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ABSTRACT

Direct detection has become recent attraction for the optical communication designers.

The obvious reasons are low cost, simplicity and a lot more which is vet to bhe

evaluated. However, the direct detection technique has the limitation in data rate for

application in power limited free-space optical channels due to relatively low optical
power output of semiconductor laser diode. The work undertaken here is confined to
direct detection scheme which though have a few shortcomings posses a signiticant
immunity to noise interference compared to the heterodyne detection concept. This 1s
because the direct detection technique does not use the phase information. Our attempt

is to explore this particular phenomena and judge the overall performance.

A theoretical analysis for direct detection optical frequency shift keying (FSK)
transmission system is provided employing forward error correction (FEC) coding to
combat the effect of phase noise of transmitting laser due to non-zero linewidth. Two
types of coding viz. Convolutional coding (CC) and Reed-Solomon’s (RS) coding are
considered with hard decision Viterbi decoding to investigate their relative

effectiveness in overcoming the degrading effect of laser phase noise.

The performance results at a bit rate of 2.5 Gb/s are also evaluated for different

receiver and system parameters. The penalty suffered by the coded and uncoded

systems at a bit error rate (BER) of 10 are determined in the presence/ébsence of

laser phase noise. The improvements in the receiver sensitivity due to coding i.e. the
coding gains are also evaluated at BER = 10 for rate 1/2 CC with constraint length
K = 4,7 and (15,9), (15,7) RS coding techniques. Further the reductions in the power

penalty for the coded system over uncoded system are also determined for a specified

_bit error rate. The current effort proves beneficial to the context of relaxing laser

specification and cost optimization.
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1.1 Prologue : .

Since the introduction of Optical Fibre in Communication systems in 1960, the vast
bandwidth of this spectacular media has always provoked the interests of ail. The
quest of the maximum beneficial method to harness the underutilized free band-space
has brought about numerous techniques & proposals. A few of these has only been
analyzed thoroughly to reach for a final goal. Many of these atlempts have given new
insights to explore even further deeper. The significant progress accomplished in the
last few vears in the development of high speed fibre optics has hélped to move
multigigabit-per-second systems close to commercial reality. The trend of these
studies is essentially enriching the domain of this media for all futuristic

Communication systems.

1.2 Importance of Coding in Optical Communication

systems and their benefits :

Today many long haul optical communication systems has been established. most of

these employ monomode optical fibres. These fibres usually have bandwidths that are
orders of magnitude greater than the bandwidth of information being transmitted over
them. Therefore the excess bandwidth can be hamessed to increase the receiver
sensitivity.' Various nonlinear effects like additive white gaussian noise, optical
amplifier spontaneous emission etc. impose embargo in the maximum achievable data
transmission rate and receiver sensitivity. Coding data prior to transmission and
subsequent decoding while at receiving enables us to reduce the aforesaid difficulties

to a significant extent. The role of forward error correction coding in relaxing laser

specifications, increasing receiver sensitivity and increasing packing efliciency of

FDMA networks has attracted much research interests in the last decades{1-9]. In
particular coding offers the following advantages[1-3] :

1. Compared to the uncoded case, the signal to noise ratio per information bit (£,N,)

/]



required with coding is reduced by the coding gain (actually more because for the
coded signal, the linewidth to bit ratio §T is reduced due (o the increase of the
channel rate).

For a specified signal power, the coding gain can be used to relax the laser
linewidth specifications. o

For substantial phase noise (linewidth to bit ratio BT of the order of one),
51gmﬁcantly wider bandwidth is needed for the receiver front-end IF filter than
would be used in the case of zero phase noise. The motivation for this is to

accommodate the frequency-broadened signal that is caused by considerable

. phase noise. The wider bandwidth implies a higher IF and hence greater

vulnerability to f *- type thermal noise in the recciver. Coding by permitting a
narrower IF filter, thus reduces the vulnerability of the receiver to the 2 - type

noise.

1.3 Forward Error Correction Codiﬁg -- A brief review :

Error correction coding is commonly used in digital communications 1o improve the

average probability of bit error. The two common features of all error-correction

codes are structured redundancy and noise averaging. Structured redundancv is a

method of inserting extra or redundant symbols into the information message. Noise

averaging is obtained by making the redundant symbols to depend on a span of

several information symbols. The uniqueness of structured redundancy makes il

possible to tolerate some fraction of the symbols in a block of several information

symbols being in error without destroying the uniqueness of the information message

it conveys, thereby causing a block error. Also noisc averaging indicates that the error

rate decreases with increasing block length.

Coding schemes are often divided into two broad classes :

Linear Block Codes

Convolution Codes (or more génerally , tree codes).



With block coding, the information data, which is usnally binary symbols or bits (but
many have been encoded in any alphabet of g > 2 symbols), is segmented into block
of k-bits of information each, where k is called the block length. Each information
block can represent any one of M = 2* distinct mcsséges M =4 if g > 2) The
encoder then transforms each information block into a larger block of 7 bits (n >k) by
.adding n - k redundant bits in a unique way. Each block of 7 bits from the encoder
constitutes a code word contained in the set of M = > possible code words. The code
words are then fed to the modulator which generates a set of fimte time duration |
waveforms for transmission over the channel. A block encoder is a memoryless device
because each n-bit code word depends only on a specific k-bit information block and
on no others. But it does not mean that the encoder does not contain memory elements.
The ratio of information bits to total bits in a code word is called the code rate R. 1t is
seen that ' '
R=k/n ,
The correction capability of the code ¢ is directly proportional to the amount of
redundancy and can be bounded by the ‘us'eful relation {10-13],
| ' ' t<(n-k)/2

If R, is the information bit rate at input of the encoder, the coded bit rate R, at the
output of the encoder is :
| R.= Ry/R =nRy/k

Practical values for information block length k range from 3 to several hundreds and
for R from 1/4to 7/8.- ﬁ

1.4 Advantages of FSK sysfem and previous work on FSK

direct detection system without codes :

In a lightwave communication system, two important detection strategies are normally
employed, viz. direct detection and coherent detection. In a direct detection reception,
.the intensity of the received optical field is directly converted to a current by a
photodetector while in coherent detection, the received optical field is combined with

4



the light output from a local oscillator laser and the mixed optical field is converted to
an intermediate frequency (IF) signal by heterodyning or directly to a baseband by
homodyning.

Fig. 1.1

Intensity .

odulated .
mocHs R ' Photo 7 , :

. " : Detector ( a ) Direct Detection
Field and . ‘
background
Modulated E Mirror

field | ; ,| Photo RF
Background E Détector demodulator
Ii'::;l ( b ) Heterodyne Detection

Direct detection has become recent attraction for the optical communication desngners
The obvious reasons are low cost, simplicity and a lot more which is yet to be
evaluated. However, the direct detection technique has the limitation in data rate for
application in power limited free-space optical channels due to relatively low optical
power output of semiconductor laser diode. The work undertaken here is confined to
direct detection scheme which though have a few shortcomings posses a significant
lmmumty to noise interference compared to the heterodyne detection concept. This is
because the direct detection technique does not use the phase information. Our attempt

is to explore this particular phenomena and judge the overall performance which

should reflect the actual improvement if there is any.

The nonzero linewidth of laser causes a BER floor and performance enhancement
cannot be achieved beyond the BER floor by increasing the signal strength alone.
Though the receiver performance can be improved by increasing the modulation
index, but there lies a definite limit upto which this technique might help. Coding data
prior to transmission has been a proven altemnative to overcome this problem.
Different coding schemes with different modulation formats has evoked mnumerable
~ combination to try for the designers. Direct detection optical communication systems

5
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are very promising for future deep space applications, inter-satellite links and
terrestrial line of sight communications. The current effort proves beneficial to the
context of relaxing laser specification and cost optimization.

There are two categories of FSK system. One consists of FSK coherent detection
systems and the other of FSK noncoherent detection system. Coherent detection means
either IF synchronous detection or delay modulation. Noncoherent detection means
envelope detection with appropriate filter. Coherent detection can achieve higher
receiver sensitivity, though it requires high spectral purity for light sources. The
‘CPFSK heterodyne delay demodulation system belongs to this category. Some high
performance systems have been developed under this scheme by us'mg external cavity
LDs [14] or a distributed feedback (DFB) LD and a monolithic external cavity LD
pair [15].

The FSK heterodyne dual filter and single filter detection systems are examples of
" noncoherent detection systems. In these systéms, the phase information from the signal
is not used. Therefore, a relatively large LD spectral spread can be tolerated and
conventional DFB LDs becomes applicable. This is important for achieving a simple
and stable system. Some experiments have been conducted using DFB LDs with
single filter detection. However the dual detection systém is particularly attractive
because it offers a 3 dB higher receiver sensitivity than the single filter detection
system. A 34 Mbit/s » 301 km transmission expériment with FSK dual filter detection
has already reported [16].

The direct detection lightwave systems used in terrestrial communication are well
matured. However there are adequate scope for further investigations in space borne
direct c_letéction lightwave systems. One important area which demand close
examination is the study of the relative advantage of the various error correcting codes
when combined with a modulation scheme used for optical pulse transmission. The
use of error control coding is almost indispensable in space channel in order to ensure
high energy eﬁdmw and to reduce the required average power. A

Although significant progress has been achieved during the last decade on coherent
lightwave systems and many experimental and field trials of coherent systems have

6



been reported from various parts of the globe, the very mature of the constantly
evolving technology places itself to more new and challenging problems that need to
be addressed more widély and seriously in order to arrive at stable and acceptable
system solution for practical adoption. A few of these problems has been the subject of
closed examination carried out over a penod of last four years.

McEleice [4] investigated the use of Reed—Solomon‘s codes to increase the
transmission efficiency of the system. Massey [S] studied the application of

interleaved binary convolution codes and showed that the improvement was °

comparable with that of RS codes. However, all these works were concerned with

erasure channel with quantum-noise limited operation. Gagliardi and Yuen [6]

analyzed the system performance when false-alarm error as well as quantum noise
error were considered.

Convolutional coding for the optical channel has also been investigated by Chan [7] in
which he has reported the theoretical maximum coding gains. Forestieri,
Gangopadhay and Prati [8] analyzed the performance of several strategieé for
combining practical convolutional codes and PPM schemes in a direct detection
optical channel and reported the practically achievable coding gains in the presence of
background radiation for both photon counting and Avalanche Photodetector (APD)
optical receivers. The performance of interleaved 2"-army PPM with 8-max soft-
demodulation is superior to other M-ary strategies. However, in the presence of
background noise, short-constraint-length CC on L separate channels in an interleaved
2"-ary PPM performed somewhat worse relative to RS coding on the full channel.

