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Abstr_act

A thermal stress analysis of side-hole optical fiber with elliptical core has been presentéd '
in this work by using a finite element method. The birefringence because of the thermal
stress, which is caused in the structure due to the different thermal expansion coefficients
of core and cladding and alsq the geometrical birefringence are simultaneously
considered here in this work. The analysis here is based on the plain strain approximation
and potential energy principle in the finite element method, which in this case, results in a
linear system of unknown displacements at the nodes. After checking the accuracy of
finite-clement calculations, thermal stress analysis of elliptical cored fibers and side hole
fibers with elliptical core are performed. The influences of core ellipticity, air hole radius
and position, as well as the thermal expansion coefficient of core and cladding materials
on fiber birefringence are systematically assessed. Also, the Work is further extended to

calculate the changed refractive index in x and y polarized light due to photo-elastic

effect.

For a fiber with elliptical core, the birefringence increases with the core ellipticity as the
stress in and around the core gets higher with the increase in the core ellipticity. Fiber
birefringence increases with larger pitch length. Thus, fiber with higher core ellipticity
and higher pitch length generates higher birefringence. On the other hand, the
birefringence decreases with the increase in side-hole radius. Smaller side-holes can
produce moderately higher birefringence if they are far from the core. Thus, the
simulation results suggest that, elliptical core side-hole fiber can be treated as a good
candidate for high birefringent polarization maintaining fiber (PMF), which finds
increasing demands in coherent optical communication, optical fiber sensing devices and

many other applications.

Xiv
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Chapter 1

~ Introduction

[n ordinary single-mode {ibers widely used in present optical communication systems,
the polarization states of the input and the output light beams do not match. since the
polarization of the output fight beam is unstable, By contrast, the polarization
maintaining (PM) fibers maintain the state of polarization of a light beam passing
through them. PM f{ibers are imperative lor obtaining a stable oulput in
interferometric fiber optical sensors. [n optical communication devices the use of PM
fiber becomes mandatory when performing any polarized waves operations; c.g., for
polarization combining. There are many applications where the polarization ol the
light is required -to be stabler and well delined such as coupling to the integrated
optical circuits, interferometric sensors, coherent optical communication systems, and
certain in-line f{iber optic components. So. il is very important to study the
polarization state of a fiber when it is designed for a communication system. [n this
work a‘PM fiber called the side-hole fiber will he studied using a thermal stress
analysis using the finite element method (FEM). Belore we go into details, first in this
chapter we review the literature with regard (o the thermal stress analysis of fiber and
then mention the motivation of this work. At the end of this chapter, we also show the

structure of the thesis.

1.1 Literature Review

Polarization maintaining fibers (PMFs) that can maintain a state of polarization over a
long length are desirable for use in coherent optical communications and fiber optic

sensing systems [1]-[4]. These PMEs are usually divided into two groups. One is the
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axially nonsymmetrical (having elliptical core), mainly using geometrical
birefringence [2], [3]-[4], and the other is the stress-applied type (fabricated with
stress applied zone, SAZ), using stress-induced birefringence, e.g., PANDA fiber,
bowtie ﬁlber, etc. [1]-[2]. Side-hole optical fibers are very similar to the PANDA

fiber, but with two air-holes running along the length in place of the stress applying

zones [5]-[6]. This type of fiber can exhibit large birefringence and is a good
candidate as a PMF in optical fiber communication systems and also in fiber optic
sensing systems [5]-[6]. This fiber introduces high birefringence because of its
geometry and different thermal expansion coefficients of core and cladding materials.
Because of the presence of air holes, index contrast is increased; hence modal
confinement is enhanced with a reduction of optical loss [5]-[6]. This birefringence
can further be increased by introducing elliptical core with circular air holes in the
structure. So, in order to realize single mode operations with the side-hole fiber, a
detailed analysis is necessary. As a first step, this work is motivated to the stress
analysis and finding the birefringence due to the geometry and thermal stress in the
fiber, While the thermal stress induced birefringence properties and dispersion are
studied for widely used PMFs, e.g., PANDA fiber, bowtie fiber, efc. [1]-[4], [7]-[9],
little work has been done on side-hole optical fibers [5]-[6].

Different methods have been used to analyze varioué types of polarization
maintaining fibers. The finite element method was used by Okoshi et al. [10]-[11] for
performance analysis of side-tunnel type fiber. An H-field finite-element method was
used by Hayata and co-workers [12] and the effective-index method was used in [13].
A single-mode fiber with asymmetrical refractive index pits on both sides of the core
- was fabricated by the MCVD method [14]. From the experimental measurement, the
beat length was found to be about 23 mm and a birefringence B = 5 x 10 was

" obtained. Stress analysis of a side pit fiber by the finite element method [15]-[16]
shows that the contribution of the stress-induced birefringence to modal birefringence
is much larger than that of the geometrical anisotropy [10]. For stress induced PMF a
finite element method [15], and an analytical method '[16]-[17] have been used to
calculate the stress distribution due to SAPs in these fibers. It has been shown that

placing the SAPs close to the core improves the birefringence of these fibers, however
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in our work we investigate the birefringence property using finite element method by

placing circular air hole in place of SAPs with elliptical core at the center.

1.2 Objective of the work

The main objective of this work is to perform the thermal stress analysis of
polarization maintaining fiber, paﬁiculariy for the side-hole optical fiber with
elliptical core. The fiber birefringence properties induced by thermat stress will be
calculated and studied. The influence of core shape and size, as well as the side-hole
size and position on fiber birefringence will also be investigated. Initially we evaluate
the birefringence for a simple fiber structure i.e., conventional single mode step index
fiber under thermal stress; this is done for the purposes of providing the validity of the
simulation program. Later, this program is further extended to calculate the
birefringehce for side-hole fiber with elliptical core. We also examined the effect of
temperature change during fiber manufacturing and the thermal expansion cocefficient
of core material on the birefringence. Finally the refractive index profiles along the
radial distance of various fiber structures are investigated. In this thesis work finite
element method (FEM) [7]-[8] is used for the thermal stress analysis of different fiber

structure. The FEM is a versatile method for handling arbitrary cross section with

complex geometry. In this method, a simultaneous linear system of equations is -

formulated with nodal displacements as unknowns by using plane-strain

approximation. The system of equations is then numerically solved using Gaussian

elimination technique. For efficient solution of the problem, only one-fourth of the
cross section is being discretized into linear triangular elements using the two-fold
symmetry of the structure and applying the appropriate Dirichlet type boundary
conditions on the plané of symmetry. Once the system of equation is solved for nodal

displacements, it is easy to find the stress developed in each element in the cross

sectional domain.

1.3 Layout of the Thesis

There are six chapters in this thesis. Chapter 1 presents an introduction of the work
with a brief review of literature and objective of the work. Chapter 2 presents an

overview of optical fiber, light propagation mechanism through it and classification of

i _,r’
i



4

. optical fiber. Different types of polarization maintaining fibers are also discussed in

this chapter.

In chapter 3, a brief and general discussion on finite element analysis (FLA), a
versatile method for handling arbitrary cross section with complex geomelry is
presented. It also includes descriptions of various steps and corresponding

mathematical formulation involved in FEA.

Chapter 4 deals with principle and computational technique used for thermal stress
analysis of the fiber. Sequential formulation to calculate the fiber birefringence and

'changed refractive index due to thermal stress are also shown in this chapter.

Chapter 5 presents the results and discussions of this study. The results given here are
for elliptical core fiber and side-hole fiber with elliptical core. A comparison between
the existing results and the present results is given. Surface plots and contour maps for
various fiber structures are also shown herc. A short description of the developed

simulation program is presented in this chapter.

Concluding remarks of this thesis work along with suggestions for future research are

hosted in chapter 6.



Chépter 2

The Optical Fibers

Mankind has always throughout its history had the necessity for communication.

Initially communication was done through signals, voice or primitive forms of

writing. As time passed by there was a nced to communicate through distances, to
pass information from one place to another. Many different ways to exchange
information have been used throughout history. Progressing from the copper wire of a
century ago to today’s fiber optic, our increasing ability to transmit more information,
more quickly and over longer distances has expanded the boundaries of our
technological development in all areas. Now a day optical fiber is being using as the
backbone componcﬁt in long distance and high bit-rate optical communication and
networking system. Optical fibers also find importan_t applications in a variety of

sensors, communications systems, and telecommunications networks. The choice of

fiber depends on where and how it is applied and what one kind of fiber can offer

over the other. In particular, polarization maintaining (PM) fibers are desirable for use -

in opﬁcal fiber sensing and coherent long distance optical communication systems [1].
Following fundamental attractive features have made tremendous use and demand of
optical fiber:

¢  Enormous potential bandwidth (~10"* Hz).

