
..
'.- .

".

';.,

~ .r.0- •

ALGORITH:MS AND PROGRA:M :MODULES

FOR PROCESSING INTERRELATED

"INFOR:MATION CELLS

BY

ASHRAF HABIB RUMI

'..
A Thesis

r

,
\

Submitted to the Departmeri~"of Computer Engineering,

Bangladesh University of Engineering and Technology,

Dhaka, in partial fulfilment of the requirements for

the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING

DECEMBER, 1986

111111111111111111111111111 /111 III
#66481#

/

CERTIFICATE OF RESEARCH

Certified that the work presented in this Thesis is
the result of the investigation carried out by the
candidate under the supervision of Dr. Syed Mahabubur
Rahman at the Department of Computer Engineering,
Bangladesh University of Engineering and Technology,
Dhaka, Bangladesh.

~I~________________41 _
Candidate

DECLARATION

I hereby declare that neither this thesis nor any
part thereof has been submitted or is being
concurrently submitted in candidature for any
degree at any other university.

Jtt/illui&
Candidate

Accepted as satisfactory for partial fulfilment of the
requirements for the degree of M. Sc. Engineering in
Computer Engineering.

BOARD OF EXAMINERS

~ ~\Il~,~\~lc

i. Dr. Syed Mahabubur Rahman
Associate Professor and Head,
Department of Computer Engineering,
BUET.

Chairman
and

Supervisor

i i .

iii.

~~ 13/12/f{,
Prof. Shamsuddin Ahmed
Head, Department of Electrical and
Electronics, ICTVTR, Dhaka.
(Ex. Dean of the Faculty of EEE &
Head of the Department of Computer
Engineering, BUET, Dhaka.)

y~ C. ~i?7hd9:b
Mr. Dulal Chandra Kar
Assistant Professor,
Department of Computer Engineering,
BUET.

'.

Member

External

Member

,

i \

It is a matter of great pleasure on the part of the author
to acknowledge his profound gratitude to his supervisor,
Dr. Syed MahabuburRahman, Associate Professor and '~ead,
Department of Computer Engineering, Bangladesh University of

, ,

Engineering and Technology (BUET), Dhaka for his support,

/

advise, valuable guidance and his constant encouragement
throughout the progress of this work ..

The author also wishes to express his sincere gratitude to
late Dr. A.K.M. Mahfuzur Rahman Khan (Ex. Professor and head
of the Computer Engineering departme~t, BUET) for his keen
interest and encouragements for this work. He expresses his
gratitude to Dr. Shamsuddin Ahmed, (Ex. Dean of the faculty
of Electrical and Electronic Engineering and Head of the
Department of Computer Engineering, BUET).

Thanks are due to Mr. Javed Sabir Barkatulla and Mr. Dipak
Bin Qusem Chowdhury for their friendly discussions on
different problems in the progress of the work.

, '.

ABSTRACT

The present research work has undertaken the task of
developing algorithms and software programs for processing a
large number of information cells containing high level
program statements including assignments, arithmetic and

boolean expressions, commands etc. Algorithms for the

manipulation of informations on a large cell system by using

simple but powerful commands have been developed by
considering the structuring facilities. In the present work
"top-down" approach of structuring has been used for the

algorithmic modules have been designed.

of algorithms and program modules.
all the external specifications,

development
cosidering

expression interpreter and the screen

After
two main

They are the
manipulator.-

Expression interpreter defines algorithms for the evaluation,
/ of arithmetic, logical,conditional expressions with built-in

functions. Screen mani~ulator defines algorithm for interac-
tion intelligently with the user through the display screen.
Main module defines algorithms for the production of the
proposed cell system and for the interaction between the
user and the system. The specification for the interaction
between the main module with the data structure of the
cell system and these two modules has been defined first ,
then the detailed design has been carried out more or
less independently. Finally the algorithms have been imple-
mented in the form of a program module by considering some
coding tricks and local optimization. The coding language
used here is the CBASIC compiler, a popular high level
language.

CONTENrrs

Acknowledgement
Abstract

i
ii

.CHAPTER 1 INTRODUCTION

1.1 General
1.2 Objectives of the thesis work.
1.3 Application areas of the thesis work

CHAPTER 2 PROGRAM DEVELOPMENT

2.1 Introduction
2.2 Stages of program development

2.2.1 Specification and design
2.2.2 Documentation
2.2.3 Coding
2.2.4 Testing and debugging
2.2.5 Maintenance

2.3 Algorithmic representation
2.4 Implementation features

CHAPTER 3 SYSTEM ANALYSIS

3.1 Introduction ,
3.2 External specifications

3.2.1 Noncomputational functions
3.2.2 Computational functions

CHAPTER 4 SYSTEM DESIGN

4.1 Introduction
4.2 Structure of the system

1-1
1-2
1-3

2-1
2-2
2-4
2-6
2-7
2-7
2-9
2-1.0.
2-12

3-1
3-1
3-2
3-9

4-1
4-2

CHAPTER 5 EXPRESSION INTERPRETATION

/

5.1 Introduction
5.2 Structure of the interpreter
5.3 Grammatical description
5.4 Arithmetid expression algorithm

5-1
5-4
5-6
5-10

CON'rENTS

5.4.1 Lexical analysis
5.4.2 Syntax analysis
5.4.3 Value table generation
5.4.4 Evaluation

5.5 Boolean. expression algorithm
5.6 Built-in function algorithm
5.7 Other algorithms

5-15
5-19
.5-20
5-23
5-25
5-31
5-37

CHAPTER 6 SCREEN MANIPULATION

6.1 lritroduction
6.2 Structure of the manipulator
6.3 Manipulator algorithms

6-1
6-6
6-8

CHAPTER 7 DATA REPRESENTATION AND COMMANDS

7.1 Intorduction
7.2 Reference table generation

7.2.1 Algorithm cell refenence
7.2.2 Algorithm recalculation

7.3 Printing.algorithm
7.4 Saving algorithm
7.5 Loading algorithm

7-1
7-3
7-4
7-5
7-6
7-9
7-11

CHAPTER 8 CONCIJUSIONS AND SUGGESTIONS FOR FUTURE WORK

8.1 Conclusions
8.2 Suggestions for future work

APPENDIXES:

8-1
8-3

Appendix-A
Appendix-B
Appendix-C
Appendix-D

REFERENCES

ASCII code table
Internal data representation
CBASIC Compiler
Complete program listing

CHAPTER=:::>1

INTRODUCTION.

1.1 GENERAL

Today's computers come in a variety of shapes and sizes.
Large mainframe to small microcomputers are now used~in
many factories , businesses, universities, hospitals, and
government agencies to carry out simple to sophisticated
business or technical calculations One of the main
part of a computer to run. is the software program" .
Application programs are becoming one of the most important
tool in computer world from the user's point of view.
Without these programs each computer user must be acquainted
elaborately with the system operating programs such as
operating system, programming language etc., which needs him
to have a desired level of qulification and experience. Thus
it is not possible for a man who is novice in this field.But
.n the case of a particular application, one does not need
to know how to work with an operating system, how to develop
a program etc. Thus it is possible and easy tor him to use a
particular program for his. application with only some
commands and functions .This has made an application
program construction an important, practical area of
research in computer science.

Research works in Bangladesh related to the
of algorithm and software for widely used

development
application

.programs are still at the iriitial stage .

1-2

Some

works are undergoing in the department of computer
engineering, BUET, in the field of data base software
compatible for the mainframe computers. Processing and
retrieving of information or data in a useful form through
the video sc~een is one of the most customization facilities

/of today's computer. The proposed research work has under-
taken the task of developing algorithms and a suitable

i.mplementation in the form of a program module for
processing of large number of programmable information
cells. The processing of the cells involve analysis of high
level program statements including assignments, arith-

metic expressions , logical expressions or conditional
expressions. The data or information types handled by the
cells consist of value, text string, formula etc. The system
will be a powerful tool for solving many types of
mathematical, business, and financial problems. Since the
algorithms or procedures have been developed for determining
how the system behaves. The computer program is a medium in
which the algorithms can be expressed and applied. Hence a
modular software program has been developed in a micro-
computer for the implementation of the algorithms.

1.2 OBJECTIVES OF THE THESIS WORK

For the development of the desired system the following
informations are important to consider as the objectives of
the present thesis work:

Production of a two-dimensional rectangular grid
containing a large number of programmable
information cells.

/

1-3

Intelligent interaction with the user through CRT
display screen and the hard copy printer.

Interaction of powerful but easy to use system

commands.

Calculation of powerful logical, conditional and
built-in mathematical' functions.

One of the main purposes of the developed system is to
manipulate data or information on a large rectanguler array
system using simple but powerful commands. These commands
may be specified for the following purposes:

editing the information,
formatting the information,
displaying the information,
calculating the formulas,
storing the informations,
printing the informations, etc.

1.3 APPLICATION AREAS OF THE THESIS WORK

The developed system is an ,aggregate of concurrently active
objects, organized into a rectangular array of cells similar
to the paper spreadsheet used by an accountant. Each cell
has a rule specifying how its value'is to be determined.
Every time a value is changed anywhere in the cell system,
all values dependent on it are reoomputed instantly and the
new values are stored and displayed. The system can be-
defined as a simulated pocket universe that continuously,

1-4

maintains its .fabric; it is a kit for a surprising range of
applications. Here the user illusion is simple, direct and
powerful. There are few mystifying surprises because the
only way a cell can get a value is by having the cell's own

/value rule put in there. Thus the developed software module
acts as a simple means to tap the power of a computer to do
time-cosuming, repetative calculations.

The proposed algorithms may be used for the development of
sophisticated application program softwares such as

electronic spread-sheet developing programs,
text edi tOl'" or word-processor developing programs,
compiler writting programs;
interpreter writtirtg programs etc.

The developed software program module may be useful for
the preparation of data sheets in a tabular form, cashflow
analysis or forecastingi balance sheets, profit statements,
tax estimation, market share analysis & planning, bar

charts, patient r~cords, salary records etc.

CHAPTER 2

PROGRAM DEVELOPMENT

2.1 INTRODUCTION

Many programmers are often preoccupied with wha~ initially
seem to be the. most difficult aspect of writing programs;
translating ideas into a programming language, or coding.
However, this activity is only one stage in a computer
programming project, which has at least seven definable
components:

Requirements analysis(RA)
Specification(SF)
Design(DG)
Documentation(DO)
Coding(CD)
Testing and debugging(TD)
Maintenance (.M)

Fig,ure-2.1Components of program development

2-2

The first six stages above take place during the traditional
"development cycle" of a programming project. Fig-2.1 shows
that coding is just a small part of the development cycle. --

2.2 STAGES OF PROGRAM DEVELOPMENT (I)

Requirements analysis,
solving activities,

present in some form in all problem
defines the requirements for an

acceptable solution to the problem. Most developers do not
get involved in this stage, because it usually takes place
at a management level and involves issues such as general
approach, staffing and other resources, project costs and

schedules.

The input and output of a program and their relationships
are defined by an external specification. For example, the
~pecification for a text editor defines the format of the
text files and it lists all of the editing commands and the
effects of each. However, an external specification does not
contain a description of how the program achieves these

effects; this is part of design.

The structure of a program is defined during the design
stage. The design stage often decomposes the problem by
outlining a solution in terms of a set of cooperating

program modules. This approach requires
design and. internal specification, since each

high-level
additional
module and its interaction with the others must be

specified, and then the internal structure at each module
must be designed. Depending on the module bomplexity,
additional decomposition into submodules might also be take

place.

Most documentation should be created during

2-3

the

specification and design stage. Concise yet complete
documentation is needed to communicate specification and
design concepts among the current implementors and future
users and maintainers of a program. To a lesser extent,
documentation is needed in the coding stage to explain the
,

/details o.fprogram coding.

,In the coding stage the design is translated intq a
programming language for a specific computer system. When
.coding begins, design usually stops, which is a good
argument for not starting coding prematurely. Several

studies have shown that design errors are more common than
coding errors. So that a good design ii essential to project
success. Also one is much more likely to reduce the size of
a program or enhance its performance by design improvement
in algorithms and data structures than by coding tricks or
local optimizations.

The word debugging usually suggests an activity in which the
obvious errors in a program are eliminated so that the
progiam runs without "blowing up". Testing refers to a more
refined activity that verifies not only that the program
runs but also that it meets its external specifications.
Testing requires a test plan, basically a set of input
patterns and expected responses for varifying the behavior
and operating limits of the program. Quite often the test
plan is given as part of the original specification to
ensure that the tests are not biased in a way that would
obsoure the errors in a known design.

•

2-4

Large programs require maintenance after they have been put
into operation in the, field for two reasons. First, there

.are usually errors that are not detected during the testing
stage. Obviously increased effort during the testing stage
reduce this maintenance requirement. Second, and almost'
/lnevitable, is that users of a system will call for changes
and enhancements after the system has been put into
operation. The cost of this maintenance is strongly
influenced by the specification, design and documentation
of a prqgram; there£ore maintenance must be considered
early in the development cycle.

2.2.1 SPECIFICATION AND DESIGN

The external specification of a program comes directly from
the results of requirements analysis, while internal
specifications come later. During the development cycle,
some "looping" between specification and design often occurs
as shown in fig-2.2. This looping may be required when
attempts to design the program reveal ambiguities,
contradiction, or other deficiencies in the external
specification. But most of the looping occurs because of the
"top-down" approach that is used in problem solving. When
the solution to an original external specification is
designed as a collection of cooperating modules, each module
and its interfaces with its partners must be documented by
internal specification. Then the working of each module must
be designed. The whole process may be repeated many times as
modules at each level are designed as collections of lower
level modules.

2-5

- I

I
- ~--------'

I
W

CODING

Ir-----~--
I){

SPECIFICIITION.

I
I
\

REQUIREMENTS

I
I

~ --YJ.--~----
L. D_E_S_IG_,_N _

L

r
I

1---

. /

J
~

I
\jJ

i. TESTING liND DEBUGGING
1 .---.-------'

'- - - --

Fig-2.2 The program development cycle

/

- ,

2-6

2,,2.2DOCUMENTATION

Documentation should not be generated at)one fixed time

during the program development cycle. Instead, documentation
should be generated as appropiate throughout the project.
The most important program documentation is generated long
before the coding stage, during specification and design.

In general it is a growing practice to make all program

self documenting , so that all documentation including
specifications and design, contained in the same text as
the source code itself. Writing self-documenting code has
several advantages over keeping separate handwritten or
typed documentation. The advantages are:

* It is easier to relate the documentation to the

code.

* Efficient procedures can be instituted for

maintaining all code and documentation on a
development computer system.

* When a design (or< code) is changed.' it is

convenient to make the appropiate documentation

changes otherwise there is a tendency-for

documentation to lag design).

* During revisions and maintenance, if the source

code is available then all the documentation is
guaranteed to be available too.

The main disadvantage of self-documenting code is that it
increases the size of the text files that the development
computer system must handle. Including back-up files, a
development system may need 200 to 1000 bytes or more of
disk stoarge for _very byte of object code that is developed.
Thus developing a 50k byte application program for a
microprocessor may require a micrpcomputer or minicomputer

with a 50 Mbyte system.

-2.2.3 CODING

most important to know
must be built upon good

to make significant

a fairly mechanical operation. The
about coding is that good code
design. A programmer cannot expect

Coding is
programming.

probably t~e best understood
In fact, coding of a well-designed

aspect of
program is

imporvements in program performance by clever coding.

executing loops, speeding up critical loops can improve a
program's performance more than any other coding changes. In
short loops, the speed improvement obtained by eliminating
just a few instructions can be substantial.

The purpose of
pziograms. Since,

most coding tricks is to produce faster
a typical program spends most of its time

2.2.4 TESTING AND DEBUGGING

The purpose of testing and debugging is to make a program
meet its specitications. Testing is an activity that detects
the existance of errors in a program. Debugging finds the-

2-8

causes of detecteq errors and then repairs them. As shown in
the pie-chart in figure-2.1, testing and debugging form the

largest
process.

single component in the program development

Even after starting with a good design, many programmers
have a haphazard approach to the remainder of program
development. They code the entire program and then run it
the first time with their fingers crossed. A sensible method
for developing a large program is code, test, and debug it

in small chunks.

One 6f the two approaches may be used:

* Bottom-up development: The lowest level modules

are coded, tested and, debugged first. These
modules which are now known to be working, may be
employed in developing higher level modules.

* Top-down development: The highest-level modules

/

are coded, tested, and debugged first. In order to
test them, the lower-level modules which have not-
yet been coded must be replaced by "stubs" that
match their input/ output specification but with
much less functionality.

There come advantages and disadvantages to both approaches.
In bottom-up development, fundamental errors in design at
top-level modules may not be caught until late in the
project. In top-down development, problem with program site
or performance may not become apparent until critical
low-level modules are developed. Both approaches require

ad.ditional
is often
developing
first and

2-9

code to be written for testing. In practice, it
best to use a combination of the two approaches,
both high-level and critical low-level modules
using stubs for less critical modules to be

developed later ..

In large programming projects the need to partition the
testing and debugging problem is well recognized. About half
of the total testing and debugging effort is devoted to
ensuring that individual modules meet their internal
specification, this activity is sometimes called "unit

integration
testing". The remaining

and test", in
effort

which
is

the
spent

modules
on
are

"system
linked

together and the external specification of the program are

checked.

2.2.5 MAINTENANCE

In the "real", world, programs are written for and used by
customers who expect certain degree of performance.
Throughout the lifetime of any nontrivial program, lurking
bugs will pop up, and, at the same time customers will
request new features and improvements; Thus, the programis
code and even its specification and design may undergo
frequent change. Program maintenance. requires a large and
sophisticated development system.

/

, "

2-10

(2,l)
2'.3 ALGORITHMIC REPRENSENTATION

The notation for algorithms used here can be described with
the aid of examples ..Consider the following algorithm. for
det~rmining the largest algebraic elements of a vector.

AlgorithmMAX

This algorithm finds the largest algebraic element of vector
A which contains n elements and places the result in MAX. i
is used as a subscript to A.

1. [Is the vector empty?]
If n (1 then print message and exit.

2. [Ini tialize]
Set MAX (-- A[1];i (-- 2; (we assume initially
A[i] is the greatest element).

that

3. [Ali done ?]
Repeat steps 4 and 5 while i (= n;

4. [Exchange MAX if it is smaller than next element]
If,MAX (A[i] then set MAX (-- A[i];

5. [Get next subscrip.t]
Seti (-- i + 1;

6. [Finished]
Exi t.

The algorithm is given an identifying name MAX which is
followed by a brief description or the tasks the algorithm
perform, thus providing an identification for the variables
used in the algorithm. This description is followed by the
actual algorithm ~ a sequence of numbered steps.

2-11

Every algorithm step begins with a phrase enclosed in square
braket which gives an abbreviated description of that step.
Following this phrase is an ordered sequence of statements
which describe actions to be executed or tests to be
pe~formed. In general, the statements in each step must be
executed from left to right in order. An algorithm step may
terminate with a comment enclosed in parantheses that is
intended to define the step clearly. The comments specify no
action and are included only for clarity.

Step2 in the example algorithm contains the arrow symbol
"(__ " which is used to denote the assignment operator. The
statement MAX (-- A[i] is taken to mean that the value of
the vector element A[i] is to replace the content of the
variable MAX. In this algorithmic notation, the symbol ":"
is used Mrelational operator and never as an assignment

operator One assignment statement, or a group of
several assignment statements seperated by commas, is
pr'eceded by the word " set ". The action of incrementing' i
by one in step5 is indicated by i (-- i + 1. Many variables
can be set by using multiple assignments. The statement
i(--O, j (-- 0 and k (-- 0 could be rewritten as the single
statement i (__ j (-- k (-- O. An exchange of the values of
two variables can be written as A[i] (--> A[i+1]. And the
subscripts for array~ can be written as A[i], where i is the
index of the array A.

The execution of an algorithm begins at step1 and cotinues
from there in sequential order unless the result of a
condition tested or an unconditional transfer a "goto")

specifies otherwise. In the same sample algorithm begins at

\ "

2-12

stepl and is first executed. If vector A is empty, the
algorithm terminates; otherwise, step2 is performed in
which MAX is initialized to the value of A[l) and the
subscript variable, i, is set to 2. Step3 leads to the
termination of the algorithm if we have already tested the
last element A. Otherwise, step4 is taken. In this step, the
value of MAX is compared with the'value of the next element
of ,the vector. If MAX is less than next element, then MAX is
set to this new value. If the test fails, no 'reassignment
takes place. The completion of step4 is followed by step5,
where the next subscript value is set; control then returns
to the testing step, step3.

2.4 IMPLEMENTATION FEATURES,

Since in this application we will be mainly concerned with
string data processing, it is important to incorporate into
the algorithmic notation certain features that facilitate
the processing of string information. These features-~re
provided as an addition to the standrad mathematical
functions and operations which one would expect to find
useful in this application. The algorithms are written in
a structured high level programming style. Consequently,
it is important to pattern the string data processing
features after certain high level language operations or
functions. Some of these features are described in the
following section.

A close analysis of the basic string handling facilities
required of ~ny text creation and edi~ing system should lead
to the following list of conventional functions:

/

!,

2-13

3. Search and replace (if desired) a given substring

1. Create a string of text,
2. Concatenate two or more strings to form another string,

•

within a string,

4. Test for the identity of a string,,
5. Compute the length of a string and

6. Convert to numeric value from a string.

The creation of a string implies not only the ability to
construct a representation for a string, but also the

ability to retain the value of a string in a variable (or
memory cell location). The ability to create a string must
be present in any string handling system. In the algorithmic

notation, a string is expressed as any sequence of

characters enclosed in single quote marks. To provide a

transparent representation for strings, a single quote
contained within a string is represented by two single
quotes. Variables can be used to retain string values.

The empty or null string is denoted by either two single
quotes or the symbol NUL.

Concatenation is the most important operation on a string.
For easy and consistent. representation., we use + to denote
cancatenation in our algorithmic notation. String variables
as well as string constants can appear as operands.

When searching for a substring within a given string, there
must be some method of returning the position oft-he.
substring within the string, if the substring is found •. This

position is often called the cursor position, and it i~
given by an integer value indicating the character position
of the leftmost character of the subs~ring being sought. The

2-14

name of the function used in algorithmic notation to perform
this operation is INDEX. INDEX(PATTERN, SUBJECT, CURSOR)

occurence of the string,
returns (as a value) the cursor position of the leftmost

PATTERN, in the string SUBJECT

the first character to the last character. This process of
applying a PATTERN string to a SUBJECT string is commonly
called pattern matching. A wide varity of pattern matching

searching after the character given by the argument CURSOR.
If PATTERN does not occur in SUBJECT, the value .zero is
returned. The string associated with PATTERN is applied to
the SUBJECT string on a character by character basis from,

operation exist, and many of these are used in our

algorithmic notation.

The ability to extract a substring from a subject string is
another important function. In the algorithmic notation,
.rather than using special marker symbols , we use cursor
position plus substring length to isolate a substring. The
name given to this function is SUB with arguments SUBJECT,
CURSOR and LEN. Thus SUB.(SUBJECT, CURSOR, LEN) returns as a
value the substring SUBJECT that is specified by the
parameters CURSOR and LEN. The parameter CURSOR indicates
the starting cursor position of the substring, while LEN
specifies the length of the required substring plus the
cursor position. If LEN is not provided, then LEN is assumed
to be equel to LENGTH, where LENGTH is the length of the

argument SUBJECT. To complete a definition of SUB, some

additional cases must be handled:

2-15

1. If LEN <= 0 (regardless of CURSOR), then null string is

returned.
2. If CURSOR <=0 (regardless of LEN); then null string is

returned.
3. If CURSOR> LENGTH (regardless of LEN) ,then null string

is returned.
4. If LEN> LENGTH, then LEN is assumed to be LENGTH.

string.SUBJECT

CURSOR <= LENGTH andIf

of thehand end

not executed.is

Intermediate character positions which are assigned as a set
,

beyond the right

LEN> LENGTH, then characters are assigned to positions
assignment

The function SUB can also be used on the left hand side of
an assignment (i.e., in a replacement mode of operation). If
SUB (SUBJECT,CURSOR,LEN) appears on the left hand side of an
assignment statement and CURSOR <= zero 'or LEN <= zero. then

/of blank ca~racters.

comparison. The presence of any character (even a blank) is
always considered to be greater than the omission of a

character.

common relational symbols (such as >. <, <>, <= and =>).
Comparisons are made on a character by character basis
starting from the left most character of each string in the

Testing the identity of a string implies the existance of
some form of predicate which returns a true or false value
when a comparison is made between a subject string and a
known string. In the algorithmic notation we used all the

The length of a string is important for checking the
character string and in the formatting of the string. In the

2-16

algorithmic notation, the computation of the length of a
string is achieved by the function LENGHT. If SUBJECT is a
.character variable then LENGTH(SUBJECT) returns as a value,
the number of symbols are in the string represented by
SUBJECT. The value zero is returned if the SUBJECT is the

.empty string.

The value of a string is important for the conversion
of. a character string to a numeric constant. In the
algori.thmic notation, the computation of the value of string
is performed by the function VALUE with the SUBJECT as an
argument. In this function SUBJECT must be a valid character
set for a numeric constant. For invalid syntax for a number
within the SUBJECT string, a value of zero is returned.

,
/

Cl.clAPTER 3

SYSTEM ANALYSIS

3.1 INTRODUCTION

The purpose of the system to be developed is to manipulate
data on a large array system using simple but powerful
commands. These commands may be classified to particular
works or categories. These categories may be specified
according to the following purposes:

editing the information~,
formatting the informations,
displaying the informations,
calculating the formulas,
storing the informations,
printing the informations etc.

3.2 EXTERNAL SPECIFICATIONS

In order to develop the desired system the following
informations are important to consider for the requirement

analysis and specifications:

* Production of a two-dimensional rectangular grid
containing a large number of programmable

information cells.

3-2

* Interaction intelligently. with the user through
CRT display and hard-copy- printer.

