4

-~

i} ‘ Y

ALGORITHMS AND PROGRAM MODULES
FOR PROCESSING INTERRELATED
INFORMATION CELLS
. BY

'ASHRAF HABIB RUMI

A Thesais
Submitted to the Department of Computer Engineering,
Bangladesh Univéraity of Engineering and Technology,

Dhaka, in partial fulfilment of the requirements for -

\ the degree of
MASTER OF SCIENCE IN COMPUTER ENGINEERING

DECEMBER, 1986

T
S ———

CERTIFICATE_OF RESEARCH

Certified that the work presented in this Thesis is
the result of the jnvestigation carried out by the

candidate under the supervision of Dr. Syed Mahabubur
Rahman at the Department of ' Computer Engineering,
Bangladesh University of Engineering and Technology,

Dhaka, Bangladesh.

Candidate

DECLARATION

I hereby declare that neither this thesis nor any
part thereof has been submitted or is being
concurrently submitted in candidature for any
degree at any other university. :

l ﬂ%ﬂbfﬂ

Candidate

e,

Accepted as satisfactory for partial fulfilment of the
requirements for the degree of M. Sc.
Computer Engineering. '

BOARD OF EXAMINERS

ii.

iii.

Qi

Dr. Syed Mahabubur Rahman
Associate Professor and Head,
Department of Computer Engineering,
BUET.

nghuuih 13/t12/86

Prof. Shamsuddin Ahmed

Head, Department of Electrical and
Electronics, ICTVTR, Dhaka.

{ Ex. Dean of the Faculty of EEE &
Head of the Department of Computer
Engineering, BUET, Dhaka.)

_DM O‘ Koo —— I’b}"’/]%
Mr. Dulal Chandra Kar C
Assistant Professor,
Department of Computer Engineering,
BUET.

Engineering in

_Chairman
and
Supervisor

Member

(External)

Membe;

ACKNOWLEDGEMENT

It is a matter of great' pleasure on the phrt of the author

to acknowledge his proféund gratitude to his supervisor,

Dr. Syed Mahabubur- Rahman, Associate Professor and ‘Head, '

Depértmeht-of Computer Engineering, Bangladesh University of
Engineering and Technology (BUET), Dhaka for his support,
advise, valuable guidance "and his constant encouragement

-

- throughout the progress of this work.

The author also wishes to express his sincere gpatitude'to

late Dr, A.K.M. Mahfuzur Rahman Khan (Ex..Professor and head

of the Computer Engineering department, BUET) for his keen

interest and encouragements for this work. He expresses his
gratitude to Dr. Shamsuddin Ahmed, (Ex. Dean of the faculty
of Electriéal and Electronic Engineering and Head of the

Department. of Computer Engineering, BUET) .
Thanks are due to Mr. Javed Sabir Barkatulla and Mr. Dipak

Bin- Qusem Chowdhury for their friendly discussions on

different‘probleﬁs in the progress of the work.

]

r‘-’
v

ABSTRACT

The present research lwork has undertaken the task of
developlng algorlthms and software programs for processing a
large number of information cells containing high level
" program statements including assignments, arithmetic and
boolean éxpressions{ commands etc . Algorithms for the
manipulation of informations on a large cell system by using
simple but powerful commands have been developed by

‘considering the structuring facilities. In.the present work

"top-down" approach of structuring has been used for the
development of algorithms and proéram modules. After
cosidering all the external sﬁeCifications, two main
algorithmic modules have been designed. They are the
expression interpreter and the screen manipulator.“

'Expre331on interpreter defines algorithms for the evaluation
of arithmetic, logical, conditional expressions with built-in
funétions. Screen manipulator defines algorithm for interac-
tion intelligently with the user through the display screen.
Main module "“defines Valgorithms for the production of the
proposed cell system and for the interaction between the
user and the system . The gspecification for the interaction
between the main module with the data structure of the
cell sysfem and these two modules has been defined first ,
then the detailed design haé been carried out more Or
less 1ndependently. Finally the algorlthms have been imple-
mented in the form of a program module by considering some
_coding tricks and local optimization. The 'coding language
used here is the CBASIC compiler, a popular high level

language.

CONTENTS

Acknowledgement
Abstract

_CHAPTER 1 INTRODUCTION

General -
Objectives of the the31s work .
Application areas of the thesis work

bt ot
R -

' CHAPTER 2 PROGRAM DEVELOPMENT

2.1 Introduction

2.2 Stages of program development
2.2.1 Specification and design
2.2.2 Documentation
2.2.3 Coding
2.2.4 Testing and debugging
2.2.5 Maintenance

2.3 Algorithmic representation

2.4 Implementation features

CHAPTER 3 ° SYSTEM ANALYSIS

3.1 Introduction

3.2 External spe01flcat10ns
3.2.1 Noncomputational functions
3.2.2 Computational functions

CHAPTER 4 SYSTEM DESIGN

4,1 Introduction
4,2 Structure of the system

CHAPTER 5 EXPRESSION INTERPRETATION

5.1 Introductlon

5.2 Structure of the interpreter
5.3 -Grammatical description

5.4 Arithmetic expression algorithm

b bk ek
1
Cd B =

1

Do DO B3 DO DD B DD B3 B
!

b (D =1 =1 D B DO

(Xl

[

L W W
I
W N -

oo O
[
— N =

o]

CONTENTS

4,1 Lexical analysis
.4.2 Syntax analysis
4.3
4.

4 Evaluation -

5.5 Boolean. expression algorlthm

5

.6 Built-in function algorithm

_5.7 Other algorithms

CHAPTER 6 SCREEN MANIPULATION

6.1 Introduction

6.
6.

CHAPTER 7 .

7

-

CHAPTER 8

2 Structure of the manipulator
3 Manipulator algorithms

.1 Intorduction
7.

2 Reference table generation

7.2.1 Algorithm cell refenence
7.2.2 Algorithm recalculatlon
.3 Printing algorithm
.4 Saving algorithm
.5 Loading algorithm

8.1 Conc1u51ons

8 2 Suggestions for future work
APPENDIXES:
Appendix-A ASCII code table
Appendix-B : Internal data representation
Appendix-C : CBASIC Compiler
Appendix-D :- Complete program listing

REFERENCES

value table generation'

DATA REPRESENTATK»JAND'COMMANDS

UL PR I B |
1 |

— 0D N D
13

1

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

8-1
8-3

CHAPTERSL

INTRODUCTION

1.1 GENERAL

Today's computers come in a variety of shapes and sizes.
Large mainframe to small—‘microcomputéfs‘ are now used in
many factories , busineéses‘,‘universities ' hosﬁitals , and
government agencies to carry out simple to sophisticated
business or technical calculations . One of the main
part of a computer to run 1is the software program:.
Application programs are becoming oné of the most important
tool in computer world from +the wuser’'s point of view.
Without these programs each computer user must be acquainted
elaborately with the system operatihg programs such as
operating system, programming language etc., which needs him
to have a desired level of qulification and experience. Thus
it is not possible for a man who is novice in this field.But
“in the case of a particular. appliéation, one does not need
to know hoﬁ to wopk with an operating system, how to develop
a program etc. Thus it is possible and easy for him to use a
particular. pfogram for 'hiQ ~application with only some
commands and functions . This has made an application
program éonstfuction an important, practical area . of

research in computer science.

Research works in Bangladesh related to the development

of algorithﬁ and software for widely used application

1-2

'ﬁrograms are still at the initial stage . ‘Some
works are undergoing in the department of compﬁter
engineefing, BUET, in the fieid_ of data base software
compatible for the mainframe computers. Précessing and

retrieving of information or data in a useful form tﬁrough

‘the video screen is one of the most customization facilities

<+

‘of today’s computer. The proposed research work has under-
taken‘the task of .developing algorithms and a suitable
implementation in the form of =& program module for

processing of large nﬁmber of programmable information

cells. - The processing of the cells involve analysis of high
level program statements = including - assignments, arith-
metic expressions , logical expressions or conditional

expressions. Thé data or information types handled by the
"cells consist of value, text string, formula etc. The system
will be a powerful tool for solving many types of
mathematical, business, and financiall problems., Since the
algorithms or procedures have béen developed for determining
how the system behaves. The computer program is a medium in
which the algorithms ban be expréssed‘ and applied. Hence a
modular software program has been developed in a micro-

computer for the implementation of the algorithms.

1.2 -OBJECTTVES OF THE _THESIS WORK

For the development of the desired system the following
informations are important to consider as the objectives of
the present thesis work:
.. Production of a two-dimensional rectangular grid
containing a large number of programmable

information cells.

1-3

. Intelligeht interaction with the user through CRT
display screen and the hard dopy printer. o~
. p -
. Interaction of powerful but easy to use system

commands.

. Calculation of powerful logical, conditional and

builﬁ-in mathematiéal'funétions.

One of the main purposes of the developed system is to
manipulate data or'informatioh on a large rectanguler array
gystem using simple but powerful commands. These commands

may be specified for the following purposés:

. editing the informatioﬁ,

. formatting the information,
. displaying the information,
. calculating the fdrmulas,

. storing the informations,

. printing the informations, etc.

1.3 APPLICATION AREAS OF THE THESIS WORK

The developed system is an aggregate of concurrently active
objects, organized into a rectangular array of cells similar
to fhe paper épreadsheet used by an accountant. Each cell
has a rule. specifying how its value is to be determined.'
_ Every time a value is changed anywhere in the cell system,
all values dependent on it are recomputed instantly and the
new values are stored and displayed;.The gyatem can be”

defined as a simulated pocket universe that continuously
w ' . -

1-4

maintains its fabric; it is a kit for a surprising range of
' applicetiene..Here the - user _illusion is simple, direct and.
poﬁerful. There are few mystifying ‘surprises becauselthe
onlv way a cell can get a value igs by having £he cell’s own'
'value rule put in there. Thus the developed aoftware module
acts as a s;mple means to tap the power of a computer to do
time-cosuming, repetative calculations.

The proposed algorithms may be used for the development of

sophisticated application program softwares such as

. ‘electronic spread-sheet developing programs,
. text editanﬂ'or wdrdéprooessor developing programs,
. compiler writting programs,. '

. interpreter writting'programs etc.

The developed software program module may be useful for
the preparation of data sheets in a tabular form, cashflow
anelysis or forecasting, balance sheets, profit statements,
tax eatimation, market share analysis & planning, bar

charts, patient records, salary records ete.

CHAPTER 2

PROGRAM DEVELOPMENT

2.1 INTRODUCTION

Many programmers are often preoécuﬁied,ﬁith what initially
seem to be the most difficult aspect of ﬁriting programs,
translating ideas into a programming?language,‘or coding.
However, this activity is only one stage in a computer
Fprogramming .project, which haé at least seven definaﬁle

»
components:

Requirements analysis(RA)
Specifibation(SF)
Design(DG)
Docﬁmentation}bo)
Coding(CD)

Testing and debugging(TD)

o o W W W

Maintenance (M)

Fig‘ure—-z.l Components of program -'devclopment

2-2

The first six stages above také place during thertraditional
"development cycle" of a programming project. Fig-2.1 shows

that coding is just a small part of the development cycle. —

2.2 STAGES OF PROGRAM DEVELOPMENT[“

Requirements analysis, present in some form in all problem
solving. activities, defines the requirements for an
acceptable solution to the problem. Most developers do not
get involved in this stage, because it usually takes place
at s management level and involves issues such as general
approach, gtaffing and other reéources, project costs and

schedules.

/‘) ' i y
The input and output of a program and their relationships
are defined by an Aexternal'Specification. For example, the
gpecification lfor a text editor deflnes the format of the
texf‘ files and it lists all of the edltlng commands and the
effects of each. However, an external spe01f10at10n does not

contain a description of how the program achieves these

effects; this is part of design.

The sfructure of a. prdgram is defined during the design
stage. The design 'stage often decomposes the problem by
outlining - a solutien in terms of a set of éooperating
.high-level' program modules. This approach requires
additional design and internal specification, since each
module and its rinteraction with the others must be
specified,_and then the internal atructure at each module
must be designed.- Depending on the module c¢omplexity,
additional; decomposition into submodules mighf.also be take

place.

2-3

Mdst documentation should be created during the
specifiéation and design stage . Concise vet complete
documeﬁtation ig needed to qommuqicate specification and
design concepts among the current implementors and future
users and maintainers of a program. To a lesser extent,
documentation’ is- needed in the coding stage to explain the

'détails of program coding.

In thé coding. stagel.the design is ‘translated into =&
programming language for a’ gpecific cdmputer system. When
.coding Dbegins, design usually stops, which is a good
argument for not _starting coding prematurely. Several
studies have.'shown that design_errors aré more common than
coding errors. So that a gobd design is essential to project
success. Also one is much more likelyito reduce the.size'of
a program or enhance its performance by design improvement
in algorithms and data structures than by coding tricks or

local optimizations.

The word debugging usualiy‘suggests an activity in which the
obvious errors in a program ‘are eliminated so that the
program runs without "blowing up". Testing refers to a more
refined activity that verifies not only that the program
rdns but also that it meets its external gpecifications.
Testing. requires a test plan, basically =a set of input
patterns and expected responses for varifying the behavior
and operating 1limits of the program. Quite often the test
plan is .given as part of the original sﬁecification to
ensure that the tests are not biased in a way that would

obscure the errors in a known design.

2-4

Large programs require maintenance after they have been put
into. operati&n in the. field for two reasons. First, there
.ére usually errors that are not detected during the testing
stége. Obfiously increased effort- during the testipg.stage
r%duce this mqintenance requirement. Secqnd, and almost’
7/i;evitable, is that users of a system will call for changes
and enhancements Aftér the system has been put into
operation. The ‘cost of this mainténance is strongly
influenced by the specification, design and documentation

of a program; therefore maintenance must be considered

early in the development cycle.

2.2.1 SPECIFICATION AND DESIGN

" The external specification of a prograﬁ comes directly from
the results of requirements analysis, while internal
specifications come later. During the development cycle,
'some "looping" between specification and design often occurs
as shown in fig-2.2. This looping may be required when
attempts to design the program reveal ambiguities ,
oontradictioﬁ, or other deficiencies in the external
gpecification. But most of the looping'oécurs because of the
"top-down" approach that ijs used in problem solving. When
the solution to an original external specification is
designed as a collection of cooperating modﬁles, each module
and its interfaces with its partners must be documented by
internal specification. Then-the working of each module must
be designed. The whole procesé may be repeated many times as
modules at each_ievel are designed as collections of lower

level modules.

{
i i
{
!l REQUIREMENTS

v
SPECIFIGATION

. " TESTING AND DEBUGGING

|
]
’ v

s

2,2.2. DOCUMENTATION

Documentation should nof be generated at 6ne fixed time
during the program developﬁent cycle. Instead, documentation

should be generated as appropiate ﬂhroughout the project.

‘The most important program documentation is generated long

before the coding stage, during specification and dgsigh.‘

In general it is a growing practice to make all program

gelf documenting , SO that éll documentation including

gpecifications and design, contained in the same text as

the source code itself. Wwriting self-documenting "code has
geveral advantages over keeping separate handwritten or

typed documentation. The advantages are:

+ It is easier to relate the documentation to the

code.,
* Efficient procedures can be instituted for
maintaining all code and documentation on &a

development computer gsystem.

t+ When a design (or- code) 1is changed,’ it 1is
convenient to make the appropiate documentation
changes (otherwise there 1is a tendency for

documentation to lag design}.

* During revisions and maintenance, if the source

code is available then all the documentation is

guaranteedi to be available too.

2-7

Tﬁe main dlsadvantage of self-documenting code is that it
increases the size of the text files that the development
computer system must handle. Including back-up files, a
development- syetem may need 200 to 1000 bytes or more of
disk stoarge for every byte of obJect code that is developed.
Thus developing & 50k byte application progranm for a
microprocessor may require a micrpcomputer or minicomputer

‘with a 50 Mbyte system.

.2.2.3 CODING

Coding is probably the best understood aspect of
programming. In fact, coding of a well-designed erogram is
a fairlf mechanical operation. The most important to know
about coding is that good code must be built upon good
design. A programmer cannot expect to make significant

imporvements in program performance by clever coding.

The purpose of most coding tricks 1is to produce faster
/pfograms. Since . =a tyﬁical program spends most of 1its time
executing locps, speeding up critical loops can improve a
program s performance more than any other coding changes. In
short loops, the speed improvement obtained by eliminating

just a few instructions can be substant1al.

2.2.4 TESTING AND DEBUGGING

The purpose of testing and debugging is to make a program
meet itslspecitications. Testing is an activity that detects

the existance of errors in a program. Debugging finds the

2-8

causes of detected errors and then repairs'them. As shown in
the pie-chart in figure-2.1, testing and debugging form the
largest single component in the program development

process.

Even lafter starting with a good degsign, many pProgrammers
ha§efua haphazard aﬁﬁroach to the remainder of program
development. They code the entire program and fhén'run it
. the first time with their fingers crossed. A sensible method
fdrl developing a large program is code, test, and debug it

in small chunks.
One 6f the two approaches may be used:

* Bottom-up development: The lowest level moduleé
are coded, tested and. debugged first. These
modules whiph are now known to be working, may be

employed inAdeveldping-higher level modules.

* Top-down development! The highest-level modules

are coded, tested, and debugged first. In order to

test them, the lower-level modules which have not™

yet been coded must be replaced by "gstubs" that
much less functionality.

There come advantages andldisadvantages to both approaches.
In bottom-up development, funddmental errors in desigﬁ at
top-le?el modules may not be caught wuntil lateﬂin the
projeci. In top-dohn development, problem with program site
or -performance may'-not become apparen; until critical

low-level modules are developed. Both approaches require

match their input/ output specification but ﬁith.

2-9

additional code to be written for testing. In practice, it
_is often best to use a combinatiﬁn of the two approaches,
_developing both high—levél' and critical low-level modules
first and uging‘ stubs for less critical modules to be

developed later..

In large programming projects the need to partition the
testing and debugging problem is well recognized. About half
of the total testlng and debugglng effort is devoted to

"ensuring that individual modules meet their internal
specification, this activity is $ometimes called "unit
testing". The remaining effort is spent on "gystem
integration and test", in which the modules are linked

together and the external-specification of the program are

éhecked.

2.2.5 MAINTENANCE

In the "real" : world, programs are written for and used by
customers who expect' certain degree of performance.
Throughout the- lifetime of any ndntrivial program, lurking

bugs will pop up, and , at the same time customers will
request new features and improvements. Thus, the programis
code and even its Specification and design may undergo
frequent change. Program maintenance iequires a large and

sophisticated development system.

1

2-10

: (2,3)
2.3 ALGORITHMIC REPRENSENTATION

The notation:for algorithms used here can be described with
the aid of ekamplesh Consider the following algorithm. for

determining thé'largést algebraic elements of a vector.

Algorithm MAX

. This algorithm finds the largest algebraic element of vector
. A which contains n elements and places the result in MAX. i

is used as a subscript to A.

1. [Is the vector empty ?]
If n ¢ 1 then print message and exit.

2. [Initialize] ‘
Lt Set MAX <-- A[l];1i <-- 2; (we assume initially that
' Afi] is the greastest element).

3. [All done ?]
Repeat steps 4 and 5 while i <= n;

4. [Exchange MAX iIf it is smaller than next element-]
If MAX < A[i] then set MAX <-- A[li]}];

5., [Get next subscript]
Set i <-- 1 + 1;

6. [Finished]
Exit.

The algqrithm is given an identifying name MAX which is
followed by a brief description of the tasks the algorithm
perform, thus providing &an identification for the variables
used iﬁ the algorithm. This description is followed by the

actual algorithm - a sequence of numbered ateps.

2-11

Every algorithm step begins with a phrase enclosed in square
bfaket which gives an abbreviated description of that step.
Foliowing- this phrase is an ordered éequence of statements
which describe actions to be executed or tests to be
pe;formed. In generai, the statements in each step must be
executed from left to right in order. An algorithm step may
terminate with a comment enclosed in parantheses that is
‘inténded to define the step cleariy. The comments specify no

'actioﬁ and are included only forrclarity.

lStepZ in the example algorithm contains the arrow symbol
"¢——~ " which is used to denofe the assignment operator. The
statement MAX <-- A[i] is taken to mean that the value of
the vector element A[i]l 1is to replace the content of the
variable MAX. In‘thisr algorithmic notation, the symbbl ="
.is used agrelational operator and never as anh assignment

operator . One assignment statement , or a group of

several assignment statements seperated by commas, is

preceded by the word ‘set ". The actionrof incrementing- i
by one in stepb5 is indicated by i <-- i + 1. Many variables
can be set by using multiple agssignments. The statement
i¢--'0, j ¢<-- 0 and k <-- 0 could be rewritten as the single
statement i <-- j <-- k <-= 0. An exchange qf the values of
two variables can be written as A[i] <--> Ali+1]. And the

subscripts for arrays can be written as A[i), where i is the

index of the array A.

The execution of an algorithm begins at stepl and cotinues
from there in sequential order unless the result of a
condition tested or an unconditional transfer (a "goto")

specifies otherwise. In the same sample algorithm begins at

2-12

‘atepl and is first executed. If vector A is empty, the
algofithm terminateé; otherwise , step2 is performed in
which MAX is initialized to the value of A[1] and the
gubscript variable, i, is get to 2. Steb3‘ leads to the
terminétion of che‘algorithm if we have already tested the
last element A. Otherwise, step4 is.taken. In this step, the
value of MAX'is compared with the\valué Qf the next elemeﬁt
of the vector. If MAX is less thén—hext element, then MAX is
set to this new vglue. if the test fails, no reassignment
takes place. The completion of step4 is followed by step5,
where the next subscript valué is set; cbntrol then returns

to the testing step, step3d.

2,4 IMPLEMENTATION FEATURES‘

Since in this application we will be mainly concerned with
string data processing, it is important to incorporate into
the algorithmic notation certain features that faéilitate
"the processing of string’ information. These features are
provided as an . addition to the standrad mathematical
functions and operations which one would expect to find
useful in this application. The algorithms are written in
a structuréd high level programming style . Consequently,
it is important to pattern the string data procéssing
‘features after certain high level .language operations or
functions. Some of ‘these features are described in the
following section.,
A close analysis of‘ the basic string -handling facilities _
required of any text creation and editing system should- lead

~to the following'list of conventional functions:

2-13

1. Create a string of text,

2. Concatenate two or more strings to form another string,

3. Search and replace | ifldeSired) a given substring
within a string,

5. Test for the identity of a string,

5. QOmpuie the length of a string and

6. Convert to numeric value from a string.

The creation of a string implieé ﬁot only the ability to
constfuct a representation for a string, but ‘also the
ability to retain the value of a string iﬁ a variable (or
memory cell location). The ablllty to create a string must
be present.in any stfing handling system. In the algorlthmlc
notation, a string jg expressed as any sequence of
characters enclosed in éingle quote marks. To providé a
" transparent representation for striﬁgs, a single quote
contained ‘within a string is representéd by two single

‘quotes. Variables can be used to retain string values.

The empty or null string is denoted by either two single

quotes or the symbol NUL.

Concatenation is the most important operation on a string.
For easy and consistent representation , we use + to denote
cancatenation in our algorithmic notation. String variables

as well as string constants can appear as operands.

When searching for a substring within a given étring, there
must be some method of returning the. position of the-
substring within the string, if the gubstring is found. This
position is often called the cursor position, and it 1s
given by‘an integer value indicating the character position

of the leftmost character of the substring being éought. The

2-14

name of fhe function used in algorithmic notation to perfornm
£his operafion is INDEX. INDEX (PATTERN, SUBJECT, CURSOR)
returne (as =&a value) the cursor position of the leftmost
occureﬁce of the string, ' PATTERN, iﬁ the string SUBJECT
gsearching after the character given by the argument CURSOR.
If PATTERN doeé not occur in SUBJECT, the value zero isg
Ireturned. The string associated with PATTERN is applied to
the SUBJECT string on a character by character basis ffom
4he first character to the last character. This process of
'applying ﬁ PATTERN string to a SUBJECT string is commonly
called pattern matching.'A wide varity of pattern.matching
operation exist, ‘and many of these are used in our

algorithmic notation.

The ability to extracf a substring from a subject string is
another important ‘function. In the algorithmic notation,
‘rather than using special marker-symbolsl, we use cursor
position plus gubstring length to isclate a gubstring. The
name given te this function is SUB with arguments SUBJECT,
CURSOR and LEN. Thus SUB(SUBJECT, CURSOR, LEN)} returns as a
value the substring SUBJECT that is specified by the
parameters CURSOR and LEN. The parameter CURSOR indicates
the starting cursor position of the substring, while LEN
specifiés the length of the required substring plus the

cursor position. 1f LEN is not provided, then LEN is assumed
‘to be equel to LENGTH, whéere LENGTH is the length of the
argument SUBJECT. To complete a definition of SUB, some

additional cases must be handled:

2-15

1. If LEN <= O (regardless of CURSOR), then null string is
returned. ')

2. If CURSOR <¥0 {regardless of LEN),; then null gtring is
returned.

3. 1f CURSOR > LENGTH (regardless of LEN), then null string

-Kis.returned.

4. If LEN > LENGTH , then LEN is agsumed to be LENGTH.

The function - 8UB can also be used on the left. hand side of
an assignment (i.e., in a replacement mode of operetion). If
SUB (SUBJECT,CURSOR,LEN) appears on the jeft hand side of an
agsignment statement and CURSOR (= zero or LEN ¢(= zero, then
agsignment is not executed. 1f CURSOR <= LENGTH and
LEN > LENGTH , then characters are asgigned to positions
beyond the right hand end of the SUBJECT string.
Iptermediate character positions‘which are assigned as a set

‘of blank cahracters.

Testing the idenﬁity of a string implies the existance of
gsome form of pre&ic&te which returns a true or false value
when a comparison is made between a'subject string and a
known string. In the algorithmic notetion we used all the
common relational symbols {such as >, <, ¢>, <= and =>\).
Comparisons are made en a ‘character by character basis
gtarting from the left most character of each string in the
comparison. The presence of any character (even a blank) is
always considered to be greater than the omission of a

character.

The length of a string is important for checking the

character string and in the formatting of the gstring. In the

2-16 -

algorithmic notatlon, the comﬁutation of the 1gngth of a
~atring is achieved by the function LENGHT. If SUBJECT is a
ﬂéﬂaraéter variable then LENGTH(SUBJECT) returns as a value,
.the lnumber of symbols are in the string represented by‘
' SUBJECT. The value zero is returned if the SUBJECT is the

_empty string.

'-The_'value of.a satring 1is impoftant for _the cohversion
of - a character string .to a numerio_‘constaht.‘ In the
falgorithhic notatidn, the computation of the value of string
is performed by the functlon VALUE with the SUBJECT as an
afgument. In this function SUBJECT must be a valld character
,Vaet for a numeric constant. For invalid syntax for a number

. within the SUBJECT string, a value of zero is returned.

cHAPTER 3
*

R :
SYsSTEM ANALY SIS

3.1 INTRODUCTION.

- The purposé of the system to be developed is to manipulate
data on a'ldrge array 'aystem using simple but powerful

commands . These commands may be clagsified to particular

works or categories. These categories may be specified‘

according to the following purposes:

N editiﬁg the informations, K ._I
. formatting the informaiions,
. displayingrthe iﬁfqrmations,
. calculating the formulas,
., storing the informations,

. printing the informations etc.

3.2 EXTERNAL SPECIFICATIONS

In order to develop the desired system the following
informations are important to consider for the requirement

analysis and specifications:

* Production of =a two-dimensional rectangular grid
containing a large number of programmable

jnformation cells.

-~

3-2
t+ Interaction intglligently. with the user through

CRT display and hard-copy- printer.

¥ Interaction of powerful but -easy—to—use_system

commands .

£ Calculation of powerful logical; conditional and -

built-in mathematical functions.

a.z2a NONCOMPUTATIONAL FUNCTIONS

In order_ to facilitate the production of a two
dimentional retdngular grid containing a large number of

programmable information cells,we can consider the following

points.

The location of an information cell may be specified by_the
vertical and horizontal grid. anh cell dan contain several

ﬁypes of inférmation‘sdch as:

(a) a cell content,
- {b) a cell wvalue,
({b) a display format, and

(c) a formula reference.

We can define the cell content as the basic data that a cell
contains. A cell may be empty, contain.text, repéating text

or a formula. Initially all cell can be defined as empty“

cell.