¢  Immunity from electromagnetic interference.

¢ Low transmission loss ( 0.2dB/km).

e  Reliability i.e, security of the signal.

s Potential low cost.

¢  Small size and light in weight.



2.1 The Mechanism of Light Propagation in Optical Fibers

”

. b
Claddmg

. Fig. 2.1:.Optical fiber waveguide.

= Ha

An optical fiber is a circular waveguide that takes the form of a long, thin strand of

glass about the diameter of a human hair, This fiber contains two concentric glass

regions with slightly different refractive indices. The refractive index is the ratio of

the speed of light in & vacuum to its speed in the glass fiber medium. The center of the

fiber through which most of the light travels is called the fiber core. The outer region,

having a lower refractive index than the inner region, is called the cladding. A |

surrounding plastic coating is used to protect the glass fiber. Additionally, an encasing

cable structure is often applied to protect the optical fiber during installation and

operation.

0, of medium 2

rafrastad

"1y of médium 1

incidant.

surface .
boundary

laflastad

o Bz angls of ndidencs
o 4= angle of relection
o By=andle of refraclion

Fig. 2.2: Refraction of light. .

o

1 L—Eic = ¢ritical angle

The propagation of light within an optical fiber can be well understood using ray

model theory. According to the ray theory, when a light ray is incident on the

interface between two diclectrics of different refractive indices some of the light
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refracts, some reflects and other is absorbed as illustrated in Fig. 2.2. Thc amount of
refraction, reflection and absorption depend on two diclectrics and the interface. I the
incident angle is such that the refraction angle is 90°, i.e, the refracled ray emerges
parallel to the interface then the incident anglc is known as critical angle 0.. When the
incident angle is greater than the critical angle then all the light reflects back to the
first medium or dielectric and this phenomenon is known as total internal reflection
[18].

[ " L2 =, £
i - 4

; _ A et .
™ ; ey
o P off SN ) ‘ / e __COre ¥

i v _ - \/ . A

/" NPT ‘cladding.y.

Fig. 2.3: Light transmission through fiber.

In optical fiber the light is launched into the entrance face of the fiber and is
propagated by the total internal reflection at the interface between core and cladding.
However the rays incident at angles larger than a certain angle. called the cut-off
angle, suffer both refraction and reflection at the interface between the core and the
cladding. Therefore, they are not guided. Due to this the optical fiber has a numerical
aperture. The numerical aperture is given by the square root of (i *-m20). Typical

values of numerical aperture Jic between 0.1 and 0.3.

Consider the Fig. 2.3, which is a section of the optical fiber, The refractive indices of
the core and the cladding are n; and n; respectively. Suppose the fiber is in air (ng=1).
The axis of the cylindrical structure is the optical axis. When a ray is incident with an
angle i at the entrance facc, it is refracted into the core. Then it strikes the core-

cladding interface at a ccrtain angle. If this anglc exceeds the critical anglc, it is

totally reflected and strikes the interface on the other side of the axis. Here it is again-

totally reflected using the same phenomena. This process is repeated till the ray
emerges out of the fiber at the other end. The ray is thus guided by total internal

reflection.
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The angle of incidence at the entrance face for which the ray strikes the core-cladding
interface at the critical angle is called the cut-off angle. The ray is guided for all the
angles of incidence smaller than the cut-off angle at the entrance face. Also the
numerical aperture is equal to ng times the sine of cut-off angle. However, if the angle
of incidence at the interface is less than the critical angle, both reflection and
refraction takes place. Due to refraction at each incidence on the interface, the light

beam dies off over a certain distance. There is no guidance.

2.2 Classification of Optical Fibers
Optical fiber can be classified from various point of views,

e Interms of physical dimension optical fibers are of two types:

Core

Cladding Cladding

(a) (b)

Fig. 2.4: (a) Single mode fiber. (b) Multi-mode fiber.

Single mode fiber: Single mode fiber is the fiber that aliows only one transverse
electromagnetic mode to propagate. Typically it has the core diameter of 2-10 um
[19]. It has the distinct advantage of low intermodal dispersion and is generally used

for low foss signal transmission and high speed long distance communication.

Multi-mode fiber: In multi-mode fiber a finite number of guided modes arc allowed
to propagate through the channel. The number of guides modes depends on the
physical parameters (i.c. core radius, refractive index difference) of the fiber and the

wavelength of the transmitted light. Generally it has the core diameter of 50 - 100

um. Although it offers considerable dispersion loss, it facilitates easier coupling with



less tolerance requirements and very useful with incoherent optical sources [20]-[21].

It is better suited for shorter distance communication,

e From refractive index profile (of the core) point of view, fibers are of two kinds:

4
n(r) _L i . S
a O } p Core >
_T_ / Cladding >
(a)
Refractive ; ) >

-

Cladding

(b)

Fig. 2.5: The refractive index profile and ray transmission. (a) Step index {iber.
(b) Graded index fiber. -

Step index fiber: Step index fiber is a kind of fiber where the refractive index of core
is maintained at a fixed value (say »;) and that of cladding is continued at a slightly
lower refractive index (say np) i.e. #> m as shown in the Fig. 2.5 (a). Since the
refractive index profile changes in step at the core-cladding interface hence the name

is step index fiber.
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Graded index fiber: Graded index fibers do not have a constant refractive index in
the core, rather have a decreasing core index #»(¥) with radial distance from a
maximum value of m at the axis to a constant value s> beyond the core radius « in the
cladding is as shown in the Fig. 2.5(b). This index variation may be represented as
[19]:

.nl(l—2A(r/’a)")”2 r < a(core)
n(ry = 172 :
m{(1-24)"" = n, r = a(cladding)

where A is the refractive index difference and « is the profile parameter of core
refractive index characteristic. For a=1, core index profile is triangular and for o=2,

core index profile is parabolic.

2.3 Polarization Maintaining Fiber

Shortly after the introduction of single mode fiber, it became evident that linear
polarization states were not preserved in long fiber lengths. This is due to perturbing
birefringence resulting from either internal defects such as the nonideal geometry of
the core and cladding or externally applied bends, twists, squeeze, clamps. etc. 10 the
fiber. This effect causes a change in the polarization state of light propagating in the
fiber, These problems motivated the development of a special kind of fibers named as
polarization maintaining fiber, which is not a fiber without birefringence, but (o the
contrary a fiber with a strong built-in birefringence. In these fibers the polarization of
light launched into the ﬁber is aligned with onc of the birefringent axes and this

polarization state will be preserved even if the fiber is bent [1],[22].

The 'polarization of wave describes the time varying behavior of the clectric field
vector at a fixed point in space. Polarization is observed along the direction of
propagation by tracing out the tip of the instantancous electric field. There are three
types of wave polarization: linear, circular, and elliptical. In general, the tip of the
electric field vector traces out an ellipse and the wave is said to be elliptically
polarized. The other two types of polarization, linear and circular, are special cases of
elliptical polarization. The linearly polarized wave is characterized by the property

that the orientation of the electric field vector is the same everywhere in space and is
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independent of time [23]. In linear pblarization, the field vector is directed along a
line. The circularly polarized wave is characterized by a constant amplitude field
vector, and the field veclor orientation in space changes continuously with time so
that the tip of the field vector traces out a circular locus in a plane transverse to the

direction of propagation.

_There are mainly two kinds of PM fibers. One kind is the axially nonsymmeltrical
using geometrical birefringence, such as the elliptical core fiber or the D-shaped
cladding fiber. The core or the cladding of this kind of fiber is normalily deformed
from a circular shape so as to generate an anisotropy of the fiber structure. The other
kind is stress-applied type using stress-induced birefringence, such as PANDA fiber
or bow-tie fiber. Here the birefringence is induced due to elasto-optic effect [1]. Side-
hole fiber is very similar to PANDA fiber, but in contrast of having stress applying
zone it has two air holes running along the fiber axis. This type of {iber can cxhibit
large birefringence andlis a good. candidate as PM fiber. This fiber introduces high
birefringence because of its geometry and different thermal expansion coefficients of

core and cladding materials [24]-[25].

