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Abstract

A thermal stress analysis of side-hole optical fiber with elliptical core has been presented

in this work by using a finite element method. The birefringence because of the thermal

stress, which is caused in the structure due to the different thermal expansion coefficients

of core and cladding and also the geometrical birefringence are simultaneously

considered here in this work. The analysis here is based on the plain strain approximation

and potential energy principle in the finite element method, which in this case, results in a

linear system of unknown displacements at the nodes. After checking the accuracy of

finite-element calculations, thermal stress analysis of elliptical cored fibers and side hole

fibers with elliptical core are performed. The influences of core ellipticity, air hole radius

and position, as well as the thermal expansion coefficient of core and cladding materials

on fiber birefringence are systematically assessed. Also, the work is further extended to

calculate the changed refractive index in x and y polarized light due to photo-elastic

effect.

For a fiber with elliptical core, the birefringence increases with the core ellipticity as the

stress in and around the core gets higher with the increase in the core ellipticity. Fiber

birefringence increases with larger pitch length. Thus, fiber with higher core ellipticity

and higher pitch length generates higher birefringence. On the other hand, the

birefringence decreases with the increase in side-hole radius. Smaller side-holes can

produce moderately higher birefringence if they are far from the core. Thus, the

simulation results suggest that, elliptical core side-hole fiber can be treated as a good

candidate for high birefringent polarization maintaining fiber (PMF), which finds

increasing demands in coherent optical communication, optical fiber sensing devices and

many other applications.

XIV



Chapter 1

Introduction

In ordinary single-mode fibers widely used in present optical communication systems,

the polarization states of the input and the output lighl beams do not match, since the

polarization of the output light beam is unstable. Ill' contrast, the polarization

maintaining (PM) fibers maintain the stalc 0[' pola,.ization of a light beam passing

through them. PM fibers arc imperative 1,)1' obtaining a stable output in

interferometric liber optical sensors. In optical collllllunication devices the usc of PM

Iiber becomes mandatory when perl,mning any polari/.ed waves operations; e.g., I<.)r

polarization combining. There arc many applications where the polarization of the

light is required to be stablel and well dc[ined such as coupling to the integrated

optical circuits, interferometric sensors, coherent optical communication systems, and

certain in-line tiber optic components. So. it is very important to study the

polarization state of a tiber when it is designed Illr a communication system. In this

work a PM liber called the side-hole libel' will be studied using a thermal stress

analysis using the tinite elemcntmethod ([:LM). BeI'H'c we go into details, lirst in this

chapter we review the literature with regard to the thermal stress analysis of liber and

then mention the motivation of this work. i\tthe end of this chapter, we also show the

structure of the thesis.

1.1 Literature Review

Polarization maintaining fibers (PMFs) that can maintain a state of polarization over a

long length are desirable for use in coherent optical communications and fiber optic

sensing systems [1]-[4]. These PM!', arc usually divided into two groups. One is the
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axially non symmetrical (having elliptical core), mainly using geometrical

birefringence [2), [3)-[4), and the other is the stress-applied type (fabricated with

stress applied zone, SAZ), using stress-induced birefringence, e.g., PANDA fiber,

bowtie fiber, etc. [1)-[2). Side-hole optical fibers are very similar to the PANDA

fiber, but with two air-holes running along the length in place of the stress applying

zones [5)-[6). This type of fiber can exhibit large birefringence and is a good

candidate as a PMF in optical fiber communication systems and also in fiber optic

sensing systems [5)-[6). This fiber introduces high birefringence because of its

geometry and different thermal expansion coefficients of core and cladding materials.

Because of the presence of air holes, index contrast is increased; hence modal

confinement is enhanced with a reduction of optical loss [5)-[6). This birefringence

can further be increased by introducing elliptical core with circular air holes in the

structure. So, in order to realize single mode operations with the side-hole fiber, a

detailed analysis is necessary. As a first step, this work is motivated to the stress

analysis and finding the birefringence due to the geometry and thermal stress in the

fiber. While the thermal stress induced birefringence properties and dispersion are

studied for widely used PMFs, e.g., PANDA fiber, bowtie fiber, etc. [1)-[4], [7)-[9),

little work has been done on side-hole optical fibers [5)-[6).

Different methods have been used to analyze various types of polarization

maintaining fibers. The finite element method was used by Okoshi et al. [10)-[11) for

performance analysis of side-tunnel type fiber. An H-field finite-element method was

used by Hayata and co-workers [12) and the effective-index method was used in [13).

A single-mode fiber with asymmetrical refractive index pits on both sides of the core

was fabricated by the MCVD method [14). From the experimental measurement, the

beat length was found to be about 23 mm and a birefringence B = 5 x 10-5 was

obtained. Stress analysis of a side pit fiber by the finite element method [15)-[ 16)

shows that the contribution of the stress-induced birefringence to modal birefringence

is much larger than that of the geometrical anisotropy [10). For stress induced PMF a

finite element method [15), and an analytical method [16)-[17) have been used to

calculate the stress distribution due to SAPs in these fibers. It has been shown that

placing the SAPs close to the core improves the birefringence of these fibers, however
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in our work we investigate the birefringence property using finite element method by

placing circular air hole in place of SAPs with elliptical core at the center.

1.2 Objective of the work

The main objective of this work is to perform the thermal stress analysis of

polarization maintaining fiber, particularly for the side-hole optical fiber with

elliptical core. The fiber birefringence properties induced by thermal stress will be

calculated and studied. The influence of core shape and size, as well as the side-hole

size and position on fiber birefringence will also be investigated. Initially we evaluate

the birefringence for a simple fiber structure i.e., conventional single mode step index

fiber under thermal stress; this is done for the purposes of providing the validity ofthe

simulation program. Later, this program is further extended to calculate the

birefringence for side-hole fiber with elliptical core. We also examined the effect of

temperature change during fiber manufacturing and the thermal expansion coefficient

of core material on the birefringence. Finally the refractive index profiles along the

radial distance of various fiber structures are investigated. In this thesis work finite

element method (FEM) [7]-[8] is used for the thcrmal stress analysis of differcnt fiber

structure. The FEM is a versatile method for handling arbitrary cross section with

complex geometry. In this method, a simultaneous linear system of equations is .

formulated with nodal displacements as unknowns by using plane-strain

approximation. The system of equations is then numerically solved using Gaussian.

elimination technique. For efficient solution of the problem, only one-fourth of the

cross section is being discretized into linear triangular elements using the two-fold

symmetry of the structure and applying the appropriate Dirichlet type boundary

conditions on the plane of symmetry. Once the system of equation is solved for nodal

displacements, it is easy to find the stress developed in each element in the cross

sectional domain.

1.3 Layout of the Thesis

There are six chapters in this thesis. Chapter I presents an introduction of the work

with a brief review of literature and objective of the work. Chapter 2 presents an

overview of optical fiber, light propagation mechanism through it and classification of

(~\>:,
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optical fiber. Different types of polarization maintaining fibers are also discussed in

this chapter.

In chapter 3, a brief and general discussion on finite element analysis (FEA), a

versatile method for handling arbitrary cross section with complcx geomctry is

presented. It also includes descriptions of various steps and corresponding

mathematical formulation involved in FEA.

Chapter 4 deals with principle and computational tcchnique used for thcrmal stress

analysis of the fiber. Sequential formulation to calculate the fiber birefringcnce and

changed refractive index due to thermal stress are also shown in this chapter.

Chapter 5 presents the results and discussions of this study. The results given here are

for elliptical core fiber and side-hole fiber with elliptical core. A comparison between

the existing results and the present results is given. Surface plots and contour maps for

various fiber structures are also shown herc. A short description of the developed

simulation program is presented in this chapter.

Concluding remarks of this thesis work along with suggestions for future research are

hosted in chapter 6.



Chapter 2

The Optical Fibers

Mankind has always throughout its history had the necessity for communication.

Initially communication was done through signals, voice or primitivc forms of

writing. As time passed by there was a nccd to communicate through distances, to

pass information from one place to another. Many different ways to exchange

information have been used throughout history. Progressing from the copper wire of a

century ago to today's fiber optic, our increasing ability to transmit more information,

more quickly and over longer distances has expanded the boundaries of our

technological development in all areas. Nowaday optical fiber is being using as the

backbone component in long distance and high bit-rate optical communication and

networking system. Optical fibers also find important applications in a variety of

sensors, communications systems, and telecommunications networks. The choice of

fiber depends on where and how it is applied and what one kind of fiber can offer

over the other. In particular, polarization maintaining (PM) tibers are desirable for use

in optical fiber sensing and coherent long distance optical communication systems [I j.