3-3

A formuia is a mathematical éxpression that calculates to a
numerical value. It consists of numerical constants, cell
feférences and function references connected by operators.
‘When a formula is entered into &8 cell, the value must be
'calculated. and displayed. - '

The vﬁlue of a cell is the result obtained by‘evalugting the

content of the cell. All cells can have a value. An empty

cell can be defined as zero numeric value. Similarly a text
gtring can have a numi.eric value of zero. A formula may have

a number data, textual, not available or value.

We can propagate cell values and types. This means that the
cell value may be referenced by a fqrmula in another cell.
1t is remarkable that such reference ijgs to the value of the
original cell, but not to its content (formula). So the cell
content can not be referenced by other cells, but it may be

‘replicated or copied.

$ince the cell content and the cell value, both are

important for the user, so we must have a option to

designate the display format for the cell values or for the

cell contents. The - format option can be displayed on the

status line for cells formatted at the entry level. Altering"

the display format in no way alters the contents or the
value, only the way it is displayed on the console or

printed on the printer. By formatting a cell or range, one

may tell how the cell value to look on the screen. One can,

specify the fofmat for an individual ceil, a group of cells,
rows, COlumns; or the whole cell gsystem. ‘A text gtring can
be 'set left ‘justified -or right justified. We can set the

default setting' left justified for text “and repeating

- 3-4

text and right jugtified for numeric value. When the text
is loﬁger_than the column width and is left justified then
it displays the number of characters equal to the width of
the cell. A repeating text can display from thé active cell
on word to the right until it reaches & non-empty cell or

end of the column range.

In . order to facilitate the ability to interact

intelligently-'with'the user through CRT display and hard-

W

c6py printer, the following points are important to take

into consideration:

The operation of the system can be divided into three

distinct modes:

(i) Grid Aisplay mode ,
(ii) Data entry mode, and

(iii) Command mode .’

|

W
T ' ,]
Data entry Grid display Command !
i mode > mode T mnode }

Figure-3.2

Operation modes

Grid display mode is therinitial mode of operation. So we

must have a option to move from this mode to data entry mode

or to command mode. Direct switching from data entry mode to

3-5

command mode or vice-versa, is not necessary because grid
display mode always shows the present condition. Hence any
7ohe can move to data entry mode or command mode from 1n1t1al
grid display mode. But control can not be sw1tched,between
the ‘data entry mode and command mode without returning to

the grid display mode.

‘In the grid display mode the active cell cursor is active
and the edit cursor is inactive. The active cell cursor can
be moved qven the entire cell system to view the cell
contents or values.'Thé status 1ines.are for displaying the

followings:

. The active éell status,
. The global status, and

. The edit cursor status.

In data entry mode data can be entered direqtly into the
datﬁ entry . line. A return key enters the data in the data
entry line into the active cell which is indicated' by the
active cell cursor. In this modé a text, repeating text or a
_formﬁla can be entered into a particular cell. Any printable

character on the keyboard may be used as text. Printable

- characters usually begins with the ASCII 32 to 127. A

repeating text also may contain any printable character.
When a cell in formatted to right justification then the

text does not'repeat.

A'formuia begin with any of the followings:

numeric constant
cell reference - cell coordinates

mathematicallfunction

S A

Booleén'function

A formula entry must be always checked whether the entry
cohstitutes.a legitimate formula or not. When it is not, an

"ERROR" message is to be displayed at the Status.line.

In order to facilitate the interaction between a’ powerful
but easy—to-use‘ system ‘commands and the user, Wwe " can

consider the following points :

Command mode must airect the system £6 perfqrm an action
over the system. Before performing any action we must switch
to the command mode from the grid display mode. Then perform
the partiéular function gccording to the type of action. In

the command mode we can categorize the action as follows:

Recalculation of formulas,
Switch to a particular cell directly,
Switch display window,

Helping menu display, and

¥ 3 H W

" Performing all other functions.

From the select mode we can switch to perform a particular
action as ﬁbove by inserting a particular code. These
code can be any ASCII character code available . Thus
we can use a character code(!)‘for'recalqulgtion of all the

formulas. Similarly -a character code(=) can beAused to

3-7

switch to a particular cell directly. A character code of
"'" can be used to switch from active to alternate window
in the split screen mode. Another character code can be used
such as queat1on(°) mark to switch to the helping menu and a
slash (/) character to switch to a meta command stage . where
other command functlons are available for further action.
Thus in this ‘case we can sw1tch to one of the five command
levels by inserting one of the five command characters or hy
pressing one of the five command keysin the grid display

select mode.'

The recalculation command must be capable of performing
_recalculation . of the entire information = cell system
interrelating with formulas which specify mathematical and

loglcal calculations.

Switching to a particular cell directly can be fmentioned as
GOTO command. This command moves the active cell cursor
directly to the cell specified. The active cell cursor moves
to the cell specified if it is currently being displayed on
the console screen. If not mithin the; display window , the
speclfied cell becomes the upper left cell of the display
window. The command without any cell specification shifts

the display window to put the active cell in the upper left.

" Helping menu display- shows all information related to the
aystem operation. Thus this feature help user when he needs
help. The system explains on screen his current options,

then with a touch of any key, returns him to where he was to

continue his work.,

3-8

The slash command performs all other.functions. We can make
" an option that the system prompt with the first letter of
_each command, when the user enter the slash character. Thié
is very useful because a long list of commands is difficult
to remember. Now when entering the first letter the system
can immediately. fillzthe' rest of the word on ‘the command

line.

By ‘préssing the slash key, the following things may happen
immediately @ '
)]

The bottom status line enters,command mode. The position

number of the edit cursor display first, the "/" character.

The middle status line changes from'global diSplay mode to
prompt mode. The gslash command prompt may display' the

following line,
“Enter B,C,F,G,L,M,P,Q,S,W,X,Z.

In command mode, tﬁe edit cursor becomes active and the
active cell -cursor. inactive. Most commands have several
entry levels. When entering a command letter the prompt line
changes to the appropiate proppt. The system continues to
prompt through the sequence of optiéns until execution of

the .command.

- If one misfakes.to press the proper key he can back to the
previous level by pressing BACK SPACE key. Thus one can edit

'dommapds, like data and formulas, with the in~line editqr.

3-9
Afl possible slash commands are shown below:

Blank - . Global Print window

‘Copy Load . Quit Xchange
Format ~ Move Save . . Zap

 3.2.2 COMPUTATIONAL FUNCTIONS *

In order to evaluate the pqwerful logical, conditional and
, built—in—mathématical functions and expressions , an
expression"interpreter is needed to be developed. For the
development of the interpreter we must first specify the
functions available for the system and their type of works.

A' function returns the valué of a calculation. Two types of

function can be classified.

{1) Arithmetic
{2} Boolean.

.Eéch function has a name and one or more 'arguments. The
arguments specify the values that one wants to apply to the
function. An expression may be used to produce a value. The
_ expression is evaluated first and the value is used aé'the

~argument of the function,

3-10

ARITHMETIC FUNCTIONS

The following functions have the arguments which may consist

of a value, a range or a list.

Value- An expression,evaluating to a numeric value.

It may be integer or real.

Range- A group of cells specified by naming the top
leftmost cell and bottoml rightmost cell,

seperated by a delimiter.

List- One or more ranges and values seperated by

delimiters.

ABS(value) 7
Return the absolute value of the given value.
ot . Equivalent to the value itself if positive
. Equivalent to the value wlthout its sign 1f negatlve.
This is the additive inverse.
. Equivalent to zero if the expression is zero.
ACS(value)
Returns the rﬁdian angle of the cosine value.
ASN(value)
Returns the radian angle of the sine value.
7 ATN(value)
Returns the radian angle of the tanggnt value.
AVG(list) | |
Returns. the average(mean) of the range given. The function
is equivalent to the SUM of the list divided by the CNT of
the list.

3-11

dOS(value)

Returns the cosine of the radian angle value given.
CNT(list)

ﬁéturns the number of the non-blank non-text cells describéd
by the range.

EXP{value) 7 '
. Thie function raises . the number e-'éxpdnentially'to the
value. The value of‘e is 2.7182818

INT(value) | | |

Returns the integer of the value givén, tHe value is not
roundéd.,

LNE(value) '

Returns the natural log, log base e, of the value given.
-Loc(valqe) | |

Returﬁs the commom loé, log base 10, of tﬁe value given.
MAX(list) |
'Retuns the maximum value of the range. Non numeric cells are
ignored.
-MIN(list)

Returns the minimum value of the range. Non numeric cells
are ignored. |
RND(value,place-value)

The RND function rounds a value @d a specified number of
places. ' | |

SIN(value)

Returns the sine of the radian angle value given.

SQT(value) ' | .

Returns the square root of the value given.

SUM{list) |
 Returns _the sum of thé_ vﬁlues in the range. Non numerié
cells are ignoréd; | | |

TAN{value)

Returns the tangent of the radian angle vaiue given.

3-12

¥

" BOOLEAN FUNCTIONS

A conditional or'ldgical function consists of a relational

' comparison connected by a logical operator. Complex logical-
ekpreasions may be formed by using parantheses. Here all the
‘logical expressions used as an arguméﬁt can be replaced b& a
cell reference which has a value of logicai.true(l) or

logical false(0).

'IF{exprgssion,valuel,valueZ)

If the logical expression is true, then the valuel is
entered into the active cell. Otherwise if the'lbgical
expression is false, - then value2. is entered. If an

expression is entered into an IF function, the expression
‘must evaluate properly to a logical value in order for the

IF function valid. Otherwise it will cause a formula error.
IF (expressionA,expressionB,expressionC)

Here expressionA is a logical expression aﬁd éxpreésionB &
expressionC are the arithmetic expression. In this case if
expressionA is true: then exﬁresSiohB is evaluated and the
feéult is entered into the active cell. Otherwise if
expressionA 1is false then expressionC is evaluatea.and the

result is stored into the active cell.
AND(expressionl,expression2)

A logical ' AND function has a value of true({numerical value

of 1) if both the ekpressions are true. If either expression

3-13

'is false, the AND- funcfion‘is false (numerical value of
o). Here both the expressions must be logical expression

containing logical or relational operators.
OR(expressionl,expressionz)'

A logical OR funbﬁion has a value of true if either
expressionl or expression2? is true. If both expressions are
false, - then '0R ‘function returns false. Here both the
expregéions must be logical in nature 1i.e., containing

logical and relational operators only.
NOT{expression)

/This function returns the opposite 1logic values -as the
expression 'stated.. Here also expression must be logical

expression.
EQU(expressionl,expression?2)

A logical EQU function has a value of logical false if both
the expressions are in same. logic. Otherwise a value of
logical tfﬁe is returned. Here also both the expression are

of logical type.
NEQ{expressionl,expression2)

A logical NEQ function has a value of logical true if both
the expressions are in same logic. Otherwise a value of
logical false is returned. Here also both the expressions

are of logical type.

CHAPTER 4

SYSTEM DESIGN

¥

/4,3 INTRODUCTION L

The design _of the'éell system can take place after detail
investigation " and analysis of the external specification of
the s&stem; Thus the dgféiled designlhas been carried out
after considering all the syastem requirements and then
maintaining enough scope to incorporate the future changes

with minimum efforts. All the external specifications of the

"system design has been,considered directly from the result

of the requirgment analysis and the internal spécification
has Dbeen considefed lhter in the design stage. The linking
between the specification and design has been maintained
frequently to minimize .thekambiguities, contradiction, or
other deficiencies in the external specification. But most
of +the linking occured here because of the "top-down'

approach that is used here in the system design.

‘Initially a solution to an original external apecification

is designed as a collection of cooberating modules and each
module and its interfaces with its'partners are documented
by internal specifications. Then the working of each module
has been designed. The whole process is repeated many times
since the modules at each level are designed as collections

’
of lower level modules.

4-2

4.2 STRUCTURE OF THE SYSTEM

The partitioning of a program into modules can be illustrat-

. ed and documented in a diagram that shows relationships among

>§ " MAIN MODULE <

e o s e

o i s s

N
SCREEN HﬂNIPULATOR-%—uy DATA > EXPRE.INTERPRETER

Figure-4.3

Basic structure of the system

the modules. The basic structure of the system, as shown in

the figure-4. 3 , is dgsigned after considering all the
external specifications} The main module performs inter-
"action with the supporting modules. when required. The

sﬁpporting' modules perform specific work and according to

-

their ﬁature-of work they have the name as ,

i) Expression interpreter and

/'é) Screen'manipulator;

4-3

In the expression ‘interpreter a number of algorithms have
been developed for the evaluation of the expressions such as
arithmetic expressions with built-in functions, logical

expressions, conditional expressions etc.,

¢

In the screen manlpulator a number of algorithms have been

developed for 1nte111gent 1nteract10n w1th the user through

the CRT display screen.

In the main ~ module, 'algoyithms fer.the production of-the
cell system, and the algorithms for the s?sfem command’:
functions have been defined. In the main module, an error
routine has also been described for trapping the errors and

for displaying the error messages.

The specifications for the interactien_ between the main
module and ‘the other two subordinate modules have ' been
defined first, and then the detailed designed has been
carried out more or less independently.'At the stage of the
detailed'design it is convenient to outline algorithms using
an ieformal block-structured language that allows detailed

description of action. In this system design data structures

are also part of the system and hence it is important to

gspecify exactly when and how the supporting modules access

the data from the structure. The detailed of these
procedures have been discussed later in different

corresponding chapters.

CHAPTER S

EXPRESSION . '_['N’I‘]E}TRP'.[{'_E‘.'I‘A'TION ‘

" 5.1 INTRODUCTION

The developed expression interpreter accepts a statement
string as an input_and then analyées the string.and-finally
evaluates to a value. Expressions are similar to. expressions
in most prograﬁming ‘languaées} ‘Expression strings’ can be
represented; by =a vhlid_arithmétic expression or a logiéal
expression or a conditional expression or a miied expression.
THe ingredients are .the identifiers, numbers, oferators,

delimilers and reserved words.

‘Two basic type of expressions are taken into consideration

for the development of the interpreter, they are:

1. Arithmetic expressions perform arithmetic operations on

.the operands in the expression and

-

2. Boolean expressions perform logical and comparison

operations with hoolean results.

N

Arithmetic Expresgsions

" The ingfedients of the arithmetic expreséions are the binary

4 : . ,
-operators, unary - operators and the jdentifiers and numbers

5-2

- as the operands.
The precedence‘rule used here may be stated in_the way:

When - unaltered by parantheses. the order of arithmetic
.operation - performed within one expresslon is in descending

order of precedence.

~

The arithmetic operations are listed in descending order of

precedenee as follows!:

Symbol ' Operation

Exponentlat1on {to the power of)

¥,/ Multlpllcatlon, d1y1510n
'+,— : Addition, substruction
For our system, as in most other high-level languages, -

exponentiation operator is right agsgociative and other
‘binary operators are left .associative.
:.As employed in the usual algebraic sense, parantheses may be

introduced to override the usual rules of precedence for a

given expression. In general, when we enclose a portion of
an expression in parentheses, we are in effect forming a
' subexpression’. The parantheses rule then may be stated as®

Any subexpress10n must - be evaluated before it can be
employed in the rest of the ' expression ". Within the
subexpression the same preeedence rule and associative rule
hag been applied. The use of nested parantheses, suggesting

- that one. subexpression - may form part of another

gsubexpression. Each subexpression is evaluated in sequence,
"from the inside out, .according to the samé precedence and

. agsociative rule.

Boolean Expres sions

The ingredient of the boolean expressions are the boolesdn
operatof such as AND, OR, NOT and one or two relational
oPeraﬁor and . operands. Here relational operator pgoduces a
/boolean result. A boolean value is éither a true or a false.
In this system , the logical negation operator returns the

~ complement of a boolean operand. Here wé_define four binary

operations on boolean operands, as shown in thé table-5.1

TABLE 5.1 BOOLEAN OPERATORS

X Y NOT(X) AND(X,Y) OR{X,Y) EQU(X,Y) NEQ(X,Y)
false false true false false false true
false true true false - true 'true false
true . false false’ false true . - true false
true true false true - + true - false true

Hhen, operands of othef types are compared by relational
' operators, the result of the comparison is a .value of type
~-boolean. A relationhi expression compares two arguments of
like ﬁype using one of the relational operators: = {equal),
¢ (less’ than), > (greater tﬁan), (= or “:((less_ than or-
equal), »>= or => (greater than'or equal) and <> or P4 {hot

equal).

5-4

Functions

An iuportaut aspect of this system is the case with which
rone may__write- expre331ons refering to functions of one or
more variables.-The-common mathematlcal functions such as
logarithm, exponentlal, sine, cosine, sqaure root etc., are
specialy easy to incorporate in arithmetic expressions. In
the 'eomputing sense, a functlon is typlcally a separate but
subordinate program de51gned to perform a spe01flc task It’
is given certain key 1nformat10n called the argument(s) of
the function. Certain commonly used functions are predefined

and automatically available 1in this system.

Implicit in the evaluation of theseé expressions is an
additional rule governing the order'of eomputation which
states that functioen evaluation takes precedence over binary

arithmetic operations. As a consequence, the evaluation

process proceeds as follows:

..First, argument expression, which are parenthesized
gubexpressions,
. Second, the function, and

. Third, all the other arithmetic operation.

5.2 THE STRUCTURE OF THE INTERPRETER

1

The developed 1nterpreter takes as input a source statement’
'and produces as output a sequence of meaningful codes. This
process i8 80 oomplex that it is not reasonable, either from
a logical point of view or from an implementation point of

view, to consider the interpretation process as occuring in

5-5

one single step. For -this reason, the 1nterpretatlon process

ig' subdivided into a series of subproceses, Called phases.

. Each phase is the logically cohesive operations that takes
as input one representation ofrthe— source and oroduces as

output another representatlon

The structural dlagram of the d681gned interpreter is shown

_/// INPUT ///

SKIP SPRACES

below:

B_EXPRESSION MODULE

BE_FUNCTION MODULE

L_FUNCTION KEYSET

PREGEDEMCE MNODULE]

A EAPP SSION. MODULE l

L_FUNCTION MODULE |

.
<i DELIMITER HEY 7 ‘>>_ 1

-
e

Z/' QuTREUT //

Figure-35.2 STRUCTURE OF THE EXPREITSION INTEPPFCTCF'

. o
vyt

5-6

(2,4) .

5.3 GRAMMATICAL l)ESCl'!ll’f]“lON

The grammatical description for the expression interpreter

language

is given below:

'

¢ expression > ::= <{a_expression > .

@

‘{<b_expression >

<a_expression> ::= (term>

{term> .:
(férm) HIH
<word?» %

{primary>

1<a expre351on><add/sub op)(term)

= <form> :
'<term><mult/d1v op)(form)

= <{word>
'(form)(expont op)(word)

= <(primary>
'<u_operator>{primary>

+:= (identifier>
! <{numeric?>
1<b_function>
4«1 function>
:<(><a_expression><))

“¢identifier> ::=<name><digit>

<{name?>

(letter>

{numeric>

S (letter>

! <name><(letter>
'<name><digit>

E} F GIHII}J, K LIMINIOIPIQIRISIT U
Z

iz <digit_string>
'<de01mal>(d131t string>
t<digit str1ng><de01mal>(d1g1t gtring>
l¢digit str1ng><e field><digit _string>
1<digit str1ng>(e field><digit_string>

<digit_string> ::= «digit>

<digit>

t¢digit_string><digit>

::= 01112}314:5]61718,9

—

<add/sub.op> :!:!= -I+.
.<mult/div.op) HHESE 34
<expont.op> ::=

<u“pperator> S

<e_field> ::= E;E+1E—

{decimal> ::= .

.<b_éxpression> pi= (l_identifier)é(><logical_term><)>
¢1_identifier> ::= IF!NOT!OR!AND}EQU}NEQ

{logical_term> ::= <logical_ part> :
e !<logical term><,><logical part>
- 1<logical_term><,><a_expression>

5-7

<logical part> i:= (a_expression)<relation><a;expression>-

Fa

<relation> ::z= ={<{> <> 1<=>=

(b_function> ::z <b_identifier>(({><argument><)>
¢b_identifier> ::z MAX!MIN!SUM|AVGICNT

_ <argument> ::= (rﬁnge)
'¢argument><;><identifier>

!<argument>{;><{range>

<range> :!:= <{identifier><{:><{identifier>

" <1 _function> ::= <lib_identifier><(><a_expression><}>

(lib_identifier> ::= SIN|COS!TAN!SQR!.....
(> 1= |) |

}y> 1= ;

<> iz

~
.e
v
.
.
n*
.

5-8

+

Algorithma EXPR_TER

The inputr parameter of this algorithm is thé expression
string, the grammatical description of the expression is
already defined. The algorithms belong to this interﬁreter
are REBK where.blanks'hre removed from the source string ,
B_EXPRESSION_ where boolean ekpressions are‘interpreted-;
B_FUNCTION Iwhere built=-in functions are interpreted ,

L_FUNCTION where library functions are recognized , BRAKET'
Hwhere subexpressions are recognized,: A_EXPRESSION where
arithmetic' éxpressions are iﬁterpreted, LIB_EVA where

library functions are evaluéted etc.

The input parameter of this algorithm is the SOURCE string.
‘This SOURCE expression string is first passed to the
algorithm REBK where blank chafacters.(if_any) within the
gtring are removed and this is done because ‘the lexical
analyzer can not recognize any blank character. Then the
gstring is scanngd, looking for a boolean functionrkeyﬁord.
If there have any boolean function keyword then the string
is treated as a boolean expression string. Hence it passes
to the boolean expressidn interpreter for evaluation to a
"value. If no boolean function keyword is found thenmthe‘
sourcé string is scanned, looking for a built-in function
keyword.If there have any function reference then the source
gtring is passed to the built-in function algorithm where
each function is evaluated to a value according ta the
type of the function referenced and stored in temporary
variables, Then the string is scanned, searching for a

library function‘keyword. If there have any library function

5-9

reference then the string is passed to the library function
algorithm where function keys are set' - to proper codes
according to the type of the functions available. Then the_'
strlng passes to the subexpression recognition algorithm
after 1dent1fy1ng any parantheses Then the subexpression or
‘the expression 1is passed to the arithmetic expression
algorithm. Finally by proper key checking and setting it
branches to the varioue parts of the algorithm or exit from

the algorithm.

1. [Inltlallze the loglc Function & precedence delimiter key]
Set PKEY <-- LKEY (—— -false;

2.[Remove the blanks from the source string 1f any]
Call REBK(SOURCE); . h

’,3.[Call the 'boolean expression procedure]

Call B EXPRESSION(SOURCE),

. 4. Ccall the bu1lt -in function procedure]

Call B_FUNCTION{SOURCE);

5.[call the library function procedure]
Call L FUNCTION(SOURCE);

6.[Check the precedence function & set the key]
If INDEX(LPR,SOURCE,1) <> 0 then
call BRAKET(SOURCE); and goto step-7;
otherwise get PKEY <¢(-- true;

7.f Call the arithmetic expression procedure]
Call A_EXPRESSION(DSTRING);

8. Cﬁeck the library function key]}
If FSWITCH = true then call LIB _EVA;

5-10

g.f Check the precedence delimiter key]
If PKEY = false then repeat from step-6;

10.{ Check the logic function key]
If LKEY = true then call B_EXPRESSION(RESULT);
~ If LKEY = true then repeat from step-4;

11.f Finished]
: Exit.

5.4 ARITHMETIC EXPRESSION ALGORITHMS

This algorithm takes a source statement string ag inpuﬂwand.
produces. a numéric value as the output. This process is
partitioned into a series qf subprocesses called phases as
shownl in the figure-5.4a. A phase is a logically cohesive
.operatioq that takes aé input one representation of the

.gource and produces as output another representation.

. Input
!

|
¥

Lexical analysis or scanning

Syntax directed translation

Error
handling

Y
Value tahle genrration

|
| .
L l
Evaluation of the expression -————e——J

4 - _ :
Output

Figure-5.4 _
gtructural block diagram of the interpreter l

5-11

Thé first phaée,.'called the lexical analysis, or scanning
sepefates characters of the source string into,groupg that
logically be10ng ﬁogether, these groups are called tokens.
The usual tokens are-identifiers, operator symbols, numeric
constants reserved words etc. The outpﬁt of the lexical
analyzer 1is a'stream of tokens, which isrpassed to the next
phase, the syntax directed translation or intérmediate code
- generation. This phase decides tﬁe hierarchical structure of
the incoming ﬁoken stream by identifying which parts of the
token stream should be grouped together. For examlpe, the

expreséion A/B*C has two possible interpretation rule:

a) d1v1de A by B and then multlply by C (as in FORTRAN). or
b} multlply B by C and then use the result to divide A (as

in APL)
VALUE ¢ VALUE
/N /N
/v N /AN
/ : \ / \
VALUE % C A / VALUE
/N /N
/A /1N
/ : \ / ! \ -
A / B B x C
(i) (ii)

Figure-5.4b Parse trees

- | 5-12

These rules form the internal specification of the interpre-
ter.§0n a logical level the output of the syntax analyzer is
some representation of a parse tree. It then transforms this
parse tree into an intermediate language representation of
" the source string. "Three address éode“ can be wused for the
intermediate cdde generation. Consider, A = Bop C, as a
sfatement of the three address code, ﬁhefe A, B and C are
qperands and op is a binary operator. The parse tree in fig-
5.4b(i) might be converted into three address code segquence:
A/ B

T1 *x C

T1

"

T2
where, Tl and T2 are names of temporary variables.
Thus the usual intermediatg text introduces symﬁols to stand
for various temporary.qﬁantities guch as the value of B*C in
the sourcellanguage,expression A+B*C.
Value.table generation is the phésé where all identifier
tokens are replaced by their numerical.values. Thus the
outpuﬁ of this. phase, a stream of. constﬁnt numbers and
operator. tokens arranged .in a notation meaningful for the
interpreter. -
Finally, the evaluation of the expression strihg,~phase
reduces these stream by considering three address code
sequence and return a gingle value which is the value of the
expression. _
One of-the ﬁost impdrtant function of an interpreter is the
detection and reﬁorting of errors in the séurcé string or
execution time.lThe error message identifies the exact type
and positidn of the error.
The words or lexical components for the input string are
identifiers, numeric constants, positive and negative unary
operators, and all ﬁhe bihary operatprs. The syntax of.theée

lexical classes is given by the mathematical description:

¥

“¢letter> ::=

Kexpont.op> ti=

5-13

<aftih_expression) riz {term>
:<arith_expressioh><add/subrop><term)

<term> :!:= <(form>
: t (term><mult/div.op><form>

<form> :@:i= {word>
' 1 (form><expont.op><word>

(word> ::= <primary>

:(u_operator><primary>

{primary> t:= <(identifier>
' ¢(numeric>

(idenﬁifief) s = <(name)<digit> .

<name> ::= <(letter>
: ‘¢name><(letter>
'<name><digit>

BIC!DIE}FIGIH!I}JIKILIMINIOIPIQIRISITIUIVIWIX
Z S \

(numeric) ::= <«digit string?

'¢decimal digit string>
t¢digit string)(decimal)(digit.string>
:<numeric>§e_field><digit string>

‘(digit string> ::= <digit>

'¢digit string><digit>

(digit> ::= 011!213141516]71819

.<add/§ub.oﬁ} iz =l

<mult/div.oﬁ> HHE I SV

(u_operator> ::= +i-

<§_field> t:= E{E+ E-

¢decimal> ::= .

5-14

Algorithm A_EXPRESSION

L]

The input parameter of this algorithh is the 'éource string
assigned as SOURCE. This SOURCE string is analyzed by the
‘algorithm named SCAN and produces a token table named TABLE.
This TABLE is passed to the next phase defined by an
algorithm SYNTAX where these‘tokéns are arranged in a post-
fix sequence which are stored in the same table named TABLE.
'Thig_ TABLE ig passed to the next phase défined by an
algorithm named VTABLE where a table containing valueks)
and oper&tor(s) correspondihg to the 1input table 1is
generated. This table is also named as TABLE wﬁich finally
passed to the next phase defined by an algorithm named as
EVALUATE where the table is condensed to‘a gingle value and

gstored in a variable named RESULT.

1. [Call the lexical analyzer]}
Call SCAN(SOURCE);

2. [Call the syhtax analyzer]
- Call SYNTAX(TABLE);

3. [Call the value table generator]
Call VTABLE(TABLE);

4., [Call evaluation proceduré]
Call EVATUATE(TABLE); |

5. [Finished]
Exit.