A commonly used method to introduce strong birefringence is to include two siress
rods of a modified glass composition in the preform on opposite sides of the core.
When a fiber is drawn from such a preform, the stress rods cause some stress with a
well defined orientation. Another technique is to use an elliptical core. In any case,
the birefringent beat length can be so small (few millimeters) that additional stress

effects are too weak to cause significant mixing of the polarization states.

2.3.1 PMF with Side-Pits and Side Tunnels

Stde-pit fibers as shown in Fig. 2.6‘incorp0rate two pits of refractive index n, less
than the cladding index ng, on each side of the centrai core. This type ol single
polarization fiber was first proposed by Okoshi and Oyamada [26]. It has a W-typé
index profile along the x-axis and a step index profile along the y-axis. A side-tunnel
fiber is a special case of side-pit structure when the two pits are hollow with ;= 1. In
these fibers, a geometrical anisotropy is introduced in the core to obtain a birefringent
fiber.
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Fig. 2.6: Side-pit Fiber. (a) Cross section. (b) Refractive index distribution.

2.3.2 PMF with Stress Induced Parts

(a) (b)

Fig. 2.7: Cross section of PMF. (a) Bow-tic fiber, and (b) PANDA fiber,

An cffective method of introducing high bircelringence in optical fibers is by

introducing an asymmetric stress, with two-fold geometrical symmetry in the core of

the fiber. The stress changes the refractive index of the core due to photoelastic effect,

seen by the modes polarized along the principal axes of the fiber, and results in
birefringence. The required stress is obtained by introducing two identical and
isolated stress applying parts (SAP), positioned in the cladding region on opposite

sides of the core [27]. Thercfore, no spurious mode is propagated through the SAPs,
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as long as the refractive index of the SAPs is less than or equal to that of the cladding.
The SAPs have different thermal expansion cocflicient than that of the cladding
material due to which an asymmetrical stress is applied on the fiber core afler it is
drawn from the preform and cooled down. The most common shapes used lor the
SAPs are: bow-tie shape and circular shape, which are referred to Bow-tie 28], and
PANDA fibers [29] respectively as shown in Figo 2.7 PANDA also stnds for

polarization maintaining and absorption reducing fiber.

2.3.3 PMF with Geometrical Asymmetry

These types of polarization maintaining fibers have the non-circular cross section
creating axially non symmetric nature for light propagation through it. This introduces
the difference of propagation constants along two orthogonal directions and hence the

geometric birefringence.

-

(a) (b)

Fig. 2.8: Fiber cross section. (a) Elliptical core with circular clad. (b) Circular core

with elliptical clad.

The fiber mﬁy have elliptical core with circular cladding. Elliptical cladding with
circular core and elliptical jacket with circular core fiber has also been designed, The
first proposal on practical low loss single polarization” fiber was experimentally
studied for three fiber structures: clliptical core. clliptical cladding, and cliptical
jacket fibers [30]-[31]. The elliptical core and the elliptical cladding fibers were
-fabricated using the Modified Chemical Vapor Deposition (MCVD) method. To make
elliptical clad {ibers, borosilicate clad and pure silica core layers were deposited in a
iube. Then the tube was collapsed whilc the inner pressure {vacuuming) of the tube

was monitored. The core circularity and the clad cllipticity were controlled by the
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carelul selection of the soltening points of the corc/clad materials and: the inner
pressure. Then, the preforms were drawn into fibers. However, the elliptical jacket
fiber is formed by a circular GeO2-P20s doped core and silica clad for constructing the
low loss waveguide, and the B20: doped clliptical jacket and the silica outer support

for introducing the large nonsymmetric stress in the core.

2.4 Polarization Mode Dispersion and The Effect of Birefringence

In an ideal optical fiber, the core has a perfectly circular cross-section. in this case, the
fundamental mode has two orthogonal polarizations (orientations of the electrie ficld)
that travel at the same speed. In a rcalistic fiber. however, there are random
imperfections that break the circular symmetry, causing the two polarizations to
propagate with different speeds and hence it is impossible to transmit data reliably at

high specds. This phenomenon is known as Polarization Made Dispersion (PMD).

I'rerpagatlon Dhection /-’)

Fibe
el o DCD

So, PMD is a fundamental property of single-mode optical fiber and components that
causes the broadening of the input pulse duc to a phase delay between input
_polarization states, which increases with the increase of birefringence. In high data
rate systems, PMD can significantly diminish the data-carrying capacity ol a
telecommunications network. It may also introduce crrors as pulses spread into one

another.

Conventional single-mode fibers having low birclringence have been recently found .
Lo be applicable to long-span optical transmission systems by attaching a polarization-
state controlier at the output end of the fiber. On the other hand, high birelringent
fibers where the linear polarization state is forcedly maintained are indispensable in
coherent optical transmission systems or polarization-dependent devices used in an

unstable environment.



Chapter 3

Finite Element Method

Finite Element Analysis (FEA) was first developed in 1943 by R. Courant, who
utilized the Ritz method of numerical analysis and minimization of variational
calculus to obtain approximate solutions to vibration systems. Shortly thereafter, a
paper published in 1936 by M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp
established a broader definition of numerical analysis. The paper centered on the
"stiffness and deflection of complex structures”. By the early 70's, FEA was limited to
expensive_ mainframe computers generally owned by the acronautics', awlomotive,
defense, and nuclear industries. Since the rapid decline in the cost of computers and
the phenomenal increase in computing power, FEA has been developed to an
incredible precision. Recently, the finite element method has been exercised 1o a wide
range of areas including electrical and electronic engineering, and many successful
results have been obtained in the field of electromagnetic wave engineering as well.
Among many applications of the finite element method, the research on its use with
electromagnetic waveguide problems continues incessantly, and it is being established
as one of the powerful numerical tools for applying electromagnetic waveguides to

various waveguiding structures from microwave to optical wavelength regions.

Finite element method (FEM) is a computer based numerical technique for calculating
the strength and behavior of engineering structures. It can be used to calculate
deflection, stress, vi.bratiqn,' buckling behavior and many other phenomena. It can be
used to analyze either small or large scale deflection under loading or applied

displacement. It can analyze elastic deformation, or "permanently bent out of shape"
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plastic deformation. The computer is required because of the astronomical number of

calculations needed to analyze a large structure,

Fig. 3.1: Subdivision of structure into small element,

In the finite-element method, a distributed physical systerﬁ to be analyzed is divided
into a finite number (often large) of discrete elements like Fig. 3.1. The complete
system may be complex ana irregularly shaped, but the individual elements are easy
to analyze. The division into elements may partly correspond to natural subdivisions
of the structure. For example, the eardrum may be divided into groups of elements

corresponding to different material properties,

From various viewpoints, electromagnetic wave problems may be classified into the

following categories: X

—

steady and unsteady problems’

eigenvalue and deterministic problems

one, two and three dimensional problems
scalar and vector field problems
homogeneous and inhomogencous problems
isotropic and anisotropic problems
conservative and non conservative problems

. bounded and un bounded field problems

© e NS A W N

linear and non linear problems

10. forward and inverse problems

{7¢



3.1 Boundary Value Problems

Boundary value problems arise in the mathematical modeling of physical systems and
their solution has long been a major topic in mathematical physics. A typical
boundary value problem can be defined by a governing differential equation in a

domain Q:

Lp=/ | (3.1)

together with the boundary conditions on the boundary T that encloses the domain. In
(3.1), L is a differential operator, f is the excitation or forcing function, and ¢ is the
unknown quantity. In electromagnetics, the Poisson’s equation (3.2) is one of the

examples of the differential equation (3.1).
-V (V4)=p | (3.2)

which is the second order differential equation governing ¢, where ¢ is called the

scalar potential, & is the permittivity of medium, p is the electric charge density,