Following fundamental attractive features have made tremendous use and demand of

optical fiber:

• Enormous potential bandwidth (_1014 Hz).

• Immunity from electromagnetic interference.

• Low transmission loss ( 0.2dB/km).

• Reliability i.e, security of the signal.

• Potential low cost.

• Small size and light in weight.
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2.1 The Mechanism of Light Propagation in Optical Fibers

111> 112

Fig. 2.1 :.Optical fiber waveguide.

An optical fiber is a circular waveguide that takes the form of a long, thin strand of

glass about the diameter of a human hair. This fiber contains two concentric glass

regions with slightly different refractive indices. The refractive index is the ratio of

the speed of light in a vacuum to its speed in the glass fiber medium. The center of the

fiber through which most of the light travels is callcd the fiber core. The outer region,

having a lower refractive index than the inner region, is called the cladding. A

surrounding plastic coating is used to protect the glass fiber. Additionally, an encasing

cable structure is often applied to protect the optical fiber during installation and

operation.

1"1-). of medium 2

III of mEdium 1

incident rollecled

• &1:= (Ingle 01 incie!€'llcs
• Or 7:: :lIlgl,) 01 f,~fleclilJll
• 81:: Jllgle 01 relr,lclioll

4
3

Fig. 2.2: Refraction of light. .

4

The propagation of light within an optical fiber can be well understood lISl11gray

model theory. According to the ray theory, when a light ray is incident on the

interface between two dielectrics of different refractive indices some of the light
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refracts, some reflccts and othcr is absorbed as illustrated in Fig. 2.2. Thc amount of

refraction, reflection and absorption depend on two dielectrics and the intcrfacc. If the

incident anglc is such that thc refraction anglc is 90°, i.c, thc rcfractcd ray cmergcs

parallel to the interface thcn the incident anglc is known as critical angle 0c. Whcn the

incident angle is greater than the critical anglc then all the light reflects back to thc

first medium or dielectric and this phenomenon is known as total internal rcflcction

[ 18].

1

/

''<' ••••,
.' ...-7 .••••..•

. r'''''''''''''.

..'

'c1ad ding ~••

Fig. 2.3: Light transmission through fiber.

In optical fiber the light is launched into the entrancc facc of thc fibcr and is

propagated by the total internal reflection at the intcrface bctwccn corc and cladding.

However the rays incident at angles largcr than a certain angle, called the cut-off

angle, suffer both refraction and reflection at the interface between the core and the

cladding. Therefore, they are not guided. Due to this the optical fiber has a numerical

aperture. The numerical aperture is given by the square root of (11,2_11/). Typical

values of numerical aperture lie between 0.1 and 0.3.

Consider the Fig. 2.3, which is a section of the optical fibcr. The refractive indices of

the core and the cladding are ", and 112 respectively. Suppose thc fibcr is in air (110; I).

The axis of the cylindrical structure is thc optical axis. Whcn a ray is incidcnt with an

angle i at the entrancc face, it is refracted into the core. Then it strikes the core-

cladding interface at a certain angle. If this angle exceeds the critical angle, it is

totally reflected and strikes the interface on the other side of the axis. Herc it is again'

totally reflected using the same phenomena. This process'is repeated till the ray

emerges out of the fiber at the other end. The ray is thus guidcd by total internal

reflection.

"? (f .

,
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The angle of incidence at the entrance face for which the ray strikes the core-cladding

interface at the critical angle is called the cut-off angle. The ray is guided for all the

angles of incidence smaller than the cut-off angle at the entrance face. Also the

numerical aperture is equal to no times the sine of cut-off angle. However, if the angle

of incidence at the interface is less than the critical angle, both retlection and

refraction takes place. Due to refraction at each incidence on the interface, the light

beam dies off over a certain distance. There is no guidance.

2.2 Classification of Optical Fibers

Optical fiber can be classified from various point of views.

• In terms of physical dimension optical fibers are of two types:

core~ ,',

;' ..,~ .. -

\
Cladding

(a)

Cladding

(b)

Fig. 2.4: (a) Single mode fiber. (b) Multi-mode fiber.

Single mode fiber: Single mode fiber is the fiber that allows only one transverse

electromagnetic mode to propagate. Typically it has the core diameter of 2-10 fll11

[19]. It has the distinct advantage of low intermodal dispersion and is generally used

for low loss signal transmission and high speed long distance communication.

Multi-mode fiber: In multi-mode fiber a finite number of guided modes are allowed

to propagate through the channel. The number of guides modes depends on the

physical parameters (i.e. core radius, refractive index difference) of the tiber and the

wavelength of the transmitted light. Generally it has the core diameter of 50 - 100

flm. Although it offers considerable dispersion loss, it facilitates easier coupling with
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less tolerance requirements and very useful with incoherent optical sources [201-[21].,. .

It is better suited for shorter distance communication.

• From refractive index profile (of the core) point of view, fibers are of two kinds:

r

•••,,,,

Core

Cladding

(a)

Refractive
index nCr)

r ",r,,,,

a

(b)

Fig. 2.5: The refractive index profile and ray transmission. (a) Step index liber.

(b) Graded index fiber.

Step index fiber: Step index fiber isa kind of fiber where the refractive index of core

is maintained at a fixed value (say nl) and that of cladding is continued at a slightly

lower refractive index (say nz) i.e. nl> nz as shown in the Fig. 2.5 (a). Since the

refractive index profile changes in step at the core-cladding interface hence the name

is step index fiber.
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Graded index fiber: Graded index fibers do not have a constant refractivc index in

the core, rather have a decreasing core index nCr) with radial distance from a

maximum value of nl at the axis to a constant value n2 beyond the core radius a in the

cladding is as shown in the Fig. 2.5(b). This index variation may be represcnted as

[19]:

nCr) = {
n,(I - 2tJ.(r / a)" )1/2

n,(1-2tJ.)1/2 =n2

r<a(core)

r ~ a (cladding)

where tJ. is the refractive index difference and a is the profile parameter of core

refractive index characteristic. For a= I, core index profile is triangular and for a=2,

core index profile is parabolic.

2.3 Polarization Maintaining Fiber

Shortly after the introduction of single mode fiber, it became evident that linear

polarization states were not preserved in long fiber lengths. This is due to perturbing

birefringence resulting from either internal defects such as the non ideal geometry of

the core and cladding or externally applied bends, twists, squeeze, clamps. ctc. to the

fiber. This effect causes a change in the polarization state of light propagating in the

fiber. These problems motivated the development of a special kind of fibers named as

polarization maintaining fiber, which is not a fiber without birefringence, but to the

contrary a fiber with a strong built-in birefringence. In these fibers the polarization of

light launched into the fiber is aligned with onc of the birefringent axes and this

polarization state will be prcserved even if the fiber is bent [1],[22].

The 'polarization of wave describes the time varying behavior of the clectric field

vector at a fixed point in space. Polarization is observed along the direction of

propagation by tracing out the tip of the instantaneous electric field. There are three

types of wave polarization: linear, circular, and elliptical. In general. the tip of the

electric field vector traces out an ellipse and the wave is said to be elliptically

polarized. The other two types of polarization, linear and circular, are special cases of

elliptical polarization. The linearly polarized wave is characterized by the property

that the orientation of the electric field vector is the same everywhere in space and is
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independent of time [23]. In linear polarization, the field vector is directcd along a

line. The circularly polarized wave is characterized by a constant amplitudc ficld

vector, and the field vector orientation in space changes continuously with time so

that the tip of the field vector traces out a circular locus in a planc transvcrsc to the

direction of propagation.

There are mainly two kinds of PM fibcrs. One kind is the axially nonsymmctrical

using geometrical birefringence, such as the elliptical core fiber or the D-shaped

cladding fiber. The core or the cladding of this kind of fibcr is normally deformed

from a circular shape so as to generate an anisotropy of the fiber structure. The other

kind is stress-applied type using stress-induced birefringence, such as PANDA fiber

or bow-tie fiber. Here the birefringence is induced due to elasto-optic etlect [I]. Side-

hole fiber is very similar to PANDA fiber, but in contrast of having stress applying

zone it has two air holes running along the fiber axis. This type of iiber can cxhibit

large birefringence and is a good candidate as PM fiber. This fiber introduces high

birefringence because of its geometry and diffcrcnt thermal expansion coemcients of

core and cladding materials [24]-[25].

