiprocessor systém using the common
communication path is shown in figure 1.3 The common prath is
often called a time shared or common bus. This organization is

the least complex and the easiest to reconfigure. Such an

n



interconnection network is often a totally passive unit having no
actife component such as switches, Transfer operations are
controlle&rcompletely by the bus interfaces of the sending and
receiving units. An arbiter determines which processor_will get
control of the bus -in case of more than one Processor requesting
concurrently. If there are a large number of processors in a
system then single bus reduces the system performance because of
long delay experienced by a processor waiting in queue in time éf
need of a bus. So to achieve greater system performance m;ltiple
bus system can be used Whiéh is also the simplest form of
interconnection network. Then for a certain system with some
processors and a number of memory modules, the number of buses
required to aéhieve best system performance should be determined
so that optimum bus utilizationris ach&eved. The multiple bus
multiprocessor system-is shown in figure 1.4 .

{b) Cross bar switch and multipért memories: . In a
crossbars system separate path is available from each memory to
the processors as shown in figure 1.5 . The crossbar switch
ﬁossesses complete connectivity with respect to the memory
modules because there is a separate bus associated with each
memory module. So in crossbar system there is no bus conflict.
Only conflict is memory contention when two or more pProcessors
request the same memory. The important characteristics of a
system utilizing a crossbar interconnection matrix are the
extreme simplicity of the switch-to-functional unit interfaces
and the ability to support simultaneoﬁs requests for all memory

modules. To provide these features requires major hardware

12



capabilities in the switch. Not only must each eross point be
capable of switching parallel t;ansmissions, but it must also be
caﬁable of resolving multiple requests for sccess to the same
memory module occurring during a single memory cycle. These
coﬁflicting requests are usually . handled on a predetermined
priority basis. The result of inclusion of such a capability is
" that the hardware required to implement the switch can‘ become
quite large and complex. Although very large scale integration
(VLSI) can reduce the size of the switch, it will have little
effect on its complexity.

(c) Multistage interconnection networks(MIN): The
construction of a simple crossbar switch is shown in figure 1.B.
Consider the 2%2 crossbar switch in this figure. This 2%2 spitch
has the capasbility of connecting the input A to either the output
labeled 0 or the output labeled 1, depending on the levei of some
control bit cp of the input A. If ca =0, the input 1is connected
to the upper output, and if cA is 1, the.connection is made _to
the lower output. Terminal B of the switch behaves similarly with
a control bit Cg - The 2#2,module also has the «capability to
arbitrate between conflicting requests. If both inputs A and B
require the same output terminal, then only one of them will be
connected and the other will be blocked or rejected. By
introducing buffers within switches its performance can be
increased [2-3]. With this basic module it is possible to built a
MIN. In figure 1.7. a 8 by 8 omega netwofk is shown Dbuild from

these basic modules.

13
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1.4 Parallel memory organizations [2]:

Low order interleaving of memory modules is
advantageous in multiprocessing system when the address_space of
the active processes are shared intensively. If there is very
little sharing, low-order interleaving may cause undesirable
conflicts. Concentrating a number of pages of a single process in
a given memory module of a high-order interleaved main memory is
sometimes effective in reducing memory interference. In this
case, a specific memory module Hi may be assigned to place most
of the pages belongiﬁg to a process executing on processor 1i.
Such &8 memory module is called the home memorf for processor 1.
If the entire set of active pages of a process being executed on
processor i is contained in memory Hi, and if memory Hi contains
no paé;s belonging to processes running on other processors, then
proééssor i encounters no memory conflicts. If every processor
has the entire set of active pages of those processes that are
running on it in its home'memory, there will be no memory
conflicfs. The concept of home memory can be extended so that a
set of mpdﬁles {Hi} are assigned as the home memories of
processor 1. This assumes that there are more memory modules than

processors, so that at all timses each memory module is associated

with one processor. That 1is {Hi}and{Hj} = 0 for 1 != j. The home-
memory organization for multiprocessors has an  additional
architectural advantage - beyond the reduction in memory
interferences

The processor-memory interconnection network (PMIN)
of a multiprocessor system may be expensive, slow, and .

complicated. So there can be an alternative organization in which
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each memory has two ports, one of which connects to the PMIN and

one of which connects directly to the home processor. This
topology permits enhanced access by each processor to its home
memory by frequently avoiding switching time through PMIN and
permitting decreased cable lengths between processors and their
home memories. Since PMIN participates in‘only a minority of all
memory Aaccesses with this organiiation, its sﬁeed become less
critical and subsﬁantial cost savings may also be possible. The
concurrent (C) access memory configuration used for pipeline
processors can also be used by multiprocessors. For tightly
coupled multiproceésors, a single C access configuration can be
designed fo match the bandwidth requirements of the processors.
In this case, the main memory and the processors are on the
opposite sides of the PMIN and references to_memory by the
processors must traverse the PMIN. Therefore, the processor
encounter memory conflicts as well as transmission delays. To
reduce these effects, a private cache is usually used associated
with each processor in multiprocessor so©  that most of the
referenced data and instruction can be found in the cache.
However, the data bus width may affect the cost and transfer time
of a block of data. |
1.5 Operating system requirements for multiprocessor:

There is conceptually little differeﬁcé between a
operating -system requirements of a multiprocessor and those of a
large computer system utilizing multiprogramming. However, there
is the additional complexity in the operating systen when

multiple processor must work simultaneously. This complexity is
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also a result of the operating system being able to support
multiple asynchronous tasks which execute concurrently. The
functional capabilities which are often required in an operating
system for a multiprogrammed computer include the resource
allocation and management séheme, memory and data set protection,
prevention of system deadlocks and abnormal process termination
of exception handling. In addition to these capabilities,
multiprocessor system also need techniques for efficient
utilization resources.and, hence, must provide input-output and
processor load-balancing schemes. One of the main reasons for
ﬁsing a multiprocessor system is to provide some effective
reliability and graceful degradation in the event of failure.
Hence, the operating system must also be capable of providing
system reconfiguration schemes to support graceful degradation.
These extra capabilities and the nature of the multiprocessor
execution environment places a much heavier burden on the
operating system to support automatically the exploitation of
parallelism in the hardware and the progfams béing executed(2].

%n operating system which operates poorly will
negate _other advantages which are gssociated with
multiprocessing. Hence, it is of utmost importance that the
operating systgm_for a multiprocessihg computer be designed
efficiently. The presence of more than one processing unit in the
system introduces a new dimension into the design of the
operating system. The influence of large number of processor . on
an operating system is still a research problem. The modularity

of'processors and the interconnection structure among them affect
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the systeﬁ development. Furthermore , communication schemes,
synchronizétion mechanisms, and placement and assignment policies
dominate the efficiency of operating systém; There are basically
three orgahizations that have been utilized in the design 6f
operating éystem for multiprocessor,'némely master slave
configuration, separate supervisor for each érocessor, and
floating supervisor contreol [1].

| For most multiprocessors, the first opérating
syétem available assumed the master-slave mode. This mode in
which the supervisor is always run on the same processor, is
certainly the simplest to implement. Furthermore, it may often be
designed by making relatively simple extensibﬁs to uniprocessor
operating system that inélude full multiprogramming capabilities._
Although the master slave type of system is simple it 1is
generally inefficient in utilization of system resources. In‘a
master slave mode, one processoricalled the mastep maintains the
‘status of all processors in the system and distributes works to
slave processors. An example of the masfer slave mode is in the
Cyber-170, where the operating system is executéd by one of the
peripheral proc;ssor. All other processors are treated as slaves.
When there is a separate supervisor running in each processor,
the operating system characteristics lare different from the
master slave system, This is similar to the approach taken by the
computer networks, where each processor contains a copy of a
basic Kernel. Resource sharing occurs at a higher‘level, say via
a shared file structufe. Each processor services its own need..

However, since there is some interaction between the processors,
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it is necessary for some of the supervisory code tq be re-entrant
or replicated to.providé separate copies for each processor. The
floating supervisor control scheﬁe treaté_all the processors as
well as other resources symmetrically or as an anonymous pool of
resources. This is the most difficﬁlt mode of operation and most
flexible. In this mode, the superfisér floats from one processor
to another, although several of the processors may be executing
super@isory service foutine simultaneously. This type of systém
can attain better load balancing over all type of resourcesf2].
1.6vSome Examples Of Multiprocessor Systems[1-3]:

(i) The C.mmp System: The C.mmp is composed of 167
PDP-11/40E(slightly modifiéd) minicomputers sharing a 16 memory
banks via crossbar. The averagg time to execute an instruction on
a PDP-11/40 is approximately 2.5 us. Each processor has an 8K-
byte local memory that is used primarily for operating system
functions. The principle secondary memories of the C.mmﬁ consists
of four drives of 40M-byte disk controllers, three drives of
130M-byte disk controllers, and fixed head disks with zero
latency controller that are used for paging space. The peripheral
devices'are assigned to the Unibus of specific processors. Hence
there is no phfsical sharing of peripherals. A processor cannot
initiate an I/0 operation on a peripheral that is not on its
Unibus. An interprocessor bus wh}ch connects the entire set of
prodessors is used to‘perform the generalifunction of
interprocess communication. The bus provides a common lock as
well as an interprocessor control. These two logically and

functionally separate features travel separate data paths,
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aithough they share a common control. Each processor has an
interbus interface that defines the processor’s bus address and
makes available the bus functions to the softwarel(2].

(ii) The S-1 Multiprocessor System: The S-1
consists of 16 uniprocessors which share 16 memory banks via a
‘crossbar switch[ﬂEach memory bank can up to 230 bytes of
semiconductor memory and hence a total physical address space of
16 gigabytes(234)..Each processor has a private cache. The 5-1
multiprocessor system is developed to perform computatiohs at an
unprecedented aggregate rate on a wide variety of scientific
problems. The S-1 is implemented with the S-1 uniprocessors
called Mérk ITAs. The uniprocessgr is designed especially to
facilitate pipelined parallelism in the fetching and decoding of
instructions, the associated fetching of instruction operands,
and the eventual execution of instructions. The preparatioh and
execution of instguctions that specify both scaler and vector
operations are pipeiined. Every instruction proceeds thfough
multiple pipeline stages, including instruction preparation,
operand operation, and execution. .

{iii) PASM: PASM is a multifunction paftitionable
SIMD/MIMD system being designed at Purdue for image
understanding3. It is to be a large scale, dynamically
reconfigurable multiprocessor systém; which will incorporate over.
1,006 complex_proceééing'elements. Other than image processing
and pattern recognition it can also be applied_to speech
understanding and biomedical sigﬂal.understanding. PASM can also

serve as a research tool for parallel processing with emphasis on
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large-scale SIMD/MIMD parallelism. This éystem has hierarchical
control with a system control unit responsible for process
scheduling, resource allocation, pafallelism mode and © overall
coordination. Microcontrollers act as the controllers for‘ the
processor memory pairs in SIMD mode and orchestrate the
activities of processor memory pairs-in MIMD mode. Each
microcontroller consists of a microprocessor and two memory units
so that memory loading and computations can be overlapped. There
are four microcontreollers in.the prototype system that are able
to cgntrol upto four processors each. The microcontroller
processors and memories are connected by a shared reconfigurable
bug. Control storage contains the programs for the
microcontrollers. Their loading is controlled by the system
control unit. PASMs multistage netwofk is a generalized cube with
straight, exchange and broadcast capabilities. The network uses a
commutative routing algorithm which is an improvement over the
packet switching routing algorithm used in Texas Reconfigurable
Array computer (TRAC). PASM uses different network for each
function, such as, data access, instruction sharing and I/0O. The
PASM represents a mix of special and general purpose architecture
and therefore it may be prove to be efficient fér some evenly
partitionable problems such as image processing, buﬁ not adequate
for some real-time proéessing tasks because of hierarchical
control and complex scheduling.

{iv) The HEP Multiprocessor Systém: The
Heterogeneous Element Processor is a large-scale Scientific

multiprocessor system which can execute a number of
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sequential{SISD) or parallel(MIMD) programs simultaneously. The
system consists of upto 16 processor execution modules(PEM) and
upt05128 data-memory modules(DMM). The PEM is designed to execute
multiple independent ihstruction streams on multiple data stream
simultaneously and it consists of its own program memory and ah
instruction processing unit(IPU). The program memﬁry in each PEM 
has a capaéit& ranging from 1 to.8 megabytes. Instructions of
active‘processors which are allocated to a PEM are bpffered in
the program memory. The HEP is the first commercially MIMD
multiprocessor system. In the HEP system, a set of cooperating
processes constitute a task. Tasks and processes are of two
types: user or supervisor. The execution environment of a task is
its task domain, which is defined by 64-bit task sﬁafus word
(TSW). The TSW provides profection and relocation for each task
by a .specification partition of the program, constant, register
and déta memories into areas. Iﬁ addition to TSW There is a
process status word (PSW), which contains a 20-bit program
counter and other state information for a HEP process. Each PSW
points to an instruction that is ready for execution. There is a
process tag (PT) in the task‘queue for éach PSW that points to an
instruction that is ready for execution. When a task is first
initiated, it has only one PSW; that is, one process. The
software creates additionallPSWS as new processes are created to
initiate parallel processing within. a task. There is a PSW queue
whichrcan héld a total of 128 PSWs: 64 for user processes and 64
for supervisor processesl],

(v) The IBM 370/168MP system: IBM 370/168
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Multiprocessing(MP) consists of two IBM 370/168 uniprocéssor
systems. The two CPUs are mutually exclusive and can ﬁot
communicaté each other directly. The two processors in in the
370/168 HP share from 2 to 16 million bytes of main storage. each
CPU has either BK—bYte or 16K-byte cache ﬁith ;educed 80-ns
access time qf 8 bytes. It has 22 block multiplexer channels. The
block mgltiplexer channelé permit concurrent processing of
multiple channel programs for various speed peripheral devices.
The multisystem control unit(MCU) provides the necessary
intercénnéction hardware between the two CPUs and shared
memories. It also containsla configuration control panel for the
purpose of manual system reconfiguration. Thé 370/168
configuration is considered loosely coupled because two separate
copies of operating systems are running in the two CPUs.

(vi}) The Univac 1100/90 system: This is the most
recent system by Sperry Univac. The system permit one, two, three
or four central processing units(CEU) as 1100/91, 1100/92,
1100/93, and 1100/94 systems respectively. The 1100/9x is an x by
x system containing x CPU:and x I1/0 processors which can be
tightly coupled. However, loosely coupléd systems are also
possible in ﬁhich there are two independent systems sharing one
mass storage subsyste@. The 1100/94 system configurétion, in
‘addition to having four CPUs and four I/0 processors, contains
four main stopage‘units and two system support processofs. Each
CPU is pipelined with an 8K word instfuction and an 8K word data
cache. A word is 36 bit wide. Each cach; is organized into 256

sets with four blocks per set. Each block contains eight words.:
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36 words of

The CPU uses a virtual addressing scheme with 2
address space. The initial address is divided into four portions.

A seémentation scheme is used with a maximum of 262,144 segments.



CHAPTER 2
ARBITRATION
2.1 General Description:

In a'multiprocessor system processors sharé
memories through buses. When a processor requests a mémory mpdule
there may be two types of conflicts.

(i) Two or mére processors can request the_same
memory module. So it is req;ired to decide whichuprbcessor will
access the memory.

(ii) The number of processors requesting buses is
greater fhan the number of available buses. Here also it is
required a method to decide which processors will get buses.

The hardware which decides which one of the
competing processors will win the resource when conflicts arise
is known as arbiter and the process of making the decision is
known as arbitration.

| Arbiter resolves a memory or a bus conflict
depending on some rulesthhich are called arbitration protocol.
Appropriate protocol should be chosen for achieving high level of
system performance. Five arbitration.prot&colsﬁﬁ}ﬂ commonly used

are:
(1) Equal priority protocol.

(2) Unequal priority protocol.
(3) Rotating priority protocol.
(4) Random delay protocol.

(5) Queuing protocol,.

i

For asynchronous circuit switched system equal
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priority protocol and a combination of unegqgual priérity and
random delay protocol are used. For synchronous circuit switched
system equal priority protocol and unequal priority protocol are
used. For packet switched synchronous -and asynchronous system
equal-priqgity protocoi is used.

2.2 circuit switched asynchronous system:

(a) Unequal priority protocol:

Processor can generate request after end of
processing or during a cache mis;. When a processor generates
request it checks the state of fequested memory and buses. If the
requested memory'and any of the buses are free then the proceésor
goes for memofy arbitration. Otherwise it waits-until the
requestgd memory and any of the buses are free. If there are more
than one processor requesting one memory module then the arbiter
lselects the highest priority processor from_them. The processors
which fail in memory arbitration waits until that memo;y module
'becomes free and there is at least one free bus. After the wait,
the processors resubmit requests for memory and bus arbitration.
If the number of free buses is less than the number of processors
which have won in memory arbitration then the arbiter selects a
number of’processorg equal to the number of free buses from
winning processors. Also in this selection the7higﬁér priority
_proceésors win. The prpcesSors which fails in bus arbitration
waits until any of the buses becomé.frég. Then they resubmit and

again go through memory and bus arbitration,

hY

{b) Random delay protocol:

Processors can generate request at any time after
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end of processing or at a cache miss. When a processor genefates
request 1t scans the state of requested memory and buses. If
the requested memory and any of the buses are free, it proceeds
for Memory arbitration. Otherwise it waits for a random amount of
time. This random delay is generated by a.random number
generator. After waiting it resubmits request and go through
memory and bus arbitration.lIn memory arbitration, if there are
more than one Pprocessor requesting a particular memory module
then the memory arbiter selects the highest priority processor.
The winning processor goe€s for bus arbitration and the processors
which have failed in memory arbitration waits a random amount of
time generated by a random number generator. Then it resubmits
the request for the memory ﬁodule and again go through memory and
bus arbitration. In bus arbitration, if the number of free buses
ijs less than the number of processors which have won in memory
arbitration then the arbiter selects a number of higher priority
processors equal to the number of free buses from winning
processors. But if the number of winning processors are less than
the number of free buses all the processors which have won in
memory arbitration win in bus arbitration. The processors which
have failed in bus arbitration wait a random amount of time
generated by a random number generator. And then they resubmit
requests and repeat memory and bus arbitration.