* Interaction of powerful but easy-to-use system
commands.

* Calculation of powerful logical, conditional and
built-in mathematical functions.

3.2.1 NONCOMPUTATIONAL FUNCTIONS

In order to facilitate the prod4ction of a two
dimentional retangular grid containing a large number of
programmable information cells,we can consider the following
points.

The location of an information cell may be specified by...the
vertical and horizontal grid. Each cell can contain several
types of information such as:

(a) a cell content,
(b) a cell value,
(b) a display format, and
(c) a formula reference.

We can define the cell content as the basic data that a cell
contains. A cell may be empty, contain text, repeating text
or a formula. Initially all cell can be defined as empty-

cell.

3-3

A formula is a mathematical expression that calculates to a
numerical value. It consists of numerical constants, cell
references and function references connected by operators.
When a formula is entered into a cell, the value must be

calculated and displayed ..

The value of a cell is the result obtained by evaluating the
content of the cell. All cells can have a value. An empty
cell can be defined as zero numeric value. Similarly a text
string can have a num~',ericvalue of zero. A formula may have
a.number data, textual, not available or value.

We can propagate cell values and types. This means that the
cell value may be referenced by a formula in another cell.
It is remarkable that such reference is to the value of the
original cell, but 'not to its content (formula). So the cell
content can not be referenced by other cells, but it may be

r.eplicated or copied.
/

Since the cell content and the' cell value, both are

important for the user, so we must have a option to
designate the display format for the cell values or for the
cell contents. The format option can be displayed on the
status line for cells formatted at the entry level. Altering
the display format in no way alters the contents or the

value, only the way it is displayed on the console or
printed on the printer. By formatting a cell or range, one
may tell how the cell value to look on the screen. One can
specify the format for an individual cell, a group of cells,
rows, columns, or the whole cell system. A text string can
be set left justified or right justified. We can set the
default setting left justified for text and repeating

i
I
I

3-4

text and right justi£ied for numeric value. When the text
is longer than the column width and is left justified then
it displays the number of characters equal to the width of
the cell. A repeating text can display from the active cell
on word to the right until it reaches a non-empty cell or

end of the column range.

interacttoabilitythefacilitatetoorder

c6py printer, the following points are important to take
intelligently with the user through CRT display and hard-,
In

into consideration:

The operation of the system can be divided into three

distinct modes:

(i) Grid display mode,
(ii) Data entry mode, and

(iii) Command mode.'

I r I I
D••t •• entry K.-----l Grid di&pl ••y .------' Comm-nd

mode L:_. Jmode I.. "1 mo~e
~ J . L ----'II •...-------'

Figure-3.2
Oper••tion modes

Grid display mode is the initial mode of operation. So we
must have a option to move from this mode to data entry mode
or to command mode. Direct switching from data entry mode to

"... "

grid display mode. But control can not be switched between
the data entry mode and command mode without returning to
the grid display mode.

3-5

command mode or vice-versa, is not necessary because grid
display mode always shows the present nondition. Hence any
one can move to data entry mode or command mode from initial

/

In the grid display mode the active cell cursor is active
and the edit cursor is inactive. The active cell cursor can
be moved over the entire cell system to view the cell
contents or values. 'The status lines are for displaying the

followings:

The active cell status,
The global status, and
The edit cursor status.

In data entry mode data can be entered directly into the

data entry .line. A return key enters the data in the data

entry line into the active cell which is indicated by the

active cell cursor. In this mode a text, repeating text or a

formula can be entered into a particular cell. Any printable

character on the keyboard may be used as text. Printable
characters usually begins with the ASCII 32 to 127. A
repeating text also may contain any printable character.
When a cell in formatted to right justification then:the

text does not repeat.

3-6

A formula begin with any of the followings:

A numeric constant
A cell reference - cell coordinates
A mathematical function
A Boolean function

A formula entry must. be always checked whether the entry
constitutes a legitimate formula or not. When it is not, an
"ERROR!' message is.to be displayed at the status line.

In order to facilitate the interaction between a powerful
but easy-to-use sy.stem commands and the user, we can
consider the following points :,

Command mode must direct the system to perform an action
o~er the system. Before performing any action we must switch
to the command mode from the grid display mode. Then perform
the particular function according to the type of action. In
the command mode we can categorize the action as follows:

it

it

it

it

it

Recalculation of formulas,
Switch to a particular cell directly,
Switch display window,,.

Helping menu display, and
Performing all other functions.

From the select mode we can switch to perform a particular
action as above by inserting a particular code. These
code can be any ASCII character oode available. Thus
we can use a character code(!) for recalculation of all the
formulas. Similarly.a character code(=) can be used to

/

,
3-7

switch to a particular cell directly. A character code of
".\i" can be used to switch from active to alternate window
in the split screen mode. Another character code can be used
such as question(?) mark to switch to the helping menu and a
slash (/) character to switch to a meta command stage where
other command functions are available for further action.
Thus in this~case we can switch to one of the .five command
leve~by inserting one of the five command characters or by
pressing one of the five command keys in the grid display

select mode.

The recalcula t.ion command must be capable of performing

recalculation of the entire information cell system

interrelating with formulas which specify mathematical and
logical calculations.

Switching to a particular cell directly can be mentioned as
GOTO command. This command moves the active cell cursor
directly to the cell specified. The active cell cursor moves
to the cell specified if it is currently being displayed on
the console screen. If not within the display window , the
specified cell becomes the upper left cell of the dis~lay
window. The command without any cell specification shifts
the display window to put the.active cell in the upper left.

Helping menu di~play- shows all information related to the
system operation. Thus this feature ~elp user when he needs
help. The system explains on screen his current options,
then with a touch of any key, returns him to where he was to

oontinue his work.

/

3-8

The slash command performs all other functions. We can make
s,n option that the system prompt with the first letter of

/ each command, when the user enter the slash character. This
is very useful because a long list of commands is difficult
to remember. Now when entering the first letter the system
can immediately fill. the rest of the word on the command

line.

•By pressing the slash key, the following things may happen

immediately :

The bottom status line enters, command mode. The position
number of the edit cursor display first, the "/".character.

The middle status line changes from global display mode to
prompt mode. The slash command prompt may display the
following line,

Enter B,C,F,G,L.,M,P,Q,S,W,X,Z.

In command mode, the edit curs.or becomes active and the
active cell cursor inactive. Most commands have several
entry levels. When entering a command letter the prompt line
changes to the appropiate prompt. The system continues to
prompt through the sequence of options until execution of
the command.

If one mistakes to press the proper key he can back to the
previous level by pressing BACK SPACE key. Thus one can edit
commands, like data and formulas, with the in~line editor.

3-9

Ail possible slash commands are .hown below:

Blank
Copy
Format

Global
Load.
Move

Print
Quit
Save

Window
Xchange
Zap

/

3.2.2 COMPUTATIONAL FUNCTIONS

In order to evaluate the powerful logical, conditional and
built-in-mathematical functions and expressions. an
expression interpreter is needed to be developed. For the
development of the interpreter we must first specify the
functions available for the system and their type of works.

A function returns the value of a calculation. Two types of
function can be classified.

(I) Arithmetic
(2) Boolean .

.Each function has a name and one or more arguments. The
arguments specify the values that one wants to apply to the
function. An expression may be used to produce a value. The
expression is evaluated first and the value is used as the
,argument of the function.

,

3-10

ARITHMETIC FUNCTIONS

The following functions have the arguments which may consist

of a value, a range or a list.

Value- An expression evaluating to a numeric val'ue.
It may be integer or real.

Range- A group of cells specified by naming the top
leftmost cell and bottom rightmost cell,
seperated by a delimiter.

List- One or more ranges and values seperated by

delimiters.

ABS(value)
Return the absolute value of the given value.
• Equivalent to the value itself if positive

Equivalent to the value without its sign if negative.
This is the additive inverse.
Equivalent to zero if the expression is zero.

ACS(value)
Returns the radian angle of the cosine value.

ASN(value)
Returns the radian angle of the sine value.

ATN(value)
Returns the radian angle of the tangent value.

AVG(list)
Returns the average(mean) of the range given. The function
is equivalent to the SUM of the list divided by the eNT of

the list.

3-11

cOS(value)
Returns the cosine of the radian angle value given.

CNT (list)
.'~~eturns the number of the non-blank non-text cells described

by the range.
EXP(value)
This function raises the number eexponentially to the
value. The value of e is 2.7182818
INT(value)
Returns the integer of the value given, the value is not

rounded.
LNE(value)
Returns the natural log, log base e, of the value given.

LOG(value)
Returns the commom log, log base 10, of the value given.

MAX(list)
Retuns the maximum value of the range. Non numeric cells are

ignored.
MIN(list)
Returns the minimum value of the range. Non numeric cells

are ignored.
RND(value,place-value)
The RND function rounds a value to a specified number of

places.
SIN(value)
Returns the sine of the radian angle value given.

SQT(value)
Returns the square root of the value given.

SUM(list)
Returns the sum of the values in the range. Non numeric

cells are ignored.
TAN(value)
Returns the tangent of the radian angle value given.

3-12

/ BOOLEAN FUNCTIONS

A conditional or logical function consists of a relational
comparison connected by a logical operator. Complex logical
expressions may be formed by using parantheses. Here all the
logical expressions used as an argument can be replaced by a

,
cell reference which has a value of logical true(1) or
logical false(O).

IF(expression,v~lue1,value2)

If the logical expression is true, then the value1 is
entered into the active cell. 6therwise if the logical
expression is false, then value2. is entered. If an

expression is entered into an IF function, the expression
must evaluate properly to a logical value in order for the
IF function valid. Otherwise it will cause a formula error.

IF (expressionA,expressionB,expressionC)

Here expressionA is a logical expression and expressionB &
expressionC are the arithmetic expression. In this case if
expressionA is true then expressionB is evaluated and the
resul t is entered into the active cell. Otherwise if
expressionA is false then expressionC is evaluated and the
result is stored into the active cell.

AND(expression1,expression2)

A logical. AND function has a value of true(numerical value
of 1) if both the expressions are true ..If either expression

-

is false,

3-13

the AND. function is false (numerical value of
0). Here both the expressions must be logical expression
contai~ing logical or relational operators.

OR(expression1,expression2)

A logical OR function has a value of true if either
expression1 or expression2 is true. If both expressions are
false, -then OR function returns false. Here both the
expressions must be logical in nature i.e., containing
logical and relational operators only.

NOT(expression)

~his function returns the opposite logic values as the
/

expression' stated.
expression.

Here also expression must be logical

EQO(expression1,expression2)

A logical EQU function has a value of logical false if both
the expressions are in same, logic. Otherwise a value of
logical true is returned. Here also both the expression are
of logical type.

NEQ(expression1,expression2)

A logical NEQ function has a value of logical true if both
the expressions are in same logic. Otherwise a value of
logical false is returned. Here also both the expressions
are of logical type.

CHAPTER 4

SYSTEJVl DESIGN

,
/4.1 INTRODUCTION

The d~sig~ .of the cell system can take place after detail
investigation and analysis of the external specification of
the system. Thus the detailed design has been .carried out
after considerini all the system requirements and then
maintaining enough scope to incorporate the future changes
with minimum efforts. All the external specifications of the
system design has been considered directly from the result
of the require~ent analysis and the internal specification
has been considered later in the design stage. The linking
betwee.n the specificat~on and design has been maintained
frequently to minimize the ambiguities, contradiction, or
other deficiencies in the external specifiaation. But most
of the linking occured here because. of the "top-down'
approach that is used here in the system design.

Initially a solution to an original external specification
is designed as a collection of cooperating modules and each
module and its interfaces with its partners are documented
by internal specifications. Then the working of each module
has been designed. The whole process is repeated many times
since the modules at each level are designed as collections
of lower level modules.

•

4-2

4.2 STRUCTURE OF THE SYSTEM

The partitioning of a program into modules can be illustrat-
ed and documented in a diagram that shows relationships among

r.-----{~--I1-AI-N-I1~D-UL-E-l<~--.

I ---1'-----'
I I______ ~ , _,__ ~___ V

'ISCREEN N I I II1A IPULATORfE-~ D.~TA 1<-.->1EXPRE.INTERPRETERI
! I 1 J I I

Figure-4.3

Basic structure of the system

the modules. The basic structure of the system, as shown in

the figure-4. 3 is designed after considering all the
external specifications. The main module performs inter-
action 'with the supporting modules- when required. The
supporting modules perform specific ,work and according to
their nature of work they have the name as ;

1) Expression interpreter and
/.~) Screen manipulator.

(

4-3

In the expression interpreter a number of algorithms have
been developed for the evaluation of the expressions such as
arithmetic expressions with built-in functions,
expressions, co"nditional expressions etc.

logical

~n the sc~eenmanipulator a number of algorithms have been
developed for intelligent interaction with the user through
the CRT display screen.

In the main module, algorithms for the production of the

cell system, and the algorithms for the system command'.
functions have been defined. In the main module, an error
routine has also been described for trapping the errors and
for displaying the error messages,

The specifications for the interaction between the main
module and the other two subordinate modules have been
defined first, and then the detailed designed has been
carried out more or less independently. At the stage of the
detailed design it is convenient to outline algorithms using
an informal block-structured language that allows detailed

"description of action. In this system design data structures
are also part of the ,system and hence it is important .to
specify exactly when and how the supporting modules access

the data from the structure. The detailed of these

procedures have been discussed later in ,different

corresponding chapters.

/

C lelAP"r .EJ.~ 5

.5.1 INTRODUCTION

Expression strings' can be

represented, by a valid arithmetic expression or a logical
expression or a conditional expression ~r a mixed expression.
The ingredients are the identifiers, numbers, operators,

delimilers and reserved words.

in most programming languages.

The developed expression interpreter accepts a statement
string a~ ~n input and then analyses the string and finally
evaluates to a value. Expressions are similar to expressions

Two basic type of expressions are taken into consideration
for the development of the interpreter, they are:

1. Arithmetic expressions perform arithmetic operations on
the operands in the expression and

2. Boolean expressions perform logical and comparison
operations with boolean results.

ArithmeticExpressions

.The ingredients of the arithmetic expressions are the binary
,/operatdrs, unart op~rators and the identifiers and numbers

5-2

as the operands.

The precedence rule used here may be stated in the way:

When unaltered by parantheses, the order of arithmetic

operation performed within one expression is in descending

order of precedence.

The arithmetic operations are listed in descending order of

precedence as follows:

Symbol

+,-

Operation

Exponentiation (to the power of)
Multi~lication, division
Addition, substruction

For our system, as in most other high-level languages,
exponentiation operator is right associative and other

/<binary operators are left <associative.

As employed in the usual algebraic sense, parantheses may be
introduced to override the usual rules of precedence for a
given expression. In general, when we enclose a portion of
an expression in parentheses, we are in effect forming a
'subexpression'. The parantheses rule then may be stated as:
"Any subexpression must be evaluated before it can be
employed in the rest of the expression ". Within the
subexpression the same precedence rule and associative rule
has been applied. The use of nested parantheBes, suggesting
that one subexpression may form part of another

5-3

from the inside out, according to the same precedence and

associative rule.

subexpression. Each subexpression is evaluated in sequence,

Boolean Expressions

operations on boolean operands, as shown in the table-5.1

.TABLE 5.I BOOLEAN OPERATORS

X Y NOT (X) AND(X,Y) OR(X,Y) EQU(X,Y) NEQ(X,Y)

false false true false fal,se false true
false true true false true 'true .false
true false false. false true. true false
true true false true true., false true

The ingredient of the boolean expressions are the boolean
operator such as AND, OR, NOT and one or two relational
oferator and. operands. Here relational operator produces a
/boolean result. A boolean value is either a t~ue or a false.
In this system, the logical negation operator returns the
complement of a boolean operand. Here we define four binary

When operands of other types are compared by relational
operat.ors, the result of the comparison is a .value of type
boolean. A relational expression compares t~o arguments of
like type using one of the relational operators: = (equal),

< (less than), > (greater than), <= or .=«less than or

equal) ,
equal) •

>= or => (greater than or equal) and <> or >< (not

which are parenthesized

5-4

Functions

An important aspect of this system is the case with which
one may write expressions refering to functions of one or
more variables. 'The common mathematical functions such as
logarithm, exponential, sine, cosine, sqaure root etc., are
specialy easy to incorporate in arithmetic expressions. In
the computing sense, a function is typically a separate but
subordinate program designed to perform a specific task.It'
is given certain key information called the argument(s) of
the function. Certain commonly used functions are predefined
and automatically available in this system.

Implicit in the evaluation of these expressions is an
additional rule governing the order of computation which
states that function evaluation takes precedence over binary
arithmetic operations. As a consequence, the evaluation
process proceeds as follows:

First, argument expression,
/ subexpressions,

Second, the £unction, and
Third, all the other arithmetic operation.

5.2 THE STRUCTURE OF THE INTERPRETER

The developed interpreter takes as input a source statement'
and produces as output a sequence of meaningful codes. This
prooess is so oomplex that it is not reasonable, either from
a logical point of view or from an implementation point of
view, to consider the interpretation process as occuring in

/

,

5-5

one single step. For this reuson, the interpretation process
is'subdivided into a series of subproceses, called phases.
Each phase is the logically cohesive operations that takes
as input one representation of the source and produces as
output another representation.
The structural diagram of the designed interpreter is shown

below:

INPUT

SKIP SPACE5

B_EXPRESSION MODULE

B FUNCTION MODULE

L FUNGTION KEYSET

PRECEDENCE MODULE

A_EXPRESSION MODULE

~--,
i
I
I
I

I
I

DELI1'1ITEF: t(EY ?

OUTPUT
_If
/ 7

)-t

STRUCTURE OF THE EXPRESSION INTERPRETER
" "
..~.'.•.•"

5-6

(2, I) .
5.3 GRAMMATICAL J)gSCHIPTION

The grammatical description for the expression interpreter
language is given below:

< expression.> ::= <a_expre'ssion >
:<b expression>

'. - .
/

<a_expression> ::= <term>
:.<a_expre~sion><add/sub.op><term>

<term> ::= <form>
:<term><mult/div.op><form>

<form> ::= <word>
:<form><expont.op><word>

<word> ~:= <primary>
:<u_operator> <primary>

<primary> ::= <identifier>
:<numeric>
:<b_function>
:<1 function>
:«><a_expression><»

"<identifier> ::=<name><digit>

<name> ::= <letter>
:<name><letter>
:<name><digit>

<letter) ::= A:B:C:n:E:F:G:H:rlJ:K:L:M:N:01P:Q:R1S:T:U:v;w:x:y:z
<numeric> ::=<digit_string>

:<decimal><digit_string>
:<digit_string><decimal><digit_string>
:<digit_string><e_field><digit_string>
:<digit_string><e~field><digit_string>

<digit_string> ::= <digit>
:<digit_string><digit>

<digit>

./

5-7

<add/sub.op> ::= -:+
<mult/div.op> ::= *:1
<expont.op> ::= •
<u_operator> ::= +:-

<decimal>

.<b_expression>

<1 identifier>

E:E+:E-

<l_identifier>«><logical_term><l>

IF:NOT:OR:AND:EQU:NEQ

<logical_term> ..- <logical-part>
:<logical_term><,><logical part> .
.:<logical_term> <,><a_expression>.

<logical-part> .::= <a_expression> <relation> <a_expression>

(relation) ::= =:<:>:<>:<=:>=

<b_function> ::= <b identifier>«~<argument><»

<b_identifier> ::= MAX:MIN:SUM:AVa:CNT

<argument>

<range>

<range>
:<argument><;><identifier>
:<argument><;><range>

<identifier><:><identifier>

<I_function> ::= <lib_identifier>«><a_expression><»

<lib_identif~er>

/

< (>

< l>

< ; >

< : >

. '-..-

/

5-8

Algorithm••.EXPR TER

The input parameter of this algorithm is the expression
string, the gr~mmatical description of the expression is
already defined. The algorithms belong to this interpreter
are REBK where blanks ~re removed from the source string ,
B_EXPRESSION, where boolean expressions are interpreted"
B_FUNCTION where built-in functions are interpreted
L_FUNCTION where library functions are recognized , BRAKET
where subexpressions are recognized '. A_EXPRESSION where
arithmetic expressions are interpreted, LIB_EVA where
library functions are evaluated etc.

The input parameter of this algorithm is the SOURCE string.
This SOURCE expression string is first passed to the
algorithm REBK where blank characters, (if any) within the
string are removed and this is done because 'the lexical
analyzer can not recognize any blank character. Then the
string is scanned, looking for a boolean function keyword.
If there have any boolean function keyword then the string
is treated as a boolean expression string. Hence it passes
to the boolean expression interpreter for evaluation to a
value. If no boolean function keyword i~ found then,the
source string is scanned, looking for a built-in function
keyword.If there have any function reference then the source
string is passed to the built-in function algorithm where
each function is evaluated to a value according to the
type of the function referenced and stored in temporary
variables. Then the string is scanned, searching for a
library function keyword. If there have any library function

5-9

reference then the string is passed to the library function
algorithm where function keys are set' to proper Codes
according to the type of the functions available. Then the
string passes to the subexpression recognition algorithm
after identifying any parantheses. Then the subexpression or
the expression is passed to the arithmetic expression
algorithm. Finally by proper key checking and setting it
branches to the various parts of the algorithm or exit from
the algorithm.

1.[Initialize the logic function & precedence delimiter key]
Set PKEY (-- LKEY (---false;

2. [Remove the blanks from the source string if any]
Call REBK (SOURCE) ;

/ 3.[Call the boolean expression procedure]
Call B_EXPRESSION(SOURCE);

4. [Call the buil t-in function procedure]
Call B_FUNCTION(SOURCE);

5. [Call the library function procedure]
Call L_FUNCTION(SOURCE);

6.[Check the precedence function & set the key]
If INDEX(LPR,SOURCE,l) <> -0 then
call BRAKET(SOURCE); and goto step-7;
otherwise set PKEY (-- true;

7.[Call the arithmetic expression procedure]
Call A_EXPRESSION (DSTRING) ;

8.[Check the library function key]
If FSWITCH = true then call LIB_EVA;

/

5-10

9.[Check the precedence delimiter key 1
If PKEY = false then repeat from step-6;

IO.[Check the logic function key 1
If LKEY= true then call B_EXPRESSION(RESULT);
IfLKEY = true then repeat from step-4;

ll.[Finished 1
Exi t.

5.4ARITHMETIO EXPRESSION ALGORITHMS

This algorithm takes a source statem~nt string as input and
produces a numeric value as the output. This process is
partitioned into a series of subprocesses called phases as
shown in the figure-5.4a. A phase is a logically cohesive
operation that takes as input one representation of the
source and produces as output another representation.

,

I Error
~Ihandling
I

I
I
If

I Evaluation of the expression.1•.. ...•.•
I
~

Output

Figure-5.4
Structural blook diagram of the interpreter

The first phase, .

5-11

, .called the lexical analysis, or scann1ng
seperates characters of the source string into groups that
logically belong together, these groups are called tokens.
The usual tokens are identifiers, operator symbols, numeric
constan~ reserved words etc. The output of the lexical
analyzer is a stream of tokens, which is passed to the next
phase, the syntax ~irected translation or intermediate code
generation. This phase decides the hierarchical structure of
the incoming token stream by identifying which parts of the
token stream should be grouped together. For examlpe, the
expression A/B*C has two possible interpretation rule:

a) divide A by B and then multiply by C (as in FORTRAN); or
b) multiply B by C and then use the result to divide.A (as

in APL)

VALUE VALUE
1:\ 1:\

1 \ 1 \

1 \ 1 . ,
\,

VALUE * C A 1 VALUE
1:\ 1:\

1 \ 1 \

1 \ 1 \

A 1 B B * C,

(i) (ii)

Figure-5.4b Parse trees

5-12

These rules form the internal specification of the interpre-
ter. On a logical level. the output of the syntax analyzer is
some representation of a parse tree. It then transforms this
parse tree into an intermediate language representation of
the source string. "Three address code" can be used for the
intermediate code generation. Consider, A = B op C, as a
statement of the three address code, where A, Band Care
operands and op is a binary operator. The parse tree in fig-
5.4b (i) might be conv.erted into three address code sequence:

Tl = A / B
T2 = Tl * C

•

for various temporary quantities such as the value of B*C in
the source language expression A+B*C.
Value table generation is the phase where all identifier
tokens are replaced by their numerical values. Thus the
output of this phase, a stream of constant numbers and
operator tokens arranged in a notation meaningful for the
interpreter.
Finally, the evaluation of the expression string,phase
reduces these stream by considering three address code
sequence and return a single value which is the value of the

where, Tl and T2 are names of temporary variables.
Thus the usual intermediate text. introduces symbols to stand

/". '

expression.
One bfthe most ~mportant function of an interpreter is the
detection and reporting of errors in the source string or
execution time. The error message identifies the exact type
arid position of the error .•
The words or lexical components for the input string are
identifiers, numeric constants, positive and negative unary
operators, and all the binary operators. The syntax of these
lexical classes is given by the mathematical description:

6-13

<artih_expression> ::= <term>:<arith_expression><add/sub.op><term>

<term> ::= <form>
:<term><mult/div.op><form>

<form> ::= <word>
:<form><expont.op><word>

<word> ::= <primary>
:<u_operator> <primary>

,<primary> ::= <identifier>
:'<numeric>

<identifier> ::= <name><digit>

<name> ::= <letter>
:<name> <letter>
:<name><digit>

<letter) ::= A1B:Cln:E:F:O:H:I:J:K:L:M:N.:01P:Q:R:S:T:U:V:W:X
:y:z

<numeric> ::= <digit string>
:<decimal digit string>
:<digit string><decimal><digit string>
:<numeric><e_field><digit string>

<digit string> ::= <digit>
:<digit string><digit>

<digit>

<add/~ub.o~> ::= ~:+
<mult/div.op> ::= *:/
'<expont.op> .. - ..•.

: : = +:-
.. -.. -

/

<decimal> .. - ".