A commonly used method to introduce strong birefringence is to include two stress

rods of a modified glass composition in the preform on opposite sides of the core.

When a fiber is drawn from such a preform, thc stress rods cause some stress with a

well defined orientation. Another technique is to use an elliptical core. In any case,

the birefringent beat length can be so small (few millimeters) that additional stress

effects are too weak to cause significant mixing of the polarization states.

2.3.1 PMF with Side-Pits and Side Tunnels

Side-pit fibers as shown in Fig. 2,6 incorporate two pits of refractive index np less

than the cladding index ned, on each side of the central core. This type of single

polarization fiber was first proposed by Okoshi and Oyamada [26]. It has a W-type

index profile along the x-axis and a step index profile along the y-axis. A side-tunnel

fiber is a special ease of side-pit structure when thc two pits are hollow with 111' ~ I. In

these fibers, a geometrical anisotropy is introduced in the core to obtain a birefringent

fiber,
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Fig. 2.6: Side-pit Fiber. (a) Cross section. (b) Rclractive index distribution.

2.3.2 PMF with Stress Induced Parts

y

i

(a)

----. x

y

i

(b)

Fig. 2.7: Cross section ofPMF. (a) Bow-tic j,ber, and (b) PANDA IIbcr.

An cffeetive method of introducing high hircli'ingcnce in optical Ilbers IS by

introducing an asymmetric stress, with two-ioill gcomctrical symmctry in the corc of

the fiber. The stress changes the refractive index of the core due to photoelastic effect,

seen by the modes polarized along the principal axes of the tiber, and rcsults in

birefringence. The required stress is obtained by introducing two identical and

isolated stress applying parts (SAP), positioned in the cladding region on opposite

sides of the core [27]. Thercfore, no spurious mode is propagated through'the SAPs,
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as long as the refractive index of the SAl's is less than or equal to that of the cladding.

The SAPs have different thermal expansion eoenicient than that of the cladding

material due to which an asymmctrical stress is applied on the Iiber core aller it is

drawn from the preform and cooled down. The most common shapes used 1(1r the

SAl's are: bow-tie shape and circular shape. which are referred to Bow-tic 12S]. and

PANDA libers [29] respectively as shown in I:ig. 2.7. PANDA also stands for

polarization maintaining and absorption reducing fiber.

2.3.3 PMF with Geometrical Asymmetry

These types of polarization maintaining lihers have the non-circular cross section

creating axially non symmetric nature for light propagation through it. This introduces

the difference of propagation constants along two orthogonal directions and hence the

geometric birefi'ingence.

o

(a)

o
(b)

Fig. 2.8: Fiber cross section. (a) Elliptical cme with circular clad. (b) Circular core

with elliptical clad.

The tiber may have elliptical core with circular cladding. Elliptical cladding with

circular core and elliptical jacket with circular core fiber has also been designed. The

first proposal on practical low loss single polmilation' fiber was experimentally

studied for three fiber structures: c1liptie:il cure. l'lIiptical cladding, and elliptical

jacket fibers [30]-[31]. The elliptical core and the elliptical cladding fibers were

fabricated using the Moditied Chemical Vapor Deposition (MCVD) method. To make

elliptical clad libers, borosilicate clad and purc silica core layers were deposited in a

tube. Then the tube was collapsed while tile inner pressure (vacuuming) of the tube

was monitored. The core circularity and the clad ellipticity were controlled by the
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careful selection of the sollening points 0[' tile core/elad materials and. tile inner

prcssurc. Thcn, the preforms wcre drawn into libel'S. However, tile elliptical jacket

tiber is formed by a circular GeO"P,O, doped core and silica clad for constructing tile

low loss wavcguidc, and the B,O, doped e[[iptical jacket ancl tile silica outer support

for introducing the largc nonsymmetrie stress in tile wre.

2.4 Polarization Mode Dispersion and The Effect of Birefringence

In an ideal optical fiber, thc corc has a perlCetly circular cross-section. In this case, the

fundamental mode has two orthogonal polarizations (orientations orthe clectrie field)

that travel at the same speecl. In a realistic liher. however, tilere are random

imperfections that break the circular symmetry, causing the two polarizations to

propagate with different speeds and hence it is impossible to transmit data reliably at

high speeds. This phenomenon is known as I'II/orb/lill/l M/ide D;.lj,ers;o/l (PM D).

--_-"'?l'rup;j~.tll\lll IlII {'!'liull -

A (\'j ~~\.'
~'"'" ~

So, PMD is a fundamental property of single-mode optical fibcr and components that

causes the broadening of the inj)ut pulse due to a phasc delay bctween input

polarization states, which increases with the increase .01' birefringencc. In high data

~atc systems, PMD can significantly diminish th~ data-carrying capacity of a

telecommunications network. It may also introduce errors as pulses sprcad into one

another.

Conventional single-modc libel'S having [ow birefringence have been recently found

to be applicablc to long-span optical transmission systems by attaching a polarization-

state controller at the output end of the IIber. On the other hand, high bircli'ingcnt

fibers where the linear polarization state is j(Jrcedly maintained are indispensable in

coherent optical transmission systems or polarization-dependent deviecs used in an

unstable environment.



Chapter 3

Finite Element Method

Finite Element Analysis (FEA) was first developed in 1943 by R. Courant, who

utilized the Ritz method of numerical analysis and minimization of variational

calculus to obtain approximate solutions to vibration systems. Shortly thercafter, a

paper published in ]956 by M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp

established a broader detinition of numerical analysis. The paper centcred on the

"stiffness and deflection of complex structures". By the early 70's, FEA was limited to

expensive mainframe computers generally owned by the aeronautics, automotive,

defense, and nuclear industries. Since the rapid decline in the cost of computers and

the phenomenal increase in computing power, FEA has been developed to an

incredible precision. Recently, the finite element method has been exercised to a wide

range of areas including electrical and electronic engineering, and many successful

results have been obtained in the field of electromagnetic wave engineering as well.

Among many applications of the finite element method, the research on its use with

electromagnetic waveguide problems continues incessantly, and it is being established

as one of the powerful numerical tools for applying electromagnetic waveguides to

various waveguiding structures from microwavc to optical wavelength regions.

Finite element method (FEM) is a computer based numerical technique for calculating

the strength and behavior of engineering structures. It can be used to calculate

deflection, stress, vibration, buckling behavior and many other phenomena. It can be

used to analyze either small or large scale deflection under loading or applied

displacement. It can analyze elastic deformation, or "permanently bent out of shape"
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plastic deformation. The computer is required because of the astronomical number of

calculations needed to analyze a large structure.

if J\

Fig. 3.1: Subdivision of structure into small element.

In the finite-element method, a distributed physical system to be analyzed is divided

into a finite number (often large) of discrete elements like Fig. 3.1. The complete

system may be complex and irregularly shaped, but the individual elements are easy

to analyze. The division into elements may partly correspond to natural subdivisions

of the structure. For example, the eardrum may be divided into groups of elements

corresponding to different material properties.

From various viewpoints, electromagnetic wave problems may be c1assitied into the

following categories:

I. steady and unsteady problems.

2. eigenvalue and deterministic problems

3. one, two and three dimensional problems

4. scalar and vector field problems

5. homogeneous and inhomogeneous problems

6. isotropic and anisotropic problems

7. conservative and non conservative problems

8. bounded and un bounded field problems

9. linear and non linear problems

10. forward and inverse problems c
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3.1 Boundary Value Problems

Boundary value problems arise in the mathematical modeling of physical systems and

their solution has long been a major topic in mathematical physics. A typical

boundary value problem can be defined by a governing differential equation in a

domain 0:

(3.1)

together with the boundary conditions on the boundary r that encloses the domain. In

(3.1), L is a differential operator, f is the excitation or forcing function, and rjJ is the

unknown quantity. In electromagnetics, the Poisson's equation (3.2) is one of the

examples of the differential equation (3.1).

(3.2)

which is the second order differential equation governing rjJ, where rjJ is called the

scalar potential, & is the permittivity of medium, p is the electric charge density.

It is, of course, desirable to solve boundary value problems analytically whenever

possible. However, this is generally the exception since an analytical solution can be

obtained in only a few cases. In electromagnetics these include the static potential

between infinite parallel plates; wave propagation in rectangular, circular. and elliptic

waveguides; wave scattering by infinite planes, circular cylinders, spheres etc. Many

other problems of practicai importance in the engineering fields do not have an

analytical solution. To overcome this difficulty. various approximate methods have

been developed, and among them the Ritz and Galerkin methods have been used most

widely.