Recently, Atkin and Fung [9] investigated the performance of RS coded optical PPM
system using direct and. coherent detection and compared the performance of both

uncoded and coded coherent PPM system with those for direct detection. It was found

that the coded heterodyne PPM system has a 15.38 dB improvement over coded direct
detection system. The receiver employed was a matched filter receiver and used
threshold detection. a matched filter receiver and used threshold detection. In 1990 L.
J. Cimini, JR. and G.J. Foschini have demonstrated the advantages of using forward
error correction in an OOK optical communication system [2] to mitigate the effects
of laser phase noise and AWGN. R. Schweikert and A. J. Vinck showed in a paper
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that concatenated coding can be advantageously used in communication links with
high data rates. This was achieved via multiplexing a set of regular Viterbi decoders
[17). The outer soft-decision SPC decoding, applied to correct decoding errors
resulting from the inner decoding requires only a small amount of additional
hardware, not likely to limit the decoding speed. '

Y.T. Koh and F. Davidson studied the [performance of two concatenated coding
systems using a K =3, r = 1 / 2 Convolutional code (inner code) and a (15, 9) or (15,
7) Reed-Solomon's code was (outer code) measured over a 5,76 km long atmospheric
direct detection [1] optical communication channel. Inner code interleaving of 100 ps
combined with outer code interleaving of 240 bits (60 RS symbols) was found to be
sufficient to obtain a decoded BER of less than 10" under conditions of moderate
channel turbulence (6%, = 0.6) and an average of 6-10 detected photons per channel
bit. ' ‘

1.5 Objectives of this thesis :

The objective of the present research work is to investigate the efficacy of the forward
etror correction coding in improving the performance of optical direct detection FSK
and ASK transmission systems in the presence of laser phase noise and optical
amplifier’s spontaneous emission noise. Further attempts will be made to determine
the optimum system and receiver parameters for the design of coded optical FSK and

ASK systems. '

A detailed theoretical analysis is to be carried out to evaluate the bit error rate
performance of optical FSK systems with direct detection receivers, employing two
forward error correction coding techniques viz. convolutional coding and Reed-
Solomon coding. The analysis is to be extended to include optical preamplifier in the
~ receiver front end and to determine the effects of laser phase noise, amplifier’s
spontaneous emission noise and gain saturation of optical amplifier etc. on the system
performance. '

An analytical expression for the pair-wise error probability is to be deVeloped to
obtain the upper bounds on the bit error probability for the coded systems. Following
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this analytical formulation, the performance results for the coded systems will be
evaluated at a bit rate of 1 Gb/sec. The improvements in system performance over the
uncoded system will also be determined at a specified bit error rate.

1.6 Organization of the thesis :

In chapter 1 we have attempted to discuss the preliminary topics relevant to our

subject and the importance of coding in optical commuinication system. A brief feview
of different coding schemes are also given.

In chapter 2 detailed theoretical analysis of error probability is discussed. We also
provide the analytical expressions for bit error rate for optical receiver with Mach-
Zehnder interferometer (MZI) as an optical frequency discriminator (OFD)
considering the effects of laser phase noise and receiver noise.

In chapter 3 the popular erbium doped fibre amplifier (EDFA) is discussed which is
 used to improve the receiver sensitivity. The analysis takes further into account the
effects of laser phase noise and amplifier spontaneous emission (ASE).
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OPTICAL DIRECT DETECTION FSK WITH AND
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2.1 Prologue:

Among the high promising modulation scheme now-a-days the frequency shift keying
(FSK) is applied both in direct detection and coherent detection. This due to fact that it
has a compact spectrum and it can take the advantage of the direct frequency
modulation characteristics of distributed feedback (DFB) laser. However a significant
degradation is noticed due to laser phase noise in heterodyne optical FSK system.
Detailed theoretical analysis shows that coherent systems though have in general a
gain of 10 - 20 dB more in comparison to their direct detection counterpart, yet the
whole system is a lot more complex and expensive, not to mention about their high
susceptibility to phase noise and amplifier spomtancous emission. Because of the
requirement of the narrow bandwidth (L W) laser at both transmitter and receiver for
the coherent case and additional circuits for the polarization matching between the
received optical field and locally generated optical field, the phase of the transmitting
laser has to be tracked at the receiver. The other problem with the coherent system is
that the total effective LW is the sum of the transmitting and local oscillator (LO)
lasers. Thus a higher modulation index may be required to attain a particular bit error
rate (BER). The obvious penalty is the increased transmission bandwidth. For a
coherent heterodyne system, the intermediate frequency (IF) is around 4 - 6 times the
bit rate. So for a multi-gigabit system the receiver photodiode must have a very high
bandwidth. Also a large amount of equalization is required at the receiver and
- existence of large f noise at high bit rate increases the receiver thermal noise. Hence
in spite of the improved sensitivity the recent trend is to try the possibilities of the
direct detection system.

The so called laser phase noise affects direct detection much less because direct

detection does not utilize any phase information. Récehtly a direct detection FSK

receiver which utilizes a Mach-Zehnder Interferometer as an optical discriminator is
reported [18]. However, performance degradation of this type of receiver due to laser

phase noise is determined but only for the uncoded case. Our attempt here is to

introduce the combination of different coding and evaluate the results.
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The following topics graduélly explains the discriminator and related analytical
expressions extending towards the coded analysis.

2.2 A model receiver description :

The essentials of the proposed receiver is presented in fig. 2.1. The MZI acts only as -

an optical filter and differentially detects the 'mark’ and 'space’ of received FSK signal

which are then directly fed to a pair of photodetectors. The difference of the two .

photocurrents are applied to the amplifier which is followed by an equalizer. The
equalizer is required to equalize the pulse shape distortion caused by the photodetector
capacitance and due to the input resistance and capacitance of the amplifier. The
reshaped pulses after passing through the baseband filter is detected at the decision
circuit by comparing it with a threshold of zero value. '

- One other type of discriminator is worthy of reference here, namely the Fabry-Perot
etalon Interferometer; a small comparison in connection to direct detection would
reveal some relevant aspects[19]. '

1. Mach-Zehnder Interferometer and the Fabry-Perot etalon Interferometer both can

act as tunable filter (for multichannel application) and optical discriminator.

2. The OFDs (MZUFPI) are built with passive components which are less costly
compared to heterodyne system,

3. MZI provides easy tunability in multichannel system compared to heterodyne
system which requires LDs with wide tuning range and narrow LW.

4. Receiver design is simple and less costly due to the absence of the sophisticated
wideband IF circuits. . .

2.2.1 Discriminator operation :

It is a common property of the interference filters to transmit a narrow band of
wavelengths and blocking all wavelengths outside the band. In our receiver MZI is
employed which is integrated with a silica based waveguide. It is a very promising
device in wavelength division multiplexing (WDM) and frequency division
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multiplexing (FDM) systems. Because of their high frequency selectivity without

mechanical actuator (which is an essential for an FPI), MZI is 3 dB more power

efficient compared to FPI. MZIs can be series cascaded to achieve increased

transmission capacity[18-19].

Fig 2.2 shows the basic configurations of an MZI. It has two input ports, two output
ports two 3 dB couplers and two waveguide arms with length difference AL. The
configuration in Fig. 2.2 (b) and 2.2 (¢) are suitable for MZ] with large AL and small
AL, respectively. A thin film heater is placed in one of the arms. It acts as a phase
shifter because the light path length of the heated waveguide arm changes due to the
change of refractive index. The phase shifter is used for precise frequency tuning.
Frequency spacing from the peak to bottom transmittance of the OFD is set equal to
the peak to peak frequency deviation 2Af of the FSK signal. Consequently the ‘mark
and the 'space’ appear at the two output ports of the OFD. These outputs are
differentially detected by the photodetectors with balanced configuration.

2.3 Theoretical analysis for optical FSK with direct

detection :

- If E (t) represents the signal input to the MZI Fig, 2.2 then the signals received at the
output ports can be expressed as [19] -

B, (1)] = IE(t)Isin[ﬂ%:ﬂ] @3
and
|E,(0)] = IE(r)Icos[ﬂg—z_—ﬁl] | (2.3.2)

where, /; and /; are the lengths of two arms of MZI and % is the wave number which
can be expressed as '

po¥ . 2n 2y (2.3.3)
v A c
A
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7> S and ¢ are the effective reﬁ'actlve index of the waveguide, frequency of optlcal
input signal and velocity of llght In vacuum, respectlvely
The transmittance of arm II of MZ1

I.(f)= IIEE((I)II in’[—lLI’z:-Q] =sin’0  (234)
and that of arm [ of MZI is
1) = ';j; ;’)" [ﬁw_z-..u] 23.5)

where, & is the phase factor related to the arm path difference AL = /, - 1 ; and can be
expressed as

o o kAL _ af1 g AL | (2.3.6)
' 2 c’
Normally AL is chosen as
'C‘
ey @3
Therefore,
. |
6 = a7 (2.3.8)
Then we get
Tu(f) = sm%fgf-—) | (239)
and ‘
T(f) = cos’(—"ff—) 23.10)

The two outputs of the MZI are therefore anti-symmetric and are shown in Fig, 2 3.
For an MZ] used as an OFD, Afis so chosen that[19]
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-
o = e (2.3.11)

‘where, Je is the carrier frequency of the FSK signal and 7 is an integer. The ‘mark’ _ |
and 'space’ of FSK signals are represented by f; and £, respectively where f; = £, +

Af andf, =f. - Af. -
Therefore, when 'mark’ ( ﬁ ) is transmitted , .
| L =landTy=0 (2.3.12)
Similarly, for transmission of 'space’
Ty =0and Ty = ] ©(23.13)

Thus, two different signals f; and f;, can be extracted from the two output ports of

MZIL _

In our study the MZI is used only as an OFD due to the single channel mode of the

operation. However full benefits of MZI can be exploited in a muitichannel operation

for a WDM/FDM system utilizing the periodicity of the transmittance versus
frequency characteristics of an MZI[19]. | | |

The received optical signal at the input to MZI can be expressed as

E(t) = \ZF, cos[2n7.t + 4 (1) + $,(1)] (2.3.14)
where, P is the average optic;al power, f.is the optical carrier frequency, and ¢,(r) are
the signal and instantaneous phase noise of the transmitting laser, respectively.
The signal phase g(f) can be expressed as '

#.() =22 [ 1(z)*m(z)dr (2.3.15)
0

where, Ift) is the modulating signal, * denotes convolution and m(t) denotes the
 inverse Fourier transform (IFT) of the FM response characteristic M(f) of transmitting
DFB laser. |

The phase due to laser instantaneous frequency noise can be expressed as[18]

#.(1) =27 u(t,)dr, | (2.3.16)
) 48

where, 4(1) represents the laser instantaneous frequency fluctuation which is Gaussian
. distributed with zero mean and having a white power spectral density of magnitude
Av/2x, If the transmitting laser has an ideal FM response characteristic, then M() is
flat over all frequencies of the modulating signal and m(¥) is alDiréc Delta function.
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The normalization of M(f) is done in such a way that the magnitude of m(t) represents
the desired peék deviation. We define the modulation index A, as the ratio of peak-to-
peak frequency deviation to bit rate 1/T ,.ie, h =2A [ T. For a given modulation
index A, the normalized m(t ) will be a delta function having magnitude Af Thus
m(t) = §7[M(f)]= Af.6(¢), where 3 denotes the inverse Fourier transform. In

case of random NRZ data

Ity =3 a,p(t - kT)

. k=—oc
where, a; = +1, represents the k-th information bit and p(f) is the elementary
rectangular pulse of unit amplitude and duration T seconds. For NRZ format the
signal phase therefore can be expressed as