5-14

Algorithm A_EXPRESSION,
The input parameter of this algorithm is the source string
assigned as SOURCE. This SOURCE string is analyzed by the
.algorithm named SCAN and produces a token table named TABLE.
This TABLE is passed to the next phase defined by an
algorithm SYNTAX where these tokens are arranged in a post-
fix sequence which are stored in the same table named TABLE.
This TABLE is passed to the next phase defined byan
algorithm named VTABLE where a table containing value(s)
and operator(s) corresponding to the input table is
generated. This table is also named as TABLE which finally
passed to the next phase defined by an algorithm named as
EVALUATE where the table is condensed to a single value and
stored in a variable named RESULT.

1. f Call the lexical analyzer 1
Call SCAN(SOURCE);

2. f Call the syntax analyzer 1
Call SYNTAX(TABLE) ;

3. f Call the value table generator 1
, Call VTABLE(TABLE) ;

4. f Call evaluation procedure 1
Call EVATUATE(TABLE);

5. f Finished 1
Exit.

5-15

"/5.4.1 LEXICAL ANALYSIS

Source string is the ,input of the lexical analyzer or
scanner and output is the stream of meaning'ful characters in
group which are called tokens. These tokens may contain
identifiers called ID-tokens, numeric constants 'called
NUM-tokens or operators called OP-tokens. The following
block diagram shows the functional concept of a scanner. In
goes a stream of characters and out comes a sequence of
character groups as tokens. For example, if the

source 5tring I----.--~l__5CANNER I1 .:>- ToJtens
I

Figure-5.4.la

source string is AI+B2*20, then the output tokens are AI, +,
B2, * ~nd 20, where Al & B2 are ID-tokens, + & * are
OP-tokens and 20 is the NUM-tokens. The functional block
diagram of the lexical analyzer or scanner is shown below:

Input
I

W

Ithe toJ,ens and store in I'

for further processing I
I

r---'------
, Isolates
I an',tableL ~

I
'I Identify the cell identifiers,
L~umer~~ constant and operators

I
V

I
~

Output

Figure-5.4.1b

Block diagram of the lexical analyzer or scanner

.-'

5-16

AlgorithmSCAN

This algorithm leads ~ procedure which scans the expression
string by operator searching method. The searching pointer
scans from left to right of the source language. After
identifying an operator it checks the operator whether it is
an unary operator or not. If it is not an unary operator
then the logic checks the operator whether it belongs to an
exponent token or not. If it is not then the operator is
treated as a binary operator and the left to this operator
is to be c'onsidered as one' of the two operands of the iden-
tified operator token. In the case of an unary operator and
exponent token the scanning pointer is advanced to right by

I !

\ '

\
I

one character and the searching process for the next

/

operator is cotinued and the cycle is repeated after the
occurence of an operator. In this way the tokens are
isolated and stored in a table until the scanning is

finished.

The input parameter for this algorithm is the SOURCE. SOURCE
is the expression string containing constant number(s) or
cell identifier(s) or arithmetic operator(s)tokens.OPERATOR
is a string which contains all the arithmetic operators such
as +. _, *. / and' . TEMPLATE is the temporary buffer
where the input string is placed for scanning process.
TABLE is an array where tokens are to be stored in a
sequence as they are in the expression string. i and j ar&
the character and the table index respectively.

5-17

1. [Ini tialize]
Set i (-- j (-- 1;

2. [Assign the input string]
Set TEMPLATE (-- SOURCE;

3. '[Assign the 1ength of the buffer string]
Set k (-- LENGTH(TEMPLATE);

'4. [Check the input character]
If SUB(TEMPLATE,j,l) = OPERATOR then goto step~6;

5. [Check the character pointer wi th the length]
If j = k then goto step-l0;
otherwise (increment the character poin ter)
Set j (-- j+l and repea.t step-4;

6. [Check the index for the unary operator]
If i = 1 then set j (-- 2; and repeat step-4;

7. [Check for exponent tokens]
If SUB(TEMPLATE,j-l, 1) = 'E' then set j (-- j+l; and
'repeat step-4;

8. [Isolate the tokens]
Set TABLE[i] (-- SUB(TEMPLATE,I,j-l);
Set TABLE[i+l] (-- SUB(TEMPLATE,j,I);
Set TEMPLATE (-- SUB(TEMPLATE,j+l,k-j);

9. [Increment & reset the pointers]
Set i (-- i+2;
Set j (-- 1; and repeat from step-3;

10. [

/

11. [

12. [

Isolate the final token and set the token range]
Set TABLE[i] (-- TEMPLATE;
Set TOKENLEN (-- i;

Check the validity of tokens]
If TABLE[i] = IDTOKEN then goto step-12;'
otherwise if TABLE[i] = NUMTOKEN then goto step-12;
otherwise if TABLE[i] = OPTOKEN then goto step-12;
other print error. message and goto step-14;

Check and reset the index]
If i = 1 then gotostep-13;
otherwise set i (-- i-I; and repeat step-II;

13. [Check the unity of token and set the key]
If TOKENLEN = 1 then set SVALUE (-- TRUE;
otherwise set SVALUE (-- FALSE;

14. [Finish]
Exit.

•
5-18

\

5.4.2 SYNTAX DIRECTED TRANSLATION
,

/The input of this phase is the stream of tokens outputted
from the lexical analyzer and the output is the stream of
tokens arranged according to postfix notation scheme. The
ordinary (infix) way of writing the sum of a and b is with
the operator at th~ middle, a+b

Lexie",l

tokens

Post-fix
"I SYNTAX TRANSLATOR >------'~•..••1 ---' not",tion

Figure-5.4.2a .

The postfix or polish postfix notation for the same
expression replaces the operator at the right end, as ab+
In general, if el and e2 are any postfix expression, and a
is any binary oper~tor, the result of applying B to the
values denoted by el and e2 is indicated in postfix notation

by eleZa.

Postfix notation 'can be generalized to k-ary operators for
any k >= I. If k-ary operator B is applied to postfix
expression el,eZ,e3, ,.ek, then the result is denoted by
e1eZe3 ...ekB. If we know the arity of each operator, then we
can uniquely decipher any postfix expression by scanning it
from either end. For example, consider the postfix string
.ab+c*. The righthand * says that there are two arguments to
its left. Since the next to rightmost symbol is c, a simple
operand, we know c' must be the second operand of *.
Continuing to the left, we encounter the operator +. We now
know the subexpression ending in + makes up the first
operand of *. Continuing in this way, we deduce that ab+c*

is "parsed' as (((a,b)+),c)*.

5-19

AlgorithmSYNTAX

This algorithm_produces a postfix notation token stream by
processing the lexical tokens. The method used here to
generate a postfix token stream is the swapping between an
operator and an operand identified by a pointer scanning the
token stream from left to right. The rules followed here can
be defined by the following table:

TABLE 5.4.2 PRECEDENCE AND ASSOCIATIVITY OF OPERATORS

1st 0 p e r a t 0 r

2nd + / *
0 > > -> > >
p
e + > > > > >
r
a / < < > > >
t
0 * < < > > >
r

'< < < < <

> -- swapping between the 1st compared operator and the
next available operand.

< -- swapping between the 2nd compared operator and the
next available operand.

Given a stream of tokens which is outputted from the
algorithm SCAN. These are nbthing but the cell identifier

tokens, arittmetic operator tokens, constant value tokens

5-20

The length of the array is limited by the number of tokens
TOKENLEN. Here OPERATOR is a string containing all the
arithmetic operators in sequence.

etc. These are stored into a buffer array named SYNA.

1. [Initialize 1
Set i (__ 2 ; j (-- 1; and k'(-- 0;

2~ [Exchange the elements 1
SYNA[i-kl (---> SYNA[i+1];

3. [Increme~t the array index and check the range 1
Set i (-- i+ 1;'

/ If i > RANGE then goto step-7 ;

4. [Check the operator 1
Set OP (-- INDEX (SYNA[i],OPERATOR,l);
IfOP = 0 then repeat step-3;

5. [Set the operator buffer]
Set OPBUFF[j] (-- OP; and j (-- j+1;
If j=2 then repeat step-4;
otherwise set j (-- 1;

6. [Check the.precedence rule of operators.1
If OPBUFF[2] = 1 or 2 then '
set k (-- P and repeat step-2;
otherwise
if OPBUFF[2] = 5 then
set k (-- 1; and repeat step-2;
otherwise
if OPBUFF[l] = 1 or 2 then
set k (-- 0 and repeat step-2;
otherwise set k (-- 0 and repeat step-2;

7. [Finish]
Exi to

5.4.3 VALUE TABLE GENERATION

The input of this phase is the stream of tokens arranged
according to postfix notation scheme outceme from the
intermediate code generator and o'utput is a stream of

5-21

numeric constants only. In this phase all ID tokens and NUM
tokens are replaced by their corresponding numeric constant
values. Thus the elements outcame from this phase consisting
of only values. And their sequence is maintained according
to postfix notation with the help of an index. The following
figure illustrates the functional concept of ~ this phase.

token"

5tre~m of------~1 VALUE TABLE GENERATOR

Figure-5.4.3a

value
____ ..,;;o~

table

For example if the input stream has the form B2. 20. *. Al &
+ and if ID tokens have the values as B2=5.0 & Al=lO.O then
the 'output table of this phase has the form 5.0. 20 & 10.0.
,The functional block diagram of the value table generation
phase is given 'below:

_---t------
Identi:fy the tol'ens and

:find the values from
the data structure

I
'i'

Constract a table
consisting of values

with an index similar to
the t,oken table

I
V

. Figure-5.4.3b

Block diagram of the value table generator

5-22

AlgorithmVTABLE

Given a stream of tokens consisting qf identifier tokens,
numeric tokens and operator t6ken~. Sequence of these tokens
are identical as these are outcome from the syntax directed
translator. These tokens are stored in a table named TABLE

with a pointer i. Another table named VTABLE is used here
for storing 'the token values with the same index as they are
in TABLE. RANGE is the number represented by the range of
the tokens. TEMPLATE is the temporary buffer where tokens
are checked for further operation.

1. [Ini tialize]
Set i (-- 1;

2. [Load the buffer]
Set TEMPLATE (-- TABLE Til;

/ j. [Check the tokens]
If TEMPLATE = NUMTOKEN then
set VTABLE[i] (-- VALUE(TEMPLATE); and goto step-8;
otherwise, (Check for operators)
if TEMPLATE = OPTOKEN then go,to step-8;
otherwise, (Check temporary storage values)
if TEMPLATE = TSTOKEN then
set VTABLE[i] (-- VALUE(TS); and goto step-8;

4.[Check for unary operator]
If SUB (TEMPLATE, 1,1) = OPTOKEN then goto step-5;
otherwise, (Extract the,cell values)
set [ROW, COLUMN] (-- CELLID(TEMPLATE);
VTABLE[i] (-- VALUE(CELL[ROW,COLUMN]); and
goto step-8;

5. [Isolate .the absoluate value]
Set TEMPLATE (-- SUB(TEMPLATE,2,LENGTH(TEMPLATE));

6. [Check the tokens for unary operation]
If TEMPLATE = NUMTOKEN then
set AVALUE (-- VALUE(TEMPLATE);
otherwise, (Check for temporary storage value)
if TEMPLAT-E = TSTOKEN then set AVALUE (-- TS;
otherwise; (Extract the cell value)
set [ROW, COLUMN] (-- CELLID(TEMPLATE); and
AVALUE (-- VALUE (CELL (ROW, COLUMN]);

5-23

7. [Evaluate' the values]
If OPTOKEN= PLUS then set VTABLE[i] (-- AVALUE;
otherwise, set VTABLE[i] (:..- -(AVALUE);

8. [Increment and check the token index]
Set i(-- i+l; and
if i (RANGE then repeat from step-2;

9. [Finish]
Exi t.

5.4.4 EVALUATION OF THE EXPRESSION

.Having generated postfix notations for an expression, we can
evaluate it easily using a stack, implemented in sbftware.
The general strategy is to scan the postfix code sequence
from left to right. We push each operand onto the stack when
we see it. If we encounter a k-ary operator, its first (left
most) argument will ,be (k-1) position below the top on th~
stack, its last argument will be at the top on the stack,,
/and in general, its ith argument is (k-i) position below.the

-,

top. It is then easy to apply the operator to the top k
values on'the stack. These values are popped and the result
of applying the k-ary operator is pushed onto the stack.

Consider the p~stfix expression A2B3*C5+. Suppose the

identifiers A2, B3 and C5 have the values 5, 3 and 7

respectively.
actions:

To evaluate 53*7+ we perform the following

1. Stack the value 5
2. Stack the value 3
3. Multiply the two topmost elements, pop them off

the stack, and then stack the result, 15

5-24

4. Stack the value 7
5. Add the two topmost elements, pop them off the

stack, and then stack the result, 22

The value on the top of the stack at the end (here 22) is
the value of the expression.

Algorithm EVALUATE

Given the values in a table named VTABLE and the tokens in
another table named TABLE arranged according to the postfix
notation scheme. An index i identifies the elements in the
TABLE. Both tables have the same range, RANGE. OPERATOR is
the string containing all the binary operators in sequence.
k represent another index for the operator string.

1, (Initialize]
Set i (-- 1;

/

2. [Search for the operator]
Set k (-- INDEX (TABLE[i],OPERATOR,1);
If k (> a then goto step-4;
otherwise, (Increment the token index)
Set i (-- i+1;

3. [Check the index limit]
If i (= RANGE then goto step-2;
otherwise print error message; and
goto step-8 ;

4.' [Perform the operation between the operands]
Set VTABLE[i-2] (-- VTABLE[i-2] OP{k) VTABLE[i-1];

,.,
"i', ."

'/

/

5-25

5. [Shift the elements next to the operands]
Set TABLE[i-l] (-- TABLE[i+I]; and

VTABLE[i-l] (-- VTABLE[i+I];

6. [Increment and check the index]
Set i (-- i+l;
If i (RANGE then repeat from step-5;

7. [Set the new range and check with unity]
Set RANGE (-- (RANGE - 2);
If RANGE> I then repeat from step-I;

8. [Finish]
,Exi t.

5.5 BOOLEAN EXPRESSION ALGORITHMS

The interpretation of a boolean expression consists of the
~ollowing algorithms:

Boole~n expression scanning or lexioal analysis
Value table generation ,for the tokens
Evaluation of the value table

The grammatical description of the language for the boolean
expression is given below:

"

<b_expression> ::=<lg_identifier>«><logical_term><»

<lg_identifier> ::= IF:NOT:OR:AND:EQU:NEQ

<logical_term> ::= <l6gicai-part>
:<logical_term><, ><logical-part>
:<logical_term><,><a_expression>

~logical-part> ::= <a_expression><relation><a_expression>

<relation> ::= <:>:=:<>:>=:<=

5-26

AlgorithmB EXPRESSION

The input parameter of this algorithm is the expression
string assigned as SOURCE. Initially this source string is
scanned from left to right, looking for any boolean keyword
already defined in a table named LFUN. If no keyword is
found in the string then,the algorithm exits without any.,
evaluation. If it is a logical expression then the source
string is passed through the procedure LCLEX where tokens
are isolated and stored in a table named TABLE. Next this
table is passed to the next phase called LCVTABLE where a
value. table is generated. Finally evaluation of the
expression occurs in the phase named LCEVALUATE.

1. [Initialize the function keyword table inde~ J
Set i <~- 1;

2. [Check for any boolean keyword J
If INDEX(LFUN{iJ,SOURCE,l) <> 0 then
set LTYPE'<-- i and goto step-3;
otherwise set i <-- i+1 and repeat step-2 until i>6;
gotostep-7;

3. [Identify the argument token of the function J
Set j <-- INDEX(LPR,SOURCE,l); and
SOUREC <-- SUB (SOURCE, j+1, LENGTH(SOURCE)-l);

4. [Call the lexical analyzer J
Call LCLEX (SOURCE) ;

5. [Call the value table generator J
Call LCVTABLE(TABLE) ;

6. t Call the evaluation procedure J
Call LCEVALUATE(TABLE) ;

7. [Finished J
Exi t.

5-27

AlgorithmLCLEX

This algorithm analyzes the lexical classes of the logical
and conditional expression argument string. A class of

-symbol called delimiters must be handled by this algorithm,
and yet their presence is not passed on to the next phase.
As described" before according to the grammer of' the
expression language, the argument string handled by this
phase consists of at least one relational expression follow-
ed by none or another relational expression or arithmetic
expres~ions. Each of these argument classes, called them as

/(comma). Each relational expression of two
tokens,, must be delimi ted by an ASCII character of

consists

II II,

arithmetic expressions as operands and a relational, operator
as described in the grammer of the language. This algorithm
identifies the lexical slasses and generates a table
containing tokens with an index for identifying the tokens.

An argument string is the SOURCE. A delimiter character
named COM is used to isolate the lexical classes of the
argument string. Another table containing all the possible
relational operators is defined as ROP with an index i. Here
nine possible combinations of the relational operators are
taken into consideration. They are = ,< , > , < > , > < , < =, = <. > = and

=). Here it' is important to mention that double byte

operators are at the top of the table and single byte

operators are at the bottom. This is done because one byte

operators are part of the two byte operators. During search-
ing process they may mislead the operator type. The analyzed
tokens are stored in a table named TABLE with an index j.
The maximum token range is denoted by LCLIMIT and a
temporary variable named BUFFR is used for checking and

processing the tokens.
','
,

.~
l

5-28
/

1.[Initialize]
Set i (-- 0; and j (-- 1;

2.[Check the source string]
If SOURCE = blank then goto step-7;

3.'[Check the argument delimi ter and load the buffer]
Set k (--INDEX(COM, SOURCE, 1);
If k = 0 then set BUFFR (-- SOURCE; and
SOURCE (-- blank and goto step-5 ;

4.[Load the buffer and update the source]
Set BUFFR (-- SUB(SOURCE, 1, k-1);
SOURCE (-- SUB(SOURCE, k+1, LENGTH(SOURCE));

5.[Check for the relational operator and isolate tokens]
Set i (-- i+1; and k (-- INDEX(ROP[i], BUFFR, 1);
If k (> 0 then set TABLE[j] (-- SUB(BUFFR, 1,k-1);
TABLE[j+1] (-- ROP[il;
TABLE[j+2](--SUB(BUFFR,k+LENGTH(ROP[i])+1,LENGTH(BUFFR));
j (-- j+3 and repeat from step-2;
otherwise repeat step-5 while i (= 8;

6.{ Extraction of token with no relational operator]
SetTABLE[j] (-- BUFFER; j (-- j+1; and
repeat from step-2;

7.[Set the index limit]
Set LCLIMIT(-- j-1;

8. [finished 1
Exl.t.

AlgorithmLCVTABLE

This algorithm analyzes the tokens and recursively evaluates
to values. In the case of rel~tional"operator tokens, a code
is generated to the corresponding element of the table. Thus
the generated table contains values and the code of the
operators. During the evaluation process it uses a procedure

" to evaluate the expression string which is considered as a
token ~n this phase.

5-29

Given a table named TABLE generated by the previous lexical
phase with an index i. EXPR_TER is the name of' the
procedure which interprets the valid expression tokens.
BUFFER is the temporary variable used for processing tokens.
k is the setting for the, index displ~cement depending on the
type of the function. RANGE is the valid token number
generated by the previous phase.

1. [Initialize]
Set i (-- 1; k (-- 2; and IKEY (-- false;'

2. [Load the buffer for evaluation of the expression]
Set BUFFER (-- TABLE[i];
Call EXPR_TER(BUFFER);
Set VTABLE[i] (-- BUFFER;

3., [Increment the index and check for processing]
Set i (-- i+k;
If i=3 then repeat step-2;
otherwise if TABLE[i] = blank then goto step-6;

4. [Check and set the index]
If IKEY = false then repeat step-2;
otherwise set IKEY (-- false; and i (-- 4;

5. [Check for the range of tokens and set the displacement]
If RANGE = 6 then set K (-- 2;
otherwise set k (-- 1;
repeat step-2;

/

6. [Finished]
Exit

AlgorithmLCEVALUATE

\

This algorithm defines a procedure which analyzes the
logical condition given and returns a boolean result or a
value. According to the logical operator given it ~ana[yies~
the relational argument(s) and returns a boolean result. In
the case of the conditional operator i t ,al:iifl:Y~S~>the

L

relational argument an!! .evaluate the

5-30

corresponding
expression. Th~ logic followed here first chec~the argument
and with the result checks the operator and proceeds.
according to the following table:

1st
condition: IF ., NOT AND OR EQU NEQ,

TRUE , > > < > , < <, . ,

FALSE > > > < < <

> exit
< 2nd condition ch.eck

Here OPERANDI :afi~OPERAND2 are two buffer variables where
two operands of a given relational operator a',.el placed and
check the logic with the condition given. If the result is
true then the true logic table is checked and if not then
the false logic table is checked. Finally the evaluated
value is stored in the RESULT. VTABLE is the value table
generated from the previous algorithm. LTYPE is the function
code given. LP and LG are. keys seti~ for the recognition of
logical keyword and the conditional keyword.

1. [Initialize}
Set i (-- 1;.

3.[Load the operator and operand token for logic testing)
/ Set OPERANDI (-- VTABLE[i); OPERAND2 (--VTABLE[i+2);

and condition (-- VTABLE[i+I);

3.[Check the condition over the operands}
If (OPERANDI condition OPERAND2)=true then goto step-5;

5-31

4.[Perform the operation for false logic condition]
If LTYPE = 1 then set RESULT (-- VTABLE[i+4]; and exit;
otherwise if LTYPE = 2 then set RESULT (~- 1; and exit;
otherwise if LTYPE = 3 or 5 then

if LP=false then set LP(--true;i(--4; & repeat step-2;
otherwise if LG=true then set RESULT (-- 1;

otherwise set RESULT (~- 0; and exit; ,
otherwise if LTYPE = 4 then set RESULT (-- 0; and exit;
otherwise ifLTYPE = 6 then
if LP=false then set LP(--true;i(-- 4; & repeat step-2;
otherwise if LG=true then set RESULT (-- 0;

otherwise set RESULT (-- 1; and exit;
otherwise print. error message; and exit;

5.[Perform the operation for true logic condition]
If LTYPE=l then set RESULT(-- VTABLE[i+3]; and exit;
otherwise if LTYPE=2 then set RESULT(-- 0; and exit;
otherwise if LTYPE=3then set RESULT(~-1; and exit;
otherwise if LTYPE=4 or 6 then
if LP=false then set LP(-LG(-true;i(--4; & repeat step-2;
otherwise if LG=true then set RESULT(-- 1;

otherwise set RESULT(--O; and exit;
.otherwise if LTYPE=5 then
if LP=false then set LP(-LG(-true;i(--4; & repeat step-2;
otherwise if LG=true then set RESULT(-- 0;.

otherwise set RESULT(-- 1; and exit;

6.[Print error message]
Exi t.

5.6 BUILT-IN FUNCTION ALGORITHMS

The interpretation process of the built-in function argument
string consists of the following algorithms:

tokensValue table generation for the
.C

Evaluation of the value table

argument string scanning or lexical analysis
#

#

The grammatical description of the language for the built-in
function argument string is given below:
/

5-32

<b_function> ::= <b identifier>«}<argument><»

<b_identifier>::= MAX:MIN:SUM:AVG:CNT

<argument> ::= <range)
:<argument><; ><range)
:<argument><;><identifier>

<range> <identifier><:><identifier>

<:> .. -

/

<;> : .-
<(> : . -
<)> : .-

AlgorithmB_FUNCTION

The input parameter of this algorithm is the expression
string assigned as SOURCE. Initially this source string is
scanned from left to right, looking for any function keyword
already defined in a table named BFUN. If no keyword is
matched then the algorithm exits without any evaluation. If
any function matches then the type of function is identified
and corresponding 'code is generated. The argument string is
isolated for processing. BTYPE is the function type code.
ASTR is the argument string. In the source string the
recognized function keyword with the argument is dissolved
,and a temporary variable name is replaced,the value of which
is the evaluated value of the corresponding function. The
argument string is passed to the lexical analyzer BLEX where
a token table is produced. This table is then passed to the
next phase called the value table generator BVTABLE. This
recognized function is finally evaluated in the next phase

5-33

called BEVALUATE. This process is repeated again for another
function (if any) with the reduced source expression. Finally
the algorithm exits if no more function is referenced in the
reduced expression string.

1. [Initialize the function keyword table index}
Set i (-- 1; and 1 (-- LENGTH(SOURCE);

2. [Check for any built-in function keJ'word }
Set j (~- INDEX(BFUN[i},SOURCE,l);
If j (> 0 then set BTYPE (-- i and goto step-3;
otherwise set i (-- it1; and repeat step-2 until i>5;
goto step-8;

3. [Identify the argument string of the function)
Set k1 (-- INDEX(LPR,SOURCE,j);

k2 (-- INDEX(RPR,SOURCE,k1);
ASTR (-- SUB(SOURCE,k1t1,k2-1); and

SOURCE (-- SUB(SOURCE,1,k1-1)tTS[m}tSUB(SOURCE,k2t1,1);

4. [Call the lexical analyzer}
Call BLEX(ASTR);

5, [Call the value table generator}
Call BVTABEL (TABDE) ;

6. [Call the evaluation procedure}
Call BEVALUATE(TABDE);

7. [Check for the existance of.another keyword}
Repeat from step-1;

8. [Finished}
Exit.

AlgorithmBLEX

This algorithm analyzes the argument string of the built-in
fupction class. The lexical classes of the argument as the
input string consist of list of identifiers or list~of
ranges or list of identifier(s),and range(s). The delimiter
character for each indentifier or range is the ASCII

5-34

Each range defines the lower(semicolon) .

