INTEL 8085 MICROPROCESSOR SYSTEM
SIMULATION O~ 18M-370j115 MAINFRAME

A Th Bsis

by
MD. BASHIR UDDIN

Submitted to the Department of Electrical and
Electronic Engineering, Bangladesh University
1
of Engineering & Technology, Dhaka in Partial
fulfilment of the requirements for the Degree
of

MASTER OF SCIENCE- IN ENGINEERING(ELECTRICAL&
ELECTRONIC)

November,1984.

L
#61364#

INTEL 8085 ~IICROPROCESSOR SYSTEM
SIMULATION ON ISr~-370/115 ~JAI NFRAME

il Thesis
by
~ID. SASHIR UDDIN

Accepted as satisfactory for Partial fulfilment of the
requirement for the degree of Master of Science in Engi-
neering(Electrical & Electronic),Sangladesh University
of Engineering and Technology,Dhaka.

EXAr-INERS

Chai rman
(DR. S. F. RAHMAN)
Professor & Head, Member
Electrical & Electronic
Engineering DePartment
(D~ KHAN) Member.
Professor & Head,
Computer Engg. Deptt.

~ . Do TV

External

(DR. A. M. PATVIJARI) ~mb er

Vice-Chancellor,
SUET, Dhaka.

CERIIJEINCAT E

This is to certify that this thesis work
has been done by me and it has not been subm-
itted elsewhere for the award of any degree

or diploma.

Signature of the Candidate

ABSTRACT

For the design of microprocessor based systems in
an environment where the development systems are not aVai-
lable the development of simulators seems to be essential.
The present work deals with the development of 8085 micro-
processor simulator on IB~1-370/115 mainframe. A powerful
command set has been designed to communicate with the si-
mulator for debugging purpose. Detailed study of intel 8085
microprocessor instruction set and its architecture has
been carried out for its modelling on the mainframe.On the
otherhand study was also made to incorporate the micropro-
cessors 8-bit words with the full/half words of the main-
frame. Finally a simulation program has been developed and
tested from the simulation algrithm. of the microprocessor

model.

-J.i-

ACKNQL EDGETr&In

The author wishes to express his gratitude and indebtness
to Dr. Syed r'lahbubur Rahman, Assistant Professor, Department of
Computer Engineering, Bangladesh University of Engineering and
Technology,Dhaka for his continuous guidance, suggestion,interest,
contribution of new ideas and supervision at all stages of the

research.

He is grateful to Prof. A.M. Patwari, Vice-Chancellor of
Bangladesh University of Engineering™ Technology,Dhaka for his

suggestions at different times.

The author wishes:to express his gratitude to Dr.Shamsuddin
Ahmed, Dean & former, Head, Dept. of Electrical and Electr-
onic Engineering, BUET and also to his teacher Dr.Syed,Fazl-i
Rahman’Prof. and Head, Dept. of Electrical & Electronic Engg.
BUET for constant advice and encouragement in carrying out this

stu dy.

Acknowledgement is due to Dr. A.i,. Zahoorul @ Haque, Prof.
and former Dean, Dept. of Electrical”, Electronic Engg. BUET
and also to Dr. l'iahfuzur Rahman Khan,Prof. & Head, Dept. of
Computer Engg. BUET, Dhaka for giving inspiration in carrying

out the programme.

CONTENTS

ABSTRACT
ACKW\1LEDGEMENT
COfHEIHS

LIST OF FIGURES & TABLES

CHAPTER - | INTRODUCTION
1.1 What is simulation
1.2 Obj ective of the present Research
1.3 Expected results of the present work
CHAPTER -1l COMMUNICATION WITH SIMUL ATION PROGRAM
2.1 In tro duction
2.2 Commands and their formats
2.3 Description of the commands
2.3.1 Input/output transfer command.
2.3.2 Input-data transfer command
2.3.3 Breakpoint setting for pro-
gram segment simulation
2.34 Memory dump
2.3.5 Program loading
2.3.6 Single step printing
2.3.7 Exi t from endless loop
2.3.8 Setting of program counter
2.3.9 Setting of register co'tl.ntents
2.3.10 Start and end of simulation
2.4 Example of command set
CHAPTER-III =lICROPROCESSOR ~iODEL ON MAINFRA~'F
3.1 Analysis of the problem and pro-
gramming language selection
3.2 The Microprocessor architecture and
its image on the mainframe
3.2.1 Register structure and
their images
3.2.2 Arithmetic logic unit and
its im age
3.2.3 Control unit and its image
3.2.4 Intel BOB5 memory and its
image
3.3 Summary