3.2 Basic Steps of the Finite Element Method

The principle of the FEM is to replace an entire continuous domain by a number of

sub-domains in which the unknown function is represented by simple interpolation
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functions with unknown coefficients. Thus the original boundary value problem with

an infinite number of degrees of freedom is converted into a problem with a finite

number of degrees of freedoms, or in other words, the solution of the whole system is

approximated by a finite number of unknown coefficients. Then a set of algebraic

equations or a system of cquations is obtained by applying the Ritz variational or

Galerkin procedure, and finally, solution of the boundary-value problem is achieved

by solving the system of equations. Thereforc, a finite elemcnt analysis of a boundary

value problem should include the following basic steps [32]-[34]:

(1) Discretization or subdivision of the domain

(2) Selection of the interpolation functions

(3) Formulation of the system of equations

(4) Solution of the system of equations

3.2.1 Domain Discretization

/
(a) (b)

o

(e)

Fig. 3.2 Basic finite elements. (a) One dimensional, (b) Two dimensional, and

(c) Three dimensional.

The discretization of the domain, say S, is the first and perhaps the most important

step in any finite element analysis because the manner in which the domain is
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discretized will affect the computer storage requirements, the computation time, and

the accuracy of the numerical results [34]. In this step, the entire domain S is

subdivided into a number of small domains, denoted as S" (e = 1,2,), M), with

M denoting the total number of sub-domains. These sub-domains arc usually referred

to as the elements. For one-dimensional domain, which is actually a straight or curve

line, the elements are often short line segments interconnected to form the original

line [Fig. 3.2(a)]. For a two dimensional domain, the elements are usually small

triangles and rectangles [Fig. 3.2(b)]. The rectangular elements are best suited for

discretizing rectangular regions, while the triangular ones can be used for irregular

regions. In a three dimensional solution, the domain may be subdivided into

tetrahedra, triangular prism, or rectangular bricks [Fig. 3.2(c)], among which

tetrahedra are the simplest and best suited for arbitrary-volume domains. We note that

the linear line segments, triangles, and tetrahedra are the basic one, two, and three-

dimensional elements.

In most finite element solutions, the problem is formulated in terms of the unknown

function r/> at nodes associated with the elements. for example, a linear line clement

has two nodes, one at each endpoint. A linear triangular element has three nodes,

located at its three vertices, whereas a linear tetrahedron has four nodes, located at its

four corners. For implementation it is necessary to describe these nodes. A complete

description of a node contains its coordinate values, local number, and global number.

The local number of the node indicates its position in the element, whereas the global

number specifies its position in the entire system. The finite element formulation

. usually results in a banded matrix whose bandwidth is determined by the maximum

difference between the global numbers of two nodes in an element. Thus, if a banded

matrix solution method is employed to solve the final matrix equation, the computer

storage and processing cost can be reduced significantly by properly numbering the

nodes to minimize the bandwidth. However, when bandwidth minimization is

unnecessary, the numbering scheme can be arbitrary and is usually chosen to simplify

the programming.

In this thesis, to analyze the thermal stress of optical fiber, we decompose the one

forth of fiber cross section into a number of two-dimensional triangular elements as
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shown in Fig. 3.3. One forth cross section is used for efficient use of computer

memory. The basic requirement of the discretization is that there should be neither

overlap nor gaps between elements. Further, elements should be connected via their

vertices, or in other words, a vertex of an element can only be at the verticcs of its

neighboring elements; it cannot be at the side of another element. In addition to these

basic requirements, a good discretization should also addressed the following two

points. First, it should avoid the generation of narrow elements, or elements having a

small inner angle. Although these elemcnts are admissible, they can, ncverthcless,

increase the solution error; since, as can be shown, the error of the finite element

solution is inversely proportional to the sine of the smallest inner angle. Therefore, all

elements should be made close to equilateral. Second, one should note that thc smaller

the elements, the better the numerical solution. Since smaller elements will rcsult in

more unknowns, thus increasing the memory demand and computing timc, it is

necessary to keep the number of elements to the minimum for desired accuracy. A

good practice is to use small elements where the solution is anticipated to have drastic

variation, whereas in the regions where the variation is low the elements can be made

larger.

y

•
3

2

(b)

Fig. 3.3: (a) Finite element division of optical fiber. (b) Linear triangular elements.
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To identify each element, we can label the clements with a set of integers, and

similarly, to identifY the nodes that are the vertices of the clements, we can labcl them

with another set of integers. Since each element is related to several nodes, in this

case to three nodes, a node has its own position in the associated element in addition

to its position in the entire system. This position can also be labeled with an integer

number, referred to as the local number, in contrast to the global number, which

indicates its position in the entire system. To relate these three numbers - the global

node number, the local node number, and the element number - we introduce a 3 x M

integer array, denoted by n(i, e), where i= 1,2,3, ..... ,M, with M denoting the total

number of elements. In n(i,e), which is also called the connectivity array, i is the local

number of a node, e is the element number, and the value of n(i,e) is the global

3 5

4

6

number of the node. Obviously, this integer array includes all informati.on concerning

the numbering of the elements and nodes. To illustrate this more clearly, let us

consider the example shown in Fig. 3.4. [n this example we have four clements and

six nodes. The array n(i,e) can be numbered as shown in table 3.1.

Fig. 3.4: Subdivision of a two dimensional domain

Table 3.1: Numbering arrangement for global number, local number and element

number.

e n( I,c) n(2,c) n(3,e)

I 2 4 1

2 5 4 2

3 3 5 2

4 5 6 4

,
(/.'"c
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Obviously, this numbering is not unique. For instance, we can also number the three

nodes for the first elements as 4, I ,2 or 1,2,4 as long as they are numbered

counterclockwise so that they are consistent with the local numbering shown in Fig.

3.3(b). In addition to the connectivity array defined above, we can introduce a similar

array.

3.2.2 Selection of Interpolation Functions

The second step of a finite element analysis is to select an interpolation function that

provides an approximation of the unknown solution within an elemcnt. The

interpolation is usually selected to be a polynomial of first (linear) order, second

(quadratic) order, or higher order. Higher-order polynomials, although morc accurate,

usually result in a more complicated formulation. Hence, the simple and basic linear

interpolation is still widely used. Once the order of the polynomial is selected, we can

drive an expression for the unknown solution in an element, say elemente, in the

following form:

.,.
ql' = IN;ql; = iN') iql')= iql' YiN')

j=l
(3.3)

where n is the number of nodes in the element, ql; the value of ql at node .i of the

element, and N; the interpolation function, which is also known as expansion or

basis function. The highest order of N; is referred to as the order of the element; for

example, if N' is a linear function, the element e is a linear element. An important} .

feature of the functions N;' is that they are nonzero only within element e, and

outside this element they vanish.

As we are using linear triangular elements, the unknown function ql within each

element is approximated as

ql'(x,y) = a' +b'x+c'y (3.4)
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where a', b' and c' are constant coefficients to be determined and e is the element

number. For a linear triangular clement, there are three nodes located at the vertices of

the triangle (Fig. 3.4). Assume that the node are numbered counterclockwise by

numerals 1,2 and 3, with the corresponding values of tjI denoted by tjIl. tjI' and tjI3,

respectively. Enforcing (3.4) at the three nodes, we obtain

d.' ( ) "b" ,',''Pz X, Y = a + x2 + C Yz

d.' ( ) 'b" '"'P3 x,y = a + x3 + c Y3

Solving for the constant coefficients a', b' and c' in terms of tjI/, and substituting

them back into (3.4) yields

J

tjI' (x,y) = IN; (x,y)tjI;
j=l

where N' (x,y) are the interpolation or expansion functions given by.I

(3.5)

In which

N' ( ) 1 (, b' , )
.i x,y =2il" Qj+ j+cj j = 1,2,3 (3,6)

and

h{' - "_ t'
I - y, Yo
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I x]e y;
D.'=~I x; y; =~(b,"c;-b;c:)2 2

1 x; y;
= area of the eth element

In the above, x; and y;U = 1,2,3) denote the coordinate values of the jth node in the

eth element. It can be easily shown that the interpolation functions have the property

And, as a result at node i, if e in (3.4) reduces to its nodal value. Another important

feature of N;(x,y) is that it vanishes when the observation point (x,y) is on the

element side opposite to the jth node. Therefore, the value of if e at an element side is

not related to the value of r/J at the opposite node, but rather it is determined by the

values at the two endpoints of its associated side. This important feature guarantees

the continuity of solution across the element sides. For better understanding Fig. 3.5

shows the interpolation functions N; for a triangular element.