The latter table is sudivided into two table-

II. "•

one for the lower boundary definition while the other for
the upper boundary definition of the range. Each table has
an index to indicate the token. These three token tables
define ..g all the lexical classes of the argument string.

range list.

boundary and the upper boundary of a list or block delimited
by an ASCII character of ":" (colon) as described in the
grammer of this type. The method of identifying the token
depends on the delimiter character. In this algorithm two
types of token tables are generated. One type defines the
individual identifier list while the other type defines the

characteT

The C:-:) argument string is the SOURCE. Identifier or range
delimiter witrun the argument string is denoted by SLON and
the boundary delimiter within the range is denoted by CLON.
The table for the individual identifier tokens is given as
ICT with an index i. The tables for the range tokens are
named as LBT and HBT. LBT for the lower boundary token list
while HBT for the upper boundary token list. Both: the tables
have the same index of j because each range must have both

the boundary tokens. ILIMIT is the count of individual
identifier tokens and RLIMIT is the count of range tokens.
BUFFER is the temporary variable used to process the

tokens.

1. [Ini tialize 1
Set i (-- j (-- 0;

2. [Check the source input]If SOURCE; blank then goto step-7

3. [Check for delimiter]
Set k (-- INDEX (SCLON, SOURCE, 1);
If k ; 0 then (Isolate the token)

/ Set BUFFER (-- SOURCE; and
SOURCE (-- blank and goto step-5j

5-35

/ 4. [Isolate the token]
Set BUFFER (-- SUB(SOURCE, 1, k); and
SOURCE (--SUB(SOURCE, k, LENGTH(SOURCE»;

5. [Check for list argument]
Set k (-- INDEX(COLON, BUFFER, 1);
If k = 0 then (store the individual cell token)
Set i (-- i+1 ,'ICT[i] (-- BUFFER; and
repeat from step-2

6. [Store the boundary token]
Set j (:--j+1 ;
LBT[j] (-~ SUB(BUFFER, 1, k-1);
HBT[J] (-- SUB(BUFFER, k+1 ,LENGTH(BUFFER)); and
repeat fron step-2;

7. [Set the index limits]
Set ILIMIT (-- i; and BLIMIT (-- j;

8. [Finished]
Exi t.

Algorithm BVTABLE

This algorithm generates a table after analyzing the lexical
tokens outcqme from the previous phase. In the analysis of

, ,
the tokens the same three token tables are used. The
analysis process irtvolvs identifying the cells and extract
values from the data structure of the cell system accoding
to the token type. This algorithm uses procedures for the
identification of cells and extraction of values. Finally a

r

table consisting of values is generated for further

processing.

Given the three tabl~as indicated in the previous lexical
analysis algorithm with two indexes i and j. Here a,

procedure named CELLID is called for the identification of
cells from the identifier token. VALUE is another procedure

5-36

to find the corresponding value from the data structure of
the cell system. COUNT and RANGE both are the maximum count
of the value table. The generated table is named as VTABLE

with an index i.

1. [InitiaLize]
Set i (~- j (-- 0;

2. [Check the cell token table range 1
If ILIMIT = 0 then goto step-4;

3. r Pr<;>ductionof cell value for individual cell token]
Repeat step-3 while j (= ILIMIT;
Set [ROW, COLUMN] (-- CELLID(ICT[j]);,
VTABLE[J] (-- VALUE (CELL[ROW,COLUMN]); and
j (-- j+1 ;

4. [Check the boundary token table range]
If BLIMIT = 0 then set RANGE (-- ILIMIT; and exit.

5. [Recognition of boundary cells]
Set [RL, CL] (-- CELLID(LBT[i]); and
[RH, CH] (-- CELLID(HBT[i]);

6. [Production of cell values for the list token]
Set k1 (-- RL; and k2 (-- CL ;
If RL = RH then goto step-8;
otherwise if CL = CH then goto step-9;

7. [Production of table for a list]
Set i(-- 1+1 ; VTABLE[i] (-- VALUE (CELL[k1,k2]);
k2 (-- k2+1; and'
repeat step-7 while k2 (= CH;
otherwise set k2 (-- CL ; k1 (-- k1+1; and
repeat step-7 while k1 (= RH;
otherwise goto step-10;

8. { Production of table for a column list]
Set i (__ 1+1 ; VTABLE[i] (-- VALUE(CELL[k1,k2]);
k2 (-- k2+1; and
repeat step-8 whilek2 (= CH;
otherwise goto step-10;

9. [Production of table for a row list]
Set i <~- i+1; VTABLE{il (-- VALUE (CELL{k1,k2]);
k1 <~- k1+1; and
repeat step-9 while k1 (= RH;

string. Any space i.e., blank within the string is removed

/

5-37

10. [Set the range of the table
Set COUNT (-- RANGE (-- i;

11. [Finished
Exit.

AlgorithmBEVALUATE

The input parameter of this algorithm is the 'function code
and the value table generated from the previous algorithm.
According to the function code it branches to the correspon-
ing routine and evaluation takes place over the value table
and finally returns a value. This value is stored ,in the
RESULT and exit from the algorithm.

1. [Check the function code and call the routines]
If BTYPE=1 then set RESULT(-- MAXIMUM(TABLE); and exit.
otherwise
ifBTYPE=2 then set RESULT(-- MINIMUM(TABLE); and exit.
otherwise
if BTYPE=3 then set RESULT(-- SUMMATiON(TABLE); and exit.
otherwise
if BTYPE=4 then set RESULT(-- COUNT(TABLE); and exit.

2. [print error message]
Print error message and exit.

5.7 OTHER ALGORITHMS

ALgorithm REBK

'The input parameter of this algorithm is a valid character
/

,5-38

by this algorithm. Here the input string is searched from
left to right for a blank space, if found then the blank
character is removed from the string i.e., the length of the
string is reduced by a character. If there are no blank
space in the input string then the string is returned as it
is. Here the input string is assigned as SOURCE and the
output string is'REBK as the name of the algorithm. i is the
searching index used in this algorithm and j is the position
of a blank space returned by the function INDEX. And j is

used to minimize the searching time.

2. [Set the length and search the string for the blank 1
Set 1 (__ LENGTH(S6URCE); and
j (__ INDEX (CHR(32), SOURCE, i);
If j = 0 then goto step-6;

1. [Initialize the searching index 1
Set i (-- 1 ;

3. [Remove the blank space 1Set REBK (__ SUB(SOURCE,1,j-1)+SUB(SOURCE,j+1,l);

4. [Advance the searching index and repea t 'the loop 1
Set i (__ j; and repeat from step-2;

5. [Finished 1
Exi t.

AlgorithmBRAKET

is isolated and in the mother expression this

subexpression is replaced by a temporary variable. The
precedence of parantheses follows the normal arithmetic
rule. Inside-right subexpressions are isolated first. Here a

convension,

The input parameter of this algorithm is the SOURCE. In this
algorithm anY subexpression delimited by parantheses, as

5-39.

pointer first scans the source string from left to right
searching fora left parantheses. When a parantheses is
identified then the pointer moves to right and scans for the

next parantheses (if any) .If no parantheses is identified
,

/th.en the pointer is seV~ after the last parantheses
"

occurance. Now the pointer scans the string to right

searching for a right parantheses. When a right parantheses

is recognized then the substring is isolated as. a

PTABLE is the functionright parantheses respectively.

subexpression and the substring is replaced by a temporary
variable. In this w~y all subexpressions can be replaced by
repeating the process. Here LPR and RPR represent left and

keyword position table with an index v. FSWITCH is the key
representing whether the corresponding subexpression is the
argument of a function or a simple expression. DSTRING is
the substring representing the subexpression. Here m is the
index of the temporary variable.

1. [Initialize the character pointer and set the length]
Set j (-- 1; and LEN (-- LENGTH(SOURCE);

2. [Search the delimiter character and advance the pointer]
Set i (-- INDEX(LPR, SOURCE, j);
If i (> 0 then set j (~- i+l; and repeat step-2;

3. [Check for the library function key]
If (j-l) = PTABLE[v] then set FSWITCH (-- true;

4. [Set the pointer and search the delimiter character]
Set k (-- j and 1 (-- INDEX (RPR, SOURCE,k);
If 1 = 0 then print error message and exit.
otherwise set k (--(1-1);

5. [Set the delimited string and the source string]
Set DSTRING (-- SUB(SOURCE,j,k); and
SOURCE (__ SUB(SOURCE,I,j-2)+TS[m]+SUB(SOURCE,k+l,LEN);

6. [Finished]
Exi t.

5-40

Algorithm LlB,..1FUN

The input parameter of this algorithm is the SOURCE
expression string. Here any library function is identified
in the expression and a table is generated with the function

code. Another table is generated simultaneously which

During the generation of the tables,the source string

represents the position of the corresponding function within

LPR is the string representing the leftthree characters.

function keywords are deleted from the source string. Here
FSTR is the string 'containing all the library function
keywords in a sequence. All keywords are of fixed length of

parantheses. Left parantheses is searched first because all
function has an argument delimited by parantheses. FTABLE is

code table and PTABLE isfunctiongenerated
corresponding function position table. Both the table usel~
an index of i. TEST is the function position returned by the
INDEX function during the searching df keywords. RANGE is
the number.of functions i.e., the length of the tables.

the

1. [Initialize the table index and the search pointer 1
Set i (--1 and j (-- 3;

,
/2. [Search the delimiter character 1

Set k (-'--INDEX (LPR, SOURCE, j);
If k = 0 then goto step-6;
If k (4 then set j (-- k+1; and repeat step-2;

3. [Search for a function keyword 1
Set TEST (-- INDEX(SUB(SOURCE,k-3,k-1),FSTR,1);
If TEST = 0 then set j (-- k+1; and repeat step-2;

4. [Set the function code and position 1
Set FTABLE{il (-- ((TEST-l)/3)+1;and PTABLE{il (-- k-3;

5. { Eliminate the keyword and reset the indexes J
Set SOURCE (-- SUB(SOURCE,1,k-4)+SUB(SOURCE,kfl,1);
i (__ i+1; j (-- k-2; and repeat step-2; I

5-41
6. "[Set number of. ireYf'ords in the table J

Set RANGE<-- i-1;

7. [Finished J
Exi t.

AlgorithmCELLID

/ The input parameter of this algorithm is the cell identifier
string. This algorithm resolves the identifier into the
corresponding cell address. The address of a cell means its
row value and the column value. A cell can be identified
uniquely by a row and a column. An identifier is a language
containing bne or two letter(s) with one or more digits
appended. Thus the length of an identifier never exceeds five
after removing a'll the blank (s) , within the identifier.
Sy this representation we can represent a cell of maximum

initially identifier string is packed by
range of row 999 and column (26*26). In this

I .remov1ng
algorithm

all the
blank(s) within the string. Then the first character is
checked whether it is an alphabet or not. II not then an
error .message is issued. "If the first character is a letter
then its numeric equivalent is calculated. Then the second
character is checked, if it is a letter then its numeric
equivalent is calculated otherwise it is treated as a digit
and along with the rest of the string is converted to its
numeric equvalent. This digit(s) equivalent nu~ber
represents the row address and the letter(s) equivalent
number represents the column address. Now finally these
numbers are checked by the valid range given. If they are
within the range ,then no problem but it they are out of the
range then an error message is issued. Here LETTER ii a
string oontaining all the alphabetio ohatBoters (upper

/

ca,?e).
CLIMIT

5-42

REBK is the blank removal procedure. RLIMIT and
are the maximum roWS and the columns defined

initially.

1.[Removes all blanks and set the length of the source 1
Set SOURCE (-- REBK(SOURCE) and 1 (-- LENGTH (SOURCE) ;

2.[Check for the valid length of the idetifier 1
If 1 > 5 then print error message and exit.

3.[Check the first character to match the syntax 1
Set i (-- INDEX(SUB(SOURCE,l,l),LETTER,l);
If i = a then print error message and exit.

4.[Check.the second character for letter or digit 1
Set j (-- INDEX (SUB (SOURCE, 2, 1) ,LETTER, 1);
If j = a then goto step-6;

5.[Cbnvert the cell into its address for double letter id.l
Set ROW (-- (26*i+j); and

COLUMN (-- VALUE (SUB(SOURCE,2,1));
goto step-7;

6.[Check the address with the limits given 1
If ROW (>RLIMIT or (I) then print error message & exit.
If COLUMN (>CLIMIT or (I) then print error message & exit.

8.[Finished 1
Exi t.

o
I CHAPTERc;;,:;6.----- - - Q 0

_SCREEN IVlANIPULATION
/

6.1 INTRODUCTION

The whole system uses computer memory which consists of
cells organised into rectanguler grid. Each cell has a name
for identification. Thus the location of a cell within the
grid defines its cell address. In order to reference a cell.
its name can be mentioned with the column letter first and
then the row number. The entire grid system is far too large
to display on terminal screen at one time. Thus the screen
is used _ as a display window, as shown in the figure-6.1a,
that can slide over the entire grid system but showing a
portion at a time.

R
o

'"S
1t

Columns -----)
__ I I_fi_fi_.__l .. 1 1----I ---- ---1---- I--

I I I I I I I I
--I --------------- ----1-----1 --'--'-- I--

-_-1--1 1------1------1---1-
_1__ 1 DISPLAY 1-----1---1---1--
_1 1 WINDOW 1------1---1---1--
-1--1 1----1----1--1--_I __ L .J I__ I__ I-

I I I I__ 1 1 1 1 1 1---- ---1----1--
I I I I I I I I__ I_ --I I I I I-GRID SYSTEM--I--

-!---I--~I----!-_I-_I---,--I-
I 1 I I I 1 I I

--1---1---1----1-------1--_-1---1----1--
I I - I I 1 1 I I__ I 1 .1_. 1 1 1 1 1 __
I -1 I I - I I I

Figure-6.1a The display window and the grid~system

6-2

! B ' , C , , D E! ••• ' , , , .• .• .• .• .•
I1 1 :
I
I 2:
I 3:
I WINDOW#lI 4: .

I 34: G H I , , J K
I

' ,
I 35:1
36: \l,'INDOW#2I1>111

I
I
I1
I 01>
I
!,

/

Figur-e-G .1b Horizont~l split s.creen

I
I ••• B M
1
I 1: ,.,,.,,
I

~~.
I

,., , 23:~.
I 3: 24:
I 4: WINDOW#l 25:
I1
I
! 17: 38:
1
I 18: 39:
I 19: 40:
!1>111
I
I
I

. I 01>!
I
!

N

WINDOW#2

..

Figur-e-G.lc Ver-tical split scr-een

? Help

..E

ERROR

, ,. .D, ,, ,C. ,• •B

M"_""'M ._. • ••••_. _

, ,
••

TR For-m=
Width= Last C/R

PI

c,... ,

1:,.,.~.
-------------_._~--_.----------_._----_._--------
1

I
I

\
I
1

III 18:
19:

I>Bl
L01> -

Figur-e-G .1.d

Cc,lumn & Ro,,"'bor-der-, ."ct.ive cell cur-sor- and Stat.us lines

6-3

The left border, called the row
contains numbers and delimiters as shown in the

figure-6. 1d. It can be made possible to turn the border off
O,r on as desired. When the border is set'"'" to off, then it
will not be displayed on the screen and as ~ell as not

printed on the printer.

border,
letters and delimiters.

The screen can be subdivided to show different portions of
the grid system as shown in the figure-6.1b and 6.1c. The
screen border identifies the currently displayed columns and
rows. The top border, called the column border, contains

identifies thepointer, called the active cell cursor,
active cell. Only one cell is made active at a time as shown
in the figure-6.1d and it always displays because only one
cell must active to accept data at one time and it must be
identified. The cell cursor can be set to move automatically
to an adjacent cell or to remain in the current cell upon
data entry. When set to move automatically, it moves in the
direction of its previous move to the adjacent cell, which
then becomes the active cell. When set to remain stationary,
the cursor does not move upon data entry.

The active cell is the cell affected by the data entry at
the present time. In order to identify the active cell, a

The status lines show the active cell status, global status

and data entry or command status. As shown in the figure-
6.1d, the bottom three lines display the current status.

Active cell status
Global status or prompt
Data entry or command

!",

6-4

The active cell status and global status or prompt lines
display only the information related to the active cell and
the system status. On the data entry o~ command line; data
'or command can be entered into the system. Fo,r the data

entry function, a cursor, palled the edit corsor, always

displays on this 1ine.

Active cell status line displays information about' the

active cell.
this.

A sample active cell status line looks like

> Al TR Formula= CI*IO+D2 ERROR

> , cursor direction. The first character indicates the
current direction'of motion of the cell cursor. In order to.
enter data into the active cell, carrage return character
must be encountered in the edit line. At the same time the
cell cursor moves to the adjacent cell in the direction

indicated.
cursor move.

This direction is always that of the previous

AI, active cell address. The coordinates of the active
cell display. Commands that reference current column or
current row use the column/row containing this ~ell.

TR, cell format. This shows the active cell display
format:.. TR,represents the right justified text.

Form=,' data type of the active cell. The system recognizes

three types of data.

6-5

VALUE -- Numeric value,
TEXT -- Text string, and
FORMULA -- Formula entry.

Cl*10+D2, cell content. This shows the literal content of
the .ctive cell. The content is of the same type as
indicated in the cell format.

ERROR, error message. If an error occurs, an error message
displays on the right end of this line.

The global status or prompt is the middle status line. The
global status line contains the following informations:

Width, the column width of the active cell. Initially a
defaul t column width is set~',' for each cell. This. defaul t
setting can be changed by the user as desired.

Last Column/Row; the intersection of the last column and-
row that contains data. It is thec6mposite6f the last
column and last row that have a nonblank cell.

~ ? Help, this character shows for pressing in order to
/

switch to the helping menu.

The data entry or command line contains the edit cursor. The
number at the left side indicates the current edit cursor
position. The data entry or command line serves a number of
functions.The character entered into position 1 on this line

determines its mode.

6-6

.befor~c~n L~ ~rI1~rircd into

Data entry mode enters
cell. In this mode three

data directly into the active
types of data as indicated
the active cell. The mode can

/

be set to one of the three options plus a repeating text
entry option with the help of the four function keys.

ii. Command mode performs specific function according to
command character entered in seiect mode. The command
characters are as follows:

_, the goto command moves the cursor directly into the

designated cell,

!~ the recalculate command forces a recalculati6n of the
entire system,

:, the switch window command position the cell cursor in
,the alternate window on a split screen,

/, selects the slash commands, and

?, the help command switch to the help menu.

6.2 STRUCTURE OF THE MANiPULATOR

The system operates in three distinct modes:

Grid display mode
Data entry mode and
Command mode

6-7

[---
y

DlITlIENTRY MODE 1~ ~~J

DISPL.'\Y MODE

t
I

I
I

I
it

COMMlIND MODE

Figure 6.1. Operation modes

Grid display mode is the initial mode of operation. So we
must have a option to move from this mode to data entry mode
or to command mode. Direct switching from data entry mode to
.command mode is not necessary because grid display mode,
always shows the working area of the cell system.

In grid display mode the cell cursor is active and th~ edit
cursor is inactive. At this mode it is possible to move over
the system with the help of the cursor control keys. At this
mode the window can be slided over the grid system.

In the data entry mode edit cursor is active in the data
entry line. A carrage return enters the data from the data
entry line into the active cell. During the entry of data in
the edit line, data can be edited with the help of the back
space key. In the data entry mode data can be edited with-
the help of the back space key, insert key, delete key etc ..,
and the editing procedure is the same as the in-line editor.
In the command mode the system is directed to perform a

/'particular action. With the help of one of the five command
keys we oan switch to a particular action. In this mode
command can alsokedited with the help of the back space key.

l- __

/

,

6-8

1 .

l..:---.------------1 . ,
~.-----------'l----.-----~-----, 1 -1 . 1 ,
I Row border oetting I I
L 1--' ' J
_________ L .__ ~ 1
~lumn border &etti~-=-J I

L..-----. ------ --l
~ 1

~==E=n=t=i=r=e==w=.'=i~n_d_o=w==&=c=-"_-_n=n=i=n=g== I
. .J__.______ !

L__.__c_u_r._&_o_r_&_e_t_t_~_'n_g__ ~ I
IIV 1L__ St"tu&&etting I I
, ',- -- -- -- -- -- -- -- -1"'-------------------1 I. r . 'V.________ I I

_---L; -=se~~oe,11 I II
I' 1 1 1 1 'I ,I D"t" ent~ . LCommMd entry I I ~"t" type set I I r

1- ---,- I II
! --_---~! 'I ~---~! I

1 ~ J,__ __ ---1 '

r..-,---t-,---~ r-.---------- I
1 l'l",in 1 L1curs.or dir~ction I I'L. ---J .

1 , I
L-------T,--- ..-' I

I I
0/ 'r , I

L... . c~rsc'r control ~ I

L ~~l
Figure-6.2

6.3 SCREEN MANIPULATOR ALGORITHMS

/

6-9

Algorithm IJISPLA Y.

This algorithm defines a procedure which uses a number of
algoritho;s described. later in this chapter. These algorithms
belong to various functions of the screen manipulator. ROW
defines the row border display of the window, COLUMN defines
the column border display of the window , WINDOW defines the
scanning of all the dells within the window boundary, CURSOR
defines the deletion of the preViO\IS active cell cursor and
position t~e current actiVe cell cursor, STATUS shows the
various status information on the status lines, SELECT

i,identifies the moq.e to be set. ~ Q and sets the corresponding
~J

code, MAIN.is the data processing algorithm, INDATA accepts
the data, COMMAND defines the command mode, DATA_TYPE_SET
defines the data type entry mode, CURSOR_DIR_SET defines the
direction of the active cursor and CURSOR_CONTROL sets all
the setting keys to perform the active cell cursor movement.
In this algorithm SELKEY is the key to set the operation
mode and SKEY is the key for setting to switch to various
algorithmic steps. BKEY is the border on or off key. CCKEY
selects switching to CURSOR_CONTROL algorithm.

1.[Initialize the parameters 1
Set IR< __IC< __AR< __AC< __PAR< __PAC< __l;

CR< __PCR< __2;CC<--PCC<~-5; RT<--62;
RSTART<--2;REND<--20;CSTART<--5; and CEND<--8l;

2.'[Print the row and column border for initial setting 1
Call ROW(CSTART,RSATAT,REND,IR); and
Call COLUMN(RSTART,CSTART,CEND,IC); and goto step-5;

3. [Scan the window with the row border 1
If BKEY = true then call ROW(CSTART,RSTART,REND,IR); and
Call lVINDOW(CSTART, CEND, RSTART, REND, Ie, IR);.

/

Ii

/

6-10

4.[Scan the window with the column border]
If BKEY = true then call COLUMN(CSTART,RSTART,REND,IR);
and Ca11WINDOW(CSTART, CEND, RSTART, REND, IC, IR);

5.[Erase the previous cursor and print the active cursor]
Call CURSOR(PCR,PCC,PAC,PAR,CR,CC,AR,AC);

6. f, Print the status lines]
Call STATUS;

7. [Receive the select code and check the code]

Call SELECT;
If SELKEY - 1 then call INDATA and goto step-8;

otherwise
if SELKEY = 2 then call COMMAND 'and goto step-8;

otherwise
if BELKEY = 3 then call DATA TYPE_SET and repeat step-7;

-
otherwise
if SELKEY = 4 then call CURSOR_DIR_SET and goto step-9;

I

8.1 Branch to the data processing procedure]
If (INSTRING=NUL) and (COMKEY=fa1se) then repea t step-7
otherwise call MAIN

9.[Set the cursor control key if necessary]
If CCKEY = true then call CURSOR_CONTROL;
If SKEY = 1 then repeat from step-3;
otherwise if SKEY = 2 then repeat from step~4;
otherwise if SKEY = 3 then repeat from step-5;

AlgorithmJUSTIFICATION

, Jinput parameters are INSTRING, SPAN, JUSKEY. Given aThe
character string INSTRING which contains any valid printable
characterS. This input string is to be justified either right
or left depending on the value of a key JUSKEY. If the
JUSKEY has 'a value of logical true then it will be right
justified string and if JUSKEY has a value of logical false
-then it will be a left justified string. SPAN is the
length of the justified string. If,the source string is
smaller in length than the SPAN then blank characters are
inserted to maintain the fixed length of th~ justified

/

6-11

string. If the source is longer than the S.PAN then extra
characters are truncated to fix the justified string.

1. [Set the length of the source strin~ 1
Set 1 (-- LENGTH(INSTRING);

2. [Check and set for smaller source string case 1
If 1 (SPAN then

/ if JUSKEY = true then
set JUSTIFICATION (-- SPACE(SPAN-l)+INSTRING;
otherwis-e
set JUSTIFICATION (-- INSTRING+SPACE(SPAN-l);
goto step-5;

3. [Check and set for longer source string case 1
If 1 >. SPAN then

if JUSKEY = false then
set JUSTIFICATION (-- SUB(INSTRING,1-SPAN+1,1);
otherwise
set JUSTIFICATION (-- SUB(INSTRING,l,SPAN);
goto step-5;

4. [Set for equal source string 1
Set JUSTIFICATION (--.INSTRING;

5.[Finished 1
Exi to

Algorithm ROW

This algorithm ~efines a procedure for displaying the row
border of the display window. The format of the border

consists of numbers followed by a border delimiter character
to define the cells of each row. An index defines the
position of the border to be displayed on the screen. The
border length also must be defined to display the window
border size. A pointer for the row number corresponding to a
cell within the cell system must be defined. This pointer
represents the lower boundary of the row number. This
algorithm produces a border for each row corresponding to
the window cell and displays on the screen. This process is

j 6-12 t

repeated for a number of rowS until the row number exceeds

the given border length .

.Given a, column position COLUMN before which the row border
is to be. printed. ROWSTART and ROWEND are the window
boundaries for the row numbers i.e., they represent the
boundaries of the index i between where the row numbers are
to be printed. ROW is the pointer of the number table which
indicates the lower boundary of the roW ~umbe~. Here JUSTI-
FICATION is a procedure to use to justify the given string
to right for a given length. PRINT is another procedure to-
print a string to a given position of the screen. RSTRING
is the string variable used to.define the roW border for a

single row.