NN
11

|
PRRPR © NOORE

I\JI\JNI}J N NN

3-1

3-3
3-3
3-10
3-11
3-12
3-12

CHAPTER -

CHAPTER -

CHAPTER -

APPENDIX

APPENDIX

APPENDIX

REFERENCES

v

\Y

VI

A

B

C

-iv-

DEVELOP~IENT OF SIMULATION
4.1 Intra duction
4.2 Command processor
4.2.1 Command recogni zer
4.2.2 Command validity
and executor
4.3 Control program
4.4 Dabu ggar
4.5 Error handler
SHIULATIoN PROGRAM TEST RUN
5.1 Test problem
52 Pro gram flowchart & listing
53 Test resul ts
54 Error tests

DI SCUSSI ON & CONCLUSION

PROGRAM

P
=

A~ DD -l|> ADHD
oo a dhpR

Fig.
Fi g.
Fig.

Fig.

Fig.
Fig.
Fi g.

Fi g.

Tabl e
Tabl e
Tabl e
Table
Table

Table

3.1
3.2
3.3

4.1

4.2

4.3

5.1

52

2.1

51

5.3

54

55

LIST OF FI GURES

Functional block diagram of 8085 microprocessor.
8085 Status flags.

8085 Registers and memory picture on mainframe.

State diagram showing transition among the
program uni ts of the simulator.

Control program showing its different func tions.
Address tabl e of the in struction pro gram segment.

Circui t di agram of the test problem.

Flowchart for test program.

LIST OF TAS8LES

Command fo rmat.

Test resul ts e

Test resul ts.

Test resul ts.

Results of erro r test.

Results of erro r test.

CHAPTER- |

rIHRODUCTION

1-1. WHATIS SIMUIL ATION

The IlJord "Simulation" does mean different things to
different people according to the mode of requirements. Man
has been simulating since first his brain developed the po-

Kler to imagine.

According to EDICT "Simulation is the development
and use of models to aid in the evaluation of ideas and stuQ
dy. of the systems or si tuations. (5). McCooy defines"Simula-
tion is the act of representing some aspects of the real
world which may be easily manipulated "(5).

The philosophical basis for the design of a simula -

tion module is the concept of modeling a system approximate-

ly in proper method which represents the behaviour of the

'1-2

system very close to the real situation.

In generalised form simulation may be defined as the
technique of creating a model of experimental or practical
situation that may happen iIn a device or in a laboratory or

in a field.

The simulation may be classified in different catego-
ries. Since the purpose of the present work is the simula-
tion of a microprocessor system, therefore the digital comp-

uter-aided simulation is the main interest of this thesis.

1-2 OBJECTIVE OF THE PRESENT RESEARCH

In just one decade microprocessors have found thousa-
nds of appliCations in commerce~ndustry, transport,medicine,
education, defence, communications, food ~rocessing, agricul-
ture, entertainment and domestic life. No section of human
activity 1is untouched by the microprocessbr. But the effici-
ent utilization of this most modern and innovative technolo-
gy iIn the various Tields requires a detail understanding of
the software features alongwith the hardware concept of the
microprocessor . For successful operation of a microprocessor
based system effective software development plays an impor-
tant role. In the development of software module, it is fr-

equently necessary to make numerous corrections and changes.

When designing a new microprocessor based system

even for a simple application, software development of the

system requires debugging aids for successful execution of

the programs. Usually microprocessor development system
CMOS) provides these facili ties on which progr.ams may be
written, translated and stored during development. It pro-

vides the means for editing and testing program module as
they are written even at a stage where the prototype hard-
ware is incomplete or totally absent(8). It s therefore

possible for hardware development to proceed in parallE).I".:with

software development. Through application of this develop-
ment system one Can display or print the contents of the
registers, memory locations and debug the programs using

single stepping or break points. Without this system it is
almost impossible to findout the various compliCated types

of errors that occur during program development phase. This
development system is very much expensive and supplied by

the manufacturers at high cost.

As such attempts are made to have simulated programs

to model the microprocessor on an existing large computer

in order to approximately satisfy the requirements of the
software aspects of the microprocessor development system.
Usually different development systems are required to deve-
lop different microprocessor softwares where as the same
mainframe could be used for several microprocessor simula-
tion. Using the simulation progralll the process of software

testing and debugging Can be speeded up because of supe-

rior caPabilities of large computer in comparison to that

1-6

of microprocessor, simulations Can also incorporate explicit
error messages, traPs for illegal conditions and diagnostics.
In order to achieve all the facilities discussed above, with-
out having the costly microprocessor development system it
has been decided to attempt at the Development of a simula-
tion module Tfor a microprocessor system on the .existing main

frame.