8.(1) = 22t J‘ Z a,p(t, — kT)dt, (2.3.17)
The optical fields at the output of two branches of MZI can be expressed as

‘E,(t)=—2—[E(t—rb)-E(t—ra)] (2.3.18)
and |

E, (1) =——2j-[E(t— r,)-E(t - 1,)] (2.3.19)

where, 7, LY and 7, .—.—!-2—.
¢ ¢

Let us défine the time delay due to path difference in MZ1 as

T=7,~7T, = —q-(—-lic-——l‘l - (2.3.20)

Witﬁout any loss of generality we can take 7, = 0, then 7, = = Using (2.3.13),
(2.3.16) and (2.3.17), the output current of upper photodetector is given by, ‘

(1) = R|E, (0)f ~ (2.3.21)

= Rab iy cos{2xf.7 +2xAf J. 2, ap(ty - kT)dt + Aﬁn(""')}
t-r K

where, R;is the responsivity of the photodetector.
Similarly, the output current at the lower photodetector can be expressed as
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i (1) = R,E, (0 | | _‘ ) (2.3.22)

= Rdzps [1 +cos{2nf,f + 2xAf I Z a . p(t, - k)dt, + Ad, (4, f)”
K

The output of the balanced photodetectors is then found as
=iy =iy | (2.3.23)
= R, P, cos[w,7 + Ag,(1,7) + Ap,(1,7) + 6, ]
where, Ag(t,t) = @i(t) - it - ) is the phase change due to phase noise during the

interval 7, Ad,(t - 7) = 2::-4{ j 2. a,p(t, — kT)dt, is the phase change due to signal
. £

- .
component and ¢, is the phase offset due to mismatch between fc and MZI center -
frequency. For the ideal demodulation of CPFSK signal t is so chosen that [14].

T
= 2.3.24
Y (2.324)
and
N 1
w, T =(2n + 1)5 (2.3.25)
"~ Then |

2xAfT = -’2’- (2.3.26)

The phase offset g is assumed to be zero. _

For the case of a " mark " transmission a, = +1, and the total phase change due to
signal component Ag(t,t) during the interval 7is 2rAft. Under the chosen conditions,
the signal current at the balanced photodetector output corresponding to bit ' 1 '

(mark), can be expressed as
' in(1) = R, P, cos[Ag, (1,7)] (2.3.27)
=R, P,x(t) |
. where, : .
x(1) = cos[Ag ,(t,7)] (2.3.28)

Similarly, for ' space ' transmission, the-output of the balanced photodetector is
' i(t) = =R, P x(t)
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The total noise power at the photodetector output consists of shot noise N, , excess
noise due to laser phase N,...; , and thermal noise N, . The power spectral density
(PSD) and corresponding power of different noise components are denived in Ref. 18.

which are as follows : . i
= 2e¢B,R, P, : - (2.3.29)

Nﬂlot
1
Nexcus = E(Rd P')zo.i (2330)
where,
o? = 2aA0VT ' (2.3.31)
and ‘
v, = 3KLEB, | (2.3.32)
RL

where, e is the charge of an electron, X is the Boltzmann's constant, 7, is the receiver
- temperature in degree kelvin, F, is the receiver noise figure, B, is the effective
bandwidth of the baseband filter, R; is the load resistance of the amplifier, P; is the
received signal power and AvT is the transmitting laser linewidth.

Hence the total noise power at the photodetector (PD) output can be expressed as

N = N.rhat + Nexcns + th (23.33)
For a given value of Ady(t,7) = Ad, , the signal to noise ratio at the output of the
photodetector is given by '
2R, R, cosAd,
0ap,) = nzh o [PReR 000 (2334)

W
The conditional bit error rate (BER) for the FSK-DD receiver conditioned on a given
value of Ad, is obtained as [15]

ot -

BER(Ag, )= kN dx - (2335
. Q ‘
2(4d,)
" { 7}
where, erfc(x) represents the complementary error function defined as
er_fc(x) =1- erf(.x) = _j_;_—j':ce-x’ dx (2336)
21



The unconditional BER can be obtained by averaging the conditional BER over the
distribution of Agj, . Then -

Q(M’")}] (2337

- BER =E,, [%e(fc{ 5

5
where, E, 4, , denotes the expectation of Ag¢, . Using (2.33) and (2.36) the final form of {1
bit error rate can be expressed as :

p(A,)d(A4,) (23.38)

BER =—;~Ierf [ZR 4P, cosAg ]

4
|
where, p(Ad,) represents the probability densrty function (PDF) of Ad, orhich is :r |

-Gaussian with zero mean and variance 2nAvr[20]. Thus

|
-[ad,(+,0)] } . (2339) }
j

r(Ag,) =

1
ex
2aAvTt p[ 4xAvr

where, Avis the linewidth of the transmitting laser.
2.4 Theoretical analysis for coded optical FSK : : u}
~ 2.4.1 Coding topologies :

The optimum detection techniques for signals is corrupted by different types of
channel noise. Shannon’s Channel Capacity theorem states :

| \ C=Wlog, (1+S/N) bits (24.1.1)
where C = channel capacity N = noise power
S = signal power W = channel bandwidth

Since for PSK signaling with no coding, P, = 10~ for E/N, = 9.6 dB and from the
above equation P, — 0 for Ey/N, = - 1.6 dB with ideal coding and ¥ — o, the
capacity theorem promises a potential coding gain of 11 dB. Since the publication of
Shannon’s results in 1948, the systems designers have been constantly searching for
coding methods to improve the rate of transmission in noisy channels. In a practical
communication system, shown in the following figure, the ultimate efficiency in
transmission may be obtained either by using forward-error-control techniques (FEC)
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or by using a feedback channel along with error detection and retransmission
techniques (ARQ). The ARQ method is used when the accuracy requirement is severe
and some delay is permissible, e.g. in data transmission systems,

i igital m i Data
Binary FEC/ARQ Digitel modulation
Source Code ASK/FSK/PSK/APK Demod. |[—» Decoder —>

an 24 Anx channel for ARQ

If however, the time delay is not permissible a.nd the transmission-reception has to be
continuous as in, say, satellite links and long distance telephone channels, then FEC
methods have to be used.

The channels are modeled as either a binary symmetric channel (BSC) or a binary.

erasure channel (BEC), as shown in the following figure. FEC is generally used in a
BSC and ARQ in a BEC.

1 1-p 1 1 . 1p 1
B.S.C. ' ‘BE.C.
Errors occur in the channel either in a random manner or in bursts, e.g., in telephone
channels and high frequency telephone channels. Specific burst-error correctmg codes
have been developed for bursty channels.

In Convolutional coding, the information data is passed through a linear shift register
with M stages which shift & bits at time. For every M information bits stored in the
shift register, .there are # linear logic circuits which operate on the shift register
contents to produce # coded bits as output of the encoder. The code rate R is therefore
R = k/ n. Because a particular information bit remains in the shift register for M/k
shifts, it influences the value of nAM / k coded bits. Thus, the Convolutional encoder is

a device with memory. Typical values for k and » are in the range of 1 to 8, for R in
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the range of 1/4 to 7/8, and for M in the range of 5 to 70. A Convolutional encoder
with M =3, k=1 and n = 2 is shown the figure below.

Switching

e e — Input =
- . Output rate =2
Flg. 25 | e input rate

Form the above discussion it is seen that error-correction coding requires more

capacity. This can be in the form of a wider bandwidth in a FDMA channel or a
longer subburst in a TDMA channel.

In the following discussion some more concepts involving a coded system will be
' represented: hard-decision, soft-decision, and maximum likelihood decoding etc..
Consider a coded system operating on an AWGN waveform channel, from the
viewpoint of the encoder and decoder, the discrete memoryless channel (DMC) is the
most important. It is characterized by a set of M-ary input symbols, Q-ary output
symbols, and transition probabilities Pr(jji), 0 <is< M-1,0 ;< @-D,
(where i is' a modulator input symbol, ; is a demodulator output symbol and
probability Pr(jli) is the probability of receiving j given that i was transmitted) that
are time-invariant and independent from symbol to symbol. The most commonly
encountered case of a DMC is a binary symmetric channel (BSC) where ( 1 ) binary
modulation is used (M = 2) ;( 2 ) the demodulator output is quantized to O = 2 levels
and ( 3 ) Pr(0]1) = Pr(1|0) = p and Pr(0{0) = Pr(1]1) = 1 - p. The transition
probability p can be calculated from a knowledge of the waveform used, the
probability density function of noise and the output quantization threshold of the
demodulator. For example, when coherent PSK is used with binary output
quantization, the BSC transition probability is just the PSK average probability of bit
error with equally likely transmitted symbols 0 and 1 given by p = QV/(2RE; /N, .
The optimum threshold is 0 and the demodulator output is a 0 if the output voltage of
the matched filter is negative. Otherwise, the outputisa 1.

24
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When binary demodulator output quantizat.ion is used (Q = 2), the decoder has only
binary tnputs. In this case, the demodulator is said to make hard decisions and the
decoding process is termed hard-decision decoding. Many coded digital
communications systems use binary encoding with hard-decision decoding because of

its simplicity.

In some binary—encodéd systems where Q-ary demodulator outi)ut quantization is
used (Q > 2) or the output is left unquantized, the demodulator is said to make soft
decisions. In this case the decoder accepts multilevel (or analog) inputs and the
decoding process is termed soﬁ-aecision decoding. A soft-decision decoder is more
complex than a hard decision decoder, as an automatic gain control is needed and
log ; Q bits have to be manipulated for every channel bit.

Discrete memoryless channel
Information : Power '
Source —DI Encoder ;.I Modulator ¥ amplifier '
: ~ Waveform '
: AWGN channel .
Information r Townoise |
‘user Decoder |n:— Demodulator e amplifier '

Coded communication channel .
Fig. 2.6 :
But soft-decision decoding offers an additional coding gain of about 2 dB at realistic
values of E, / N, over hard-decision decoding. In practice eight-level quantization
(O = 8) is commonly used because there is only a small difference in performance
between the eight-level quantization scheme and the unquantized case. The eight-level
quantized outputs involve one decision threshold and three pairs of confidence
_ threshold. '
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Hamming codes have the following parameters.

Code length : n=2"- 1

Information block length: k=2"-1-m=n-m

Minimum distance : dpy, =3 '

Error correcting capability : =1

Hamming codes are examples of the few known perfect codes. We note that a perfect
code must satisfy the following equation :

Z (c, ) ok (24.1.2)

i=0
which for hamming code is :
1+n=2"* (2.4.1.3)

since n = 2" " * - 1 for these codes, they are obviously perfect. Hamming codes
comprises one of the few classes of codes for which the complete weight structure is
known. The number of code words of weight i, 4; is simply the coefficient of x/ in the
expansion of the following weight enumerator polynomial.