1. [Ini tialize J
Set i (__ ROWSTART; j (-- ROW; and k (-- (COLUMN-4);

2. [Set the foreground and background colors J

3. [Set the row string for each row J
Set RSTRING (-- JUSTIFICATION(STR(J),3,1)+CHR(d):

4. [Print the row string J
PRINT (i,k,RSTRING):

5. [Increment the pointers and check for limits J
/ 'Set i (-- i+l; and j (-- j+l;

If i (= ROWEND then repeat from step-3;

6. [Reset the foreground and background colors J

7. [Finished J
Exi t.

AlgorithmCOLUMN

This algorithm defines a procedure for displaying the column
'border of the display window. The format of the border

consists of letters and delimiter characters to define the

~
1

6-,13

cells and the boundary of the cell widths respectively. An
index defines the position of the column border to be
displayed on the screen. The span of the border i.e., the
upper boundary and the lower boundary of the window is
defined by two, indexes. A pointer for the column, letter
correspo~ding to a cell to be displayed is also defined.
This pointer represents the lower boundary of the column
letter. This algorithm produces a string containing column
letters with delimiter characters setted according to the
width of the corresponding cells and finally displayed on
the screen.

1.[Initialize J
Set j (-- LP; k (-- WIDTH(j); CSPAN (-- (CEND-CSTART);
and CBORDER (-- SPACE(4);

2.[Check 'the column number and set the border J
If j(27 then set FIRST (--CHR(32);l(--j and goto step-3;
otherwise if J(53 then
set FIRST (-- CHR(65); 1 (-- (j-26); and goto step-3;
otherwise ifj(79 then
set FIRST (-- CHR(66); 1 (-- (j-52); and goto step-3;
otherwise prfnt error message and exit

3.[Set the width and check for odd or even J
Set w (-~ WIDTH(j);
If MOD(w,2) = ° then
set w (-- (w-l); and NAME (-- CHR(32)+FIRST;
otherwise set NAME (-- FIRST;

4. [Set the blank character number for each cell J
Set m (-- INTEGER(w*O.5)-1;

5.[Set the column border string J
,SiitCBORDER (-- CBORDER+CHR(d) +SPACE(m-l) +NAME+CHR(64+l)

+SPACE(m)+CHR(d);

6.[Increment the letter pointer & set the width & check J
Set j ,(-- j+l; and k (-- k+WIDTH(j);
If k (= CSPAN then repeat from step-2;

6-14

7.[Set the foreground and the background colors J

8.[Print the border string J
PRINT (ROW_l,COLUMN-4,JUSTIFICATION(CBORDER,CSPAN+4,0));

9.[Reset the foreground and the background colors J

10.(,Finished J
Exi t.

AlgorithmWINDOW

This algorithm defines a
window with a set of cell

procedure
values or

for scanning the whole
-0
contents depending on

the display format of the correspo~ding cells. This scanning
process over the window requires two sets of pointers. One
set indicates the position of the window on the screen while
the other indicates the set of cells to be displayed on the

window. It is important to note that the column length used
in this algorithm must coincide with that of the row border.
Similarly the row lenght must coincide with the column
border. This three procedures must be synchronously active
on the display screen. This algorithm directly communicates
with the data structure of the cell system for informations
such as the cell contents or values or the cell formats etc.
In this algorithm actually the window is scanned row by row.
All informations corresponding to a single row are arranged
in a string and the arrangement depends on the display
formats of the corresponding cells. This row scanning

procedure is repeated until the compared row pointer exceeds
the gi~en row limit.

Given a set of arguments RSTART, REND, CSTART, CEND, C and
R. RSTART and REND defines the boundary limits of the window
column where CSTART and CEND defines the boundary limits of

6-15

/

the window row. Both are defined in terms of the cell
numbers. C and R gives the address of the top-left corner
cell of the window. Here WIDTH in a table containing the
information related to the width of the cells with an index
c ..FMT[r,c) and CELL[r,c] repres~nt the format and content
i~formation in the data structure corresponding to a cell
having a row address of r and column address of c .

•

1. [Initialize 1
Set i (__ RSTART; CSPAN (-- (CEND-CSTART); and r(-- R;

2. [Set the foreground and the background colors]

3. [Set the column pointer, cell width and check with span]
Set c (-- C; k (-- WIDTH(}); and RSTR (-- NULL;
If k > CSPAN then print error message and exit.

4. [Check the format and set the string]
If SIGN(FMT[r,c])= NEGATIVE then
set } (-- true otherwise set) (-- false
set RSTR(__RSTR+JUSTIFICATION(CELL[r,c],WIDTH(c),});

5. { Increment the-column pointer & reset the span & check]
Set c (-- c+1 and k (-- k+WIDTH(c)
If k (= CSPAN then repeat step-4;

6. [Print the row string on the screen]
PRINT (i,CSTART,JUSTIFICATION(RSTR,CSPAN,O));

7. [Reset the row pointer and check the limi t]
.Set r (-- r+1; and i (-- i+1;
'If i (= REND the repeat from step-3;

8. [Reset _the.foreground and the background colors]

9. [Finished]
Exi t.

Algorithm CURSOR

The input parameters are RPl,CPl,NPCl,LPCl,RPZ,CPZ,NPCZ and
LPCZ. The parameters .RPl and CPl represent the present

6-16

corsor position and NPCl and LPCl for t~e cell identi-
fication of the active cell. Similarly RP2 and CP2 represent
the previous cursor position and NPC2 and LPC2 represent
the previous cell identification. This algorithm defines a
procedure for erasing the previous cursor but showing the
cell content and printing the present cursor with the active
c~ll content if any. Here FMT represenUa table to give the
information of the corresponding cell whether it is right
justified or left justified. A positive sign gives the
information of left justification and a negative sign gives
the information of right justification. A procedure named
JUSTIFICATION as described before is used to justify the

text given.

1.[Check for the justification format of the prevjous cell]
If SIGN(FMT[NPC2,LPC2])=NEGATIvEthen set k (-~ true;
otherwise set k (-- false;

2.[Set the previous cursor string]
Set CURSOR(__JUSTIFICATION(CELL[NPC2,LPC2],WIDTH[LPC2],k);

3.[Erase the previous cursor]
PRINT (RP2,CP2, CURSOR);

4.[Check for the justification format of the active cell]
If SIGN(FMT[NPC1,LPCl)=NEGATIVE then set k (-- true;
otherwise set k (-- false;

5.[Set the active cursor]
Set CURSOR(__JUSTIFICATION(CELL[NPC1,LPC1],WIDTH[LPC1],k);

6.[Set the background color and print the cursor]
PRINT (RP1,CP1,CURSOR);

7.[Reset the background color and exit]
,Exi t.

/

,.

6-17
AlgorithmSELECT

This algorithm identifies the input code and enables the
corresppnding mode by setting keys. Here INKEY is a notation
used to indicate a function to receive the input code. INKEY
waits for keystroke and when a key responses,it receives the
corresponding key code and it executes only for a single
time. CODE is the received code. Now he~e COMSTR is the
command code listing, where command codes are stored in a
sequence. Here the COMSTR is defined in such a way that each
code occupies three character length:Thus .if there have five
codes then the length of the CmlSTR is 15. If any command
60de returned in. the buffer CODE then it must match with
anyone of the COMSTR codes. If the code is a command code
then a key called SELKEY is set to a numeric value (say 2)
which is the key code of command mode and hence no further
inquery is required. Itis important to note that the above
code testing is much more efficient than the repetative
testing of each code with the returned code. When exit from
this algorithm the code position is set to COMCODE in the
case of command mode set. Similarly cursor cont~ol codes are
stored in a string named CURSTR and the Dade position is
set to CURCODE if any cursor control code matches. SELKEY

is set" to a numeric value of 4 (say). Also for the case
of data type code, codes are stored.in the string DTYSTR and
the code position is stored in DTYCODE. SELKEY is set ~o

3. Now if the returned code does not match with any of the

three of code then it is assumed. to be data ,
fortypes a

the cell entry and hence checks the data for valid r~~~.,.
~'U{~t

ASCII code, range between 32 to 127. If the code IS valid
then SELKEY is set to 1 and exit from the algorithm.

i

6-18

1. [Print the edit line code and set the edit cursor]
PRINT (.23,2,STRINGIOO)+CHR(62));

2. [Recei ve the.input command]
Set CODE <-- INKEY;

3. [Check the code with the cursor control code string]
Set CURCODE <-- INDEX(STRING(CODE),CURSTR,I);
If CURCODE <> 0 then set SELKEY <~- 4 and goto step-7;

4. [.Check the code data type code string]
Set DTYCODE <-- INDEX(STRING(CODE),DTYSTR,I);
If DTYCODE <> 0 then set SELKEY <-- 3 and goto step-7;

5. [Check the code with the command code string]
Set COMCODE <-- INDEX(STRING(CODE),COMSTR,I);
If COMCODE <> 0 then set SELKEY <-- 2 and goto step-7;

6. [Check the code with the valid code range for data entry]
If CODE >= 32.or CODE <= 127 then

set SELKEY = 1 and goto step-7;
otherwise repeat from step-I.

7. [Finished]
Exit.

AlgorithmINDATA

This algorithm receives data from the keyboard and/or edits
according to the instruction given.When the first input code
is not a ~ommand or a cursor control or a data type code,
received by the algorithm SELECT, then the code is passed
as a cell data to this algorithm. Thus the input codes are

(

concatenate with the input string until it encounters a

control code of 13 (carrage return),~. used to return the (

data to the system i.e., this code indicates that the data

.entry has been finished here. Another code numbered as 8

(back space) is used to erase the previous inputted
-~ \

character in the input string • After encounting the oarrage . ,\ i

return code, this algorithm exits and return to the calling

6-19

In order to display the

After teceiving a back space code this algorithm

present cursor position, this number must be converted to
string data with justification to right. This string is
placed on the screen along with the edit line indicator
symbol (»" INSTRING is the buffer string where the inputted
character codes are stored. INSTRING is loaded initially by

./present edit cursor position.

removes the previous character from the input buffer string
as well as from the screen and also the cursor is reset~{
Now if the back spacing makes the buffer string to null then
the algorithm returns to the mother program because the 1st
character entry is checked by the algorithm SELECT. Here 1
repr,esent the length of the string i.e.. (It1) represent the

routine.

Ithe character code returned from the algorithm SELECT.
CHACODE is the code received by the function INKEY.

1.[Initialize the buffer string]
Set INSTRING (-- CODE

2. [Set the cursor posi tion from the length of the buffer]
Set 1 (-- LENGTH(INSTRING); and
CURPOS (-- JUSTIFICATION(STRING(1+1),2,1);

3.[Print the buffer string with the cursor position number]
PRINT (23,2,CURPOS+CHR(62)+INSTRING);

4.[Wait for the input character and save the code]
CHACODE (-- INKEY;

5.[Check for the returning code]
If CHACODE = 13 then

set COMKEY (-- false; and goto step-8;

6.[Check for the editing code]
If (CHACODE= 8) and (1 = 1) then set INSTRING (-- nul;
and goto step-8;
otherwise if CHACODE = 8 then
set INSTRING (-- SUB (INSTRING, 1,1-1);
PRINT (23,1,SPACE(1)); and repeat from step-4;

6-20._

7.[Concatenate the new code with the previous codes 1
Set INS7~ING (-- INSTRING + CHR(CHACODE); and
repeat fran step-2;

8.[Finished 1
Exi t.

AlgorithmCOMMAND

This algorithm decodes the command code-; returned from the

algorithm SELECT. CKEY represents the translated code and
COMKEY represents the command mode character code.

1. u Analyze the command code 1
Set CKEY (-- (COMCODE-l)/3+1;

2. [Set the command key 1
Set COMKEY (-- true;

3. [Finished 1
Exi t.

AlgorithmDATA TYPE SET

This algorithm sets the data type entry mode key and
corresponding mode title. MKEY is the translated code of the
actual mode setting key codes. DTYCODE is the code returned
from the algorithm SELECT. Four types of data entry modes
are possible to set. These are value entry, text entry,
repeating text entry and the formula entry. HEAD is the
title string which represents the type of mode on the
-display screen. ROWand COLUMN represent the position where
the title is to be printed.

1.[Analyze the data type code 1
Set MKEY (-- (DTYCODE-l)/3+1j

••
,
-\

2.[

6-21

Set the mode according to the translated code 1
If ,MKEY = 1 then set' HEAD (-- "VALUE" and goto step-3;
otherwise
if MKEY = 2 then set HEAD (-- "TEXT" and goto step-~;
otherwise
if MKEY = 3 then set HEAD (-- "R-TEXT" and goto step-3;
otherwise
if MKEY = 4 then set HEAD (-- "FORMULA" and goto step-3;
otherwise print error message and exit.

3.[Set the backgorund and the foreground colors 1

4.[Print the title of the corresponding mode 1 '
PRINT (ROW,COLUMN,HEAD);

5.[Reset the backgorund and the foreground colors 1

6.[Finished 1
Exi t.

AlgorithmCURSOR DIR SET

This algorithm sets the cursor direction key to one of the
four codes. Code lrrepresents the cursor direction from
left to right, coderl represents from rigth to left, code
ud repersents from up to down and code du represents from
down, to up. CURCODE is the translated code of the actual
cursor control key code. RT represents the cursor direction.

1. [Analyze the cursor direction code 1
Set CURCODE (-- (CURCODE-1)/3+1;

2. [Check the code AND set the mode 1
If CURCODE = 1 then set RT (-- rl; and goto step-3;
otherwise
if CURCODE = 2 then set RT (-- lr; and goto step-3;
otherwise
if CURCODE' = 3 then set RT (-- ud; and goto step-3;
otherwise
if CURCODE 4 then

,
du; step-3;= set RT (-- and goto

otherwise pritn error message and exit.

3. [Finished 1
Exit.

6-22

Algorithm CURSOn CONTROl,

Thi in~ut parameters of. this algorithm are the present
/

active cell address, previous active cell address, top-left
cell address of the window, row and column ranges and the
cursor direction code. Here first cursor direction code is
checked and switches to the corresponding steps to set ~
one of the four possible settings.To set the right.direction
parameters we use two procedures LIMIT and SPAN, which are
defined after this algorithm. Both the procedures check the
window width 'with the summation of the individual column
widths. LIMIT returns the address .of the last cell whereas
SPAN returns the starting address of the accomoded last cell
within the window. Here various indexes are checked and
reset(~ according to the logic. SKEY is the setting for
identification to branch to various levels.

1. [Ini tialize the indexes of .the previous acti ve cell 1
Set PAR (-- AR; PAC (-- AC; PCR (-- CR; and PCC (-- cc;

2. [Check the cursor direction code and select settings 1
If RT = lr then goto step~6;
otherwise if RT = rl then goto step-7;
otherwise if RT = ud then goto step-8;
otherwise if RT = du then goto step-9;
otherwise goto step-9; .

3. [Check and set the right cursor movement indexes 1
If CC = CLIMIT then. set SKEY (-- 3 and exit.
otherwise set CC (-- CSTART;

4. [Check the accomodedwidth of the window 1
If AC = LIMIT(IC) then goto step-5;
otherwise set CC (-- SPAN (IC,AC);
AC (-- AC+l; SlfEY (-- 3; and exit.

5. [Set the indexes for the movement of the window 1
Set IC (-- IC+l; and
if LIMIT(IC) ((AC+l) then repeat step-4;,
otherwise set CC (-- SPAN (IC,AC);
AC (-- AC+l; SKEY (_. 2 and exit.

-\

6. [Check and set the left cursor movement indexes]
If.AC = 1 then SET SKEY (-- 3; and exit.
otherwise set AC (-- AC-l;
If CC = CLIMIT then
set IC (-- IC-l; SKEY(-- 2; and exit.
otherwise

~ set CC (-- CC-WIDTH[AC); SKEY (-- 3; and exit.

6-23

7. [Check and set the down cursor movement indexes]
If AR =RLIMIT then set SJ(EY (-- 3; and 'exit.
otherwise set AR (-- AR+l;
If CR = REND then
se.t IR (-- IR+l; SKEY (-- 1; and exi t.
otherwise
set CR (-- CR+l; SKEY (-- 3; and exit.

8. [Check and set the up cursor movement indexes]

If AR = 1 then set SJ(EY (-- 3; and exi t.
otherwise set AR (-- AR-l;
If CR = 'Rstart then
set IR (-- IR-l ; SI(EY (-- I ; and exi t.
otherwise
set CR (-- CR-l ; SJ(EY (-- 3; and exi t.

9. [Finished]
Exi t.

Algorithm LIMIT

1. [Initialize the pointer and the width buffer]
Set j (-- IC-l; and w (-- 0;

2. [Calculate the maximum linJit ,,,i thin the window]

Set i (-- i +1; and w (-- f'IIDTH[i];
If w+WIDTH[i+l] (CEND-CSTART then repeat step-2;
otherwise set LIMIT (-- i;

3. [Finished]
Exi t.

Algorithm SPAN

1. [Initialize the pointer and the width buffer]
Set i (-- IC-l; and CC (-- 0;

2. [Calculate the maximum limi t 'vi tlJin the ",indo",)
Set i (-- i+1; and SPAN (-- SPAN + WIDTH[i);
Repeat step-2 until i (= AC;

3. L Finished)
Exi t ..

6-24

DATA REPRESENTATION
AND COl"1l"1ANDS

7.1 INTRODUCTION

Since the selection of data 'Structures significantly
influences the sp~ed and efficiency of an implementation of
an algorithm, hence it is also one of the most important
part of the system design. As the data structure, arrays are
used here because of the following advantages:

Arrays are helpful in organizing sets of data into
meaningful groups.

Array names with subscripts minimize the need for keeping
track of many data items with different names.

The use of subscripts allows ~or instant and automati~
access to any element of an array.

Subscripting also allows for automatic, fast, and
efficient processing of all data or selected subsets

/ of data stored in arrays. Such processing includes
initialyzing, searching, storing, and updating.

7-2

The cell system is an aggregate of concurrently active
objects, organized in a rectangular array of cells, similar
to the paper spreadsheet. Thus in this system design, data

./structures of the cell system are mainly defined by

rectangular arrays.

Entire cell system can be defined as a rectangular grid

containing
addresses.

a number 0 of cells. with their absolute
In this grid system each cell must have two

unique address representing a row and a column. A two
dimensional array is best suited for ~his representation.
Internally each cell has four types of information as:

cell value;
cell content,
display format and data type, and
reference table for external reference.

As described earlier, a cell value is the result obtained by
evaluating the contents of ,the cell Thus the array

representing the values of the grid system must .be of

repeating text etc.
numeric type. The cell contents are the formula, text,

Thus these must be represented by
character type of storage and hence defined by the string
type of array. Data type and display format informations can
be represented by integer numbers with signs. Hence it is
defined by the integer type of ~rray. Reference t~ble
contains all the cell addresses for external reference to
use imformation. Two type of reference can be possible; one
the value reference of a cell by other cells containing
formula and the other is the formula reference of a cell by

7-3

other cells containing values. This means that a cel~ value
may be referenced by a formula in another cell and such a
reference is the value of the original cell', not to its

content(formula).

7.2 REFERENCE TABLE GENERATION

This table corresponds to a cell who has a,value or a

evaluation of formula.
formula

value,

with external reference for recalculation or
In this case of a cell having a

the reference table has all the cell addresses who
use this cell value in their formula. In the case of a,cell

having a formula, the reference table represents all the

/

cell addresses whose values are used by this cell. The
~inking between the host cell and the referenced cell can be
distinguised by two ways: one is the direct linking, where
the host cell directly uses the value of the referenced cell
and other is the indirect linking, where the host cell uses
a cell value who used the value of another cell. In the
indirect linking the host cell reference table has the
address of the cell having a value of valu,e type and the
referenced cell have a reference table with the address of
the indirect host cell.
following cell-informations.

For example, we consider the

Cell ID Value Formula Reference table

------- ----- ------- ---------------
Al 10 B5, A4

B5 30 A1+20 Al

CZ 40 A4

A4 1200 'B5*C2 AI, CZ

Here A1

7-4

and C2 have values of 10 and 40 respectively and
these cells are of value type. B5 and A4 have values of 30 •
1200' and they are of formula type. The values of B5 and A4
are the evaluated values of their formulas. Now the
reference table of A1 indicates the name of the cell B5 and
A4 because these cells use the value of the cell A1. The
reference table of B5 has the reference of cell A1 only
becau.se the cell B5 ~ses the value of A1'only. Similarly the
reference table of A4 shows the addresses of cells A1 and C2
because the cell A4 uses indirectly the value of cell A1 and
directly the value of the cell C2. Thus any change in value

;

of A1 causes the change of the evaluated values of ,the cells
B5 and,A4. In this way a long chain of indirect reference of
a value can be made possible.

7.2.1 Algorithm CELLREF

The input parameters of this algorithm are the active cell
address (here active cell is the host cell) and the,
referenced cell address. In this Algorithm a recalculation
key is checked for the execution of the algorithm. Here
active cell address is represented as AR and AC. Similarly
the referenced cell address is represented by RR and RC ..
Recalculation key is denoted by RECKEY. CRET is the

/

reference table array. Here CCON is the procedure used to
convert a cell address to the corresponding cell identifier.

7-5

1.[Check the recalculation key for exit or not]
If RECKEY = true then goto step-B;

2. [Ini.tialize.the reference table index]
Set i <-- 1;

3.[Check the data type of the bell]
If ABS(FMT[AR,AC]) = vt then set
CRET[AR,AC]< __CRET[AR,AC]+JUSTIFICATION(CCON[RR,RC],5, 0);
and goto step-5;

4.[Isolate the identifier for the reference table]
Set CID <-- SUB(CRET[RR,RC],i,5) and call CELLID(CID);

5.[Check the existance of the host cell address]
If INDEX(JUSTIFICATION(CCON[AR,AC], 5,0),CRET[R,C], 1)<>0
then goto step-6;
otherwise set
CRET[R,C] <-- CRET[R,C]+JUSTIFICATION(CCON[AR,AC],5,0);

6.[Check the existance of the cell address in the table]
If INDEX(CID,CRET[AR,AC],l) <> 0 then goto step-7;
other~ise set CRET[AR,AC] <-- CRET[AR,AC]+CID;

7. [Increment the index and check for further processin]
Set i <-- i+1; and
if I <= LENGTH(CRET[RR,RC] then repeat from step-4;

B. [Finished]
Exit.

7.2.2 AlgorithmRECALCULATION

This algori~hm uses a table for recalculation of formulas
referenced in the table. Here STABLE is the source table
given to represent the cell's list for recalculation. In

this algorithm each element of the source table is

/

translated and the corresponding formula is evaluated by the
expression interpreter named EXPR_TER. FORM is the array

7-6

representing the system formulas and CVAL is ti,e array
representing the system values. CVAL is of string type so
the RESULT returned by the expression interpreter must be
converted to string before storing. Recalculation key is
initially set to true and finally set to false at the end of
the recalculation algorithm.

1. [Ini tial i ze the recalcula ti on ke,Y and the ta bl e index]
Set RECKEl' (-- true; i (-- 1;

2. [Isolate the cell address and translate the address]
Set Clf) (-- SUB(STABLE, i, 5); ana [r, c] (-- CE'LLID(CID);

3. [Assign the cell indexes returned]
Set RI (-- l' ; and CJ (-- c;

4. [Load the identified formula and call the interpreter]

Set SOURCE' (-- FORN[RI, CJ]; and call EXPR_TE'lI;

5. [Store the ne" value of the cell]
Set CI'AL[RI,CJ] (-- STRING(RE'SULT);

6. [Advance the pointer and check for further looping]
Set i (-- i+1;
If i (= LENGTH(STABLE) then repeat [ron step-2;

1. [rese t the recalr>ula ti on ke.y]
Set RECHEl' (-- False;

8. [Finished]
Exi t.

This algorithm prints the display contents of the cells
defined by the user. The.contents may be of value type or
text type or formula type. The contents are printed by
the hard-copy printer according to the formats specified.

-I:

7-7

buffer for
compared with the given

c

row range and the. result determines whether the next row
will be calculated or not. If found not then exi~from the
algorithm otherwise continues the printing process by taking
another row. Each parameters and the variables used in C2:J
this algorithm have the same meaning as described in the

previous algorithms.

printing. Then the current row is

for printing are arranged according to their specified_
formats. This calculated row with or without the row

key is found on , row border string is taken into considera-
tion otherwise not for the printing of the cell contents.
Then .the cells of each row defined within the range

This algorithm first se~th~ printing .width which must be
wi.thin the physica,! width of the printer. Then the column
border string is calculated if the bprder key is found on
and the. infomations corresponding to I:::::) this string are
sent to the printer buffer for printing. This column border
string is seti=:;:;rj(as defined. before in the algorithm COLUMN)
by considering the printing width and the individual widthc;)
of each cell defined within the range. Then if the border

/ identifier string is sent to the printer

1. [Initialize]Set j (-- LP; k (-- WIDTH(j); CSPAN (-- (CEND-CSTART);
CBORDER (-- SPACE(4); i (-- NP; and r (--RSTART;

2.[Check the column number and set the border]
If j(27 then set FIRST (--CHR(32);1(--j and goto step-3;
otherwise if J(53 then
set FIRST (__ CHR(65); 1 (-- (j-26); and goto step-3;
otherwise ifj(79 thenset FIRST (__ CHR(66); 1 (-- (j-52); and goto step-3;
otherwise print error message and exit

7-8

3.[Set the width and check for odd or even}
Set w (-- WIDTH(j);
If MOD(w,2) = ° then
set w(-- (w-1); and NAME (-- CHR(32)+FIRST;
otherwise set NAME (-- FIRST;

4.[Set the blank character number for each cell)
Set m (-_ INTEGER(w*0.5)-1;

5.! Set the column border string)
/ Set CBORDER (-- CBORDER+CHR(d)+SPACE(m-1)+NAME+CHR(64+l)

+SPACE(m)+CHR(d);

6. [Increment the "letter pointer & set the .width & check}
Set j (-- j+1; and k (-- k+WIDTH(j);
If k (= CSPAN then repeat from step-2;

7.[Print the border string)
PRINT (ROW_1,COLUMN_4,JUSTIFICATION(CBORDER,CSPAN+4,0));

8.[Set the row pointer}
Set i (-- i+1;

9.[Check the border key and set the string)
If BKEY = .true then set
ROW (__ JUSTIFICATION(STRING(r),3,1)+CHR(b);
otherwise set ROW (-- SPACE(4);

10..[Reset the column number and .set the cell width }
Set j (-- LP; and k (-- 0;

11.[Check the column number and set the row)
Set k (-- k+WIDTH(J);
If k > CSPAN then goto step-14;

1"2. [Check the cell format of the row and adjust string }
If SIGN(' FMT[i,j}) = -1 then set
ROWSTR (__ ROWSTR+JUSTIFICATION(CVAL[i,j},WIDTH[j},1);
otherwise set.
ROWSTR (__ ROWSTR+JUSTIFICATION(CVAL[i,j},WIDTH[j},O);

13.[Increment the column pointer and repeat the loop}
Set j (-- j+1 and repeat from step-11;

14. [Print the row line)
PRINT (ROWSTR)

15.[Increment the row pointer and check for looping}
Set r <-- r+l; and
If r (ROWEND then repeat from step-8;

16. [Fini shed)
" Exit.