'I><i~'
2 2 2

(b)(a)
(e)

Fig 3.5: Linear interpolation functions for a triangular element. (al N:', (bl N;' and

(cl N;. The planar surfaces of the functions are shaded.

3.2.3 Formulation of the System of Equations

The third step, also a major step in a finite element analysis, is to formulate the system

of equations. Both the Ritz variational and Galerkin methods can be used for this

purpose [32]-[34].
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A. Formulation via the Ritz Method

Consider a boundary value problem defined by the differential equation

LrjJ=j

If the operator L is selfadjoint, i.e.,

(LrjJ,rp) = (rjJ.Lrp)

and positive definite, i.e.,

{
> 0

(LM) =0

its solution can be obtained by minimizing the functional given by

(3.7)

(3.8)

(3.9)

(3.10)

In the above, rp denotes an arbitrary function satisfying the same boundary conditions

as does rjJ. The angular bracket denotes the inner product defined by

(rjJ,rp) = I,rjJrp'dQ (3.11)

where Q denotes the domain of the problem, which could be one, two or three

dimensional and the asterisk denotes the complex conjugate operation.

For simplicity assume that the problem is real valued. The functional F given In

(3.10) can be expressed as

(3.12)

where M is the number of the elements comprising the entire domain and



F'(~')=~ J"lLldn- Llldn

Substituting 3.3 into 3.13, we obtain

F' = ~ {,p' y J" {N'~{N' Y dn{~'}- {~'r J" f{N'}tn

which can be written in matrix form as

26

(3.13)

(3.14)

(3.15)

where [K'] is an nxnmatrix and {b'} an nx 1 column vector with their clements

given by

and

K' = r N'LN'dn
!1 l-r I .I

b' = r jN'dn
I 11' I

(3.16)

(3.17)

We note that the elemental matrix lK' j is symmetric since L is sell~ad.ioinl.

Substituting 3.15 into 3.12, we obtain

(3.18)

and by performing the summation and 'adopting the global node numbers, this can be

written as

. (3.19)

where [K] is an N x N symmetric matrix with N being the total number of

unknowns or nodes, {~jan N x 1unknown vector whose elements are the unknown

expansion coefficients, and {b} an N x 1known vector. The system of equations is
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then obtained by imposin'g the stationarity requirementb"F = 0, or equivalently, by

setting the partial derivative of F with respect to I/J. to zero:

i::::: l,2,3, .... ,N.8F I N
-=- L(K'j +Kji)t/Jj -b, =0
8I/J, 2 i=' ,

Since [KJ is symmetric, K'i = K"and therefore (2.20) becomes

(3.20)

8F N
- = LK'il/J, -b, = 0
8I/J, )=, '

or the matrix form will be given by

[KJ{I/J}= {b}

B. Formulation via Galerkin 's Method

i = 1,2,3,.... ,N. (3.2 I)

(3.22)

The system of equations above can also be formulated via Galerkin's method.

According to this method, the residual R for each node in an element is [35]

Substituting (3.3) into (3.23), then yields

i::::: I, 2, 3, ..., n. (3,23)

R; = J, N,'L{W}'dQ{I/J}- J, IN,'dQ.' .
which can again be written in matrix form as

{R'}= lK' j{I/J'}- {b'}

i::::: 1,2,3, ..., n . (3.24)

(3,25)

We may expand (3.25)'using the local and global relations and then sum it over each

element to find that
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{RJ=I {R'}= I UK' ]{",}- {b"})
e=l e=1

28

(3.26)

The system of equations can then be obtained by setting (3.26) to zero. resulting in

M 'I UK' ]{,,'}-~"})={oj
e=]

which can again be written in the form of (3.22) i.e.

(3.27)

(3.28)

Before the system of equations (3.28) is ready to be solved for a specific solution, we

need to apply the required boundary conditions. There are two kinds or boundary

conditions that are often encountered: one is the Dirichlet boundary condition, which

prescribes " at the boundary, and the other is the homogeneous Neumann boundary

condition, which requires the normal derivative of " to vanish at the boundary. The

first is an essential boundary condition that must be imposed explicitly, in contrast to

the second, which is usually satisfied implicitly and automatically in the solution

process. For this reason, the second one is often called the natural boundary condition.

It is seen that in this step we actually have three sub-steps. First, we formulate the

elemental equation (3.15) or (3.25) using either of the two methods. Then, we sum the

elemental equations over all elements to form the system of equations and this process

is called assembly. Finally, we impose the boundary conditions to obtain the final

form of the system of equations. We note that in computer implementation, the three

sub-steps are usually not separated; in stead, they are intertwined. The generation of

the elemental matrix and the imposition of the boundary conditions usually take place

during the process ofassembly.

3.2.4 Solution of the System of Equations

Solving the system of equations is the final step in a finite element analysis. The

resultant system has one, of the following two forms:



29

(3.29)

or

(3.30)

Equation (3.29) is of the deterministic type, resulting from either an inhomogeneous

differential equation or inhomogeneous boundary conditions or both.

In electromagnetics, deterministic systems are usually associated with scattering,

radiation, and other deterministic problems where there exists a source or excitation.

To the contrary, (3.30) is of the eigenvalue type, resulting from a homogeneous

governing differential equation and homogeneous boundary conditions. In

electromagnetics, eigenvalue systems are usually associated with source free

problems such as wave propagation in waveguides and resonance in cavities. In this

case, the known vector {b} vanishes and the matrix [K] can be written as [A] - A.[B]'
where A. denotes the unknown eigenvalues. Once we have solved the system of

equations for {~}, we can then compute the desired parameters, such as capacitance,

inductance, input impedance, and scattering or radiation patterns and display the

result in form of curves, plots, or color pictures, which are more meaningful

interpretable. This final stage, often referred to as post-processing, can also be

separated completely from the other steps.

i•. ,-



Chapter 4

Stress Analysis of Optical Fiber

4.1 Introduction

Generally speaking, optical fibers are produced in an atmosphere at very high

temperature. Therefore, when the fibers are cooled down to room temperature, stresses

are developed if the materials used have different thermal expansion coetlicients. In the

fabrication of non-symmetrical fiber, such as bow-tie fiber, PANDA fiber, side-hole

fiber, etc., the change of temperature during the cooling stage produces stress, which in

turn introduces a non-symmetrical refractive index change due to the elasto-optic effect.

Also, external forces can be applied to produce deliberate stresses in the fiber itself.

Furthermore, in underwater communication systems, the fiber undergoes very large

hydraulic pressure. So, the stress analysis of fiber is important in order to take the photo-

elastic effect into account and it requires the understanding of energy principle.

4.2 Energy principle

The energy principle states that the total potential energy should be a minimum when

thermal stress and/or an external force is applied to the body. In other words, the strain

distribution that is actually generated among all possible strain profiles is the distribution

that makes the potential energy a minimum. The total potential energy of the body is

given by [8], [15]

n= (internal work) - (external work) = U - V, (4.1 )

,
(t/, .
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where U and V denote strain energy and work done by the external force, respectively.

Strain energy U is work generated during the proccss of releasing strain; i.e., U is a

summation of {local force gcnerated under certain strain condition}x (displacement by

the force}. Since potential energy decreases by thc amount of work done by the external

force, V has a minus sign in (4.1).

Stress analysis based on the energy principle is called the energy method. The tinite

element method (FEM) based calculation procedure is as follows:

• Express the potential energy n in terll1s of thc displacement by strain and an

external force.

• Approximate the displacement and external /()rce in or toward each dement by

analytical functions using values at nodal points.

• Apply the energy principle to Il; i.e., partially differentiate n with respect to the

displacement and obtain an equilibrium equation '(Iinear simultaneous equations).

• Solve the simultaneous equations and detcrmine the displaccmcnt at cach nodal

point.

• The strain and stress in each element arc calculated by using the displacement at

the nodes surrounding the element.

