
Development of a Back-End Tool for Loading Data into Data
Warehouse using Open-Source Technology

by
Md. Masum Billah

MASTER OF ENGINEERING IN INFORMATION AND COMMUNICATION
TECHNOLOGY

1111111111111111111111111111111111
#10~842#

Institute of Information and Communication Technology
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

August 2008

The project titled "Development of a Back-End Tool for Loading Data into Data

Warehouse using Open-Source Technology" submitted by Md. Masum Billah, Roll No:

M04053 124, (Session: April 2005) has been accepted as satisfactory in partial

fulfillment of the requirement for the degree of Master of Engineering (lCT) held on 23

August, 2008.

BOARD OF EXAMINERS

I.

2.

Dr. Md. Liakot Ali

Assistant Professor

Institute ofinformation and Communication Technology

BUET, Dhaka-I 000.

Dr. Md. Abul Kashem Mia

Professor

Institute ofinformation and Communication Technology

BUET,Dhaka-IOOO.

Chairman

Member

3._£JZ
Dr. Md. Saiful Islam

Assistant Professor

Member

Institute of Information and Communication Technology

SUET, Dhaka-IOOO.

Candidate's Declaration
It is hereby declared that this project or any part of it has not been submitted elsewhere

for the award of any degree or diploma.

Sign~

Md. Mas'um Billah

11

III

Acknowledgement

My sincere thanks to my project supervisor, Dr. Md. Liakot Ali, for involving me in

such a challenging field of advanced database technology. I am grateful to do my

project under his supervision. Without his ever helping personalities, this project would

not have been completed.

I gratefully acknowledge the support and advice from Professor Dr. S. M. Lutful Kabir,

Director, nCT.

I would like to convey my thanks to Dr. Abu Sayed Md. Latiful Hoque for his valuable

suggestion about the project.

[thank Md. Ashik ali Khan and Mohammad Ahdabul Islam for their restless

encouragement while I was struggling to debug some problems during implementation.

My special thanks to all the teachers, students and staffs of nCT, BUET.

The completion of this project would not have been possible without encouragement of

the members of my family and friends. Thank you all.

IV

Table of Contents

Page No

Board of Examiners

Candidate's Declaration II

Acknowledgement 111

Table of Contents IV

List of Figures VI

List of Tables VII

List of Acronyms Vlll

Abstract

Chapter 1: Introduction 2

1.1 Overview 2

1.2 Background and Present State of the Problem 2

1.3 Objectives 3

1.4 Organization of the Report 3

Chapter 2: Literature Review 4

2.1 Data Warehouse 4

2.2 Data Warehouse Related Terms and Definition 5

2.2.1 Measure Attribute, Dimension Attribute and Multidimensional Data 5

2.2.2 Fact Table, Star Schema and Data Mart 5

2.3 Operational Database versus Data Warehouse 6

2.4 Data Warehousing Activities 6

2.5 Back-End Tools and Utilities 7

2.5.1 Data Cleaning 7

2.5.2 Data Loading 8

2.5.3 Data Refreshing 9

2.6 Vendor Provided Back-End Tools and Utilities 9

2.7 Open-source Technology

2.7.1 Open Source Database Management System

Chapter 3: Analysis and Design of the Back-End Tool

3.1 Introduction

3.2 Data warehouse Architecture

3.3 Database Design Methodology for Data Warehouse

3.4 Critical Issues for Data Loading

3.5 Design of the Back-End Tool

3.5.1 Data Sourcing and Data Profiling

3.5.2 Target Schema Design

3.5.3 Data Mapping

3.5.4 Data Extraction

3.5.5 SQL Script Generation

3.5.5 Data Loading

Chapter 4: Back-End Tool Implimentation and Testing

4.1 System Infrastructure of Data warehouse

4.2 Implimentation of the Back-End Tool

4.3 Features of the Back-End Tool

4.4 Operation of the Back-End Tool

4.3 Test Case Design Showing Data loading into Data Warehouse

4.4 Results

Chapter 5: Conclusion and Future work

5.1 Conclusion

5.2 Scope of Future Work

References:

Appendix A: Program Codes of the Developed Back-End Tool

v

10

10

I I

I 1

I I

12

14

15

16

16

17

17

18

18

19

19

20

21

22

27

28

31

31

32

33

34

VI

List of Figures

Page NoFigure No.