It is, of course, desirable to solve boundary value problems analytically whenever
possible. However, this is generally the exception since an analytical solution can be
obtained in only a few cases. In electromagnetics these include the static potential
between infinite parallel plates; wave propagation in rectangular, circular, and elliptic
waveguides; wave scattering by infinite planes, circular cylinders, spheres ctc. Many
‘other problems of practicai importance in the engi-neering fieids do not have an
analytical solution. To O\iercmﬁe this difficulty, various approximate methods have
been developed, and among them the Ritz and Galerkin methods have been used most

widely.
3.2 Basic Steps of the Finite Element Method

The principle of the FEM is to replace an entire continuous domain by a number of

sub-domains in which the unknown function is represented by simple interpoiétion

4
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functions with unknown coefficients. Thus the original boundary value problem with
an infinite number of degrees of freedom is converted into a problem with a finite
number of degrees of freedoms, or in other words, the solution of the whole system is
approximated by a finite number of unknown cocfficients. Then a set of algebraic
equations or a system of cquations is obtained by applying the Ritz variational or
Galerkin procedure, and finally, solution of the boundary-value problem is achieved
by solving the system of equations. Therefore, a finite element analysis of a boundary

value problem should include the following basic steps [32]-[34]:

(1) Discretization or subdivision of the domain
(2) Selection of the interpolation functions
(3) Formulation of the system of equations

(4) Solution of the system ofeduations

3.2.1 Domain Discretization

o

a)

2

(¢)

Fig. 3.2 Basic finite elements. (a) One dimensional, (b) Two dimensional, and

{(c) Three dimensional,

The discretization of the domain, say §, is the first and perhaps the most important

step in any finite element analysis because the manner in which the domain is
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discretized will affect the computer storage requirements, the computation time, and
the accuracy of the numerical results [34]. In this step, the entire domain § is
subdivided into a number of small domains, denoted as §* (e =1,2.3,.....M ), with
M denoting the total number of sub-domains. These sub-domains are usually referred
to as the elements. For one-dimensional domain, which is actually a straight 6:‘ curve
line, the elements are often short line segments interconnected to form the original
line [Fig. 3.2(a)]. For a two dimensional domain, the elements are usually small
triangles and rectangles [Fig. 3.2(b)]. The rectangular elements arc best suiled for
discretizing rectangular regions, while the triangular ones can be used for irregular
regions. In a three dimensional solution, the domain may be subdivided into
tetrahedra, triangular prism, or rectangular bricks [Fig. 3.2(c)], among which
tetrahedra are the simplest and best suited for arbitrary-volume domains. We note that
the linear line segments, triangles, and tetrahedra are the basic one, two, and three-

dimensional elements.

In most finite element solutions, the problem is formulated in terms of the unknown

function ¢ at nodes associated with the elements. For example, a linear line element

has two nodes, one at each endpoint. A linear triangular element has three nodes,
located at its three vertices, whereas a lincar tetrahedron has four nodes, located at its
four corners. For implementation it is necessary to describe these nodes. A complete
description of a node,coritains its coordinate values, local number, and global number.
The local number of the node indicates its position in the element, whereas the global
number specifies its position in the entire system. The finite element formulation
-usually results in a- banded matrix whose bandwidth is determined by the maxtmum
difference between the global numbers of two nodes in an element. Thus, if a banded
matrix solution method is employed to solve the final matrix equation, the computer
storage and processing cost can be reduced significantly by properly numbering the
nodes to minimize the bandwidth. However, when bandwidth minimization is _
unnecessary, the numbering scheme can be arbitrary and is usually chosen to simplify

the programming.

In this thesis, to analyze the thermal stress of optical fiber, we decompose the one

forth of fiber cross section into a number of two-dimensional triangular elements as
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shown in Fig. 3.3. One forth cross section is used for efficient use of computer
memory. The basic requirement of the discretization is that there should be neither
overlap nor gaps between elements. Further, elements should be connected via their
vertices, or in other words, a vertex of an element can only be at the vertices of its
neighboring elements; it cannot be at the side of another element. In addition to these
basic requirements, a good discretization should also addressed the following two
points. First, it should avoid the generation of narrow elements, or elements having a
small inner angle. Although these elements are admiséible, they can, nevertheless,
increase the solution error; since, as can be shown, the error of the finite element
solution is inversely proportional to the sine of the smallest inner angle. Therefore, all
elements should be made close to equilateral. Second, one should note that the smaller
the elements, the better the numerical solution. Since smaller elements will result in
more unknowns, thus increasing the memory demand and computing time, it is
necessary to keep the number of elements to the minimum for desired accuracy. A
good practice is to use small elements where the solution is anticipated to have drastic
variation, whereas in the regions where the variation is low the elements can be made

larger.

RN \".,‘, . Lo
NN N

(a) " (b

Fig. 3.3: (a) Finite element division of optical fiber. (b) Linear triangular elements.
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To identify each element, we can label the clements with a sct of integers, and
similarly, to identify the nodes that are the vertices of the elements, we can label them
with another set of integers. Since each element is related to several nodes, in this
case to three nodes, a node has its own position in the associated element in addition
to its position in the entire system. This position can also be labeled with an integer |
number, referred to as the local number, in contrast to the global number, which
indicates its position in the entire system. To relate these three numbers — the global
node number, the local node number, and the element number — we introduce a 3 x M
integer array, denoted by nfie), where i=1,2,3,.....,M, with M denoting the total
number of elements. In #(i,e), which is also called the connectivity array, i is the local

number of a node, e is the element number, and the value of n(i,e) is the global

3 s 6

number of the node. Obviously, this integer array includes all information concerning
the numbering of the elements and nedes. To illustrate this more clearly, let us
consider the example shown in Fig. 3.4, [n this example we have four clements and -

six nodes. The array n(i,e) can be numbered as shown in table 3.1.
Fig. 3.4: Subdivision of a two dimensional domain

Table 3.1: Numbering arraﬁgement for 'glébalr number; local number and element

number.

c | n(l,e) | n(2,c) n(3,.e)
1 2 4 1
2 5 4 2
3 3 5 2
4 5 6 4
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Obviously, this numbering is not unique. For instance. we can also number the three
nodes for the first elements as 4,1,2 or 1,2,4 as long as they are numbered
counterclockwise so that they are consistent with the local numbering shown in Fig.
3.3(b). In addition to the connectivity array defined above, we can introduce a similar

array.

3.2.2  Selection of Interpolation Functions

The second step of a finite element analysis is to select an interpolation funciion that
provides an approximation of the unknown solution within an element. The
interpolation is usually sclected to be a polynomial of first (linear) order, second
(quadratic) order, or higher order. Higher-order polynomials, although more accurate,
usuallly result in a more complicated formulation. Hence, the simple and basic linear
interpolation is still widely used. Once the order of the polynomial is selected, we can
drive an expression for the unknown solution in an clement, say clemente, in the

following form:

e

o =2 N =) )= ) (3.3)

where # is the number of nodes in the element, ¢; the value of ¢ at node ; of the
element, and N: the interpolation function, which is also known as expansion or
basis function. The highest order of N is referred to as the order of the element; for.
example, if N7 is a‘linéar f;uncti(')n, the element ¢ is a linear element. An important

feature of the functions N7 is that they are nonzero only within elemente, and

outside this element they vanish.

As we are using linear triangular elements, the unknown function ¢ within each

element is approximated as

o (x, Vi=a " +bx+cy (3.4)
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where o, b° and ¢* are constant coefficients to be determined and e is the element
number. For a linear triangular element, there are three nodes located at the vertices of
the triangle (Fig. 3.4). Assume that the node are numbered counterclockwise by
numerals 1,2 and 3, with the corresponding values of ¢ denoted by ¢'. ¢ and ¢ |

respectively. Enforcing (3.4) at the three nodes, we obtain
P, )=a" +bx] +e¢'y)
() =a"+b'x; +c'y,
Py (x,y)=a" +b°x; +c"y

Solving for the constant coefficients &°, 5° and ¢“ in terms of ¢, and substituting

them back into (3.4) yields

3
¢ (x,y) = D Ni(x, ), (3.5)
#=1

where N7 (x, y) are the interpolation or expansion functions given by

. . 1 ¢ ¢ ¢ i
N (x,5) 2537(% +b+c;) Jj=1273 (3.6)
In which
a = xy; - y5xi; b =y~ ¥ iy
ay =Xy -y by =yi-y =X X
ay =X[ Yy ~ V%5 by =y = ¥; €3 =X X

and
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Loxf oy

AL'

|
l & & ] v [y
= 5 Lox, )= E(b‘ ¢y — b))

Loxs »
= area of the eth element
In the above, x7 and y5(j =1,2,3) denote the coordinate values of the jth node in the

eth element. [t can be easily shown that the interpolation functions have the property

erot ¢ 1 [:]
Nf(xjayj)=54j= 0 Iy

And, as a result at node /, ¢ ° in (3.4) reduces to its nodal value. Another important
feature of N7(x,y)is that it vanishes when the observation point (x,y) is on the
element side opposite to the jth node. Therefore, the value of ¢ ° at an element side is
not related to the value of ¢ at the opposite node, but rather it is determined by the

" values at the two endpoints of its associated side. This important feature guarantees

the continuity of solution across the element sides. For better understanding Fig. 3.5

shows the interpolation functions N for a triangular element.