4.3 Stresses and strain in optical fibers

The optical fibcr is always very long in one dimcnsion (along z-axis direction) and very

limited in the other two transverse dimensions. In such a case, strain in the body along z-.

axis Ii, is considered to be negligible, except at both ends. Thus, we can assume

Ii. = O. (4.2)

(4.3a)

(4.3b)

Stress analysis based on this assumption is called a "planc strain problem" [8.1,[15]. The

relationship between displacement and strain is given by

au
Ii =-
x ax'

av
Ii=-,. a'. y
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(4.3e)and av au
Yxv =-+-.ax ay

Here u and v arc displacements along the x- and y-axis directions, respectively, and arc in

general approximated as functions of x ancl ,1'. h'" I,',. ancl c, arc spatial variations of the

principal strains along the x-, y-, and z-axis directions, respectively, and Y'J' is the shear

strain in the x-y plane. For linear clastic matcria!. the stress-strain relations come from

generalized Hooke's law. For isotropic materials, thc two material propcrties are the

Young's modulus (or modulus of elasticity) and the Poisson's ratio. Another type of

deformation occurs in the body which is due to the temperature change. For isotropic

material change in temperature results in a uniform strain, whieh depends on the

coefficient of linear expansion a of the materia!. a, which represents the change in lcngth

per unit temperature change, is always assumed to be constant within the range of

variation' of the temperature. Also, this strain docs not cause any stresses when the body

is free of deform, The temperature strain is usually considered as an initial strain.

Therefore, combining the Hooke's law and the tcmperature strain, the relationship

between the stress and the strain is generally expressed as [8], (15],

Sx = ~ [0', -p(O'" + 0',)] + a 6'1,

c" = ~[O'y-P(0',+O'x)]+a6T,

c, = ~ [0', - p( 0',_+ 0',.)] + a 6'1 ,

r", 2(1 + p)
YXI' = G =. E T.\.I' •

(4.4a)

(4.4b)

(4.4c)

(4.5)

where 0',-, OJ'' and 0', are spatial variations of the principal stresses along the x-, y-, and z-

axis directions, respectively, f,y is the shcar stress in the x-y plane, G, a, and 6'1 denote

the shear modulus (or modulus of rigidity), the thermal expansion eoeJ'ilcienl, and the

temperature ehange (negative for eooling), respectively, E and p are the Young's

modulus and he Poisson's ratio, respectively. Considering the problem to bc a 'plane

strain problem', we can get the following relations between the stress and the strain



E [ ] a E!!.T
(5 - 1- & + & -'-(l+p)(I-2,u)( ,u)x,uy (I-2,u) ,

. E [ ] a E!!.T
(5 - & + 1- &-y - (I+,u)(I-2p),u x ( ,u) y (I-2,u) ,

(5, = p«(5x+ (5y)-aE!!'T .
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(4.6a)

(4.6b)

(4.6c)

For "plane strain problem", the components of stress and strain are expressed in vector
form as

(4.7)

(4.8)

Using (4.7)-(4.8), the relationship between the stress and the strain of the "plane strain

problem" as defined by (4.5) and (4.6), can be expressed as

(4.9)

where the 3xl initial strain vector {Cb} due to the thermal strain and the 3x3 matrix [D]

are given by

(4.10)

and

[Dl= __ E__ [(I~,u)
(1+ ,u)(l-2,u) 0

p

(1- p)

o
o 1o .

(l-2,u)12

(4.11 )

4.4 Mathematical Formulation

Strain energy per unit length is obtained by

(strain energy) = ~ H(stress). [(strain) - (initial strain)] dx dy .
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(4.12)

where {.}T represents the transpose of the vector and integration is over thc cross-section

of the actual structural body under strain and stress. Since strain and stress do not

penetrate into the air region, the actual boundary of the body becomes the boundary of

the FEM analysis. The displacements u(x, y) and vex. y) along the x- and y-axis directions

in the eth (e = l-N) element is approximated by the linear function ofx and y:

U(x,y) =p~+p~x+ p;y,

v(x,y) = q~+ q~x+q;y,
(4.l3a)

(4. 13b)

lee e dee e ffl. A . IW1ere po, PI, P2 an qo, ql, q2 are expansIOn coe lClents. ssunung t1e

displacements at nodal points i,j, and k in the eth element are given by (u;, v;), (Uj, Vj) and

(Uk, Vk), respectively, the expansion coefficients p's and q's are obtained by solving the

linear equations which can be obtained from (4.13) for the nodal displacements

corresponding to the 3 nodal points i,j, and k of the eth element. Thus, one can obtain

(4.l4a)

(4.l4b)

where [C'] is given by

[C']~[: rx; y;

Xi Yi
xk y,

['<'Y' -<,Y,j (x,y; - x;J.) '<,Y,=9')1
i.e., [cJ=f- (yj--'y,) (y, - yJ (y, y) .

" ( ) (x; -x,) (Xj-X;)xk -Xi

(4.15)

Here, the coordinates of the nodal points of the triangular element are expressed as (x""

Ym) (m = i,j, k). Hence, the cross-sectional area Se of the eth element is given by

2s, =(xi -xJ(y, - Y,)-(xk -xJ(y,- yJ. (
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Now, we find the strain components in the eth element as

lix = : = p~ = 2~~,[(Yi - Yk)u, + (Yk - yJui + (y, - y)uk J,
li = iJv =q; =_l_[(Xk~Xj)v; +(x, -xk)vj +(x) -xJvkJ,
y ay 2s,

iJv au , ,. 1 [( () ( ]Yx' =-a +-a =q, + p, =-2 Yj - y,)v; + Yk - Y; Vi + Y; - Yi)Vk +
X Y s,

2~ [(x,-xJu;+(x;-x,)uj+(x,-x;)uk],,

Therefore, we get the strain vector in each element as
u,

[ .,] I [(Y' - y,l 0 (y, - yJ 0 (y; - Yi) «,0<)]
v;

li =- 0 (x, -x,) 0 (x;-xk) 0 ",
Y~ 2s, (x, -x)

v
(Yj - Yk) (x;-x,) (y, - yJ (xj -x;) .I(y, Y i)

Uk
Vk

(4.16)

This is rewritten in matrix form as
(4.17)

where [.8"] is a 3x6-element matrix in the right-hand side of (4.16) and {d'} represents

the displacement vector, a 6x 1 column matrix having six degrees of freedom for eth

element, i.e.,

[(Y' - Y,l 0 (Yk - Y) 0 (y; - Yi) (,,°<)1[B'J=_I . 0 (x, -x) 0 (x; -x,) 0
2s, ) (Yj - Yk) (x; -x,) (Yk - Y,) (x,-'-xJ(Xk - x) (Y,-Y,)

u;
v;

and {de} = Uj

Vj

Uk

Vk

(

., c
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The strain energy in the eth element is then expressed as

(4.18)

From (3.9), {o"} T of (3.18) can be expressed as

(4.19)

r
Here, [D' J '" [D' J and thc element matrix [U' J may be ditlerent in cach e1cment,

since the Young's modulus and the Poisson's ratio are different in different materials (the

core and substrate regions). Also, note that if [A] = [13][ e], then [AY = [en BY. Now,

using (4.18), (4.19) can be expressed as

u' =!-l{d'}'[B']'[D'J[B'J{d'l - ]dXd
2 tJl 2 {d'}'[B']'[UJ {s;l + {s;}'[D"J{s;) Y

= s, ({d'}' [B']' [D']' [B'J{d'} -2{d'}' [B']' [D']' {s~}+ {5~}' [D']' {5,';}).2 . ,

For the last term of the above equation, we can find that

2(1 +Jl,)E,
(1-2Jl,)

(4.20)

Here E" fie, and a. are the Young's modulus, the Poisson's ratio, and the thermal

expansion coefficient of the element. Since (4.20) is always positive, it can be neglected

in the minimization process of potential energy. Then the strain energy if in the eth

element is expressed as

(4.21 )

Here [Ae] is a 6x6-element stiffness matrix and {he} is a 6x I thermal stress vector, which

are given by k]= s,[B' Y[D" Y [B'], (4.22)



and {he } = s" [B' Y [D' Y {c;},
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(4,23)

The total strain energy is then obtained by summing the element strain energy:

v = tv' =-'-{d}l[A]{d}_{d}l {H},
e=l 2

(4,24)

where {d}, [Aj, and {H} are the 2nxl global strain vector, the 2nx2n global stitli1ess

matrix, and the 2nxl global thermal stress vector, respectively,

An external force applied to the body is approximated by the force concentratcd at thc

node on the surface of the body, Then the vector of the external force is cxpressed by

j,
g,

kl= /,
g, , (4,25)

f"
gn

where n is the number of nodes on the surface of the body,.Ii and g; denote the x- and y-

axis components of the external force applied to nodal point i, When a displacement (u;,

v;) is generated by the external force (fi, g;), the work done by the force is (u;f; + v; g;),

The total work done by the external force is then given by

V' = {d'r k' I,
Here {d'} is the displacement vector comprised of u;'s and v;'s of n nodes 011 thc surface

under stress, However, in order to add up the energy of the external forcc to the total

potential energy, we have to find the work done from all the nodal contributions such that

(4,26)

where in finding V, the force on nodes other than the nodes on surface must be zero, so

that V=V', Therefore, lfd is the global load vector acting on each nodal point.
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Now, the total potential energy is given by

n= u -v =~{d}' [A]{d} -{d}' [{H} + {J;.}] . (4.27)

For the thermal stress analysis of birefringent fibers and wave guides without external

force, we simply make {li.}= to}.