Fig. 3.1

Fig. 3.2

Fig. 3.3

Fig. 3.4

Fig. 3.5

Fig. 4.1

Fig. 4.2

Fig. 4.3

Fig. 4.4

Fig. 4.5

Fig. 4.6

Fig. 4.7

Caption

Data Warehouse Architecture

Operational Database Schema for Sales Information

Data Warehouse Schema for this Proj ect

Data Warehouse with Data Loading

Data Mapping between Sales and Sales_Fact Table

System Infrastructure of Data Warehouse

Tool's Process Diagram

Snapshot of Back-End Tool

A Snapshot of SQL Script Generation

A Snapshot of Data Loading into Data Warehouse

A Snapshot of SQL Script Execution

A Snapshot ofPSTN Network Connection Establishment

11

13

14

15

17

19

20
22

23

24
25
26

Vll

List of Tables

Table No. Title Page No

Table 4.1 Data Set of Site I 27

Table 3.2 Data Set of Site 2 27

Table 3.3 Data Set of Site 3 28

Table 3.4 Loaded Data into the Data Warehouse 30

Acronym

API

BSD

CD

CSV

DB

DBF

DBMS

DVD

ER

GPL

LAN

LGPL

MDB

MSSSQL Server

ODBC

OD!

OLAP

OLTP

ORDBMS

OSS

PSTN

RDBMS

SQL

SSIS

TCO

VPN

List of Acronyms

Full Name

Application Programming Interface

Berkeley Software Distribution

Compact Disc

Comma Separated Values

Database

Database Foxpro

Database Management System

Digital VersatilelY ideo Disc

Entity Relationship

General Public License

Local Area Network

Lesser General Public License

Microsoft Database

Microsoft Structured Query Language Server

Open Database Connectivity

Oracle Data Integrator

On-Line Analytical Processing

On-Line Transaction Processing

Object-Relational Database Management System

Open-Source Software

Public Switched Telephone Network

Relational Database Management System

Structured Query Language

SQL Server Integration Services

Total Cost of Ownership

Virtual Private Network

Vlll

Abstract

Almost every enterprise uses operational Database Management System (DBMS) for its

infonnation management. Many companies have multiple branches in many places,

each of which generates significant amount of data. These data may be a potential

resource for the knowledge worker (executive, manager and analyst) to make better and

faster complex business decision for the organization. For this purpose, historical and

subject-oriented selective data are collected from different data sources and these data

are stored under a unified schema in a data warehouse. It enables the higher executive to

view summarized report over historical data of an organization.

Vendor provided Structured Query Language (SQL) engines like Oracle, MSSQL

Server, DB 18M2 provide integrated data warehousing tools. But small and medium

enterprises do not take the advantages of the vendor provided DBMS due to its high

Total Cost of Ownership (TCO). Although open-source SQL engine is available for free

of cost, it does not provide data warehousing tools. As a remed:r of this problem, we

have developed a back-end tool which extracts data from many sources and load into

data warehouse using open-source DBMS MySQL. This tool also periodically refreshes

data warehouse on updated data of operational DBMS connected through computer

network. It contains an integrated PSTN network connectivity component that

establishes dial up connection easily.

Chapter 1

Introduction

1.1 Overview

Computer technology has brought an evolution in the field of Database Management

System (DBMS). Almost every enterprise is developing operational DBMS for its

information management. Many companies have multiple branches in many places,

each of which generates significant amount of data. These data may be a potential

resource for the knowledge worker (executive, manager and analyst) to make better and

faster decision for the organization. Operational database systems are unable to meet

this need for a variety of reasons. Firstly it contains detail information and many of

them have no relevance to management and analysis. Secondly operational databases of

an organization are distributed and many of them maintain. separate operational

database. Thirdly the data processing load for summarized report decreases the

performance of the operational database. As a result, data warehouse is specially

designed to support management information and analysis. Historical and subject-

oriented selective data, collected from multiple sources are stored under a unified

schema in a data warehouse at a single site. It enables the higher executive to view

summarized report over historical data of an organization.

1.2 Background and Present State of the Problem

To fulfill the objectives of data warehouse, a number of front-end tools and back-end

tools are required. Front-end tools include analysis, OLA? queries/reporting, data

mining etc. while back-end tools include data cleaning, data loading and Refreshing etc.