5-15

.5.4.1 LEXICAL ANALYSIS

Séurce string is the input of the lexical analyzer or
scanner and output is the stream of meaningful-characters in
group which are called ‘tokens. These tokens may contain
identifiers called ID-tokens, numeric constants " called
NUM-tokens or operators .called OP-tokens. The following
block diagram shows the functional concept of a-scanner. In
-gées a streém of . characters ‘and out comes a sequence of

character groups as tokens. For .example, if the

Tokens

Y

source string ————» SCANNER

 Figure-5.4.la

source string is A1+4B2x20, then the output tokens are Al, +,

B2, ¥ and 20, where Al & B2 are ID-tokens, + & ¥ are
OP-tokens and 20 is therNUM-tokens.'The funcfional block

diagram of the lexical analyzer or scanner is shown below!:

Input -
I
{
Identify the cell identifiers,
numeric constant and cperators

\

Isqlntes the tokens and store in
afj table for further processing

l

|

A"
Output

e Py T

Figure-5.4.1b

Block diagram of the lexical ahalyzer or scanner

5-16

Algorithm SCAN

This algorlthm leads a procedure which scans the expression

_strlng by operator gearching method. The searching pointer

scans from left to rlght of the source language. After

_1dent1fy1ng an operator it checks the operator whether it 1is

an unary operator or not. If it is not an unary operator

then the logic checks the operator whether it belongs to an

exponent token or not. If it is not then the operator is
treated as a binary operator'and the left to this operator

is ‘to be considered as one‘of the two operands of the iden-

tified operator token. In the case of an unary operator and

exponent token the scanning pointer'is_advanced to right by

one character and the ,searchihg process for the mnext
operator 1is cotinued and the cycle is repeated after the

occurence of an operator. In this way the tokens are

.isolated and stored in a table until the scannihém is

finished.

The input parameter for this algorithm is the SOURCE. SOURCE

is the expression string containing constant number(s) or

cell identifier(s) or arithmetic operator(s)_tokens.OPERATOR

'is a string which contains all the arithmetic operators such

as +, —, i, / and "~ . TEMPLATE 1is .the temporary buffer

where the input string is placed for scanning process.

TABLE is an array where tokens are to be stored in a

i

sequence as they are in the expression string. i and j are

the character and the table index respectively.

5-17

Initialize] .
Set 1 (== j (== J;

Agsign the input string]
Set TEMPLATE <(—- SOURCE;

Assign the length of the buffer string]

Set k <~-- LENGTH(TEMPLATE);

Check the input character]
If SUB(TEMPLATE,j,I) = QPERATOR then goto step-6;

[Check the character ﬁointer with the length 1]

If j = k then goto step-10;

otherwise (increment the character pOJhter)

Set j (-- Jj+1 and repeat step-4;

Check the index for the unary opefétor] _
If i =1 then set j <-- 2; and repeat step-4;

Check for exponent tokens] . B
If SUB(TEMPLATE,j-1,1) = ’'E’ then set Jj <=- j+l1; and

repeat step-4;

Isolate the tokens] :
Set TABLE[i] (w—,SUB(TEMPLATE,I,j-I);
Set TABLE[i+1] <(-- SUB(TEMPLATE,Jj,1);

Set TEMPLATE <-- SUB(TEMPLATE,j+1,k—j); .

" Inerement & reset the pointers]

Set I ¢—— i+2;
Set j. <-- 1; and repeat from step-3;

10. [Isolate the final token and set the token range]

i‘
Lt

11.

12.

13..

'14.

Set TABLE[i] <-- TEMPLATE;
Set TOKENLEN <-- 1i;

Check the validity of tokens | -

If TABLE[i] = IDTOKEN then goto step-12;° ‘
otherwise if TABLE[i] = NUMTOKEN then goto step-12;
otherwise if TABLE[i] = OPTOKEN then goto step-12;
other print error message and goto step-14;

Check and reset the index]
If i = 1 then goto step-13;
otherwise set i ¢<-— i-1; and repeat step-11;

Check the ﬂnity of token and set the key]
If TOKENLEN = 1 then set SVALUE <~- TRUEj;
otherwise set SVALUE (-~ FALSE;.

Finish]
Exit.

5-18

' 5.4.2 SYNTAX DIRECTED TRANSLATION

%he -input of thlS phase is the stream of tokens outputted
from the lexical analyzer and the output is the stream of
tokens arranged according to postfix notation scheme. The
ordinary (infix) way of.writing the sum of a ﬁnd b is with

the operator at ﬁhq middle, a+b

Lexical — _ : Post-fix
_————>|i SYNTAX TRANSLATOR b —>

tokens notation

Figure-5.4.2a

The postflx or polish postflx; notation for the‘ same
expression replaces the operator at the right end as ab+t+ .
In geheral, 1f el and e2 are any postfix expre551on, and a
is any binary operator, the result of applylng a to the
values denoted by el and e2 is indicated in postfix notation

by elela.

Postfix notation -<can be generalized to k-ary operators for
any. k >= 1..If k-ary operhtor a is 'applied to ‘postfix
expre351on el,e2, e3,.......ek then the result is denoted by
ele2el...eka. If we know the arlty of each operator, then we
can unlquely decipher any postfix expression by scannlng 1t
from either end. For example, consider the postfix strlng
_ab+ck. The righthand * says that there are two arguments to
its left. Since the next to rightmost symbol is c, a simple
6perand, we know o must be the second operand of ¥.
Continuing to the left, we encounter the operator +. We now
know the subexpression ending in + makes up the first

operand of ¥, Continuing in this way, we deduce that ab+c¥

is "parsed’ as (((a.b)+),c)*.

R

Algorithm SYNTAX

This algorithm .produces a postfix notationr token stream by
processing the lexical tokens. The method used here to
generate a postfix token stream is the swapping bethen an
operatof and‘aﬁ operand jdentified by a pointer scanning the
token streém from left to right. The rulés followed here can

be defined by the following table:

TABLE 5.4.2 PRECEDENCE AND ASSOCIATIVITY OF OPERATORS

<

1st operator

¥

2nd A T D A
. o, A I R |
P
e O 2 T :
T
a A R A A
t '
o N A P B H
: r
' : P S O A
> -- swapping between the 1st compared operator and the

next available operand.

< -~ swapping between the 2nd compared operator and the
next available operand.

"Given a stream of tokens which is outputted - from the

algorithm SCAN. Thesé'are nothing but the cell jdentifier

tokens, arithmetic operator tokens, constant value tokens

5-20

etc. These are stored into a buffer array Vnamed- SYNA,
Thé length of the array js limited by.the number of tokens
TOKENLEN. Hére OPERATOR is a string containing all the

‘arithmetic operators inrséquencq.

{. [Initialize] , S
Set .'I. <_—. 2 J <-- 1; and k <(-- 0;

'Zﬂ [Exchange the elements]
SYNAfi-k]l ¢(---> SYNA[i+1];

3. 1 Ihcremeqﬁ the array index and check the range]
. Set i <-- 1 +# 1; . .. _ '
s . If i > RANGE then goto step-7 ;

4. [Check the operator] o
Set OP ¢(-— INDEX { SYNA[i],OPERATOR,I);
If OP = 0 then repeat step-3; -

5. [Set the operator buffer 1

: Set OPBUFF[j] <-- OP; and Jj <-- J+#1;
If j=2 then repeat step-4;
otherwise set j <(-- 1;

6. [Check the-precedence'rule of operators_]
If OPBUFF[2] = 1 or 2 then :
set k ¢-- 0 and repeat step-2;
otherwise ‘
if OPBUFF[2] = § thenm
set k ¢<-- 1; and repeat step-2;
otherwise :
if OPBUFF[1] = 1 or 2 then
set k ¢<-- 0 and repeat step-2; _
otherwise set k <-- 0 and repeat step-2;

7, [Finish 1
Exi;.

5.4.3 VALUE TABLE GENERATION

" The input of this phase is the stream of tokens arranged
according to postfix notation scheme outceme from the

intermediate code generator and output is a stream of

5-21

numeric constants only. In thls phase all 1D tokens and NUM
+tokens are replaced by their correspond1ng numeric constant
§aiue3. Thus the elements outcame from this phase conelstlng
of only values.‘And their sequence is maintained accordihg
to postflx notation w1th the help of an index. The following

figure 111ustrates the functional concept of*iquthla phase.

Stream of value .
f——_%{i VALUE TABLE GEMNERATOR L——————é-

- tokens table

Figure;5.4.3a

For example if the inhut stream hes the form B2, 20,7*, Al &
+ and if ID tokens have the values as B2=5.0 & A1=10.0 then
the output table of this phase has the form 5.0, 20 & 10.0.

The functional block diagram of the value table generation

.phase is given'belowz

| Identify the tokens and

find tha-velues from
the data structure.

Constract a table
consiating of values
with an index similar to
the token table
{

\Y

Figure-5.4.3b

'q Block diagram of the value table generator

5-22

Algorithm VTABLE

" Given a siream of tokens consisting_qf identifier tqkens,
numeric tokens and operator tokens. Sequence_of thqultokens '
. are identical as these are'outcome_from thé. synta# direciéd
"translator. These tokens are stored in a table named TABLE
with a pointer i. Another table named VTABLE is used here
for storiﬁg‘the token valueg with the same index as they are
“in TABLE. RANGE is the numberj represented by the range of
the tbkens. TEMPLATE }s the temporary buffer'where tokens

are checked for further operation.

1. [Initialize]
Set i <--1;

2. [Load the buffer] ‘
Set TEHPLATE ¢-- TABLE [i];

.3. [Check the tokens]
If TEMPLATE = NUMTOKEN then
set VTABLEfi] <-- VALUE(TEMPLATE) ; and goto step-8;
otherwise, (Check for operators)
if TEMPLATE = OPTOKEN then goto step-8;
otherwise, (Check temporary storage values)
if TEMPLATE = TSTOKEN then . '
set VTABLE[i] <-- VALUE(TS); and goto step-8;

4. [Check for unary operator]
If SUB(TEMPLATE,I;I) - OPTOKEN then goto step-5;
otherwise, (Extract the cell values)
set [ROW,COLUMN] <—- CELLID(TEMPLATE);
VTABLE[i] <-- VALUE{CELL[ROW,COLUHN}); and
goto step-8; '

5. [Isolate the absoluate value]
Set TEMPLATE-(—— SUB(TEMPLATE,2,LENGTH(TEMPLATE));

‘6. [Check the tokens for unary operation]

If TEMPLATE = NUMTOKEN then

set AVALUE (-- VALUE(TEMPLATE);
otherwise, (Check for temporary storage value)
if TEMPLATE = TSTOKEN then set AVALUE <-- TSy
otherwise, (Extract the cell value)

"set [ROW,COLUMN} ¢—- CELLID({TEMPLATE); and

~ AVALUE <-- VALUE(CELL(ROW,COLUMN]);

5-23

7. [Evaluate the values]
If OPTOKEN = PLUS then set VTABLE[i] <-- AVALUE;
otherwise set VTABLE([1i] (== -(AVALUE),

8. [Increment and check the token index]
Set i <-- i+l; and
if i ¢ RANGE then repeat from step-2;

9. [Finish]
Exit.

5.4.4 EVALUATION OF THE EXPRESSION | .

Having geﬁerated postfix notations for an expression, we caﬁ
evaluate it' easily using a stack, implemented in software.
The géneral strategy is to‘scan the pbstfix code sequence
from left to right. We push each oﬁerand onto the stack when
we.see it. If we encounter a k-ary operator, its first-(left
most) argument will be (k-1) position below the top on the
stack, its last argumént'will be at the top on the stack,
/;ndrin general, its ith afgument is (k-i) position below - the
~top. It 13 then easy to apply the operator to the toplk
values on the stack. These values are popped and the. result-

~ of applying the k-ary operator is pushed onto the,stack.

_Consider -the postfix expression A2B3xC5+. Suppose the
identifiers A2, B3 and C5 have the values 5, 3 and 7
respectively. To evaluate ©53%7+ we perform the foilowing

" actions:

1. Stack the value 5

2. Stack the value 3

3. Multiply the two topmost elements, pop them off
~the stack, and then stack the result, 15

5-24

4. Stack the value 7
5, Add the two topmost elements, pop them off the

stack, and then stack the result, 22

The value on the top of the stack at the end (here 22) is

the value of the expression.

-~

Algorithm EVALUATE

Given the valﬁes in a table named VTABLE and the tokens in

“another table named TABLE .arranged according to the postfix

notation scheme. An index i identifies (the elements in the

TABLE. Both tables have the same range, RANGE. OPERATOR is

the

string containing all the binary operators in sequence.

k represent another index for the operator string.

1.

[Initialize]

Set i {—- 1;

Search for the operator] -
Set k <-- INDEX (TABLE[i],OPERATOR,I);

If k <> 0O then goto step-4;

otherwise, (Increment the token index)

Set i <-- i+l; : '

Check the index limit]

If i <= RANGE then goto step-2;
otherwise print error message; and
goto step-8 ;

Perform the operation between the operands] .
Set VTABLE[i-2] <-- VTABLE[i-2] OP(k) VTABLE[fi-1];

5-25

5. [Shift the elements next to the operands]
Set TABLE[i-1] <-- TABLE[i+1]; and
VTABLE[i-1] <(-- VTABLE[i+1];

6. [In&rément and check the index]
-Set i <-- i+1; .
If i ¢ RANGE then repeat from step-5;

?.'[Set the ﬁew rangé and check with unity]
Set RANGE ¢{—-- (RANGE - 2);
If RANGE > 1 then repeat from step-1;

8. [Finish]
~Exit.

L

5.5 BOOLEAN EXPRESSION ALGORITHMS

The interpretation of a boolean expression consists of the

following algorithms:

Boolean expression schnning or lexiCal-analysis

Value table generation for the tokeﬁS'

Evaluation of the wvalue table

The grammatical description of the language for the boolean:

'~ expression is given below:
) . [. .

{b_expression> '(lgﬁidentifier)((><16gical_term)<))
'<lg_identifier> ::= IF!NOT)OR}AND}EQU}NEQ
<logical_term> ::z= <logical part>
~ 1<logical_term><,><logical_part>
i <logical_term><,><a_expression>
" <logical_part> ::= <a_expression><{relation><a_expression>

{relation> ::= {}>l=1<>1>=i«(=

5-26

' Algorithm B EXPRESSION

The input: parameter of this algorithm fis the expression
" gtring assigned as SOURCE. Initially this gource string is
.scanned from left to right, looking fer any boolean keyword
already"'definedein a table named. LFUN. If no keyword is
" foand in the string then,the algorithm exits without any
eﬁaluation. If it is a logical expression " then the source
string is passed tﬁrough the .procedure LCLEX where tokens
1are isolated and stored in a table named TABLE. Next this
‘table is passed to the next phase called LCVTABLE where a
value table is generated . Finally evaluation of the

expresslon occursg in the phase named LCEVALUATE.

1. [Initialize the funetion keyword.table index]
- Set i (== 1; :

2. [. Check for any boolean keyword]
If INDEX(LFUN{il, SOURCE,1) <> 0 then
set LTYPE ¢-- i and goto step-3;
otherwise set i ¢(-- i+l and repeat step-2 until i>6;
goto step- 7 :

3. [Identify the argument token of the funetion]
' Set j <-- INDEX(LPR,SOURCE, 1), and .
SOUREC <-- SUB(SOURCE, Jj+tl, LENGTH(SOURCE) -1);

4. [Call the lexical analyzer]
Call LCLEX{SOURCE};

5. [Call the value table generator 1.
Call LCVTABLE(TABLE) ;

6. [Call the evaluation procedure }
Call LCEVALUATE{TABLE);

7. [Finished]
Exit.

5-27

Algorithm LCLEX

This algorithm analyzes the lexical classes of the logical

and conditional expression argument string.. A class of

-gymbol ~called delimiters must be handled by this algorithm,
'and yet their presence is not passed on to the next phase.
As described - before according to the grammer of" the
expression' language, the argument atring handled by this
phase consists of at least one relational expression follow-
ed by none or another relational expression or arithmetic
expresalons. Each of these argument classes, called them as

tokens, must be delimited by an ASCII character of ",”

o
(comma). Each relational expression consists of two

r1thmetio expre331ons ‘as operands and a relational operator
as described in the grammer of the language. This algorithm
identifies - the lexical classes and generates a table

containing tokens w1th an 1ndex for identifying the tokens.

An argument string is the SOURCE. A delimiter character
named COM 1is wused to isolate the lexical classes of the
argument string. Another tabie containing all the possible
relatlonal operators is defined as ROP with an index i. Here
nine possible oomblnatlons of the relational operators are
taken into consideration. They are =,<,>,<>,>¢,<{=,3¢,>= and
=), Here it is important to mention that double byte
onerators are at the top of the table and single byte
operators are at the bottom. This is done because one byte
operators are part of the two byte operators. During search-
ing process they may mislead the operator type. The analyzed
tokens are stored in a table named TABLE with an index j.
The maximum token range is denoted by LCLIMIT and a
temporary variable named BUFFR is used for checking and

processing the tokens.

1.f Inztzalzze]
Set i <-- 0; and j <-- 1;

2.[Check the source string]}
If SOURCE = blank then goto step- 7

3.[Check the-argument delimiter and load the buffer])
' Set k ¢-- INDEX(COM, SOURCE, 1); .

If k = 0 then set BUFFR <(-- SOURCE; and

SOURCE <-- blank and goto step-5 ;

4. Load'the buffer and update the source]
' Set BUFFR <-- SUB(SOURCE, 1, k-1);
SOURCE <-- SUB(SOURCE, k+1, LENGTH(SOURCE));

'5.[Check for the relational operator and isolate tokens]
- Set i <¢-- i+l1l; and k <(-- INDEX(ROP[i]}, BUFFR, 1)};
If k <> 0 then set TABLE[j] <-- SUB(BUFFR, 1,k-1);
TABLE[j+1})<-- ROP[i];
TABLE([j+2]<--SUB(BUFFR, k+LENGTH(ROP[1])+1 LENGTH(BUFFR)),
J <(-- Jj+3 and repeat from step-2;
otherwise repeat step-5 while i <= 8;

6.[Extraction of token with no relational operator]
Set TABLE[j] <-- BUFFER; j <-- Jj+1; and
repeat from step-2; '

7.[Set the index limit]}
Set LCLIMIT <-- j-1;

8. finished] -
Exzt ‘

Algorithm LCVTABLE

"This algorithm énalyzes the tokens and recursively evaluates
to values. In the case of relationaluoperator tckens, a code
is génerated to the corresponding elément of.the table. Thus
the generated table contains values and the code of the
operators. During the evaluatlon process it uses a procedure
to evaluate the expression string which is considered as a

~token in this phase.

¥

5-29

Given a table named TABLE generated by the previous.lexical
phase with an index i. EXPR_TER is the name of the
procedure which interprets thé valid expression tokens.
BUFFEﬁ is the temporary variable used for processing tpkens.
'k is fhe setting for the‘index displacemént depending on the
type of the function. RANGE 1is the valid token number

generated by the previous phase.

1. [Initialize] o , _
Set i ¢-- 1; k ¢<-- 2; and IKEY <-- false;

2. [Load the buffer for evaluation of the expression]
Set BUFFER <-- TABLE[i];
- Call EXPR_TER(BUFFER);
Set VTABLE[i] <-- BUFFER;

3. [Increment the index and check for processing]
Set i <-- i+k;
~ If i=3 then repeat step-2;
otherwise if TABLE[i] = blank then goto step-6;

4. [Check and set the index]
If IKEY = false then repeat step-2; :
otherwise set IKEY <-- false; and i <(-- {;

5. [Check for the range of tokens and set the displacement]
' If RANGE = 6 then set K (-~ 2;
otherwise set k <-- 1; .
repeat step-2;

6. [Finished] . ' \
Exjit o

Algorithm LCEVALUATE

¥

This algorithm defines a procedure which analyzes the
logical condition given and .returns a.boolean result of a
value. Aécording to the logical operator given it QﬁﬁﬁﬂyZESE
 ;he relational argument{s) and . returns a boolean result. In

the case of the conditional operator it @ndlyZes: the

e Tt

5-30

relational argument and evaluate the corresponding
expression. The logic followed here first checks the argument
dnd_ with the result checks the operator and proceeds

according to the following table:

'lét

condition; IF }‘NOT ' AND ! OR |} EQU |} NEQ |
TRUE R > : S 4 ! < !
_FALSE | > : > ! > ¢ ! < ! < !
> ~-= exit _
¢ —= 2nd condition check

.Hére OPERAND1 :4Adl OPERAND2 are two buffer variables where
two operands of a given relational operator gpd placed and
check the iogicrwith the condition ‘given. If the- reéult is
true then the true -logic table is checked and if not then
the false logic table is checked. Finally the evaluated
value is stored in the RESULT. VTABLE is the value table
generated from the previous algorithm. LTYPE is the-function
code given. LP and LG are keys setﬁ;;?for the fecognition of

logical keyword and the conditional keyword.

1.f Initialize]
Set 1 <-- 1;-

2. Load the operator and ope}and.token for logic testing |
Set OPERANDI <-- VTABLE[i]; OPERAND2 <-- VTABLE[i+Z2];
and condition ¢-~ VTABLE[i+1];

3.[VCheck the condition over the operands] -
If (OPERAND1 condition OPERANDZ2)=true then goto step-5;

5-31

4.[Perform the operation for false logic condition]}
If LTYPE = 1 then set RESULT <(-- VTABLE[i+4]; and exit;
otherwise if LTYPE = 2 then set RESULT <-- 1; and exit;
otherwise if LTYPE = 3 or & then
if LP=false then set LP(--true;i<--4; & repeat step-2;
otherwise if LG=true then set RESULT <(-- 1;
otherwise set RESULT <-- 0; and exit;
otherwise if LTYPE = 4 then set RESULT <-- 0; and exit;
otherwise if LTYPE = 6 then o
if LP=false then set LP<(--true;i<-- 4; & repeat step-2;
otherwise if LG=true then set RESULT <-- 0;
o ‘otherwise set RESULT <-- 1; and exit;
otherwise print. error message; and exit;
5.[Perform the operation for true logic condition]
If LTYPE=1 then set RESULT<-- VTABLE[i+3]; and exit;
otherwise if LTYPEzZ then set RESULT<-- 0; and exit;
otherwise if LTYPE=3 théen set RESULT<(--1; and exit;
otherwise if LTYPE=4 or 6 then
if LP=false then set LP<(-LG<-true;i<--4; & repeat step-2;
otherwise if LG=true then set RESULT<-- 1;
otherwise set RESULT<--0; and exit;
. otherwise if LTYPE=5 then o
if LP=false then set LP<-LG<-true;i<--4; & repeat step-2;
otherwise if LG=true then set RESULT<-- a; .
otherwise set RESULT<-- 1; and exit;

6.[Print error message]
Exit.

5.6 BUILT-IN FUNCTION ALGORITHMS

The interpretation process of the built-in function argument

string consists of the following algorithms:

argument string scanning or lexical analysis
Value tah}e.generation for the tokens ' -

Evaluation of the value table

The grammatical description of the language for the built-in

function argument string is given below:
. / N .

5-32

<b_functién)':f= (b_identifier)((>(argumeﬁt5<))
<b_identifier> -::= MAX]MINISUM;AVGICNT
{argument> ::= <(range>

'¢argument><;><range>
{(argument)<;)(identifier)

{range> ::= ¢identifier><:><identifier>
{i> :=

;> ti= 3

(> 1= ¢

<)> 3=)

Algorithm B_FUNCTION

. The input parameter of this algorithm is the expression
string assigned és SOURCE. Initially this source string is
| scanned from left to right, lookihg for any fuhétion keyword
" already defined in a table named BFUN. ;f no keyword is
.matched then the algorithm exits without any evaluation; If
any fqnction matches then the type of function is identified
and correspondihg'cpde is generated. The argument string is
‘isolated for processing. BTYPE 1is the function type code.
ASTR 1is the argument string. In the source string the
recognized function keyword with the argument is dissolved
‘and a temporary vafiable name is replaced,the value of which
is the evaluated value of the corresponding function. The
.argument string is passed to the lexical anglyzer ﬁLEX where
a token table is -producéd. This table is then ﬁasééd to the
next phase called the value table generator BVTABLE. This

recognized function is finally evaluated in the next phase

5-33

called BEVALUATE. This process is repeated again for ancther

function (if any) with. the reduced source expressioh.Finally

the

algorithm exits if no more function is referenced in the .

reduced expression string.

2

"Initialize the function keyword'table index]
Set i ¢—- 1; and 1 <-- LENGTH({SOURCE) ;

Check for any built-in function keyword]

Set j (=- INDEX(BFUN[i],SOURCE,I};

If j <> 0 then set BTYPE ¢-- i and goto step-3;
otherwise set i <(-- i+l; and repeat step-2 until i>5;
goto step-8; ‘ .

[‘Idéntify ﬁhe argument string of the function]

set k1 <¢-- INDEX(LPR,SOURCE,j};
. k2 <¢-- INDEX(RPR,SOURCE,kl);
ASTR <—- SUB{SOURCE,k1+1,k2~1}; and
SOURCE <(-- SUB(SOURCE,1,k1—1)+TS[m]+SUB(SOURCE,k2+I,1);

['Cdll the lexical analfzer]

Call BLEX{ASTR); :

[call the value table generator]A

Call BVTABEL(TABLE);

[call the evaluatidn brocedure]

Call BEVALUATE(TABLE) ;

[Check for the existance of:another keyword]

Repeat from step-1;

[Finished]

Exit.

Algorithm BLEX

This _algorithm analyzes the argument string of the built-in

function class. The lexical classes of the argument as the

input string consist of 1list of identifiers or list of

ranges or list of jdentifier(s). and range(s). The delimiter

character for each indentifier or range is the ASCII

5-34

character H (éemicolon).f -Each range'defines.the lower
" boundary and the upper boundafy5of a list or block delimited
by an ASCII character< of ":" (colon) as described in the
grammer of thié type. The method“of identifying the token
deﬁends on the delimiter character. In this algorithm two
types of token tables .are generated. dne'type defines the
individual 1dent1f1er list while the other type defines the
range list. The latter table 41g sudivided into two table-

-bné for the lowver boundary deflnltlon while the other for
~ the .ﬁpper _boundary definition of the range. Each table has

an index to indicate the token. These three token tables

define@ all the lexical classes of the argument string.

‘The {7) argument string is tﬁe SOURCE. Identifier or range
delimiter within the argument striﬁg is denoted by SLON and
the boundary delimiter within the range 1is denoted by CLON.
The table for the individual identifier tokens is given as
ICT with - an index 1. The tables for the range tokens are
named as LBT and HBT. LBT for the ljower boundary token list
'yhile HBT for the upper boundary token list. Both: the tgble&
Have the saﬁe index of Jj because each range must have both
the Dboundary tokens. ILIMIT is the count of individual
identifier tokens and RLIMIT is the count of range tokens.
BUFFER 1is the temporary variable used to process the

tokens.

1. [Initialize]
Set i <-- J <-- 0;

2, [Check the source input]
If SOURCE = blank then goto step-7

3. [Check for delimiter] ' ' . -
Set k <-- INDEX(SCLON, SOURCE, 1); .
If k = 0 then (Isolate the token)}
Set BUFFER ¢-- SOURCE; and :
. SOURCE ¢=-- blank and goto step~5,

5-35

4. [Isolate the token]
Set BUFFER <-- SUB(SOURCE, 1, k}; and
SOURCE <-- SUB(SOURCE, k, LENGTH(SOURCE)} };

5. [Check for list argument]
Set k <-- INDEX(COLON, BUFFER, 1),
If k = 0 then (store the individual cell token)
Set i ¢(—- i+1 , ICT[i] <-- BUFFEEK; and
repeat from step-2 -

6. [Store the boundary token]
Set Jj <—- J+1 ; :
LBT[j] <-- SUB(BUFFER, 1, k-1); .
. HBT[Jj] <-- SUB(BUFFER, k+1, LENGTH(BUFFER))}; and
repeat fron step-2; -

7. [Set the index limits]
Set ILIMIT <-- i; and BLIMIT <-- J;

8. [Finished]
Exit. :

Algorithm BVTABLE -

This algorithm generates a table after analyzing the lexical
tokens outhFe from the previous phase. In the analysis of
the tokens the same three token tables are used. The
analysis process irnivolvs. identifying the cells and extract
values from the data structure of the cell system éccoding
to . the foken type. This algorithm uses procedures for the
identification of cells and extraction of values. Finally a
table consistiﬁg of values 1is generated for further
processing. . |

Given the three tablesas inaicated in the previous lexical
analysis aléorithm with two indexes i and Jj. Here a -
procedure named CELLID is called for-fhe identification of

cells from the identifier token. VALUE is another procedure

to find the corres

the

of

- cell system.

the

yalue table.

with an index 1i.