Potential energy should be a minimum by the energy principle. Therefore, the partial

derivative ofn with respect to the displacement of each nodal point should be zero:

i.e.,
an
aid} =[A]{d}-{H}-{J;} =0.

We then have the 2nth-order linear simultaneous equations:

[A]{d} ={H}+{J;}.

For the global system, now it can be written that

N T

[AJ= I If[B'J [D'J[B'Jdxdy,
e=1 e

N T

{H} = I If[ B'J [D'J{8;ldxdy.
e=1 e

(4.28)

The solution of (4.28) gives the displacements at all nodal points of the fiber or

waveguide under thermal stress and/or external forces. The solution of the displacement

vector can be easily obtained as:

(4.29)

General sparse matrix solver may be employed to solve the system of linear simultaneous

equations in order to find the displacement vector. Once the displacement of each node is

known, the stress in each element is calculated by

{0-'1= [D' J ([ B' ] {d' l- {8m . (e = l-N) (4.30)



39

However. in solving the linear simultaneous equations. the houndary conditions should

bc takcn into account very carcfully. Also. symmetry conditions can bc uscd to reduce

memory and time of computation in thc case o['linitc c'lcment analysis,

In optical fibers or waveguides under stress or strain, the original re1i'active index of the

material changes due to the photoelastic efreet, T'hc new refi'active index for x-' and y-

polarizcdlight can bc calculated from the fo[l()wing equation [7]-[8]. [15]:

[

nJx.y)] [n.",(x,y)] [C:I
n,,(x.y) = n,o(x,y) - C,

n,(x.y) n,o(x,y) C,

C,
C,

C,

C'j [(T,(x.y)]
C, (T,.(x.y),

( I (T,(x.y)

(4,31)

Here C" C2 are the elasto-optic (photoelastic) cocClicients of the fiber or waveguide

matcrial. n"o. nyo, and nco are the unstressed refractive indiccs of the material and n". n
"
,

and n, are the main diagonal elements of the anisotropic refractive index tensor. Since the

material considered here is silica, an isotropic materi,l! lor thc libel'. having a rc/i'active

index, n, we have in this case

(4,32)

Oncc the stress analysis is pcrformcd. thc anis()trnpie refractivc indcx componcnts can be

calculated, Thus, the refractive index distribulinn ovcr thc cross,section ofthc libcr undcr

stress is known, Therefore, the vector tinite c1emcnt mcthod can then be employed to lind

the modal solutions of quasl-TE (H,',) and quasi-TM (f-lt,) modes, Thc dctails of the,

vector FEM can be found in thc literature,

However. after the stress analysis. the bireli'ingcncc can be calculated from the rcfractive

indices lor the x- and y-polarizations, Because thc strcss is distributed across the whole

cross scction of the liber or waveguidc. the birefringence is evaluatcd hom thc avcrage

tensor refractive indices in thc core rcgion ami also the values at the center of the core

[7],

., .•.••••.~-
~""(, 1..,
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Thus,

11, = ~ If n, (x, y) drdy .
. ,

11, = ~ If n,.(x,y)dxdv.
" .

where A is the area of the eore region. Therei()rc.

- - C, -C, ffBa,.,.",,",. = nx - n,. = - A (0',. - 0',.) drdy.
-,

(4.33)

Sometimes, the birefringenee of the fiber is approximated by the difference of refraetive

indices at the center of the fiber core [7]. Assuming that the center of the core is the

origin of the coordinate system, we ean wri Ie

\

80 = nJO,O) - n,,(O,O) = (C - (', )(0', -0',)1'"0"'"0' (4.34)



Chapter 5

Numerical Results and Discussions

5.1 Structure of the System

A simulation program based on the FEM of previous chapter has been developed for

the thermal stress analysis of different optical fibers. The birefringence properties,

stress and refractive index distributions were investigated thoroughly in this work.

Though the target was the side-hole fiber, at first we carried out the thermal analysis

on a single fiber structure and verified our calculated results by comparing with the

exact analytical results. The program was written in FORTRAN77 on a windows

based PC platform. Before showing the numerical results, a brief discussion on the

basic structure of the system that we have developed here, has been presented in the

form of a flow diagram below.

We started our analysis by setting values for fiber parameters that define the cross .

. section of the structure and the type of fiber material. The next but very important step

is to divide the cross section of the fiber into small elements oftinite numbers. As the

accuracy of the solution using FEM depends on the number of elements and the

density of elements on or ncar the discontinuity of the material, only one forth of the

cross section is diseretized. Then the matrices of the simultaneous linear system of

equations are constructed from the elemental matrices. At this stage, the appropriate

boundary conditions for nodal displacement on the plane of symmetries are applied.

The final system is then solved numerically using Gaussian elimination technique.

Once the nodal displacement is known, it is straightforward to calculate the stress

developed in each element and also the Birefringence in terms of x and y polarized
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light. We wrote these data into data files and MATLAB, ORIGIN are used for further

processing and plotting the results.

Start

Assigning parametric values for fiber structure

Triangular mesh division on fiber cross section

Construction of elemental matrices

Establishing global stiffness matrix and global load vector

Enforcing boundary condition

Construction of final system of equations

Solution of system of equations using Gaussian elimination technique

Computation of elemental stress from nodal displacement

Stop

-.
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5.2 Results and Discussions

Before conducting the stress analysis of noncircular core fibers, circular fibers under

thermal stress are analyzed. Since the stress distributions of fibers under thermal

stress are analytically obtainable, it canbe used to test the accuracy and etTectiveness

of the developed program. For a circular fiber under thermal stress, the stress

distributions are given as follow [8],[15]:

, ,
(b -a ) (a,-a)

I £1'.7' (O:S:r:s:a),
2b (I-v)
,

a (a, -a,l (b' )------£ 1'.1' - - I, 2
2b (I-v) . r

, ,
(b -a ) (a, -a,l
--------£ 1'.1',

2b (I-v)
,

a (a, -a,l (b2
)------£1'.1' -, + I

2b' (I-v) r-

(a:S:r:S:b)

(O:s:r:s:a)

(a:S:r:S:b)

where a and b denote the core and cladding radii of the fiber. E, v (nu) and 1'.1' are

Young's modulus, Poisson's ratio and the temperature change. 0:, and 0:2 are the

thermal expansion coefficient for core and cladding materials. n, and n2 are refractive

indices of core and cladding and Ct, C2 are elasto-optic coefficient respectively.

First, let us consider a fiber with a circular core as shown in Fig. 5.1 (a). Thc cross

sectional dimensions and the material parameters are shown just beside the structure

in the figure. For this simple structure, the a, and as are calculated analytically using

the above equations and the numerical results are obtained using the mcthod described

in the previous chapter. Our numerical results agreed well with the analytical result

and the program was verified.
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Fig. 5.1: (a) Cross section of a circular core fiber, (b) Comparison ofthcrmal slress

obtained from analytical method and the FEM.
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Fig. 5.2: Stress (OX) distribution over the cross section of circular j~ber.
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Fig. 5.3: Contour map corresponding to Fig. 5.2.
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Fig. 5.6: Cross section of an elliptical core fiber.
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Fig. 5.7: Variation of birefringence with core ellipticity.