2.3 Circuit switchee synchronous system:
(a) Egual prlorltz P otocol.

Processors can generate requests at the beginning

of system cycle. If two or more Pprocessors submit reques£ for a
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particular memory module, any one of the processors may win in
the arbitration. A memory arbiter selects one processor from all
requesting processors with equal probability. All the processor
which win in memory arbitration go for bus =arbitration. Here
atmost Bf processors out of Hr processors are selected (Bf =

number of free buses, M. = number of winning processors 1in

T
memory arbitration, Hr<=H and M=total number of memory modules)
by a M to B arbiter{or bus arbiter). Those processors which ﬁin
in both arbitration occupy buses and perforﬁ memory operation for
s number of System cycles for block replacement. Those processors
which have failed 1in arbitration resubmit requests at the
beginning of next clock. The main .difference between
asynchfonous and synchronous system is that in synchronous system
processors can generate requests only st the beginning of system
cycle. (b) Unegual priority protocol:

Processor can generate requests at the edge of
clock. Every processor has unique priority number. If more than
one processor request a particular memory module the memory
arbiter selects the highest priority one. In bus arbitration
atmost Bf higher priority processors win out of M. winning
processors in memory arbitration. Those processors which win in
both arbitration occupy buses and do memory operation for a
number of system cycle( 1 to B8 slots) for a block replacement.
Those processors which have failed in arbitration resubmit their
requests at the beginning of next system cycle.

2.4 Packet switched asynchronous system(Equal priority protocol):

A processor submits request when there is a cache
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miss or that it has finished processing (in a non cache system).
At this time processor looks for free buses. If one or more
buses are free processor goes for bus arbitration. From
requesting processors atmost Bf processors are selected by
arbiter with equal probability and send their requests for cache
block for replacement through the occupied buses to the IMP
(Intermediate message processor or controller) and then
controller recognizes that a memory module have to be requested.
Controller tracks the requeéted memory status. When a memory
module becomes free and requested by more than one processor then
the memory arbiter selects one of the requesting processors with
‘equal probability. Then the winning processor s block read or
write operation takes place. When memory . operation ends, IMP
checks if there is any bus frée to transfer the requested block.
If there is free bus and the request wins in bus arbitration the
block is transferred through bus. Resubmission of request for bus
occurs when any free bus is found and resubmission for memory
occurs when requested memory‘again becomes free.
2 5 Packet switched synchronous system(Egqual priority protocol):
A processor submits request when there is a cache
miss or it finishes processing and it is a beginning of system
c&éie. The main difference between synchronous and asynchronous
system is that in synchronous system request for'any bus or a
memory module can be genefated at the beginning of system cycle.
The sequence of operation 1in arbitration is same as that
described 1in previous section. Resubmission of request for bus
occurs at the beginning of system cycle and resubmission for

memory also occurs at the beginning of system cycle.
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2.6 Arbiter Design:

.
{a) Asynchronous system:

For asynchronous system a two level unequal
priority arbitration logic is used for achieving equal priority
protocol. When a processor needs resource it raises its request
signal high. Let R; is. the request line of processor Pi, where
i=1,2, ... N. When a proceésor submits request it finds -if
requested memory aﬁd any of the buses are ffee. Logic eﬁuation
for generating request for memory module j by the processor i is,

[ Cij = RyMgy(Bgy
+ Bgz + Bgy ).

Hhere, le, Bsz' C s Bsk ére bus status signal, Hsj is fhe jth
memory statuns signal. | |

If ;cij is~high then the procéssor sends its arbitration number
to arbitration lines of the requested memory. For jth memory each
processor has a module to see whether it has won in first level
of arbitration or not. The logic equation [10] for this module is
as follows:

Cn =.Ci5¢Aq) + 8n1)-

A" =Any + Cijen-

Where, &8n1 is 1th bit of arbitration number. C; is compete

13
signal for this module. Ah;is the next state of line Ant after

application of arbitration number by a processor. 1In figure 2.1J

the logic diagram for first arbitration module is shown

"'If a processor wins first level of arbitration it
has Yij equal to 1 and it sends this Yij as compete signal to

‘second arbitration module. In second level each memory module has
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different“ arbitration number. The module which has highest
arbitration number will win in second level of arbitration. If a
processor wins in second level of arbitration it gets its grant
signal high and the bus number is send to the processor so- that
it can occupy the bus for data transfer. The bus number for a

winning processor is determined by the following equations:

——

¥iibs1-

By

By = ¥i3bPs1bs2-

¥i5Pg1bg2bg3- - -Pgi -

1l

By
The logic disgram of second arbiter arbiter module
for memory module j - is shown in fig 2.2i110] From these figures
it is seen that total number of gate required for an asynchronous
arbiter 1is:
MxN*[{8 + 4*1og2(N)] + H*[4*10g2(H) + 1] + HxN*x(B + 1)
SH*H*(B + 7) + Mk(4xlogo(MxKN + 1)
And delay experienced by this arbiter is
(logo(H)*3  + 3) + (logp(M)*3 + 1) + 1
= 3log,(HN) + 5.
Where N = total number of processors
M = total number of memory modules

B = total number of buses

(b) Synchronous svstem:

(i) N to 1 arbiter: It is ‘for memory
arbitration. A N to.l arbiter is made of a number of 2 to 1
arbiters. A 2 to 1 arbiter is shown in fig 2.3 [11-12]. Here Rg
and Rl are two request lines. And GO and G, are two grant back

signal to previous level and Gc is grant line from next higher
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signal to previous level and Gc is grant line from next higher
stage. Line R, is request transferred to next higher level. If Ry
is high and R, is low then Gy will be high. If Ry is high and Rg
is low then Gy will be high. If both Ry and R; are low then Gj
and G, are don't care terms, because there are no request to
monitor the grants. If both R, and R, are high then which request
rwill get graﬁt will depends on Cc, grant back from next higher
level. If G/ is low then Q@ remains unchanged. But if G, is high @
toggles. When Rj and R, are both high then if Q@ is reset then Gy
will Be high i.e. request Rd will be serviced, and when @ is set

G, will be high, i.e., request R1 will be serviced. Number of

1

gate required by a N to 1 arbiter is

gates = 14%(N-1)

delay = 2%[logy(N/2) + 1]
Where N = total number of processors.

{ii) M-td—B arbitef; If there are M memory modules
and B buses only B of M requests can be serviced. There 1is needed
a module Tl1l, where there are two request lines Ro,and Rl' Two
grant back lines GO and Gl to previous lower level, Two grant
lines Gg and GP from next higher level. Bj and B; are bus numbers
sent to lower level, and BP and BS are bus numbers from higher
level.

If from Ry asd R4 only one request is high then
this request monitor the condition of grant back line GP'

If both Ry and R; are high and if state of flip-

flop @ is reset, then request RO monitors grant back GP and

request Rl monitors grant back GS. Again when both RO and Ry are
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38



Fiqure 2.7

W N

=) ‘__,_D
20 —{ -
=B

fio__ :
Oy — r“-"(j Cso

Ry
Moo —
G i) G
kO [ _/ 517
oy

: Logic diagram of T2 module of 4 to 2 arbiter.

39



high and @ is set then request Rl monitors grant back Gp and
request éO monitors grant back Gg. So the logic equation[12] is
as follows:

Gg = QR;Gp + QR;Gg

Gy ='-Q—ROGP + QR(Gg
When a request is made and a granf signal is available, the
number{in binary)} of the available bus ‘received from- the last
higher stage through the input bus port bits will be transmitted
through the output bus port bits to the next lower stage. the
boolean equations of a bit say bit .i are similar to boolean
eqﬁationifor grant signals GO anlel with Gg, Gp replaced by BS,
BP' So the logic'equation for ith bit of bus number is as
follows: |

By = @RyBp + QR;Bg

B) = WRgBp + QRgBg
The logic diagram of Tl block is shown in figure 2.% .

For 8 to 4 arbiter Gp and Gg signals can be
generated in advance. If this module is called To [12] then the
equations for four T2 modules are as follows:

GpO = Gyg-

Gso = Gr1R10R11 + GkaR20R21F30Ra1

t GraRzoR21R30R31R10R11

Gpl = le.

Gs1 = GroRooRo1 * Gk2R20R21F30Ka1

t GroR30R31Ro0Ra1RooRo
Gy = Gya-

Gga = GyaRapRay + GriR10oR11R00R01
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+ GuaRooRo1 R oR11R30 3, -
Gpz = Gia-
GroRogF21 + GroRooFo1F10F11

Gs3
* Gr1R10R11R00R01R20R21 -

GkO’ Giys Gypp and Gy q etc. are grant signal back
from higher stage. the block diagram and logic diagram of this
arbiter is given in figure 2.5 and in figure 2.6. In this
design gate delay is 5d , where d is nominal gate delay and total
number of gate required is 304. |

For 4 to 2 arbiter logic equations for T2 modules
are as follows:

GpO = GkO'

Gso = Fro R116k1-

Gp1 = Gy~

Gs1 = Foo Ro1Cko:

The logic diagram of this arbiter is given in

figure 2.7 .
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CHAPTER 3

ANALYTICAL METHODS

3.1 General Description :

For determining performance of a system
analytically it is necessary to model the system by some
.mathematical methods. Multiple bus multiprocessor system can be
analyzed by queueing theory. The gquening model of qircuit
switching and packet switching multibus multiprocessor is shown
in fig. 3.1 and 3.2 respectively. Depending on control strategy,
switching ‘ methodology and timing philosophy there can be
different kind of analysis techniques. The system where events
can occur at the beginning of system cycle, 1i.e. synchronous
system ,can be represented by discrete Markov process [13] or
semi-Markov process [8,14]. Synchronous system can be solved by
probabilistic methods and combinatorial analysis [9] . The system
where event can happen at any time, can be represented by queuing
networks with infinite buffers or by queuing network with flow
equivalent service center[lS,lBj. Equilibrium point analysis(EPA)
(14] is also a good analysis toocl for multiple bus
multiprocessor system because it represents complicated
stochastic systems with less complexity. But EPA may not be
accurate enough. The rate of request is determined by 1local
codes, cache mises and the processor speed. In asynchronous
systep this rate is described in terms of think time and common

approximation for this time is negative exponential distribution.
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The usual approximation of the'multiprocessor s&stem is the
uniform reference of the memory module. Thus a regquest is
directed to a particular memory module with a'probability 1/M.
This symmetric assumption makes the analysis tractable. In case
of biased access to a particular memory module, the performance
is expected to deteriorate because of longer queuing delay.

3.2 Semi—Markov process:.

Multiprocessor system with uniform memory reference
can be charécterized by the following assumptions [8]:

(i) The behavior of the active element i.e.
processor can be modeled as identical stochastic process.

-{ii}) The proceésor thiﬁk for an integer number of
system cycles before cache miss and this time is characterized by
a discrete independent random variable t{(f is average of t).

{iii) Each processor will submit a memory request
after its thinking period; the request originating from the
processor are independent of each othef provided they are not
resubmitting requesté. The destination memory module of the noh
resubmitted requests originating from any processor will be
determined by a discrete independent random variable which is
uniformly distributed between 1 and M.

{iv) When requesting processor fihds that requested
meﬁory module is busy then that processor has to wait until the
connection is completed, i.e. it has to wait until the end of
remaining memory connection time,

{v) When requested memory and any one of the buses

are free but more than one précessor submit request to get a
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Figure 3.3 : Semi.markov model of circuti switched synchronous system.

Figure 3.4: Semi-markov model of circuti switched synchronous system
without residual waiting state.
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particular memory module then one processor is selected from the
requested processors and other remain waited until memory
connection is completed, i.e. other processor wait for a full
memory connection time, So a circuit switched synchronous
multiple bus system can be represented by the semi-Markov process
of figure 3.3 . State 0 is processor’s thinking state, state 1 is
accessing or memory connection by the processor; state 2 is full
wait{(i.e., total memory connection waif) of the_processor_and
state 3 is residual wait i.e. a part of memory connection wait,
Let S’s-are state transition probabilities. S, is
the probability that a processor come back to thinking state
after memory accessing. So SO = 1. 81 is the probability that a
processor'goes to state 1 for memory access. S, is the fransition
probability a processor fails in arbitration and hence has to
wait for full memory connection. S3 is the transition probability
that a processor finds requested memory module busy servicing
another processor. These transiticn prﬁbabilities can be' find

from the follewing equations{%]:

Sg = 1

51 = (1 - BUSY)WINI*WINZ

Sg = (1 - BUSY)(1 - WIN1)WINZ coaf1)
33 = BUSY + (1 - BUSY){(1 - WINZ),

Where, BUSY = ((N -1)/M) (E1 - 1)LI1

WINI = (1 - (1 - R)N)/ (N*r) = p/(N*r)
]

WINZ =Z)§(k)*Y(k)
ke

N = Total number of processors

M

Total number of memory modules
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B = Total number of buses.

E0 = Average processing time.

El = Average memorj connection time = C (say)
EZ2 =

Full waiting time = C
E3 = Residual waiting time = (C2 - ¢)/(C - 1).
r = Probability that a'processor generates request to a

particular memory module at the beginning of system cycle.

X(k)

X :
_ZTin(k,i)/i -.'i).p(l_JI Ji1 - p)fH-1)
(¥ S =

Y(k) = Bckq(B -k - g)k
g = (n - 1)(E1 - 1)L1/B

1 - (1 - r)N

D

Ll = P1/El

After defining the proper semi-Markov process it is
necessary to find PO’ Pl’ PZ and P3 which are the probability
that a processor will be in state 0 or state 1 or state 3

respectively. And these probabilities can be deduced as follows:

PO = E0.S1.M.r
Pl = E1.51.M.r
P2 = E2.82.M.r ... (2)
P3 = E3.83.M.r

0 and r = 1/M is used.

For iteration L1

Ndw, bandwidth, B = N¥P,, where n is the total number
of processor and Pl is the probability that a processor is
accessing a memory module.

Processor utilization, P, = PO + Pl’ i.e. processor

u

is thinking or accessing a memory module.

Bus utilization, B, = N¥P; /B, the number of bus is

u
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utilized.

Average queué length, Q, = N(Pz + PS), i.e. a
processor is waiting (full or a part of memory conneétion) for
requested memory module.

If memory word size 1is gqual to number of data
line, then memory connection and bus cycle time both equals. Then
at the beginning of system cycle when processors may submit
request the memory modules remain free. So, a processor which
fails in arbitration has to wait for full memory connection and
residual waiting state 3 of previous representation could be
eliminated. With this the semi markov representation of circuit
switched synchronous‘system becomes as shown in figure 3.4
Where S, is =1, the transition probability that a processor
returns to thinking state after accessing .

S, = the probability of success that a processor
become successful in memory or bus arbitration and access a
memory module. It is the transition probability that from state 0
or state 2 to state 1.

Sq = the probability that a processor fails in

memory arbitration or bus arbitration. It is transition

probability from state 0 or state 2 to state 2.

Then, bandwidth, Bw = N*Pl.
Processor utilization, Pu = PO + Py
Bus utilization, B, = N*PI/B.

Average gueue length, Qa = N*Pz.
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3.3 Probabilistic method:

Let the probability that a particular processor Pi
submits request at the beginning of system cvele is r. Then, if
there are M memory module, then the probability that a particular
memory module Mj is requested by Pi is r/M, where M is the total
number of memory modules. Then probability that Mj is not
requested by Pi is (1 - r/M>, if there are total N number of
processors. Then, the probability that no processor request Hj is
7(1 - r/H)N. And then probability that at least one processor
submit regquest to memory module Mj is {1 - (1 - r/M)N). It is the

pfobability that memory module Hj is requested and one of the

requesting processor definitely wins it. Let, it is denoted by

Pr[Ej]. Then,
PriE] = 1 - (1 - r/DON.
Now, the probability that, i memory modules out of
M memory modules is requested is given by,
£¢i) = feypr(E;1i1 - PriEgHH-D)
So, memory bandwidth, which is dependent on the

number of buses is given as [9]:

B La}
By = X, i*f(i) + 2 B*f(i); Where B = total number
L= L=g+)
of buses.
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CHAPTER 4
SIMULATION

4.1 General Description:

To determine characteristics and performance of a
system it can be possible to make a model that resembles the
actual system. This model can be built by software programming.
Aléo a small version of éctual system éan be pursued to determine
the system performance. In computer, by simulation it implies to
simulation by software. Simulation is pursued when actual
measurements are time consuming and complex. By simulation it is
possible tblpredic£ system performance accurately. Mathematical
modeling is another way to evaluate system performance without
going into actual design. But exact mathematical modél of some
practical system becomes much difficult, whereas the performance
of these systems can be evaluated almost aqcurately by
simulation.