‘Set [ROW,

Initialize] _
Set 1 ¢=-— J <-- 0,

ponding value
COUNT and RANGE both are t

The generated tablé is name

¢

from the data

Check the cell.token table range]
If ILIMIT = o then goto step-4;

Prpduction of cell

value for individual cell token]

Repeat step-3 while j <= ILIMIT;

COLUMN
VTABLE([J]
J ¢(-- J+1 ;

If BLIMIT =

] <-- CELLID(ICT(j]);.
¢-- VALUE(CELL[ROW,COLUMN]); and

ICheck the boundary token table range]
0 then set RANGE <-- ILIMIT;

Recognition of boundary ceils]
Set [RL, CL} <-- CELLID(LBT(i]); and
[RH, CH] <-- CELLID(HBT[1i])

Production of cell values
Set k1 <-- RL; and k2 <--

'If RL = RH then goto step-

otherwise if CL = CH then

Production of table for &
Set i ¢-- i+l ; VTABLE[i]
k2 <-- k2+1; and’

repeat step-7 while k2 <=
otherwise set k2 <-- CL ;
repeat step-7 while kl <=
otherwise goto’stepflo;

Production of table for a
Set i <-- i+l ; VTABLE[i]
k2 <-- k2+1; and

repeat step-8 while k2 <=
otherwise goto step-10;

Production of table for a
Set i <~- itl;
k] <-- kl+1; and

VTABLE[i] <--

for the list token]
CL ;

8;

goto step-9;

list]
¢-- VALUE{ CELL[k1,k2]);

CH;
k1l <-- kI+l;
RH;

and

column list]
¢(—— VALUE(CELL[k1l,k2}]);

CH;

row list]
VALUE(CELL{k1,k2]);

repeat step-9 while k1 <= RH;

gtructure of
he maximum count

d as VTABLE

and exit.

5-37

10. [Set the range of the table 1
Set COUNT <-- RANGE {—= i}

'11. { Finished]
Exit.

Algorithm BEVALUATE

The input parameter of this algorithm ie the -function code
and the value table~genera£ed froh the previous algorithm.
According to the function code it branches to the correspon-

ng routine and evaluation takes place over the value table
and finally returns a value. This value is stored in the

RESULT and exit from the algorlthm

1. [Check the function code and call the routines]
If BTYPE=1 then set RESULT<(—- MAXIMUM(TABLE); and ex1t.

otherwise

if BTYPE=2 then set RESULT(—— MINIMUM(TABLE); and exit.
otherwise .

if BTYPE=3 then set RESULT(—— SUHMATION(TABLE), and exlt.
otherwise

if BTYPE=4 then set RESULT<-- COUNT(TABLE); and exit.

2. [print error message]
Print error message and exit.

5.7 OTHER ALGORITHMS

AlLgorithm REBK 3 ' : ' ' -

. *The input paraheter of this algorithm is a valid character

string. Any space i.e., blank within the string is removed

.5~-38

by this algorithm. Here the input string is-searched from
left to right for & bhlank space, 1+f found then the blank
éharacter jg removed from the agtring i.€., the length qf the:
. atring is -reducéd by a character. If'there are no blank
spdce in thé input gtring then the atring is returﬁed as it
ia. Here the iﬁput atring is assigned as SOURCE and the
output atring is 'REBK as the name of the algorithm. i is thé
searching index used in this glgorithm and j is the position
of = blank sSpace feturned by the function INDEX. And J is

¢

ysed to minimize the searching time.

1. [Tnitialize the searching index]
Set i <-—- 15

2. [Set the length and gearch the string for the blank]
. Set 1 <(—- LENGTH(SOURCE); and :
J <-- INDEX(CHR(32), SOURCE, i);
If J = 0 then goto step-6; '

3. [Remove the plank space] .
: Set REBK <-- SUB(SOURCE,1,j-1)+SUB(SOURCE,j+1,l);

4. [Advance the searching index and repeat the loop 1
Set i <-- j; and repeat from step-<;

5. [Finished I
Exit.

Algorithm BRAKET

The input parameter of this algorithm is the SOURCE. In this.
"algorithm any subexpression delimited by pﬁrahtheses, as
convension, is isolated and in the mother expression this
gubexpression js replaced by a temporﬁry variable. The
ﬁrecedence_ of parantheses follows the normal arithmetic

rule. Inside-right subexpressions are igolated first. Here a

5-39 -

pointer first scans the gource string frdm left to right
searching for a left parantheses. When a parantheses ié
identified_then_the pointer moves to right and scans for the
next parantheses {if any). .If no parantheses is identified
/£LEn the pointer is. set{:ig after the last parantheses
occurance. Now the pointer scans the string to right
searching for a right parantheses. When a right parantheses
is recognized then the substring is isolated as. a
subexpression and the substring is replaced by a temporary
variable. In tﬁis way all subexpressions can be replaced by
repeating the . process. Here LPR and RPR represent left and
right parantheses respectively.. PTABLE 1is tﬁe function
keyword position téble with‘an index v. FSWITCH is the key
representiﬁg whether the corresponding subexpression is the
argument of a function or é-simple expression. DSTRING is
the subétring representing the subexpression. Here m is the

index of the temporary variable.

1. [Initialize the character pointer and set the length |
Set j <-- 1; and LEN <-- LENGTH(SOURCEJ;
2. [Search the delimiter character and advance the pointer]
Set i ¢-- INDEX(LPR, SOURCE, J)s
If i <> 0 then set j <-- i+l; and repeat step-2;

3. [Check for the library fﬁncfion key]
If (j-1) = PTABLE([vV] then set FSWITCH <-- true;

4. [Set the pointer and search the delimiter character]
‘ Set k <(-- j and 1 <-- INDEX(RPR, SOURCE,k);
If 1 = 0 then print error message and exit.
otherwise set k <—-(1-1);

5. [Set the delimited string and the source string]
Set DSTRING <-- sSUB(SOURCE,j,k); and .
SOURCE <-- SUB(SOURCE,1,j-2}+TS[m]+SUB(SOURCE,k+1,LEN);

6. [Finished]
Exit, .

5-40

Algorithm LIB. PN

The
expre
in th
code.
repre
the
funct
- FSTR
keywo
three
paran
funct
the
corre
an in
INDEX
thg n

1.1

2. 0

5. (

input parameter of . this algorithm is the SOURCE
ggion string. Here any library function is jdentified
e expression and a-table is generated with the function
" Another table . is generated gimultaneously which
sents the pésition of the cofresponding.function within
gource string . During the genergtion of the tables,
ion keywards are deleted from the source spring. Here
is the string containing all the library function
rds in a sequence. All keywords are of fixed length“;f
characters. LPR is the string representing the left
tﬁeses. Left parantheses ig searched first because all
jon has an argument delimited by parantheses. FTABLE is
generated function code table and PTABLE is
sponding function position table. Both the table use =
dex of i. TEST is the function position returned by the
function during the searching df keywords. RANGE is:

umber of functions i.e., the length of the tables.

Initialize the table index and the search pointer]
set i ¢--1 and j <-- 3;

Search the delimiter character]

Set k <-- INDEX{(LPR, SOURCE, J);

IFf k = 0 then goto step-6;

If k ¢ 4 then set j <-- ktl; and repeat step-2;

Search for a function keyword]
Set TEST <-- INDEX(SUB(SOURCE,k—3,k—I),FSTR,1);
If TEST = 0 then set j <-- k+1; and repeat step-2;

-
-

Set the function code and position | :
Set FTABLE[i] <-- ((TEST-1)/3)+1;and PTABLE[i] <-— k-3;

Eliminate the keyword and reset the indexes]
Set SOURCE <-- SUB(SOURCE,1,k—4)+SUB(SOURCE,k+1,l);
i ¢-— i+l; j <-- k-2; and repeat step-2; 7

Oy

-41
6. T Set number of keywords in the tgble] '
Set RANGE <(-- 1i-1; '
7. [Firnished] .
Exit. '

pors

Algorithm CELLLD

The input parameter of this algorithm is the cell identifier
string. 'This algorithm resolves the identifier into the
corresponding cell address. Thé address of a cell means its
~row value and the‘ column value. A cell can be identified
uniquely bf a row and a column. Anlideniifier i's a language
confaining one or Lwo lepter(s) Wwith one or . more digits
appended.Thus the length of an identifier .never exceeds five
after reméving all the .blank(s) , Wwithin the identifier.
By this representation we can represent a cell of maximum
range of row 999 and column (26*265. In this algorithm
initially identifiér string is packed by remgving all the
blank(s) within the string. Theh the first character is
checked whether it'isl an alphabet or not. If not theﬁ an
error message 1is issued. If the fTirst character is a letter
then its numeric equivalent is calculated. Then the second
character is checked, if it is a letter then its numeric
equivalent is calculated otherwise it 1is treated as a digit
rand along with the rest of the'string is coﬁverted to 1ts
numeric equvalent, Thié digitis) équivalent‘ number
represents the row address and the letter(s) eduivalent
number represents the column address. Now finally these
numbers are -checked by the valid range given. If they are
within the range then no preblem but it they arerout of the
range then an error message 1s issued. Here LETTER is a

string containing all the alphabetic chatacters (upper

?
o

6.1

8.1

" 5-42

case) . REBK 1is the blank removal procédure. RLIMIT and
'_CLIMIT are the maximum rows and the columns defined
initially.
1.[Removes all blanks and set the length of the source]
Set SOURCE (—- REBK (SOURCE) and 1 <(—- LENGTH(SOURCE};
. 2.[Check for the valid length of the idetifier]
If 1 > 5 then print error message and exit.
3.[Check the first character to match the syntax]
Set 1. (-- INDEX(SUB(SOURCE,1,1),LETTER,1);
‘If i = 0 then print error message and exit.
4.[Check the second character for letter or digit]
Set J (—- INDEX(SUB(SOURCE,Z,1),LETTER,1);
If j = 0 then goto step-6;
5.[Convert the cell inteo its address for double letter id.]

Set ROW ¢(—- (26%i+j); and
COLUMN <¢-- VALUE(SUB(SOURCE, 2,1));
goto step-7;

Check the address with the limits given]
If ROW (>RLIMIT or <1) then print error message & exit.
If COLUMN (>CLIMIT or ¢1) then print error message & exit.

Finished‘]
Exit. '

o
I CHAPTER:6

/ES(JIZIEIElQ MANIPUILATION

6.1 INTRODUCTION o | <

lThe whole syétem uses computer memory which consists of
cells orgahised‘into rectanguler grid. Each -cell has 'a name
for identification. Thus the location of a cell within the
‘grid defines_its cell address. In order to reference a cell,

its name can be mentioned with the column letter first and

. then the row number. The entire grid system is far too large

to -display on terminal screen at one time. Thus the.scfeen
is used . as * a display window, as shown in the figure-6.la,
that can slide over the entire grid system but showing a

portion at a time.

DISPLAY
WINDOW

L

i r——

Q== £ 0

—GRID SYSTEM-{-—

|
|
|
|
|
|
|
5
i
!
i
i

i ke o e e e o S e

Figure-6.1a The display window and the gridfsysteﬁ

e

6-2

H A B H c I D L E P
1:
2]
3! :
4, WINDQW#1
34 G ¢+ H 3 I it J 4 K 1) ceveneans
35 -
361 WINDOW#2
»Al o
o1>_
.Figure—e.ib Horizontal split screen
O S DD T S S | B PP
1! ‘ - 22
23 230
3 24!
- WINDOW#1 251 SWINDOW#HZ
178 38}
18} 33,
19: 40,
Al '
T 01> _
Figure-6.1c vertical split screen
H A H C P D . E ! ececsrsvsane
1 = - ‘
23
3! \
43
=
181 -
13
>B1 TR Forms . ERROR :
‘ Wicth= Last C/R 7?7 Help
Ql¥_ '
Figure-6.1d
Column & Row border, Active cell cursor and Status lines

6-3

The screen can be subd1v1ded to show different portions of
the grid ystem as shown in the figure-6. 1b and 6.1c. The

screen border 1dent1f1es the currently dlsplayed,columns and

lrows. The top 'border, called the column border, contains
letters and delimiters. The left border, called the row
border, contains ﬁumbers and dellmiters as shown in the

flgure -6. 1d. It can be made possible to turn the border off
or oh as de31red When the border is set'w: to off, then it

will not be . dlsplayed on the_ screen and as well as not

printed on the printer.

The active cell is the cell affected by the deta' entry at
the present time. In order to identify the active cell, a’
pointer, called thé active cell cursor, identifies the
active cell, Only one cell is made active at a time as shown
in the figure-6.1d and it always displays because only one
cell must active.to accepf data at one time and it must be
ideﬁtifled. ‘The cell cursor can be set to move automatically
to an adjacent cell or to remain in the current cell upon
data entry. When set to move automatlcally, it moves in the
direction of its previous move to the adjacent cell, which
then becomes the active cell. When set to remain stationafy,

the cursor deoes not move upon data entry.

The status lines show the active cell status, global status
and data entry or command status. As shown in the figure-

6.1d, the bottom three lines display the current status.

. Active cell status
. Global status or prompt

. Data entry or command

6-4

The active cell status and global status or prompt lines
diaplay only the 1nformat10n related to the active cell and
the s8ystem status. On the date entry ot command line , data

‘or command can be entered -into the system. For the data

entry function, a cursor , called the edit corsor, always.

dieplayson_this'line.

Active cell status line displays information about the

active cell. A sample active cell status line looks like
this. '

> Al TR Formula= C1¥10+D2 ERROR

t >, eursor direction. The first character indicates the

current"direction'of motion of the cell cursor. In order tor

enter data into'the' active cell, carrage return character

must be encountered in the edit line. At. the same t1me the

‘cell cursor moves "to the adjacent cell in the direction

indicated. This direction 1is always that of the previous

cursor move.

‘# Al, active cell address. The Vcoofdinates of the active
cell display. commands that reference current column or

current row use the column/row containing this cell.

TR, cell format. This shows the active cell display

format:.. TR represents the right justified text.

¢ Form=, data type of the active cell. The system recognizes

"three types of data.

6-5

VALUE -- Numeric value,
TEXT ~-- Text string, and

FORMULA -- Forhula entry.

C1%¥10+D2, cell content . This shows the literal content of -
the ‘active cell. The content is -of +the same type as

—

ijndicated in the cell format;"

ERROR, error message. If an error occurs, an error message
displays on the right end of this line.
The global status or prompt is the middle status line. The

global status line contains the following informationg:

Width, the column width of the active cell. Initially a
default column width is set#: fof each cell. This default

setting can be changed by the user as desired.

¢ Last Column/Row, the intersection'of the last column and”
row that contains data. It is the composite.of the last
column and last row that have a nonblank cell. -

_+# 7 Help, this character shows for pressing in order to
d ’ .
" gwitch to the helping menu.

The data entr& or command line contains the edit cursor. The
number at the left side indicates the current edit cursor:
pbsition. The data entry or command line serves a number of
functions.The character entered into position 1 on this line

determines its mode.

6-6

i, Data enﬁry ‘mdae enters data directly into the.act%ye
cell. In this mode three types of data as indicated
before can he entéred into thé active cell. The mode can
be set to one of the three options plus a reﬁeating text

entry. option with the help of the four function keys.

ii. Command mode performs specific function according to
command = character entered in. select mode. The command

characters are as follows:

=, the goto command moves the cursor directly into the

designated cell{

- -

4 'y, the recalculate command forces a recalculation of the

entire system,

', the switch window command'position the cell cursor in

.

[
the alternate window on & split screen,
/, selects the glash commands, and

?, the help command switch to the help menu.

6.2 S'l‘RUC.'l‘URE OF THE MANIPULATOR
__The system operates in three distinct modes:
Grid display mode

4 Data entry mode and

4 Command mode

1 GRID DISPLAY MODE

-
4
DATA ENTRY MODE

COMMAND MODE

Figure_G.l. Operation modes

Grid display mode 'is_thé initial mode of operation. So we
must have a option to mbve'from this modé to data entry ﬁode
or to commahd mode. Direct switching from. data entry mode to
‘coﬁmand' mode 1is not necessary Beqause grid display mode

N .
always shows the working area of the cell system.

In grid display mode the cell cursor is active and the edit
cursor is inactive. At this mode it is possible to move over
the system with the help of the cursor control keys. At this

mode the window can be slided over the grid system.

In the data entry mode edit cursor is active in the data
entry line. A carrage return enters the data from the data
entry line into the active cell. During the entry of data in
the edit line, data can be edited with the help of the back
space key. In the data entry mode data can be edited with
the help of the back space key, iﬁsert key, delete key etc.
and the editing procedure is the sameras‘ihe in-line editor.
In the command mode the system is directed to perform éﬁ
_«particular action. With the help of one of the five command

keys we can switch to a particular action. In this mode

command can alsokedited with the help of the back space key.

v

Entire window scanning

!
¥

Cursor setting

|
\

Status setting

— imm e e ¢ B

Selecting the nade

I

A

I | Data entry

Command entry

l
Y

Data type set

v

Cursar dirgction

1
-4

‘Cursor control

1

|

i
| S —

Figure-6.2

6.3 SCREEN MANIPULATOR ALGORITHMS

Algorilhm l)ISI.’LAY-

This algorithm defines a procedure which uses a number of
algofithﬂs described- later in this chapter. These algorithms
belong to variqus functions of_the Screen manipulator. ROW
defines_the row bofﬁer‘display bf'the window, COLUMN defines
lthe‘column border display of the window , WINDOW defines the
scanning of all the Cells within the window boundary, CURSOR
defines the deletion of the previous active cell cursor and
position the current active cell cursor, STATUS shows the
varioﬁs stétus informatioﬁ on‘ the status lines, SELECT
'identifiFsthe mode to be set «j and sets the <corresponding
code,'MAIN_is the data processing algorithm, INDATA.accepts
the data , COMMAND defines the command - mode, DATA_T?PE_SET
defines the data type entry mode,. CURSOR_DIR_SET defines the
directidn of -the active cursor and CURSOR_CONTROL sets all
thé setting keys to'perfofmlthe active cell cursor movement.
In this algorithm SELKEY is the. key tg set the operation
mode and SKEY is the key for setting to switch torvarious
algorithmic steps. BKEY is the border on or of f key. CCKEY
selects switching to CURSOR_CONTROL algorithm.

1.[Initialize the parameters]
. Set IR(——IC(--AR(—-AC(-—PAR(*—PAC(——1;
 CR¢(--PCR<{~--2;CC<(--PCC<=~5; RT<--62;
‘RSTAR?_‘(——.?;REND<——20;CSTART<-—5; and CEND<--81;

2. f Print the row and column border for initial setting]
Call ROW(CSTART,RSATAT,REND,IR); and
Call COLUMN(RSTART,CSTART,CEND,IC); and goto step-5;

3,[.Scan-the window with the row border]

If BKEY = true then call ROW(CSTART,RSTART,REND,IR);‘and

Call WINDOW(CSTART;CEND,RSTART,REND;IC,IR);.

?

i

¢

*

6-10

4.[Scan the window with the column border]
If BKEY = true then call COLUMN{CSTART,RSTART,REND,IR);
and call WINDOW(CSTART,CEND,RSTART,REND,IC{IRJ;

5.[Erase the previous cursor and print the active cursor].
call CURSOR (PCR, PCC, PAC, PAR,CR,CC,AR,AC);

6.[\Print the status lines]
call STATUS;

7.[Receive the select code and check the code]
call SELECT;

If SELKEY = 1 then call INDATA and goto step-8;
otherwise o . ' :
if SELKEY = 2 then call COMMAND "and goto step-8;
otherwise -

if SELKEY = 3 then call DATA_TYPE_SET and repeat step-7;
otherwise
if SELKEY = 4 then call CURSOR_DIR_SET and goto step-9;

‘8. [Branch to the data p}ocessing procedure]

If (INSTRING=NUL) and (COMKEY=false) then repeat step-7
otherwise call MAIN - .

9. Set the cursor control key if necessary]
If CCKEY = true then call CURSOR_CONTROL;
If SKEY = 1 then repeat from step-3; o
otherwise if SKEY 2 then repeat from step-4;
otherwise if SKEY 3 then repeat from step-5;

Algorithm JUSTIFICATION

The inﬁutf parametersA are INSTRING, SPAN, JUSKEY. Given a
character string INSTRING whichlcontains any valid printable
characters. This input string is to be justified either right
or left @epending on the value of a key JUSKEY. If the

JUSKEY has 'a value of logical true then it will be right

justified string and if JUSKEY has a value of logical false
-then it will be =a left justified string. SPAN is the

length of the justified string. If the source‘string is
gmaller in length than the SPAN then blank characters are

inserted to . maintain the fixed length of the Jjustified

string. If the gource is longer than the SPAN then extra
characters are truncated to fix the justified string.

1. [Set the length of the source string]
‘Set 1 <-- LENGTH(INSTRING);

2. [Check and set for smaller source stringlcase]
If 1 < SPAN then

s if JUSKEY = true then :
set JUSTIFICATION <-- SPACE(SPAN-1)+INSTRING;
otherwise

gset JUSTIFICATION <-- INSTRING+SPACE(SPAN-1);
goto step-5; :

3. [Check and set for longer source string case]
If 1 > SPAN then
if JUSKEY = false then
get JUSTIFICATION <-- SUB(INSTRING,l—SPAN+1,1);
otherwise :
set JUSTIFICATION {~—= SUB(INSTRING,I,SPAN);
goto step-5; ‘

4. [Set for equal source string]
Set JUSTIFICATION ¢—— INSTRING;

5. [Finished]
'Exit.

‘Algorithm ROW

This algorithm défines a procedure for displaying the row
border of the ‘display window. The forhat of the border
congists of numbers followed by a border delimiter character
to define _the cglls of each row. An index defines the
position of the border to be displayed on the screen. The
border length also must be defined to display the window
border size. A pointer for the row number corresponding to a
cell within the cell system must be defined. This pointer

represents the lower boundary of _the row number. This

6-11

algorithm -produces a border for each row corresponding to

the window cell and displays on the screen. This procéss is

fe-12!

repeated for a number of rows until the row number exceeds

the given border length.

.Given a, column poeition COLUMN before which the row border
is to be printed. ROWSTART and ROWEND are the. window
bouﬁdariesr.for the row numbers i.e., they represent the
boundaries of the 1ndex i between where the row numbers are
to Dbe printed ROW is the p01nter of the number table which
1ndlcates the lower boundary of the row ‘number. Here JUSTI-
" FICATION is a " procedure to use to justify the given string
to right for a given length. PRINT is =another procedure to -
print,a'string to a given position of the screen. RSTRING
ig the string variable used to_define the row border for a

single rov.

1. [Initialize] o I .
Set i ¢-- ROWSTART; Jj <-- ROW; and k ¢(-- (COLUMN-4);

2, [Set the foreground‘and background colors]

3. [Set the row string for each row]
Set RSTRING (-- JUSTIFICATION(STR(J), 3, 1)+CHR(d},

4. [Print tbe_row string]
PRINT (i, k, RSTRING);

5. [Incrément the p01nters and check for limits]
. Set 1 (—= i+l1; and j <-= Jt+l;)
If i <= ROWEND then repeat from step-3;

6. [Reset the foreground and background colors]

7. [.Finished 1]
Exit.

Algorithm COLUMN

Thls algorlthm deflnes a procedure for dlsplaylng fhe column
‘border of the dlsplay window. The format of the border

consists of letters and delimiter characters to deflne the

6-13

cells and the boundary of the cell widths respectively. An
index defines the position of the column border to be
displayed on tﬁel screen. The span of the border i.e., the
upﬁer boundary and the'lqwer bouﬁdafy of the window is
defined by two indexes. A‘pointer for the column. letter
corresponding to a .cell to be displayed is also defined}
This pointer ‘repreaents the lower boundary of the coluﬁn
letter. This algorithm produces a string containing column
1ettérs with * delimiter characters setted according tb the
‘width of the corresponding cells and finally displayed on

the screen.

1.[Inltlallze]}
Set j ¢-- LP; k <-- WIDTH(j); CSPAN <-- {CEND-CSTART) ;
~and CBORDER <-- SPACE(4);

2.[Check the column number and set the border]
If j<27 then set FIRST <--CHR(32); l1¢--j and goto step-3;
otherwise if J<53 then
set FIRST <-- CHR(65); 1 <-- (j-26); and goto step-3;
otherwise ifj<79 then .
set FIRST <-- CHR(66); 1 <-- (j-52); and goto step-3;
otherwise print error message and exit

3.[Set the width and check for odd or even]
Set w (== WIDTH(Jj);
If MOD(w,2) = 0 then
set w ¢~-- (w-1); and NAME <(-- CHR(32)+FIRST
otherwise set NAME <-- FIRST;

.4'[Set the blank character number for each cell]
Set m <-~ INTEGER(W*O 5)-1;

5.[Set the column border strlng]
}Set CBORDER (-~ CBORDER+CHR(d) +SPACE (m- 1)+NAME+CHR(54+1)
+SPACE(m)+CHR(d) ;

6.[Increment the letter pointer & set the width & check]
Set j <-- j+1; and k <-- k+WIDTH(Jj);
If k <= CSPAN then repeat from step-2;

6-14

7. Set the foreground and the backgroundlcolors]

8. [Prlnt the border string] .
PRINT (ROW-1,COLUMN-4, JUSTIFICATION(CBORDER,CSPAN+4,0));

9. Reset tbe foreground and the background colors]

10.[Finished]
- Exit.

Algorithm WINDOW

Thié algorithm defines'a procedure fgr scanning the whole
window with a éet of cell values or contents depending on
the display format of the corresponding cells. This scanning
process ovér the window requires two sets of pointers. One
get indicates the position of the window on the screen while
the other indicates the set of cells to be displayed on the
window. It is important to note that the column length used
in this algorithm must coincide with that'of the row border.
Similarly the row lenght must coincide with the column
border. This three procédures must be synchronously active
on the _display screen. This algorithm directly communicates
with the data structure of the cell syétem for informations
such as the cell contents or values or the cell formats etc.

.In this algorlthm actually the window is soanned row by row.
All informations correSpondlng to a single row are arranged
in a string and the arrangement . depends on the display
formats of the corresponding cells. This row scanning
procedure is repeated until the compared row pointer exceeds

the given row limit.

Given a set of arguments RSTART, REND, CSTART, CEND, C and
R. RSTART and REND defines the boundary 1imits of the window
column where CSTART and CEND defines the boundary limits of

6-15
x

the window row. Both are defined in terms of the cell
numbers. C and R givés the address of the top-left cornér
cell of fhe window. Here WIDTH in a table :containing ﬁhe
‘informatibn related to the width of the cells with an index
¢. FMTI[r,c) and CELL({r,cl] réprgsént the format and content
imformation.‘ih the data structure corresponding to a cell

having a row adﬁress of r and column address of c.

1. [Initialize]’ o . .
St i <-- RSTART; CSPAN <-- (CEND-CSTART); and r <-- R;

2, [Set the foreground and the bgckgfound colors]

3. [Set the column pointer, cell width and check with span]

Set ¢ ¢(-- C; k <-- WIDTH(Jj); and RSTE <-- NULL;
If k > CSPAN then print error message and exit.

4. [Check the format and set the string]
If SIGN(FMT{r,cl)= NEGATIVE then
set j <-- true otherwise set J ¢-- false
set RSTR(——RSTR+JUSTIFICATION(CELL[r,c],WIDTH(C),j);

5.‘I Increment the-column pointer & reset the span & check]
Set ¢ <-- ¢+1 and k <-- k+WIDTH(c) -
If k <= CSPANlthen repeat step-4;

6. [Print the row string on the screen '}
PRINT (i,CSTART,_JUSTIFICATION(RSTR,CSPAN,0));

7. [Reset the row pointer and check the limit]
Set r <-- r+l; and 1 <(-- 1i+l1; '
‘If i <= REND the repeat from step-3;
8. f Resét the foreground and the background colors]
9. [Finished]
. Exit,.