A(x) = n—ﬁ[(l +x)" + n(l ~x)(1- x’)‘"‘””] (2.4.1.4)

For example,let m=3,n= 2°-1=7k=7-.3 = 4 ; then the weight enumerator
polynomial for the (7, 4) Hamming code is

A(x) = l[(1 +x) + 701~ %) - x’)’] =1+7x° +7x" +x7 (2.4.1.5)

Therefore the weight structure for the (7, 4) Hamming code is Ap=1, 4;=A4,= 7 and
A,=1. ‘

Golay codes represeﬁt_ another class of perfect codes and have the following
parameters.

Code length : n = 23
Information block length : k=12
" Minimum distance : dyg, = 7

6



Error-correcting capability : t=3

- The extended (24,12) Golay-code is widely used with a minimum distance of 8 by
adding an extra redundant bit and has the exact code rate R. = 1/ 2. The weight
enumerator polynomial of the (23, 12) Golay code is

A(x)=1+253(x7 +2x° + 2x" + x"%) + 1288(x" +x2)+x®  ° (2.4.1.6)

The weight enumerator of the extended (24,12) Golay code is
A(x) =1+ 759(x® + x'°) + 2576x" + x™ (24.1.7)

Bose-Chaudhuri-Hocquenghem (BCH) codes are basically binary cyclic block codes
that have the capabilities of multiple-error correction and detection. They have
sufficient structure so that encoding and decoding may be accomplished with
straightforward combinational circuits (for example, shift registers). The familiar
Hamming code is simply a special case of a BCH code which can correct all 1 bit
errors. For any positive integer m > 3-and t < 2™ - 1 there exists a binary BCH code
with the following parameters. | ’

Codelength: n=27-1
Information block length : k > n - mt
Minimum distance : dp;, = 2¢ + 1
Error-correcting capability : ¢ bits |

The weight structure BCH codes is still unknown in general, except for double-error -

and triple-error correcting and for some low-rate BCH codes. The (127, 112) BCH
code is used in the INTELSAT V' TDMA system.

Reed-Solomon’s codes are linear, cyclic symbol error-correcting block codes and can
be thought of as nonbinary BCH codes [5],[6] (i.e. #» and k represent the number of s-

bit symbols and not the number of bits). Reed-Solomon’s codes are very powerful in

that, for a given number of redundant symbols r = 7 - k, the error-correcting
capability achieves the maximum. However Reed-Solomon’s codes are considerably
more complex due to their nonbinary structure. Also the computation of the
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| postdecoding bit error rate is considerably more difficult. The parameters for Reed-
Solomon’s code are : |

Symbol length : m bits per symbol

Code length : n =27 - 1 symbols

Information block length : &k = » - 2t symbols

Minimum distance : d,;y = 2 + 1 symbols

Error-correcting capability : ¢ symbols

Reed-Solomon’s codes provide correction for 2" symbols, hence for burst errors. The
weight for an (n, k) Reed-Solomon’s code is

A0= 1
A4=0 ' : <5< nk
J-t-n+k ) .
4, =("C,) Y D'(CH2"YD ) nktlsjs<sn  (24.18)
k=0

Maximal-length codes have the following parameters.

Codelength: n=2"-1,m2 3

Information block length: k = m

Minimum distance : dpy, = 2™

A maximal-length code has 2™ - 1 nonzero code words of the same weight 2™ *.

The theory of encoding and decoding for linear block codes is well-developed. The
reader can refer to the excellent texts [5,7,8].

Among various types of convolution codes we will assume Viterbi decoding (i.c.
maximum likelihood decoding) based on hard decisions. By hard decision we mean
that the analogue value of the decoded output is not available, but is instead quantized
so that only zero and ones are used in decoding process. The computation of the
performance of convolution codes is quite difficult and will not be discussed here.

2.4.2 FSK with Convolution code :

e Hard decision decoding
For hard decision decoding of Convolutional codes, the metrics in the Viterbi
algorithm are the hamming distances between the received sequence and the surviving
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sequences at each node of the trellis. Since the codes are linear codes, the all-zero
sequence may be assumed to be transmitted. A first event error is made at the /-th
received branch if the all-zero path is eliminated at this point by another path merging
with it. A union bound on the probability of a first event error P, at branch / may be
obtained by summing the error probabilities for ali possible paths which merge with

 the all-zero path at this point. This bound is given by
P < n,P(j) ' (2.42.1)
=0 :

where n; denotes the number of paths.of distance ;j from the all-zcro path and P,fj) 1s
_ the probability that another path which is at a distance j from the all-zero path and has
a metric that exceeds the metric of all-zero path.

An upper bound on fhe probability of bit error , may be obtained by weighing each
term by the corresponding numbers of bit errors. For a rate kin code. there arc k-

symbols decoded on each Branch_. Thus P, 1s bounded bv

& _
Py < TWP()) | (2.4.2.2)

" j:df min

where W is the number of *bit error associated with one aﬁolher path which is at a
distance j from the all-zero path and dy ., is the minimum free distance of the code.
For a binary symmetric channel (BSC), Px()) is upper bounded by

P <Dy
with Dy = [24/p(1- p)] ' \ (2.4.2.3)
- where, p is the probability of a bit error for the BSC. For a rate -172 CC, the weights

W;and the dymi, corresponding to two typical values of the constraint fength & are

K =4, dmia=6, {W;} =2,7, 18, 130, 333, 836, 2069, 5060, 12255.
K =7, dymin = 10, {W}} = 36,0, 211, 0, 1404, 0, 11633, 76628. 469991,

The IF bandwidth expansion factor for the coded system is defined as /= L/ : where r
is the rate of the employed code and L= T/T" is the ratio of the IF bandwidth to the
transmission rate as defined earlier. The computer program for the BER evaluation is

given in appendix A and B.
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2.4.3 FSK with Reed-Solomon's code

The RS code is a maximum-distance-separable (MDS) code which means that for a
given code rate and codeword length, the RS code has the largest possible minimum
distance between codewords. A rate &/n RS code (n,k) has minimum distance given by
dmin = n-k+1. However, the complexity of the error correcting algorithm for RS codes
is a function of the block length and increases for a given code rate with the alphabet
size.

“When the number of words in error within the RS codeword exceeds
dmin /2 , the output may appear closer to a different RS codeword and. in general, the
decoder makes an -error (€). When erasures (s) are also present i.e., no decision is
made by the demodulator, the decoder can correct patterns of errors (¢) and erasures
(s) such that 2e+s < n-k+1, multiplied by the corresponding probability of each event
" occurring, ' 7

The probabilities of having e specified words in error, s specified crasures and
n-e-s correct words are (P.)°, (Py)* and (P.)™ respectively where P, . P;, P, are the
probabilitiés that the word is in error, in erasure or is correct respectively. The number
of ways to obtain e errors, s erasures and- n-e-s correct words s
[2-3]. |

[ ][n ‘«C ]_ s s)!e!s! | (2.4.3.1)

where, the brackets represent binomial coefficients. Thus for choices of
2¢e+s < dmin » P(e, 5, n), the probability that the correct RS clmracter can not be
detected, is given by[2] ’
nt

Pl = e S (P (Y (R @432)

where, 2¢+s > dpio. The relevant computer program is given in appendix C. The
fraction of the output symbols which are in error (or erased) is upper hounded by
(ets)/n.
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If we now sum over all combinations of errors and erasures such that
2e+5 > dyin , the bit error probability for the RS decoder with hard-decision decoding
scheme, in which no erasure is formed, the bit error probability is given by[2-9].

P= Slclkerer @433)

2.5 Results and discussion

Following the theoretical analysis presented in section 2.3, the performance results of
optical direct detection FSK system are evaluated at a bit rate of 2.5 Gb/s with and
without forward error correction coding. In the latter case we employed two encoding -
techniques, viz. Convolutional coding (CC) and Reed-Solomon’s (RS) coding. The
computations of the performance results are carried .out for several values of
normalized laser linewidth AvT and modulation index A= 2A/fT.

Figure 2.7 depicts the bit error rate (P;) performance of coded and uncoded FSK as a
function of the optical signal power P, (dB,,). The coded results are presented for rate
172 Convolutinal coding with hard decision decoding for two values of the code
constraint length k = 4, 7 when the normalized laser linewidth AvT = 0.0 and
modljlat_ion index h = 0.5. The plots reveal that the bit error rate P, decreases more
sharply for coded case than for uncoded case. The results are provided for the same
information rate. |

It is also evident from the curves that to attain a specified bit error rate, say

P, = 10", the required signal power P is less for the coded FSK system compared to
uncoded FSK. '

When the normalized linewidth AvT is increased to 0.005 keeping the modulation
 index unchanged (k = 0.5) the performance results are shown in Fig. 2.8. Compared
to Fig. 2.7 it becomes clear that the error rate curves move slightly upward due to
impact of laser phase noise. Similar results are provided in Fig. 2.9, Fig. 2.10 and Fig.

2.11. Comparison of these curves with Fig. 2.7 shows that the bit error rate increases |
with increasing value of the normalized linewidth AvT and bit error floor occurs
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when AvT 2 0.01 at or above 10 for uncoded FSK. On the otherhand, for the coded
case, no error rate floor occurs for AVT = 0.01 or less and at higher values of AVT,
floor occurs at a much smaller value of P, For example, in Fig. 2.11 the BER floor
occurs around 10 for the uncoded FSK whereas for the coded case floor occurs at
around 10”7 and 10™* corresponding to constraint length k =4 and 7 respectively.

The performance curves for coded and uncoded FSK are also provided in Fig, 2.12
through Fig. 2.16 with and without laser phase noise when A is increased to 1.0. It is
noticed that the performance of the system becomes degraded with increasing value
of non-zero linewidth AvT as found earlier. However, for the same value of AvT
increased value of the modulation index provides better performance. Comparison of
Fig. 2.13 with Fig. 2.10 reveals that the error rate curves become more stecper with
increasing value of the modulation index 4. Further, when Fig. 2.11 is compared with
Fig. 2.16, it becomes evident that the BER floor is reduced by two to three orders of
magnitude due to increase in A. For the coded case, the floor disappears due to
increase of A from 0.5 to 1.0.

Similar’; performance results are provided in Fig. 2.17 through Fig, 2.20 for rate 1/2
CC with k = 4, 7 for several values of normalized linewidth AvT when 4 is equal to
20.

Further it is also noticed that there is a considerable reduction in the optical signal
power for the coded FSK system to achieve a bit error rate of P, = 10 compared to
uncoded FSK. We term this reduction in signal power as the coding gain (CG).

When Reed-Solomon’s (RS) coding is employed, performance results for coded FSK
is presented in Fig. 2.21 through Fig. 2.25 for several values of the normalized
linewidth AVT with & = 0.5. As in the case of Convolutional coding, there is also
considerable reduction in the required signal power to attain a specified bit error rate.
Further the effect of laser phase noise is also less compared to uncoded system. It is
also noticed that improvement in system performance is higher for (15,7) RS code
than for (15,9) RS code by around 1 dB at P, = 10®. Thus as the rate of the code is
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decreased, performance becomes better due to less expansion in transmission
bandwidth.

Similar performance results are provided in Fig. 2.26 through Fig. 230 forh=1.0
and Fig. 2.31 through Fig. 2.34 for A = 2.0 with several linewidth values.