1.3 EXPECTED RESULTS OF THE PRESENT WORK

As a result of the present research work a simulation
module IS expected to be developed, the implementation of
which will provide some aids to develop the microprocessor
softwares on the mainframe. The Tfollowing are some of the

most important aids for the above purpose.

i. Execution of microprocessor programs 1in
single stepping or upto certain predefined

address etc.

Display or printout the contents of all the
registers, memory locations, stack pointer
and program counter etc. at every step or
only at predefined breakpoints or from a

certain address to any other addresses etc.

. Setting the program counter with a specified
address before starting execution of the

program or after one or more segments of .the

CHAPTER - 11

COMMUNICATION WITH SIMULATION PROGRAM

2.1 INTRODUCTION

This Chapter focuses on the formulation and descrip-
tion of the communicating tools' of the simulation program
which we call as ‘command'. The commands have been design-
ed for loading, checking ,executing, displaying,transfering
and printing etc. of microprocessor program and to provide

various other facilities during itsdevelopment POase.

2.2 COMMANDS _~ AND
IHE! R EORMATS

The commands desi gned to communic ate Illith the simul a-
tion program Can broadly be classified into two groups as

given below:

b)

2-2

The commands in the first grOup are utilized to
set certain parameters that will be used during
execution of microprocessor instructions. Thase
parameters are contained in the command table of
that specific command.

For example if we want to define the break-
points of a microprocessor program, the addresses
for the breakpoints must be stored before executi-
on. If more than one break point is to be defined
multiple addresses are to be stored. So the comm-
and tagle of the '8 REAKPOINT: command contains
the address parameters. The maximu~ size of comm-
and table depends on the maximum number of break-
points that we would allow. After execution of each
microprocessor instruction the previously defined
breakpoints are compared with the address of the

next instruction and if found equal, breakp;aint

condition is satisfied.

The command table configuration and type of

Parameters are dependent upon the command used.

The command parameters may be microprocessor add-
ress, ins tru ction code and data.

The commands forming the second group are instan-
taneously utilized during their execution to set

the microprocessor registers and memory contents.

The command Tformats are shown in Table 2-1. The follo-

wing syntax are TfTollowed for writing the commands:

~)

-
-
o/

-
-
-
o/

V)

Words with capital letters indicate the command

itself.

11
Items surrounded by < :>" are those to be

specified by the user.

Items enclosed in brackets ,,[J" are optinal
and can be omitted. If these items are omitted
the simulation program will supply the defeult
Values or previously specified values wherever

necessary.

Symbols other than those described above, e.g.
commas, hyphens, equal signs etc. must be entered
exactly at the positions as they are shown in the

table.

Optional items indicated by ecccccce can be
repeated as many Limes as desired within the ~oxi-

mum specified limit for-that command.

When two or more items EPpear between two verti-
cal lines, this means that the desired function
must be specified by indicating one of the items

for input.

Table 2.1 Command format:

a) Commands to set the Parameters of the command table

1. *tiOPTIONS-1N=i OUT={LPHINMT, CIDNSOL]

2. *tiIN-Zport address)ti [<'data-1)ti esccce ti<.data-n~tiSS
where n is not greater than 23

3. *tiSTOPti ATti B REAKPOINTS-{< ad dr. -1)~ eeeeee Nkaddr. -n >}ti$ S$$

where n is not greater th~n 11.

4. *tiPRINTHATtH3REAKPOINTS-{<addr.-1),il' seees .M(addr-n)} tissU

where n is not greater than 11.

5. *JzZIDUMPJz!IFROMJz!ADDR-(start-addr.) 1'"TOJ&end-addr.) JZIATII
{<addr. -a)ti e ticaddr. -n >} tissss
where n is not greater than 9.

6. *\i EIHE RtiTO-<addr-1) liAlii <addr-2>[< data-~ il'eee
esse o~<data-n)} b$$
where n should not exceed microprocessor memory size.

7. *liPRINIISINGLEIISTEPPING~

B. *liPRINTIiSINGLEtiSTEPtiFROM~address-1>tiTIL Lli<addrBss-2>

2-5

(Table 2.1 cont.)

9. *~MAX~INSTRUCTIONS-<mBx.instruction number)
b. Commands to set microprocessor registers and memory.
11. *~ENTER!IFROM-<address) t|{(data—l)!i esee lj(data-n)} tiSs
where n should not exceed microprocessor memory size

12. *lSET!PC-(address>

13. *lISETHREGISTER-{A=<~ata)l~1 B~<data)l~1 C=<9ata>I~1

D=<dat~ \~I1=<data) |~I-Il<data) IT =<data>}

14. *~PDU~1P-<address-1) 1iToli <address-2)

15. *tiEXEC$

vii) IT one or more items enclosed in braceS"{ 3

at least one of the items must be specified.

viii) A bl-nk space is indicated by the symbol™ i "

2.3 DESCRIPTION OF THE COMMANDS

The Ffirst column of all the commands contain an

asterisk(®) symbol A hyphen(-) 1is used in the command to

separate the command parameters and doller(S) 1is used to

end the commend. The addresses mentioned 1In the command

format consist of 2 bytes indicating the microprocessor

memory address. The data and the port address consist of

1 by~ .= The detail description of the design and functions

of the commands are discussed iIn the subsequent paragraphs.