Algorithm CURSOR

The input parameters are RPl.CPl,NPCl,LPCl,RPZ,CPZ,NPCZ and

LPC2. The parameters RPI1 'aﬁd CPL represent the present

6-16

corsor ©position and. NPC1 and LPC1 for the cell identi-
ficﬁtion of the active cell. Similarly RP2Z and CP2 represent
the previous cursor position and NPC2 and LPC2Z represent
the-previoﬁs éell identification. This algorithm ~defines a
procedufe for erasing fhe previous curébr But showing the
bell COntent_and pfinting the present cursor with the active
" cell content if any. Here FMT represents a table to give the
,information of the corresponding cell whether it is right
justified or left justified. A positi?e sign gives the
information of left justification and a negative sign gives
the . information of right justification. A procedure named
JUSTIFICATIQN as described before ~is used to justify the

text given.

1.[Check for the justification format of the previous cell]
If SIGN(FMT[NPCZ,LPCZ}):NEGATIVE'then set k (-- true,
otherwise set k <—- false;

2.[.Set the previous cursor string]
Set CURSOR(—-JUSTIFICATION(CELL[NPCZ,LPCZ],WIDTH[LPC2],k};

3.[Erase the previous cursor]
PRINT {RP2,CP2,CURSOR) ;

4.[Check for the justification format of the active cell]
’ If SIGN{FMT[NPCI,LPCI]):NEGATIVE then set k <-- true;
otherwise set k (-- false;

5. Set the active cursor] .
Set CURSOR(—-JUSTIFICATION(CEL [NPCI,LPCI],WIDTH[LPCI],k);

. 6.[Set the background color and print the cursor]
PRINT (RPI,CPI,CURSOR);

7.[Reset the background color and exit]

v ¢ Exit.
#

Algorithm SELLECT

This ‘algorithm identifies the input code and enables the
correspphding mode by setting keys. Here INKEY is a notation
used to indicate a function to reéeiQe the input code. INKEY
waits for keystroke and when alkey responses, it receives the
corresponding key. code and it executes only for a single
time. CODE is the receéived . code. Now hefé COMSTR is the

command code listing, where command codes are stored in a

sequence. Here the COMSTR is defined in such a way that each

code occupies three character length.Thus if there have five:

codes then the length of the COMSTR is 15. If any command
code feturnedlin_ the buffer CODE then 1t must match with
any one of the COMSTR codes. If the code is é‘ command code
then a key called SELKEY'iS set to a numeric value (say 2)
whioﬁ is the key code of command .mode andr‘hqnce no further
inQuery is required. It:is importanf'to note that the above
code testing is much more efficient than the repetative
testing of each code with the. returned code. When exit from

this algorithm the code position is set to COMCODE in the

case of command mode set. Similarly cursor control codes are

stored in"d string named CURSTR and the code position is
set Lo CURCODE if any cursor control codé matches. SELKEY
is set? . to a numeric value of 4 (say}. Aléo for the case
of data type code, codes are stored in thé string DTYSTR and
the code position is stored 1in DTYCODE. SELKEY 1is set to
3. Now if the returned code 'does-not match with any of the
three types " of code ‘then it 1is assumed to be a dataj for
the cell entry and hence chedks the data for wvalild e
" ASCII -code, rénge bhetween 32 Lo 127. If the ‘code is valid

then SELKEY is set to 1 and exit from the algorithm.

e

6-18

i. { Print the edit line code and set the edit cursor]
PRINT (23,2,STRING(00)+CHR(62)); . :

2. [Receive the input command]
- S5et CODE <-- INKEY;

3. [Check the code with the cursor control code string]
Set CURCODE (-- INDEX(STRING(CODE),CURSTR,1);
If CURCODE <> 0 then set SELKEY <-- 4 and goto step-7;

4. [Check the code data type code string]
' . Set DTYCODE <-- INDEX(STRING(CODE),DTYSTR, 1} ;.
If DTYCODE <> 0 then set SELKEY <(-- 3 and goto step-7;

5. [Check the code with the command code string |}
Set COMCODE <-- INDEX(STRING(CODE),COMSTR,1);
If COMCODE <> 0 then set SELKEY <¢-- 2 and goto step-7,;

6. [Check the code with the valid code range for data entry]
~ If CODE >z 32 or CODE <= 127 then C
. S set SELKEY = 1 and goto step-7;
otherwise repeat from step-1-

i

7. [Finished]
Exit.

Algorithm INDATA

This algorithm receives data from the keyboard and/or edits
according té the instruction giveﬁ.When the first input code
is not a command orla cursor control or a data type code,
received by the algorithm SELECT, then the code is passed
as & cell data to this algorithm. Thus the input codes are
concatenate wiﬁh “the input string uﬁtil it encounters a
control code qf 13 (carrage return),QEj’ used to return the
data to the system i.e., this code indicates that the dapa
"eﬁtry haé been finished here. Another code numbered as 8
(back sﬁace) is used to eraée the previous inputted

character in the input string . After encounting the carrage

return code, this algorithm exits and return to the calling

6-19

" routine. After Feceiving a back space code this élgorithm
removes the previous character from the input buffer string
as wéll as from the screen and alsorthe cﬁrsor is resepggig‘
" Now 1if the back spacing makes the buffer string to null then
'tﬁe a1gorithm returns to'the mother'program because thellst
'character eﬁtry7 is éhécked by the algorithm SELECT. Heré’i
re?ﬁesent the length of the string i.e., (1+1}) represent the
.ﬁ;ésent edit cursor position. In order to display the
present cursor position, this number must be COnverted'to
string data with justification to right. This string is
placed on the screen élong' with the edit line indicator
symboli())L_INSTRING is the buffer string where the inputted
character codes are.stored. INSTRING islloaded initially by
the chafacterf code returned from 'fhe Algorithm SELECT.

CHACODE is thé code received by the function INKEY.

1.[Initialize the buffer string]
Set INSTRING <-—- CODE .

2.[Set the cursor position from the length of the buffer 1
E Set 1 <¢-- LENGTH(INSTRING); and .
CURPOS <-- JUSTIFICATION(STRING(1+1),2,1);

3.[Print the buffer string with the cursor position number]
PRINT (23,2,CURPOS+CHR(62)+INSTRING};

4,[Wait for the input character'aﬁd save the code]
CHACODE <-- INKEY; '

5ﬂ{ Check for the returning code]
If CHACODE = 13 then
set COMKEY <-- false; and goto step-8;

6.[Check for the editing code] :
1f (CHACODE = 8) and (1 = 1) then set INSTRING ¢-- nul;
and goto step-8;
otherwise if CHACODE = 8 then
gset. INSTRING ¢-- SUB(INSTRING,1,1-1);
PRINT (23,1,SPACE(1)); and repeat from step-4;

~

6§-20....

7.[Concatenate the new code with the previous codes |
Set INSTRING <-- INSTRING + CHR{CHACODE); and
repeat fron step-2; ‘

" 8.[Finished]

Exit.

-Algorithm COMM:}ND

This algorithm decodes the command code:: returned from the
"algorithm SELECT. CKEY represents the translated code and

COMKEY represents the command mode character code.

1. F Analyze the command code]
i Set CKEY (-- (COMCODE—I)/3+1;

2. [Set the command hkey]
' Set COMKEY <-- true;

3. [Finished]
Exit.

Algorithm DATA TYPE SET

This algorithm 'sets the data type entry mode key and
corresponding mode title. MKEY is—the translafed code of the
actual mode setting key codes. DTYCODE is the code returned
from fhe algorifhm SELECT. Four types of data entry modes
‘are possible to set.. These are value entry, text entry,
repéating fext entry and the formula entry. HEAD ia the
title string which represents the. type of mode on the
4disp;ay screen. ROW and COLUMN represent the position where

the title is to be printed.

1.[Analyze the data type code]
Set MKEY <=~ (DTYCODE-1)/3+1;

6-21
2.f Set the mode according to the translated code]
If MKEY = 1 then set HEAD <(-- "VALUE" and goto step-3;
otherwise C _ _
if MKEY = 2 then set HEAD <-- "TEXT" and goto step-3;
otherwise : ‘ :
. if MKEY = 3 then set HEAD <-- "R-TEXT" and goto step-3;
otherwise : _ ‘
if MKEY = 4 then set HEAD <-- "FORMULA" and goto step-3;

otherwise print error message and exit.
'3.[Set the backgorund and the foreground colors]

'4.[IPrint the title of the corresponding mode]
PRINT (ROW,COLUMN,HEAD);

5.[Reset the‘backgorund and the foreground colors]
6.[Finished]

Exit.

Algorithm_ CURSOR DIR SET

This algorithm sets the cursor direction key to one of the
four codeé. 'Code lr represents the cursor direction from
left to right, code rl represents from rigth to left, code
ud feperseﬁts from up to down and code du represents from
down. to - up. CURCODElis the trahslated code of the actual

cursor control key code. RT represents the cursor direction.
) :

/,

1. [Analfze the cursor direction code]
Set CURCODE <-- (CURCODE-I}/3+1;l

2. [Check the code AND set the mode]
If CURCODE = 1 then set RT <(-- rl; and goto step-3;

otherwise

if CURCODE = 2 then set RT <-- 1lr; and goto step-3;
otherwise .) :

if CURCODE = 3 then set RT <(-- ud; and goto step-3;
otherwise

if CURCODE = 4 then set RT <-- du; and goto step-3;
otherwise pritn error message and exit.

3. [Finished]
Exit,

6-22

 Algorithm CURSOR CONTROL

?hé input parameters of. this algorithm are the present
active éell addfess, previous active cell address, top-left
cell address of tﬁe window, row and column ranges and the
cursor direction code. Here first curéor direction code is
checked and SHitches to the COrresponding steps to set { T
one of the four poésible settings.To set the right direction
paramefers we use two pfocedureS'LIMIT and SPAN, which are
defined after'this'algbrithm. Both the procédures check the
window Qidth"with the summation of the individual column
widtﬁé. LIMIT returns the édd?ess.of the last cell whereas
tSPAN_returns the starting addresé of the'accomodéd'last cell
‘within the window. Here ‘various indexes are’ checked and

reset{¥.i'% according to the logic. SKEY is the setting for

~identification to branch to various levels. ‘ : -

1. [Initialize the indexes of the previous active cell]
Set PAR <¢-- AR; PAC <~- AC; PCR <(-- CR; and PCC <-- CC;

2. [Check the cursor direction code and select settings]
" If RT = 1r then goto step=<6; ’
otherwise if RT rl then goto step-7;
otherwise if RT = ud then goto step-8;
otherwise if RT = du then goto step-9;
otherwise goto step-9;

3. [Check and set the right cursor movement indexes]
If €C = CLIMIT then set SKEY <(-- 3 and exit.
otherwise set CC <-- CSTART,

4. [Check the accomoded width of the window]}
If AC = LIMIT(IC) then goto step-5;
otherwise set CC <-- SPAN(IC,AC);

AC <-- AC+1; SKEY <-- 3; and exit.

5. [Set the indexes for the movement of the window]
Set IC (-~ IC+1; and
if LIMIT(IC) < (AC+1) then repeat step-4; .
otherwise set CC <(-- SPAN(IC,AC); - '
AC <-- AC+1; SKEY <-- 2 and exit.

6-23

6. [Check and set the left cursor movement indexes]
If AC = 1 then SET SKEY <-- 3; and exit.
‘otherwise set AC <-- AC-1;°
If cCc = CLIMIT then :
set JC <-- JIC-1; SKEY «<-- 2; and exit.
otherwise .

. set CC <-- CC-WIDTH[AC]; SKEY <¢-- 3; and exit.

7. [Check and set the down cursor movement ;ndexes]
If AR = RLIMIT then set SKEY <-- 3; and exit.
_otherwise set AR <-- AR+I;
If CR = REND then _ ' '
set IR <-- IR+1; SKEY <(-- 1; and exit.
otherwise : - 5 ©
set CR ¢(-- CR+1; SKEY <-- 3; and exit.

8. [Check and set the up cursor movement indexes]
If AR = 1 then set SKEY <-- 3; and exit. ‘
otherwise set AR <-- AR-1; '

If CR = 'Rstart then ,
set IR <-- IR-1; SKEY <-- 1; and exit.
otherwise : '
set CR <-- CR-1; SKEY <-- 3; and exit.

9. [Finished]
Exit.

Algorithm LIMIT

1. [Initialize the pointer and the width buffer]
: Set i ¢-- IC-1; and w <-- 0; ’

2. [Calculate the maximum limit within the window]
Set 1 <-- i+1; and w <-- WIDTHfil];
IJf w+WIDTH[i+1] < CEND-CSTART then repeat step-2;
. otherwise set LIMIT <(-- 1; :

3. [Finished]
Exit,

Algorithm SPAN

1. [Initialize the pointer and the width buffer]
Set i <-- IC-1; and CC <-- 0O;

6-24

2. [Calculate the maximum limit within the window]
Set 1 (-- i+1; and SPAN (-- SPAN + WIDTH{i};
Repeat step-2 until i <= AC; :

3. [, Finished]
S Exit..

CHAPTERY

DATA I%IBI’IZIEES]BIQiF}\U?I()rJ‘
AHND C)C)deylfbeI)ES '

7.1 INTRODUCTION

Since the selection of data ‘structures significantly
influences thé speed and efficiency of an implementation of

an algofithm, hence it is alsoc one of the most important

part of the system design. As the data structure, arrays are

¢

used here because of the following advantages:

Arrays are helpful in -organizing sets of data into

meaningful groups.

" # Array names with subscripts minimize the need for keeping

track of many data items with different names.

4% The use of subscripts allows-fof instant and automatic’

access to any élEment of an array.

Subscripting also allows for automatic, fast, and
efficient prqcessing of all data or selected subsets
of data stored in arrays. Such processing “includes

initialyzing, searching, storing, and updating.

- 7-2

The cell -system is an ' aggregate of ‘concurrently active
l objects, organized in a rectangulpr array of cells, similarl“
"to the papér spreadsheet. Thus infthis gsystem design, data
/s%ructuresr of the cell system are mainly defined by

.'rectangular arrays.

" Entire cell 5y§tem can be defined as a_rectangular grid

cdntaining -oa number o of cellé with their absolute
‘addrésses. FIn " this grid system each cell must have two
unique address representing a ToOW and a éolumn. A two
dimensional array. is best suited for this representation.

" Internally each cell has four types of information as:

cell value,
cell content,

disblay format and data type, and

% B W I

reference table for external reference.

.As described earlier; a cell value is the result obtained by
eyhluating"the contents of .the cell . Thus the array
representing the values of the grid system must .be of
numeric type. The cell contents are the formulé, text,
repeating text etc. Thus these must be represented by
character type of storage and hence defined by the string
type of array. Data type and display format informations can
be represented by infeger numbers with signs. Hence it is
defined by the integer typé of warray. Reference tabie
contaihé all the cell addresses for external reference to
use imformation.'Two type of reference can be possible; one
the value reference of a cell by other cells containing'

formula and the other is the formula reference of a cell by

7-3

other cells containing values. Thisteens that a cell. value
may be referenced By a formula in another cell and such a
reference is +the value of - the original cell, not to its

content(formula).

7.2 REFERENCE TABLE GENERATION

This table corresponds to & cell who has a value or a

formula . with 'externai reference for recalculation or
evaluation of formula. . In this case of a cell having a
value, the reference table has all the cell addresses who -

use fhis cell value in their formula. In the case of a cell

having a formula, the reference table represents allltﬁe

-

cell addresses whose values are usedf by this cell. The

linking between the host cell and the referenced cell can be

dietinguised by two ways:'ene ig the direcf linking, where
the host cell directly uses the value of the referenced eell
and cher is the indirect linking, where the host cell uses
a cell value who rused the value of another cell. In the
indirect linking the host cell ‘refereﬁce table has the
address of the cell having a value of value type and the
referenced cell have a reference table with the address of
the indirect host cell. For example, we consider the

following cell—informations.

Cell 1D Value Formula Reference table
Al 10 - B5,A4
Bb 30 A1+20 Al
c2 40 - Ad

7-4

Herer Al and C2 have valués of 10 and 40 respectively and
theselcells are of value type. B5 and A4 have values of 30 ,
1200 and they are of fBrmulg.type. The wvalues of B5 and A4
are the evaluated vaiues of their formulas. Now the
reference table of Al ‘indicates the name of the cell B5 and
A4 Dbecause these cells use the valueb of - the cell Al., The
reference table of B5 has the reference of cell Al only
because the celi'B5_pseslthe value of Al only. Similarly the
.reference table of A4 shows the addresses of cells Al and C2
becauée the cell A4 uses indifectly the value of cell Al and
directly the value of the cell C%. Thus any change in value
‘of Al causes the change‘of the evaluéted Qalues_of,the cells
B5 and A4. In this way a long chain of'iﬁdirect reference'of

a value can be made possible.

7.2.1 Algorithm CELLREF

The input parameters of this algorithm are the active cell
address (here active cell is the host cell) and the.
refefenced cell address. In this Algorithm a recalculation
key is checked- for the execution of the algorithm. Here
active. cell address is represented as AR and AC. Similarly
the refefenced cell. ﬁddress is repfesented by RR and RC. .
Recalculation key is denoted by RECKEY. .CRET is the
reference- table array. Here CCON is the procedure used to

-

convert a cell address to the corresponding cell identifier.

o

¢

7-5

1. Check the recalculation key for exit or not]

If RECKEY = true then goto step-8;

2.[Initialize the reference table index]
Set i <-- 1;

' 3.[Check the data type of the eell]

If ABS(FMT[AR,AC]) = vt then . set -
CRET[AR,AC}(—-CRET[AR,AC]+JUSTIFICATION(CCON[RR,RC},5,0);
and goto step-5; _ : Lo

4.[Isolate the identifier for the reference table] _
Set CID <-- SUB(CRET[RR,RC},1,5) and call CELLID(CID);

5.[Check the existance of the host cell address]
Ir INDEX(JUSTIFICATION(CCON[AR,AC},5,0),CRET[R,C],1)<)O
then goto step-6; : _
otherwise set T
CRET[R,C] <-- CRET[R,C}+JUSTIFICATION(CCON[AR,AC],5,0);

6.[Check the existance of the cell address in the table]
- If INDEX(CID,CRET[AR,AC},I) ¢> 0 then goto step-7;
otherwise set CRET[AR,AC] <-- CRET[AR,AC]+CID;
7.[Increment the index and check for further processin]
Set i <-- i+l; and ' o _ o
if I <= LENGTH(CRET[RR,RC] then repeat from step-4;

8., [Finished]
Exit.

7.2.2 Algorithm RECALCULATION

This 'élgorithm uses a tablé for recalculation of formulas
referenced 1in the table. Here STABLE is the soﬁfcg‘table
given to represent the cell's list for recalculation. In
this ‘algorithm each eleméht of the source table is
translated and the corresponding formula is evaluated by the

expression interpreter named EXPR_TER. FORM is the array

~1
1
(2)}

representing the system formulas and CVAL 1s the array
representing the system values. CVAL is of string type so
the RESULT returned by the expression interpreter must be
converted to string before storing. Recalculation key is
initially set to true and finally set to false at the end of

the recalculation algorithm.

1. [Initialize the recalculation key and the table index]
Set RECKEY <-- true; 1 <(-- 1;

2. [Isaolate the cell address and traqslate the address]
Set CID <—-- SUB(STABLE,i,S}; and [r,cl] <-- CELLID(CID);

3. [Assign the cell indexes returned]
Set RI <(~-- r; and CJ <-- ¢

4. [Load the identified formula and ecall the interpreter]
Set SOURCE ¢-- FORM{RI,CJ]; and call EXPR _TER,

5. [Store the new value of the cell]
Set CVAL[RI,CJ] <-- STRING(RESULT);

6. [Advance the pointer and check for further looping]
Set 1 <-- 1i+1;
If i <= LENGTH(STABLE) then repeat fron step-2;

7. [reset the recalculation fkey]
Set RECKEY <-- false;

8. [Finished]
Exit.

7.3 Algorithm HPRINT

This algorithm prints the display contents of the cells
defined by the user. The contents may be of value type or
text type. or formula type. The contents are printed by
the hard-copy printer gécording to the formats specified.

T

7-7
ThlS algorithm f1rst setsthe printing " width which must be
w1th1n the phy51cal width of the printer. Thep the column
‘border strlng is calculated if the bordér key is found on
and the. 1nfomat10ns correspondlng to E;E}thls gtring are
sent to the prlnter buffer for printing. This column border
-strlng is setLH) (as deflned before in the algorlthm COLUMN)
by considering the pr1nt;ng width_and the individual widthly
of each cell defined within the range. Then if the Dborder
key is found on , TOW bérder string ig‘taken into considera-
'tion: 6therwise not for the printing of the cell contents.
Then .the cells of egch row defined within the range
for printing are arranged according to tﬁeir specified _
formats. This calculated TrOW with ~or without the ToOW
‘ideﬁtifier string is sent to the printer buffer for
printing. Then the currént row is compaggd with the given
- row range and the " result determinéé whether the next row
wili be éalculated or not. If found not then exits from the
algorithm otherwige cpntinues the printing process by taking
another row. Each ﬁarameters and the variables used 1n~;323
this algorithm have the same meaning as described in the

prEVious algorithms.

1. Inltzallze] :
set - J ¢<-- LP; k <-- WIDTH(J), CSPAN <= { CEND-CSTART) ;
CBORDER <(-- SPACE(4), { ¢(-- NP; and r <(-- RSTART;

2.[Chechk the column number and set the border]
' If j<27 then set FIRST <—-CHR(32) 1¢--j and goto step-3;
otherwise if J<53 then
set FIRST <(-- CHR(65); 1 ¢-- (j-26); and goto step-3;
otherwise ifj<79 then ’ ,
set FIRST <(-- CHR(66); 1 <-- (J- -52); and goto step-3;
-otherwise prznt error message and exit

78

Set the width and check for odd or even]
Set w ¢-- WIDTH(Jj)i

If MOD(w,2) = 0 then

7.
8.1

9.1

10,1

set w <-- (w-1); and NAME <-- CHR(32)+FIRST;
otherwise set NAME (-~ FIRST;

Set the blank character number for each cell]
Set m <(--— INTEGER{W¥O.5)—1;

‘Set the column border string]

Set CBORDER <-- CBORDER+CHR(d)+SPACE(md1)+NAME+CHR(64+1)
' . +SPACE(m)+CHR(d); .

Increment the letter pointer & set the width & check]

Set j <-- Jj+l1; and k <-- k+WIDTH(J);
If k <= CSPAN then repeat from step-2;

Print the border string] . -
PRINT (ROW—I,QOLUMN-4,JUSTIFICATION(CBORDER,CSPAN+4,0));

Set the row pointer]

Set i ¢(-- it+l;

Check the border key and set the string]
If BKEY = true then set

ROW <-- JUSTIFICATION(STRING(r),3,1)+CHR(b);
otherwise set ROW <(-- SPACE(4);

Reset the column number and set the cell width]:
Set j <-- LP; and k <-- 0; _ ‘ '

11.[Check the column number and set the row]

13.1

14.(

15,1

Set k ¢-- K+WIDTH(J):
If k > CSPAN then goto step-14;

Check the cell format of the row and adjust string]
If SIGN{ FMT[i,Jjl]) = -1 then set

ROWSTR <-- ROWSTR+JUSTIFICATION(CVAL[i,j],WIDTH[j],I){
otherwise set , .

ROWSTR <¢-- ROWSTR+JUS IFICATION(CVAL[i,j],WIDTH[j],O);

Increment the column pointer and repeat the loop]
Set j.<—-,jf1 and repeat from step-11;

print the row line]
PRINT (ROWSTR)

Increment the row pointer and check for looping]
Set r (-- r+l; and
If r ¢ ROWEND then repeat from step-8;

16.[Finished]

Exit.

-

7.4 Algorithm SAVE

Thls algorlthm stores all the necessary informations relatedH
to the .cell system ncludlng the contente defined by
the user, in an auxllllary storage un1t. All the saved
information can be retrleved for modlflcatlon or exten51on.
This algorithm' also saves some system settlng 1nf0rmat10ns
related'_to the cells. Each column width is 1mportant for
1oad1ng a flle whlch had been. saved before. A reference cell

1det1flcat10n is also important to resume to the previous

. condition. Now-the most important parameter to save is the .

table contaihing,all the cell's address having some kind "~

of information.This table is subdivided into three subtables
depending on the type of the information stored into the_

cells. So frcm " this table we-can get information about the

‘empty and nonempty cell and also get information about the

type of data hold by each nonempty cell. Finally the
informations to be save are the contents of each nonempty
cell.Here the "cell contents” means allLtype:of informations

each cell contains.

Here w1dth of the cells are stored in a atring delimited by
a character code(say "i"). This method of saving reduces the

storage'-area. Here in‘ this algorithm WSTR is the string

" created by the concatenated column widths with 'a delimiter

character dc. COLNUM is the number of columns defined by the

user or . system. TOPCELL is the top-left cell identifier of

the current window as the reference cell. TTABLE, VTABLE and
FTABLE are the tables containing the cell identifiers
correspondlng " to the text, value and formula type of cells.
Here PUT is a procedure to print the argument content to a

file. just created And we assume that the informations are

7-10

"stored sequentially into the created file and each PUT
statemén£ represents the’ creation of each record of the
created file. CVAL, CELL, FMT, and CREF are the rectangular
ATTAYS tol répresent .the value, content, format and the

reference table_informationg respectively.

1. [Initialize the width string to null ']
Set WSTR <¢-- NUL; i <-- 1;

2. [Concatenate the cell with with a delimiter character]
] Set WSTR <-- WSTR + dc + STRING(WIDTH[i]);

3. [Increment<the column pointer and check for the last”}
"Set i ¢-- 1+1; and ' : :
If i <= COLNUM then repeat step-2;

4. [Create the file and store the infomations]
CREATE FILENAME; . '
PUT- (WSTR, TOPCELL) ;
PUT (TTABLE);
PUT {(VTABLE);
PUT (FTABLE);

5. [Check the text cell table whethér it is empty or not]
If LENGTH(TTABLE) <> 0 then goto step-7;
otherwise set 1 (~-1;

6. [Store the text cell’s informations]
Set CELL <(-- SUB(TTABLE,i,i+5);
fr,c] <-- CELLID{CELL);
PUT (CVAL[r,cl, CELL(r,cl);
Set i ¢-- i+5; and
repeat step-6 until i < LENGTH(TTABLE) ;

7. [Check the value cell table whether it is empty or not]
_ If LENGTH(VTABLE) ¢> 0 then goto step-9; '
otherwise set i <--1; s

7-11

8. [Store the value cell's informations]

' Set CELL <-- SUB(VTABLE,i,i+5);

: [r,c] <(-- CELLID(CELL) ;

PUT (CVAL[r,cl, CELL[r,cl, CREF{r,cl);
Set i ¢-- i+5; and . ,

repeat step-8 until i ¢ LENGTH(VTABLE);

9. [Check the formula cell table whether it is empty or not]
: © If LENGTH(FTABLE) <> 0 then goto step-7;
otherwise set i <--1; .

10, [Store the formula cell’s informations]
Set CELL <-- SUB(FTABLE,i,i+5);
[r,c] <-- CELLID(CELL); : _ :
PUT (CVAL[{r,cl], CELL[r,cl], FMT[r,c], CREF[r,cl)};
Set i <-- i+5; and -
repeat step-10 until i < LENGTH(FTABLE);

-

11. [Close the file and exit]
CLOSE ; '
Exit.

"7.5 Algorithm LOAD

w“‘This—: algorithm is the reverse'procedure ag defined by the
algorithm SAVE. All parametensére the same as defined in the
‘élgorithm SAVE. -Here GET 1is =a procedure to retrieve
information from a file ‘just opened. Here we also assume
-that the file is of sequential type and each GET stgteﬁentf

reads one record from the opened file.