In Fig. 5.6, an optical fiber with elliptical core is considered. We calculated the

birefringence using (4.33), where the new refractive indices as obtained considering

the elasto-optic effect due to thermal stress are used. In Fig. 5.7, the calculated
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birefringence versus core ellipticity is shown. The results are comparcd with the

results of Liu ct al. (1995) [7]. Thc solid linc shows our rcsult and thc dark circlcs

show the results ofY. Liu et al. (1995) [7]. The results agreed very well. It is seen that

the fiber birefringence increases with the core ellipticity. This is due to the increased

difference of refractive indices in 'x and y directions. It can be seen in the numerical

results that due to elasto-optic effect of thermal stress, the change in the index value

of x direction (L'.nxl is greater than the change in the index ofy direction (L'.ny) when

ellipticity increases. As a consequence, the birefringence increases with the increase

in ellipticity. The stress distributions are shown in Figs. 5.8, 5.9, 5.10, 5.11 for

ellipticity, c = 0.6. It is observed that the high stress is concentrated over the core

region of the tiber. As the core ellipticity changes the nature of high stress changes

accordingly. The increase of core ellipticity means the increase of core region in x

direction, which produces higher degree of asymmetry and hence greater stress. The

maximum value of the x component of thermal stress for elliptical core nber with

ellipticity 0.0 (i.e circular core), 0.2 and 0.6 were found to be 4.6 x 10''', 5.46 x 10'"

and 7.26 x 10.6 kglflm2 This indicates that thermal stress increases with ellipticity.

For the y component (cry) of stress distribution wc get the noticeable negative value,

which increases negatively with core ellipticity. Because of all. these, the

birefringence increases with the increase in ellipticity.

In Fig. 5.12 and Fig. 5.13, the change in refractive indices due to thermal stress arc

shown for elliptical core nber with c = 0.6. From these figures it is clear that the

change of refractive index from unstressed to thermal stress condition has a profound

effect over the core region and elsewhere it is negligible.

Next, we consider side-hole optical fiber and investigate the effect of air holc placed

on each side of x- direction in an elliptical core fibcr. The inllucncc of pitch length (i.e

the distance between core center and side-hole center), side-hole radius and position

on fiber birefringence will be examined. The birefringence variations due to

temperature change during fiber manufacturing and thermal expansion coetlicient of

core and cladding materials will also be investigated. The tiber structure and

parametric values are depicfed in Fig. 5.14.

.•.. .""'"
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Fig. 5.15: Birefringence vcrs us pitch length of side-hole fiber.
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Fig. 5.17: Birefringence versus pitch length with core ellipticity, E = 0.6 and 0.5.
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Fig 5.18: The birefringence versus thermal expansion co-efficient of fiber core
material.

Fig. 5.15 shows the effect of pitch length on birefringence ofa side hole fiber with air

hole radius, r = 7.5 >1m. The higher the pitch length the greater birefringence is

obtained. Here we have four curves; one for circular core and three for elliptical core

(8 = 0.2, 8 = 0.4, 8 = 0.6) fibers, among which 8 = 0.6 is on the top. It has

birefringence of 1.709 x 10-4 at 1: '" 20.0 >1m.On the bottom, thc circular corc fiber

produce ~ 4.203 x 10'" birefringence at 1: = 20.0 >1m.So thc fiber with corc ellipticity,

8 =: 0.6 and greater pitch length will generate high birefringence.

Fig. 5.16 and 5.17 show the variation ofbircfringence on pitch length and ellipticity.

These figures also show the effect of change of temperature. It can be seen that the

higher ellipticity and temperature change result greater birefringence at larger pitch

length.

Fig. 5.18 shows the birefringence dependence on the thermal expansion coefficient of

core material (al) for three values of the thermal expansion coefficient of

claddingmaterial a2 = (2, 4, 6) x 10.6/° C. From this figure it can be seen that for each
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Fig. 5.19: Birefringence versus air hole radius for a pitch length, r =20.0 ,lI11.

2.0x10"

1.8x10"

1.6x10"

"u"~ 1.4x10"
"~
~ro 1.2x1 A.'

1.0x10"

-- Pitch length,,; 20.0 "m
-.-..- Pitch length, or = 25.0 pm
---JJtr-- Pitch length .., = 30,0 pm

8.0x10.5
2 4 6 8 10 12

Side.hole Radius (I'm)

Fig, 5.20: Birefringence versus air-hole radius for different pitch lenl;th whcn core
ellipticity, E = 0.6
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Fig. 5.21: Birefringence versus air-hole radius for different core radius with pitch

length 30 J.1mand core ellipticity 0.6.

curve, the fiber birefringence decreases linearly, when 0;, is less than 0;, and it

increases linearly, when 0;, is greater than 0;, resulting absolute zero value of

birefringence at 0;, = 0;,.

In Fig 5.19 the birefringence versus side hole radius is shown. Wc calculated

birefringence for four fibers; one for circular corc and three for elliptical corc (E = 0.2,

E = 0.4 and E = 0.6) fiber. We found largest birefringence 1.8226 x 10.4 for E ~0.6

with side hole radius 2.5 J.1m.Whereas, circular fiber produces lowest birefringence -

1.2179 x 10.5 with side hole radius 12.5 J.11TI.So, birefringence decreases with the

increase of side hole radius.

As it is found that a fiber with E = 0.6 producing highest birefringence, we calculated

birefringence with various side hole radius at different pitch length and the results are

shown in Fig. 5.20. A smaller side hole at far away from the core generates higher

birefringence in this case. The value of the birefringence is 1.8258 x 10.4 for side

hole radius 5.0 J.1mand a pitch length 30.0 J.1m.
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In Fig. 5.21 birefringence curves for different core radius and side hole radius are

shown to evaluate the effect of core size. From the tlgure it is clear that tiber with

smaller core and side hole radius produce higher birefringence. To illustrate the effect

of thermal stress on side hole tiber, tlnally we show the change of refractive index

over the cross section of the tiber in Fig. 5.22 through Fig. 5.25. Although the

refractive index changes allover the cross section except the air hole area, the change

is signitlcant in the core and around the air holes. These changes may affect the

optical behaviour of the' tiber, such as its cut-off wavelength. So, it has to be taken

into account very carefully.

c



Chapter 6

Conclusions

6.1 Summary of the work

In this work, the thermal stress analysis of optical liber is carricd out by uSlIlglinite

element mcthod. The stress analysis is based on the plain strain approximation and

potential energy principle; which' finally rcsults in a linear system of unknown

displacements caused by thermal strain. Hcrc, one-fourth of the liber cross section is

divided into finite number of linear triangular elements and Dirichlet type boundary

conditions are applied to obtain the final systcm of cquations. The Gaussian elimination

techniquc is then employed lar solving the systcm of equations to obtain the nodal

displacements. Elemental stress is then calculated from the elemental nodal

displacements. The program is further extendcd to calculate the changed refractive index

in x and y polarized light using photo-elastic coel'fieicnt and hence the birefringence of
the fiber is calculated.

At first, the program is verified for a simple circular liber structure with circular core by

comparing the solutions with the exact analytical solutions of strcss. Then the

bireti'ingenee for non-circular core fiber is calculated and compared with the existing

[Jublished results. For elliptical core fiber, thL' bireli'ingenec increases with the eorc

ellipticity. The stress in and around the core gets higher with the increase in the core
ellipticity.
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The developed system is then' applied for the analysis of side-hole fiber with elliptical

core, The stress in this case will be developed' in the core and also in the cladding just
around the air holes.

It is flllll1d that fiber with higher core ellipticity and larger pith length geherates higher

birefi'ingenee. fnereased difTerenee of reli'aetive indices in x and y directions is

responsible for the higher birefringence.

We found that the fiber birefringence increases with greater change of tempcrature during

the fiber manufacturing process. At the same time. thermal expansion coefficients of core

and cladding materials have profound effect on bireli'ingenee. ,

Fiber birefringence decreases with increase in side-hole radius when the pitch lcngth is

kept constant. On the other hand, smaller side-holes far trom the core generate higher

birefringence. Fiber with smaller core and side holes also can produce higher

birefringence. So. fiber with elliptical core and smaller side-hole radius fill' Ii'om core

center (longer pitch length) can be used as a good member of polarization maintaining
fiber.

6.2 Future research scope

In this work. only two air holes on each side of fiber core is considered. Therefore. a

future work can be done with more than two air holcs in difTerent arrangements. The

developed simulation program can be extended to study the variation of birefringence for

libers with air holes circularly around the core. Air holes in two layers can also be

considered. We examined only the birefringence property of fiber due to thermal stress

and geometry of the core. However, modal analysis and calculation of other nbcI'

characteristics like dispersion and loss of difrcrent polarization maintaining fiber can be

another suggestion for future research work. Most importantly. thc systcm can be

extended for the analysis of photonic crystal libel's under stress as well.
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