2.3.1 INPUT (QUTPUT SHIUL AnON COMMAND

The 8085 microprocessor uses 1/0 mapped 1/0 method

to transfer data between microprocessor and the external

world. These operations are performed by using two-byte

instruction known as IN and DUT. These 1/0 operations may

be simulated through using secondary storage(diskette,disk,

tape etc.), console. console key board and [line printer

etc. without changing any hardware configuration of exist-

ing IBM mainframe. In the simulation module the provision

of 1/0 operations are provided by using diskette (DSKT) and

and Console key board(KBRD) as input medium and line prin-

ter(LPRINT) and console(CONSOL) as output medium. The OPTION
command 1is introduced for selecting of input and output media

for data transfer between microprocessor and 1/0 ports.

As this command is related to 1/0 operations, so it
may be omitted if the program does not involve any iInput-
output data transfer. The format of the command that repre-

sents the input/output simulation is given below:

Command format:

2.3.2 INPUT- DATA TIRANSFER COMMAND

The input to the microprocessor accumulator from an
1/0 port is accomplished by executing the 2-byte IN ins-
truction. The second byte of the instruction is the port
address from where the data are to be transferred. In the
previous sub-section(Z.3.1), the diskette and console have
been selected as input media(ports) for the simulation mo-
dule. The IN command 1is introduced in orde~ to transfer
the data from a specified port through diskette to the
microprocessor accumulator whenever an IN instruction is
executed for that port. Data through console kyboard may be

directly obtained by displaying the appropriate message

(shown in appendix-A) upon the console at the instant of
execution of the instruction. The IN command must be used
in conjunction with OPTION command if diskette is used for
simulating the input ports. The first Parameter in this
command is the 1-byte port address and the others are the
port data. each of which will be serially loaded to the
accumulator during execution of each microprocessor IN

instruction.

This command for a Particular jJob may be more than
one and its number depends on the number of port addresses
used in the program. Therefore the number of IN command
should be equal to number of input port address'". lhe simu-
lation program allows maximum of 16 ports for a particu-
lar job and port address should be in between O0OO(Hex) and
FF(Hex). The maximum number of data in each port should
not exceed 23. This number comes from the capacity of an
eighty column record containing the command and port data.
The command must be ended with two consequtive dollar (%)

sign. The command Tformat 1is given below:

Command format:

~~|N—‘P“r! a(!tlrgss !~_J. <!!a!a—1! i*........_‘ld -Nn

2-9

2.3.3 BREAKPOINTSETTING EOR PROGRANSEGE-IENTSHIUL ATION

To help in the debugging and diagnosis of programs for

the microprocessor it is convenient to have the whole progran
in the form of several segments specially when dealing wi th
complex programs. The confirmation of one segment will lead
to debug the next one. This switching function from one pro-

gram segment to another can be achieved through using break-

pain ts.

The command "STOP AT BREAKPOINTS" allows the wuser to
execute the section of a program until one of the breakpoint
conditions is meet. The execution of the program is then stop-
ped and the control may be transferred to execute the next

command statement.

The command "P RrNT AT BREAKPOINTS" serves for obser-

ving the status of the microprocessor registers correspon-
ding to the breakpoint addresses. It allows the wuser to ob-
tain a printout if anyone of the breakpoints is found.

This printout may be to show the contents of general purpose

registers, accumulator, program counter, stack pointer,diff-
erent flag bits, instruction code etc.

Typical breakpoint conditions are program counter ad-
dress or microprocessor data references. Each address para-
meter consists of two bytes followed by a blank sPace. The
maximum number of breakpoints allowed in each command should

not exceed 11. This number comes from the caPacity of an

en 80 column record containing the command and its Parameters
The command statement should be ended with four consequtive

doll ar symbol.

The commands using the breakpoints are as follows:

Command format:

*WSToPWATWSREAKPOINTS-{<addr. -1)W sees W<addr-n>} WSSSS .

*WPRINTWATWSEAKPd NTS-{<addr. -1) W [K<addr-n)} WS.$$

Where n is not greater than 11

234 MEMORYDUMP

In iome cases we need to dump the memory for locating
the errors. The following two commands have been introduced
to obtain the microprocessor memory dump for effective debu-
gging of programs.