The power penalty suffered by the uncoded FSK system due to non-zero laser

linewidth is depicted in Fig. 2.35 as a function of the modulation index A. It is found
that as the modulation index A increases the penalty reduces and is also less at smaller
values of linewidth and particular values of k. Figure 2.36, 2.37 show similar results
for convolutionally coded FSK with k = 4, 7 respectively. It is observed that the
power penalty is negligibly small for coded FSK system compared to uncoded system
at particular values of modulation index # and normalized linewidth- AvT. For
example, for uncoded case as is evident from Fig. 2.35, the penalty is about 3.2 dB
when A= 0.5 and AvT = 0.01 whereas the same is 0.2 dB and 0.05 dB corresponding
to k = 4 and 7 respectively for the coded case. Thus for the same power penalty, the
allowable non-zero laser linewidth is higher for the coded system.

The penalty versus A plots for (15,9), (15,7) RS coded optical FSK system is provided
in Fig. 2.38 and Fig. 2.39 respectively. Similar conclusions are also revealed from
curves as in the case of Convolutlonally coded FSK system.

As shown in Fig, 2.40, the variation of power penalty due to laser phase noise versus
normalized laser linewidth AvT for uncoded and rate 1/2 Convolutionally coded FSK
system with k =4, 7 for h=0.5, it is observed that the penalty is significantly reduced
‘when coding is employed The penalty can be further reduced by increasing the
modulation index h as depicted in Fig. 2.41 and Fig. 2.42. Similar observations are
also found for (15,9) and (15,7) RS coded FSK system as depicted in Fig. 2.43, Fig.
2.44 and Fig. 2.45.

The reductions in the required transmitted power over uncoded system to achieve a
specified bit error rate of P, = 107 is termed as the coding gain and is depicted in Fig,
2.46 and Fig. 2.47 for rate 1/2 CC and (15,9) and (15,7) RS coded systems
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respectively. The figures reveal that there is considerable amount of coding gain that
can be achieved in the absence/presence of laser phase noise. When the linewidth is
© zero, the amount of coding gain is around 2.2 dB for k= 4 and 3.2 dB for k = 7 when
Convolutional coding is employed. For non-zero linewidth coding gain is higher and
increases with increasing values of normalized linewidth AvT. However, the coding
gains are less at higher values of the modulation index 4. This is due to the fact that
effect of intersymbol interference due to phase noise is less at higher values of h and
coding is more effective in the presence of noise.
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CHAPTER 3

OPTICALLY PREAMPLIFIED FSK WITH AND WITHOUT

| | CODING
Table of contents :

3.1 Prologue
3.2 Preamplifier basics
3.3  The combined receiver model
3.4 Theoretical analysis of preamplified FSK
3.5 Coded FSK with optical preamplifier
3.6 Results and discussion ‘
3.7 Conclusions and suggestions for future work
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3.1 Pi'ologue :

In comparative study between direct detection and heterodyne detection it is evident
that direct detection is about 10 - 20 dB less sensitive than heterodyne detections.
But this limitation can be overcomed by adding an preamplifier in the receiver
front-end. Lately direct detection receivers for FSK signals employing erbium
doped fibre amplifier (EDFA)[19] and Mach-Zehnder Interferometer (MZI) have
gained prominence over heterodyne detection receivers. In addition to the low
coupling loss associated with erbium amplifier there are other particular
_advantages too. The inherent polarization sensitivity and the life time associated
with the process are such that the crosstalk in the presence of a number of
wavelength is significantly reduced so the amplifier behaves almost like a true
traveling wave device, which should - eliminate the problems of backward
propagating signals. The noise figure of EDFA is also lower than SLA, partly
because of the intrinsic mechanisms, but mainly due to the reduced coupling loss at
the input.

3.2 Preamplifier basics :

The basic principle behind the operation of any optical amplifier is to stimulate the
electron hole pair recombination in phase with the received optical signal. The
amplifier is biased with a suitable injection current and the amplifier gain is
dependent upon the injection current and the length of the amplifier over which the
incident electromagnetic field travels. Although the amplifier is used to improve the
receiver sensitivity by providing gain to the received signal, it itself generates some
noise due to amplifier spontaneous emission (ASE). This noise corrupts the
amplified optical signal. The characteristics can be defined as zero mean and
gaussian and its PSD can be expressed as [21]

Ny 1 . By
Yo N_(G-Dhv |f15]e2
Sa(f) = 227 : 2 (3.2.1)

0 otherwise
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where, N, is the amplifier's sporitaneous emission factor, 4 is the Plank's constant,
v is the optical frequency and B, is the optical amplifier's noise equivalent.
bandwidth.

3.3 The combined receiver model :

In Fig. 3.1 a combined receiver model is shown in which an optical preamplifier

precedes the MZI with a noise equivalent bandwidth(NEB) of B, . The difference -
of the two photocurrents are applied to the amplifier which is followed by an

equalizer. The equalizer is required to equalize the pulse shape distortion caused

by the photodetector capacitance and due to the input resistance and capacitance of
the amplifier. The reshaped pulses after passing through the baseband filter is

detected at the decision circuit by comparing it with a threshold of zero value.

Finally there is the decoder which performs the decoding of the transmitted code.

3.4 Theoretical analysis of preamplified FSK :

The received signal at the input of optical amplifier as shown in Fig. 3.1 can be
expressed as [22] ‘ : '

o x(1) = \2P, cos[2af.1 + ¢,(1) + ¢,(1)] (34.1)
where, P,, is the amplifier input power, £ is the optical carrier frequency, @(t) is

the phase due to angle modulation and ¢(t) is the instantaneous phase noise of the
transmitting laser.

If the electric field due to the amplifier spontaneous emission can be expressed as a
sum of cosine terms, then the signal at the output of the optical amplifier is [23]

E(t) = 2Pyl cOS[2f.t + $,() + 9,(1)] (342)

where, G is the amplifier gain, 7, and 7, are the input and output coupling
efficiency of optical amplifier.
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The frequency separation v between the frequency components of the spectrum of
ASE is an integer multiple of By such that,

B ]
M = —2—, an integer
26v &

let us define P = Py, iy Mow . Then |

E(t) = \2GP, cos[2af,t + ,(1) + 4,(1)]
et : (3.4.3)
+ 2 52]’\1‘,5vcos[2n'(fc +ksvyt+Q,]
k=— M
= 5(t) + n(1) | - (3.4.4)

The first and second terms of eq. 3.4.3 represent the signal and ASE noise

components, respectively and £ is a random phase for each component of _

spontanecus emission.

The optical signal Et) is passed through MZI and then fed to the photodetector.
The output currents i,(f) and i,t) of the upper and lower photodetectors,
respectively can be expressed as

(1) = RyE (Of | (3.4.5)
and (1) = RJIE,(:)F (3.4.6)

where, R; is the responsivity of the photodetector and E,(1) and Et} are the

outputs of two arms of MZI. Following the same approach as in chapter 2, the

signal component of balanced receiver current can be obtained as
: ' (3.4.7)
i(t) =i (t) —i,(¢t) ,

= GR, P, cos[w,.t + AP, (1,7) + Af,(1,7) + $,] " (3.4.8)

where, 7is the delay due to path difference in MZL, ¢, is the phase offset due to
mismatch between f; and MZI centre frequency, Ag, (£, t) = ¢,(f) - ¢,(t ~ 7)1is
the phase change due to the phase noise during the interval 7 and
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Ag,(t,t)=¢,(t) - ¢,(t — 7). For ideal conditions of demodulation then for a
'mark’ (g@p = +1) transmission, the current i(#} can be expressed as

| i (1) =GR,Px(t) (3.4.9)
where, |

x(1) = cos[Ag, (1,7)] | (3.4.10)

Similarly for a 'space' transmission,

. i,(t) = ~GR,P,x(t) (3.4.11)
The total noise power can be expressed as '
N= Nt + Nexcess + Nssp + Ngp (3.4.12)

where, Nysp is the power due to signal spontaneous beat noise power and the

expressions of Ngr, Newess ,» N are as given in chapter 2 section 2.3.
Then the bit error rate can be expressed as .

1% 2GR, P,cosAg, ]
BER =7 _j; erfC_[ N ]p(M..)d(M.) (3.4.13)

3.5 Coded FSK with optical preamplifier :

Following the similar approach in chapter 2 the perfbrmance of coded FSK

employing Convolutional coding and Reed-Solomon's coding for the present case - |

can be evaluated.
3.6 Results and Discussion :

The performance results for optically preamplified FSK system with and without
forward error correction coding are evaluated at a bit rate of 2.5 Gb/s following the

theoretical analysis presented in section 3.4. The probability of bit error P, is

computed for uncoded and coded system for different sets of values of the
normalized laser linewidth AvT and modulation index A. : ’
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Figure 3.2 provides the bit error rate P, versus transmitted signal power P; (dB,,)
for A = 1.0 when the laser linewidth is zero and amplifier gain is 30 dB. For non-
zero linewidth, the BER plots are given in Fig. 3.3 through Fig. 3.5. Comparison of
the results with those of FSK system without optical amplifier presented in chapter
2, it becomes evident that due to use of an optical preamplifier there is an
improvement in the receiver sensitivity. However, for uncoded case, there occurs

error rate floors depending on the value of AvT.

When the optical amplifier’s gain is increased to 40 dB, there is further
improvement in the receiver sensitivity as depicted in Fig. 3.6 through Fig. 3.9.

Similar results for RS coded FSK with optical preamplifier are also provided in
Fig. 3.10 through Fig. 3.13 for G = 30 dB and Fig. 3.14 through Fig. 3.17forG=
40 dB. :

The coding gain obtained at P, = 10 for rate 1/2 Convolutional coding with k = 4,
7 over uncoded system are plotted in Fig. 3.18 and Fig. 3.19 for G = 30 dB and 40
dB respectively. 1t is observed that coding gain is higher at higher AvT. Similar
plots of coding gains for RS coded system are given in Fig. 3.20 and Fig. 3.21 for
G =30 dB and 40 dB respectively. Comparing these curves with Fig. 3.18 and Fig.
3.19 we observe that coding gain is higher for RS coded case and increases with
AvVT. Further, it is also clear that coding gain is higher at higher amplifier gain.

The power penalty due to laser phase noise at P = 10° for preamplified FSK
system with and without coding is plotted in Fig. 3.22 and Fig. 3.23 for rate 1/2
CC and in Fig. 3.24 and Fig. 3.25 for (15,9) and (15,7) RS coding when G =30 dB
and 40 dB respectively and = 1.0. Comparing Fig. 3.22 with Fig. 3.24 we see
that penalty is relatively small for RS coding than for Convolutional coding.
Similar observations are also found when the amplifier gain is 40 dB as shown in
Fig. 3.23 and Fig. 3.25 and there is further reduction in the power penalty due to
increase of amplifier gmn
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3.7 Conclusions and suggestions for future work :

A theoretical analysis is presented fo evaluate the performance of optical direct
detection FSK system with and without forward error correction coding. A Mach-
Zehnder Interferometer (MZI) is used in the receiver to act as an optical frequency

discriminator (OFD). Two FEC coding techniques, viz. CC and RS coding are in

employed to investigate the efficacy of forward eror correction coding in reducing
the effect of laser phase noise, relaxing laser linewidth and in reducing the
required transmitted signal power to achieve a reliable system performance.