1
3
i ! 4
e € e
2 1 2 1 2
: ) ' (b) ‘

i
(@ (c)

Fig 3.5: Linear interpolation functions for a triangulér element. (a) N/, (b) N, and

(c) N;. The planar surfaces of the functions are shaded.

3.2.3 Formulatioh of the System of Equations

The third step, also a major step in a finite element analysis, is to formulate the system
of equations. Both the Ritz variational and Galerkin methods can be used for this
purpose [32]-[34].

Y
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A. Formulation via the Ritz Method
Consider a boundary value problem defined by the differential equation

Lp=f RER)

If the operator L is self adjoint, i.e.,

(Lg,p)=(p.Lo) (3.8)

and positive definite, iLe.,

50 ¢#0 |
(L¢=¢){: 0 40 (3.9)

its solution can be obtained by minimizing the functional given by
1 1 1 |

In the above, ¢ denotes an arbitrary function satisfying the same boundary conditions

as does ¢ . The angular bracket denotes the inner product defined by

(.0} = [ do'd2 | (3.11)

where Q denotes the domain of the problem, which could be one, two or three

dimensional and the asterisk denotes the complex conjugate operation.

For simplicity assume that the problem is rcal valued. The functional F given in

(3.10) can be expressed as

-3 a1

where M is the number of the elements comprising the entire domain and



26

F@) = [ # L= [ 15 (3.13)

Substituting 3.3 into 3.13, we obtain

Pl [k b [ oo

which can be written in matrix form as

T NS N 519

where [K°] is an »xnmatrix and {b"} an nx} column vector with their clements
given by
K; = _L N{LNdQ (3.16)

and

b = _L INdQ (3.17)

We note that the elemental matrix [K "] is symmetric since Lis self-adjoint,

Substituting 3.15 into 3.12, we obtain

Flg)= ie{éﬁ I 1 b }] (3.18)

e=1

and by performing the summation and adopting the giobal node numbers, this can be

written as

F =‘5{¢}"‘ [K]ig}- 18} b} (3.19)

where [K] is an NxN symmetric matrix with N being the total number of
unknowns or nodes, {¢}an N x1unknown vector whose elements are the unknown

expansion coefficients, and {6} an N x [ known vector. The system of equations is

O
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then obtained by imposing the stationarity requirementdF = 0, or equivalently, by |

setting the partial derivative of ' with respect to ¢ to zero:

oF 1 _
5:52(&" +K ), ~b, =0 i=123,..,N. (3.20)
i = - ’

Since [K] is symmetric, K, = K, and therefore (2.20) becomes

N
— =Y K, b =0 i=123,...N. (3.21)

or the matrix form will be given by

[k} = b} | (3.22)

B. Formulation via Galerkin’s Method

The system of equations above can also be formulated via Galerkin's method.

According to this method, the residual R for each node in an element is [35]

R = L N;’(L&" —f)dQ i=1,2,3, .., 1. (3.23)
Substituting (3.3) into (3.23), then yields

R = L VL] dolpl- [ Viae i=123n. (24
which can again be written in matrix form as

lele )b} | 629

We may expand (3.25) using the local and global relatiohs and then sum it over each

element to find that
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w=3 )50 b)) 520

e=1

The system of equations can then be obtained by setting (3.26) to zero, resulting in

o} (3.27)

S o))

which can again be written in the form of (3.22) i.e.

[1ig}= (b} | (3.28)

Before the system of equations (3.28) is ready to be solved for a specific solution, we
need to apply the required boundary conditions. There are two kinds of boundary
conditions that are often encountered: one is the Dirichlet boundary condition, which

prescribes ¢ at the boundary, and the other is the homogeneous Neumann boundary
condition, which requires the normal derivative of ¢ to vanish at the boundary. The

first is an essential boundary condition that must be imposed explicitly, in contrast to
the second, which is usually satisfied implicitly and automatically in the solution

process. For this reason, the second one is often called the natural boundary condition.

It is seen that in this step we actually have threc sub-steps. First, we formulate the
elemental equation (3.15)} or (3.25) using either of the two methods. Then, we sum the
elemental equations over all elements to form the system of equations and this process
is called assembly. Finally, we impose the boundary conditions to obtain the final
form of the system of equations. We note that in computer implementation, the three.
sub-steps are usually not separated; in stead, they are intertwined. The gencration of
the elemental matrix and the imposition of the boundary conditions usually take place

during the process of assembly.

3.2.4 Solution of the System of Equations

Solving the system of equations is the final step in a finite element analysis. The

resultant system has one of the following two forms:
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(g} ={} (3.29)

or

[4)g} = A[BYs} (3.30)

Equation (3.29) is of the deterministic type, resulting from e¢ither an inhomogeneous
differential equation or inhomogeneous boundary conditions or both.

In electromagnetics, deterministic systems are usually associated with scattering,
radiation, and other deterministic problems where there exists a source or excitation.
To the contrary, (3.30) is of the eigenvalue type, resulting from a homogeneous
~governing  differential equation and homogeneous boundary conditions. In
electromagnetics, eigenvalue systems are usually associated with source free
problems such as wave propagation in waveguides and resonance in cavities. In this
case, the known vector {b} vanishes and the matrix [ K] can be written as [A]—/l[B],
where A denotes the unknown eigenvalues. Once we have solved the system of
equations for {qﬁ}, we can then compute the desired parameters, such as capacitance,
inductance, input impedance, and scattering or radiation patterns and display the
result in form of curves, plots, or color pictures, which are more meaningful
interpretable. This final stage, often referred to as post-processing, can also be

separated completely from the other steps.




Chapter 4

Stress Analysis of Optical Fiber

4.1 Introduction

Generally speaking, optical fibers are produced in an atmosphere at very high
temperature. Therefore, when the fibers are cooled down to room temperature, stresses
are developed if the materials used have different thermal expansion coefficients. In the
fabrication of non-symmetrical fiber, such as bow-tie fiber, PANDA fiber, side-hole

fiber, efc., the change of temperature during the cooling stage produces stress, which in

turn introduces - a non-symmetrical refractive index change due to the elasto-optic effect.

Also, external forces can be applied to produce deliberate stresses in the fiber itself.
Furthermore, in underwater communication systems, the fiber undergoes very large
hydraulic pressure. So, the stress analysis of fiber is important in order to take the photo-

elastic effect into account and it requires the understanding of energy principle.

4.2 Energy principle

The energy principle states that the total potential energy should be a minimum when
thermal stress and/or an external force is applied to the body. In other words, the strain
distribution that is actually generated among all possible strain profiles is the distribution

that makes the potential energy a minimum. The total potential energy of the body is
given by [8], [15]

Il = (internal work) — (external work) = -V, ' (4.1)

{

o
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where U and V denote strain energy and work done by the external force, respectively.
Strain energy U is work gencrated during the process of releasing strain: ie., U is a
summation of {local force generated under certain strain condition}x {displacement by
the force}. Since potential energy decreases by the amount of work done by the external

force, V has a minus sign in (4.1).

Stress analysis based on the energy principle is called the energy method. The finite

element method (FEM) based calculation procedure is as follows:

e [xpress the potential energy [1 in terms of the displacement by strain and an
external force.

= Approximate the displacement and external [orce in or toward each clement by
analytical functions using values at nodal points.

e Apply the energy principle to [1; i.e., partially differentiate [T with respect to the
displacement and obtain an equilibrium equation (linear simultancous equations).