Command format:

FRofl ADDR-(start-addr.) TO <end-addr.) AT L wH—
t<add. -1) P..* Witeddr. -n)j~'-";"v
*~PDUI"P-<address-1) ~ Tolt <address-2)

The first command allows the wuser to get a storage
dump from the start ~ddress to end-address when anyone of
the dump address is found. Each address consisting of 2
bytes is separated from the next one by a blank Space. This
command is also ended with four consequtive dollar symbol.
A tabl e of dump address is fo rmed on execution of this

command. Considering the SPace provided by an 80 column

2-1 1

record containing the command and its parameters, the maxi-
mum allowable number of dump addresses in each command

may be upto 9.

The execution of the second command(shown above)
produces a memory dump, the size which is specified in the

command parameters.

2.35 PROGRAM.OADING

The following commands are designed to load the
microprocessor program and the associated data to the
mainframe memory.

Command format

*IENTERIITO-<addr-I) I'ATIkaddr-2)[<data-1) \iees li<data-n >} b$$

*[IENTERIIFROM<address) It <data-) li ... li<data-N) }i$$
where n should not exceed microprocessor memory size.
Through execution of first command, the instruction
codes and data are transferred to the command table. During
the execution of microprocessor program, if the program
counter attains the address-2 all the codes will be tra-
nsferred from command table to the microprocessor desig-
nated mainframe memory starting at the address-I.
The execution of the second command transfers the
program and data directly to the microprocessor designa-

ted mainframe memory starting at the address specified

2-12

in the command Parameters.

In both commands, data consisting of 1 byte may be
either 1iInstruction code or data. The maximum number of
data allowed in the command should not exceeds micropro-
cessor memory size. The codes and data must be ended

with two consequtive dollar sign.

2.3.6 SINGLE STEP PRINTING

During program development phase, the user may requ-
ire to examine the contents of the registers and memory lo-
cations, program counter, stack pointer and different flag
bi ts etc. iIn every execution step of the instruction. Single
step printing can provide these facilities. The following
commands have the capability to provide the single-stepping

facili ties.

The First command allows the user to execute the
program one 1instruction at a time and to give a printout
for that when program counter attains address-1 and it will
continue until address-2 is reached. Whereas the second
command provides the single step printing as long as the

program execution continues.

Command Fformat:
*~P RINTHisINGLQ, (STEP1iFROM-(address-1}iTILL!4address-2)

*1aPRINT!iSINGLEYiSTEPPINGS

2.3.7 EXIT fROM ENDLESS LOOP

In many Cases the programer uses instruction-loop for
repeatation of a Particular set of cal'culations. Normally
the loop 1is terminated after the range has been executed
which may consist of one or any number of statements.But
unfortunately if the control finds no condition to exit from
the loop then the repeatation of cycles will be continued
and never ends until it is intervened. The following command

is designed to exit from such an endless loop.

Command .format:

*~MAX~INSTRUCT IoNS-<max . instruction number)

.The maximum number of instructions 1is mentioned by

the programmer that is roughly estimated.

A counter 1is maintained to count the execution steps
and at the end of each step 1ts contents 1is compared with
the maximum number, the equality stops the execution of si-

mulation program with an appropriate error message.

2.3.B SETTING Of PROGRAM COUNTER

When the system 1is reset by enabling the RESET line
of the 8085 microprocessor the program counter 1is eutomati-
cally forced to set with the initial address O0OOOOH. But occ-

asionally a segment of the program starting from any other

address may be required to be simulated.

The first command sets the program counter during the
simulation process with address-1 when address-2 will be
the content of the program. counter. This ecommand Tfacilitate
to make the program jump externally from one address to ano-

ther predefined address.

The second command sets the program counter value to
the specified address i1mmediately when the command 1is encoun-
tered i.e. before the simulation starts. The commands are as

follows:

Command format:

*~SET~AT-<addr .1>~WITH~<addr .-2>

*~SET~PC-<address)

2.3.9 SETTING OF REGISTER CONTENTS

IT user wants to set the registers with initial values
he Can do so by using the following command. In the simulati-
on program the defaul t value of all the registers have been
set to zero. The general purpose registers B,C,D,E,H,L, and
the accumulator (A) are included in the command. The register
Parameters are separated from one another by a blank space.

Any number of registers may be set with initial values.

Command format:

*1 11 "SET~REGTER- {A=<data >1, |B=<data) | ,| C <data) | ,|

D=(data) I~IE=<data) I~I-|F<data~~1 L =(data)}

2.3.10 START AND END OF SIMULATION

After setting the initial conditions the microproce-

ssor program execution may be initiated by using the

Command Tformat:

*11EXECt.

command. The execution starts from the memory address pointed
by the contents of the simulated program counter and conti-
nues until breakpoint address 1is encountered. The control

may then be directed to execute the next command set.