[2]. Vendor specific Structured Query Language (SQL) engines like Oracle, MS SQL

Server, IBM DB2 provide data warehousing facility [3-4]. However, small and medium

3

enterprise cannot take the advantages of the vendor provided DBMS due to its high

Total Cost of Ownership (TCO) [7-8]. As a result open-source SQL engines are

becoming popular nowadays. But open-source SQL engines have still no generalized

data warehousing facility [5-6]. Recently OLA? queries tool is developed using open

source DBMS [7]. It is necessary to carry out research project to develop different back-

end tools using open-source technology.

1.3 Objectives

The objectives of this project are

(a) To develop a back end tool for loading data into data warehouse from many

sources using open source Structured Query Language (SQL) engine MySQL.

(b) To test data loading into data warehouse using the developed back-end tool

where data sources are multiple operational MySQL 'databases connected

through computer network or backup databases stored in non-volatile media like

CD, VCD, pen drive etc.

1.4 Organization of the Report

This report is organized with five chapters. Chapter one presents background of data

warehouse, objectives of the project and layout of the report. Chapter two describes

literature review of data warehousing activities, different types of vendor provided tools

and utilities, and open-source technology. Chapter three highlights data warehouse

architecture, schema design methodology and step by step back-end tool design.

Chapter four narrates back-end tool implementation details with Data warehouse

infrastructure, back-end tool's process diagram, tool's features, test case design and

result. Chapter five mentions conclusion and scope of the future work. This report ends

with an appendix that contains the source codes of the project.

4

Chapter 2

Literature Review

2.1 Data Warehouse

A data warehouse can be defined as a "subject-oriented, integrated, time-varying, non-

volatile collection of data that is used primarily in organizational decision making" [8].

The explanation of different terms with this definition is given bellow:

Subject orientation: Data warehouse does not contain information that will not be used

for informational or analytical processing. It is organized and optimized around major

subject areas to provide answers of queries coming from diverse functional areas within

a company. On the other hand operational database contain detailed data to satisfy

processing requirements of data related to daily operation of a company.

Integration and transformation: The data within the warehouse are integrated. This

means that there is consistency among naming conventions, measurements of variables,

encoding structures, physical attributes and other silent data characteristics. An example

of this integration is the treatment of codes such as gender codes. Within a corporation,

various applications may represent gender codes in different ways: male versus female,

m versus f, I versus 0 etc. In the data warehouse gender code is always represented in a

consistent way, regardless of how many ways by which it may be encoded in the source
data.

Time Variance: The data within the warehouse represent the flow of data through

time. The data are accurate as of some moment in time, providing a historical

perspective. Once the data, collected from different sources are loaded into the data

warehouse, it cannot be updated. It is refreshed on a periodic basis, as determined by the
business need.

5

Non-Volatile: Data in the warehouse are static not dynamic. Once the data is loaded

into the data warehouse, it cannot be updated or deleted. For this reason, the physical

design of a data warehouse optimizes the access of data, rather than focusing the

requirements of data update and delete.

2.2 Data Warehouse Related Terms and Definition

2.2.1 Measure Attribute, Dimension Attribute and Multidimensional Data

Suppose we have a relation "sales" with the schema sales (item-name, color, SIze,

numbel). For data analysis, we can identify some of its attributes as measure attributes,

since they measure some value, and can be aggregated upon. For instance, the attribute

number of the sales relation is a measure attribute, since it measures the number of units
sold.

Some of the other attributes of the relation are identified as dimension attributes, since

they define the dimensions on which measure attributes are viewed, e.g. item-name,

color and size are dimension attributes.

Data that can be modeled as dimension attributes and measure attributes are called
multidimensional data.

2.2.2 Fact Table, Star Schema and Data Mart

In data warehousing, a fact table consists of the measurements, metrics or facts of a

business process. It is often located at the centre of a star schema, surrounded by
dimension tables.

The star schema consists of a few "fact tables" referencing any number of "dimension

tables". The fact tables hold the main data, while the dimension tables describe each

value of a dimension and can be joined to fact tables as needed.

6

A dala marl is a subset of an organizational data store, usually oriented to a specific

purpose i.e. Data warehouse contains total information of an organisation whereas data

marl contains information of one or more department.