1. [Open the file and read the data]
OPEN FILENAME; -
GET (WSTR, TOPCELL);
GET (TTABLE);
GET (VTABLE);
GET (FTABLE);

2. [Check the text cell table whether it is empty or not]
If LENGTH(TTABLE) <> then goto step-4
otherwise set 1 <--'1;

¥

7-12

Read the informations of each text cell]
Set CELL <-- SUB(TTABLE,i,i+5); and

[r,c] <(-- CELLID(CELL); ' ‘
GET (CVAL[r,cl, CELL[r,cl);

" get i ¢-- i+5 and repeat step-3 until i < LENGTH(TTABLE) ;

Check the value celi table whether it is empty or not 1l -
If LENGTH(VTABLE) <> then goto step-6

_otherwise set i (-- 1]

Read the informations of each text cell] . -

Set CELL <(-- SUB(VTABLE,i,i+§); and

fr,e] <-- CELLID(CELL);
GET (CVAL[r,cl, CELL[r,cl); _
Set i (-- i+5 and repeat step-3 until i ¢ LENGTH(VTABLE);

Check the formula cell table whether it is empty or not]
If LENGTH(FTABLE) <> then goto step-8
otherwise set i <(-- 1;

 Read the informations of each text cell]

Set CELL ¢-- SUB(FTABLE,i,i+5); and
[r,c] <-- CELLID(CELL);
GET (CVAL[r,cl, CELL[r,cl);

Set i ¢(-- i+5 and repeat step-3 until i ¢ LENGTH(FTABLE);

. Initialize the column with array pointer]

Set i <(—- 1;

Initialize the column widths from the width string]
Set J (-- INDEX(WSTR,de,1);
WIDTH[i] <-- VALUE{SUB(WSTR,J,j—I)); and
WSTR <(-- SUB(WSTR,j+1,LENGTH(WSTR));
Set i ¢(-— i+1; and repeat step-9 until i ¢ COLNUM;

10. [Initialize the window parameters]

11.

 Set [r,c] <-- CELLID(TOPCELL);

AR ¢(--= IR <-~ r; AC <-- IC <-- c;
CR <-- RSTART; and CC <-- CSTART;

[Finished 1

Exit.

¥

CHAP TERSS

' CONCLUSIONb CAND ,
SUGGES']‘ION!: FOR FUTURIE WORK

8.1 CONCLUSION

Algorithms and a modular software‘ program have been
developed for ,prqcessing a large number of information
cellér iﬁterrelated with " high lefel program statements.
The proceséing of the cells involves analysis ofr high
level program statements igcludihg assignments, arithmetic
expressions, l;gical and conditional _expressions. The
informatibn or data types handled by the cells consis£ of
vaLPe, text string, formula etc. The developed - system is
a powerful tool for solving many types of _mathematical,
Business, and financial problems; In designing the system,
the structured approach_haslbeen followed -which integrates

a number of seperate algorithms.

‘The developed algorlthms may be used for the development of

sophisticated appllcatlon program softwares such as,

. Electfonic spread-sheet developing programs,
. Text editor or word processor developing programs,
. Compiler writting programs,

. Interpreter writting programs etc.

8-2

! N [
The developed system 1is an aggregate of concurrently active

obJects, "organized into a rectangular array of cells 31mllar
to the paper spreadsheet used by an accountant..Each cell
has a rule-‘specifying how its 'value'is to bel determined.
Every time a vglue is{ changed anyﬁhere in the cell systen,
all values dependent on it are recomputed instantly and the
néw.values are stored and displayed. The system can be
defined as a simulated pocket universe that continuously
maintains its fabric; it is a kit for a surprising range of

applications. Here the user jllusion is simple, direct and

powerful. There are few mystifying surprises because the=-

oniy way a cell can get a value is by having the cell’s own

- value rule put in there. Thus the developed software module

acts as a simple means to tap the power of a computer to do

time—consuming,_repetative-calculations.

This is a microcbmputer based system and the program has
been developed by the CBASIC compiler langﬁage. In the
program, €rrors are trapped and ihe pfoper messages are
~appeared on the displaylscreen where necessary. The system
commands are completely menu driyen and thus it is user
friendly.'A‘user,with minimum knowledge caﬁ use the system.
User need not to know the inside processing activity of the
system program. He or she should only understand the meaning

of the efrdr message sent by the system.

The develbped program module may be used for the following

applications,

. Balance sheets,

, Cash flow analysis/ forec
. Job cost estimates,

. Patient records}

. Profit/salesiprojectidns/
., General ledger,r

. Inventry control,

8-3

asting,

statements,

. Market share analysis and planning,

. Project budgetlng ‘and control,

. Salary records,

. Tax estimation etc.

[

’

8.2 'SUGGESTIONS FOR FUTURE WORK

A generalized gystem program 3
facilitate the basic control
used features. No new gystem
This system may have some diffi
But the system has been develo
‘flexibilities which can facili
by g1v1ng a minimum effort. For
of the .system to 1ncorporate
facilities, the follOW1ng poi

deration for priority basis;

Automatic adjustment of t
deletion or arrangemrnt of a

Special data format facil
format codes.

Complex logical expression

complex logical expression h

oftware has been developed to
functions and the most cbmaon
can c¢laim as a perfect one.
cultles and undetected errors.
ped keeplng a large number of
tate some addition or changes
the expansion and1enhancmeat
more complex functions and

nts can be taken into consi-

he formulas during‘insertion,
subset of cells.

ities" by deflnlng different

s handling by developing a

andler routine.

e o 8-4

Caleﬁder'function facilities by developing‘a procedure to
1nterface with the system clock routine. 7
And many other facilities according to the qsér'é
reqﬁi:ements.
, : , (5-10)°
The developed algorithms _have been implemented in the
form of the program modules by using a comprehensive
and. versatlle progfamming language called CBASIC compiler.
The main 11m1tat10n of this compiler 1anguage is the lack of
structural environment. ' The algorlthms are wrltten in a
atructured mannér irrespective to the coding language. By
using other high 1évelr compiler language one CAan implement

the algorithms in a more structured and convenient manner.

 CAPPENDIX-A

AsCll

‘Value

000

- 001

2

002
003
004
005
006
007
008
009
010
01l
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031

_'ASCH CODES

Character

(nut1)

y

see 49

{beep)

(tab)

iline feed)
home} .
{form feed}

‘l ——r] “"‘ﬁ::.""l ' o

cursor left)
(cursor up)
{cursor down)

{cursor ri?ht)

Control
Character

NL .

SOH
STX
EXT
E0T
ENQ
ACK
BEL
8S
HT
LF
VT
FF

(carriage return) CR
2 50

sl

SLE
oCl
pc2

oc3 -

DC4
NAK
SYN
£TB
CAN
M
SUB
ESC
FS
G5
RS

us

© 035

041

ASCIT

Value

032 -
013
034

016
037
038
039
040 -

042
043
044
045 -
046
047 -
048
049
050
051
052
053
054 .
055
D56
057
058
059
060
061
062
063

P aada

Character

(fpace)_.':

T LR R

a3 WO S 0t

ASCIL
Value

064
065

. 066

067
068
069

0710

071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086-
087
088
089
090
091
092
093
094 -
095

Character ¥Yalue

e
A
B
C
D
£
F
G
H
i
J
K
L
M
N
0
P
Q
R
s
1
Y
v
W
X
Y
z
t
\
]

~

AsCl1

096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

-118

119
120
121

. 122

123
124
125
126

127

Character

a
b
c
d
e
f
9
h
i
J
3
i
m
n
0
p
q
M
]
t
u
L
w
b 3
y
]
{
H
}
a

APPENDIX—13 .

INTERNAL DATA REPRESENTATION

CBASIC machine-level representation varies somewhat for real
nu@bérs, integers, strings, and arrays. : :

REAL NUMBERS are stored in binary coded decimal (BCD)
floating-point form.. Each real number occupies eight bytes
of memory storage space, "as shown in Figure B-1. The
high-order bit in the first byte (byte 0) contains the sign
of the number. The remaining seven bits in byte © contain a

decimal exponent. - The. exponent 1is a binary number
representing & power of ten. The number is biased by 40H.
Therefore, - an exponent value of 42H represents an actual

exponent of 2. Bytes 1 through 7 contain the mantissa. Two
BCD digits occupy each of the seven bytes in the mantissa.
The most significant digit of the number 1is stored in byte
7, furthest from the exponent. The floating decimal point is
always situated to the left of the most significant digit.

14 BCD DIGIT MANTISSA
.]

: X XX XX XX XX XX XX XX
BYTES

© EXPONENTS

B)
ox x x x x x X
BITS 0 1 2 3 & 5

e mcemmmemmm e O ¥
ek
. X
w
£y
o
o
-]

-

\

" Figure-B-1 Real Number Storage

INTEGERS are stored in two bytes of memory space with the
low order byte first, as shown in Figure B-2. Integers are
represented as 16-bit, two's complement binary numbers.
integer values range from -32768 to +32767, inclusive. -

LOW ORDER BYTE HIGH ORDER
_STORED FIRST- | BYTE

']
L] 1
[]
t L]

1] |
] - .) L]
X X X X X X X X X X X X X X X
BITS 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9
SIGN BIT
Figure-B.Z‘ Integer Storage
STRINGS are stored as a sequence of ASCII characters. The
length of a string is stored in the first two bytes followed
by the actual ASCII values as shown in the following figure.
The high-order length byte is stored first. The maximum
number of character in a string is 32,762. CBASIC Compiler
allocates space 1in the Dynamic Storage Area for strings. A
pointer in the Data Area is an address in the DSA for the
actual string. -
DATA IN STRING
0 OR MORE BYTES
'
E :
: XX XX XX XX e e ‘e veesserses XX
BYTES) 1 2 3 n
t 1 .
1 1 R . -
. STRING LENGTH
'
L
' '
HYGH ORDER LOW ORDER
BYTE BYTE

{stored first)
[}

' ' '
X X X X
BITS 1 4 8 -

---- 4
b

RESERVED FOR USE
BY
RUN-TIME LIBRARY

Figure-B.3 String stbrage

B-3

ARRAYS, both numcric and string, are allocated space in the
Dynamic storage Area as required._Eight hytes are reserved
for each element of an array containing real numbers and two
bytes ‘. for each element of an integer. array. String arrays
are allocated two bytes for each entry plus the sum of all
the string elements.

At some point in a program it might be necessary to free
memory sSpace allocated to arrays that are no longer needed
in the program. Freeing numeric array Space requires the
redimension the array to zero. However, freeing string array.
gpace 1is a two step process. First, all the string array
elements are setted to null.. This is done by setting all the
. string array elements equal to a string variable that has
never been assigned a value. A variable named NULLS can be
~used in such-a case and on the assumption that NULLS ~, has
never been used as an array variable. :

P

A

APPENDIX—-C

CBASIC COMPILER

A compiler is a computer program that translates high-level
programming language instructions into machine-executable
code. The compiler .takes as input a user-written source
program and produces as output a machine-level object
program. Some compilers translate a user-writtén source
program into a program that a computer can execute directly.
The CBASIC Compiler system, however, uses a link editor and
a libary in addition to the compiler. Together the three
components translate the CBASIC source-code file into a
directly executable program. This approach uses the
microcomputer’s memory space as efficiently as possible. The
system enables us to modularize programs for quick’ and easy
maintenance. . The result is a programming gystem that rivals
thelperformande of systems based on much larger machines.

The primary advantage "that compilers provide over other

methods of translation is speed. Compiled applications
programs execute faster than interpreted programs because.
the compiler creates a progr* am that the computer can

execute diredtly.

The compiler, CBS86, translates CBASIC source code into
relocatable machine code modules. Source programs default to
a .BAS filetype unless otherwise specified. 'CB86 generates
.0BJ files. CB86 consists of an executable program and thrée

‘overlays.

The 1link editor, LINK86, combines the relocatable object
modules that " the ‘compiler creates and routines from the
indexed library into a directly executable program with
optional overlays. LINK86 generates .CMD files. '

The indexed libary, CB86.L86 , provides routines that

‘allocate and release memory, detrermine available memory

space, and perform input/output processing. CBASIC Compiler
provides a library manager utility program, LIB86.

APPENDIX—D

cCOMPLETE P

ROGRAM TLISTING

-

rem
rem
rem
rem
rem
rem

rem

rem

rem

rem

rem

rem.

Tem

rem

rem
rem

rem

rem

rem

rem

rem

i****************X**X**************!***X*********
X
X
X

¥ttt rectangular array range initialization
CLIMIT% 95: RLIMIT% 110

storage declaration for the data structure
DIM X$(RLIMIT%,CLIMIT%
DIM CD$(RLIMIT%,CLIMIT%),YY%
DIM W%(CLIMIT%),WS$(30),M$(4)

initialize the default cell widths

W%(1) g: FOR I% = 2 TO CLIMIT%: W%(I%)
set the control code strings

CURSTRS$ "93 19 26 1 "
DTYSTRS$ "128129130131" s

COMSTRS$ "47 33 61 3 133 134 135 136"
INCODES$ "13 8 137 138 1 19 136 133"
set the data. type indicator string

M$(1} "VALUE": M$(2) "TEXT": M${3) =
M$(1). "FORMULA"

FM$ "FORMULA: VTABS$
define the.delimiter character
CLONS$ m.v. SLON$ = "M COM$
RPR$ "y '
initialize the
IIR% 1: TIIC%
initialize the
RST% 2: RED%
initialize the
MR% 2: MCX% =

STORAGE AND DATA DECLARATIONS

XXKX

Xxxx

L& & &1

IS L.

", o

"o,
.

FTABS
KXk X

non,
]

LPR$

Xkxx data structure pointers
1: R2% = 1: C2% 1
window setting parameters
20: CST% 5: CED% 81
varioua key setting
5: RECKEY% 0

KEY% 4: MKEY% = 1: RT% 62: SPLIT% 0

RJUS% 0: CSEC% 0: KEY% 0: BOR% 1:
X***X***!!***!****t*t*t*tt!ttt*t*******!*tttt***
$t1x declarations for various arrays .
DIM 0$(7),B$(20),TS(lO),S$(9),BFUN$
TK%(lO),FN%(lO),MX$(20),RLMT
define str
LETTERS$ = "ABCDEFGHIJKLMNQPQRSTUVWXYZ"
DIGITS$ "1234567890."
OPERATORS L A S
define the library functio
LFUNCTIONS "ABSEXPINTLOGRNDSI
table for operators and the parantheses
FOR I% 1 TO 7: READ O$(I%): NEXT 1%
DATA -!+!/!*!Al(l)
table for temporary storage variables
FOR 1% 1'TO. 9: READ S$(I%): NEXT I%
DATA TSl,TSZ,TS3.TS4,TSS,TSB,TS7,TSB,TSQ
table for the built-in function keywords
FOR J% = 1 TO 5: READ BFUNS${(J%) :NEXT J%
DATA MAX,MIN,SUM,AVG,CNT

S € 3

TEXX

LR 3 S

EETS n keyword string

xx¥x

EE 8 Bt

rres

SW%

¥R EEKERLREXER

%

%
X

*#***K****X*****#*X******X*{***##t********

),XY$(RLIMIT%,CLIMIT%)
(RLIMIT%,CLIMIT%)

Wx(1):

"R-TEXT"

ll("

d
FEXEEXXXXTEAR

{5),LFUN$(6),LRE${9)\
$(5),LLMT$(5),B$(25),STK%(3)
ings for letters, digits and operators

NCOSTANCSCSECCOT"

NEXT I%

rem
rem

rem
rem
rem

rem

rem
1_:'em
rem
rem
N

rem

rem

rem

rem

rem

rem

XEEF

kX

rEXEx
x

)

table for the boolean function keywords

FOR I% = 1 TO 6 : READ LFUN$(I%): NEXT I% -

DATA IF,NOT,AND,OR,EQU,NEQ

table for the relational operators

FOR I% = 1 TO 9 : READ LRE$(I%): NEXT 1%

DATA <>,><,>:,=>,<:,=<,:,>,< _

t**t*tt*!t**t**!**t**t**t**t*!t**t*!t****t**!******t*ttt
FUNCTION DEFINITIONS - 3

X*Xf*!t*tt**t*it**t**t**t*t!**t**t**i**t*tt**X**t**tt*!t*tt**

XEXX

XXX

XxXxx
'

XXX

T3 8

XXX

S5 &

Ixxx

TEEX

rXxx

Ik

key initialization

DEF KESET(KEY,COD) ~ ,
PRINT CHR$(27)+CHR$(58)+CHR$(KEY)+CHR$(COD)+CHR$(00)
FEND ' ‘ : ‘
clearing the screen

DEF CLS

PRINT CHR$(12)

FEND

back ground color setting

DEF BCOL{TPE%)

PRINT'CHR$(27)+CHR$(99)+CHR$(TPE%); .
FEND ' .
fore ground color setting '

DEF FCOL(TYP%}

PRINT CHR$(27)+CHR$(98)+CHR$(TYP%);

FEND ‘ . -
blank space string setting

DEF BK$ (NO%)

BK$ = STRINGS (NO%,CHR$(32))

FEND

string printing at a particular position of the screen
DEF P(YCOR%,XCOR%,S$) ‘
PRINT'CHR$(27)+CHR$(89)+CHR$(31+YCOR%)+CHR$(31+XCOR%)+S$;
FEND .

data type indication string printing

DEF SP%{MK%) ‘ C

CALL P(ZZ,I,BK$(7)):CALL FCOL(4) :CALL BCOL(10)

CALL P(22,1,M$(MK%)):CALL FCOL{7):CALL BCOL(Q)

FEND .

back spacing of the cursor

DEF BS${wWQ$) ‘

L% = LEN(WQ$): IF L% = 0 THEN RETURN

BS$ = LEFT$(WQ$,L%-1)

FEND

replace a character in a string

DEF RECHS$ (SR$,RS1%,IQ1l%) :

1% = LEN(SR$) '

RECHS$ = LEFT$(SR$,IQI%—1)+RSI$+MID$(SR$,IQ1%+1,I%)_
FEND :

delete a character fron a string

DEF‘DECH$(SD$,IQ2%)

1% = LEN(SDS$) | .

DECHS$ = LEFT$(SD$,IQZ%—1)+MID$(SD$,IQ2%+1,I%)

FEND ‘

insert. a character from a string

DEF INCHS$ (SI$,RS2$,1Q3%)

I% = LEN(SI$)]
INCH$ = LEFT$(SI$.IQ3%41)+RSZ$+MID$(SI$,IQ3%.I%)
FEND
rem *%¥x¥ gset the function keys - o
CALL KESET{77,19):CALL KESET(59,128):CALL KESET{({60,12%9)
CALL KESET(75,01):CALL KESET(61,130) :CALL KESET{62,131)
-CALL KESET{(72,23) :CALL KESET(63,132):CALL“KESET(71,133)
CALL KESET{(80,26) :CALL KESET(73,134) :CALL KESET(81,135)
CALL KESET{79,136) :CALL KESET (82,137} :CALL KESET(83,138)
rem'*******************¥¥******X***t**************************t**
rem ¥ : ROW PRINTING PROCEDURE b 4
rem *************t***t**t*******XX*******X***********************
‘ DEF ROWP(COLUMN%,ROWST%,ROWED%,NPOINTER%)
CALL FCOL(2222): CALL BCOL(1)
FOR I[% = ROWST% TO ROWED%
CALL P(I%,COLUMN%-4,J$(STR$(NPOINTER%),3.1)+CHR$(124))
NPOINTERY® = NPOLNTER%+1

NEXT I%
. CALL FCOL(0T): CALL BCOL(16)
. FEND : ’ .
rem **t?t*X***XX***X******t******************************t*t*****
rem ¥ ' COLUMN PRINTING PROCEDURE ‘ X

Trem **txx**x*xt*ttt******xxx**xx**ttt*ttt***xx**ttt*t****t*x****x
DEF COLUMNP(ROW%.COLSTART%,COLEND%.LPOINTER%,PTER%)
IF PTER% = 0 THEN CALL FcoL{2222): CALL BCOL(1)
COLDIFF% = COLEND%-COLSTART%
JJ% = W%(LPOINTER%): H$ = " "
WHILE JJ% <= COLDIFF% -
. IF LPOINTER% ¢ 27 THEN-E$ = CHR$(32): CHP% = LPOINTER%\
ELSE E$ = CHR$(65): CHP% = LPOINTER%-26
WITH% = W%{LPOINTER%) '
IF MOD(WITH%,2) = O THEN WITH¥%=WITH%-1: SP$ = CHR$(32)\
+E$ ELSE SP$ = E$. o
‘B% = INT((WITH%)*0.5)-1
H$ = H$+CHR$(124)+BK$(B%—1)+SP$+CHR$(CHP%+64)+ \
BK$(B%)+CHR$(124)
_ LPOINTER% = LPOINTER%+1
o JJ% = JI%+W%(LPOINTER%)
WEND ' '
IF PTER% = 1 THEN PRINT J$(H$,COLDIFF%+4,0): RETURN
‘ CALL P(ROW%—I,COLSTART%—4,J$(H$,COLDIFF%+4,0))
* CALL FCOL(11): CALL BCOL(16) -

: _ FEND . . ' .
rem **t*t**ttt***ttt********X*****t***t**#******ttt**!****!****xx
rem ¥ ' ' WINDOW SCANNING PROCEDURE . x
rem ******t*xx***xx***ti**ttt****;***xx**ttt****x****xt***tt***tt

DEF ARRAY (CSA%,CEA%,RSA%,REA%,CA%,RA%)
CDIF% = (CEA%-CSA%): ICA% = CA%: CALL FCOL(11)
FOR R% = RSA% TO REA% '
CA% = ICA%:C% = W%(CA%):T$ = ""
WHILE C% <= CDI1F%)
IF SGN{YY%(RA%,CA%)) = -1 THEN \
T$ T$+J$(X$ (RA%,CA%)},WR(CA%),1) ELSE \
TS T$+J$ (X$(RA%,CA%) ,Wk(CA%),0)
CA% = CA%+1: C% = C%+W%(CA%)

" it

WEND
CALL P(R%,CSA%,J$(T$,CDIF%, 0))
RA% = RA%+1

NEXT R%
CALL FCOL(7)
_ FEND : :
rem *tttt****t***t*********ttttttttt***tt***ttttt**tt**tttt**titt
rem ¥. : CELL IDENTIFIER PROCEDURE *

rem *tt*##ttt*#*ttt#**ttx***tttxtttt***ttt#**tt*t*tttt**tt*##tx**
DEF CCON${XC%,YC%)
IF YC% < 27 THEN FC$ “v: GOTO CC
IF YC% < 53 THEN FC$ CHR$(65): GOTO CC

‘ IF YC% < 79 THEN FC$ CHR$ (66)
cC: ' CCON$ = FC$+CHR$(YC%+64) +STR$(XC%)
f FEND
rem tttt#***tx****txx**txx***x*x*tttt*tt*txt**tttx**txx**t*t#*ttt'
rem ¥ CURSOR PRINTING PROCEDURE : ¥

rem B TS T T T s e e a R R R L S R R e R R b
'DEF CURSORS (NPC%,LPC%,RP%,CP%)
IF SGN(YY%(NPC%,LPC%)} = -1 THEN \
CSOR$ = J${X$(NPC%,LPC%),W%(LPC%},1) ELSE \
CSOR$ = J$(X$(NPC%,LPC%),W%(LPC%),0)
CALL P(RP%,CP%,CSOR$)
FEND :
rem B T Tt et e s e R R R s R R R L L b
rem ¥ DATA INPUT PROCEDURE x
rem EEEEEEREE R R R R R R E R R R A F A XK A A A KRS I IIRR AR IXLRR
INDATA: V§ = ""
69.1 .CALL P(23,3, CHR$(62)+V$)
VV% = INKEY
IF VV% = 13 THEN 69.3
IF VVv% = 8 THEN 69.2
: V$ = V$+CHR$(VV%): GOTO 69.1
69.2 IF LEN(V$) = O THEN BACK%=1: RETURN

V$ = LEFT$(V$,LEN(V$)-1): GOTO 63.1
69.3 BACK% = 0: RETURN
rem ***ttttx*tttt##**tt*x***ttt***xxtt**tttx****x*tx**ttx*x***txt
rem ¥ WIDTH CALCULATION PROCEDURE ¥

rem **txxt***xxxx****xxxttttttt***ttxx**xxxt*****xx***ttt*****ttt
SETWIDTH:I% = IIC%: PS% = W%(I%)
WHILE PS%+W%(I%+1) <= (CED%-CST%)
PS% = PS%+W%(I%)

-tz

I% = I%+1
s WEND
s LIMIT% = I%
. RETURN

rem ***ttt*****xx****txx***xxx**t*ttt***txx**t*ttt***xxx***ttxx*i
rem ¥ RECULCULATION PROCEDURE S
rem R R R R R R AR R R R R R R R R KK KRR R R R R RN E AR KKK IAITIRARN
RECAL: RECKEY% = 1: VP% = 1: LLL% = LEN(DUMS$)

WHILE VP% <= LLL%
BB$ = MID${DUM$,VP%,5)
GOSUB CELLID: RI% = II%: CJ% = JJ% .~
AA$=XY$(RI%,CJ%): GOSUB EXPTR
" X$(RI%,CJ%) = STR$(RESULT)

rem X¥%¥X

rem ¥
rem ¥X¥xx

_RE10:

rem ¥¥¥¥Xx

rem *
rém ¥EXXX

LJO:

rem X¥X¥x
rem ¥
rem ¥¥¥¥X

rem *¥¥¥¥
rem ¥
rem, XXXEX

rem $X¥¥%¥
rem ¥ '
Tem ¥k¥XX%
CELLID.:

x**xx*xxx*xx*xxxxxxtxxx*xxx*x**xx*xxx*txx*xx*xxx*xx*txx*
' BLANK REMOVAL PROCEDURE B

1:**xx**ixxtxx*xx**xxttxxtttx*xx**xx*x;tttx**xi*txx**xx*

DEF REBK$(S$) '

K% = 1)

1% = MATCH{" ",S$,K%) , .

IF 1% = 0 THEN REBK$ = S5$%: RETURN

S$ = LEFT$(S$,I%—1)+RIGHT$(S$,LEN(S$)-I%)'

K% = 1%:.GOTO RE10 : :

FEND . '

*xxx*xx**xxttxttxxxtxxxxtt*xx**x**txxttxx*xx**xxt*xx*xxt
- JUSTIFICATION PROCEDURE %

xxx*xxxx*xx**xxttxxttxtxtx*xx***xttxxtxxx*xxxtxx**x*

DEF J$(INS$,SL%,K%) - '

LENCTH% = LEN(IN$)

IF K% = 0 THEN GOTO LJO y A - .

IF LENGTH% < SL% THEN J$ = STRINGS (SL%-LENGTH%," ") +INS$\

:RETURN : , .

IF LENGTH% > SL% THEN J$ = RIGHT$ (IN$,SL%): RETURN

J$ = IN$: RETURN

IF LENGTH% < SL% THEN J$ =.IN$+STRING$(SL%-LENGTH%," "I\
:RETURN - S .
IF LENGTH% > .SL% THEN J$ = LEFT$(IN$,SL%): RETURN

J$ = INS : :]

FEND

xx*xxx*xxx**xx*xxtt*xttxxttxg**xx**xxttxxtxxx*xxxx*xx**x
NUMBER ROUNDING FUNCTION X
xtxx*xxxxxx***xxtxxx*xxx*xxxt*xt**t***x**xxttxx**txxxxxx
DEF ROUND({NUM) B
TEM = NUM-INT(NUM)
IF TEM >= 0.5 THEN ROUND = INT(NUM)+1: RETURN
ROUND = INT(NUM) '
FEND ' _
XX***X*********#*****X***t**t*X***t***t***t****t****x*ﬁt
: DIGIT CHECKING PROCEDURE ‘ %
xt**xx**tx*x}x*xxx**xx*xxx*xxxttxtx*xx**xxttxr:xxxx*xxxt
DEF DGCK%{C$) :
I% = 1
WHILE I% <= LEN(C$)
IN$ = MID$(C$,I%,1) , _
IF MATCH{INS$,"0123456789.E+-",1)=0 THEN DGCK% = 0 \

:RETURN
1% = 1%+1
WEND
DGCK% = 1
FEND '
xttxxxttxxx*zxxxxx**xx**xx*xxxtxxxx*xx*xxxt*xx**xxxxxxxx
CELL IDENTIFICATION PROCEDURE . b3

xx*xxxt*xxxx**xx**xx**xx*x;x**xxt*tx**xx**xtt*x***tx
BB$ = REBK$(BBS$): SPAN% = LEN(BB$)

" IF SPAN% > 5 THEN DERROR% = l: GOTO EMES

I% = MATCH(LEFT$(BB$;1),LETTER$,1)

IF I% = 0 THEN DERROR%=1: GOTO EMES

J% = MATCH(MID$(BB$,2,1),LETTER$,1)
IF J% = O THEN JJ%=I%: II% = VAL{MID$ (BB$,2,SPAN%})\

T (-
Fem ¥¥¥X%

rem

ELSE JJ% = 26%I%+J%: II% = VAL(MIDS (BB$,3,SPAN%))

'IF II% > RLIMIT% OR II% < 1 THEN DERROR%=2: -GOTO EMES

~

IF JJ% > CLIMIT% OR JJ% < 1 THEN DERROR%=3: GOTO EMES

. RETURN"

% -

t*t******X*********t****tt**t***********tt*******t******
' ERROR ROUTINE ¥

rem ***#***#*ttt##*ttX***X********#***##*tt******##*tt********tt*
EMES:

665.
555.