» Solve the simultancous equations and determine the displacement al cach nodal
point. '

e The strain and stress in each element arc calculated by using the displacement at

the nodes surrounding the element.
4.3 Stresses and strain in optical fibers

The optical fiber is always very long in one dimension (along z-axis direction) and very

limited in the other two transverse dimensions. [n such a case, strain in the body along z-

axis & is considered to be negligible, except at both ends. Thus, we can assume
g.=0. (4.2)

Stress analysis based on this assumpltion is called a “plane strain problem™ [8],[15]. The

relationship between displacement and strain is given by

ou
g =—, 4.3
e (4.3a)
— (4.3b)
T oy .
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and y,, = ? + % (4.3¢)
‘ x| dy

Here w and v are displacements a{lohg the x- and y-axis directions, respectively. and are in
general approximated as functions of v and v. &. «. and & arc spatial variations of the
principal strains along the x-, y-, and z-axis dircctions. respectively, and . is the shear
strain in the x-y plane. For linear elastic material, the stress-sirain relations come from
general'ized Hooke’s law. For isotropic materials, the two material propertics are the
Young's modulus (or modulus of elasticity) and the Poisson’s ratio. Another type of
deformation occurs in the body which is duc o the temperature change. For isotropic
material change in temperature results in a uniform strain, which depends on the
coefficient of linear éxpansion « of the material. a, which represents the change in length
per unit temperature change, is always assumed o be constant within the range of
vanation of the temperature. Also, this strain does not cause any stresses when the body
is free of deform. The temperature strain is usually considered as an initial strain.
Therefore, combining the Hooke’s law and the temperature strain, the relationship |

between the stress and the strain is generally expressed as [8]. [15].

£ = —;—[o'r —p(o, +o)+a AT, (4.4a)

£, = —;:[oiu — o, +o ) +a AT, (4.4b)

€. = ]E[a__ —po +o ) +a Al . (4.4¢)
T

w21+ u) ;
G o E Ayt

Y = (4.5)

where oy, 0, and o; are spatial variations of the principal stresses along the x-, y-, and z-
axis directions, respectively, 7, is the shear stress in the x-p plane, G, @, and AT denote
the shear modulus (or modulus of rigidity). the thermal expansion coefficient, and the
temperature change (negative for cooling), respectively, £ and g are the Young's
modulus and he Poisson’s i‘a,ti{'), respectively, Considering the problem to be a “plane

strain problem’, we can get the following relations between the stress and the strain
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E a lEAT
o, =————|(1-we, +pe, |- . (4.6a)
1+ )1 —2#)[ (-2)
E o BEAT
o =—— |ue +(1-pe, |- : (4.6b
T @ - 2u) g we,] (1-2u) )
o,=u(o, +0,)-—alAT. (4.6¢)

For “plane strain problem”, the components of stress and strain are expressed in vector
form as

oi=lo, |, 4.7)

lef=le | (4.8)

Using (4.7)~(4.8), the relationship between the stress and the strain of the “plane strain

problem™ as defined by (4.5) and (4.6), can be expressed as

te}=1p)({e}-len}), | (4.9)

where the 3x1 initial strain vector {&} due to the thermal strain and the 3x3 matrix [D]

are given by |

1

feo )=+ wyanr|1], (4.10)
0
and
(I-p) 0 _
[D] g - 0 (4.11)

zm 0 0 (1-21)/2

4.4 Mathematical Formulation

Strain energy per unit length is obtained by

(strain energy) = —;— ”(stress) - [(étrain) — (initial strain)]dx dy .
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Then, (4.12)

1 r '
U = H{a} [{5} - {50}]dxdy ,
where {-}T represents the transpose of the vector and 1ntegration is over the cross-section
of the actual structural body under strain and stress. Since strain and stress do not
penetrate into the air region, the actual boundary of the body becomes the boundary of

the FEM analysis. The displacements u(x, ¥) and v(x, y) along the x- and y-axis directions

in the eth (¢ = 1—N) element is approximated by the linear function of x and y:

u(x,y)=p, +pix+pyy,
v(X,y)=q, + ¢/ x+q5,

(4.132)
(4.13b)

where po°, pif, p and gy, g/, ¢ are expansion coefficients. Assuming the
displacements at nodal points 7, j, and k& in the ¢th element are given by (u;, vi), (%, v;) and
(us, vi), respectively, the expansion coefficients p’s and g’s are obtained by solving the
linear equations which can be obtained from (4.13) for the nodal displacements

corresponding to the 3 nodal points 7, j, and & of the eth element. Thus, one can obtain

2 U,
pr|=[C | |s (4.14a)
_P; Uy
[ 4; v,
g |=[C Jiv b (4.14b)
_q;' Vi
where [C*] is given by . .
1 % oy B
[Cc:‘ =1 x.i y,i ’
L x
(x, 3. —xy,) (X, —x3) (xy,—x¥)
i, [C]=gm Omv) G G- (4.15)
‘ (% _x‘i) (x,—x,) (xj -x,) :

Here, the coordinates of the nodal points of the triangular ¢lement are expressed as (x,,

ym) (m =1, ], k). Hence, the cross-sectional area s, of the eth element is given by

2Su =(x_,‘ ~x )V -—y,)—(xk _xf)(y.,‘ _yj) -

.\’)—.
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Now, we find the strain components in the eth element as

ou ., 1
¥ ZEx_: By :X[(J’j =y (e —yu, + (0, _y.f')u"':l’
ov . 1
&y :—35_;)-:‘?2 :.2_.Y-|:(xk "_xj)vj +(x, _xk)vf +(x1 _x’)v"']’
o ou_ . . 1
Vv =§+§=% + P :Ts*c[(y; =Yy -y, “y.f)vﬁ':]+
1

25 [(xk — X, )'u,l +(x; — X% u, +(x, — x,)u, :l

¢

Therefore, we get the strain vector in each element as

]
v,
&y i (y_,i—yk) . Y (yk—yi) 0 (yf_y.f) 0 ”f
T 0 (x, —x,) 0 (x;, —x,) 0 (x,-x,) v"
Y Nl -x)) =3) (x-x) -») &-x) -y) u:-
L Ve

(4.16)

This is rewritten in matrix form as

(e} =z e, @1

where [B°] is a 3x6-element matrix in the right-hand side of (4.16) and {d"} represents
the displacement vector, a 6x1 column matrix having six degrees of freedom for eth

element, i.e.,

) 0 w-¥) 0  (-y) 0
[Be:lzg 0 (x, - x,) 0 (x - %) 0 (x, —x,) |
Ax-x) -y x-x) -y) (Ex) -y

U

and {d“} nhY
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The strain energy in the eth element is then expressed as

0= ) [t} @

From (3.9), {o°}7 of (3.18) can be expressed as
(o} =[{e} ~{a) [l T =[{a} [B] ) [T (4.19)

Here, [D"] E[D"]T and the element matrix [D"] may be different in cach element,
since the Young’s modulus and the Poisson’s ratio are different in different materials (the
core and substrate regions). Also, note that if [4]=[B][C], then [A]T =[C ]T [B]T . Now,

using (4.18), (4.19) can be expressed as

1
— dx d
2 Y

I[ T o] [} -
S\ 2fet [BY [ (e} + (s} (0] (=)
5ty T[0T [}l (2] [P el [o] ).

For the last term of the above equation, we can find that

{ar} [0] (&) :%-? (a,AT) . (4.20)

Here E,, 1, and . are the Young’s modulus, the Poisson’s ratio, and the thermal
expansion coefficient of the element. Since (4.20) is always positive, it can be neglected
in the minimization process of potential energy. Then the strain energy F in the eth

element is expressed as

Ut = e} [a e} (). (421)

- Here [A°] is a 6x6-element stiffness matrix and {#°} is a 6x1 thermal stress vector, which

are given by [A"]= s, [B" ]T[D" ]T [B" ], _ (4.22)
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and =5t ][] fec ). (4.23)

The total strain energy is then obtained by summing the element strain energy:

U=3 Ut =) [Al{d} - {a)" {1}, (4.24)

e=l

where {d}, [4], and {H} are the 2nx1 global strain vector, the 2nx2n global stiffness

matrix, and the 2nx1 global thermal stress vector, respectively.

An external force applied to the body is approximated by the force concentrated at the

node on the surface of the body. Then the vector of the external force is expressed by

Ji
&
1y

{fl,’]z ;grz » (4.25)
:
gx

where # is the number of nodes on the surface of the body, £ and g, denote the x- and y-
axis components of the external force applied to nodal point /. When a displacement (u;,
v;) is generated by the external force (f,, g;), the work done by the force is (w; f; + v; £)).