C~mmand set consists of a number of commands ending

with "EXEC".

The e:Jecution of the simulation programe 1is ended
and the program control 1is returned to the mainframe super-

visor only when the following command 1is given

| >~END$ |
2.4 EXAWPI E OF CO~mAND SET
* SET PC-20C2
* STOP AT BREAKPOINTS-20FF Command set-1

PRINT SINGLE STEPPINGS$

A w NP
>(.

* EXECS

5. * SET REGISTER-A=2D,8=54

6. * PDUMP-20C2 TO 20FF Command set-2

7. * ENDS
Command-1 : Set the program counter to 20C2.
Command-2 : Store the breakpoint 20Ff in its command table
Command-3 : flag byte is set to indicate single step prin-

ting at the end of each instruction.

Command-4 : Starts the execution of microprocessor iInstru-
ction

Command-5 : Set the accumulator to 20 and register 8 to 54.

Command-6 : Dump the memory from the location 20C2 to 20ff.

Command-7 : Stops simulation.

CHAPTER -

MICROPROCESSOR MODEL ON MAINFRAME

31 ANALYSIS =~ OF THE PROBLEM AND
PRO GRAMM IN G LAN GUAGE SELECT! ON

The analy;is of the problem is based on the capabi-

lities of the mainframe and the requirements of the micro-
processor to meet up all the necessi ties of simulation fu-
nction.

In recent years there has been exceptional reliBnce
on the caPabilities of large-scale, high speed IBM Compu-
ter system. These systems have rapidly developed to the
point where their speed, storage caPacity and logical power
Can provide us a large extent of facilities of memory and

regi sterse

3-2

In order for modeling of Intel BOB5 microprocessor

on the IBM-370-115, the mainframe requires to have all the

BOBS5 architectures, such as control units, ALU, Memory,
registers, flag bits etc. in the same manner as the micr-
oprocessor have. But the mainframe is not supposed to have
all the hardware supports of the BOBS5 microprocessor beca-
use it is designed to function in its own methodology. For
example IBM mainframe uses the registers, each one has

the minimum length of 4 bytes (a Full Word) , al though

half operation is possible, whereas the BOBS5 microproce-
ssor has the register length of one byte.

Even more the important is the fact that though the
Intel BOB5 microprocessor is a byte oriented machine it
includes some instructions that require bit manipulations

such as STC, RAL, RAR, RLC, RRC and logical operation

AND, OR and Exclusive-DR(all these instructions have been
shown in Appendix - A). The solution of these problems
are discussed in details in the subsequent sections of

this Chapter.

As regarding the selection of the programming lan-
guage for simulation purpose in light of the above prob-
lems it seems to be very difficult or almost impossible to
solve these by using the available high level languages.
But Assembly offer most suitable advantages for the simu-
lation work. Because it is the symbolic representation of

~achine language and all kinds of manipulations are poss-

3-3

ibls with the help of this language. As such considering all

these aspects, [IB~1 Assembly has been selected as the progra-

mming language fTor the development of simulation module of

the Iniel BO085 microprocessor system.

3.2 THE MICROPROCESSOR =~ ARCHITECTURE AND
1TS IMAGE ON THE MAINFRAME

Before going to the solution of the problem we should

focus in brief on the Intel 80B5 microprocessor architecture

on the modeling point of view. The Figure 3-1 shows the ¥fun-

ctional block diagram of this microprocessor. The architect-

ure of the microprocessor can be divided into three main
sections:

1. Register Section

2. Arithmetic and Logic Unit(ALU)

3. Con trol uni t.
3.2.1 REGISTER STRUCTURES AND THEIR 1I1-AGES

The BO085 mic roprocessor uses both 8-bit and 16- bit
registers. It has eight addreseable 8-bit registers. Six of
these can be used as 8-bit registers or 16 bit register pa-

irs. In addition , the 8085 contains two more 16-bit regis-

ters. The 80B5"s registers are as follows:

1) The accumulator(A) is an 8-bit register and has

its usual meaning. Most arithmetic and Logic op-

erations are performed using the accumulator. All

Figure 3. 18085 Microprocessor Functional Block Diagram

SID SOD
a-bit internal data bus
| B___I81 C 181
Instruction Reg. F!eg,
decoder 0 181 E 18/
Anggc'k u ,nd [R0 | Re9 |
unit machine H 181 L o181l | Regi 1
RegisIPf
Lyl | cycle | Reg. Reg. a,,gy
181 encoding]
Program counter 1161
Power [45 V Incrernen tet fdr.cren,!", !!ir
supply - Ground lidriress 181ch ItS)
Timing and control
X |
Clock Direct memory Reset
X, == grnlration Control Status access i i
) Aa-A'5
Reset in Address bus

Rf'<Idy

1/0 data transfers between the 8085 and the 1/0
devices are performed via the accumulator. Also
there are a number of instructions that .move data
between accumulator and memory. The accumulator is
simulated on the mainframe by allocating 1 byte
of the mainframe momory and its location 1is add-
ressed by MFA(Microprocessor Accumulator on

Mainframa) .