7-9

7.4 AlgorithmSAVE

This algorithm stores all the necessary informations related
to the .cell system including the contents definedby
the user " in an auxi lliary. storage unit. All the saved
information can be retrieved for modificat(on or extension.
This algorithm also saves some system setting informations
related to the cells. Each column width is i~portant for
loading a file which had been saved before. A reference cell
idetification is also important to resume to the previous
condition. Now the most important parameter to save is the
table containin~.all the celf's add~ess having some kind'
of information.This table is subdivided into three subtables
depending on the type of the information stored into the_
cells. So from this table we can get information about the
'empty and nonempty cell and also get information about the
type of data hold by each nonempty cell. Finally the
informations to be save are the contents of each nonempty
cell. Here the "'cell contents" mean.s all type :of informations
each cell contains.

Here width of the cells are stored in a string delimited by
a character code(say ":"). This method of saving reduces the
storage area. He~e in this algorithm WSTR is the string

.created by the concatenated column widths with'a delimiter
character dc. COLNUM is the number of columns defined by the
user or system. TOPCELL is the top-left cell identifier of
the current window as the reference cell. TTABLE. VTABLE and
FTABLE are the tables containing the cell identifiers
corresponding to the text, value and formula type of cells.
Here PUT is a procedure to print the argument content to a
file just created. And we assume that the informations are

7-10

stored sequentially into the created file and each PUT
statement represents the creation of each record of the
created file. CVAL, CELL, FMT, and CREF are the rectangular
arrays to represent .the value, content, format and the

referende table .info~mations respectively.

1. [Ini tialize the width string to null.)
Set WSTR (-- NUL; i (-- 1;

2. [Conca tena te the cell wi th wi th a del imi ter character)
Set WSTR (-- WSTR + de + STRING(WIDTH[i));

3. [Increment the column pointer and check for the last)
Set i (-- i+1; and
If i (= COLNUM then repeat step-2;

4. [Create the file and store the infomations)
CREATE FILENAME;
PUT (WSTR, TOPCELL);
PUT (TTABLE);
PUT (VTABLE);
PUT (FTABLE);

5. [. Check the text cell table whether it is empty or not)
If LENGTH(TTABLE) <> o then goto step-7;
otherwise set i (--1;

,
/

6. [Store the text cell's informations)
Set CELL (-- SUB(TTABLE,i,i+5);

[r,c) (-- CELLID(CELL);
PUT (CVAL[r,c), CELL[r,c});
Set i (~- i+5; and
repeat step-6 until i (LENGTH(TTABLE);

7. [Check the value cell table whether it is empty or not)
If LENGTH(VTABLE) (> 0 then goto step-9;
otherwise set i (--1;

r

8. [Store the value cell's informations]
Set CELL (-- SUB(VTABLE,i,i+5);

[r,c] (-- CELLID(CELL);
PUT (CVAL[r,c], CELL[r,c], CREF[r,c]);
Set i (-- i+5; and
repeat step-8 until i (LENGTH(VTABLE);

7-11

9., [Check the,formula cell table whether it is empty or not]
If LENGTH(FTABLE) (> 0 then goto step-7;
otherwise set i (--1;

10. [Store the formula cell's informations]
Set CELL (-- SUB(FTABLE,i,i+5);

[r,c] (-- CELLID(CELL);
PUT (CVAL[r,c], CELL[r,c], FMT[r,c], CREF[r,c]);
Set i (-- i+5; and
repeat step-l0 until i (LENGTH(FTABLE);

11. [Close the file and exit]
CLOSE ,
Exi t.

7.5 Algorithm LOAD

,~This algorithm is the reverse procedure as defined by the
algorithm SAVE. All parameters are the same as defined in the
algorithm SAVE. Here GET is a procedure to retrieve
information from a file just opened. Here we also assume
that the file is of sequential type and each GET statement
reads one record from the opened file.

1. [Open the file and read the data]
OPEN FILENAME; ,
GET (WSTR, TOPCELL);
GET (TTABLE);
GET (VTABLE);
GET (FTABLE);

2. [Check the text cell table whether it is empty or not]
If LENGTH(TTABLE) (> then goto step-4
otherwise set i (-- '1;

7-12

3. [Read the informations of each text cell }
Set CELL <-- SUB(TTABLE,i,i+5); and

[r,c} <-- CELLID(CELL);
GET (CVAL[r,c), CELL[r,c});
Set i <-- i+5 and repeat step-3 until i < LENGTH(TTABLE);,

4.• [Check the value cell table whether it is empty or riot} -
If LENGTH(VTABLE) <> then goto step-6

..otherwise set i (-- 1;

/

5. [Read the informations of each text cell)
Set CELL<-- SUB(VTABLE,i,i+5); and

[r,c} (-- CELLID(CELL);
GET (CVAL[r,c), CELL[r,c});
Set i (-- i+5 and repeat step-3 until i (LENGTH(VTABLE);

6. [Check the formula cell table whether it is empty or not}
If LENGTH(FTABLE) <> then goto step-8
otherwise set i (-- 1;

7. r Read the informations of each text cell)
Set CELL (-- SUB (FTABLE, i,i+5); and

[r,c} (-- CELLID(CELL);
GET (CVAL[r,c), CELL[r,c});
Set i (-- i+5 and repeat step-3 until i. (LENGTH(FfABLE);

8. [Initialize the column with array pointer}
Set i (-- 1;

9. [Initialize the column widths from the width string)
Set J (-- INDEX(WSTR,dc,I);
WIDTH[i} (-- VALUE(SUB(WSTR,l,J-l)); and

WSTR (-- SUB(WSTR,J+l ,LENGTH(WSTR));
Set i (-- i+l; and repeat step-9 until i (COLNUM;

10. [Initialize the window parameters)
Set [r,c} (-- CELLID(TOPCELL);

AR (-- IR (-- r; AC (-- IC (-- c;
CR (-- RSTART; and CC (-- CSTART;

11. [Finished)
.Exi t.

C lcl.A~P'r~E:R=S

CONCLUSIONS
SUGG,ES'TIO'NS

AND
FO£-l

8.1 CONCLUSION

The

have been

expressions.

analysis of high

program

conditionallogical and

interrelated with high level program statements,

a powerful tool for solving manY types of .mathematical,
business, and financial problems. In designing the system,
the structured approach has been followed which integrates

a number of seperate algorithms.

information or data types handled by the cells consist of
value, text string, formula etc. The developed, system is

~

expressions,

level program statements i~cluding assignments, arith~etic
The processing of the cells involves
cells

developed for processing a large number of information
Algorithms and a modular software

The developed algorithms may be used for the development of
sophisticated application program softwares such as,

Electronic spread-sheet devaloping prolrams,
Text editor or word processor developing programs,

Compiler writting programs,
Interpreter writting programs etc.

8-2

The developed system is an aggregate of concurrently active
objects, organized into a rectangular array of cells similar
to the paper spreadsheet used by an accountant. Each cell
has a rule specifying how its value is to be determined.
Every time a value is changed anywhere in the cell system,
all values dependent on it.are recomputed instantly and the
new values are stored and displayed. The system can be
defined as a simulated pocket universe that continuously,
maintains its fabric; it is a kit for a surprising range of
applIcations. Here the user illusion is simple, direct and
powerful. There are few mysti£ying surprises because the-
only way a cell can get a value is by having the cell's own

/ ~alue rule put in there. Thus the developed software module
acts as a simple means to tap the power of a computer to do
time-consuming, repetative calculations.

This is a microcomputer based system and the program has
been developed by the CBASIC compiler language. In the
program, errors are trapped and the proper messages are
appeared on the display screen where necessary. The system
commands are completely menu driven and thus it is user
friendly. A user.with minimum knowledge can use the system.
User need not to know the inside processing activity of the
system program. He or she should only understand the meaning
of the error message sent by the system.

The developed program module may be used for the following

applications,

8-3

Balance sheets,
Cash flow analysis/ forecasting,
Job" cost estimates,
Patient records '"
Profit/sales projections/statements,
General ledger,
Inventry control,
Market share analysis and planning,
Project budgeting and control,
Salary records,
Tax estimation etc.

8.2 SUGGESTIONS FOR FUTURE WORK

A generalized system program software has been developed to
facilitate the basic control functions and the most common
used features. No new system can claim as a perfect one.
This system may have some difficulties and undetected errors.
But the system has been developed keeping a large number of
flexibilities which can facilitate some addition or changes
by giving a minimum effort. For the expansion and enhancment
of the system to incorporate more complex functions and
facilities, the following points can be taken into consi-

deration for priority basis;

Automatic adjustment of the formulas during insertion,
deletion or arrangemrnt of a subset of cells.

Special data format facilities by defining different

format codes.
Complex logical expressions handling by developing a
complex logical expression handler routine.

/

8-4

Calender function fac.£lities by developing a procedure to
interface.with the system clock routine.

And many other facilities according to the user's

requirements.
. 15-10)'

The developed algorithms have been implemented in the
form of the program modules by using a comprehensive
and versatile programming language called CBASIC compiler.
The main limitation of this compiler language i~ the lack of
structural environment. The algorithms are written in ~
structured manner irrespective to the coding language. By
using other high level compiler language one can implement
the algorithms in a more structured and convenient manner.

APPENDIX-A

ASCII CODES

/

ASCII Control ASC 11 ASC 11 ASCII

'Va 1ue Character Character Value Character Value Character Valqe Character

000 (nu 11) mil 032 .. (space) .064 @ 096

.001 (',,,,' SOH 033 ! 065 A 097 a

002 • STX 034 " .066 B 09B b

003 •• EXT 035 *
067 C 099 c

004 • EOT 036 $ 06B 0 100 d

005 • ENQ 037 % 069 E 101 e

006 + ACK 038 & 070 f 102 f

007 (beep) BEL 039 071 G 103 9

008 85 040 . 072 H 104 h

009 (tab) HT ..041 073 I 105

010 \'ine feed) If 042 • 074 J 106 j ."

011 home) . VT 043 + 075 K 107 1<

012 (form feed) ff 044 076 l 108 1

013 (carriage return) CR 045 077 M 109 m

014 . r. SO 046 078 N 110 n

015 <:> 51 047 I 079 0 111 a

016 ~ SlE 048 0 .080 P 112 P

017 .~ OC! 049 I 081 Q 113 q

018 I OC2 050 2 082 R 114 r

019 !! OC3 051 3 083 5 115 s

020 II
OC4 052 4 084 T 116 t

021 Ii NA.K 053 S 085 U 117 u

022 SYN 054 . 6 086. V 118 v

023 t ET8 OSS 7 087 W 119 w

024 I CAN 056 8 OBB X 120 x

025 I EM 057 9 089 y 121 Y

026 SUB OS8 090 Z . 122 z

027 ESC 059 091 [123 (

028 rC.ursor ri tt) fS 060 < 092 \ 124

029 cursor Ie t) GS 061 093) 125

030 (cursor up) RS 062) 094 /'. 126

03i (cursor down) US 063 ? 095 127 t:>

.~

/

APPENDIX-13

INTERNAL DATA REPRESENTATION

REAL NUMBERS are stored in binary coded decimal (BCD)
floating-point form. Each rear number occupies eight bytes
of memory storage space, as shown in Figure B-1. The
high-order bit in the first byte (byte 0) contains the sign
of the number. The remaining seven bits in byte 0 contain a
decimal ~xponent. The exponent is a binary number
representing a power of ten. The number is biased by 40H.
Therefore, an exponent value of 42H represents an actual
exponent of 2. Bytes. 1 through 7 contain the mantissa. Two
BCD digits occUPy each of the seven bytes in the mantissa.
The most significant digit of the number is stored in byte
7, furthest from the exponent. The floating decimal point is
always situated to the left of the most significant digit.

CBASIC machine-level representation varies somewhat for real
nu~b~rs, integers, strings, and arrays.

14 BCD DIGIT MANTISSA

BYTES
xx
o

XX
1

XX
2

XX
3

XX
4

XX
5

XX
6

XX
7

EXPONENTS

X
_____ BITS 0

X
1

X
2

X
3

X
4

X
5

X
6

X
7

Figure-B-l Real Number Storage

INTEGERS are stored in two bytes of memory space with the
low order byte first, as shown in Figure B-2. Integers are
represented as 16-bit, two's complement binary numbers.
integer values range from -32768 to +32767, inclusive.

B-2
/

LOW ORDER BYTE
-STORED FIRST-

HIGH ORDER
BYTE

x X
BITS 7 6

X X X X X
5 4 3 2 1

X
o

X
15

X
14

X
13

X
12

X
11

X
10

X
9

X
8

SIGN BIT

Figure-B.2 Integer Storage

STRINGS are stored as a sequence of ASCII characters. The
length of a string is stored in the first two bytes followed
by the actual ASCII values as shown in the following figure.
The high-order length byte is stored first. The maximum
number of character in a string is 32,762. CBASIC Compiler
allocates space in the Dynamic Storage Area for strings. A
pointer in the Data Area is an address ih the. DSA .for the
actual string.

DATA IN STRING
o OR.MORE BYTES

BYTES
XX
o

XX
1

,,

XX
2

XX
3

............ , . XX
n

STRING LENGTH

HYGH ORDER
BYTE

(stored first)
,,,,,,
: X
:. BITS 15

X
14

X
13

X
...... 8

LOW ORDER
BYTE

x X
7 .••.• 0

RESERVED FOR USE
BY

RUN-TIME LIBRARY

Figure-B.3 String storage

B-3

ARRAYS, both numeric and string, are allocated space in the
Dynamic storage Area as required. Eight bytes are reserved
for each element of.an array containing real numbers and two
bytes' for each element of an integer array. String arrays
are allocated two bytes for each entry plus the sum of all
the string elements.
At some point in a program it might be necessary to free
memory space allocated to arrays that are no longer needed
in the program. Freeing numeric array space requires the
redimension the array to zero. However, freeing string array
space is a two step process. First, all the string airay
elements aresette~ to null. This is done by setting all the
string array elements equal to a string variable that has
never been assigned a value. A variable named NULLS can be
used in such a case and on the assumption that NULLS r. has
never been used as a~ array variable .

.,

APPENDIX-C

CBASIC COMPILER

A compiler is a computer program that translates high-level
programming lan~uage instructions into machine-executable
code. The compiler ,takes as input a user-written source
program and produces as output a machine-level object
program. Some compilers translate a user-written source
program into a program that a computer can execute directly.
The CBASlC Compiler system, however, uses a link editor and
a libary in addition to the compiler. Together the three
components translate the CBASlC source-code file into a
directly executable program. This approach uses the
microcomputer's memory space as efficiently as possible. The
system enables us to modularize prog~ams for quic~ and easy
maintenance. The result is a programming system that rivals
the ,performanc'e of systems based on much larger machines.

The primary advantage 'that compilers provide over other
methods of translation is speed. Compiled applications
programs execute faster than interpreted programs because
the compiler creates a progr'am that the computer can
execute diredtly.
The compiler, CBB6, translates CBASlC source code into
relocatable machine code modules. Source programs default to
a .BAS filetype unless otherwise s.pecified. CBB6 generates
.OBJ files. CBB6 consists of an executable program and three
overlays. '

The link
modules
indexed
optional

editor, LINKB6, combines the relocatable object
that 'the compiler creates and routines from the
library in~o a directly executable program with
overlays. LINKB6 generates .CMD files.

The indexed libary, CBB6.LBS provides routines that
allocate and release memory, detrermine available memory
space, and perform input/output processing. CBASlC Compiler
provides a library manager utility program, LIBB6.

/

APPENDIX-D

rem."",""""J""""""""""*""""""'*'"",,"'J'
, .

rem , 'rem , STORAGE AND DATA DECLARATIONS '
rem , '
rem """""""""""""""""""""""""""""'"rem "" rectangular array range initialization

CLIMIT% = 35: RLIMIT% = 110
rem .'J" storage declaration for the data structure

DIM X$(RLIMIT%,tLIMIT%).XY$(RLIMIT%,CLIMIT%)
DIM CD$(RLIMIT%,CLIMIT%),YY%(RLIMIT%,CLIMIT%)
DIM W%(CLIMIT%I,WS$(30),M$(4)

rem "" initialize the default cell widthsW%(l) = 9: FOR 1% = 2 TO CLIMIT%: W%(I%) = W%(l): NEXT 1%
rem "" set the control code strings

CURSTR$ = "23 19 26 1 "
DTYSTR$ = "128129130131"
COMSTR$ = "47 33 61 3 133 134 135 136"
INCODE$ = "13 8 137 138 1 19 136 133"

rem "" set the data type indicator st'ring
M$(l) = "VALUE": M$(21 = "TEXT": M$(31 = "R-TEXT"
M$(11 = "FORMULA"

FM$ = "FORMULA: ": VTAB$ = "": FTAB$ - ""
rem "" define the_delimiter characterCLONS = ":": SLONS = I~;I':COM$ = ",I': LPR$ = 1'("

RPR$ = "I"
rem "" initialize the data structure pointers

IIR% = 1: IIC% = 1: R2% = 1:C2% = 1
rem "*' initialize the window setting parameters

RST% = 2: RED% = 20: CST% = 5: CED% = 81
rem "" initialize the various key setting

MR% = 2: MC% = 5: RECKEY% = 0
KEY% = 4: MKEY% = 1: RT% = 62: SPLIT% = 0
RJUS% = 0: CSEC% = 0: KEY% = 0: BOR% = 1: SW% = 0

rem """"""""""""""""""""",""'J************
rem ***' declarations for various arraysDIM 0$(71 ,B$(2.01,TS(10) ,S$(9) ,BFUN$(5) ,LFUN$(61 ,LRE$(91\

TK%(101,FN%(10),MX$(20I,RLMT$(5I,LLMT$(51,B$(25),STK%(3)
rem **** define strings for letters, digits and operators

LETTER$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
DIGIT$ = "1234567890."
OPERATOR$ = "-+/*-"

rem**** define the library function keyword string
LFUNCTION$ = "ABSEXPINTLOGRNDSINCOSTANCSCSECCOT"

rem **** table for operators and the parantheses
FOR 1% = 1 TO 7: READ 0$(1%): NEXT 1%
DATA -,+,/,*,-,(,)

rem **** table for temporary storage variables
FOR 1% = 1TO 9: READ S$(I%): NEXT 1%
DATA TS1,TS2,TS3,TS4,TS5,TS6,TS7,TS8,TS9

rem "" table for the built-in function keywords
FOR J% = 1 TO 5: READ BFUN$(J%):NEXT J%
DATA MAX,MIN,SUM,AVG,CNT

rem **** table for the boolean function keywords
FOR 1% = 1 TO 6 : READ LFUN$(I%): NEXT 1%
DATA IF,NOT,AND,OR,EQU,NEQ

rem **** table for the relational operators
FOR 1% = 1 TO 9 : READ LRE$(I%): NEXT 1%
DATA <>,><,>=,=>,<=,=<,=,>,<

rem ***
rem * FUNCTION DEFINITIONS *
rem ***
rem **** key initialization

DEF KESET(KEY,COD)PRINT CHR$(27)+CHR$(58)+CHR$(KEY)+CHR$(COD)+CHR$iOO)
FEND

rem **** clearing the screen
DEF CLS
PRINT CHR$(12)
FEND

rem **** back ground color setting
DEF BCOL(TPE%)
PRINTCHR$(27)+CHR$(99)+CHR$(TPE%);
FEND

rem **** fore ground color se~ting
DEF FCOL(TYP%)
PRINT CHR$(27)+CHR$(98)+CHR$(TYP%);
FEND

rem **** blank space string setting
DEF BK$(NO%)
BK$ = STRING$(NO%,CHR$(32))
FENDrem **** string printing at a particular position of the screen
DEF P(YCOR%,XCOR%,S$)PRINT CHR$(27)+CHR$(89)+CHR$(3l+YCOR%)+CHR$(3l+XCOR%)+S$;
FEND '

rem **** data type indication string printing
DEF SP%(MK%)CALL P(22,1,BK$(7»:CALL FCOL(4):CALL BCOL(lO)
CALL P(22,1,M$(MK%»:CALL FCOL(7):CALL BCOL(O)
FEND

rem **** back spacing of the cursor
DEF BS$(WQ$)
L% = LEN(WQ$): IF L% = 0 THEN RETURN
BS$ = LEFT$(WQ$,L%-l)
FEND

rem **** replace a character in a string
DEF RECH$(SR$,RS1$,IQ1%)
1% = LEN(SR$)RECH$ = LEFT$(SR$,IQ1%-1)+RS1$+MID$(SR$,IQ1%+1,I%)
FEND

rem **** delete a character fron a string
DEF DECH$(SD$,IQ2%)
II = LEN(SD$)DECH$ = LEFT$(SD$,IQ2%-1)+MID$(SD$,IQ2%+1,I%)
FEND'

rem **** insert a character from a string
DEF INCH$(SI$,RS2$.,IQ3%)

"

1% ::LEN (S1$)INCH$::LEFT$(SI$,IQ3%~I)+RS2$+MID$(SI$,IQ3%,I%)
FEND

rem **** set the function keysCALL KESET(77,19):CALL KESET(59,128):CALL KESET(60,i29)
CALL KESET(75,OI):CALL KESET(61,130):CALL KESET(62,13l)
CALL KESET(72,23):CALL KESET(63,132):CALL KESEt(71,l33)
CALL KESET(80,26):CALL KESET(73,134):CALLKESET(81,135)
CALL K~SET(79,136):CALL KESET(82,137):CALL KESET(83,138)

rem***
rem * ROI, PHINTING PlWCEDUHE *
rem *-***

DEI" ROWP(COLUMN%,ROWST%,ROWED%,NPOINTER%)
CALL FCOL(2222): CALL BCOL(I)
FOR 1% ::ROWST% TO ROWED%CALL P(I%,COLUMN%_4,J$(STR$(NPOINTER%),3,1)+CHR$(124)

NPOINTEH% ::NPOINTEH%+1
NEXT 1%
CALL FCOL(07): CALL BCOL(16)
FEND

rem ***
rem * COLUMN PRINTING PROCEDURE *
rem ***

DEI" COLUMNP(ROW%,COLSTART%,COLEND%,LPOINTER%,PTER%)
IF PTER% ::o THEN CALL FCOL(2222): CALL BCOL(I)
COLDIFF% ::COLEND%-COLSTART%
JJ% ::W%(LPOINTER%): H$::"
WHILE JJ% <:: COLDIFF%

IF LPOINTER% < 27 THEN E$::CHR$(32): CHP% ::LPOINTER%\
ELSE E$::CHR$ (65): CHP% ::LP'OINTER%-26
WITH% ::W%(LPOINTER%)
IF MOD(WITH%,2) ::0 THEN WITH%::WITH%-I: SP$::CHR$(32)\
+E$ ELSE SP$::E$
B% ::INT«WITH%)*0.5)-1
H$::H$+CHR$(124)+BK$(B%-I)+SP$+CHR$(CHP%+64)+ \
BK~(B%)+CHR$(124)
LPOINTER% ::LPOINTER%+1
JJ% ::JJ%+W%(LPOINTER%)

WENDIF PTER% ::1 THEN PRINT J$(H$,COLDIFF%+4,0): RETURN
CALL P(ROW%_I,COLSTART%-4,J$(H$,COLDIFF%+4,0))
CALL FCOL(II): CALL BCOL(16)
FEND.

rem ***-***
rem *' WINDOW SCANNING PROCEDURE , *
rem *******************.***

DEI" ARRAY(CSA%,CEA%,RSA%,REA%,CA%,RA%)
CDIF% :: (CEA%-CSA%): ICA% ::CA%: CALL FCOL (11)
FOR R% '::RSA% TO REA%
CA% = ICA%:C% = W%(CA%):T$ = It"

WHILE C% <= CDIF%
IF SGN(YY%(RA%,CA%» ::-1 THEN \
T$::T$+J$(X$(RA%.CA%),W%(CA%),I) ELSE \
T$::T$+J$(X$(RA%,CA%) ,W%(CA%) ,0)
CAS ::CA%+I: C% ::C%+W%(CA%)

j
WEND
CALL P(R%,CSA%,J$(T$,CDIF%,O))
RA% = RA%+1

NEXT R%
CALL FCOL(7)
FEND

rem ************************************.************************
rem * CELL IDENTIFIER PROCEDURE *
rem ***

DEF CCON$(XC%,YC%)
IF YC% < 27 THEN FC$ = "": GOTO CC
IF YC% < 53 THEN FC$ = CHR$(65): GOTO CC
IF YC% < 79 THEN FC$ = CHR$(66)