There are three types of simulation [18-19].

l.(i) Time driven simulation.

{(ii) Event driven Qﬁmulation.

(iii) Process driven simulation.

In time driven simulation all parameters are to  be
updated after a specific time interval., Simulation runs for a
specific amount of time, say, tg ¢ and-starts at some time, say

t Beginning from initial time all the processors, memory

init*

modules and bus conditions are to be updated aftér each unit time
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of the system (1 slot).
~In event driven simulation all parameters are to be

updated when new event occurs. An event is said to have occurred,
when an active element({i,e, processor) starts some p}ocesses or
finishes -them, i.e. when active elements changes state. There is
a total specific amount of time. As simulation proceeds the
events are updated and statistics are collected when an event
occurs. Simulation ends at tiot:

In the process driven simulation it is needed to
prescribe the conditions (process) which cause an activity to
start or end. The events which start or end the activity are not
scheduled But are initiated from the qonditions specified for the
activity.

Simulation caﬁ be classified as discrete simulation
and continuous simulatien [19].

In discrete simulation the dependent variables,
i.e. variables to be updated or calculated, changes discretely at
specific point in simulated time referred to as évent times. The
time variable is either continuous or discrete depending on
whether the discrete changes in the dependent wvariable can occur
at any point in time or at specific points. In continuocus.
simulation the dependent variables of the model may change
continuousiy over simulated time. A continuous model may be
either continuous or discrete in time, depending on whether the
values of the dependent variables are available at any point in
simulated time or only at specified points in simulated time.

4,2 Development of Simulation Software:

In the simulation program (Al - A4) four components
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4.2 Develgpment of Simnlation Software:

In the simulation program (Al - A4) four components
are simulated by structures and those are Processor(pro), bus,
memory{mem) and controller(cont) as shown in figure 4.1. Event
gueue is forﬁed by controller. In controller structure there are
three fields. Processor number(p_no), where identification number
of processors are kept, current time field and next field to keep
track of next member in the event gqueus. In processor
structure{pro) there are five fields. The field next event(n_e)
is for making décision what next event should be done. The field,r
memory number (m_no) is for deciding the memory number
occupied by a processor and the field, bus number(b_no) is for
the number of buses occupied by a processor. In memory structure
there are three fields. State field shows memory status i.e. it
shows if the memory is free or being occupied by s processor. In
bus structuré there are three fields. State field shows bus
status i.e. it shows if the bus is busy or idle. Current events
are taken from front of event gqueus. Processed events are placed
in proper place in event gqueue by a roufine(insert). Different
types of protocols are simulated by sorting the position of the
processors in the event gqueue or by logic actually used in the
programs (Al - A4).

Number of busy processor, queue length, number of
busy memory modules number of busy bus are taken after end of
each event. Here is an example

Say n; is the number of busy processor at time t;,

i
then the number of average busy processor, Navg ias:
Ngvg = (ny(ty - ty) + no(tg - ta) +

+ ni(tiey - €322/ teot ' S (L)
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The input parameters of the simulation are the
processing time(geometric distribution and uniform distribution),
memory connection time(constant) for circuit switched system; and
processing time(uniform), bus connection time(constant) and
memory connection time(constant) for packet switched system. For
random delay protocol random delay time(uniform) should be
‘ supplied as an input parameter.

The output parameters are Average queue length,
Processor ‘utilization, Memory bandwidth and Bus utilization
These are evaluated as follows:

Average aqueue length, Qa = (Nwl(tz - tl) +
Nuo(tg = tg) + ... 4+ Nwj(tjpq - t3))/(teot — tipans? --- (2D

Where, Nw; = is the number of processors waiting in
queue in time ti and

tyrans = Some initial or transient time wﬁich is
not taken into account in collection of statistiecs. This time is
allowed to bring the siﬁulated system into steady state
condition. Now,

Processor utilization,P, = navg/N ... (3)

Memory bandwidth,B,, = (Mby(ty - t1) + Hbz(ta - t3)
+ ...+ Mbj(tiy = t3))/ (et - ttrans) e (4)

and, Bus utilization, By, = (Bbj(ty - ty) + Bby(tz - t3)
o + Bbi(ti+1 - 32X/ (ot - ttrans) -ee (D)

Where, Hbi = Number of busy memory module at time

Bbi = Number of busy bus at time t..
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4.3 Circuit Switched System
(a) Asynchronous System:

First an event queue is formed where processor
number and current time of processor ars kept. At the beginning
all the processors have been kept in proceséing state. Occurrence
of a new event and the kind of new event are checked.

The system (Processors, Memory modulés and buses)
can experience three esvents by which simulation is berformed.
Thesé are described in the folloﬁing paragraphs.

(i) End of processing: when a processor ends
processing it goes for arbitration. First step is memory
arbitration followed by bus -arbitration. The performance
parameters should be updated according to success and failure in
grbitration. Its time is incremented to update simulation. And it
is assigned the next event, n_e = 1 (fig 4.1), release of memory
and bus(i.e. resource release), if it have won in arbitration and
occupied resources. Otherwise, it should be the end of waiting
for resubmission. All statistics are to be collected for
performance evalugtion.

(ii) Processor has just ended memory connections:
When hemory connection ends busy bus and memory are freed and
performance parameters and number of busy bus and memory afe
updated; Processor’s time is incremented to run the simulation
and to mﬁke the processor busy. Its next event is given 1(end-
of processing). |

(iii) Resubmission of request by processor: The
processor. is given memory connection through bus if it wins
arbitration. Then its timq will be incrementéd by an amount equai

to the connection time and next time it will cause an event'after
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ending memory connection i.e. ité next event will, n_e = 2. But
if the processor fails in arbitration its time is incremented by
an amount equal to waiting time(according to protocol) and it its
next event will, n_e = 3. |

These three states are repeated until total
siﬁulation time is completed. At each event performance measures
- number of busy buses, number of busy memory modules and number
of busy processors are updated. The simulation flowchart is shown
in figure 4.2
(b) Synchronous System:

First an event queue is formed, taking all the
processor information as queue element. At the beginning all
processors are kept in processing state. Occurrence of new events
and their numbers are checked to serve them appropriétely.

If processor ends processing or there is a cache
miss at any time other than at the beginning of system cycle then
.processor goes to wait state. In this case processcor’'s time 1is
incremented so that it can submit request at the beginning of
next clock. Processor keeps on waiting. Its next event is set to
be the end of waiting,i.e. state 3. Queue length 1increases:
number of busy buses and memory modules are not changed.

As the processor ends processing at the beginning
of system cycle then there can be three events as described in
asynchronous‘s§5tem.

4 _4 Packet Switched System:
(a) Asynchronous system:
First an event queue is formed keeping all th;

processor information as queue element. At the beginning all the
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processors are kept in processing state. Occurrence of new evenfs
and their numbers are checked to serve the events properly. There
are seven events in which a processor can be present.

(i) End of processing(eop): When a processor ends
processing it submits request to get a bus. If it wins in bus
arbitration it keeps the bus busy for packet transfer for a fixed
bus transfer time, say .05 s. Processor time is updated by bus
~transfer time so that it can release bus after end of packet
transfer through bus and next event is set to 1, i.e. end of bﬁs
transfer in forward direction. Number of busy processors remains
the same and number of‘busy bustfis increased by one. If it fails
in bus arbitration it will resubmit request when any one of the
buses become free and processor time is incremented so that it
can resubmit when a free bus is found. Processor's next event is
set to 2. The number of busy processor is decreased by one.

{ii) " End of bus ‘transfer in forward
direction:{eobf) The processor feleases Eus so number of busy bus
is decreased by one, If it wins in memory arbitration it keeps
the requested memory busy for a fixed memory connection time, and
next event is set to 4, i.e. end of memory connection. The number
of busy processor is decreased by one. If the processor fails in
memory arbitration it has to wait until the requested memory is
released by winning processor, i.e; the memory becomes free
.again. The processor time is updated so that it can resubmit
request when requested memory become free and néxt event is set
eqﬁal to 3; i.e. end of wait for meméry. The number of busy

processor is decreased by one and queue - length is increased by
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one.
{iii) End of wait for bus in forward direction
{entbf): The proceséor resubmit request for bus. If it wins in

arbitration it keeps bus busy for a specific amount of time, say

~

so thaf processor can release bus after end of bus transfer and
processor’s next event is set to 1, i.e. end of bus transfer in
forward direction. The number of busy processors and the number
of bus& buséé are increased by one. If it fails in arbitration it
will resubmit request when any one of the buses become free and
processor time is incremented so that it can resubmit when a free
bus is found. And processor’s next event is set to 2, i.e. end of
wait for bﬁs.
| (iv) End of wait for memory module (entm): The
processor resubmit request for memory. If it wins in memory
arbitra£ion,'it keeps the requested memory busy for a fixed
memory connection time‘say 6 slots. So the processor time is
incremented by the memory connection timé, and next event is set
to 4, i.e. end of memory connection. If the processor fails in
memery arbitratioﬁ‘it has to wait until the requested memory is
released by the winhing pfocessor, i.e. the memory module becomes
free again. The processor time is updated so that it can resubmit
regquest when requested memory module becomes free and next event
is set to 3, i.e. end of wait for memory module. Queue length is
increased by one.
(v) End of memory connection{eom): The processor

releases memory so the number of busy memory is decreased by one.
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It wants bus for turning back requested block to cache. If the
processor wins in bus arbitration, it keeps a bus busy for pécket
transfer for a fixed bus transfef time say 5 slotd Processor time
is updated by bus transfer tiﬁe so that it cén release-bus after
end of packet transfef through bus and next event is set to 6,
i.e. end of bus transfer in returqing of reéuested block (in
backward diréction) operation. Number of busy processor and busy
bus are increased by one. If it fails in bus arbitratien it will
resubmit regquest when ény one of the buses. become free and
processor time is incremented so that it can resubmit Qhen a free
bus is found. And processor’s next event is set to 5, i.e. end of
wait for bﬁs.

{vi) End of wait for bus in reverse direction
{entbb}): The processor resubmit request for bus. If it wins in
bus arbitration it keeps the bué busy for returning requested
.packet to processor cache for a fixed amount of time say § slotd.
Processor’s.time is updated by this transfer time and 'its next
event is set to 6, i.e. end éf bus transfer in reverse direction.
The number of busy processors and busy buses are increased by
one, If it fails in bus arbitration it will resubmit request when
any one'of the bus become free. And processor time is incremented
so that it can resubmit request when a free bus is found. And
processor's néxt event is set to 5, i.e. end of-wait for bus in
reverse airection.

(vii) End of bus transfer .in reverse
diréction(eobb):‘The processor releases bus and enters into

processing state. The number of busi bus is decreased by one. The
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processor time is updated so that it can submit request after it
ends processing. Its next event is set to 0, 1i.e. processor ends
processing., The simulation flowchart is shown in figure 4.3 .

{(b) Synchronous System:

First an event gqueue is made, taking all the
processor information as queue element. At the ‘beginning all the
processors are kept in processing state. Occurrence of new events
and their processor number is c¢hecked to serve the processors
éppropriately. Initjalization of clock time is made. If processor
ends processing at a time other than at the beginning of system
cycle , processor has to wait until beginning of next clock.
Processor tihe is updated so that it can submit request at the
beginning of next system cvcle and .next event is set equal to
2,i.e. end of wait for bus in forward direction. The.number of
busy processdrs is decreased by one and queue 1engfh is increased
by one. If a processor ends processing at the beginhing of system
cycle it can go to any one of the seven states as described in

asvnchronous packet switched system.
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CHAPTER 5

RESULTS AND DISCUSSION

Multiprocessor systems with 16 memory modules,
number of processors upto 128 and number of buses in the range 1-
16 are investigated. For synchronous system, system cycle is
assumed one slot(minor cycle). Uniform and geometric distribution
of processing time are considered. Memory connection time is
assumed to be constant. For packet switched system bus connection
time is also assumed to be constant.

Performances of multiprocessor system with multiple
buses are evaluated ;s shown in graphs 5.1.1 through 5.11.4
The performance measures plotted in different graphs are shown

below:

5.1.1, 5.2.1
5.3.1, ... 5.7.1 Average Queue Length vs. no of Buses
And 5.10.1, 5.11.1

5-102’ 502.2 "
5.2.2, ... 5.7.2 Processor Utilization vs. no of Buses
And 5'.10.2’ 5-11.2

5-1-3' 502-3
5.3.3,... 5.7.3 Memcory Bandwidth vs. no of Buses
And 5.8, 5.9,..5.11.3

5.1.4, 5.2.4
5.3.4, .. 5.7.4 Bus Utilization vs. no of Buses
And 5.10.4, 5.11.4

o 3 In crossbar interconnection network there is no bus

conflict. The only conflict is memory conflict, which happens
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when more than one processor request the same memory module
simultaneously. If the interconnection network is multiple bus

connection, then it is expected that as the number of buses

increases performances will improve upto certain level. Because,

when therg is only one available bus then only one of the
requesting processors may win in bus arbitration. Performance
degradation occurs becauée the memorf modules requested by the
processors, may remain unoccupied, as they have failed in bus
arbitration. That is there remain free meméry modules because of
unavailabilitf of a bus. So average queue length become high,
because processors have to wait for availability of both bus and
memory module. As the pumber of buses are increased from one to
two, bus conflict reduces. Average queue length decreases upto
certain number of buses and then a saturation value is attained.
After that value the increase of number of buses does not
decrease average queue length. This is shown in fig 5.1.1, where
it is seen that the saturation bus numbers are 9, 10 and 5 for
processor think times of 2.5, 5, 50 slots respectively. It is
possible to find outlan ocptimum number of buses, because there is
an average number of processors which generate request

simultaneously in a specific system depending on average

processing or think time of the processors of the system. And the

optimum number of buses is a function of average number of
processors and total number of memory modules.llf think time is
large then average number of prbeeSSOrs which can generate
request simultaneously decreases, that is, bus conflict

decreases. So less number of buses can bring the system into
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saturation region as in figure 5.1.1. There it is seen that when-
processor think time is 50 slots then only 5 buses can bring the
system to crossbar performance level.

Also it is expected that processor utilization will
increase with increase of number of buses [f]. Because then less
number of processors have to wait in queue. But this increase in
utilization also become flat after an optimum number of buses
where bus conflict is almost absent. This is shown in processor
utilization vs. number of buses curve in different graphs.

Also for memory bandwidth the same effect is seen,
that is, memory bandwidth increases upto cerfain number of buses.
This situation is shown in different graphs (Figure no. 5.1.3,
5.2.3) where memory bandwidth is plotted against number of buses.
For bus utilization it is expected [#] that when there is only
one bus then request rate is higher, so this bus is always busy.
hence bus utilization remains almost 100 percent. When the number
of buses increases bus utilization remains flat in_100 percent
utilization upto certain number of buses. Then, after optimum
number of buses bus utilization decreases slightly. Looking at
figures 5.3.1 to 5.3.4 for probability of cache miss = 0.1, it
is seen that optimum number of buses is 8. And at this value bus
utilization becomes around 0.97 which is slightly less than 100
percent efficiency. After.then if the humber of busesis increased
bus utilization gradually decreases and at 16 buses i.e. when
there is physically ﬁotal connection between processor and memory
modules, it is seen that bus utilization is very low. In figure

5.3.4 it is 0.48 and in figure 5.1.4 it is 0.57 . So it is seen
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that in these cases approximately 50 percent of the buses aré
unutilized.

In thé multiprocessor system it is possible to
remove bus conflict totally. The simulation is carried out for
finding the'number of buses when. there is no bus conflict.
Average queue length, processor utilization, memory bandwidth and
bus utilization are plotted against the number of buses, because
for a system all these parameters are needed for determining the
system performance [8]. For example, a circuit switched
synchronous system with probability of cache miss of 0.2, it is
required that memory bandwidth will be in the range of 5-6. Then
from figure 5.3.3, for equal priority, it is found that the
memory bandwidth of 5 occurs at number of buses equal to 5. So,
these gfaphs can be used in system design. Bus requirements can
be kept within the limit of cost by fixing other performanée
requirements. Figure 5.8 and figure 5.9 are for synchronous
circuit switched system, where equal priority 1is considered. In
figure 5.8 simulation is carried out for finding memory bandwidth
as number of buses is varied with the probability of request at
‘the beginning of system cycle as the parameter. In figure 5.9 the
curves of figufe 5.8 are validated by probabilistic analysis
method. IP figure 5.11.1 through 5.11.4 synchronous circuit
switched éystem is validated by semi-Markov analytical method.
In these figures, the probability generating a request or cache
miss is considered to be 0.1. From both probabilistic and semi-
Markov analysis it is seeﬁ that simulation results differ by 5;7

percent from the analytical solutions.
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From figures 5.10.1 through 5.10.4 it is seen that
for iarge number of processors random delay protocol and unequal
priority protocol give the same performances. It may be said thét
random delay protocol is in some cases slightly better. From
figure 5.10.1 for 32 processor the average queue length curve of
random delay protocol in flat region is a little below than that
of unequal priority protocol.