In chapter 2, following the theoretical formulation, the performance of uncoded
and coded optical FSK systems are evaluated at a data rate of 2.5 Gb/s for different
sets of values of the normalized laser linewidth AvT and the modulation index A.
Performance results show that the uncoded system suffers bit error rate (BER)
floor due to the adverse effect of laser phase noise. When coding is applied, the
BER floor disappear for AvT < 0.01 and are significantly lowered by two/three
“orders of magnitude for higher values of AvT. Thus, coding offers a considerable
reduction in the required signal power to achieve P, = 10® compared to the
uncoded case.

Further, the uncoded system suffers penalty in signa] power due to phase noise
which is higher at higher linewidth. When coding is employed, the penalty is
drastically reduced within the limit of 0.5-1.2 dB when AVT < 0.01 h = 0.5 which
is 3.2 dB for the uncoded case. The penalty can be further reduced by increasing
the modulation index. '

It is also found that when rate 1/2 CC is employed for h = 0.5, the coding gain at
P,=10" ,isabout 2.2 dB fork=4 and 32 dB fork = 7. Though almost similar
coding gain is observed for (15,9) and (15,7) RS code, but in the preamplified case

it is evident that RS code responds better in comparison to CC code . This implies -

that RS code offers higher coding gain. Further it can be noticed that coding gain
is higher at high values of modulation index A.
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In the present work, the performance of a single channel, FSK direct detection
optical system employing MZI as an optical filter in the receiver is studied. The
complete potential of MZI can be utilized when a multiplexer/demultiplexer or
frequency selection switch for a multichannel WDM/FDM system is fabricated
using the periodicity of transmittance versus frequency characteristics of '_ an
MZI[19]. The present analysis can be extended for multichannel OFDM syvstems
employing MZI. The BER expression of eq. 2.3.38 can be used but an additional
term due to crosstalk[21] should be included in the expression of total noise eq.
2.3.33. With a long haul multichannel system the applications of optical in-line.
amplifier can be investigated to determine the ultimate number of amplifier stages
that can be cascaded while maintaining reasonable system performance. The effects
of ISI terms can be reduced considerably by employing some form of cascaded
combination of CC and RS coding which is termed as concatenated coding
featuring an inner an outer coding scheme.

In this work the soft decision decoding is not exercised, which is expected to
contribute a further coding gain of about 2 dB for CC and 2.5 dB for RS coding.
Also the penalty variation with modulation index with soft decision decoding

 should reflect the same trend of improvement.- This work can be executed in future. -

In chapter 2, it is found that the degradation of performance due to increasing LW
can be well compensated by increasing the modulation index 4. But with increasing
value of A, the transmission bandwidth will also increase resulting in an increase of
loss due to chromatic dispersion, the effect of which is not considered in the present
work. The fibre which is now in wide use are generally dispersion optimized at
1310 nm whereas the minimum loss occurs at wavelength of around 1550 nm. 1t is
generally preferred to use the wavelength of minimum loss, so that with a relatively
small source of power a substantial distance can be covered. Also, at this operating
range the chromatic dispersion effect is non-trivial and particularly at high bit rate
the penalty due to the above mentioned phenomena is quite large and may severely
restrict the maximum achievable transmission distance. So, a thorough study on the
chromatic dispersion effect of optical fibre 1s essential for an efficient system
design.
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APPENDIX A

DOUBLE PRECISION W(10),PZK(10),PB(10), SNR(10), p(m) S.SUMA
OPEN (10,FILE =C:\OUTp11.DAT")
OPEN (20,FILE =CAWEIGHT2.DAT")
OPEN (30.FILE ='C\INP1.DAT")
N=NO OF CONSTRAINT LENGTH
N=]
M= NO OF WEIGHTS FOR A GIVEN CONSTRAINT LENGTH
M=6 o
NP=NO SNR/BER POINTS
NP=10
DO 1 =1,NP
READ (30,*) SNR(I), P(I)
READ (*.*) SNR(I), P(I)
WRITE (*,*) SNR(I), P(I)
CONTINUE
DO 3J=],M
WRITE(*,*) 'GIVE WEIGHTS'
READ(*,*) W(J)
READ(20,*) W(J)
WRITE(20,%) W(J)
CONTINUE
READ(*,*) CL,DF
WRITE(*,*) CL
DO 10 I=1,NP
ADF=DF
§=0.0

=ABS(4*P(1)*(1-P(D))) -

WRITE(*.*YA=, A, P=P(I), DF=,DF

SUM=0.D0

" WRITE(*,*)'S$=,S,’ SUM—'.SLM

DO 11 J=i,M
PWR=ADF/2.0
PZK(J = A)**PWR
SUM=W(J)*P2K(J)
§=5+SUM

. ADF=ADF+2.0

11

15

WRITE(*,*) '$=, 5, 'SUM=,SUM
CONTINUE

PB(I)=S

WRITE(*, *YPB=",PB(I)

WRITE(10,15) SNGL(SNR(I)), SNGL(PB(I))
FORMAT('SNR ='Ei84, ''PB="EI$4)
PAUSE

10 CONTINUE

STOP
END
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APPENDIX B

PROGRAM TO FIND BER FOR DIFFERENT VALUE OF PS-DBM DUE TO NON- erlFORM FM
RESPONSE IMPLICIT DOUBLE PRECISION (A-H.I-M,0-Z)
REAL NU

COMMON M(10), XMEAN

OPEN(11,FILE= A:AMOMENT2 DAT")
OPEN(10,FILE=BERB.DAT")

DIMENSION M(10)

VARIABLE DEFINITION: RD=RESPONSIVITY=1.0. FE= NOISE FIGURE= 3Dh
MOD. INDEX H=(2*DELF/RB), LINEWIDTH=NU(NORMALIZED =-DT« DELNEW *T)
TAO=(T/2*H), VARIANCE=V AR=2*PI*"(NU/T)*TAO=2"PI*DT1
BW=(280.0)*(10.0)"*(6.0)

BIT RATE IS CHANGED TO THE THESIS VALUE FOR CHECK=2.5GB
BW=(2.5)*(10.0)**(9.0)

CHOOSE BIT RATE, RB. TAKE BW=2*RB.
RB=(2.5)"(10.0**9.0)

BW=(2.0*RB)

T=(1.0/RB)

CHOOSE THE VALUE OF MOD.INDEX, H
READ(11,*)(M(I).I=1,10)

H=1.0 -

WRITE(10,*) 'H="H

WRITE(*,*) H=H

TAO=TA2.0*H) ,
CHOOSE THETAOBAR=XMEAN, FOR A PARTICULAR H
WHERE XMEAN=(-PL/2}+HPI/2) "'Q(TS) :
XMEAN=-0.3 ,

WRITE(*, *YXMEAN="XMEAN

CHOOSE THE VALUE OF NU

GOTO M

GO TO 174

NU=0.0

DT=NU

DTI=(NU/TY*TAO

WRITE(10,*)YDT1=",DT1

SET THE VALUE OF PS_DBM

PS_DBM=340

WRITE(10,*yDT1=,DTI

WRITE(*,*YDTI=,DTI .
WRITE(10.*YDT="DT _ g
WRITE(*,*YDT=,DT ' :

DO 21 U=1,12

PSIG= .001*(10.0)**(PS_DBM/10.0)

CALL SNRT(PSIG,SNR.BW.DT1)

JITA=SQRT(SNR/2.0)

WRITE(*,*)PS="PSIG,JITA=JITA

X=0.0

FOR X=0.0, PDF=PDFN=1.0 AS, PDFN=PDF| i+.. MHE(X)), AND HE.N(0} IS ALWAYS ZERQ F OR ANY

VALUE OF N

CALL ERFC(X.ERFCZJITA)

BER=0.5*ERFCZ

WRITE(10,*)PS_DBM,BER
WRITE(*,“)PS-DBM=PS_DBM, BER='BER, 'PSIG="PSIG
WRITE(10, “')PS_DBM,BER )

PS_DBM=PS DBM+2.0

CONTINUE

CHOOSE THE VALUE OF LINEWIDTH(NORMALIZED)= NU
PAUSE



C

ILLUSTRATIVE VALUEDT=.001,.005,.01,.03......0.195AY.H=.5.1, 1.5, .JSAY.

74 JUMP=1.0

C

Qa0

Gao

4
3

CHANGE NEEDED IN DT, OR IN INTEGRATION LIMIT
DO 1 NU=.004,.007,.002

DT=NU

DTI=(NU/T)*TAO

CALL CDFI(DTL,CDF)
WRITE(10,*)DT1=,DT1,’CDF=".CDF

WRITE(* *yYDT1=,DT1,'CDF=',CDF
WRITE(10,*)DT=,DT

WRITE(* *YDT=DT

PS_DBM=-34.0 .

WRITE(*,*YDT1=,DT1 - <
WRITE(10,*)DT=,DT

WRITE(*,*YDT=,DT

DO 21=1,15

PSIG=.001*(10.0)**(PS_DBM/10.0)

CALL SNRT(PSIG,SNR,BW,DT1)
JITA=SQRT(SNR/2.0)
WRITE(*,*)'PS=PSIG,JITA="JITA

C=XMEAN-AA, WHERE AA--3.5 BE CHOSEN EARLIER BY USING PRODUCT FOR
C=(XMEAN-2.0)

D=(XMEAN+2.0)

CALL SMPSNY(C,D,DT1JITA,SY,CDF)
BER=(0.5*SY)
WRITE(*,*)PS_DBM=,PS_DBEM,'BER="BER
WRITE(10,")PS_DBM,BER

PS_DBM:=PS_DBM+2.0

CONTINUE

CONTINUE

GO TO 100

174 JUMP=2.0

- CHANGE NEEDED N DT

DO 3 NU=0.001,.007,0.002

DT=NU

DT1=(NU/T)*TAO

CALL CDF1(DT1,CDF)
WRITE(10,*)DT1=,DT1,'CDF=,CDF
WRITE(* *YDT1=,DT},'CDF=",CDF
WRITE(10,*)DT=,DT
WRITE(*,*)DT=*,DT

. PS_DBM=-34.0

WRITE(*,*)DT1=,DT1
WRITE(10,*)DT=DT

WRITE(*,*)DT=DT

DO 4 U=1,15
PSIG=.001*(10.0)**(PS_DBM/10.0)

CALL SNRT(PSIG,SNR.BW,DT1)
JITA=SQRT(SNR/2.0)
WRITE(*,*YPS=,PSIG,JITA=JITA
C=XMEAN-AA, WHERE AA BE CHOSEN EARLIER BY USING PRODUCT.FOR
C=XMEAN-2.0)

D=(XMEAN+2.0)