The total work done by the external force is then given by
vy i, )

Here {d'} is the displacement vector comprised of #;’s and v;’s of n nodes on the surface
under stress. However, in order to add up the energy of the external force to the total

potential energy, we have to find the work done from all the nodal contributions such that
V=" {7} (4.26)

where in finding ¥V, the force on nodes other than the nodes on surface must be zero, so

that V=V". Therefore, {f,} is the global load vector acting on each nodal point.



38
Now, the total potential energy is given by

MU -7 =Ly Lgfa) (o) (o1} +1}]. 27

For the thermal stress analysis of birefringent fibers and wave guides without external

force, we simply make {f;}= {0}.

Potential energy should be a minimum by the energy principle. Therefore, the partial

derivative of I with respect to the displacement of each nodal point should be zero:
oIl

.. . = A d - H - = 0 )

e srar =LAt =)= 1)

We then have the 2nth-order linear simultaneous equations:
[4){d} ={H}+{1} (4.28)

For the global system, now it can be written that

(4§ T

The solution of (4.28) gives the displacements at all nodal points of the fiber or
waveguide under thermal stress and/or external forces. The solution of the displacement

vector can be easily obtained as:
{dy =[] [{H}+{1]: (4.29)

General sparse matrix solver may be employed to solve the system of linear simultaneous
equations in order to find the displacement vector. Once the displacement of each node is

known, the stress in each element is calculated by

o} =[] (8} -1a): =1 30

s
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However, in solving the lincar simulancous equations, the boundary conditions should
be taken into account very carefully. Also, symmelry conditions can be used to reduce

memory and time of computation in the case ol linite clement analysis.

In optical fibers or waveguides under stress or strain. the original refractive index of the
material changes due to the photoelastic eflcel. The new refractive index for x-"and y-

polartzed light can be calculated from the loliowing cquation [7]-[8]. [15]:

n(x, y) (X, ) ¢ ¢ G a,{(x.¥)
n(xy) (= ne(xy) |-G G G [oxy) ). (4.31)
n.(x.y) no(x. )| |G, C, C | loxy)

Here Cy, C; are the elasto-optic (photoelastic) coellicients of the fiber or waveguide
material. my, o, and - are the unstressed refractive indices of the material and n,, n,,
and #. are the main diagonal elements of the anisotropic refractive index tensor. Since the
material considered here is silica, an isotropic material lfor the {iber, having a relractive

index, n, we have in this case
no(x.y)=n (x.yy=n,(x.y}=n (4.32)
Once the stress analysis is performed, the antsotropic relractive index components can be

calculated. Thus, the refractive index distribution over the cross-scetion of the [iber under

stress is known. Therefore, the vector finite element method can then be employed to find

the modal solutions of quasi-TE (H},) and quasi-TM ( 4}\) modes. The details of the _.

vector FEM can be found in the literature.

However, after the stress analysis, the birefringence can be calculated from the refractive
indices lor the x- and y-polarizations. Because the stress is distributed across thé whole
cross section of the fiber or waveguide, the birefringence is evaluated from the average
tensor refractive indices in the core region and also the values al the center of the core

[7].
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Thus,

1, =% H i (x, ) dxedy .
‘

ey

n, :% H n{x, y)dxdv.
A ,

where A is the area of the core region. Therefore.

B =n -n,=

drerage X v

(’—;(—' J;j(ol_ o dedy . (4.33)

Sometimes, the birefringence of the fiber is approximated by the difference of refractive
indices at the center of the fiber core [7]. Assuming that the center of the core is the

origin of the coordinate system, we can write

By =1,(0,0)~1,(0.0) = (. ~C)T, =) oo (4.34)



Chapter 5

Numerical Results and Discussions

5.1 Structure of the System

A simulation program based on the FEM of previous chapter has been devetoped for
the thermal stress analysis of different optical fibers. The birefringence properties,
stress and refractive index distributions were investigated thoroughly in this work.
Though the target was the side-hole fiber, at first we carried out the thermal analysis
on a single fiber structure and verified our calculated results by comparing with the
exact analytical results. The program was written in FORTRAN77 on a windows
based PC platform. Before showing the numerical results, aA briet discussion on the

basic structure of the system that we have developed here, has been presented in the

form of a flow diagram below.

We started our analysis by setting values for fiber parameters that define the cross
-~section of the structure and the type of fiber material. The next but very important step
is to divide the cross section of the fiber into small elements of finite numbers. As the
accuracy of the solution using FEM depends on the number of elements and the
density of elements on or ncar the discontinuity of the material, only onc forth of the
cross section is discretized. Then the matrices of the simultaneous linear system of
equations are constructed from the elemental matrices. At this stage, the appropriate
boundary conditions for nodal displacement on the plane of symmetries are applied.
The final system is then solved numerically using Gaussian elimination technique.
Once the noda! displacement is known, it is straightforward to calculate the stress

developed in each element and also the Birefringence in terms of x and y polarized
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light. We wrote these data into data files and MATLAB, ORIGIN are used for further

]

!

Assigning parametric values for fiber structure

v

Triangular mesh division on fiber cross section

!

Construction of elemental matrices

v

Establishing global stiffness matrix and global load vector

' v

Enforcing boundary condition

v

Construction of final system of equations

!

Solution of system of equations using Gaussian elimination technigue

y

Computation of elemental stress from nodal displacement
' / Writing data files /

!

[ Stop

processing and plotting the results.
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5.2 Results and Discussions

Before conducting the stress analysis of noncircular core fibers, circular fibers under
thermal stress are analyzed. Since the stress distributions of fibers under thermal
stress are analytically obtainable, it can be used to test the accuracy and eftectiveness

of the developed program. For a circular fiber under thermal stress, the stress

distributions are given as follow [8],[15]:

(b -d*) (@,-a)
; EAT (0<r=<a)
_ 2b (1-v)
Tr — 5 Y
a {a,-a) b2
. EAT| =1 (a<r<b)
i \ 2b (1-v) r
(b=’ (a,-a,) |
; EAT : (0<r<a)
2b (1-v)
Ty — 3
2
a (a,-a)) b2
- ; EAT) —+1 (a<r<b)
267 (1-v) 4

where a and b denote the core and cladding radii of the fiber. E, v (nu} and AT are
Young’s modulus, Poisson’s ratio and the temperature change. o, and o are the
thermal expansion coefficient for core and cladding materials. n, and #, are refractive

indices of core and cladding and C,, C; are elasto-optic coefficient respectively.

First, let us consider a fiber with a circular core as shown in Fig. 5.1(a). The cross
sectional dimensions and the material parameters are shown just beside the structure
in the figure. For this simple structure, the o, and og are calculated analytically using
the above equations and the numerical results are obtained using the method described
in the previous chapter. Our numerical results agreed well with the analytical result

and the program was verified.



a = 7.8 um
b = 62.5um
E = 0.007830 Kg/pm®
vV = {},186
o = 1485x 107 /°C
o = 54x107/°C
AT = -1000.0°C
My = 1.45
[{p] = 1.4433
C = 7421 Mmz/kg
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Fig. 5.1: (a) Cross section of a circular core fiber, (b) Comparison of thermal stress

obtained from analytical method and the FEM.
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b = 2.5 pm

c = 50.0 um

E = 0.007380 Kg/pm®
\ = 0.186

o (core) = 2.0x10°/°C
oy (clad) = 1.0x10°%/°C
AT = -1000.0°C

1y = 1.3

2 = 1.48

G = 7.42 pmz/kg
C, = 41.0 pmz/kg

Fig. 5.6: Cross section of an elliptical core fiber.
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Ellipticity, &

Fig. 5.7: Variation of birefringence with core ellipticity.

In Fig. 5.6, an optical fiber with elliptical core is considered. We calculated the
birefringence using (4.33), where the new refractive indices as obtained considering

the elasto-optic effect due to thermal stress are used. In Fig. 5.7, the calculated
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birefringence versus core ellipticity 'is shown. The results are compared with the
results of Liu et al. {1995) [7]. The solid linc shows our resuit and the dark circles
show the results of Y. Liu et al. (1995) [7]. The results agreed very well. It is seen that
the fiber birefringence increases with the core ellipticity. This is due to the increased
difference of refractive indites in-x and y directions. [t can be seen in the numerical
results that due to elésto«dptic effect of thermal stress, the change in the index value
of x direction (An,) is greater than the change in the index of y direction (An,) when
ellipticity increases. As a consequence, the birefringence increases with the increase
in ellipticity. The stress distributions are shown in Figs. 5.8, 5.9, 5.10, 5.11 for
ellipticity, € = 0.6. It is observed that the high stress is concentrated over the core
regioh of the fiber. As the core ellipticity changes the nature of high stress changes
accordingly. The increase of core ellipticity means the increase of core region in x
direction, which produces higher degree of asymmetry and hence greater stress. The
maximum value of the x component of thermal stress for elliptical core fiber with
ellipticity 0.0 (i.e circular core), 0.2 and 0.6 were found to be 4.6 x 10°, 5.46 x 10
and 7.26 x 10 kg/um?®. This indicates that thermal stress increases with ellipticity.
For the y component (o,) of stress distribution we get the noticeable negative value,
which increases negatively with core ellipticity. Because of all these, the

birefringence increases with the increase in ellipticity.