The General purpose registers 8,C,D,E,H and L

are each 8-bit long and may be wused as six 8-

bit or as three 16-bit registers depending on the
instruction being executed. Each of these 8-bit
registers Can be incremented Dr decremented by
a single instruction. There are a number of ins-
tructions which combine two of these 8-bit regis-

ters to form 16-bit register Pairs as follows:

A and PSI, "

8 and C

0 and E

H and L
high-order low-order
byte byte

The 16-bit register Pair obtained by combining
the accumulator and the program status <!lord

(PSW) is used only for stack operations. Ari-

thmetic operations use Band C. or D and E or

Hand L as 16-bi t data registers.

The HL register pair(called a data poin-
ter by Intel 6065) can be used for address
pointing; This is the implied or register
indirect addressing mode. There are a number
of instructions, such as Mov reg,M and Mov M,
reg, which move data between any register and
memory location addressed by HL. A few instru-
ctions use the BC and DE register Pairs as ad-
dress pointe rs but normally they are used as

general purpose data registers.

The simulations of the general purpose
registers may be accomplished in the same ma-
nner as that of accumulator by allocating 1
byte of mainframe memory for each of this
6-bit registers. The simulated general purpo-

se registers designoated as follows:

Microprocessor Mainframe
B MFB
C ~FC
D MFD
E ~IFE
H [, FH

L MFL

Fig.

(7. TIhe Program Status Word (PSW) consists
fi ve flags. These flags are used by condi-
tional jump, call and return from subroutine
instructions. The figure 3-2 represents these

five flags.
Sign
Zero
Auxiliary carry
Pari ty

Carry

3-2 8085 flags.

The carry Tflag(CY) 1is set or reset by

arithmetic operations. Its status is then
may be tested by program instructions if
required. In subtraction the CY flag acts

as a "borrow"flag, 1indicating the minuend
is less than the subtrahend if the flag 1is
set.

The zero flag(Z) is set if the result
of certain instructions iIs zero. The zero

flag i1s cleaired if the result 1iIs not zero.

The sign flag (6) is set to the condition
of the most significant bit of the accumu-

lator following the execution of arthmetic

of

or logical instructions. These instructions
use the MSB of data to represent the sign
of the number contained 1in the accumula-
tor. A set sign flag represents a negati-
ve number. Whereas a reset flag means a

posi tive number.

The auxiliary carry Tflag(AC) indica-
ting carryout of the bit 3 of the accumll-
lator. This flag is commonly used in BCD

(binary-coded-decimal) arithmetic.

The Parity flag(P) testsfor the number
of 1s in the accumulator. If the accumula-
tor holds an even number of 1s, it is
said that even Parity exists and the
Parity flag is set to 1. However, if the
accumulator holds an odd number of 1s
(called odd parity), the Parity flag on

the 8085 1is reset to O.

Dealing with each flag bit in simu-
lating the PSW would require a number of
mainframe iInstructions, the using of
which are cumbersome and time consuming.
But only two instructions require PSW
register for:

i) Storing the flag bits on the
stack in one byte(PUSH PSW) .

3-9

) retreiving the PSW and set the flag
bits according to the contents of the
PSW (POP PSW).

All other instructions handle each of the flag

bits i1ndependently. Therefore, fTor ease of mani-

pulation, each Tflag bit of the PSW is represented
by 1 byte of mainframe memory. They are designated

as fTollows:

fhcroprocessor ~lainframe
CY MFCY
4 MFZ
S MES
AC MFAC
P MFP

One byte of the mainframe memory 1is also
reserved to represent the PSW of the microproce-

ssor and designated as MFPSW.

Ihe Stack Pointer (SP) 1is 16 bits long. All sta-
ck operations with the 8085 use 16-bit register
Pairs. The stack pointer contains the address of
the last data byte written iInto ~he stack. It is
decremented by 2 each time 2 bytes of data are
wri tten or pushed onto the stack and is iIncremen-

ted by 2 each time 2 bytes of data are read from

or pulled off the stack, that is, the top of the

stack has the lowest address in the stack
that grows downward. It occupies two bytes

on the mainframe memory(MFSP).