CALL SMPSNY(C,D,DT1,JITASY, CDF)
BER=(0.5*SY)
WRITE(",*YPS_DBM=PS_DBEM, BER="BER
WRITE(10,*)PS_DBM,BER
PS_DBM=PS_DBM+2.0

CONTINUE

CONTINUE

100 STOP

END
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SUBROUTINE SMPSNY{C,D,DT1,JITA,SY,CDF)
IMPLICIT DOUBLE PRECISION (A-H,J-M,0-2) : .
C COMMON XMEAN _
C  SET THE ACCURACY LIMIT YOU DESIRE FROM THE INTEGRATION
DELY=0.01
C  SET THE MAXIMUM ITERATION YOU DESIRE, IMAX
IMAX=10
S11Y=0.00
SY=0.0
DC=D-C
IF(DC)20,19,20 :
19 WRITE(**) ERROR IN BOUNDARY VALUE'
RETURN
20 IF(DELY)22,22,23
22 WRITE(*,*YERROR: CHOOSE +VE VALUE FOR DELY' ;
- RETURN :
23 IF(IMAX-1)24,24,25
24 WRITE(*,*YERROR:CHOOSE +VE VALUE FOR MAXIMUM ITERATION DESIRED'
RETURN
25 HY=DC/2.0+C
NHALFY=1
XMEAN=-0.3
X=HY
XX=X-XMEAN
WRITE(*,*) XMEANSUB=" XMEAN
CALL PDFN(XX,PDF1,DT1,CDF)
C  WRITE(**yX="X PDFi= PDF}
CALL ERFC(X.ERFCZJITA)
C  GET THE VALUE OF F(Xy-PDFI*ERFCZ
FUNHY=PDF1*ERFCZ
C  WRITE(**YIT IS WORKING'
C  WRITE(**) HY=HY,FUNHY="FUNHY
SUMKY=FUNHY *DC*2.0/3.0
C XMEAN=-0.3
X=C
XX=X-XMEAN
CALL PDFN(XX,PDF1,DT1,CDF)
C  WRITE(*,*yX=,X,PDF1=,PDF1
CALL ERFC(X,ERFCZJITA)
C  GET THE VALUE OF F(X)=PDF1*ERFCZ
 FUNC=PDFI1*ERFCZ '
C  WRITE(**) 'C=,C,FUNC=",FUNC
X=D
XX=X-XMEAN
CALL PDFN(XX.PDF1,DT1.CDF)
C  WRITE(* *)X=X,PDF1=,PDF1,CHECK D="D
CALL ERFC(X.ERFCZ,JITA)
C  GET THE VALUE OF F(X)=PDF1*ERFCZ
FUND=PDF1*ERFCZ
C  WRITE(* *) 'D="D,FUND="FUND
C BER OBTAINED FROM THE FIRST ITERATION IN SIMPSON.BER=SY
SY=SUMK Y+FUNC+FUND)*DC/6.0
C  WRITE(**)SY=,SY,'SUMKY=~,SUMKY
C  WRITE(* *YIMAX=,IMAX -
DO 28 IY=2,IMAX

SY=(SY-(SUMKY/2.0)¥2.0
NHALFY=NHALFY*2.0

511Y=8Y :
C FOR 2ND ITERATION KEEP THE CONTRIBUTION OF F{X} AT C,.D & HY IN SY . ;’f“\\
|

ANHLFY=NHALFY i

!
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C

FRSTY=CHDC/ANHLFY)/2.0
X=FRSTY

XX=X-XMEAN

PRINT*.FRSTY

CALL PDFN(XX,PDF1,DT1,CDF)
WRITE(*,*yX=,X,PDF 1=,PDF 1
CALL ERFC(X.ERFCZ,JITA)
GET THE VALUE OF F(X)=PDF |*ERFCZ.
FUNFTY=PDF I*ERFCZ
SUMKY=FUNFTY

YK=FRSTY

WRITE(*,*) FRSTY=FRSTY, SUMKY=FUNFTY=FUNFTY

KLASTY=NHALFY-1
FINCY=DC/ANHLFY
DO 26 KY=1.KLASTY
YK=YK+FINCY
X=YK
XX=X-XMEAN
CALL PDFN(XX,PDF1.DT1,CDF)
WRITE(*,*yX="X,'PDF 1=, PDF |
CALL ERFC(X.ERFCZJITA)
GET THE VALUE OF F(X)=PDF1"ERFCZ
FUNYK=PDF1*ERFCZ
SUMKY=SUMKY+FUNYK
WRITE(*, *YFUNYK=FUNYK, FINCY=" FINCY,'YK=.YK
CONTINUE
SUMKY=(SUMKY*2.0*DC)/(3.0* ANHLFY)
WRITE(* *ySUMKY=", SUMKY,'SY=",5Y
SY=SY+SUMKY .
WRITE(*, *)'SY=,SY,'S11Y=,$11Y
IF(ABS(SY-511Y)-ABS(DELY*SY)) 29,28,28
CONTINUE
WRITE(*,*YINTE=,INTE

WRITE(*, *)DESIRED ACCURACY FROM THE INTEGRATION [S NOT FOUND’

AINTE=5Y

WRITE(*,*) 'AINTE=, AINTE
RETURN

END

SUBROUTINE TO OBTAIN PROBABILITY DENSITY FUNCTIQN

SUBROUTINE PDF(X,PDFX,DT1)
IMPLICIT DOUBLE PRECISION (A-Z)
CONSTANT IDETIFICATION '

P1=22.0/7.0

XAVG=0.0

VAR=(2.0*PI*DT1)

EXPO=((X-XAVG)**2)(2.0*VAR)

ANUMER=EXP(-1.0*EXPO)

DENO=SQRT(2.0*PI*VAR)

PDFX=ANUMER/DENO

WRITE(*,*)X=" X, PDFX=",PDFX

RETURN

END

PROGRAM TO FIND ERFC(Z)

SUBROUTINE ERFC(X,ERFCZJITA)
TMPLICIT DOUBLE PRECISION (A-H,J-M.0-Z)
CONSTANT IDENTIFICATION



C  OPEN(S.FILEZAERF.DAT)

C  PRINT*, 'TUST ENTERED THE SUBROUTINE ERFC........... :
Z=JTA*COS(X)

C DOUBLE PRECISION ZY.P,PP,Q1.Q2.A1.A2 A3, A4 A5 PLZZ
PI=22.0/7.0 ‘
Z7=ABS(Z) g
SIGN=2/ZZ .
A1=0.2548295920
A2=0.284496736
A3=14214137410
A4=-1453152027
A5=1.0614054290

C ERROR=15E-7
P=0.3275911
PP=1.0/(1.0+P*ZZ)

QI=EXP(-(ZZ**2.))
QZ=ALTPP+A2*(PP**2. )+ A3 (PP**3 - A4*(PP**4 }+AS™(PP**5.)
Y=(1.0-Q1*Q2)*SIGN

Y=10-Y

C WRITE(**ERFC_.Z/=.Y
ERFCZ=Y

"RETURN
END

Ct#***t*#‘***‘**-‘***t**##**‘*#ti**ﬁtﬂ##***‘*##t*#**#*###*ﬁ##*tt#**

C PROGRAM TO FIND SIGNAL TO NOISE RATIO
SUBROUTINE SNRT(PSIG, SNR, BW, DT1)’
IMPLICIT DOUBLE PRECISION(A-Z)

C CONSTANT IDENTIFICATION
E=1.6E-19
PI=(22.0/7.0)
RD=L0 , .
CUR=(RD*PSIG) ’

C  WRITE(**YCUR=,CUR
XAVG=1.0

C  VARIANCE= PROD= 2*PI*DT1, RES=LOAD RESISTANCE, FE=NOISE FIGURE
K=138E-23
TEMP=300.0'
RES=50.0
FE_DBM=3.0
FE=(10.0)**(FE_DBM/10.0)
VAR=2.0*PI*DTI
NSHOT=2.0*E*BW=CUR*{1.0+XAVG)
NEXCSS=0.5"(CUR**2.0)*VAR

" NTHRM={4.0*K*TEMP*FE*BEW)RES
NTOT=NSHOT+NEXCSS+NTHRM

C  WRITE(*.*YNSHOT=" NSHOT.NEX=",NEXCSS, NTH=".NTHRM
AMP=2.0*RD*PSIG

C  SNR=(AMP**2}/(TOTAL NOISE, NTOT)
SNR=(AMP**2.0y¥NTOT

C  WRITE(*,*YSNR=,SNR,DT1=.DT1
RETURN
END

#*‘*#i***#***‘#**#*tt#**‘********#..**.tt*#****t*#**#*ﬂﬁ*#*#i*****

*  PROGRAM TO FIND PDF1(X), PDF THAT INCLUDES NON-UNIFORM
=  RESPONSE IN ADDITION TO NON ZERO LW EFFECT
SUBROUTINE PDFN(X,PDF1,DT1,CDF)
IMPLICIT DOUBLE PRECISION(A-H,J-M,O-Z)
INTEGER RN
COMMON M(10)
*  PROGRAM TO FIND PDF FOR A PARTICULAR PHI'=X ¢



WRITE(*,*YCORRECT'
READ(11,*)(M(1),I=1,10)
WRITE(", ) M(1),M(2)}
WRITE(", ™)(M(I),I=1,10)
PI=22.0/7.0
- SUM=0.0 °
C  VARIANCE, VAR=(SIGMA)**2=2*P1"DELNEW*T=2*P1*DT!
VAR=2.0*PI*DT1
STD=SQRT(VAR)
WRITE(*,*)STD=",STD
SET N=0,2.4,...30 ETC. LE R=R=0,1,2.....15 ETC.
DO 5R=1,10
N=2*R .
*  GET X1=(DELPHV/SIGMAFX/STD
X1=X/STD
*  HMITEN=HNCO=HMITEK
CALL HRMITE(X1,N,HMITEK)
ANUME=M(R)*HMITEK
CALL FACTO(N,IFAC)
FACTOK=IFAC
DENO=FACTOK*(STD**N)
C  WRITE(* *)DENO=,DENO
© Al=ANUME/DENO
SUM=SUM+AL1
S CONTINUE
C  WRITE (**)SUM=,SUM
*  GET PDF DUE TO NON ZERO LW ALONE
CALL PDF(X.PDFX.DTD)
* - GET N(DELPH1)=ETA=PDFX
ETA=PDFX
PDF1B=ABS((ETA)*(1.0+2.0*SUM))

QOO0

LEe!