565.

. 555.
565.
rem
rem-.
rem
rem

rem

LEVO:

rem
LEV:
rem

1
2
3
4
0

. ON DERROR% GOTO 555.1,555.2,555.3,555.4

E$ = "WRONG ENTRY":GOTO 555.0

E$ = "ROW ERROR":GOTO 555.0

E$ = "COLUMN ERROR":GOTO 5§55.0

E$ = "BRAKET MISSING" : '

‘CALL P(22,65,E$):GOTO LEV3

*****###***###**##***X****X***X**********X********t*!***t****

% .

SCREEN MANIPULATING PROGRAM X

tX**i*****************##**##t******X*******##*t*************#

Xxxx
Xxxx

SR

LR & 3

LEV1:

rem

PXxx

LEVZ2:

rem

LEEX

LEV3:

rem

LS & &

LEV4:

rem

rem

rem
¥
rem

rem
rem

rem

rem
rem
rem

r¥X¥

XXX

r¥xx
LR RS

LR B &
XXX¥

XXX

clear the screen and print the data type title
CALL CLS : CALL SP%(1) - ' :
initially set the row and the column border

- CALL ROWP{CST%,RST%,RED%, IIR%)

CALL COLUMNP(RST%,CST%,CED%,IIC%,0)

switch to different levels for displaying the window
ON KEY% GOTO LEV1, LEV2, LEV3, LEV4

print the row border if the border key is on

IF BOR%=1 THEN CALL ROWP(CST%,RST%,RED%,IIR%): GOTQ LEV3
print the column border if the border key os on

IF BOR%=1 THEN CALL COLUMNP (RST%,CST%,CED%,I1IC%,0}
scan the whole window with cell contents ‘
CALL ARRAY{(CST%,CED%,RST%,RED%,IIC%,IIR%)

gset the colors and display the active cell cursor
CALL BCOL({16):CALL FCOL(11) .

CALL CURSOR$(R1%,C1%,MMR%,MMC%) -

identify the reference cell of the window

TOPCELL$ = CCON${(IIR¥%,IIC%) '

erase the previous cursor of the window

CALL BCOL(4): CALL CURSOR$ (R2%,C2%,MR%,MC%)

CALL BCOL{16) _

identify the active cell and display on the status line
CELL$ = CCON${R2%,C2%): CALL P(21,2,CELLS$) .
set the active cell identifier for reference table
CELLRF$ = J$(CELL$,5,0)

print the active cell cursor direction on the window
CALL FCOL{12}): CALL P{21,1,CHR$ (RT%)+BK$(5})

CALL FCOL{2222)

erase and print the cell content on the status line
CALL P{21,39,BK${(LEN(XY$(R1%,C1%))))

CALL P(21,39,XY$(R2%,C2%}}

print the content heading on the status line

CcALL (12): CALL P{21,30,FM$): CALL FCOL(11)

*tX*X****X*X***#****##****#*##*X*X*******##tt***###**********

x

SELECT PROCEDURE X

tttttttt*ttt**t#t***xxx;t**x*tittttttttxxtt**tttttttxt*titttt
SELT:

CALL P(23,1," 1"+CHR$(62)+BK$(L%))}
CALL P{23,4,""): CODE% = INKEY
IF CODE% = 13 THEN 9.4 ELSE CK$ = J$(STR$(CODE%),3,0)

" IF CODE% = 13 THEN 9.4 ELSE CK$ = J$(STR$ (CODE%),3,0)
CURCODE% = MATCH({CK$,CURSTR$,1) ‘

IF CURCODE% <> 0 THEN 9.224

DTYCODE% = MATCH(CK$,DTYSTR$,1)

IF DTYCODE% <> O THEN 9.223

COMCODE% = MATCH(CK$,COMSTR$,1)

IF COMCODE% <> 0 THEN 9.222 o

IF CODE% >= 32 OR CODE% <= 127 THEN 9.221

: GOTO SELT o , _
rem xxx*txx*ttxxx**xxx*x*xx*xxx**xxxt*rx***xxx**xx**txx**xxxx*xxx
rem ¥ : DATA INPUT PROCEDURE , x
rem-xx***xxx*txxt**xx**xxx**xx****xx**xxxx*xx*t*xx***xx**txx***xx
9.221. V$ = CHR$(CODE%): CALL SP%(MKEY%)

' J% = 2: INSK% = 0: D% =1

37 UP$ = J$(STR$(J%),2,1): CALL P(23,1,UP$+">")

IF D% = 1 THEN CALL P(23.4.V$+BK$(ABS(L%fLEN(V$))))

D% = 1: CCODE% = INKEY: CHKS$ = J$(STR$ (CCODE%),3,0)
M% = MATCH(CHK$,INCODES$,1)

IF M% = 0 THEN 39.9 ELSE M% = (M%-1)/3+1 -

ON M% GOTO 39.1,39.2,39.3,39.4,39.5,39.6,39.7,39.8

1 .~ COMKEY% = 0: GOTO 9.3

39.2 IF J% = 1 THEN v$ = "": GOTO SELT ELSE \ .
Vv$ = MID$(V$,1,LEN(VS$)-1): J% = J%-1: GOTO 37 : -

39.3 IF INSK% = 1 THEN INSK%.= 0 ELSE INSK% = 1: GOTO 37
39.4 V$ = DECH$(V$,J%): GOTO 37

39+5 D% = O0: IF J% > 1 THEN J% = J%-1: GOTO 37 ELSE GOTO 37
39.6 D% = O :

39.6 IF J% <= L% THEN J% = J%+1: GOTO 37 ELSE CCODE% = 32
39.7 J% = L%+1: GOTO 37

39.8 J% = 1: GOTO 37

39.9 IF CCODE% < 32 OR CCODE% > 127 THEN 37

R$ = CHR$(CCODE%) ,
IF J% = L% THEN V$.= V$+R$: J% = J%+l: GOTO 37
IF INSK% = 1 THEN V§ = INCH${V$,R$,J%) \ '
ELSE V$ = RECH$(V$,R$,J%)
: J% = J%+1l: GOTO 37 . , ,
rem xttttxtt*ttxxt*t;xttttxt**xx***xx****xxtt*txx**xxx***txx****x

rem ¥ ‘ COMMAND PROCEDURE X

rem ***********************X*******tt**************t*************

9.222 - 1% = ((COMCODE%-1)/3)+1

ON I% GOTO COMMAND,49.2,49.3,49.4,49.5,49.6,49.7,\

49.8,49.9 _

49.2 DUM$ = FTAB$: GOSUB RECAL: KEY% = 3: GOTO LEV

49.3 GOSUR CJUMP: KEY% = 3: GOTO LEVO

49.4 GOTO 5.0 ,

49.5 - GOSUB HOME: KEY% = 4: GOTO LEV

49.6 GOSUB PGUP: KEY% = 1: GOTO LEV

49,7 GOSUB PGDN: KEY% = 1: GOTO LEV

49.8 GOSUB SEND: KEY% = 1: GOTO LEV

49.9 GOTO XCHANGE _

rom FEEEEXXEFEREXEEEXRREEXELLERNERRNNEREEEERRRRREEXIRTLXRTIRRIXE

rem ¥ DATA TYPE SET PROCEDURE '

rem x*t;x**xxxxx*xxx*xtxxxxxxx**xxxxxxxxx*xxxxxxxxxxxxxx**zxx**xx
9,223 MKEY% = ((DTYCODE%-1)/3)+1 '

CALL SP%(MKEY%)
Y GOTO SELT ' :
reﬁ *xxxtt*tt*tt*****t**t*tt**t*xt**x*tt*x**xt*tx*******t**tx**t*
rem * CURSOR CONTROL KEY SET PROCEDURE %
rem **t**t*tt**tt*t**xt*x*xx**xx**x*tt*t;*t***t**t*tt**t**t*tt*tt
9,224 1%={ {CURCODE%-1)/3)+1
ON 1% GOTO 44.1,44.2,44.3,44.4

44.1 RT% = 94: GOTO 9.4
44,2 RT% = 62: GOTO 9.4
44,3 _RT% = 86: GOTO 9.4
44 .4 RT% = 60: GOTO 9.4

rem ********tt*tt**t**t*tt**t***********t******t**t*****t**t*****
rem ¥ i MAIN PROCEDURE o : X
.rem *****tt**t**t**t**#**tgttt*;*******;*****t**t******t*t**t****
rem *¥%x input data assigned by the buffer variable
9.3 AAS=VS R '
rem **%% branch for processing the data

ON MKEY% GOTO_VENTRY,TENTRY,RENTRY;FENTRY ,
rem ttttttt**t**t*{*t**#***************t**t**tt********t**t*****t
rem ¥ TEXT DATA PROCESSING _ o *
rem ***t**t**tt**t**t**t***************t***t*tt********t**t*****t
TENTRY: XY${R2%,C2%) = AA$: GOSUB TINDEX : :

X$(R2%,C2%) = AAS: YY%(R2%,C2%) = 1: GOTO 9.4
rem t***t******************t**t**t**t***t********t*t*t*****t**t**
rem * REPEATING TEXT DATA PROCESSING ' X
rem ******************t**tt**t**t**tt********X**t************tt**
RENTRY: FOR I%=C2% TO 26

XY${R2%,I%) = AAS: X$(R2%,I%) = AAS

NEXT I%

GOSUB TINDEX: YY%{R2%,C2%) = 1

CALL ARRAY(CST%,CED%,RST%,RED%;IIC%,IIR%)

GOTO 9.4 ‘
rem **************t**t**t**tt**t**t***t********t***t}********t***
rem % ' VALUE DATA PROCESSING 5 *
rem ***************t***t******t*tt*tt*************t**t*t****t****
VENTRY: IF DGCK% (REBK$ (AA$)) = 0 THEN "DERROR% = 1: GOTO EMES
X$(R2%,C2%)=AAS$ IF YY%(R2%,C2%)=-2 THEN \
+DUM$ = CD$(R2%,C2%): GOSUB RECAL \
:CALL ARRAY(CST%,CED%,RST%,RED%,IIC%,IIR%): GOTO 9.4

' YY%(R2%,C2%) = -2: GOSUB VINDEX: GOTO 9.4
rem **xx*xx**xx*x*ttxt;xx*xx**x**xx*txtxxtxx*tx**xxtxxtxx**x*xx*t
rem ¥ FORMULA PROCESSING 3

rem x*xxi*xx**xx*x*xxxtxx**xxtxx*tx*ttxxxtxxx*xx;xxtxx**xx*xxtxx*
. FENTRY: GOSUB EXPTR
XY$(R2%,C2%) = V$: X$(R2%,C2%) = STR$ (RESULT)
. YY%{R2%,C2%) = -3: GOSUB FINDEX '
rem xx**xx**x**t**txtxxt*xxxxxtxx*xxt*x**txxxx*xx**xtxxxtxx*txxxx
rem ¥ CURSOR CONTROL PROCEDURE . . x
rem t*x**xx*txttx*xtxxxxtxxtxx*xx**xx*xx*txxxxx*xx*xx*xxtxx*txttx
9.4 R1% = R2%: C1% = C2%: MMR% = MR%: MMC% = MC%
CALL P(23,4,BK$(75))
IF RT% = 80 THEN GOTO MOVEL
IF RT% = 86 THEN GOTO MOVED
IF RT% = 94 THEN GOTO MOVEU -
MOVER: IF C2% = CLIMIT% THEN KEY% = 4: GOTO LEV

GOSUB SETWIDTH: MC% = CST%: CALL P{23,4,BK$(75)) "
I[F C2% = LIMIT% THEN GOTO MOVER1 .
FOR I% = IIC% TO C2%: MC% = MC%+Wk(I%): NEXT I%
C2% = C2%+1: KEY% = 4: GOTO LEV
MOVER1: IIC% = IIC%+1: GOSUB SETWIDTH
IF LIMIT% ¢ C2%+1 THEN MOVER1 :
FOR 1% = IIC% TO C2%: MC% = MCH+W%(I%): NEXT I%
T C2% = C2%+1: KEY% = 2: GOTO LEV
MOVEL: IF C2% = 1 THEN KEY% = 4: GOTO LEV
IF MC% = CST% THEN IIC% = IIC%-1: C2% = C2%-1:\
KEY% = 2: GOTO LEV
- . MC% = MC%-W%{C2%-1): C2% = C2%-1: KEY% = 4: GOTO LEV
MOVED: IF R2% = RLIMIT% THEN KEY% = 4: GOTO LEV.
' IF MR% = RED% THEN IIR% = IIR%+1: R2% = R2%+1:\
KEY% = 1: GOTO LEV ' '
‘ MR% = MR%+1: R2% = R2%+1: KEY% = 41 GOTO LEV
MOVEU: . IF R2% = 1 THEN KEY% = 4: GOTO LEV
- IF MR% = RST% THEN IIR% = IIR%-1: R2% = R2%-1:\
KEY% = 1: GOTO LEV '
: MR% = MR%-1: R2% = R2%-1: KEY% = 4: GOTO- LEV
rem n'tttt,tntxuuuuuuunnunttnuuuuntnuuuuux
rem ¥ - SLASH COMMAND PROCEDURE ¥
rem uu*tttt_nxunttxtutuuuuuxuutu***uuttnxuutxu:
COMMAND: CALL P(22,1,BK$(80)) ' _
-‘CALL P(22,1,"/B,C,D,F,G,I,L,M,O,Q,R,s,w,x,z")
CALL P(23,4,BK$(PP%)):CALL P(23,3,">/")
vC%=INKEY :CALL P(22,1,BK$(30}))
IF VC%=67 OR VC%=(67+32) THEN GOTO SPWDRAW
IF VC%=T70 OR VC%=(70+32) THEN GOTO FORMAT
IF VC%=71 OR.VC%=(71432) THEN GOTO GLOBAL
IF VC%=76 OR VC%=(76+32) THEN GOTO LOAD
IF VC%=81 OR VC%=(81+32) THEN GOTO QUIT
IF VC%=83 OR VC%={83+32) THEN GOTO SAVE
IFE VC¥%=87 OR vC%=(87+32) THEN GOTO SPLITSC
IF VC%=88 OR VC%=(88+32) THEN GOTO COMMAND
IF VC%=79 OR VC%=(79+32) THEN GOTO HPRINT
IF VC%=8 THEN CALL SP%(MKEY%) : KEY%=4:GOTO LEV
GOTO COMMAND - .
rem uuuuuu*u-uuunununnuunuxnnuunuuuu

rem ¥ ° SAVE PROCEDURE ¥
rem t***X********!!**tt***t****!**!!!*tXX***X**!X!**XX***!***XX*
SAVE: CALL P(22,1,"Enter the file name "):CALL P(23,5,CHR$(32))

GOSUB INDATA: IF BACK = 1 THEN GOTO COMMAND
CALL P(22,1,"Saving proccess continuing™)
WDg = STR$(W%(1)): CALL P(23,5,BK$(LEN(V$)))
CREATE V% A5 1 .
FOR I% = 2 TO 30: WD$ = WD$+“:"+STR$(W%(I%)): NEXT I%
WD$=WDs+" " ’
" PRINT 41: WD$,TOPCELL$
PRINT #1; TTAB$
PRINT #1; VTABS
PRINT #1; FTABS

TTT$ = TTAB$: GOSUB SV1
TTT$ = VTAB$: GOSUB SV1

TTT$ = FTAB$: GOSUB SV1

CLOSE 1

KEY% = 4: GOTO LEV

REM ¥¥$$XEEx¥Rkx¥33x3%% SAVE CELL'S INFOMATION AEESEEEXREFRRERRRRE

SV1:

FOR MP% = 1 TO LEN{TTT$) STEP 5

BB = MID$(TTT$,MP%,5): GOSUB CELLID)
PRINT #1; XY$(II%,JJ%),X$(II%,JJ%),\
CD$(II%,JJ%),YY%(II%,JJ%)

. - NEXT MP%: RETURN -
rem ***********************Xt*X*X**X***********t****t*****}X***tt

rem %

LOAD PROCEDURE X

rem *}**************X***t*******t***************t*********tt**t*t

LOAD:

234

“rem ¥X¥¥
LD1:

CALL P(22,1,"Enter the file name) :CALL P(23,5,CHRS(32})
GOSUB INDATA: IF BACK = 1 THEN GOTO COMMAND

CALL P{(22,1,"Loading process continuing”}

CALL P(23,1PBK$(LEN(V$))) '

IF END #2 THEN 234 :

OPEN V$ AS 2

READ #2; WD$, TOPCELLS$

READ #2; TTABS :

READ #2; VTAB$

READ #2; FTABS

IF TTAB$ <> "" THEN TTT$ = TTAB$: GOSUB LD1
IF VTAB$ <> "" THEN TTT$ = VTAB$: GOSUB LD1
'1F FTAB$ <> "" THEN TTT$ = FTAB$: GOSUB LD1

. FOR I% = 1 TO 30

J% = MATCH("}",WD$,1}: WY({I%) = VAL{LEFT${WD$,J%-1))
WDS$ = RIGHT$ (WD$, LEN(WD$)-J%) ! NEXT I%

BR$ = TOPCELL$: GOSUB CELLID: MR% = RST%: MC% = CST%
TIR% = I11%: IIC% = JJ%: R2% = TI%: C2% = JJ% -
CALL P(22,1,BK$(26)})

KEY% = 1: GOTO LEV

load the cell’s informations

FOR MP% = 1 - TO LEN(TTT$) STEP 5

BB$ = MID$(TTT$,MP%,5): GOSUB CELLID

READ -#2; XY$(ITI%,JJI%) , X8 (11%,JT%) .\

CD$(II%,JI%), YY%(I1%, JJ%)

NEXT MP%: RETURN

rem ****X**X*******t*****t**t********t**************t**t**t**t***

rem X

SPLIT SCREEN PROCEDURE ¥

rem i*******X**Xt*i****t***********t**************t***********t**

SPLITSC:

5.711

5.712

IF SPLIT%=1 THEN \

CALL P(22,1,"Split Screen Mode Active:Press any key" I\
:CALL P(23,3,">"):FAL%:INKEY:GOTO 9.2

CALL P(22,1,"Vertical Or Horizontal:Press Vv Or H"}
CALL P(23,3,">/8plit Screen, ")

VCT71%=INKEY:CALL P(22,1,BK$(40)):CALL P(23,3,BKs(15))

IF VC71%=72 OR VC?l%:(72+32) THEN SPLIT%=1:GOTO 5.711
IF VCT71%=86 OR VC71%=(86+32) THEN SPLIT%:I:GOTO 5.712
IF VC71%=8 THEN GOTO COMMAND

GOTO SPLITSC

RST%:MR%:CSPLIT%:O:TOPCS:TOPCELL$

"IIR%=R2%:CALL P(RST%—1,1,8K$(3}):KEY%:S:GOTO LEVO

MC%=MC%+4:CST%:MC%:CSPLIT%:I:TOPC$=TOPCELL$
IIC%=C2%:KEY%=3:GOTO LEVO

rem *********#***

rem ¥ SPLIT SCREEN WITHDRAW PROCEDURE *

rem ***************************************#*********************

SPWDRAW: CALL P{22,1,"Withdraw Split Mode:Press Y or N")

CALL P(23,4,""):VC?Z%:INKEY:CALL P(22,1,BK$(35))

IF VC72%=89 CR VCT72%=(89+32) THEN SPLIT%=0:GCTO 5.721

IF VvC72%=78 OR VC72%=(78+32) THEN KEY%=4:GOTO LEV

IF VC72%=8 THEN GOTO COMMAND ELSE., GOTO SPWDRAW

5.721 MR%:Z:MC%=5:BB$=CELL$:GOSUB CELLID '
IIR%:II%:IIC%=JJ%:R2%=II%:C2%=JJ%
RST%=2:CST%=5:RED%=20:CED%=81

, KEY%=3:GOTO LEVO
rem ****'***-**'****X*********

rem * . EXIT PROCEDURE : X
rem **#**t***************#*************X**t**************#**t****

QUIT: CALL P{22,1,"Exit from the spread-sheet ? Press Y or N")
: CALL P(23,3,">/Quit,”) : -
VCT3=INKEY:CALL P(22,1,BK$(50)):CALL P(23,3,BKs(8))
IF VC73=89 OR VC73=(89+32) THEN 5.0 ’
IF VC73=78 OR VC73:(78+32) THEN 9.2
. IF VC73=8 THEN GOTO COMMAND ELSE GOTO QUIT : ’
rem *****************#*X***************t**********************t**
rem % - BORDER ON/OFF PROCEDUER x
rem ******X*************************X********************_*****X**
GLOBAL: IF SPLIT%=1 THEN GOTO SPLITSC :
CALL P{(22,1,"Border off ? Yes or No"}
CALL P(23,3,">/Global,”) '
VCT4%=INKEY :CALL P(22,1,BK$(25))UCALL P(23,3,BK$(101})
IF VC74%=78 OR VCT74%=(78+32) THEN BOR%=1:KEY%=4:GOTO LEVO
IF vC74%=89 OR VC75%=(89+32) THEN BOR%=0:GOTO 5.741
IF VC74%=8 THEN GOTO COMMAND ELSE GOTC GLOBAL
5.741 CALL P({1,1,BK$(80)) '
FOR I%=1 T0O 20:CALL P(I%,I,BK$(4)):NEXT I% - -
KEY%=4:GOTO LEVO .
rem ****************************X***********X*******i************
rgm“* EIDTH SETTING AND JUSTIFICATIOCN PROCEDURE X
rem ***#******x*******x*x****xxx**#xx***#x***xx****#x*x*x**xtxxx*
FORMAT: CALL P(22,1,"Width,Right justification,Left justification™)
CALL P(23,3,"»/Format,”) ' .
VCT75%=INKEY:CALL P(22,1,BK$(50)):CALL P(23,3,BKS$(10))
IF vC75%=87 OR VCT5%={87+432) THEN 5.751 : ‘
TF VC75%=82 OR VC75%=(82+32) THEN 5,752
IF vC75%=76 OR VC75%=(76+432) THEN 5.7563
IF VvC75%=8 THEN GOTO COMMAND
GOTO FORMAT -
5.751 CALL P(22,1,"All cells or active column only ? Press G or <cr>")
CALL P(23,3,">/Width,")
VC751%=INKEY:CALL P(22,1,BK$(50)):CALL P(23,3,BKs(10))
IF VC751%=71 OR VC751%=(71+432) THEN G%=1:G0TO 5.7511
IF VC751%=13 THEN G%=0:GOTO 5.7511
IF VC751%=8 THEN GOTO FORMAT
GOTO 5.751
5.7511 CALL P(22,1,"Set width between 6 to 75™")
5.75112 GOSUB INDATA :WD%=VAL{V$) :CALL P(ZZ,I,BK$(50))
 IF BACK%=1 THEN 5.751 ' :

IF BACK%=1 THEN 5.751 .
IF (WD% >= 6) AND (WD% <= 75) - THEN 5.75111
CALL P(ZZ,I,"Width range between 6-75: Set the correct width™)
- GOTO 5.75112 :
5.75111 CKEY%=1:1F G%=0 THEN 5.75113
: FOR I%=1 TO CLIMIT%
W%(I%):WD%:NEXT 1% : ,
o MC%:CST%:CZ%:IIC%:MR%:RST%:RZ%:IIR%:KEY%:3:GOTO LEVD
.75113 w%(CZ%)=WD%:KEY%:2:GOTO LEV '
.752 PROMPT$:"Global,range or active cell only? Press G,R or<cr>")
CALL P(ZZ,l,PROMPT$) o ‘ '
CALL P(23,3,">/Right Justification,")
VC?52%=INKEY:CALL P(22,1,BK$(60)):CALL P{Z3,3,BK$(20))
IF VCT752%=71 THEN RJUS%:l:KEY%:BfGOTO'LEV
IF vC752%=88 THEN RJUS%=0:G0TO 5.7521
IF VCT752%=13 THEN RJUS%:O:GOTO 5.7522
IF VC762%=8 THEN GOTO FORMAT o
5.7521 KEY%=1:GOTO LEV o '
5.7522 - IF YY%(RZ%,CZ%):O THEN KEY%=1:G0OTO LEV
YY%(RZ%,CZ%)=4ABS(YY%(R2%,CZ%)):KEY%:I:GOTO LEV

o,

5.763 RJUS%:O:KEY%:l:GOTO LEV
rem'x*xxx*x*x*x*x*x*x*x*x*x*xtxxxxxtxx*x*x*x*x*xxxxxxxx*x*x*x*x*x
rem ¥ SCREEN EXCHANCE PROCEDURE - X -

remx*x*t*xxxt*ttx*x*x*x*x*x*xxx*xxx*xxtx*i*x*x*x*x*x*x*xxx*tt*xx
XCHANGE: CALL CURSORS(RZ%,CZ%,HR%,MC%)ZKEY%=3
s BB$=TOPC$:TOPC$=TQPCELL$
GOSUB CELLID:IIR%:II%:IIC%:JJ%:RZ%:II%:CZ%:JJ%
IF CSPLIT%=1 THEN 5.761 ’
IF RST%=2 THEN RST%:RED%+2:RED%:ZO:MR%:RST%:MC%:5:GOTO LEV\
) RED%:RST%—Z:RST%:Z:MR%:Z:MC%=5:GOTO LEV)
5.761 IF CST%=5 THEN CST%ZCED%+4!CED%=81:MC%:CST%:MR%:Z:GOTO LEV
: CED%:CST%—4:CST%=52MC%=5:HR%=2ZGOTO LEV
rem **********X*************tt**t*tttt*tt**t*********************
rem - ¥ | PRINT PROCEDURE . x
rem ttttxtxtxtttxxxxxt*x*x*x*x*x*xxx*xxxx*x*xxx*x*xxxxxxxxxxxxxxx
HPRINT: CALL P(ZZ,l,"Printer or Disk ? ") :CALL P(23,3,"/Output,")
VC77%=INKEY:CALL P(ZZ,l,BK$(18)):CALL P(23,3,BK$(8))
IF ve77%=80 OR vCT77%=112 THEN 5.771
IF vC77%=68 OR VC717%=100 THEN 5.772)
IF VC77%=8 THEN GOTO COMMAND ELSE GOTO HPRINT
5.771 GALL P(22,1,"LINE WIDTH ? UPTO 132")
CALL P(23,3,"/Printing width 7"}
INPUT PWD%IT%:CED%:CED%:PWD%
CALL P(22,1,"Printing with border 7 Yes or No")
VC771=INKEY:IF vCc771=89 THEN PBOR%=1 ELSE PBOR%=0
IF PBOR%=1 THEN - CALL COLUMNP(RST%,CST%,CED%,IIC%,1)
-IO%:IIR%!CDIF%:CED%—CST%
~FOR R%=RST% TO RED% | |
IF PBOR%=1 THEN T$:J${STR$(IO%),3,1)+CHR$(124) ELSE Ts=BKS(4)
JO%:IIC%:C%:W%(JO%) }
WHILE C%<=CDIF% : ‘
IF SGN(YY%(IO%,JO%))=~1 THEN T$=T$+J$(X$(IO%.J0%),W%(Jo%lyl) \
ELSE T$:T$+J$(X$(IO%,J0%),W%(JO%),O)
JO%:JO%+1:C%=C%+W%(JO%) -
WEND ‘ :

LPRINTER :
. PRINT J${T$,CDIF%,0}
o 10%=10%+1:NEXT R%
CONSOLE S
, . CED%=T%:GOTO COMMAND .
rem t#x**t*xxt******x***x*********tt*#****x******t*x*t*****t#****
rem ¥ ' _ GOTO CELL PROCEDURE - *
.rem **********tt¥***#***************t****t#************t****t**tt
CJUMP: CALL P(23,4,"=>"):BB$="" ' o '
5.61 CJ%=INKEY:IF CJ%=13 THEN 5.6
' IF CJ%=8 THEN BB$=BS$(BBs$) ELSE BB$=BB$+CHRS$ (CJI%)
CALL P(23,7,BBs$+" "):GOTO 5.61 ‘
5.6 BB$=-REBKS$ (BB$) : GOSUB CELLID
- IIR%=II%:IIC%=JJ% - ‘ .
: , R2%=TTR%:C2%=1IC%:MR%=RST%:MC%=CST%:RETURN -
rem *****xk**x*x**xxxtt*;**t*x**t****x***xx**t;t**txxt*xx**t***xx