V) Programe = CounterCPC): The program counter
Contains the address of the instruction or
operational(OP) Code. The program counter
usually points to the next instruction lo-
cation, that is, it normally contains the
oddress of the next instruction to be e:e-
cuted. On the mainframe memory the two bytes
are reserved for the program counter and

address as MFPC.

322 ARITHMETICLOGIC UNIT ANDITS IMAGE:

The ALU performs all the data manipulations,such

as arithmetic and logic operations, inside the microproce-
Ssor. The size of ALUconforms to the word length of the
microprocessor. This means that en 8-bit microprocessor will

have a 8-bi t ALU. Typicall vy, the ALUperfo rms the follo wing

func tions:
1) Binary addition and logic operations
2) Finding I' s complement of data
3) Shifting or rotating the contents of the
accumulator 1-bit to the left or right

through carry.

The arithmetic and logic instructions of 1BM-370/115

simulate the functions of the ALU of the BOB5 microprocessor.

3.2.3. CONTROL. UNIT AND ITS IMAGE:

The main purpose of this microprocessor section 1is to
read and decode instructions from the program memory.ln order
to execute an instruction, the control unit steps through
the appropriate blocks of the ALU based on the opcodes con-
tained 1in the instruction register. The opcodes define the
operations to be performed by the control unit in order to

execute an instruction. The control unit interprets the con

tents of the instruction register and then responds to the
inst~ction by generating a sequence of enable signals.These
signals activate the.appropriate ALU logic block to perfollll

the required operation.

In general, the control section fetches and decodes
instruction from memory and generates all the necessary con-
trol signals for the registers and ALU iIn order to execute
them.

The 1instruction Tetching and decoding functions of
the control unit Can be simulated by a control program on

the mainframe. The main functions of the control program are:

i) to fetch an instruction from the memory loca-
tion addressed by the simulated microprocessor

program counter (MFPC).

3-1::

-
-
o/

to decode the opcode and calculate the address
of the program section which will perform the

functions of the specified instruction.

-
-
-
o/

to update the MFPC with the next instruction

location of the mainframe.

iv) to execute the required instruction.
The development of the control program is discussed

in detail in the Chapter-4.

324 INTEL 8085 MEMORY AND ITS IMAGE:

Program steps(instructions) and data must be stored

in the memory and recalled at the appropriate time In order

for the computer to perform its Tfunction. Intel 8085 is 8-

bit microprocessor, that is, it uses 8-bit word. It has the

16
16-bi t address bus. This provides a maximum of 2 =65,3536

memory .

64 Kilo bytes of mainframe “memory Is reserved

to represent microprocessor memory. The starting address is

designated as r-1I1CRDr"EM.

3.3 SUMM ARY

The 8085 microprocessor i1mage on the mainframe as

discussed above may be summarized in the fTollowing Figure r.3.

MAIN

\ PROG
Simulation prog..ram
REGISTER ~FA(a-bit) MFPS\1 (a-bit)
SECTION
MFa (a-bi t) MFc(a-bit)
MFH(a-bit) rFL(a-bit)
11FH (a-bit) MFL (a-bi 1)
FL AGS MFCY (a-bit)
MFZ (a-bit)
MFAC (S-bit)
MFS (S-bit)
MFP (S-bi 1)
Pro gram countel. LFPC (16-bit)
Stack pointer MFSP (16-bi t)
—t-ﬁ-c:ROMEMI 64 kilobytes
micro Proc esso r
MEMOory _on__mainirame.
Fig. 3-3 SOS5 Registers and memory picture

mainframe.

on

CHAPTER -1V

DEVELOPMENT ~ OF SIMULATION PROGRAM

4.1 INTRODUCTION

The technique and procedure adopted iIn the development
of simulation program have been described iIn this chapter.

The simulation program may be grouped into the following Tfour

primary sections:

1. Command processor
2. Control program
3. Debugger

4. Error handler

The combination of these program units represents the
simulation program of the Intel 80B5 microprocessor system

on IBM-370/115 mainframe. The transition of program control

among the different program units 1is presented 1in the state

diagram of figure 4.1.

Simulatio
entry

STOP

fig. 4-1 State diagram showing the transition
among the program units of the simulator

The explanation of the above state diagram 1iIs summa-

rized below:

In order to start the execution of simulation
module the program control is Tfirst received
by the command processor. The commands menti-
oned by the user In the command set are pro-
cessed 1In sequential order until an"EXEC".This
Command transfers the program control to the
control program where each of the microproce-
ssor 1instructions is processed. On receiving
the control from the command processor, the
control program starts fetching,