CC: .CCON$ = FC$+CHR$(YC%+64)+STR$(XC%)
FEND

rem ***
rem * CURSOR PRINTING PROCEDURE *
rem ***

DEF CURSOR$(NPC%,LPC%,RP%,CP%)
IF SGN(YY%(NPC%,LPC%)) = -1 THEN \
CSOR$ = j$(X$(NPC%,LPC%),W%(LPC%),I) ELSE \
CSOR$ = J$(X$(NPC%,LPC%) ,W%(LPC%) ,0)
CALL P(RP%,CP%,CSOR$)
FEND

rem **********************************J**************************
rem * DATA INPUT PROCEDURE *
rem ***

INDATA: V$ = ''''
69.1 CALL P(23,3,CHR$(62)+V$)

VV% = INKEY
IF VV% = 13 THEN 69.3
IF VV% = 8 THEN 69.2
V$ = V$+CHR$(VV%): GOTO 69.1

69.2 IF LEN(V$) = 0 THEN BACK%=I: RETURN
V$ = LEFT$(V$,LEN(V$)-I): GOTO 69.1

69.3 BACK% = 0: RETURN
rem ***J*
rem * WIDTH CALCULATION PROCEDURE .*
rem ***
SETWIDTH:I% = IIC%: PS% = W%(I%)

WHILE PS%+W%(I%+I) <= (CED%-CST%)
PS% = PS%+W%(1%)
1% = 1%+1

WEND
LIMIT% = 1%
RETURN

rem **"
rem * RECULCULATION PROCEDURE l'
rem **1'
RECAL: RECKEY% = 1: VP% = 1: LLL% = LEN(DUM$)

WHILE VP% <; LLL%
BB$ = MID$(DUM$,VP%,5)
GOSUB CELLID: RI% = 11%: CJ% = JJ%
AA$=XY$(RI%,CJ%): GOSUB EXPTR
.X$(RI%,CJ%) = STR$(RESULT)

rem ***
rem * BLANK REMOVAL PROCEDURE *
rem ***

DEF REBK$(S$)
K% = 1

REIO: 1% = MATCH!" ",S$,K%)
IF 1% = 0 THEN REBK$ = S$: RETURN
S$ = LEFT$(S$,I%-I)+RIGHT$(S$,LEN(S$)-I%)
K% = 1%: GOTO REI0
FEND

rem ***
rem * JUSTIFICATION PROCEDURE *
rem ***

DEF J$(IN$,SL%,K%)
LENGTH% = LEN(IN$)
IF K% = 0 THEN GOTO LJOIF LENGTH% < SL% THEN J$ = STRING$(SL%-LENGTH%," ")+IN$\
:RETURNIF LENGTH% > SL% THEN J$ = RIGHT$(IN$,SL%): RETURN
J$ = IN$: RETURNLJO: IF LENGTH% < SL% THEN J$ =IN$+STRING$(SL%-LENGTH%," ")\
:RETURNIF LENGTH% >SL% THEN J$ = LEFT$(IN$,SL%): RETURN
J$ = IN$
FEND

rem ***
rem * NUMBER ROUNDING FUNCTION *
rem ***

DEF ROUND(NUM)
TEM = NUM-INT(NUM)
IF TEM >= 0.5 THEN ROUND = INT(NUM)+I: RETURN
ROUND = INT(NUM)
FEND

rem **-**********~*
rem * DIGIT CHECKING PROCEDURE *
re~ ***
/ DEF DGCK%(C$)

1% = 1
WHILE 1% <= LEN(C$)

IN$ = MID$(C$,I%,I)
IF MATCH(IN$,"0123456789.E+-",1l=0 THEN DGCK% = 0 \
:RETURN
1% = 1%+1

WEND
DGCK% = 1
FEND

rem ***
rem * CELL IDENTIFICATION PROCEDURE *
rem *************************************-***********************
CELLID: BB$ = REBK$(BB$): SPAN% = LEN(BB$)IF SPAN%) 5 THEN DERROR% = 1: GOTO EMES

1% = MATCH(LEFT$(BB$;l),LETTER$,I)
IF 1% = 0 THEN DERROR%=I: GOTO EMES
J% = MATCH(MID$(BB$,2,1),LETTER$,I)
IF J% = 0 THEN JJ%=I%: 11% = VAL(MID$(BB$,2,SPAN%))\

= 26*I%+J%: 11% = VAL(MID$(BB$,3,SPAN%»)
RLIMIT% OR 11% < 1 THEN DERROR%=2:GOTO EMES
CLIMIT% OR JJ% < 1 THEN DERROR%=3: GOTO EMES

rem ****
LEV:
rem ****
LEVI:
rem ****
LEV2 :
rem ****
LEV3:
rem ****
LEV4:

ELSE JJ%
IF II% >
IF JJ% >

l RETURN.
rem ***
rem * ' ERROR ROUTINE *
rem *****************~***
EMES: ON DERROR% GOTO 555.1,555.2,555.3,555.4
555.1 E$ = "WRONG ENTRy":GOTO 555.0
555.2 E$ = "ROW ERROR":GOTO 555.0
555.3 E$ = "COLUMN ERROR":GOTO 555.0
555.4 E$ = "BRAKET MISSING"
555.0 CALL P(22,&5,E$):GOTO LEV3
rem ***~***************
rem * SCREEN MANIPULATING PROGRAM *
rem ***
rem **** clear the screen and print the data type title

CALL CLS : CALL SP%(I)
rem **** initially set the r.ow and the column border
LEVa: CALL ROWP(CST%,RST%,RED%,IIR%)

CALL COLUMNP(RST%,CST%,CED%,IIC%,O)
switch to different levels for displaying the window
ON KEY% GOTO LEVI, LEV2, LEV3, LEV4
print the row border if the border key is on
IF BOR%=1 THEN CALL ROWP(CST%,RST%,RED%,IIR%): GOTO LEV3
print the column border if the border key os on
IF BOR%=1 THEN CALL COLUMNP(RST%,CST%,CED%,IIC%,O)
scan the whole window with cell contents
CALL ARRAY(CST%,CED%,RST%,RED%,IIC%,IIR%)
set the colors and display the active cell cursor
CALL BCOL(16):CALL FCOL(II)
CALL CURSOR$(Rl%,Cl%,MMR%,MMC%)

rem **** identify the reference cell of the window
TOPCELL$ = CCON$(IIR%,I~C%)

rem **** erase the previous cursor of the window
CALL BCOL(4): CALL CURSOR$(R2%,C2%,MR%,MC%)
CALL BCOL(16)

rem **** identify the active cell and display on the status line
, CELL$ = CCON$(R2%,C2%): CALL P(21,2,CELL$)

rem **** set the active cBllidentifier for reference table
CELLRF$ =J$(CE~L$,5,0)

rem **** print the active cell cursor direction on the window
CALL FCOL(12): CALL P(21,I,CHR$(RT%)+BK$(5))
CALL FCOL(2222)

rem **** erase and print the cell content on the status line
CALL P(21,39,BK$(LEN(XY$(Rl%,Cl%»))
CALL P(21,39,XY$(R2%\C2%)

rem **** print the content heading on the status line
CALL (12): CALL P(21,30,FM$): CALL FCOL(II)

rem ***
rem * SELECT PROCEDURE *
rem ***
SELT: CALL P(23,1," 1"+CHR$(62)+BK$(L%»

CALL P(23,4,""): CODE% = INKEY
IF CODE% = 13 THEN 9.4 ELSE CK$ = J$(STR$(CODE%),3,O)

LEV
LEV
LEV
LBV

GOTO
GOTO
GOTO
GOTO

39.3
39.4
39,.5
39.6
39.6
39.7
39,.8
39.9

39.1
39.2

37

IF CODES = 13 THEN 9.4 ELSE CK$ = J$(STR$(CODE%),3,0)
CURCODE% = MATCH(CK$,CURSTR$,1)
IF CURCODE% <> 0 THEN 9.224
DTYCODE% = MATCH(CK$,DTYSTR$,1)
IF DTYCODE% <> 0 THEN 9.223
COMCODE% = MATCH(CK$,COMSTR$,1)
IF COMCODE% <> 0 THEN 9.222
IF CODES >= 32 OR CODES <= 127 THEN 9.221
GOTOSELT .rem ********************~*******~********************************rem * DATA INPUT PROCEDURE *

rem***
9.221 V$ = CHR$(CODE%): CALL SP%(MKEY%)

J% = 2: INSK% = 0: D% = 1
UP$ = J$(STR$(J%),2,1): CALL P(23,1,UP$+">")
IF D% = 1 THEN CALL P(23,4,V$+BK$(ABS(L%-LEN(V$»)))
L% = LEN(V$): CALL P(23,J%+3,"")
D% = 1: CCODE% = INKEY: CHK$ = J$(STR$(CCODE%),3,0)
M% = MATCH(CHK$,INCODE$,I)
IF M% = 0 THEN 39.9 ELSE M% = (M%-1)/3+1
ON M% GOTO 39.1,39.2,39.3,39.4,39.5,39.6,39.7,39.8
COMKEY% = 0: GOTO 9.3
IF J% = 1 THEN V$ = "": GOTO SELT ELSE \
V$ =MID$(V$,I,LEN(V$)-I): J% = J%-I: GOTO 37
IF INSK% = 1 THEN INSK%= D ELSE INSK% = 1: GOTO 37
V$ = DECH$(V$,J%): GOTO 37
D% = 0: IF J% > 1 THEN J% = J%-1: GOTO 37 ELSE GOTO 37
D% = 0IF J% <=L% THEN J% = J%+1: GOTO 37 ELSE CCODE% = 32
J% = L%+1: GOTO 37
J% = 1: GOTO 37
IF CCODE% < 32 OR CCODE% > 121 THEN 37
R$ = CHR$(CCODE%)
IF J% = L% THEN V$ = V$+R$: J%= J%+I: GOTO 37
IF INSK% = 1 THEN V$= INCH$(V$,R$,J%) \
ELSE V$ = RECH$(V$,R$,J%)
J% = J%+I: GOTO 37rem ***

rem * COMMAND PROCEDURE *rem ***
9.222 1% = ((COMCODE%-1)/3)+1

ON 1% GOTO COMMAND,49.2,49.3,49.4,49.5,49.6,49.7,\
49.8,49.9

49.2. DUM$ = FTAB$: GOSUB RECAL: KEY% = 3: GOTO LEV
49.3 GOSUB CJUMP: KEY% = 3: GOTO LEVO
49.4 GOTO 5.0
49.5 GOSUB HOME: KEY% = 4:
49.6 GOSUB PGUP: KEY% = 1:
49.7 GOSUB PGDN~ KEY% = 1:
49.8 GOSUB SEND: KEY% = 1:
49.9 GOTO XCHANGE
rem ***********1***rem * DATA TYPE SET PROCEDURE *
rem **************************~**********************************
9.223 MKEY% = ((DTYCODE%-I)/3)+1

4: GOTO LEV

MOVEL
MOVED
MOVEU
KEY% =MOVER:

CALL SP%(MKEY%)
GOTO SELT

re' **1*1****1******************************-******************1*
rem * CURSOR CONTROL KEY SET PROCEDURE *
rem ********1**1*****
9.224 I%=«CURCODE%-1)/3)+1

ON 1% GOTO 44.1,44.2,44.3,44.4-
44.1 RT% = 94:-GOTO 9.4
44.2 RT% = 62: GOTO 9.4
44.3 RT% = 86: GOTO 9.4
44.4 RT% = 60: GOTO 9.4
rem *************************1******************1****************
rem * MAIN PROCEDURE *
rem ***I******************~************************-*************
rem **** input data assLgned by the buffer variable
9.3 AA$=V$
rem **** branch for processing the dataON MKEY% GOTOVENTRY,TENTRY,RENTRY;FENTRY
rem ********1***1********
rem * TEXT DATA PROCESSING *
rem ***
TENTRY: XY$(R2%,C2%) = AA$: GOSUB TINDEX

X$(R2%,C2%l = AA$: YY%(R2%,C2%) = 1: GOTO 9.4
rem ***
rem * REPEATING TEXT DATA PROCESSING *
rem ***-*******************
RENTRY: FOR I%=C2% TO 26XY$(R2%,I%) = AA$: X$(R2%,I%) = AA$

NEXT 1%
GOSUB TINDEX: YY%(R2%,C2%) = 1
CALL ARRAY(CST%,CED%,RST%,RED%;IIC%,IIR%}
GOTO 9.4

rem ***
rem * VALUE DATA PROCESSING *
rem ***
VENTRY: IF DGCK% (REBK$ (AA$)) = 0 THEN DERROR% = 1: GOTO E~IES

X$(R2%,C2%)=AA$:IF YY%(R2%,C2%)=-2 THEN \
:DUM$ = CD$(R2%,C2%}: GOSUB RECAL \
:CALL ARRAY(CST%,CED%,RST%,RED%,IIC%,IIR%): GOTO 9.4
YY%(R2%,C2%) = -2: GOSUB VINDEX: GOTO 9.4

rem ***
rem * FORMULA PROCESSING *
rem ***
FENTRY: GOSUB EXPTRXY$(R2%,C2%}= V$: X$(R2%,C2%} = STR$(RESULT)

YY%(R2%,C2%) = -3: GOSUB FINDEX
rem ***
rem * CURSOR CONTROL PROCEDURE *
rem ***
9.4 R1% = R2%: C1% = C2%: MMR% = MR%: MMC% = MC%

CALL P(23,4,BK$(75)
IF RT% = 60 THEN GOTO
IF RT% = 86 THEN GOTO
IF RT% = 94 THEN GOTO
IF C2% = CLIMIT% THEN

KEY% = 4: GOTO LEV
GOTO LEV
IIR%-I: R2% = R2%-I:\MOVEU:

MOVED:

GOSUB SETWIDTH: MC% = CST%: CAL~ P(23,4,BK$(75»)
IF C2% = LIMIT% THEN GOTO MOVERI
FOR 1% = IIC% TO C2%: MC% = MC%+W%(I%): NEXT 1%
C2% =C2%+I: KEY% = 4: GOTO LEV

MOVERl: IIC% = IIC%+I: GOSUB SETWIDTH
IF LIMIT% < C2%+1 THEN MOVER 1
FOR 1% = IIC% TO C2%: MC% = MC%+W%(I%): NEXT 1%
C2% = C2%+I: KEY% = 2: GOTO LEV
IF C2% = 1 THEN KEY% = 4: GOTO LEV
IF MC% = CST% THEN IIC% = IIC%-I: C2% = C2%-I:\
KEY% ~ 2: GOTO LEV
MC% = MC%-W%(C2%-I): C2% c C2%-I: KEY% = 4: GOTO LEV
IF R2% = RLIMIT% THEN KEY,% = 4: GOTO LEV.
IF MR% = RED% THEN IIR% = IIR%+I:R2i = R2%*I:\
KEY% = 1: GOTO LEV
MR% = MR%+I: R2% = R2%+I:
IF R2% = 1 THEN KEY% = 4:
IF MR% = RST% THEN IIR% =
KEY% = 1: GOTO LEV
MR% = MR%-I: R2% = R2%-l: KEY% = 4: GOTO LEV

rem ***
rem * SLASH COMMAND PROCEDURE 1:
rem **1:
COMMAND: CALL P(22,I,BK$(80»

'C..\LLP(22,1,"/B,C,D,F,G,I,L,M,O,Q,R,S,W,X,Z")
CALL P(23,4,BK$(PP%»):CALL P(23,3,")/")
VC%=INKEY :CALL P(22,I,BK$(30»
IF VC%=67 OR VC%=(67+32) THEN GOTO SPWDRAW
IF VC%=70 OR VC%~(70+32) THEN GOTO FORMAT
IF VC%=71 OR,VC%=(71+32) THEN GOTO GLOBAL
IF VC%=76 OR VC%=(76+32) THEN GOTO LOAD
IF VC%=81 OR VC%=(81+32) THEN GOTO QUIT
IF VC%=83 OR VC%=(83+32) THEN GOTO SAVE
IF VC%=87 OR VC%=(87+32) THEN GOTO SPLITSC
IF VC%=88 OR VC%=(88+32) THEN GOTO COMMAND
IF VC%=79 OR VC%=(79+32) THEN GOTO HPRINT
IF VC%=8 THEN CALL SP%(MKEY%):KEY%=4:GOT6 LEV
GOTO COMMAND

rem **
rem * SAVE PROCEDURE *
rem **
SAVE: CALL P(22,1,"Enter the file name "):CALL P(23,5,CHRS(32»)

GOSUB INDATA: IF BACK = 1 THEN GOTO COMMAND
CALL P(22,1,"Saving process continuing")
WD$ = STR$(W%11»: CALL P(23,5,BK$(LEN(V$)))
CREATEV$ AS 1FOR 1% = 2 TO 30: WD$ = WD$+":"+STR$(W%(I%»: NEXT 1%
WD$=WD$+,,:n
PRINT #1; WD$,TOPCELL$
PRINT #1; TTAB$
PRINT #1; VTAB$
PRINT #1; FTAB$
TTT$ = TTAB$: GOSUB SVl
TTT$ = VTAB$: GOSUB SVI
TTT$ _ FTAB$: GOSUB SVI

LDI
LDI
LDI

GOSUB
GOSUB
GOSUB

TTAB$:
VTABS.:
FTAB$:

5.711

5.712

234

CLOSE 1
CALL P(22,I,BK$(26))
KEY% = 4: GOTO LEV

REM """"""""" SAVE CELL'S INFOMATION """""*""""
SV1: FOR MP% = 1 TO LEN(TTT$) STEP 5

BB$ = MID$(TTT$,MP%,5): GOSUB CELLID
PRINT #1; XY$(II%,JJ%),X$(II%,JJ%),\
CD$(Il%,JJ%),YY%(II%,JJ%)
NEXT MP%: RETURN

rem """""""""""""""""""""""""""""'"rem , LOAD PROCEDURE 1:
rem """"""""""""""""""""""""""""""*LOAD,: CALL P(22,1,"Enter the file name "):CALL P(23,5,CHRS(32l1

GOSUB INDATA: IF BACK = 1 THEN GOTO COMMAND
CALL P(22,1,"Loading process continuing")
CALL P(23,I,BK$(LEN(V$)))
IF END #2 THEN 234
OPEN V$ AS 2
READ #2; WD$,TOPCELL$
READ #2; TTAB$
READ #2; VTAB$
READ #2; FTAB$
IF TTAB$ (> •.••THEN TTT$ =
IF VTAB$ (> .••.THEN TTT$ =
IF FTAB$ (> .•••THEN TTT$ =
FOR 1% = 1 TO 30J~ = MATCH(":",WD$,I): W%(I%) = VAL(LEFT$(W6$,J%-I))
WD$ = RIGHT$(WD$,LEN(WD$)-J%): NEXT 1%
BB$ = TOPCELL$: GOSUB CELLID: MR% = RST%: MC% = CST%
IIR% = 11%: IIC% = JJ%: R2% = 11%: C2% = JJ%
CALL P(22,I,BK$(26))

,. KEY% = 1: GOTO LEV
~em"" load the cell's informations
LD1: FOR MP% = 1 TO LEN(TTT$) STEP 5

BB$ = MID$(TTT$,MP%,5): GOSUB CELLID
READ .#2; XY$(II%,JJ%),X$(II%,JJ%),\
CDS(II%,JJ%),YY%(II%,JJ%)
NEXT MP%: RETURN

rem "*'*'*'*'****'**"*'**'******'**************************'**'
rem * SPLIT SCREEN PROCEDURE *
rem *******************'***********'*****'***************'***'***
SPLITSC: IF SPLIT%=1 THEN \CALL P(22,1,"Split Screen Mode Active:Press any key")\

:CALL P(23,3,">"):FAL%=INKEY:GOTO 9.2
CALL P(22,1,"Vertical Or Horizontal:Press V Or H")
CALLP(23,3,">/Split Screen,")
VC71%=INKEY:CALL P(22,I,BK$(40»):CALL P(23,3,BKS(15)
IF VC71%=72 OR VC71%=(72+32) THEN SPLIT%=I:GOTO 5.711
IF VC71%=86 OR VC71%=(86+32) THEN SPLIT%=I:GOTO 5.712
IF VC71%=8 THEN GOTO COMMAND
GOTO SPLITSCRST%:MR%:CSPLIT%:O:TOPC$:TOPCELL$
IIR%=R2%:CALL P(RST%_I,I,BKS(3)):KEY%=3:GOTO LEVa
MC%=MC%+4:CST%=MC%:CSPLIT%=I:TOPCs=TOPCELL$
IIC%=C2%:KEY%=3:GOTO LEVO

5.721

5.741

5.751

5.7511
5.75112

rem ***
rem * SPLIT SCREEN WITHDRAW PROCEDURE *
rem ***
SPWDRAW: CALL P(22,1,"Withdraw Split Mode:Press Y or N")

CALL P(23,4,""):VC72%=INKEY:CALL P(22,1,BK$(35»)
IF VC72%=89 OR VC72%=(89+32) THEN SPLIT%=O:GOTO 5.721
IF VC72%=78 OR VC72%=(78+32) THEN KEY%=4:GOTO LEV
IF VC72%=8 THEN GOTO COMMAND ELS~ GOTO SPWDRAW
MR%=2:MC%=5:BB$=CELL$:GOSUB CELLID
IIR%=II%:IIC%=JJ%:R2%=II%:C2%=JJ%
~ST%=2:C~T%=5:RED%=20:CED%=81
KEY%=3:GOTO LEVO

rem ***
rem * EXIT PROCEDURE *
rem ***
QUIT: CALL P(22,1,"Exit from the spread-sheet? Press Y or N")

CALL P(23,3,")/Quit,") .
VC73=INKEY:CALL P(22,1,BK$(50)):CALL P(23,3,BK$(8) I
IF VC73=89 OR VC73=(89+32) THEN 5.0
IF VC73=78 OR VC73=(78+32) THEN 9.2
IF VC73=8 THEN GOTO COMMAND ELSE GOTO QUIT

rem ***
rem * BORDER ON/OFF PROCEDUER *
rem ***
GLOBAL: IF SPLIT%=l THEN GOTO SPLITSC

CALL P(22,1,"Border off? Yes or No")
CALL P(23,3,")/Global,")
VC74%=INKEY:CALL P(22,1,BK$(25)):CALL P(23,3,BK$(10»)
IF VC74%=78 OR VC74%=(78+32) THEN BOR%=1:KEY%=4:GOTO LEVO
IF VC74%=89 OR VC75%=(89+32) THEN BOR%=O:GOTO 5.741
IF VC74%=8 THEN GOTO COM~lAND ELSE GOTO GLOBAL
CALL P(1,1 ,BK$(80»
FOR 1%=1 TO 20:CALL P(I%,1,BK$(4»):NEXT 1%
KEY%=4:GOTO LEVO

rem ***
r7m'* EIDTH SETTING AND JUSTIFICATION PROCEDURE *
rem .***
FORMAT: CALL P(22,1,"Width,Right justification,Left justification")

CALL P(23,3,")/Format,")
VC75%=INKEY:CALL P(22,1,BI(S(50)):CALL P(23,3,BK$(10)
IF VC75%=87 OR VC75%=(87+32) THEN 5.751
IF VC75%=82 OR VC75%=(82+32) THEN 5.752
IF VC75%=76 O,R VC75%=(76+32) THEN 5.753
IF VC75%=8 THEN GOTO COMMAND
GOTO FORMATCALL P(22,1,"AII cells or active column only? Press G or <cr)")
CALL P(23,3,")/Width,")
VC751%=INKEY:CALL P(22,1,BK$(50):CALL P(23,3,BKS(lO))
IF VC751X=71 OR VC751%=(71+32) THEN G%=l:GOTO 5.7511
IF VC751%=13 THEN G%=O:GOTO 5.7511
IF VC751%=8 THEN GOTO FORMAT
GOTO 5.751
CALL P(22,1,"Set width between 6 to 75")
GOSUB INDATA:WD%=VAL(V$):CALL P(22,1,BK$(50)

.IF BACK%=l THEN 5.751

IF BACK%=l THEN 5.751IF (WD% >= 6) AND (WD% <= 75) THEN 5.75111CALL Pl22,l,"Width yange between 6-75: s~t the correct width")
GOTO 5.75112

5.75111 CKEy%=l:IF G%=O THEN 5.75113
FOR 1%=1 TO CLIMIT%
W%(I%)=WD%:NEXT 1%MC%=CST%:C2%=IIC%:MR%=RS~%:R2%=IIR%:KEY%=3:GOTO LEVO

5.75113 W%(C2%)=WD%:KEY%=2:GOTO LEV5.752 PROMPT$="Global,range or active cell only? Press G,R or<cr>")
CALL PI22,l,PROMPT$)CALL P(23,3, ">/Right ,Justification, ")VC752%=INKEY:CALL PI22,l,BK$(60)):CALL P(23,3,BK$(20))
IF VC752%=71 THEN RJUS%=1:KEY%=3':GOTO LEV
IF'VC752%=88 TH~N RJUS%=O:GOTO 5.7521
IF VC752%=13 THEN RJUS%=O:GOTO 5.7522
IF VC752%=8 THEN GOTO FORMAT

5.7521 KEy%=l:GOTO LEV5.7522 IF YY%(R2%,C2%)=0 THEN KEy%=1:GOTO LEV
YY%(R2%,C2%)=~ABS(YY%(R2%,C2%)):KEY%=1:GOTO LEV

5.753 RJUS%=O:KEY%=l:GOTO LEVrem***
rem * SCREEN EXCHANCE PROCEDURE - *rem***
XC~ANGE: CALL CURSOR$(R2%,C2%,MR%,MC%):KEY%=3
/ BB$=TOPC$:TOPC$=TOPCELL$GOSUB CELLID:IIR%=II%:IIC%=JJ%:R2%=II%:C2%=JJ%

IF CSPLIT%=l THEN 5.761IF RST%=2 THEN RST%=RED%+2:RED%=20:MR%=RST%:MC%=5:GOTO LEV'
RED%=RST%_2:RST%=2:MR%=2:MC%=5:GOTO LEV

5.761 IF CST%=5 THEN CST%=CED%+4:CED%=81:MC%=CST%:MR%=2:GOTO LEV
CED%=CST%_4:CST%=5:MC%=5:MR%=2:GOTO LEV

rem ***
rem * PRINT PROCEDURE *
rem ***
HPRINT: CALL P(22,1,"Printer or Disk? "):CALL PI23,3,"/Output,")