Study of figures 5.1.1 through 5.1.4 and figures
5.2.1 through 5.2.4 show that unequal pfiority protocoi is better
for lower processor think times, such as for T =‘5 or T = 2.5.
But for larger think time random delay protécol is as good as
unequal priority protocol.

Random delay protocol works well in some cases,
When there are larger number of processors (32 or 64) request to
a particular memory module is large compared'to lower number of
processors, say 16 processors. In the simulation with large
number of proceséors {32 or 64) lower processing time is
considered. So request rate is very high. For very high think
time request rate is very low. So it can be concluded that random
delay protocol works as good as unequal priority protocel for
very low and very high request rate. For'intermediate‘think time
unequal priority protocol is better. The cause that random delay
protocol wérks good for some region is that resubmiséion of
request after random delay decreases the brobability of
collision among processors submitting requests simultaneously.

Random delay protocol is better than unequal

priority protocol because it is closer to equal priority
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protocol. With respect to hardware it is easier to implement
[10]. When there is bus or memory conflict resubmission of
request is required, which éauses this protocol to become closer
to equal priority protocol. |

From figure 5.7.1 to figure 5.7.4 requirement of
bus .-for optimum performance is very high for large ﬁumber of
'prﬁcessors. But from these figure it is possible to take a less
number of buses while keeping performances in acceptable region.
For example, if acceptable memory bandwidth for 64 processor and
16 memory module system is 8 then from figure 5.7.3 the number of
buses needed is 9. |

Performances in asynchronous system are better than
those of synchronous system. Because in asynchronous system
requests can be generated aﬁ any moment and so if resources are
available processors do not have to wait for the next clock. But
In synchronous system request can be generated only in the
presence of clock. So a processor has to wait for a positive
clock edge. This situation can be examined by comparing the
graphs . (figures 5.1.1-5.1.4 and 5.3.1-5.3.4) of synchronous and
asynchronous systems.

Packet switched synchronous and asynchronous system
are also studied. Figures 5.5.1 through 5.5.4 are for various
performances of packet switched synchronous system. And figures
5.6.1 through 5.6.4 are for packet switched asynchronous system.
In both synchronous and asynchronous systems equaI friority
protocol .is considered. Because in a multiprocessor system if it

is required that all the processors have equal priority then
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this protocol is desirable.

From figure 5.5.1 through 5.5.4 for packet switched
synchronous system, it is seen that probabilities of cache
miss{or probability that a processor ends processing for non-
cache system) of 0.1, 0.2 and 1.0 are used. From these figures it
is seen that all the curves are closely spaced, which implies
" that there are little performance differences for the given
probabilities of cache misses. But for circuit switched
system{figure 5.4.1-5.4.4) these differences are not as small as
in packet switched system. To see the effect of probability of
cache miss more clearly (figures 5.6.1 through 5.6.4) four
aifférent'cache misses namely 0.1, 0.2, 0.5, 1.0 are taken fof
packet switched asyncﬁronous system. Here also differences in the
performanées are not so prominent as compared to the circuit
switched system.

From figures 5.5.1 to 5.5.3 and figures 5.6.1 to
5.6.3, i.e. for packet switched synchronous and asynchronous
system it is seen that absence of bus conflicts occurs at 4
buses. The performances attain saturation value at 4 buses and
then remains flat. And from figures 5.5.4 and 5.6.4 it is seen
that after 4 buses bus utilization gradually decreases and
reaches around 0.2 at 16 buses (total connection).

In packet switched syétem when a processor submits
requests, it firsf checks for a idle bus. If there is any idle
bus and it wins in bus arbitration it occupies therbus. And when
" transfer of request through bus is complete then IMP\éontroller

[51 tracks the requested memofy status, If that memory module is
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free and the processor wins in memory arbitration then memory
operation is performed. So here it is not required for a
requesting processor that both the requested memory and any of
the buses to be-freelsimultaneously. So there is less conflict in
packet swifched system and performances attain oétimum,value with
less number of buses{4-5) .

Hardware design of arbiter of asynchronous circuit
switched system is shown in figures 2.1 through 2.3 . If there
are 8 processors, 8 memory modules and 4 buses, then total number
of gates required for this arbiter is 1576 and the delay is 23d.
If 16 processors are used then total number of gates required for
this arbiter is 7184 and delay becomes 29d. Design of 2 to 1
arbiter of synchronous circuit switched system is shown given in
[12]. Number of gates required for 8 to 1 memory arbiter is 98
and delay is 6d. And number of gates required for 16 to 1 memory
arbiter is 210 with delay 8d. An improved design of 8 to 4
arbiter for bus arbitration is shown in figure 2.6 . The 8 to 4
arbiter in [12] requires 4 level logic. Total number of gates
required are 248 and delay is 11d. In the design given in section
2.6, a lookahead approach is used and delay is reduced to 5d, but
total number of gates required is 304. In [1Z] it is said that if
this 8 to 4 arbiter is implemented using 3 level logic theh-delay
can be reduced to Sdrwith only 268 gates. But in that case
maximum fan-in of soﬁe gates becomes 8 whereas in the deéign

presented here maximum fan-in is only 3.
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. CHAPTER 6

CONRCLUSIONS AND SUGGESTIORS:
6.1 Conclusion:

In the multiprocessor systems studied, it is seen
that when there is only one time shared bus' performance
parameters are not so high. If number of buses is 'increased
performancel increases upto certain number of buses. Crossbar
performance can be achieved with lower number of buses. For fast
operation it is possible to increase number of processors to an
optimum value. For this an adequate number of buses are also
necessary. Performances observed are relatively better in
asynchronous system, because conflicts are comparatively lower.
But asynchronous system design is complex and its ahalytical
model development requires a great deal of computations. Whereas
synchronous system design is less complex and an equal priority
assignmeht on all processoré is eﬁsily possible with the aid of
flip flops.

In packet switched system perforﬁances reach
saturation values with only 3 to 5 buses (for 18 processor and 16
memory module) depending on cache mises. Whereas in ec¢ircuit
switched system saturation values are reached at 5 to 10 buses
depending on cache mises. In packet switched system extra
overhead . regquired is intermediate message = processor{IHP)/
controller. 1In asynchronous"circuit switched system with 18
processors -and 16 memory modules, unequal priority' protocol is
better than random delay protocol when proéessing‘time is short.

But for larger processing time (50 slot) random delay protocol is
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as good as-ﬁnedual priority protocol. With 18 memory'ﬁoduleé,' if
number of processors are increased(32,64) then it is seen that
random delay and equal priority protocol has almost. equal
performances. Random delay protocol is easy to implement and it
introduces almost equal priority to processors [12]. in
synchronous circuit switched system equal and unegual priority
protoéol is used. Ih-unequal priority pratocol lower priority
processors have to wait in qgueue a longer time whiech 1s not
desirable but this does not affect overall performances.
letiple bus system is fault tolerant and cost- effective than
MINs. Simulation and analytical results of the multiprocessor
sysﬁem differed by 5-6 bercent-only. Various simulation results
c?uld be helpful in actual system design. With specific load
condition and depending on synchronous or asynchronous systeﬁ and
packet switched or circuit switchéd system,'one can easily select
the best number of buses for the sysfem-

Delay in arbitration in 8 to 4 synchronous arbiter
can be reduced =as explained in arbiter design to 5d ( d is
nominal gate delay). Similarly 4 to 2 arbiter design 1is also
presented and from these other combinations can be made. Total
number of gates required for designing arbiter of an asynchronous
system ﬁith 8 processors and. 4 buées ig 1576 and it results in a
delay of 23d. Whereas for synchronous system with equal number of
processors and buses total number of gates required is 1088 with

delay 11d.
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6.2 Suggestions for Further Research:

1. Performance study of multi-bus mulfiprocessor
system considering different cache protocols'can be pursued as a
continuation of this thesis work . The extent to which references
have to be made to shared memory depends a lot on the cache
algorithm used. A key ﬁspect of this algorithm is the éolicy for
updating the shared memory when a request is addressed to the
cache. Copy back dividés the references to shared memory into two
categories: those dué to cache misses and those due to the copy
back process. A cache miss occurs when a processor generates a

read or write request for data or instructions that cannot be

satisfied by the cache.

2. Analytical modeling of multiple bus

multiprocessor system for those connections mnot covered in

chapter 3 can be pursued. It is possible to use semi-Markov
model, product form solutibn or closed gqueuing model for
analysis. Combinatorial analysis approach can also be taken. For

analysis it 1is possible to use packet switched multiple bus
multiprocessor system. Also in chapter 3 a simplified model of
semi-Markov process is presented. It is required that this model
is justified by analysis and simulation.

3. Performance analysis of multistage
interconnection network can be studied. Multistage
interconnection networks are cost effective. But in MIN there is
only one path from a processor to a memory module, i.e. it is not
fault tolerant. So it is necessary to make them fault tolerant.

For this it would be useful to study Omega Network or Delta
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Network.

4. The study of synchronization and program partitioning methods
in multiprocessor system would be also interesting. In order to
use multiprocessor effectively program should be partitioned so
that all portions can be processed in differént processors.
Processes must be able to cqmmunicate and to synchronize with
each other. For synchronization bit map method can be used ([1}.
Communication among processors can be better done by message

passing method.
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aA-1

/*¥Simulation program for asynchronous circuit switched system
with random delay protocol */

finclude <stdio.h>

#include <math.h>

#include <alloc.h>

#include <time.h>

##tinclude <stdlib.h>

#include<econio. h>

#include<graphics. h>

/¥ Different structures and globals are defined */
#tdefine no 18

#idefine mo 18

typedef struct processor({
unsigned n_e;
unsigned m_no;
unsigned b_no;
unsigned time;
tpro;

typedef struct buses {
unsigned state;
unsigned p_no;
tbus;

typedef struct memory{
unsigned state;
unsigned p_no;
}mem;

typedef struct controller {
unsigned time;
unsigned p_no;
struct controller *next;
lcon;

unsigned ko, *qg,*ml,*nli,*kl;
unsigned *ttot,rcount,tl, t2 g_last,nl last ml_last,kl_last;

/* Subroutine end of processing has described below. A proceessor comes
in this routine when it ends processing or there is a cache miss x/

eop{unsigned *sl,unsigned *t,con *start,pro p{l,mem m{],
bus b[},unsigned *e_count)

{

/* ¥s1 is pnumber of current processor. *x/

/¥ ¥t is current time. X/

/% start is first element in the event gueue *x/

/* *¥e_count is the number of simultansous reguest %/
unsigned 1,j,del;

j=random(mo); /% Select with equal priority any memory module */
/% Assuming equal memory reference probability */
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/* If the required memory is busy then processor waits for next
transition x/
if{m[j].state ==1 )
{

del=random(4)+1;
p{*sl].time+=del;
p(*sl].n_e=2;
p({*sl].m_no=j;
*g+=1;%nl-=1;

printf("%d xd 2d 2d d - - ~-\n", *t,*xq,*¥nl,*ml,*kl
*t+=del; /* Update the time */
insert(sl,t,start); /* Insert the processor in event queue */

}

/¥ Also if there is no bus free then processor waits for next
transition */

else
{
for(i=0;1i< ko;i++)
{ /¥ If there is any bus free %/
if(b[i].state == 0)
break;
} L]
if{(i== ko) ‘ /* There is no free bus x/
{ : '

del=random{(4)+1;
*¥g+=1;%nl-=1;
p[*sl].time+=del;
p(*sl].m_no=j;"
p(*sl].n_e=2;

printf("%d % %d  %d  d - - -\n", *t,*q,*nl,*ml,*kl)
*t+=del;
insert(sl,t,start);
}
else /* The processor has won in both arbitration */
{ .
b[i].state=1; /* Make the occupied bus busy */
m[j].state=1; /* Make the requested memory module busy x/

b{i].p_no = *sl1;
m[j].p_no = *sl;
. p{*sl].m_po=j;
pl*sl].b_no=1i;
p{*sl]).n_e=1;
/* Make the processor busy in memory access */
del=20; .
p(*sl].time+=del;
*ml+=1;
xki+=1; . '
printf("%d 2d &d %d xd %xd  %d #d \n",*t,*qg,*nl,*xml,*xkl,
xsl,p[*sl).m_no,p(*sl].b_no);
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*ml+=1;

kkle=1;

printf("%d Ad ad Ad #d ~d Ad Xd\n",
‘ xt,*q,*nl,*ml,xkl, :

*sl,p[*sl].m_no,p[*sl].b_no);

*t+=del; ‘

insert(sl,t,start);
}

}

/* Subroutine processor releases memory is described below */

prou(unsigned *sl,unsigned *t,con *start,pro p[],mem m{],
bus b{],unsigned *e_count)

{ ,
unsigned del;

del=random(101)+1; /X Return the processor to
processing state */ . :
pi*sl].time+=del;

pl*sl].n_e=0;

b(p[*s1].b_no].stats=0; /¥ Make the occupied bus */
m{p{*sl].m_no}.state=0; /* and memory module free x/
b[pf*sl].b_nol.p_no=0; .

n{p[*sl]l.m_no].p_no=0;

*k1-=1;*ml-=1; /¥ Update number of busy bus */ :
/* busy memory module and busy and x/
/* waited processors %/
printf("%d Zd xd xd id xd . %d Zd\n",
*t,*q,*nl,*ml,*kl, *sl,p{*sl}.m_no,p[*sl].b_no);

*t+=del;

insert(sl,t,start);

}

/¥ Subroutine end of next transition is described below. A
processor comes here when it fails in arbitration and

resubmits request after waiting arandom smount of time x/

ent(unsigned *sl,unsigned *t,con *start,pro p(],mem m[],
bus b[],unsigned *e_count)
{
unsigned i,del;
for(i=0;i< ko;i++)

if(b{i].state==0)
break;
}
if(i == ko)
{
del=random(4)+1;
pl(*sl1l]).time+=dsl;
pl(*sl].n_e=2;
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}

printf("Xd

xt+=del;

xd Ad
*t,*q,*nl,*ml,*xkl);

Ad

insert(sl,t,start);

}

alse

if(m[p[*sl].m_no].state==1)
{

del=random(4)+1;

P

P
printf (" %d

*x

(*sl1].time+=del;

[*s1] .n_e=2;

Zd Xd xd
*t,*q,*nl,xml,*kl);

t+=del;

Ad

insert(sl, t,start);

}

else

/X

insert(unsigned *sl,unsigned

{
FILE

{
*g-=1;

del=20;
p[*sl].time+=del;
bfi].state=1;
p(*sl].n_e=1;
p(*sl].b_no=i;
m(p[*sl].m_no].state=1;
b{i].p_no = *si;
m[p(*sl).m_no).p_no =
¥nl+=1;*ml+=1;%kl+=1;
printf (" %d 2d

*s1;

Ad %d

%d

-\n",

-\n",

4d Ad %d Zd\n",

. *t,*g,*nl,*ml,*kl,*sl,p(¥*sl].m_no,p[*sl].b_no);

*t+z=del;
insert(sl,t,start);

I -

subroutine insert is stated below.
event a processor is to be inserted in proper

aof the event queue x/

*xf2;

-con ¥prev,Xnew,¥current,*inter;
current=start->next;
if(*t < current->time)

{
start->p_no = *s1;
start->time = X*t;

}

else

After finish of an

position

¥t,con *start)

{
if((new=( con*)calloc(l,sizeof( con)))==NULL)

{

printf("No memory available for allocation \n");
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exit(1l);
1

start->p_no=current->p_no;
start->time=current->time;
start->next=current->next;
free(current);
currentzstart->next;
prev=start; N
while(current->next != NULL && #*t >= current->time)
{

prev=current;
inter=current->next;
current=inter;

}

new->p_no = ¥%sl;
new->time = %t;

if(current->next != NULL)

{

prev->next-new;

new->next=current;

else

{
if(*t >= current->time)
{
current->next=new;
new->next=NULL;
1
else

{
prev->next=new;
new->next=current;
}
} +
}
current=start;
t2=fopen(“"file2.dat","a+");
while(current)

{

fprintf(f2," Zu fu\n" ,current->time,
current->p_no);
current=current->next;

}
fprintf(f2," END OF SERVICE \n");
fclogse(f2);
}

/* subroutine for random number Eeneration */
g_rand()

{
double r,log();
unsigned x;

r=(double)(random(1000)/10000);

r-=1;
x=-log(-r)/1log(.49);
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return(x};

}

/*¥ This subroutine is for calculating statistiecs of simulation

*/

result(unsigned’ *tq,unsigned '*tnl,unsigned *tml,unsigned
*tkl,unsigned xt)

unsigned sub;

if(rcount == 0)
{ .
tl=xt;
g_last = xq;
nli_last = %xnl;
ml_last = *ml;
kl_last = *ki1;
rcount+=1;
}

else
{
t2 = xt;

sub = t2-t1;

*tg+= g_lastxsub;
*¥tnl+= nl_last*xsub;
*tml+= ml_last*sub;
*tkl+= kl1_lastxsub;

tl=t2;
g_last = *q;
nl_last = *nl;
ml_last = *ml;
kl_last = xki;
}

}

/* HMain program is started below x/

main()