In Fig. 5.12 and Fig. 5.13, the change in refractive indices due to thermal stress are
shown for elliptical core fiber with € = 0.6. From these figures it is clear that the
change of refractive index from unstressed to thermal stress condition has a profound

. effect over the core region and elsewhere it is negligible.

Next, we consider side-hole optical fiber and investigate the effect of air hole placed
on each side of x- direction in an elliptical cére fiber. The influence of pitch length (i.e
the distance between core center and side-hole center), side-hole radius and position
on fiber birefringence will be examined. The birefringence variations due to
temperature change during fiber manufacturing and thermal expansion coefticient of
core and cladding materials will also be investigated. The fiber structure and

parametric values are depicted in Fig. 5.14.
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Fig. 5.10: Stress (oy) distribution over the cross section of elliptical core (& = 0.6)
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Fig. 5.11: Contour map corresponding to Fig. 5.10
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Fig. 5.13: Refractive index difference (Any) and the corresponding contour map over
the cross section of elliptical core (g = 0.6) fiber.




5.3 Results of Side-hole Fiber with Elliptical Core
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2.5 um

= 50.0 um

0.007380 Kg/um’
0.186
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and, I = Pitch length

Fig. 5.14: Cross section of the side-hole fiber with clliptical care.
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Fig. 5.15: Birefringence versus pitch léngth of side-hole fiber.
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Fig. 5.16: Birefringence versus pitch length when core ellipticity, € = 0.6.
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Fig. 5.17: Birefringeﬁce versus pitch length with core ellipticity, € = 0.6 and 0.5.
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Fig 5.18: The birefringence versus thermal expansion co-efficient of fiber core
material.

Fig. 5.15 shows the effect of pitch length on birefringence of a side hole ‘ﬁbér with air
hole radius, r = 7.5 um. The higher the pitch length the greater b_irefringence is
obtained. Here we have four curves; one for circular core and three for elliptical core
(g = 02, £ = 04, £ = 0.6) fbers, among which € = 0.6 is on the top. It has
birefringence of 1.709 x 10* at T = 20.0 um. On the bottom, the circular core fiber
produce — 4.203 x 10 birefringence at T = 20.0 pum. So the fiber with core ellipticity,

e = 0.6 and greater pitch length will generate high birefringence.

Fig. 5.16 and 5.17 show the variation of birefringence on pitch length and cliipticity .
These figures also show the effect of change of temperature. It can be seen that the
higher ellipticity and temperature change result greater birefringence at farger pitch

length.

Fig. 5.18 shows the birefringence dependence on the thermal expansion coefficient of
core material (o) for three values of the thermal expansion coefficient of

claddingmaterial oz = (2, 4, 6) x 10 /° C. From this figure it can be seen that for each
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Fig. 5.19: Birefringence versus air hole radius for a pitch length, 1" =20.0 um.
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Fig. 5.20: Birefringence versus air-hole radius for different pitch length when core
ellipticity, e =0.6
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Fig. 5.21: Birefringence versus air-hole radius for different core radius with pitch

length 30 um and core ellipticity 0.6.

curve, the fiber birefringence decreases linearly, when o, is less than o and it
increases linearly, when o is greater than o, resulting absolute zero value of

birefringence at a; = a.

In Fig 5.19 the birefringence versus side hole radius is shown. We calculated
birefringence for four fibers; one for circular core and three for elliptical core (£ = 0.2,
£ = 0.4 and € = 0.6) fiber. We found largest birefringence 1.8226 x 10™ for € =0.6
with side hole radius 2.5 pm. Whereas, circular fiber produces lowest birefringence -
1.2179 x 107 with side hole radius 12.5 um. So, birefringence decreases with the

increase of side hole radius.

As it is found that a fiber with € = 0.6 producing highest birefringence, we calculated
birefringence with various side hole radius at different pitch length and the results are
shown in Fig. 5.20. A smaller side hole at far away from the core generates higher
birefringence in this case. The value of the birefringence is 1.8258 x 107 for side

hole radius 5.0 um and a pitch length 30.0 pm.

e
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Change of refractive index

Fig. 5.22: Changé of refractive index (1) over the cross section for circular corc side
hole fiber with I' = 20.0 pm and r = 7.5 pm.
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Fig. 5.23: Contour map corresponding to Fig.5.22.
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Change of refractive index

Fig. 5.24: Change of rcfractive index (»y) over the cross scction for circular core
side hole fiber with I' =20.0 um and r=7.5 um.
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Fig. 5.25: Contour map corresponding to Fig. 5.24.
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In Fig. 5.21 birefringence curves for different core radius and side hole radius are
shown to evaluate the effect of core size. From the figure it is clear that fiber with
smaller core and side hole radius produce higher birefringence. To illustrate the effect
of thermal stress on side hole fiber, finally we show the change of refractive index
over the cross section of the fiber in Fig. 522 through Fig. 5.25. Although the
refractive index changes all over the cross section except the air hole area, the change
is significant in the core and around the air holes. These changes may affect the
optical behaviour of _tHe’ ﬁbér, such as ils cut-off wavelength. So, it has to be taken

into account very carefully.



Chapter 6

Conclusions

6.1 Summary of the work

In this work, the thermal stress analysis of optical (iber is carried out by using [inite

clement method. The stress analysis is based on the plain strain approximation and

potential energy principle; which finally results in a linecar system ol unknown
displacements caused by thérmal strain. Here, one-{ourth of the fiber Cross section is
divided into finite number of linear triangular elements and Dirichlet type boundary
conditions are applied to obtain the final system ol cquations. The Gaussian elimination
technique is then employed for solving the system ol equations o obtain the nodal
displacements. Elemental stress is then calculated from the elemental nodal
displacements. The program is further extended to calculate the changed refractive index
m x and y polarized light using photo-clastic cocfficient and hence the birefringence of

the fiber is calculated,

At first, the program is verified for a stmple circular [iber structure with cireular core by
comparing the solutions with the exact analytical solutions of stress. Then the
birefringence for non-circular core fiber is calculated and compared with the existing
published resuits. For clliptical core fiber, the bircliingence increases with the core
eliipticity. The stress in and around the core gets higher with the increase in the core

ellipticity.

il ]
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The developed system is then applied for the analysis of side-hole fiber with elliptical
core. The stress in this case will be developed in the core and also in the cladding just

around the air holes.

It is found that fiber with higher core ellipticity and larger pith length generates” higher
birefringence. Increased difference of refractive indices in x and y dircctions is

responsible for the higher birefringence,

We found that the fiber birefringence increases with greater change of temperature during
the fiber manufacturing process. At the same time. thermal expansion coefficients of core

and cladding materials have profound effect on birefringence.

Fiber birefringence decreases with increase in side-hole radius when the pitch length is
kept constant. On the other hand, smaller side-holes far from the core generate higher
birefringence. Fiber with smaller core and side holes also can produce higher
birefringence. So, fiber with elliptical core and smaller side-hole radius far from core
center (longer pitch length) can be used as o good member of polarization maintaining
fiber.

6.2 Future research scope

In this work, only two air holes on each side of fiber core is considered. Therefore, a
future work can be done with more than two air holes in different arrangements. The-
developed simulation program can be extended (o study the variation of birefringence for
fibers with air holes circularly around the core. Air holes in two layers can also be
considered. We examined only ‘the birefringence property of fiber due to thermal stress
and geometry of the cbre. However, modal analysis and calculation of other fiber
characteristics like dispersion and loss of dillerent pulurizulion maintaining iber can be
another suggestion for future research work. Most importantly. the system can be

extended for the analysis of photonic crystal {ibers under stress as well,
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