_rem ¥ . , " HOME -PROCEDURE : X
rem *****#***
HOME: BB$=TOPCELLS$:GOSUB CELLID

RZ%:II%:CZ%:JJ%:MR%:RST%:MC%:GST%:RETURN
rem ***t*i***

rem ¥ : PAGE UP PROCEDURE : X
rem *****************t**********************************t********
PGDN: BB$=TOPCELL$:GOSUB CELLID

IF II%=RLIMIT%-19 THEN KEY%=4:GOTO LEV
IF II%+19 > RLIMIT% THEN IIR%=RLIMIT%-19 ELSE IIR%=I1I%+18
IIC%:JJ%:R2%=IIR%:CZ%:IIC%!MR%:RST%:MC%:CST%ERETURN

rem ***t*}*

rem ¥ PAGE DOWN PROCEDURE] 1
rem ***********#**t******************************}*******t**}***t
PGUP: BB$=TOPCELLS$:GOSUB CELLID

IF T1I%=1 THEN KEY%=4:GOTO LEV :
IF I1%-19 < 1 THEN IIR%=1 ELSE TIR%=1I%-19
‘ IIC%:JJ%:RZ%:IIR%:C2%:IIC%:MR%:RST%:MC%:CST%:RETURN
rem *xxxxx*x***x****xx******x**xxxx*xxx*xx*xxxx*x****xxxxx*x****x
rem x****x**xtt***xtt***tt****t***xxx**xx*xx****************xx*x*

rem X EXPRESSION INTERPRETER - X
rem % MODULE ¥
‘rem ***
EXPTR: FKEY% = 0: M1% = O: NOPR% = O

rem *¥%x remove the blanks frqm the source statement string
AAS = REBKS${AAS) .
rem **xx check for the boolean function keyword
FOR LTYPE% = 1 TO 6
FPOS% = MATCH(LFUNS$ (LTYPE%) ,AA$,1)
IF FPOS% <> 0 THEN GOSUB LFUN: GOTO BCHECK
NEXT LTYPE%
rem %*%%% check for the built-in function keyword
BCHECK: FOR BTYPE%= 1 TO 5 '
FPOS% = MATCH (BFUNS (BTYPE%) ,AAS$, 1)
‘ IF FPOS% <> 0 THEN GOSUB BFUN: GOTO BCHECK
NEXT BTYPE% \
rem *x*¥x check for the library function keyword
' IF MATCH{LPRS$,AA$,1) < 0 THEN GOSUB LIBF
rem ¥%¥%% check for the precedence delimiter

LOOP:

rem ¥xxx

rem ¥¥xx
rem ¥x¥x

rem ¥K&x

rem XXX

M1% = M1%+1: PPOS% = MATCH(LPR$,AAS$,1)

IF PPOS% <> 0 THEN GOSUB BRAKET ELSE NOPR% = 1: A$=AAS$
call the arithmetic expression interpreter

GOSUB LEX: GOSUB POST: GOSUB VALUEEX: GOSUB EVALUTE
TS(M1%) = RESULT

library function evaluation | ’

IF SWF% = 1 THEN GOSUB EVA.LIB: SWF% = 0: IV% = IV¥%-1
loop back for further interpretation

IF NOPR% <> 1 THEN GOTO LOOP

back to the boolean expression interpreter

IF FKEY% = 1 THEN GOSUB LFUN

IF FKEY% = 1 THEN GOTO BCHECK

end of the interpretation

RETURN

STOP

rem ***tttttttt*tt**ttt*tt****t********tt***tttt***tt*t!t*tt##***

rem ¥

LEXICAL ANALYZER x

rem *ttt*ttttttttt***t*!ttt*x*****ttt**t#X*t****ttiit*X****Xt*tt#

rem XX¥XXxx

LEX: A
rem *¥¥%¥%
LEX1:

rem Tty
rem T¥%¥
LEX2:,

rem ¥xxx

rem ¥¥X¥

rem ¥:XXx
LEX3:
rem ¥¥¥x

initialize the token and the buffer index
K% = 1: M% = 1
gsearch for the operator in the expre551on
FOR I% = 1 TO 5

IF 0%(I%) = MID$(A$,K%,1) THEN GOTO LEXZ2
NEXT I% ' -
check for the flnal token
IF LEN(A$) = K% THEN GOTO LEX3

K% = K%+1: GOTO LEX1

check for the unary operator and exponent token

IF K¥ = 1. .THEN K% = 2: GOTO LEX1 -

IF MID$(A$,K%-1,1) = "E" THEN K¥ = K%+1: GOTO LEX1
isolate the tokens from the expression string

B$ (M%) = LEFT$(A$,K%-1)

BS{M%+1) = O%{(I%)

A$ = RIGHTS$(AS, LEN(A$) K%)

increment the token table index and set the buffer index
M% = M%+2: K% = 1: GOTO LEX1

isolate the final token

B$ (M%) = A$: N% = M%

set the single token key

IF M¥ = 1 THEN SVAL% = 1 ELSE SVAL%=0

RETURN

rem *ttt*****ttttttt*X*X*ttXt*t***tt**Xtttxxt*t**tt*!*ttt***tt***

rem -

SYNTAX ANALYZER b4

-rem *****ttttttt*itt****t*ttttttttt*XtttxttttXtttttxtttttttt*tt*t

rem XXX*
POST:

rem ¥¥¥X
POST1:
rem ¥¥tx
POSTZ:
rem ¥¥%xx

rem kxxxx

initialize the token table index and the buffer index
K% = 2: M% = 1: L% = 0

exchange the elements :
TM$ = B$(K%-L%): B$(K%-L%) = B$(K%+1): B$(K%+1) = TMS
check for the final token under consideration

K% = K%+1: IF K% > N% THEN GOTO POST3

find the operator number

1% = MATCH(B$(K%),OPERATOR$,1)
IF I% = 0 THEN POST2

load the operator buffer
STK%{M%) = I%: M% = M¥+1

IF M% = 2 THEN GOTO POSTZ2 ELSE M% = 1 :
" rem *%%¥x check the precedence of the operator for arrangement
IF STK%(2) = 1 OR STK%{2) = 2 THEN L% = 0: GOTO POST1
"IF STK%({2) 5 THEN L% = 1: GOTO POST1
"IF STK%({1) 1 OR STK%(1) = 2 THEN L% = 1! GOTO POST1
L% = 0: GOTO POSTI ‘ '
rem *x*¥%x exit from the procedure

i1l

POST3: ~ RETURN : : .
rem xtxxxtxt*txttxttxttxttxxtxxxxxxxxxxyttttxxtxxxxx**xtxxx}xtxxx
rem * . VALUE TABLE GENERATOR x

rem :txxtxxttxttxttxttxttxtttxxxxx;xtxx*xzttxtxx!x:x*xttxt*xttxxn
rem ¥¥%% initialize the table and set the table index
VALUEEX: DIM Z(50): Il% = 1 '
rem %¥%%%* check for the final token for consideration
. WHILE I1% <= N% -
rem *x%% check and process for the number token
IF MATCH(LEFT$(B$(11%),1),DIGIT$,1)<>0 THEN \
o Z(I1%) = VAL{BS$(I1%)): GOTO VALEX3
rem *x*x check and process for the operator.token
IF MATCH(B$(11%),0PERATOR$,1)<>O THEN GOTO VALEX3
FOR J% =1 TO o . :
rem x%%x check and process for the temporary storage token
1F S$(J%) = B$(I1%) THEN 7Z{I11%) = TS(J%): GOTO VALEX3
NEXT J% :
rem %¥*xx cheeck for the token with unary operator
FOR OP% = 1 TO 2 -
IF 0$(0OP%) = LEFTS$ (B$(I1%),1) THEN GOTO VALEX1
NEXT OP% -
rem ¥*x%x process for the identifier token :
BB§ = B$(I1%): GOSUB CELLID: GOSUB CRF
Z(T1%) - VAL(X$(1I%,JJ%)): GOTO VALEX3
rem **xx process for the token with unary operator
VALEX1: . BB$ = RIGHT$(B$(II%),LEN(B$(11%))—1) , : :
) IF MATCH(LEFT$(BB$,1),DIGIT$,I)<>0 THEN \
: VUE = VAL(BBS): GOTO VALEX2
FOR J% = 1 TO 3 .
IF S${J%) = BBs THEN VUE = TS{J%): GOTO VALEX?Z2

NEXT J%
GOSUB CELLID: GOSUB CRF: VUE = VAL(X$(II%,JJ%))
VALEX?Z: IF OoP% = 1 THEN Z{I1%) = -VUE ELSE Z{Il1%) = VUE
rem ¥%¥% increment the token table index -
VALEX3: I1% = T11%+1
WEND
rem *3xx exit from the procedure
RETURN -
rem txxxxxxtxxxx*xxt**txxxxxtxxtt#tt#xxxxt*xtx#ttxxtxxtxtxtxtxxxt
rem ¥ . VALUE EVALUATION : x

/rém txxxxxxxxxxx**x*xxxtxxxxzttxttxxtxxxxxxxtttxtxxxxxxxxt:x*xtxx

rem x**% check for the single token

EVALUTE: IF SVAL% = 1 THEN RESULT = Z(1}: RETURN

rem *¥*¥* check the table pointer with unity
WHILE N% > 1 ‘

rem ¥%¥r¥ search for an operator

EVALTE1:

rem

rém
‘ST
rem
AD:
rem
DV:
rem
‘ML
rem
EP:
rem

%X
rX¥X
LR 8 B ¢
S & &1

R 8 3 ¢

RIS

Xxx%

EVALTEZ:

rem

rem

rem
rem
rem
rem

¥xxx

%X

X

FOR I% 1 TO N%
J% = MATCH(B$(I%),OPERATORS,1)
IF J% <> 0 THEN GOTO EVALTE1
NEXT I% .
FIR%Y = I%-1: SED¥% = I%- -
branch to perform operation accordlng to the operator
. ON J% GOTO ST,AD,DV,ML,EP
perform substraction operation _
Z(SED%) = Z{SED%)- -Z(FIR%): GOTO EVALTEZ2
perform addition operation
Z(SED%) = Z{(SED%)+Z{(FIR%): GOTO EVALTE2
perform division operation o
Z(SED%) = Z(SED%)/Z(FIR%): GOTO EVALTEZ
perform multiplication operation
7Z(SED%) = Z(SED%)*Z(FIR%): GOTO EVALTEZ
perform exponentlatlon operation
‘Z(SED%) = Z(SED%)"Z{FIR%)
shifts the elements to eliminate the operands
WHILE I% < N%
B$(I%-1) = BS(I%+1): Z(I% 1) = Z(I%+1)
1% = I1%+1: WEND
decrement the the table p01nter and back for looplng
N% = N%-2: WEND .
store the result and exit from the procedure
RESULT = Z(1): RETURN

****t*##*****##****X**********ttt*********#***********#X*t***

BOOLEAN EXPRESSION INTERRETER . |

*¥***********************tt*¥¥***#***********t*#*#******t****

Xxxx

LFUN:

rem
rem
rem

rem
rem
rem
rem
LC1:
rem

" rem

¥xxx
¥¥xx

kXX

check the key for new entry or not

IF FKEY% = 1 THEN GOTC LC21

initialize the tables and the indexes

DIM ZZ(6), TABLE$(6): K% = 1: ED% = O: AUG% = O
jdentify the argument delimiter

L1% = MATCH{LPRS$,AA$,1)

isolate the function argument string

TM$ = MID${(AAS,LI1%+1, LEN(AAS)-L1%-1)

ttx#xxx*tttxxxxxxx#xx**xx#xx***t##x*xxx#xxxxxxxxxxxttxx#xxxtx

X

BOOLEAN LEXICAL ANALYSER ' ¥

xtx*x*xxx***ttxxx;ttx*tt*xxxxxx***t#tx*xtxxxxxx*rt##****txxx*

Xxxk

¥kxx

Xxkx

LC11:

rem

rem

¥Exx

Tr:x

LC12:

identify the token delimiter character

L3% = MATCH(COM$,TM$,1)

load the buffer variable for further proce331ng
IF L3% = 0 THEN TTM$ = TM$: ED% = 1: GOTO LC11

TTM$ = LEFT$(TM$,L3%-1)

identify the relational operator if any

FOR I% = 1 TO 9

RPOS% = MATCH(LRE$(I%),TTMS,1)
IF RPOS% <> O THEN GOTO LC12

NEXT 1%
store the token having no relational operator
TABLE$ (K%) = TTM$: K% = K%+1: GOTO LC13

store the operands and the operator tokens

‘TABLE${K%) = LEFT${TTM$,RPOS%-1)

LRE$ (I%): ZZ(K%+1) = I%
MID$ (TTM$, RPOS%+LEN(LRE$(1%))}, LEN{TTMS))

TABLES$ (K%+1)
TABLES (K%+2)

rem ¥%¥%X

‘rem *¥%X
LC13:
rem ¥%%%

increment the token table index

K% = K%+3

check for the final token

IF ED% <> 1 THEN TM$=RIGHT$(TM$,LEN(TM$)—L3%): GOTO LC1
get the token range . o
RANGE% = K¥%-1

rem #****#***##**X*#**X*t*****t******t*#f*******#******X********X

rem ¥

BOOLEAN EXPRESSIN VALUE TABLE GENERATION *

rem ******************#***t************************************#*

rem ¥k%x¥

rem X¥XXX¥

LC2: ,
rem ¥¥%xX

LCZ21

rem *k¥X

/(

initialize the token table and the displacement index
TP% = 1: DIS% = 2 i
call the expression interpreter for evaluation
AA$ = TABLE$(TP%): FKEY%.= 1: RETURN

store the evaluated value and increment the index
ZZ{TP%) = RESULT: TP% = TP%+DIS%

IF TP% = 3 THEN GOTO LCZ

check for the final token :

IF TABLE$(TP%) = "" THEN TP% = 1: GOTO LC3

IF ED% = 0 THEN GOTO LCZ :

TP% = 4: ED% = O

IF RANGE% = 6 THEN DIS% = 2 ELSE DIS% = 1

GOTO LC2 '

rem i***x***xx*xxxxxxxx**xxxxxxx*xx**xxxxxxxitxx**xxxx*xxxxxxxx*x

rem ¥

BOOLEAN EXPRESSION EVALUATION SR

rem t***t*****#******t**X*t***************t********{*#**********t

rem *XXx

LC3:
rem ¥¥kxX

rem ¥k¥kxX
FALSE:
rem ¥XXx¥x
58.61
rem *xXxx
58.62
rem ¥X%XX¥xx
58.63

rem **¥%Xk

58.64
rem ¥k¥XX

58.65

rem ¥%¥%x%

TRUE:
rem ¥kXx¥k

load the operands and the operator puffer variables
OPD1 = ZZ(TP%): OPR = ZZ(TP%+1}): OPD2 = ZZ(TP%+2)
switch to a particular label according to the operator
ON COPR GOTO 58.51,58.51,58.52,58.52,58.53,58.53,58.54,\
58.55,58.56
58.51 IF OPD1 <> OPDZ THEN GOTO TRUE ELSE GOTO FALSE
58.52 IF OPD1 >= OPDZ THEN GOTO TRUE ELSE GOTO FALSE
58.53 IF OPD1 <= OPDZ THEN GOTO TRUE ELSE GOTO FALSE
58.54 IF OPDI OPD2 THEN GOTO TRUE ELSE GOTO FALSE
58.55 TIF OPDI OPD2 THEN GOTO TRUE ELSE GOTO FALSE
58.56 IF OPDI ¢ OPD2 THEN GOTO TRUE
switch to a label according to the function type

ol

'ON LTYPE% GOTO 58.61,58.62,58.63,58.64,58.63;58.65

store the result for the conditional IF operation
RESULT = ZZ(5): GOTO EXIT

set the result for the logical NOT operation
RESULT = 1: GOTO EXIT ,

perform functions for the logical AND & XNOR operation
IF ED% = 0 THEN ED% = 1: TP% = 4: GOTO LC3

IF AUG% = 1 THEN RESULT = 1 ELSE RESULT = 0

GOTO EXIT _

set the result for the logical OR operation

RESULT = 0: GOTO EXIT

perform functions for the logical XOR operation

IF ED% = 0 THEN ED% = 1: TP% = 4: GOTO LC3

IF AUG% = 1 THEN RESULT = 0 ELSE RESULT = 1

GOTO EXIT : :
switch to a label according to the function type
ON LTYPE% GOTO 58.71,58.72,58.73,58.74,58.75,58.74
store the result for the conditional IF operation

e
- rem Xx¥x store the result for the conditional IF operation
68.71 RESULT = ZZ(4): GOTO EXIT ,
rem *xxx set the result for the logical NOT operation
58.72 RESULT = 0: GOTO EXIT :
rem x¥¥x set the result for the logical AND operation
58.73 RESULT = 1: GOTO EXIT :
rem *xxx perform functions for the logical OR & XNOR operation
58.74 - IF ED% = 0 THEN ED% = 1: TP% = 4: AUG% = 1: GOTO LC3
IF AUG% = 1 THEN RESULT = 1 ELSE RESULT = 0O
) GOTO EXLT o ' _
rem ¥*x¥ perform functions for the logical XOR operation
58.75 IF ED% = O THEN ED% = 1: TP% = 4: AUG% = 1: GOTO LC3
IF AUG% = 1 THEN RESULT = O ELSE RESULT = 1 ‘
rem *¥*x¥ set the key and exit from the procedure

EXIT: FKEY% = 0: RETURN
rem *************t*********t*****#**##*t******************#t****x
. rem ¥* BUILT-IN FUNCTION INTERPRETER ' X

rem ***************************X********************#*****t*#****
rem *¥xx initialize the temporary storage index -
BFUN: ° M1% = M1%+1
rem *¥*¥*xx identify the function argumenr string .
I1% = MATCH(LPR$,AA$,FPOS%): 12% = MATCH(RPR$,AAS$,11%)
rem *%%x isolate the function argument string
_ A% = MIDS$ (AA$,11%+1,12%-1I1%-1)
rem *%%% replace the function by the temporary storage identifier
AAS =,LEFT$(AA$,FPOS%—1)+S$(M1%)+RIGHT$(AA$nLEN(AA$)—IZ%)
‘rem ¥%%%¥ call the procedures for the evaluation of the function
GOSUB EXPAND: GOSUB BEVALUTE .
. ON BTYPE% GOTO 23.1, 23.2, 23.3, 23.4, 23.5
rem **%¥ load the temporary storage by the function value & exit
23.1 . GOSUB MX: TS(M1%) MAX: RETURN

23.2 GOSUB MN: TS(M1%) = MIN: RETURN

23.3 GOSUB SM: TS(M1%) = SUM: RETURN

23.4 GOSUB AG: TS(M1%) = AVG: RETURN

23.5 . TS(M1%) = CNT%: RETURN

rem X*t###***##**##*x###*t**#*t*x******t*x*t#*****x****#*******t*
rem ¥ FUNCTION ARGUMENT LEXICAL ANALYZER Y

rem *f******#************************#***********************#*t*
rem *¥*¥ initialize. the indexes
EXPAND: ‘M% = 0: J% = 0 - .
rem ¥t%xx check for the final. token for isolation
WHILE As<O>"" - '
rem ¥xxx identify the token delimiter
K% = MATCH(SLON$,A$,1) o .
IF K2% = 0 THEN BUFF$ = A$: A% = "": GOTO BIN1
rem %¥%%x¥ isolate the token and load the buffer for checking
BUFFS$- = LEFT${AS$,K2%~1) : '
rem **x¥xx reduce the argument string
: A% = RIGHTS${A$,LEN(A$}-K2%)
rem *¥¥%xx jidentify the range or list delimiter
BIN1: . K2% = MATCH(CLONS$,BUFF$%,1) ' .
: “IF K2% <> O THEN J% = J%+l: GOTO BINZ
rem ¥¥%% store the individual cell token
: . M% .= M%+1: MX${(M%) = BUFFS$: GOTO BIN3
;em ¥%xx isolate and store the tokens representing list or range

BINZ:

“rem X%%%

BIN3:
rem X¥x¥X

rem
rem ¥
rem
rem

BEVALUTE:DIM Z(100):
check for

rem X¥E¥

LLMT$

RLMTS$
looping
WEND

(J%) = LEFT$(BUFF$,K2%-1) ,
(J%) = RIGHTS(BUFF$,LEN(BUFF$)-KZ%
back for further checking

exit from the procedure

RETURN

FEESEXEEXRRERER

xxxtxxtxttxtxiixtx*txx
1+1%% initialize the value table and set the indexes

. IF NC%

rem xi%¥
rem ¥¥¥¥%
rem ¥¥%x
BEV4: .
rem ¥¥Xx¥%

rem ¥¥%¥¥

FOR K%

extract
Z (K%
NEXT K%

check for the 1

IF NR%

increment the token

X**#******t*****#*******X*t#t**********t**

FUNCTION VALUE TABLE GENERATOR ¥
t#i*#*#***********it#t*****t**t****

NT% = 0
index -limit

NR% = J%: NC% = M%:
the individual token

= 0 THEN BEV4 '

= 1 TO NC% ’

identify the cell by calling a
BB = MX$(K%):

procedure’

GOSUB CELLID

from the data structure and store
TI%,JJ%)) '

the value
) = VAL(X$(

ist or range index limit
LMT% = NC%: RETURN
table index

= ‘0 THEN

NT% = NT%+1

identif
BBS$ =

T KK1% =

rem ¥%¥xx

. rTem ¥¥%¥X¥

rem ¥¥%%
BEV5:

rem ¥%%¥
BEV6:

rem ¥¥¥¥
BEVT:
rem ¥¥%x¥

rem ¥x¥¥

identify the cell
BB$ = RLMTS$(NT%}:

KK2%
IF KK1%
IF LL1%
extract
FOR 11I%

FOR

- NEXT JJ%
NEXT I1%
GOTO. BEVT

extract
I1% =
FOR JJ%

M%

LLMTS$ (NT%) :

y the cell'representing the lower limit
GOSUB CELLID ;

I1%: LL1% = JJ%

representing the upper limit
GOSUB CELLID

II%: LL2% = JJ%

= KK2% THEN GOTO BEV5

- LL2% THEN GOTO BEV6
and store the values
- KK1% TO KKZ%

JJ% = LL1% TO LL2%
M% = M%+1l: Z{(M%) =

from a block of cells

VAL(XS(II%,JJ%)): GOSUB CRF

and store the values from a row of cells

KK1%

= LL1% TO LL2%

= M%+1: Z{(M%) = VAL{X$(TI%,JJ%)): GOSUB CRF

NEXT JJ%
GOTO BEV7

extract

and store the values from a column of cells

JJ% = LL1%

FOR 11%
M%

NEXT II% :
check for further processing over any more

IF NT#%
set the

LMT% = M%: CNT% =

exit fr
RETURN

= KK1%
= M%+1:

TCO KK2%)
Z{M%) = VAL(X$(II%,JJ%)): GOSUB CRF
token
¢> NR% THEN GOTO BEV4

value table index limit and the count

M% : R

om the procedure

SM: ‘SUM = 0
FOR I% = 1 TO LMT%
SUM = SUM+Z(I%)

NEXT 1%
, RETURN
rem *%¥%%* procedure to find the maximum value
MX: MAX = Z(1) Co

FOR I% = 2 TO LMT%
"7 IF MAX <= Z(I%) THEN MAX = Z{I%)

NEXT I%
RETURN , :
rem *%¥%%¥ procedure to find the minimum value -
MN: MIN = Z(1) '
FOR 'I% = 2 TO LMT%
o - IF MIN »>= Z(I%) THEN MIN = Z(I%)
g NEXT I% -
RETURN . .
rem ¥%¥*%* procedure to calculate the average
AG: GOSUB SM: AVG = SUM/LMT%: RETURN . :
rem ******X*t************t***********}tt***t*********t******t**t*
rem % ' PROCEDURE BRAKET g X

‘rem ttttttttttttxtzitxt;t*xx**xxx*xxx;txxx*tttt*xtx*ixtxtttx*tttx
BRAKET: J1% = 1 ..
BLOOP: I1% = MATCH (LPR$,AA$,J1%)
IF I1% <> 0 THEN J1% = I1%+1: GOTO BLOOP
IF J1%-1 = TK%{IV%) THEN SWF% = 1
J2% = J1%: 12% = MATCH(RPR% ,AA$,J2%)}
IF I2% = 0 - THEN DERROCR = 4: GOTO 555
J2% = I2%~-1: A$ = MID$(AA$,J1%,J2%-J1%+1)

AAS LEFTS$(AA$,J1%-2)+S$(M1%)+ \
' +RIGHTS (AAS$, LEN(AA$)-J2%-1)
RETURN
‘rem ****tttt*tt********txtt*x****;x**}xttttt*tt*xt***xttttt*tt**;
rem * LIBRARY FUNCTION EVALUATION - x

rem x**********t**t*tt*t****t**tx**********t****t**************t*
EVA.LIB: X = TS(M1%) ' ‘
ON FN%(IV%) GOTO 2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,\
2.10,2.11,2.12

2.1. X = ABS(X): GOTO 2.01
2.2 X = EXP(X): GOTO 2.01
2.3 X = INT(X): GOTO 2.01
2.4 X = LOG(X): GOTO 2.01
2.5 X = ROUND(X): GOTO 2.01
2.6 X = SIN(X): GOTO 2.01
2.7 X = COS(X): GOTO 2.01
2.8 X = TAN(X): GOTO 2.01
2.9 X = 1/SIN(X): GOTO 2.01
2.10 X = 1/C0S(X): GOTO 2.01
2.11 ¥ = 1/TAN(X): GOTO 2.01
2.12 X = ATN(X): GOTO 2.01
2.01 TS{M1%) = X
RETURN - ,
rem *********x**#****tt***t****x***xx****t**tt****xx*tt*t**t*****
‘rem X LIBRARY FUNCTION KEYWORD IDENTIFIER PROCEDURE o X

rem *********X*****************************}*****t*************t*

LIBF: IV% 1: SWF% = 0t J% = 1: MK% = 3
LIB1: BR% = MATCH {(LPR$,AAS$,MKX)
oo ©1F BR% ¢ 41 THEN GOTO L1B2
TEST% = MATCH(MID$(AA$,BR%—3,3]LLFUNCTION$,1)
1F TEST% = O THEN MK% = BR%+1 : GOTO LIB1
I% = {((TEST%-1)/3)+1
FN%(IV%) <= I%: TK% (IV%) = BR%~-3

AAS = LEFT$(AA$,ER%—4)+RIGHT$ (AA$;LEN(AA$)-BR%+1)
IV% = IV%+1: MK% = BR%-2: GOTO L1B1
LiB2: IV% = IV%-1: RETURN

rem .**#*1‘-**1'-*’****1’-***-***##t#t*xx*****'**************i*-*****t******

“

[1].

[21.

131,

.[4J.

(63,

{6].

{(73.

18l.

.[9].

[10]).

REFERENCES

wakerley, J. F.
Microcomputer Architecture and Programming,
John Wiley and Sons, N.Y (1981)

Tremblay J. P. and Sorenson P. G. :
An Introduction to Data Structures with Applications.
McGRAW-Hill, N.Y. (1976) : :

Goodman S. E. and Hedetniemi s. T.
Introduction to the design and analysis of Algorithms,
TOKYQ, JAPAN (1977) : :

Gries David,
Compiler Construction for Digital Computers,

John Wiley and Sons, N.Y {1971)

Digital Research,

CBASIC Compiler Language Reference Manual,

U.S.A. (1983}

Digifal Research, ‘
CBASIC Compiler Language Programming Guide,
U.S.A. (1983) '

Monroe System for Business, _ :
CP/M-86 DPX Operating System Supplement,
U.S.A. (1983) : :

Monroe System for Business,
CcP/M-86 DPX User’s Guide,
U.S.A. (1983)

///?;f <y
A‘\\./f“’-‘ T - Vf; ‘

Monroe System for Business, RN "\\ﬁg\“
CP/M-86 DPX Programmer’s Guide, Tr o A8, \)&\
U.S.A. (1983) { A
. . al o1 2?‘\\7’\%%))
Monroe System for Business, N \\._ e *,r
CcP/M-86 DPX System Guide, N AR e Y

S s~

U.S.A. (1983)

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147
	00000148
	00000149
	00000150
	00000151
	00000152
	00000153
	00000154