{

FILE %=f1;

con *start,Xprev,*new,Xcurrent;
pro plnol;
mem mfmo];
bus . b[18];

unsigned *tq,*tnl,*tml,*tkl;

unsigned i,j,*s_c,*e_count;r[lBJ,*sl,count,scr_cnt;
unsigned *t;

float ttq,ttnl,ttml,ttkl;

void *calloc();

void *malloc();

ko=1;

clrscr();

fl:fopen("filel.dat",fa+“);
for(ko = 1;ko < 17;ko++)
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{

rcount=0; t1=0; t2=0;

g_last=0; nl_last=0; ml_last=0; kl_last=0;
ttot=(unsigned*)malloc{sizeof(unsigned));
nl=(unsigned*)malloc{sizeof(unsigned));
nl=(unsigned*)malloc(sizeof(unsigned));
kl1=(unsigned*)malloc{sizeof{unsigned));
g=(unsigned*)malloc(sizeof(unsigned));
t={unsigned*x)malloc(sizeof(unsigned));
sl=(unsigned*)malloc(sizeof(unsigned});
tg={unsignedx)malloc(sizeof(unsigned));
tnl=(unsigned*)malloc(sizeof(unsigned));
tml={unsigned*)malloc(sizecf(ungsigned));
tkl=(unsigned*)malloc(sizeof(unsigned});
e_count=(unsigned*)malloc(sizeof(unsigned));
s_c=(unsigned*)malloc(sizeof(unsigned));
*nl1=18; *m1=0; *xkl=0, *g=0; *ttot=3000;
*tg=0; *tnl=0; *tml=0; *tkl=0;

if((start=( con*)calloc(l,sizeof( con)))==NULL)
{

printf("No memory available for allocation \n");
exit(l};
}

/* Random numbers are generated below */
randomize( };
for(i=0;i < no;i++)

r[i]=random(101)+1;
}

/% Event queue is formed below */

start->next=NULL;
start->p_no=0;

start->time=r{0]);
for(i=1;i<no;i++)

if((current=( con*)calloc(i,sizeof( con)))==NULL)
{
printf("No memory™);
exit(l);
}
current->time=r{i];
current->p_no=i;
if(current->time < start->time)
{
prev=start;
current->next=prev;
start=current;

}

else

{ _
prev=start;
new=start->next;
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while{new != NULL && current->time >= prev->time)
( :
if(current->time < new->time)
( .
current->next=new;
prev->next=current;
prev=new; )

else
{
prev=new;
new=new~>next;
}
} .
if{new == NULL)
{
prev->next=current;.
current->next=NULL;
} a
3
} N
fl=fopen("filel.dat","a+");
current=start; ;
while{current)

{ . ,
fprintf(fl," su 2u\n" ,current->time,
current->p_no);
current=current->next;
} ' -
felose{fl);

/*initialization of arrays are done below */

for(i=0;i<no;i++)

{ ,

pl[il.n_e=0;

p{i].m_no=0;

pl[i].b_no=0;

pl{i].time=r[i]; /*¥ A random starting time is for each
' processor X/

}

for(i=0;i<mo; i++)
{
mf[i].state=0;
m{i].p_no=0;
}
for{i=0;i< ko;i++)
{
bf{i].state=0;
blfi].p_no=0;

} .
printf{(" Time P P B M P M B\n");
printf{" Waiting Busy busy Busy no no no \n");
gotoxy(2,24);

printf("PRESS ANY KEY TO SEE NEXT PAGE");
/*¥Finding of current event\events are started below %/
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window(1,3,79,20);
scr_cnt=0;
clrser();
gotoxy(l,1);
¥t = start->time;
while(*t < *ttot)
{
*a_caount=]1; -
current=start; '
new=current->next;
while{current->time == new- >t1me)
{
*¥e_count+=1;
current=new;
new=current->next;
} .
/* Look the number of processors which submit
simultaneocusly and check the condition for give them

*/
while(*e_count)

{
*e_count-=1; -
¥slzstart->p_no;
*s_c=pi{*sl].n_e;
switch(*s_c)
{
case 0:{
eop(sl,t,start,p,m,b,e_count);
break;
}
case 1:({
prm(sl,t,start,p,m,b,e_count);
break;
}
case 2:{
ent(sl,t,start,p,m,b,e_count);
break;
}
}/*switchx/
*Xt = start—)time;
if(*e_count==0 && *t>1000)
result(tq,tnl tml,tkl,t);
scr_cnt+=1;
if(scr_ent >=20)
{
geteh();
clrscr();
ser_cnt=0;

}

}
getch();
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window(1l,1,7%,24);

clrscr();
printf("A6d XBd %6d X8d \n",*tqg,*tnl,*tml,*tkl);
*ttot-=1000;

ttg=((float)(*tg))/((float)(*xttot));
ttnl=((float)(*tnl))/((float)(*xttot));
ttnl=((float)(*tml))/((float)(*ttot));
ttkl=((float)(*tkl))/((float)(*ttot));
printf("\n\tAverage Queue Length=%f\n",ttqg );
printf("“\n\tAverage No of busy Processor =%f\n",ttnl);
printf("\n\tAverage No of Busy Memory =%f\n",ttml);
printf("\n\tAverage No of Busy Bus =%f\n",ttkl);
printf("\n\tProcessor Utilization =%f\n",ttnl/no);
printf("\n\tMemory Bandwith=%f\n",ttml/mo);
printf("\n\tBus Utilization=%f\n",ttkl/ko);
getch();

- xttot+=1000; :
fprintf(£f1l,"%u xf xf 43 4f\n" ,ko,ttq,
ttnl/no,ttml,ttkl/ko); :

} /* for different no. of buses %/

fclose(fl);

}
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A-2

/*This
Circuit
has been used. *x/

#include <stdio.h>

#include <math.h>

#include <alloc.h>

#include <time.h>

#include <stdlib.h>

#include<conio. h>

#include<graphics.h>

Simulation has been done for Performance
Switched Synchronous System.

Analysis of
Equal Priority protocol

#define no 18
#define mo 18
#define PT 10
#define CT 20
#define CLT 5
typedef

typedef struct

typedef struct

typedef struct

FILE *fg;

struct processor{

unsigned n_e;
unsigned m_no;
unsigned b_no;
unsigned time;
}pro;

buses {
unsigned state;
unsigned p_no;
unsigned time;
}bus;

memory{
unsigned state;
unsigned p_no;
unsigned time;
}mem;

controller {
unsigned time;
unsigned p_no;
struct controller *next;
}econ;

unsigned *ko,*q,*ml,*nl,%*kl,rcount,tl,t2,q_last,nl_last,

ml_last,kl_last, *ttot,pr;

/* Subroutine for memory update X/

ud_m(mem m[],unsigned *t)
{

unsigned 1i;
for(i=0;i<mo;i++)

if(;[ij.state==0)
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m(i].time = *t;
1
1

/* Subroutine for bus update */
ud_b(bus b[],unsigned *t)
{

FILE *f3;
unsigned 1i;
for(i=0;i < *ko;i++)
{
if(b[i].state==0)
blfi]l.time = *t;
}

f3=fopen("file3.dat","a+"};
for(i=0;i < *ko;i++) .

fprintf(£f3,"b[%u].time = %u b[%u].state = %u \n",1i,
bli].time,i,b[i].state);

}

fprintf(f3,"\n\n");

fclose(f3);

/* Subroutine for smallest bus time */

unsigned s_time(bus b[])

{

unsigned smallest,i;
i=0;
smallest=b[i].time;
for(i=1;i < *ko;i++)

if(smallest>b[i].time)
{

smallest=b{i].time;
w=i;
3
1

printf("\n***x smallest = %u bus no.= %3d \n",smallest,w);
return smallest;
1

/¥ If a processor submit request at a time other than at the

begining of system cycle processor has to wait and the routine

below takes account for that *x/ ]

wait(unsigned *sl,unsigned *t,con *start,pro pll,
unsigned clock)

{

unsigned del,i;

i=random(mo);
del = clock - p[*sl].time; /* wait del time x/
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p{*sl].time+=del;

*t+=del;

*xg+=1; /* put the processor in queune */

*nl-=1;

p{*sl1l].m_no=1i; '

p{*sll.n_e = 2; /*it’s next event will be end of next

transition x/

/*¥ Put the processor in appropriate position in event queue */
insert(sl,t,start);

}

/* When processor ends processing it has to perform the
following things */

eop(unsigned *sl,unsigned *t,con *start,pro p(],mem m{},
bus b{],unsigned clock)
{
unsigned i,j,del;
j=random{mo);
/¥ 1If the required memory is busy then processor waits for
next transition %/
fg = fopen("fileg.dat","a+");
fprintf(fg,"-eop- processor ended processing\n");
fprintf{fg,"*t = %u *sl1 = Zu0 m_no = Xu mem->state = %u\n",
*t, *s1,j,m[j].state);
felose(fg);
if(m(j].state ==1 )
{

fg=fopen(“"fileg.dat","a+");
fprintf(fg, " "requested memory is busy\n");
del = clock - p[*sl].time;
fprintf(fg," del = Xu\n'",del);
p(*sl].time+=del;
p(*sl]}.n_ez=2;
p(*sl].m_no=j;
*g+=1;*nl-=1;
if{pr==1)
printf("%3d %3d %3d X%3d #%3d - - -\n",%t, *xq,
*xnl,%ml,*kl); '
*xt+=del;
fprintf(fg, "processor %3d memory %3d bus %3d occupied"”,
*s1l,p(*sl].b_no,p(*sl]l.m_no);
fclose(fg);
insert{(sl,t,start);
} .
/¥ Also if there is no bus free then processor waits for next
transition x/
else{
for(i=0;i < *ko;i++)

if(b[i].state == 0)
break;
3

125



if{(i == *ko)
{
fg=fopen("fileg.dat","a+");
fprintf(fg,"There is no free bus \n");
del = clock - p(*sl].time;
fprintf(fg, here = Zu\n",s_time(b));
fprintf(fg,"del = ¥u\n",del);
*g+=1;*%nl-=1;
pl*sl].time+=del;
pi*sl].m_no=j;
pl*sl1].n_e=2;
if(pr==1)
printf("%¥3d %¥3d %3d %34 %3d - - -\n",*t, *qg,
*nl,*ml,*kl); :
fclose(fg),
. Xt+=del;
insert(sl,t,start);

3

else

{ .

fg=fopen("fileg.dat","a+");

fprintf(fg,"It is a success\n occupied bus no = Zu\n" ,1i);
b[i).state=1;

m{j].state=1;

b[i].p_no=%xsl;

m(j].p_no=xsl;

pl*sl].m_no=j;

p(*sl].b_no=i;

pl*sl].n_e=1;

del = CT;

fprintf(fg," del = Zu\n ",del);
p(*sl].time+=del;

m{j].time+=del;

bl[i].time+=del;

fprintf(fg,"b[%¥u].time = %¥u del = Xu\n",i,b[i]l.time,del);
*ml+=1;

*kl+=1;

if(pr==1)

printf(*%3d ZBd %3d %3d X3d %3d %3d %3d\n",
_ *t,*qg,*nl,*ml,*kl, *sl,p(*sl]).m_no,p(*sl].b_no);

fclose(fg);
*¥t+=del;

insert(sl,t,start);

1

3

fg=fopen('“fileg.dat”,"a+");
fprintf(fg,"Insertion time = Zu\n",*t);
fprintf(fg,"eop ended\n\n\n");

felose(fg);

3

/* subroutine processor releases memory has started */
prm{unsigned *sl,unsigned *t,con *start, ,PTO pl].,
mem m[],bus b{l, un51gned clock)
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unsigned del;
fg=fopen("fileg.dat","a+");
fporintf(fg," -prm- processor releases memory\n'");
fprintf(fg,"*t = Zu *sl1 = %u m_no = 2%u \n",*t,*sl,p{*sl].m_no);
fprintf(fg,"freed bus no = Zu\n",p[*sl].b_no);
del=random(PT)+1;
fprintf(fg,"del = Zu\n",del);
p[*sl1l].time+=del;
pl*s1].n_e=0;
b{p[*s1].b_no].state=0;
m[p[*sl].m_no)].state=0;
b[p{*sl1].b_no].p_no=0;
m{p[*s1].m_no].p_no=0;
*kl-=1;%¥ml-=1;
if(pr==1) .
printf("%3d %3d %¥3d %3d %3d %3d %3d %3d \n",
xt ,*g,*nl,*ml,*kl,*xsl,p[*s1].m_no,p{*sl].b_no);
*t+=del;
felose(fg);
insert(sl,t,start);
fg=fopen("fileg.dat”,"a+");
fprintf(fg, " Insertion time = Zu\n",*t);
fprintf(fg, "prm ended\n\n\n");
fprintf(fg, "processor %3d memory %3d bus %3d released”,
*¥sl,p{*s1].b_no,pl[*sl].m_no);
fclose(fg);
1
/% subroutine end of next transition has started */
ent{(unsigned *sl,unsigned *t,con *start,pro p{],
mem m[],bus b[],unsigned clock)
{
extern unsigned *ko,*g,*nl,*ml,%xkl;
unsigned i,del,dell;
fg=fopen("fileg.dat"”,"a+"); ,
fprintf(fg," " -ent- end of next transition\n");
fprintf(fg,"*t = Zu *s1 = %¥u m_no = %u mem->state=Xu\n",
¥t, *sl,p[*sl1l).m_no,m[p[*sl].m_no).state);
fclose(fg);
for(i=0;i < *ko;i++)

if(b{i].state==0)

break;
1

if(i == *ko)

{

fg=fopen("fileg.dat","a+");
fprintf(fg,"There is no bus free\n");
dell= s_time(b);

del = clock - p[*sl].time; /* dell - (*t); %/
fprintf(fg,""herel = Zu\n",dell);
fprintf(fg,"del = Zu\n",del);
fprintf(fg,"del = 2Zu\n",del);
pl*s1].time+=del;

p[*sl].n_e=2;
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if(pr==1)
printf("%3d %3d %3d ¥3d X3d - - -\n",
Xt ,%q,%*nl,*ml,*kl);
felose(fg);
*xt+=del;
insert(sl,t,start);
}

else

if(m(p[*sl].m_no].state==1)
{ .

fg=fopen(“"fileg.dat","a+");

fprintf(fg, "requested memory is still busy\n");

fprintf(fg,"and memory time = 2u\n",mn{p[*s1]).m_no).time);

del=clock - p[*sl].time; :

fprintf(fg,"del = 2Zu\n",del);

p[*sl]).time+=del;

pl*sl]).n_e=2;

if(pr==1)
printf("%3d %3d %3d %3d X3d - - -\n",
*Xt,*q,*nl, *ml,kkl};
felose(fg);
*t+=del;
"insert(sl, t,start);
y

else

fg=fopen("fileg.dat","a+");
fprintf(fg,"Now it is a success\n");

fprintf(fg, "Occupied bus no = Xu and smallest = Zu\n",
i,dell);

*xg-=1;

del = CT;

fprintf(fg,"del = Zu\n",del);
p[*s1].time+=del;
bfi].state=1;
n[p(*sl1l].m_no].time+=del;
b(i]l.time+=del;
p[*¥s1}.n_e=1;
p[*¥sl].b_no=i;
m{p[*sl1].m_nol.state=1;
b(i].p_no=%*sl;
m{p(*sl1].m_nol.p_no=*sl;
*ni+=1;%ml+=1;%kl+=1;
result(tqg,tnl,tml, tkl,t);
if(pr==1)
printf("%3d %3d %3d %3d x3d %3d %3d 23d \n",
xt,*q,*nl,*ml,xkl,*sl,p(*sl1].m_no,p[*sl]}.b_no);
feclose(fgl;
*t+=del;
insert{(sl,t,start};

3

} .
Fg=fopen("fileg.dat","a+");
" fprintf(fg,"Insertion time = Zu\n",*t);
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fprintf(fg,"ent ended \n\n\n");
felose(fg);
1

/* subroutine insert has started below */

insert(unsigned *sl,unsigned *t,con *start)
{ : .
con *prev,*new,*current;
current=start->next;
if(*t < current->time)
{ .
start->p_no = *sl;
start->time = Xt;

}
else
{
if((new=( con*)malloc(sizeof( econ)))==NULL)
{
printf("No memory available for allocation \n");
exit(1l);
}

start->p_no=current->p_no;
start->time=current->time;
start->next=current->next;
free(current);
eurrent=start->next;
prev=start;
while(current->next != NULL && *t >= current->time)
{
prev=current;
ceurrentzcurrent->next;
3
new->p_no=X¥sl;
new->time=Xt;
if(current->next != NULL)
{
prev-’>next-new;
new->next=current;

1
else
{ .
if(xt >= current->time)
{
current->next=new;
new->next=NULL;
}
else
{
prev->next=newvw;
new->next=current;
}
}
}
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fg=fopen("fileg.dat"”,"a+");

current=start;

fpr1ntf(fg,"stat15tlcs on 1nsert10n\n"),

while{current)

{

fprintf(fg," Ju Zu\n",
current->time,current->p_no);

current=current->next;

1
fclose(fg);
1
/* subroutine for random number generation */
g_rand{num)
{
double r,log();
unsigned x;
randomize();
r=(double){random(100)/100.00);
r-=1;
x=~log(~r)/log(.49);
return{(x);