VC77%=INKEY:CALL P(22,l,BK$118)):CALL P(23,3,BK$(8))
IF VC77%=80 OR VC77%=112 THEN 5.771
IF VC71%=68 OR VC77%=100 THEN 5.772
IF VC77%=8 THEN GOTO COMMAND ELSE GOTO HPRINT

5.771 CALL P(22,l,"LINE WIDTH? UPT0132")
CALL P(23,3,"/Printing width ?")
INPUT PWD%:T%=CED%:CED%=PWD%CALL P(22,l,"Printing with border? Yes or No")
VC771=INKEY:IF VC771=89 THEN PBOR%=l ELSE PBOR%=O
IF PBOR%=l THEN CALL COLUMNP(RST%,CST%,CED%,IIC%,l)

/_10%= IIR%: CDIF%=CED%-CST%
FOR R%=RST% TO RED% .IF PBOR%=l THEN T$=J$(STR$(IO%),3,1)+CHR$(124) ELSE T$=BK$(4)
JO%=IIC%:C%=W%(JO%)
WHILE C%<=CDIF%IF SGN(YY%(IO%,JO%))=-l THEN T$:T$+J$(X$(IO%,JO%l,W%(JO%),11 \
ELSE T$=T$+J$(X$(IO%,JO%),W%(JO%I,O)
JO%=JO%+l:C%=C%+W%(JO%)
WEND

LPRINTER
PRINT J$(T$,CDIF%,O)

/< IO%=iO%+1:NEXT R%
CONSOLE
CED%=T%:GOTO COMMAND

rem **************************'****'**********************'*'****
rem * GOTO CELL PROCEDURE *
<rem ***********************************'*************'****'****'*
CJUMP: CALL P(23,4,"=~"):BB$=''''
5.61 CJ%=INKEY:IF CJ%=13 THEN ~.6

IF CJ%=8 THEN BB$=BS$(BB$) ELSE BB$=BB$+CHR$(CJ%)
CALL P(23,7,BB$+" "):GOTO 5.61

5.6 BB$=REBK$(BB$):GOSUB CELLID
IIR%=II%:IIC%=JJ%
R2%=IIR%:C2%=IIC%:MR%=RST%:MC%=CST%:RETURN

rem *****'~***~********************************'****'****''******
rem * HOME PROCEDURE *
rem '*********************'*******************************'**'***
HOME: BB$=TOPCELL$:GOSUB CELLID

R2%=II%:C2%=JJ%:MR%=RST%:MC%=CST%:RETURN
rem ************************************'*****************'**'***
rem * PAGE UP PROCEDURE *
rem **************'*'***'
PGDN: BB$=TOPCELL$:GOSUB CELLID

IF II%=RLIMIT%-19 THEN KEY%=4:GOTO LEV
IF 11%+19 > RLIMIT% THEN IIR%=RLIMIT%-19 ELSE IIR%=II%+19
IIC%~JJ%:R2%=IIR%:C2%=IIC%:MR%=RST%:MC%=CST%:RETURN

rem ************'*'**************"*'**************"*""""";
rem , PAGE DOWN PROCEDURE ;
rem """"""""""""""""""""""""""""J"'tPGUP: BB$=TOPCELL$:GOSUB CELLID

IF 11%=1 THEN KEY%=4:GOTO LEV
IF 11%-19 < I THEN IIR%=l ELSE IIR%=II%-19
IIC%=JJ%:R2%=IIR%:C2%=IIC%:MR%=RST%:MC%=CST%:RETURN

rem """""""""""""""""""""""*""*"*""*'
rem """""""""""""""""""""""""""""'"rem , EXPRESSION INTERPRETER '
rem , MODULE '
rem """""""""""""""""""""""""""""'"EXPTR: FKEY% = 0: M1% = 0: NOPR% = 0
rem "~, remove the blanks from the source statement string

AA$ = REBK$(AA$)
rem "" check for the boolean function keyword

FOR LTYPE% = 1 TO 6
FPOS% = MATCH{LFUN$(LTYPE%),AA$,l)
IF FPOS% <> 0 THEN GOSUB LFUN: GOTO BCHECK

NEXT LTYPE%
rem "" check for the built-in function keyword
BCHECK: FOR BTYPE%= 1 TO 5

FPOS% = MATCH(BFUN$(BTYPE%),AA$,l)
IF FPOS% <> 0 THEN GOSUB BFUN: GOTO BCHECK

NEXT BTYPE%
rem "" check for the library function keyword

IF MATCH(LPR$,AA$,l) <> 0 THEN GOSUB LIBF
rem "" check for the precedence delimiter

LOOP':

/r~'m****
LEX2 :,

rem ****
LEX3:
rem****

M1% = M1%+1: PPOS% = MATCH(LPR$,AA$,1)
IF PPOS% <> 0 THEN GOSUB BRAKET ELSE NOPR% = 1: A$=AA$

rem **** call the arithmetic expression interpreter
GOSUB LEX: GOSUB POST: GOSUB VALUEEX: GOSUB EVALUTE
TS(M1%) = RESULT

rem **** library function evaluation
IF SWF% = 1 THEN GOSUB EVA.~IB: SWF% = 0: IV% = IV%-1

rem **** loop back for further interpretation
IF NOPR% <> 1 THEN GOTO LOOP

rem **** back to the boolean expression interpreter
IF FKEY% = 1 THEN GOSUB LFUN
IF FKEY% = 1 THEN GOTO BCHECK

rem ***' erid of the interpretation
RETURN
STOP

rem ***
rem" * LEXICAL ANALYZER *
rem ***
rem **** initialize the token and the buffer index
LEX: K% = 1: M% = 1
rem **** search for the operator in the expression
LEX1: FOR 1% = 1 TO 5

IF 0$(1%) : MID$(A$,K%,1) THEN GOTO LEX2
NEXT 1%

rem **** check for the final token
IF LEN(A$) = K% THEN GOTO LEX3
K% =K%+1: GOTO LEX1
check for the unary operator and exponent token
IF K% = 1 THEN K% = 2: GOTO LEX1
IF MID$(A$,K%-1,1) = "E" THEN K% = K%+1: GOTO LEX1

rem ****isolate the tokens from the expression string
B$(M%) = LEFT$(A$,K%-1)
B$(M%+1) = 0$(1%)
A$ = RIGHT$(A$,LEN(A$)-K%)

rem **** increment the token table index and set the buffer index
M% = M%+2: K% = 1: GOTO LEX1
isolate the final token
B$(M%) = A$: N% = M%
set the single token key
IF M% = 1 THEN SVAL% = 1 ELSE SVAL%=O
RETURN

rem ***
rem *. SYNTAX ANALYZER *
rem ***
rem **** initialize the token table index and the buffer index
POST: K% = 2: M% = 1: L% = 0
rem **** exchange the elements
POST1: TM$ = B$(K%-L%): B$(K%-L%) = B$(K%+1): B$(K%+1) = TM$
rem **** check for the final token under consideration
POST2: K% = K%+1: IF K% > N% THEN GOTO POST3
rem **** find the operator number

1% = MATCH(B$(K%),OPERATOR$,l)
IF 1%= 0 THEN POST2

rem **** load the operator buffer
STK%(M%) = 1%: M% = M%+1

VALEX2 :
rem ****
VALEX3 :

IF H% = 2 THEN GOTO POST2 ELSE H% = 1
rem **** check the precedence of the operator for arrangement

IF STK%(2) = 1 OR STK%(2) = 2 THEN L% = 0: GOTO POST1
IF STK%(2) = 5 THEN L% = 1: GOTO POSTI

.IF STK%(l) = lOR STK%(l) = 2 THEN L% = 1: GOTO POSTI
L% = 0: GOTO POSTI

rem **** exit from the procedure
POST3: RETURNrem ******************~**********************~******************"
rem * VALUE TABLE GENERATOR •
rem **',
rem **** initialize the table and set the table index
VALUEEX: DIM Z(50): 11% = 1rem **** check for the final token for consideration

WHILE 11% <= N%
rem **** check and process for the number token

IF HATCH(LEFTI(BI(Il%),l),DIGITI,l)<>O THEN \. Z(I1%) = VAL(BI(Il%)):GOTO VALEX3
.rem **** check and process for the operator token

IF HATCH(BI(Il%),OPERATORI,l)<>O THEN GOTO VALEX3
FOR J% = 1 TO 5

rem **** check and process for the temporary storage token
IF SI(J%) = BI(I1%) THEN Z(I1%) = TS(J%): GOTO VALEX3
NEXT J%

rem **** check for the token with unary operator
FOR OP% = 1 TO 2IF OI(OP%) = LEFTI(BI(Il%),l) THEN GOTO VALEXI
NEXT OP%

rem **** process for the identifier token
BBI = BI(Il%): GOSUB CELLID: GOSUB CRF
Z(Il%). = VAL(XI(II%,JJ%»): GOTO VALEX3

rem **** process for the token with unary operator
VALEXl: BBI = RIGHTI(BI(I1%),LEN(BI(Il%)-1)

IF MATCH(LEFTI(BBS,l),DIGITI,l)<>O THEN \VUE = VAL(BBS): GOTO VALEX2
FOR J% = 1 TO 5IF SI(J%) = BBI THEN VUE = TS(J%): GOTO VALEX2
NEXT J%GOSUB CELLID: GOSUB CRF: VUE = VAL(XI(II%,JJ%»
IF OP% = 1 THEN Z(ll%) = -VUE ELSE Z(I1%) = VUE

increment the token table index
11% = 11%+1

WEND
rem **** exit from the procedure

RETURNrem ***
rem * VALUE EVALUATION *

/r~m ***
rem **** check for the single token
EVALUTE: IF SVAL% = 1 THEN RESULT = Z(l}: RETURN
rem;**** check the table pointer with unity

WHILE N% > 1 .
rem **** search for an operator

FOR 1% = 1 TO N%
J% = MATCH(BS(I%) ,0PERATORS,I)
IF J% <> 0 THEN ~OTO EVALTEI

NEXT 1%
EVALTEl: FIR% = 1%-1: SED% = 1%-2
rem **** branch to perform operation according to the operator

, ON J% GOTO ST,AD,DV,ML,EP
rfm **** perform substraction operation
'ST: Z(SED%) = Z(SED%)-Z(FIR%): GOTO EVALTE2
rem **** perform addition operation
AD: Z(SED%) = Z(SED%)+Z(FIR%): GOTO EVALTE2
rem **** perform division operation
DV: Z(SED%) = Z(SED%)/Z(FIR%): GOTO EVALTE2
rem **** perform multiplication operation
ML: Z(SED%) = Z(SED%)*Z(FIR%): GOTO EVALTE2
rem'**** perform exponentiation operation
EP: ~(SED%) = Z(SED%)'Z(FIR%)
rem **** shifts the elements to eliminate the operands
EVALTE2: WHILE 1% < N%

BS(I%-I) = BS(I%+I): Z(I%-I) = Z(I%+I)
1% = 1%+1: WEND

rem **** decrement the the table pointer and back for looping
N% = N%-2: WEND

rem **** store the result and exit from the procedure
RESULT = Z(I): RETURN

rem ***
rem * BOOLEAN EXPRESSION INTERRETER*
rem ***
rem **** check,the key for new entry or not
LFUN: IF FKEY% = 1 THEN GOTO LC21
rem **** initialize the tables and the indexes

DIM ZZ(6), TABLES(6): K% = 1: ED% = 0: AUG% = 0
rem **** identify the argument delimiter

LI% = MATCH(LPRS,AAS,I)
rem **** isolate the function argument string

TMS = MJDS(AAS,Ll%+I,LEN(AAS)-LI%-I)
rem **************~~***
rem * BOOLEAN LEXICAL ANALYSER *
rem ***
rem **** identify the token delimiter character
LCI: L3% = MATCH(COMS,TMS,I)
rem **** load the buffer variable for further processing

IF L3% = 0 THEN TTMS = TMS: ED% = 1: GOTO LCII
TTMS = LEFTS(TMS,L3%-I)

rem **** identify the re'lational operator if any
LCll: FOR 1% = I TO 9

RPOS% = MATCH(LRES(I%),TTMS,I)
IF RPOS% <> 0 THEN GOTO LCI2

NEXT 1%
rem **** store the token having no relational operator

TABLES (K%) = TTMS: K% = K%+I: GOTO LCI3
rem **** store the operands and the operator tokens
LCI2:TABLES(K%) = LEFTS(TTMS,RPOS%-I)

TABLES(K%+l) = LRES(I%): ZZ(K%+l) = 1%
TABLES(K%+2) = MIDS(TTMS,RPOS%+LEN(LRES~I~)),LEN(TTMS))

FALSE
FALSE
FALSE
FALSE
FALSE

GOTO
GOTO
GOTO
GOTO
GOTO

ELSE
ELSE
ELSE
ELSE
ELSE

rem ""TRUE:
rem ""

rem ""
58.64

rem ""58.65

rem "*'.FALSE:
rem ""58.61
rem ""58.62
rem ""58.63

rem ""LC2 :
rem ""
LC21

rem ""LCI3:
rem ""

rem **** increment the token table index
K% = K%+3
check for the final token
IF ED% <> 1 THEN TMS=RIGHTS(TMS,LEN(TMS)-L3%): GOTO LCI
set the token ~ange
RANGE% = K%-1

rem ***
rem * BOOLEAN EXPRESSIN VALUE TABLE GENERATION *
rem ***'*****************************"**"""'*""*'*"*****'*
rem **" initialize the token tnble and ~he displacement index

TP% = I: DIS% = 2
call the expression interpreter for evaluation
AA$ = TABLES(TP%): FKEY%= 1: RETURN
st9re the evaluated value and increment the index
ZZlTP%) = RESULT: TP% = TP%+DIS%
IF TP% = 3 THEN GOTO LC2

r~m '*** check for the final tokenIF TABLE$(TP%) = ,,"THEN TP% = 1: GOTO LC3
IF ED% = 0 THEN GOTO LC2
TP% = 4: ED% = 0
IF RANGE% =6 THEN DIS% = 2 ELSE DIS% = 1
GOTO LC2

rem ****'******""""*"""""""""""'*""""""",*,rem , BOOLEAN EXPRESSION EVALUATION '
rem """""""""""""""""""""'*"""""""'"rem "" load the operands and the operator buffer variables
LC3: OPDl = ZZ(TP%): OPR = ZZ(TP%+I): OPD2 = ZZ(TP%+2) .
rem '*'* switch to a particular label according to the operator

ON OPR GOTO 58.51,58.51,58.52,58.52,58.53,58.53,58.54,\
58.55,58.56

58.51 IF OPDl <> OPD2 THEN GOTO TRUE
58.52 IF OPDl >= OPD2 THEN GOTO TRUE
58.53 IF OPDl <= OPD2 THEN GOTO TRUE
58.54 IF OPDI = OPD2 THEN GOTO TRUE
58.55 IF OPDI > OPD2 THEN GOTO TRUE
58.56 IF OPDI < OPD2 THEN GOTO TRUE
switch to a label according to the function type
ON LTYPE% GOTO 58.61,58.62,58.63,58.64,58.63i58.65
store the result for the conditional IF operation
RESULT = ZZ(5): GOTO EXIT
set the result for the logical NOT operation
RESULT = 1: GOTO EXIT
perform functions for the logical AND & XNOR operation
IF ED% = 0 THEN ED% = 1: TP% = 4: GOTO LC3
IF AUG% = 1 THEN RESULT = 1 ELSE RESULT = 0
GOTO EXIT
set the result for the logical OR operation
RESULT = 0: GOTO EXIT
perform functions for the logical XOR operation
IF ED% = 0 THEN ED% = 1: TP% =4: GOTO LC3
IF AUG% = 1 THEN RESULT = 0 ELSE RESULT = 1
GOTO EXITswitch toa label according to the function type
ON LTYPE% GOTO 58.71,58.72,58.73,58.74,58.75,58.74
store the result for the conditional IF operation

rem ****
58.71

rem ****
58.72

rem ****
58.73

rem ****
58.74

store the result for the conditional IF operation
RESULT: ZZ(4): GOTO EXIT
set the res"lt for the logical NOT operation
RESULT ~ 0: GOTO EXIT
set the result,for the logical AND operation
RESULT: I: GOTO EXITperform functions for the logical OR & XNOR operation
IF ED% : 0 THEN ED% : I: TP% : 4: AUG% : 1: GOTO LC3
IF AUG% : 1 THEN RESULT : I ELSE RESULT : 0
GOTO EXIT

re~ ****perform functions for the logical XOR operation
58.75 IF ED% : 0 THEN ED% : I: TP% : 4: AUG% : 1: GOTO LC3

IF AUG% : 1 THEN RESULT : 0 ELSE RESULT : I
rem **** set the key and exit from the procedure
EXIT: FKEY% : 0: RETURN
rem ***
rem * BUILT-IN FUNCTION INTERPRETER *
rem ***************************~*********************************
rem **** initialize the temporary storage index
BFUN: Ml% = Ml%+1
rem **** identify the function argumenr string

11% : MATCH(LPR$,AA$,FPOS%): 12% : MATCH(RPR$,AA$,Il%)
rem **** isolate the function argument string

A$: MID$(AA$,Il%+I,I2%-Il%-I)
rem **** replace the function by the temporary storage identifier

AA$: LEFT$(AA$,FPOS%_I)+S$(MI%)+RIGHT$(AA$,LEN(AA$)-I2%)
rem **** call the p'rocedures for the evaluation of the function

GOSUB EXPAND: GOSUB BEVALUTE
ON BTYPE% GOTO 23.1, 23.2, 23.3, 23.4, 23.5

rem **** load the temporary storage by the function value & exit
23.1 GOSUB MX: TS(Ml%) : MAX: RETURN
23.2 GOSUB MN: TS(MI%) : MIN: RETURN
23.3 GOSUB SM: TS(Ml%) : SUM: RETURN
23.4 GOSUB AG: TS(Ml%) : AVG: RETURN
23.5 TS(Ml%): CNT%: RETURN
rem ***
rem * FUNCTION ARGUMENT LEXICAL ANALYZER *
rem ***
rem **** initialize the indexes
EXPAND:M% : 0: J% : 0
rem **** check for the final token for isolation

WHILE A$O""
~em **** identify the token delimiter

K2% : MATCH(SLON$,A$,I)
IF K2% : 0 THEN BUFF$: A$: A$: "": GOTO BINI

rem **** isolate the token and load the buffer for checking
BUFF$.: LEFT$ (A$,K2%-1)

rem **** reduce the argument string
A$: RIGHT$(A$,LEN(A$)-K2%)

rem **** identify the range or list delimiter
BINI: K2% : MATCH(CLON$,BUFF$,I)

IF K2% <> G THEN J%= J%+I: GOTO BIHZ
rem **** store the individual cell token

M%.: M%+I: MX$(M%) : BUFF$: GOTO BIN3
rem **** isolate and store the tokens representing list or range

,
/

BIN2:

rem ****
BEV?:
rem ****

rem ****
B-EV4:
rem ****

/

LLMT$(J%) = LEFT$(BUFF$,K2%-1)
RLMT$(J%) = RIGHT$(BUFF$,LEN(BUFF$)-K2%)

looping back for further checking
WENDexit from the procedure
RETURNrem ***

rem * FUNCTION VALUE TABLE GENERATOR *
rem ***
rem ****initialize the. value table and set the indexes
BEVALUTE:DIM Z(100): NR% = J%: NC% = M%: NT% = 0
rem **** check for the individual token index limit

IF NC% = 0 THEN BEV4
FOR K% = 1 TO NC%

rem **** identify the cell by calling a procedure
BB$ = MX$(K%): GOSUB CELLID

rem **** extract the value from the data stru6ture and store
Z(K%) = VAL(X$(II%,JJ%))

NEXT K%check for the list or range index limit
IF NR% = .0 THEN LMT% = NC%: RETURN
increment the token table index
NT% = NT%+lrem **** identify the cell representing the lower limit
BB$ = LLMT$(NT%): GOSUB CELLID
KK1% = 11%: LL1% = JJ%

rem **** identify the cell representing the upper limit
BB$ = RLMT$(NT%): GOSUB CELLID
KK2% = 11%: LL2% = JJ%
IF KK1% = KK2% THEN- GOTO BEV5
IF LL1% = LL2% THEN GOTO BEV6

rem **** extract and store the values from a block of cells
FOR 11% = KK1% TO KK2%

FOR JJ% = LL1% TO LL2%M% = M%+l: Z(M%) = VAL(X$(II%,JJ%)): GOSUB CRF
NEXT JJ%

NEXT 11%
GOTO.BEV7rem **** extract and store the values from a row of cells

BEV5: 11% = KK1%
FOR JJ% = LLl% TO LL2%M% = M%+l: Z(M%) = VAL(X$(II%,JJ%)): GOSUB CRF
NEXT JJ%
GOTO BEV7rem **** extract and store the values from a column of cells

BEV6: JJ% = LL1%
FOR 11% = KKl% TO KK2%M% = M%+l: Z(M%) = VAL(X$(II%,JJ%)): GOSUB CRF
NEXT 11%check for further processing over any more token
IF NT% <> NR% THEN GOTO BEV4
set the value table index limit and the count
LMT% = M%: CNT% = M%

rem **** exit from the procedure
RETURN

rem ****
BIN3:
rem ****

SM:SUM = 0
FOR 1% = 1 TO LMT%

SUM = SUM+Z(I%)
NEXT 1%
RETURN

rem •••• procedure to find the maximum value
MX: MAX = Z(l)

FOR 1% = 2 TO LMT%
IF MAX <= Z(I%) THEN MAX = Z(I%)

NEXT 1%
RETURN

rem ••• i procedure to find the minimum value
MN: MIN = Z(1)

FOR 1% = 2 TO LMT%
IF MIN >= Z(I%) THEN MIN = Z(I%)

NEXT 1%
RETURN

rem •••• procedure to calculate the average
AG: GOSUB SM: AVG = SUM/LMT%: RETURNrem ••••• * ••••••••• * ••• t.
rem • PROCEDURE BRAKET •.rem ••• i.
BRAKET: J1% = 1
BLOOP: 11% = MATCH(LPR$,AA$,J1%)

IF 11% <> 0 THEN J1% = 11%+1: GOTO BLOOP
IF J1%-1 ; TK%(IV%) THEN SWF% = 1
J2% = J1%: 12% = MATCH(RPR$,AA$,J2%)
IF 12% = 0 THEN DERROR = 4: GOTO 555
J2% = 12%-1: A$ = MID$(AA$,J1%,J2%-J1%+1)
AA$ = LEFT$(AA$,J1%-2)+S$(M1%)+ \+RIGHT$(AA$,LEN(AA$)-J2%-1)
RETURNrem ••••••••••••••••••••••••••••••••• * •••••••••••••••••••••••••••

rem • LIBRARY FUNCTION EVALUATION •
rem ••• t.
EVA. LIB: X = TS(M1%)ON FN%(IV%) GOTO 2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,\

2.10,2.11,2.12
2. 1
2.2
2.3
2.4
2.5
2.6
2.7
'2.8
2.9
2.10
2.11
2.12
2.01

rem
rem
rem

x = ABS(X): GOTO 2.01
X = EXP(X): GOTO 2.01
X = INT(X): aOTO 2.01
X = LOG(X): GOTO 2.01
X = ROUND(X): GOTO 2.01
X = SIN(X): GOTO 2.01
X = COS(X): GOTO 2.01
X = TAN(X): GOTO 2.01
X = l/SIN(X): GOTO 2.01
X = l/COS(X): GOTO 2.01
X =l/TAN(X.): GOTO 2.01
X = ATN(X): GOTO 2.01
TS(Ml%) = X
RETURN••••• *•• *•••••• ** ••• *•• *•• *.*****.****.*******.****.*.***.**** LIBRARY FUNCTION KEYWORD IDENTIFIER PROCEDURE *

*******.*.******.**************.*********.*****.*********.***

LIBF: IV% = 1: SWF% = 0: J% = 1: Mk%. = 3
LIB1: BR% = MATCH (LPR$,AA$,MK%)

IF BR% < 1 THEN GOTO LIB2
TEST% = MA'fCH(MID$(AA$,BR%-3,3),LFUNC'fION$,I)
IF TEST% = 0 THEN MK% = BR%+1 : GOTO LIB 1
1% = «TE8T%-I)/3)+1
FN%(IV%) 2 1%: TK% (IV%) = BR%-3
AA$ = LEFT$(AA$,BR%-4)+RIGHT$ {AA$,LEN{AA$)-BR%+11
IV% = IV%+I: MK% = BR%-2: GOTO [,1131

LIB2: . IV% = IV%-l: RETURNrem***

[1]. Wakerley, J. F.Microcomput.er Architecture and Programming,
John Wiley and Sons, N.Y (1981)

[2]. Tremblay J. P. ~nd Sorenson P. G.An lritroduction to Data structure~ with Applications,
McGRAW~Hill, N.Y (1976)

.[3]. Goodman S. E. and Hedetniemi S. T.lntroductiontb the design and analysis of Algorithms,
TOKYO, JAPAN (1977)

[4.].Gries David,Compiler Construction for Digital Computers,
John Wiley and Sons, N.Y (19711

[5]; Digital Research,CBASIC Compiler Language Reference Manual,
U.S.A. (1983)

[6]. Digital Research,CBASIC Compiler Language Programming Guide,
U.S.A. (1983)

[7]. Monroe System for Business,
CP/M-86 DPX Operating System Supplement,
U.S.A. (19831

[8]. Monroe System for Business,
CP/M-86 DPXUser's Guide,
U.S.A. (1983)

[9]. Monroe System for Business,
CP/M-86 DPX Programmer's Guide,
U.S.A. (1983)

[10]. Monroe System for Business,
CP/M-86 DPX System Guide,
U.S.A. (1983)

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147
	00000148
	00000149
	00000150
	00000151
	00000152
	00000153
	00000154