C PDFK.,ITS NAME HAS NO SIGNIFICANCE. ACTUALLY PDFK REPLACES
C PDFN, TO AVOID AMBIGUITY WITH SUBROUTINE NAME PDFN

_PDFK=(PDF1B/(2.0*CDF))
PDF 1=PDFK

WRITE(*,*)PDF1(",X,"=.PDF1
WRITE(10,*YPDFi(",X."}=" PDF 1
RETURN

END
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*  PROGRAM TO FIND HERMITE POLYNOMIAL
SUBROUTINE HRMITE(X,N,HMITEN)
IMPLICIT DOUBLE PRECISION(A-Z)
INTEGER M,I1,IFAC,N

1 IF(X .EQ.0.0) GO TO 22
SUM=0.0
DO 6 M=0,(N/2),1 ‘
ANUMER=((-1)**(M))*(X**(N-2*M))
CALL FACTO(M,IFAC)
FACTOM=IFAC
TI=(N-2*M)

CALL FACTO(I1,IFAC)
FACTOD=IFAC
DENO=(FACTOM)*(2**M)*(F ACTOD)
FRAC=ANUMER/DENO
SUM=SUM+FRAC
6 CONTINUE
C  WRITE(**)SUM

C  HMITEN=HN({X}, IN OUR CASE N=2R=K AND X=DELPHI/STD. DEV)

CALL FACTO(N,IFAC)

PDF1 IS THE NORMILIZED VALUE OFPDF1, PDF WITH NON UNIFORM FM

[



FACTON=IFAC
htt#ttttttt‘tt‘t*tl.ﬁt##ttlttt#ttttﬁ*tttttittttttt-***tttﬁﬁtﬁﬁtﬁﬁﬂwiﬁttttu .
HMITEN=IFAC*SUM '
C  WRITE(*,*YHMITE N, (", X."},'= . HMITEN
GOTO 23
22 HMITEN=0.0
23 RETURN
END
tth*ttti*ﬁ**t.*tt!‘tt##**t#*t#tttt***#tttmtttﬁ-tttﬁtttﬁtﬁt*ﬁtﬁ*t*ﬁﬁ*ﬁm*tt*
C PROGRAM TO FIND FACTORIAL VALUE
SUBROUTINE FACTO(N, IFAC)
FAC=1
DO 8I=LN
IFAC=IFAC*I
8 CONTINUE
RETURN
END
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C PROGRAM TO DETERMINE CUMULATIVE PDF=2.0*CDF=AREA UNDER PDF CURVE
C  SUBROUTINE SMPSNY(C,D,DT1JITA.SY)
SUBROUTINE CDF 1(DT1,CDF}
IMPLICIT DOUBLE PRECISION {A-H,J-M,0-Z)
SET THE ACCURACY LIMIT YOU DESIRE FROM THE INTEGRATION
SET THE MAXIMUM ITERATION YOU DESIRE.IMAX
MODIFICATION ON BER TQ GET CDF, CUMULATIVE PDF
COMMON M(10)
OPEN(11,FILEZAMOMENT1.DAT')
OPEN(10,FILECDF.DAT")
DELY=0.01 ' -
C=00 '
D=4.0
JITA=10
ERFCZ=1.0
IMAX=10
S11Y=0.00
SY=0.0
C  READ(11,*)M(I),1=1,10)
C  WRITE(**)M(1),M(2)
DC=D-C

C IF(DC)20,19,20
C 19 WRITE(*.*) ERROR IN BOUNDARY VALUE
C  RETURN
C 20 IF(DELY)22,22,23
C 22 WRITE(*,*“YERROR: CHOOSE +VE VALUE FOR DELY"
C  RETURN

23 IF(IMAX-1)24,24,25

24 WRITE(*,*YERROR:CHOOSE+VE VALUE FOR MAXIMUM ITERATION DESIREL
C  RETURN
C  READ(11,*)M(I),I=1,10)
C  WRITE(**M{1),M(2) ~

25 HY=DC/2.0+C

NHALFY=1

X=HY _

CALL PDFAB(X,PDF1,DT1)
WRITE(*,*)X= X,PDF 1= PDF1
CALL ERFC(X,ERFCZJITA)
GET THE VALUE OF F(X)=PDF1*ERFCZ
FUNHY=PDF I*ERFCZ
WRITE(*,*)IT IS WORKING'
WRITE(*,*) HY=", HY, FUNHY=,FUNHY
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SUMKY=FUNHY*DC*2.0/3.0
X=C :
CALL PDFAB(X,PDF1,DT1)
WRITE(* *)X=" X, PDFI=,PDF 1
CALL ERFC(X,ERFCZ,JITA)
GET THE VALUE OF F(X)=PDF1*ERFCZ
FUNC=PDF1*ERFCZ
WRITE(*,*) 'C=,C, FUNC= FUNC
X=D
CALL PDFAB(X.PDF1,DTI)
WRITE(*,*)’X="X,'PDF 1=,PDF 1,'CHECK, D="D
CALL ERFC(X,ERFCZJITA)
GET THE VALUE OF F(X)=PDF1*ERFCZ
FUND=PDF1*ERFCZ
WRITE(*,*) D=D, FUND="FUND
BER OBTAINED FROM THE FIRST ITERATION IN SIMPSON,BER=SY
SY=SUMKYHFUNC+FUND)*DC/6.0 :
WRITE(*,*)'SY=,SY,'SUMK Y=, SUMKY
WRITE(* *)'IMAX=,IMAX
DO 28 TY=2,IMAX
S1Y=SY
FOR 2ND ITERATION KEEP THE CONTRIBUTION OF F(X) AT C,D & HY IN §Y
SY=(SY-(SUMKY/2.0)}/2.0 -
NHALFY=NHALFY*2.0
ANHLFY=NHALFY
FRSTY=CHDC/ANHLFY)2.0 .
X=FRSTY
PRINT* FRSTY
CALL PDFAB(X,PDF1,DT1)
WRITE(*,*“)X=',X,"PDF1=",PDF |
CALL ERFC(X.ERFCZJITA)
GET THE VALUE OF F(X)=PDFI*ERFCZ
FUNFTY=PDF 1*ERFCZ )
SUMKY=FUNFTY
YK=FRSTY o
WRITE(*,*) FRSTY=,FRSTY,'SUMKY=FUNFTY=' FUNFTY
KLASTY=NHALFY-1
FINCY=DC/ANHLFY
DO 26 KY=1,KLASTY
YK=YK+FINCY

- X=YK

CALL PDFAB(X,PDF1,DT1)
WRITE(*,*YX=,X,PDF1="PDF1
CALL ERFC(X,ERFCZ,JITA)
GET THE VALUE OF F(X)=PDF 1*ERFCZ
FUNYK=PDF1*ERFCZ
SUMKY=SUMKY+FUNYK
WRITE(*, *YFUNYK=FUNYK, FINCY=_FINCY, YK=YK

CONTINUE
SUMK Y=(SUMKY*2.0*DC)/(3.0*ANHLFY)
WRITE(*, ") SUMKY= SUMKY.'SY=,SY
SY=SY+SUMKY
CDF=SY
WRITE(10,*)CDF=',CDF
IF(ABS(SY-S11Y)-ABS(DELY*SY)) 29,28.28
CONTINUE

WRITE(*.*YINTE=,INTE

WRITE({*,*YDESIRED ACCURACY FROM THE INTEGRATION 1S NOT FOUND.'

AINTE=SY

WRITE(*,*) 'AINTE=,AINTE
RETURN
WRITE(10,*)DT1=,DT1,'CDF=,CDF .



C STOP
END

#tﬁ*t*ti#‘i.iﬁ**-tﬁﬁiﬁﬁitt**#*#ﬁ*tﬁiihttﬁﬁﬁﬁi**t#*tt##ﬁﬁﬁiﬁtttﬁtﬁ*it**t#h*

«  PROGRAM TO FIND PDF (X), PDF THAT INCLUDES NON-UNIFORM
«  RESPONSE IN ADDITION TO NON ZERO LW EFFECT
SUBROUTINE PDFAB(X,PDFA1,DT1)
IMPLICIT DOUBLE PRECISION(A-H,J-M,0-Z)
THIS PROGRAM IS SPECIFICALLY USED TO FIND CDF, LE FOR SUBRQUTINE
CDF. PDF AB= ABOLUTE VALUE, PDFN= NORMALIZED VALUE OF PDF
INTEGER RN
COMMON M(10)
PROGRAM TO FIND PDF FOR A PARTICULAR ‘PHI'=X
WRITE(*, *YCORRECT’
READ(11,*)}(M(1),1=1,10}
WRITE(*,") M(1).M(2)
WRITE(*, *)(M(I),I=1,10)
PI=22.0/7.0
SUM=0.0
C  VARIANCE, VAR=(SIGMA)**2=2*PI*DELNEW*T=2*PI*DT1
VAR=2.0*PI*DT]1 '
STD=SQRT(VAR)
WRITE(* *YSTD="STD
SET N=0.2,4,...30 ETC. I.ER=R=0,1,2.....15 ETC.
DO SR=1,10
N=2*R
= GET XI=(DELPHVSIGMA)=X/STD
X1=X/STD
*  HMITEN=HN(XF=HMITEK
CALL HRMITE(X1,N,HMITEK)
ANUME=M(R)*HMITEK
CALL FACTO(N,IFAC)
FACTOK=IFAC
DENO=FACTOK*(STD**N)
C  WRITE(* *YDENO="DENO
Al=ANUME/DENO
SUM=SUM+AL
5 CONTINUE
C  WRITE (**ySUM="SUM
*  GET PDF DUE TO NON ZERO LW ALONE
CALL PDF(X,PDFX.DT1)
GET N(DELPHI)=ETA=PDFX
ETA=PDFX
PDF A1=ABS((ETA)*(1.0+2.0*SUM))
C  PDFK, ITS NAME HAS.NO SIGNIFICANCE. ACTUALLY PDFK REPLACES
C  PDFN. TO AVOID AMBIGUITY WITH SUBROUTINE NAME PDFN
C  PDFAI= ABSOLUTE VALUE OF PDF1, NEEDED FOR CDF1
c
c
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WRITE(™, *YPDFAL(.X,")=,PDF Al
WRITE(10,*YPDFAL(,X,"¥="PDFA1
RETURN

END

v S o e a4 o e e e ke e e o o e o o o oA e e b 40 i s S e o o o o oo e e ook e e ol e s e e ke e e o o



APPENDIX C

C PROGRAM FOR BER CALCULATION OF RS CODE
DOUBLE PRECISION P(10),PB(10),SNR(10),5,5UM, A FACN,FACI,FACNMJ
INTEGER NML .
OPEN(10, FILEZCMOUTR1.DAT')
OPEN(20,FILE='CAINP1.DAT")

C NP=NO OF BER/SNR PTS.
NP=10
READ (**) N.K
L=(N-K)/2

C  B=(N-1{(2*N)
DO 1 I=LNP
READ (20,*) SNR(I), P(I)
80.0
DO4J=LN
CALL FRP(N,FacN)
CALL FRP(J,Facl)
NMJ=N-J =
CALL FRP(NMJ,FacNMJ)
T=FLOAT(L)
A=P(D)**1)*((1-P(1))**NMJ)
SUM={T*FACN*A)(N*FACT*FACNMY)
$=S+SUM ‘ . '
PB(I)=S

4 CONTINUE
WRITE(10,3) SNGL(SNR(I)), SNGL(PB(I}}
FORMAT('SNR ='E18.4,' ''PB="E184)
1 CONTINUE )

STOP
END

Clﬁlﬁ*Ihlhlh‘!lilhlﬂhli‘#ﬁl-***#**Ql.lilﬁ*i*lﬁIillh*ﬁ**ﬁ**#**t#########*###ﬁ*ti*

SUBROUTINE FRP(Ind;FactA)
DOUBLE PRECISION FactA
FactA=1.0
IF(Ind .eq. 0)go to 2
DO 1 K=Ind,1,-1
Facta=Facta*Float(K)

1 CONTINUE
RETURN

2 Facta=1.0
RETURN
END




	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138