}

result(unsigned *tqg,unsigned *tnl,unsigned *tml,
unsigned *tkl,unsigned *t)

{
unsigned sub;
if{(rcount == 0)
{
tl = *t;
g_last = *q;
nl_last = %*nl;
ml_last = *ml;
kl_last = *xkl;
rcount+=1;
1
else
{
t2 = x%t;
sub=t2-t1;

*xtg+=g_last * sub;
*tnl+=nl_last * sub;
*tml+=ml_last * sub;
*¥tkl+=kl_last * sub;
/K deesoraoR dokokok ok ok dorkokok X/

tl=t2;

g_last = *g;

nl_last = *nl;

ml_last = *ml;

kl_last = *kl;
}

} .
/* For equal priority protocol */
aq_sort(con *tag,unsigned *e_count)
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con ¥current,*inter,*first;

int i,store;

first = tag;

current = tag,;
inter=(con*)malloc{(sizeof(con));
for(i=%e_count;i>0;i--)

{

store=random(i);

while(store)

{ .
store-=1;
current=current->next;

}
inter->p_no=first->p_no;
first->p_no=current->p_no;
current->p_no=inter->p_no;
first=first->next;
current=first;

free(inter);

}
/* For palcing processors in appropriate position in event
queue %/
sort(pro p[],con *start,unsigned *e_count)
{ }
FILE xfpl;
unsigned back,store,prm_cnt;
con *current,*inter,*tag;

back=0;prm_cnt=0;

tag=start;

current=start;

store=*e_count;
if((fpl=fopen("fl.dat"”,"a+"))==NULL)
{ ‘
printf("file error”);
exit(l1l);

while(*e_count)
{
*Xe_count-=1;
if(p[current->p_no].n_e==1 && back==0)
{
tag=tag->next;
current=current->next;
prm_cnt+=1;
y
else if(p{current->p_nol].n_e==1 && back>0C)
{
inter=(conx)malloc(sizeof(con));
inter->p_no=tag->p_no;
tag->p_no=current->p_no;
current->p_no=inter->p_no;
free(inter);

1
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prm_cnt+=1;
tag=tag->next;
current=current->next;

1
else
{ .
" current=current->next;
back+=1;
1
1
fprintf(fpl, “\t\tZu fdu\n" ,store,prm_cnt);

current=start;

while(current)
{ .

fprintf(fpl, "\t%u Zu Zu\n",p[current->p_no]l.n_e,

current->time,current->p_no);

current=current->next;

1

fclose(fpl);

*¥e_count =store;
Xe_count-z=prm_cnt;
eq_sort(tag,e_count);
¥e_count=store;

}

/¥ Main program is started below *x/

maind)

{

FILE *fp;

con *gtart,¥prev,*new,*current;

pro plno};

mem m[mo];

bus b[1l8];

unsigned *tq,¥tnl,*¥tml,*tkl,clock,*e_count,num;
unsigned i,j,*s_c,r[no],*sl,count,scr_cnt,*t;
float ttq,ttnl,ttml,ttkl;

void *calloc();

void *malloc();

if ((ko=(unsigned*)malloc(sizeof(unsigned)))==NULL)

printf("No memory”);
exit(1l);

3 .
if((fp=fopen("f.dat","a+"))==NULL)
{

printf("file error");
exit(l);
1

*ko=0;

pr=0;

for(xko = 1;(*ko) < 17;(*ko)++ )
{
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clrser();

rcount=0; t1=0;t2=0; gq_last=0; clock=CLT;
nl_last=0; ml_last=0; kl_last=0;
ttot=(ensigned*)malloc(sizeof (unsigned));
nl=(unsigned*)malloc(sizeof(unsigned));
ml=(unsigned*)malloc(sizeof(unsigned));
kl=(unsigned*)malloc(sizeof(unsigned));
g=(unsigned*)malloc(sizeof(unsigned));
t=(unsigned*)malloc(sizeof(unsigned));
sl=(unsigned*)malloc(sizeof(unsigned));
tg=(unsigned*)malloc(sizeof(unsigned));
tnl=(unsigned*)malloc(sizeof(unsigned));
tml=(unsigned*)malloc{sizeof (unsigned));
tkl=(unsigned* )malloc(sizeof(unsigned));
e_count=(unsigned*)malloc(sizeocf(unsigned));
s_c=(unsigned*)malloc(sizeof(unsigned));

*nl=no;*ml1=0;*%kl=0;%q=0;*ttot=3000;
*tg=0;%tnl1=0;*%tm1=0;*xtk1=0;

if((start=( con*)malloec(sizeof( ceon)))==RULL)
{
printf("No memory available for allocation \n");
exit(1l);
y

/¥ Random numbers are generated below */
randomize();
num = PT;
for(i=0;1i < no;it++)
r[i]=g_rand(num)+1;

/¥ Controllar linked list is formed below x/
start->next=NULL; ' :
start->p_no=0;

gtart->time=r{0];

for(i=1;i<no;i++)

if((current=( conx)malloc(sizecf( con)))==NULL)
{
printf({"No memory");
exit(1l);
}
current->time=r{il;
current->p_no=i;
if(current->time < start->time)
{
prev=start;
current->next=prev;
start=current;

}

else

{

prev=start;
new=start->next;
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while(new != NULL && current->time >= prev->time)
{
if(current->time < new->time)

{ A

current->next=new;

prev->next=current.;

prev=new;

else
{
prev=new;
new=-new->next;
}
} )
if(new == NULL)
{
prev->next=current;
current->next=RULL;

}
}

}

fg=fopen(“"fileg.dat"”,"a+"}; )
fprintf(fg,"statistics on enter\n"};
current=start;

while{current)

fprintf(feg," “u fu\n",
current->time,current->p_no);
current=current->next;

}
fclose(fg);
/*¥initialization of arrays are done below %/
for(i=0;i< no;i++)
{
piil}.n_e=0;
pfi] .m_no=0;
p(il.b_no=0;

pli].time=r[i]; /¥ A random number x/

} .
for(i=0;i<mo;i++)

{ .

m[i].state=0;
m[i].p_no=0;
m[i].time=0;

}

for{(i=0;i < (*ko);i++)
{
b[i].state=0;
b[i].p_no=0;
b(1].time=0;

}
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if(pr==1)

{
printf("Time In busy In In PE MM B \n");
printf(” a PE bus MM no no mno \n");
gotoxy(2,24);
printf("PRESS ANY KEY TO SEE NEXT PAGE");
/*¥Finding of current event\events are started below x/
window(1,3,79,20);
scr_cnt=0;
clrser();
gotoxy(1,1);
3
*t=gtart->time;
for(i=0;i<mo;i++)
m{i].time = *t;
for¢(i=0;i < *ko;i++)
b{il.time = *t;

while(*t < *ttot)
{
*e_count=1,;
current=start;
new=current->next;
while(current->time == new->time && new != NULL)
{
*e_count+=1;
current=-new;
new=current->next;

}

sort(p;start,e_count);
if(clock < *t)

while(clock < *t)
clock+= CLT;

1
if(*t == clock)

{
clock+=CLT;
ud>m(m,t);
ud_b(b,t);
while(*e_count)
{
*e_count-=1;
xgl=start->p_no;
*s_ccpl(*sl].n_e;
suitch(*s_c)

{

case 0O:
eop(sl,t,start,p,m,b,clock);

bresak;

}
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case 1:

{
prmn(sl,t,start,p,m,b,clock);

break;
}

case 2:

ent(sl,t, start,p,m b,clock);
break;
}

}

¥t=start->time;
if(*e_count == 0)
{
if (xt>1000)
result(tqg,tnl, tml tkl,t);
ud_m(m,t);
ud_b(b,t);
}
gcr_cnt+=1;
if{pr==1)
{
if{scr_ent == 17)
{
geteh();
scr_cnt=0;
clrser();
gotoxy(1,1);
}
3

fg=fopen("fileg.dat","a+");
fprintf(fg," "\nb[0]=%3d b[1]=%3d b[2]=%3d b[(4]=%3d\n",
b[0].state,b[1]).state,b[2].state,b[3].state);
fprintf(feg,"\ntb[0]=%3d tb{1]=%3d tb[2]=%3d tb[4]=%3d\n",
b{C].time,b(1].tims,b[2]).time,b[3].time);

fprintf( g, " Akkaokk kKoK RO IR R\ N " ) ;

feclose(fg);
3

}

else

while(*e_count)
{
¥g_count-=1;
*gl=gstart->p_no;
wait(sl,t,start,p,clock);
xt=gtart->time;

}
if(xt>1000)
result(tq,tnl,tml,tkl,t);

}
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}

getch();

window(1,1,79,24);

clrser();

*Xttot-=1000;

ttg=((float)(*xtg))/((float)(*ttot));
ttnl=((float)(*tnl))/((float)(*kttot)};
ttml=((float)(*tml))/((float)(*ttot));
ttkl=((float){*tkl))/((float)(*ttot));
printf("\n\tAverage Queue Length=%f\n",ttq };
printf("\n\tAverage No of busy Processor =%f\n",ttnl);
printf("\n\tAverage No of Busy Memory =%4f\n",ttml);
printf("\n\tAversge No of Busy Bus =%f\n",ttkl);
printf("\n\tProcessor Utilization =%f\n",ttnl/no);
printf("\n\tHMemory Bandwidth=%f\n",ttml/mo);
printf("\n\tBus Utilization=%Xf\n",ttkl/(*ko)};
*ttot+=1000C;

getch(); ‘
fprintf(fp,"%u af zf if s2f\n" ,*ko,
ttq,ttnl/no,ttml,ttkl/(*ko));
}
flcose(fp);
}
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A-3

/*This Simulation program is for Packet Switched Synchronous
System. Equal priority protocol is used */

#include <stdio.h>

#include <math.h>

#incluode <alloc.h>

#include <time.h>

#include <stdlib.h>

#include<conio. h>

#include<graphics.h>

#define no 16

#tdefine mo 186

#define PT 1

#tdefine BUST 5

#define MEMT 20

#define CINC 5

typedef struct processor
{
unsigned n_e;
unsigned m_no;
unsigned b_no;
unsigned time;
lpro;

typedef struct buses {
unsigned state;
unsigned p_no;
unsigned time;
}bus;

typedef struct memory({
unsigned state;
unsigned p_no;
unsigned time;
unsigned q;
}memn;

typedef struct controller {
' unsigned time;
unsigned p_no;
struct controller *next;
}econ;

FILE xfg;

unsigned *ko,*q,*ml,*nl,*kl,rcount,tl,t2,g_last,nl_last,
ml_last,kl_last;

unsigned *ttot,q_flast,g_blast,*gbf,*gbb,*qg,pr;

Subroutine for memory update

ud_m{(mem m{],unsigned *t)
{

unsigned 1i;
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for(i=0;i<mo;i++)

if(m{i].state==0)
m[i].time = *t;
3

}

/* Subroutine for bus update */
ud_b(bus b{],unsigned *t)

{ -

FILE *f3;

unsigned 1i;
for(i=0;1i < *ko;i++)

if(b[i].state==0)
b[i].time = *t;
}

f3=fopen("file3.dat","a+");
for(i=0;1 < *ko;it++)

fprintf(£3,"b[%u].time = Zu b[%u].state = %u \n",i,
b[i].time,i,b[i].state);

3
fprintf(f3,"\n\n");
felose(£f3);

/* Subroutine for smallest bus time */
unsigned s_time(bus b[])
{

unsigned smallest,i;
i=0;
smallest=b{i].time;
for(i=1;i < *ko;it++)

if(smallest>b[i].time)

smallest=b[i].time;
/* w=i; */
}
}

printf("\n*** smallest = %u bus no.= 2%3d \n",smallest,w);
return smallest; .

3 .

/¥ SR KoK 0K KK oKk KKK K KKK KK K KK K KKK K KK RKR Kk kK KRk 0ok Rk /

wait(unsigned *sl,unsigned *t,con *start,pro pll.,
unsigned clock)
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unsigned del,i;
izrandom{mo);

del = clock - p{*sl].time;
p{*sl1].time+=del;
pl*sl].n_e=2;
pl*sl].m_no=i;

xgbf+=1;

*q+=1;

*t+=del;*nl-=1;
insert(sl,t,start);

/% After think time processor comes here %/

eop(unsigned *sl,unsigned *t,con *start,pro pl[],mem m[],
bus b[],unsigned clock)

{

unsigned i,del;
for{(i=0;i<*ko;i++)

if(b{i].state==0)

break;
1
1f(iz==%ko)
{ .

del= clock-p[*sl].time; /X¥CINC increment of clock*/
p[*sl].time+=del;
*gbf+=1;%nl-=1;

*q+=1;
pl*sl].n_e=2; /*entbf()*x/
if{pr==1)

printf("%5u %5u Z5u %5u %Adu %du \n",¥t,*sl,¥g,¥nl,*ml,*kl);
*t+=del; :
insert(sl,t,start);
}
else
{
: del= BUST;
p[*sl].time+=del;
pi*sl].n_e=1; /*eobfx/
*kl+=1;
b{i].state=1;
b{i].p_no=%sl;
pl[*sl].b_no=1i;
b[i].time+=del;
if(pr==1) :
printf("%5u X5u %5u %5u X¥5u %5u \n",xt,*sl,*qg,
*nl,¥ml,*xkl);
¥t+=del;
insert(sl,t,start);
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/* After transferring informations through bus
processor comes here */

eobf{unsigned *sl,unsigned *t,con *start,pro p{],mem m{],
bus b{],unsigned clock)
{

unsigned 1i,del;

b(p[*sl].b_no].state=0;

*nl-=1; /* whether or not free memory is found processor

remains idle x/

*xkl1-=1; /*¥ and bus is freed x/

i=random{mo}; '

if(m[i].state==1)

{

del=clock-p(*sl].time;
p{*sl].time+=del;
pl*sl].n_e=3;
p{*sl].m_no=i;
m(i].gq+=1;
*g+=1;
if(pr==1)
printf("%Z5u %5u %5u %5u %5u %5u \n",xt,*gl,*xqg,
*nl,*ml,*kl);
*t+=del;
insert(sl,t,start);
}
else
{
m[i].state=1;
m{i].p_no=%sgl;
pl{*sl].m_no=1i; ,
p{*sl]).n_e=4; /*prmkx/
del=HEMT; /*memory access time */
pl(*sl].time+=del;
m[i].time+=del;
*ml+=1;
if(pr==1)
printf{"%5u %5u X5u X¥5u %5u X5u \n",*t,*sl,x*q,
*nl,*ml,*kl);
*t+=del; -
insert(sl,t,start);
}
}

/¥ If once in forward direction busy bus condltlon is
found processor comes here %X/

entbf(unsigned *sl,unsigned *t,con *start,pro pl{],memn m(],
bus b{],unsigned clock)

{
unsigned i,dsl;
for(i=0;i<*xko;i++)

if(b{i].state==0)
break;
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if{i==*xko)

del=CINC;/*incrsment of clock*/
p(*sl].time+=del;
p(*sl].n_e=2; /*entbf()x/

if(pr==1) :
printf("%5u X5u %5u XZS5u X5u %5u \n",*t,xsl,%*qg,*nl,
*ml,*kl); ' ‘
xt+=del;
insert(sl,t,start);

} .
else

del= BUST;

p{*sl].time+=del;

p{*sl].n_e=x1;/*eobfx/

Xkl+=1;*nl+=1;

*gbf-=1; /* this processor was in bus qusus %/
*g-=1;

b{i]}.state=1;

bf{i].p_no=%sl;

p(*s1].b_no=i;

b(i].time+=dsgl;

if(pr==1) .

printf("%¥5u %5u %5u %5u %5u %5u \n",*t,*sl,*q,
*nl,*ml,*kl);

xt+=del;

insert(sl,t,start);

}

}

/* If once .required memory is found in busy state then
processor comes here x/
entm(unsigned *sl,unsigned *t,con *start,pro p[],mem m{],
bus b[],unsigned clock)
{
unsigned i,del;
i=pf*sl].m_no;
if(m(i].state==1)
{

del=clock-pf*sl].time;
p(*sl].time+=del;
p[*sl1].n_e=3;
if(pr==1)
printf("%5u X5u %5u %5u %5u %X5u \n",*t,%*sl,xq,
*nl,xml,xkl);

Xt+=del;
insert(sl,t,start);

}

else

{
m[i].state=1;
m{i].p_no=%sl;
pl*sl].m_no=1i;
p{*sl].n_e=4; /*prmkx/
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del1=MEHKT; /*memory access time */
pl[*sl].time+=del;
m[i].time+=del;

m[i].g~-=1;
g-=1;
*ml+=1;
if(pr==1)
printf("%5u %5u %5u %5u %5u X5u \n",*t,*sl,
*qg,*nl,*ml,*kl);
*t+=del;

insert(sl,t,start);
}
}

/% When memory sccess ends processor comes here to see
if there is any bus free x/
pro{unsigned *sl,unsigned *t,con *start,pro p[],mem m([1,
bus b[]l,unsignéed clock)
{
unsigned i,j,del;
j=pl*sl].m_no;
*ml-=1; /* memory goes to idle state */
for(i=0;i<xko;i++)

if (b[i].state==0)

break;

}

if(i==xko)

{ .
del=clock-p[*sl].time; /*CINC is increment of clockx/
pl*sl]}.time+=del;

*gbb+=1;
*g+=1; .
pl*sl]).n_e=5; /*entbb()*x/
if(pr==1) :
printf{"%5u %5u %5u %5u %¥5u A5u \n",*t,*sl,*q,
*nl,*ml,*kl);
xt+=del;
ingert(sl,t,start);
}
else
{

del= BUST;
pl[*sl].time+=del;
pl*sl].n_e=86; /*eobbx/
xkl+=1;
*nl+=1; ,
b[i].state=1;
b[i).p_no=%sl;
pl*sl]).b_no=i;
b[i].time+=del;
if(pr==1)
printf("%5u X5u %Su %5u X5u XSu \n",*t,*sl,*q,
*nl,*ml,%kl); '
*t+=del;
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insert(sl,t,start);

}

/¥ If in backward direction busy bus condition is

found then processor comes here %/

entbb{unsigned *sl,unsigned *t,con *start,pro p[],mem m[],

bus b[],unsigned clock)
{
unsigned 1i,j,del;
for(i=0;i<*ko; i++)

if{b[i].state==0)
break; .

3
if(i==xko)

del=CINC; /*increment of clockx/
pl[*sl].time+=del;

pl*sl).n_e=5; /*entbb()*x/
if{pr==1)

printf("“"%5u 25u %5u X5u %5u %5u \n",

*ml,*kl);
*xt+=del;
insert(sl,t,start);
} i
else
{
del= BUST;
pl[*sl].time+=del;
p[*sl].n_e=8;/*eobbx/
*kl+=1;*gbb-=1;
*xg-=1;
b[i].state=1;
*nl+=1;
b[i].p_no=*sl;
p[*sl].b_no=i;
b[i].time+=del;
if{pr==1)

*t,*sl,*q,*nl,

printf("%5u X5u %5u X5u X5u %Su \n",*t,*sgl,*qg,

*nl,*mi,*xkl);
*t+=del;
insert(sl,t,start);

3
}

/¥ In backward direction after gettlng bus processor

comes in thinking state %/

eobb(unsigned *sl,unsigned *t,con *start,pro p[],mem m[],

bus b[],unsigned clock)
{

unsigned i,del;
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b[p[*sl1l].b_no].p_no=0;
del=random{(PT) + 1;
pl*sl]).time+=del;
pl*sl].n_e=0;
*kl-=1;
if{pr==1)
printf("%5u %S5u Z5u ZS5u %5u %S5u \n",*t,*sl,x*q,
*nl,*ml,*xkl);

*t+=del;
insert(sl,t,start);
1
/* subroutine insert has started below */
insert(unsigned *sl,unsignéd *t,con *start)
{
con Xprev,*new,¥current;
current=start->next;
if(*t < current->time)
{ .
start->p_no = *sl;
start->time = *t;
1
else
{ .

if((new=( con*)malloc(sizeof( con)))==NULL)
{
printf(“No memory available for allocation \n");
exit(1l);
1
start->p_no=current->p_no;
start->time=current->time;
start->next=current->next;
free(current);
current=start->next;
prev=start;
while(current->next != NULL &%& *t >= current->time)
{ . ;
prev=current;
current=current->next;
1
new->p_no=*sl;
new->time=*t;
if(current->next != NULL)
{
prev->next=new;
new->next=current;
}

else

{

if(*t »= current->time)

{ .
current->next=new;
new->next=NULL;
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else
{
prev->next=new;
new->next=current;
3
3
3

fg=fopen("fileg.dat","a+");
current=start;
fprintf(fg,"statistics on insertion\n");
while{current)
{
fprintf(fg," %u
current->p_no);
current=current->next;
}
fclose(fg);
}

Zu\n",current->time,

result{unsigned *tg,unsigned *tqf,unsigned *tgb,unsigned *tﬁl,
unsigned *tml, unsigned *tkl,unsigned *t)

{ .

unsigned sub;

if(rcount == Q)
{
tl = *t;
g_last = *g;
q_flast= *qbf;
q_blast= *gbb;
nl_last = *nl;
ml_last = *ml;
kil _last = *ki;
rcount+=1;
3

else

{
t2 = *xt;
sub=t2~-t1;
*tg+=q_last * sub;
*tqf+=q_flast *x sub;
*tgb+=g_blast * sub;
*tnl+=nl_last * sub;
*tml+=ml_last * sub;
*tkl+=kl_last * sub;
ti=t2; :
g_last = *q;
g_flast = *gbf;
q_blast = *gbb;
nl_last = *nl;
ml_last = *ml;
kl_last = *kl1;
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}

/* This sor is for equal priority protocol x/
eq_sort{con *tag,unsigned *e_count)

con *current,*inter,*first;
int i,stors;
first = tag;
current = tag;
inter=zmalloc(sizeof(con));
for(i=xe_count;i>0;i--)
{
store=random(i);
while{store)
{
store-=1;
current=current->next;
3
inter->p_no=first->p_no;
first->p_no=current->p_no;
current->p_no=inter->p_no;
first=first->next;
current=first;
}
free(inter);

}

/* This sort is for arrangement in event queue */
sort(pro p[],con *start,unsigned *e_count,mem m{], bus b(])

-

FILE *fpl;
‘unsigned back,store,prm_ecnt;
con *current,*inter,*xtag;

back=0;prm_cnt=0;
tag=start;
current=start; .
store=*e_count;
if((fpl=fopen("fl.dat","a+"))==NULL)
{
printf(“"file error");
exit(l);
}
while(*e_count)
{
*g_count-=1;
if((p[current->p_nol.n_e==1 || plcurrent->p_no].n_e==4 !!
pl[current->p_no].n_e==6)&& back==0)

if(p{current->p_nol.n_e==1 |! p{current->p_nol.n_e==86)
b{p{current->p_no].b_no).state=0;
else
m[(p(current->p_noj.m_no].state=0;
tag=tag->next;
current=current->next;
prm_cnt+=1;
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p[current->p_no].n_e==
)&& back>0)

else if((p[current->p_nol.n_e==1 }|

=8

i+ plcurrent->p_no]l.n_e
if(p[current->p_nol.n_e==1 || p[current->p_nol.n_e==8)
b[p[current->p_no].b_no].state=0; .

else
m[p[current->p_nol.m_nol.state=0;

inter=(con*)malloc(sizeof(con)});
inter->p_no=tag->p_no;
tag->p_no=current->p_no;
current->p_noz=inter->p_no;
free{inter); :

prm_cnt+=1;

tag=tag->next;
current=current->next;

}
else
{
current=current->next;
back+=1;
}
1

fprintf(fpl, "\t\t¥u 4u\n",store,prm_cnt);
current=start;

while(current)

{

fprintf(fpl,"\t%u Zu Zu\n",p[current->p_nol.n_e,
current->time,current->p_no); )
current=current->next;

}

feclose(fpl);

eq_sort{tag,e_count);

*e_count=store;
}

/* Main program has started below */
main() .

{

FILE *fp;

con *start,*prev,¥new,¥current;

pre plnol; :

mem m[mol;

bus b[1B];

unsigned *tq,*tnl,*tml,*tkl,clock,*tab,*tqf;
unsigned i,j,*s_c,%e_count,r[no],*sl,count,scr_cnt,*t;
float ttq,ttnl,ttml,ttkl,ttqb,ttaf,ttmg;

void *ealloc();

void *malloc{);

if ((ko=(unsigned*)malloc(sizeof(unsigned)))==NULL)
{ .

printf("No memory")};
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exit(1l);

}
if((fp=fopen("f.dat","a+" ) )==NULL)
{

printf("file error”);
exit(1l);
}

*ko=0;

pr=0;

for{*ko = 1;(*ko) < 17;(*ko)++ )

{

clrser();

rcount=0; t1=0;t2=0; gq_flast=0; q_blast=0;q_last=0;clock=5;
scr_cnt=0;nl_last=0; ml_last=0; kl_last=0;
gbb=malloc(sizeof (unsigned));
gbf=malloc(sizeof(unsigned));
tgb=malloc(sizeof(unsigned));
taf=malloc(sizeof(unsigned));
ttot=(unsigned*)malloc(sizeof (unsigned));
nl={unsignedx)malloc{sizeof(unsigned));
ml={unsigned*)malloc(sizeof (unsigned));
kl=(unsigned*)malloc(sizeof{unsigned));
g={unsigned*)malloc(sizeof(unsigned));
t={unsigned*)malloc(sizeof (unsigned));
sl=(unsigned*)malloc(sizeof (unsigned));
tg={unsigned*)malloc(sizeof(unsigned));
tnl=(unsigned*)malloc(sizeof(unsigned));
tml=(unsigned*)malloc(sizeof(unsigned));
tkl=(unsigned*)malloc(sizeof(unsigned));
e_count=(unsigned*)malloc(sizeof(unsigned));
s_c=(unsigned*)malloc(sizeof(unsigned));

*nl=no;*ml=0;*%kl1=0;*gbb=0;*qbf=0;*g=0;*ttot=3000;
*tg=0;*xtqf=0;*xtgb=0;*tnl1=0;*%tml=0;*xtkl=0;

if({start=( conx*)malloc(sizeof( con)))==NULL)
' {
printf("No memory available for allocation \n");
exit(l);
}

/* Random numbers are generated below %/
randomize();
for{(i=0;1i < no;i++)

r{il=random(PT)+1;

/* Contrellar linked list is formed below %/
start->next=NULL;

start->p_no=0;

start->time=r[0];

for(iz1l;i<no; i++)

if((current=( con*)malloc(sizeof( con)))==NULL)

{ .
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"printf("No memory");
exit(l);
}
current->time=r[i];
current->p_no=i;
if(current->time < start->time)
{
prev=start;
current->next=prev;
startzcurrent;

}

else

{

prev= staft
new=start->next;

while(new != NULL && current->time >= prev- >t1me)
{

if(current->time < new->time)

{ ; .

current->next=new;
prev->next=current;
prev=new;

else
{
prev=new;
newznew->next;
}
}
if(new == NULL)
{
prev->next=current;
current->next=NULL;
}
}
3
fg=fopen("fileg.dat"”,"a+");
fprintf(fg,"statistics on enter\n");
. current=start;
while(current)
{ :
fprintf(fg," Zu %¥u\n" ,current->time,
current->p_no); '
current=current->next;

}
fclose(fg); :
/*initialization of arrays are done below */
for(i=0;1< no;i++)
{
pli].n_e=0;
plil.m_no=0;
p{i].b_no=0; .
pl{i].time=r(i]; /¥ A random numbsr */

for(i=0;i<mo;i++)
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{
m[i].state=0;
m(i].p_no=0;
nfi].time=0;

m[i].g=0;

}

for(i=0;i < (*ko);i++)
{

b[i].state=0;
b(i].p_no=0;
b[i].time=0;

}

if{pr==1)

{ : .
printf(” Time PE BUSY In In \n");
printf{" no PE MEH BUS \n");
gotoxy(2,24);

printf("PRESS ANY KEY TO SEE NEXT PAGE");

/*Finding of current event\events are started below %/
window(l,3,79,20);
scr_cnt=0;
clrscr();
gotoxy(l,1);

}

¥t=start->time;

for(i=0;i<mo; i++)
m{i].time = *t;

for(i=0;i < *ko;i++)
b(i].time = *t;

while(xt < *ttot){
¥e_count=1;
current=start;
new=current->next;
while(eurrent->time == new->time && new != NULL)
{
*a_count+=1;
current=new;
new=current->next;
}
sort(p,start,e_count,m,b);
if(*xt==elock) :
{
clock+=5;
while(*e_count)
{
*e_count-=1;
*gl=start->p_no;
*s_c-p(*sl].n_e;
switch(*s_c)
{

case 0:
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eop(sl,t,start,p,m,b,clock);
bresak;

case 1:

{
eobf(sl,t,start,p,m,b,clock);
bresak;

}

case 2:

entbf(sl,t,start,p,m,b,clock);
bresak;

}

case 3:

{
entm(sl,t,start,p,m,b,clock);

break;

}

case 4;

{
prm(sl,t,start,p,m,b,clock);

break; :

}

case 9:

entbb(sl,t,start,p,m,b,clock);
break;

}

case 8:

{ : .
eobb(sl,t,start,p,m,b,clock);
break;

1
}

*t=gtart->time;
if{clock < *t)

{
while(clock < *xt)
clock+=CINC;
}
if(*e_count == 0)
{

if(xt > 1000) :
result(tqg,tqf,tgb,tnl,tml, tkl,t);
ud_mdm,t); '
nd_b(b,t);
}

scr_cnt+=1;

if(pr==1).

{

if(scr_ent == 17)

{
getch();
~ser_cnt=0;
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clrser();
gotoxy(1l,1);
}
}

fg=fopen("fileg.dat","a+");
fprintf(fg, "\nb[0]=%3d b{1]=%3d b[2]=%3d
b[4]=%3d\n" ,b[0] .state,b[1].state,b[2].state,b[3].state);
fprintf(fg, "\ntb{0]=%3d tb{1}=%¥3d tb[2]=%3d tb{4]=%3d\n",
bf0].time, b{l].time,b[2].time,b{3].time);
fprintf (£, " RRRRARKIK KKKk Ak K Kk kKKK dk KRk Rk kKR \n" ) ;
fclose(fg);
}
}
else
{
while(*e_count)
{
*e_count-=1;
*sl=start->p_no;
wait(sl,t, start,p,clock),
*t=start->time;

}
if(*t »1000)
.result(tqg,taf,tqb,tnl, tml tkl,t);
}
}

getch();

window(1,1,79,24);

clrser()};

ttq=0;

for(i=0;i<mo; i++)

ttg+=mfij.q; */

*ttot-=1000;

ttg= ((float)(*tq))/((float)(*ttot)),
ttnl=((float)(*tnl))/((float)(*ttot));
ttml=((float)(*tml))/((float)(*ttot));
tthl=((float)(*xtkl))/((float)(*ttot));
ttgb=((float)(*tgb))/((float)(*ttot));
ttaf=((float)(*taf))/({(float)(*ttot});

*xttot+=1000;

printf("\n\tAverage Queue Length=%f\n",ttq );
printf("\n\tAverage forward Queue Length=%f\n",ttqf );
printf("\n\tAverage backward Queue Length=%f\n",ttqb );
printf("\n\tAverage No of busy Processor =%f\n",ttnl);’
printf("\n\tAverage No of Busy Memory =%f\n",ttml);
printf("\n\tAverage No of Busy Bus =%f\n",ttkl);
printf("\n\tProcessor Utilization =%f\n",ttnl/no);
printf("\n\tMemory Bandwidth=%f\n",ttml/mo);
printf("\n\tBus Utilization=Xf\n",ttkl/(*ko));

. Betch();
fprintf(fp,"%u r44 if r 4y £f\n" ,xko,ttq,
ttnl/no,ttml,ttkl/(*ko));
}
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/* Simulation

#include <stdio
#include <math.
#include <alloc
#include <time.
#include <stdli
#include<conio.
#include<graphi
#define no 18
#define mo 16
#define BUST 5
#tdefine MEMT 20
#define CINC 5
#define PT 1
typedef struct

A-4

program for asynchronous
with equal priority protocol. */

.h>
h»>
.he
h»
b.h>
h>
es.h>

processor{
unsigned n_e;
unsigned m_no;

~unsigned b_no;

typedef struct

typedef struct

typedef struct

unsigned time;
lpro;

buses {
unsigned state;
unsigned p_no;
ansigned time;
}bus;

memory{
unsigned state;
unsigned p_no;
unsigned time;
unsigned q;
jmem;

controller {
unsigned time;
unsigned p_no;

struct controller'*next;

}con;

packet switched system

unsignéd *ko,*q,*ml,*nl,*kl,rcount,tl,tZ,q_laSt,nl_last;
unsigned xttot,q_flast,g_blast,*gbf,*gbb,*q,pr;
/* Subroutine for memory update x/

ud_m¢{mem m[],un
{

unsigned 1i;
for{iz0;i<mo; i+

signed *t)

+)

if(m[i].state==0)

m[i

].time = *t;
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/% Subroutine for bus update %/

ud_b(bus b{],unsigned *t)
{
/J*¥FILE *f3;%/
unsigned 1i;
for(i=0;i < *ko;i++)
{
if(b[i].state==0)
b(i].time = *t;
3

}

/* Subroutine for smallest bus time */
unsigned s_time(bus b{1)

{

unsigned smallest,i;

i=0;

smallest=b(i]}.time;

for{i=1;1 < *ko;i++)

{

if(smallest>b(i}.time)

{
smallest=b[i].time;
H

}

return smallest;

/* After think time processor comes here */

eop(unsigned *sl,unsigned *t,con *start,pro p{l,mem m{],
bus b(],unsigned clock)

{

unsigned i,del;

for(i=0;i<xko; i++)

{
if(b{i]l.state==0)
break;
}
if{i==xko)
{

del= s_time(b) - p(*sl].time; /*¥CINC increment of clockx/
p(*sl].time+=del; .
*gbf+=1;%nl-=1;
*xg+=1;
p(*sl].n_e=2; /*entbf()x/
if(pr==1)

printf("%5u Z5u %5u %5u %Su %5u \n",*t,*sl,xq,

. *nl,*ml,xkl);
*t+=del;
insert(sl,t,start);
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3

else .

{

3
3

del= BUST;
p[*¥sl].time+=del;
p(*s1].n_e=1;/% next event is eobfx/
*kl+=1;
b{i].state=1;
b[i].p_no=%sl;
p(*sl1].b_no=i;
b[i]l.time+=del;
if(pr==1) :
printf("%50 %5u %5u %S5u %5u X5u \n",*t,*sl,*q,
*nl,*ml,*kl);
*t+=del; : v
ingert(sl,t,start);

/x After transferring informations through bus processor

comes here X/

eobf(unzigned *sl,unsigned *t,con xstart,pro pl[],
mem m[],bus b[],unsigned clock)

{

u
*

P
*

i
i

{

3

e

{

nsigned i,del;

nl-=1; /% whether or not free memory is found
rocessor remains idle */

kl-=1; /¥ and bus is freed */

=random{moc); ‘
f(m[i].state==1)

del=m{i].time - p[*sl].time;

/¥ until that memory is freed */
p[*sl1].time+=del;

p(xsl].n_e=3;

p[*sl1].m_no=i;

m{i].g+=1;

*g+=1;
if(pr==1)
printf("%5u %5u %5u %5u Z5u X5u \n",*t,*sl,*q,
*nl,*ml,*xkl);
*t+=del;

insert(sl,t,start);
lse

m{i].state=1;

m(i].p_no=*sl;

p{*sl].m_po=i;

p[*s1].n_e=4; /*next event is prm*/
del=MEMT; /*memory access time */
pi*sl].time+=del;

m[i].time+=del;

*ml+=1;
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if(pr==1)
printf("%Z5u %Z5u %¥5u XS5u ZS5u %S5u \n",xt,*sl,*qg,
*nl,*ml,*xkl);
*xt+=del;
insert(sl,t,start);
}
}

/* If once in forward direction busy bus condition is found
processor comes here %/

entbf(unsigned *sl,unsigned *t,con *start,pro p[],
mem m[],bus b[],unsigned clock)

unsigned i,del;
for(iz0;i<*ko;i++)

if(b[i]).state==0)

break;
}
if(i==%xko)
{

del=s_time(b) - *t; /% until that bus is freed */
pl*sl].time+=del;
p(*sl].n_e=2; /*entbf()x/
if(pr==1)
printf("“%0u %S5u %5u %5u %5u %5u \n",*t,*sl,x*q,
*nl,*ml,*xkl);
*t+=del;
insert(sl,t,start);
}

else

del= BUST;
pl[*sl].time+=del;
pl*sl]}.n_e=1;/*eobfx/
*kle=1;*¥nl+=1;
*gbf-=1; /* this pe was in bus gqueue */
*xgq-=1;
b(i]).state=1;
b(i].p_no=%s1l;
p(*sl].b_no=i;
b{i].time+=del;
if(pr==1) :
printf("Z0u Z5u X5u %5u %5u %5u \n",*t,*sl,*q,
*nl,*ml,*xkl);
*t+=del;
insert(sl,t,start);
}
}

/¥ If once required memory is found in busy state then
processor comes here */°

entm(unsigned *sl,unsigned *t,con *start,pro p[],

mem m[1,bus b{l,unsigned clock)
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}

unsigned 1i,del;
i=p(*s1].m_no;
if(mfi] .state==1)
{
del= m[i].time - p(*sl].time;
/% gntil that memory is freed */
p[*¥sl1].time+=del;
pl(*sl].n_e=3;
if(pr==1)
printf("%5u Z5u %5u X5u ZS5u ZSu \n",*t,*sl,Xq,
*nl,*ml,%xkl);
*t+=del;
insart(sl,t,start);
}
else
{
m[i] .state=1;
n(i].p_no=*sl;
pl(*sl].m_no=1i;
p(*sl].n_e=4; /*prmkx/
del=HMEMT; /*memory access time */
p(*sl1].time+=dsl;
mn(i].time+=del;

m[i].g-=1;
*g-=1;
*mi+=1;
if(pr==1)

printf("%5u 2Z5u %5u %5u %5u 2%Z5u \n",*t,%sl,Xxq,
*nl,*ml,*kl);
*t+=del;
insert(sl,t,start);
}

/* When memory access ends processor comes here to
see if there is any bus free x/
prm{unsigned *sl,unsigned *t,con *start,pro p[],

mem m{],bus b[],unsigned clock)

{

unsigned i,Jj,del;

j=p[#sl].m_no;

*ml-=1; /* memory goes -to idle state */
for(i=0;i<*xko;i++) :

if(b[i].state==0)
break;
}

if(i==xko)

delzs_time(b) - p[*sl].timse;/* until a bus is freed */
p[*si].time+=del;

*gbb+=1;

*qt=1;

pl[*sl].n_e=5; /*entbb()x/
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if(pr==1)
printf("%5u %51 %5u %S5u %5u X5u \n", xt,*sl,*q,
*nl,*ml,*kl);
*xt+=del;
insert(sl,t,start);
1
else
{ .
del= BUST;
p[*s1].time+=del; ‘
p[*=s1].n_e=6; /% next event is eobb*x/
xkl+=1;
*nl+=1;
b[i].state=1;
b{i].p_no=%sl;
pixsl].b_no=i;
b{i}.time+=del;
if(pr==1)
printf("%5u X5u %5u %5u %5u Z5u \n",¥t,*sl,*q,
*nl,*ml,*xkl);
*t+=del;
insert(sl, t, start),

}

/¥ If in backward direction busy bus condition is
found then. processor comes here */
entbb(unsigned *sl1l,unsigned *t,con *start,pro p[],
mem m[]},bus b[],unsigned clock)

{ .
unsigned i,j,del;
for(i=0;i<*ko;i++)

if(b[i1}.state==0)
break;
3

if(i==*ko)

del= s_time(b) - *t; /% until a bus is freed */
p[*sl].time+=del;
p(*sl1]}.n_e=35; /*entbb()*x/
1f(pr =13
printf("%5u %5u %Z5u %5u Z%Z5u %5u \n",*t,*sl, *q,
*nl,*ml,*kl);
*xt+=del;
insert(sl,t,start);
1

else

{
del= BUST;
p{*sl].time+=del;
p{*sl].n_e=6;/*eobb*/
*k14=1;%qbb-=1;
xq-=1;
*nl+=1;

" b[i].state=1;
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b[i].p_no=*sl;
p[*sl].b_no=i;
b[i].time+=del;
if(pr==1)
printf("%5u %5u %5Su %5u %S5u XSu \n",*t, *xsl,%q,
xnl,*ml,*xkl); |
*t+=del;
insert(sl,t,start);
}
}

/% In backward direction after getting bus processor
comes in thinking state */

eobb(unsigned *sl,unsigned *t,con *start,pro pll,
men m{],bus b[],unsigned clock)

{

unsigned 1,del;

del=random(PT)+1;

p[*s1].time+=del;

p[*sl1].n_e=0;

*xk1-=1;

if(pr==1)

printf("%5u X5u %5u Z5u %5u X5u \n",*t, *xs51,%q,
xnl,*ml,*kl);
*t+=del;
insert(sl,t,start);

}

/% subroutine-insert has started below */

insert(unsigned *sl,unsigned *t,con *start)
{

con *prev,*¥new,*current;
current=start->next;

if(*t < current->time)

{

start->p_no = *s1;
start->time = *t;
}

else
{ .
if((new=( con*)malloc(sizeof( con)))==NULL)

printf("No memory available for allocation \n");
exit(l);

} _

start->p_no=current->p_no;
start->time=current->time;

start->next=current- >naxt

free{current);

current start->next;

prev-start :
while{(current->next != NULL && Xt >= current->time)
{

prev=gcurrent;
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curreat=current->next;

}
new->p_no=*xsl;
new->time=%t;
if(current->next != NULL)
{

prev->next=new;
new—>next=current;

}

else

{
if(*t >= current->time)
{
current->next=new;
new->next=NULL;
}
else
{
prev->next=new;
new-rnext=current;
}
}
}

/* Results and statistiecs are calculated in the
routine result %/
result(unsigned *tq,unsigned *tgf,unsigned *tgb,
unsigned *tnl,unsigned *tml, unsigned *tkl,
unsigned *t)
{
unsigned sub;
if {(reount == 0)
{
tl = *xt;
q_last = *q;
q_flast= *gbf;
q_blast= *gbb;

‘nl_last = *nl;
ml_last = *ml;
kl_last = *kl;
rcoent+=1;

}

else
{
t2 = xt;
sub=t2-t1;
*xtg¥=g_last * sub;
*tgf+=q_flast * sub;
*xtght=q_blast * sub;
*xtni+=nl_last * sub;
xtml+=ml_last * sub;
xtkl+=kl_lsst * sub;
tl=t2;
g_last = *q;
q_flast = *xgbf;
q_blsst = *gbb;
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nl_last = *nl;
ml_last = *ml;
kl_last = *xkl;
1 )

}

/* For equal priority assignment to all the processors */
eg_sort(con *tag,unsigned *e_count)
{
con *current,*inter,*first;
int i,store;
first = tag;
current = tag;
inter=malloc(sizeof{(con));
for(i=*e_count;i>0;i--)
{
store=random(i);
while(store)
{ ‘
store~=1;
current=current->next;
} )
inter->p_no=first->p_no;
first->p_no=current->p_no;
current->p_no=inter->p_no;
first=first->next;
current=first;
}
free(inter);
}
/* To place the processors in proper position in
event queue %/
sort(pro p[],con *start,unsigned *e_count,mem m[],bus b[])

unsigned back,store,prm_cnt;
con *current,*inter,*tag;
back=0;prm_cnt=0;

tag=start;

current=start;
store=Xe_count;
while(*e_count)

{.
Xe_count-=1, .
if((p(current->p_nol}.n_e==1 || p(current->p_no].n_e==4 ||
p[current->p_no].n_e==8 && back==0)) '

{

if(p(current->p_nol.n_e==1 || p[current->p_no].n_e==86)

b(plcurrent->p_no].b_no].state=0;
else

m[p{current->p_no}.m_no}.state=0;
tag=tag->next;
current=current->next;
prm_cnt+=1;
else if((p[current->p_nol.n_e==1 |} p(current->p_no].n_e==4)
p[current->p_no].n_e==6) && back>0)
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if(p[current->p_no)].n_e==1 |} p[current->p_no)].n_e==6)
b[p[current->p_no].b_no].state=0;
else
m{p[current->p_no]. m_no] state=0;
inter=(con*)malloe(sizeof(con));
inter->p_no=tag->p_no;
tag->p_nozcurrent->p_no;
current->p_no=inter->p_no;
free(inter);
prm_cnt+=1;
tag=tag->next;
current=current->next;
}

else
{
current=current->next;
back+=1;
}
}
current=start;
*¥a_count=store;
eq_.sort(start,e_count);
*e_count=storse;

}

/* Main program is started below */

main{)

{

FILE xfp;

con *start,*prev,*new,*current;
pro pino]l;

mem m{mo};

bus b{l18];

unsigned *tq,*tnl,*tml,*tkl,clock,*tgb,*tqf;

unsigned i,j,*s_c,*e_count,r[nol,*sl,count,scr_cnt,*t;
float ttg,ttnl,ttml,ttkl,ttqgb,ttqgf,ttmg;

void *calloc();

void *malloc();

if ((ko=(unsigned*)malloc{sizeof(unsigned)))==NULL)

{

printf("No memory");

exit(l);
} :
if((fp=fopen(“fpa.dat”,"a+"))==NULL)
{ ' :

printf("file error"”);
exit(l);
}

*ko=0;

pr=0;

for(*ke =1;(xko) < 17;(*ko)++ )

{ ,

clrser();

rcount=0; t1=0;t2=0; qQ_flast=0; q_blast=0;q__last=0;
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clock=5;scr_cnt=0;

nl_last=0; ml_last=0; kl_last=0;
gbbz=mslloc(sizeof(unsigned));
gbf=malloc(sizeof(unsigned));
tab=malloc(sizeof(unsigned));
tgf-malloc(sizeof(unsigned));
ttot=(unsigned*)malloc(sizeof(unsigned));
nl=(unsigned*)malloc(sizeof(unsigned));
ml=(unsigned*)malloc(sizeof(unsigned));
kl=(unsigned*)malloc(sizeof (unsigned));
g=(unsigned*)malloc(sizeof(unsigned));
t=(unsigned*)malloc(sizeof(unsigned));
s1l=(unsigned*)malloc(sizeof(unsigned));
tgq=(unsigned*)malloc(sizeof(unsigned));
tnl=(unsigned*)malloc(sizeof(unsigned));
tml=(unsigned*)malloc(sizeof(unsigned));
tkl=(unsigned*)malloc(sizeof(unsigned));
e_count=(unsigned*)malloc(sizeof(unsigned));
g_c=(unsigned*)malloc(sizeof(unsigned));
*nl=no;*m1=0;%k1=0;%gbb=0;%gbf=0;*g=0;*%ttot=30000;
*xtq=0;*tgf=0;%tqb=0;*tnl=0;*%tml=0;*tkl1=0;
if((start=( con*)malloc(sizeof( con)))==NULL)

printf("ﬂo memory available for allocation \n");
exit(1l);
}

/% Random numbers are generated below */
randomize(); :
for(i=0;1i < no;i++)
r{i]=random{PT)+1;
/% Controllar linked list is formed below */
start->next=NULL; '
start->p_no=0;
start->time=r{0];
for(i=1;i<no;i++)

if((current={ con*)malloc(sizeof( con)))==NULL)
{ _ _
printf("No memory”);

exit(l);

H
current->time=r{i];
current->p_no=i;
if(current->time < start->time)
{

prev=start;
current->next=prev;
start=current;

}

else

{

prev=start;

new=start->next;

whilé(mew != NULL && current->time >= prev->time)
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{

if(current->time < new->time)
{
current->next=new;
prev->next=current;
prevsnew;
}
else
{
prev=new;
new=new->next;
1
}
if(new == NULL)
{
- prev->next=current;
current->next=NULL;
) _
}
1

/*initialization of arrays are done below */
for(i=0;i< no;i++)

pli].n_e=0;
pl(i).m_no=0;
p[i].b_no=0;
pli).time=r(1];

for{i=0;i<mo;i++)

m{i].state=0;
m[{i].p_no=0;
m{i].time=0;
m{i].q=0;

}

for(i=0;1i < (*ko);i++)
b[i].state=0;

b{i].p_no=0;
b{i].time=0;

if{pr==1)

{ .

printf(" Time PE BUSY In In \n"J;
printf(" A no PE - MEM BUS \n");
gotoxy(2,24);

printf("PRESS ANY EKEY TO SEE NEXT PAGE");
/*Finding of current event\events are started below

}
window(1,3,79,20);
scr_ent=0;
clrscr();
gotoxy(l,1);
*t=gtart->time;
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for(i=0;i<mo;i++)
m(i].time = *t;
for(i=0;i < *ko;i++)
b[il.time = *t;
while(*t < *ttot)
{ -
*a_count=1;
current=start;
new=carrent->next;
while{(current->time == new->time && new
{
*e_connt+=1;
current=new;
new=carrent->next;

sort(p,start,e_count,m,b);
while{*e_count)
{
*¥e_count-=1;
¥glzstart->p_no;
*s_c-p[*sl].n_e;
switeh(*s_c) -
{

case 0:

eop(sl,t,start,p,m,b,clock};
break;

}

case 1:

eobf(sl,t,start,p,m,b,clock);
break;

}

case 2:

{
entbf(sl,t,start,p,m,b,clock);
break;

}

case 3:

{
entn(sl,t,start,p,m,b,clock);
break; T

}

case 4:

prm{sl,t,start,p,m,b,clock);
break;
} .

case 5:

{
entbb(sl,t,start,p,m,b,clock);
break;

}

case B:

{
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sobb(sl,t,start,p,m,b,clock);
break;
}

} .

*tzgtart->time;

if(*e_count == 0)

{
if(*t>1000)
result(tq,tqf,tgb,tnl,tml,tkl,t);

ud_m(m,t);

ud_b(b,t);

}
ser_cnt+=1;
if(pr==1)

{

if(ser_cnt == 17)

{
getch();
gser_cnt=0;
clrser();
gotoxvy(1l,1);
H

}

}

}

clrser();

*ttot-=1000;

tta=((float)(*tg))/((float)(*ttot));
ttnl=((float){(*tnl))/((float)(*ttot));
ttml=((float)(*tml))/((float)(*ttot));
ttkl=((float){(*tkl))/((float)(*ttot));
ttgb=((float)(xtgb))/({(float)(*ttot));
ttaf=((float)(*xtqgf))/((float)(*ttot));

*xttot+=1000;

printf("\n\tAverage Queue Length=Zf\n",ttq );
printf("\n\tAverage No of busy Processor =%f\n",ttnl);
printf("\n\tAverage No of Busy Memory =Zf\n",ttml);
printf("\n\tAverage No of Busy Bus =%f\n",ttkl);
printf(*\n\tProcessor Utilization =%f\n",ttnl/no);
printf("\n\tHemory Bandwidth=Zf\n",ttml/mo);
printf("\n\tBus Utilization=%f\n",ttkl/(*ko));
getch();

fprintf(fp,"%u Zf %f F$3 Zf\n",
xko,ttq,ttnl/no,ttml,ttkl/(*ko));

felose(fp);
}
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