2.3 Operational Database versus Data Warehouse

Operational database typically perform clerical data processing tasks such as order entry

and banking transaction that are daily operations of an organization. These tasks are

structured and repetitive. They consist of short, atomic and isolated transactions. The

transactions require detailed, up-to-date data and read or update a few records accessed

on their primary keys. Operational databases tend to be hundreds of megabytes to

gigabytes in size. Consistency and recoverability of the databases are critical. Its key

objective is to maximize transaction throughput rather than query throughput.

Data warehouse, in contrast is targeted for decision support for an organization.

Historical, summarized and consolidated data are more important than detailed,

individual records. Since data warehouse contains consolidated data, collected from

several operational databases over long period of time, its size is larger than operational

databases and tend to be hundreds of gigabytes to terabyte in size. In case of data

warehouse, query throughput and response time are more important than transaction
throughput.

2.4 Data Warehousing Activities

The primary objective of data warehouse is to bring infonnation together from different

sources and put the infonnation into a format that is suitable for making business

decision. This requires a set of activities that are far more complex than just collecting

data and reporting against it. The followings present the data warehousing activities [9]:

7

• Define the architecture, do capacity planning, select the storage servers,

database, OLAP servers, and tools.

• Integrate the servers, storage, and client tools.

• Design the warehouse schema and views.

• Define the physical warehouse organization, data placement, partitioning, and

access methods.

• Connect the sources using gateways, ODBC drivers, or other wrappers.

• Design and implement scripts for data extraction, cleaning, transformation,

load and refresh.

• Populate the repository with the schema and view definitions, scripts, and other

metadata.

• Design and implement end-user applications.

• Roll out the warehouse and applications.

2.5 Back-End Tools and Utilities

Data warehousing uses a variety of data extraction and cleaning tools, and loading and

refreshing utilities for populating warehouses [2]. These tools are known as back-end

tools and utilities. Descriptions of these tools are given in the following sub-section.

2.5.1 Data Cleaning

Since a data warehouse is used for decision making, it is important that the data in the

warehouse be correct. However, since large volumes of data from multiple sources are

involved, there is a high probability of errors and anomalies in the data. Therefore, tools

that help to detect data anomalies and correct them can have a high payoff. Some

examples where data cleaning becomes necessary are: inconsistent field lengths,

inconsistent descriptions, inconsistent value assignments, missing entries and violation

of integrity constraints. There are three related, but somewhat different, classes of data

8

cleaning tools [2]. Data migration tools allow simple transformation rules to be

specified; e.g., "replace the string gender by sex". Warehouse Manager from Prism is an

example of a popular tool of this kind. Data scrubbing tools use domain-specific

knowledge (e.g., postal addresses) to do the scrubbing of data. Data auditing tools make

it possible to discover rules and relationships (or to signal violation of stated rules) by

scanning data. Thus, such tools may be considered variants of data mining tools.

2.5.2 Data Loading

After extracting, cleaning and transforming of data, data must be loaded into the

warehouse. Additional preprocessing may still be required: checking integrity

constraints, sorting, summarization, aggregation and other computation to build the

derived tables stored in the warehouse. Typically batch load utilities arc used for this

purpose. In addition to populating the warehouse, a load utility must allow the system

administrator to monitor status, to cancel, suspend and resume a load, and to restart

after failure with no loss of data integrity. The load utilities for data warehouses have to

deal with much larger data volumes than for operational databases. There is only a

small time window (usually at night) when the warehouse can be taken offline to refresh

it. Sequential loads can take a very long time, e.g., loading a terabyte of data can take

weeks and months! Hence, pipelined and partitioned parallelism is typically exploited.

Doing a full load has the advantage that it can be treated as a long batch transaction that

builds up a new database. While it is in progress, the current database can still support

queries. When the load transaction commits, the current database is replaced with the

new one. Using periodic checkpoints ensures that if a failure occurs during the load, the

process can restart from the last checkpoint. However, even using parallelism, a full

load may still take too long.

9

2.5.3 Data Refreshing

Refreshing a warehouse includes propagating updates on source data to correspondingly

update the base data and derived data stored in the warehouse. There are two sets of

issues to consider: when to refresh, and how to refresh. Usually, the warehouse is

refreshed periodically (e.g., daily or weekly). The refresh policy is set by the warehouse

administrator, depending on user needs and traffic, and may be different for different

sources.

Refresh techniques may also depend on the characteristics of the source and the

capabilities of the database servers. Extracting an entire source file or database is

usually too expensive, but may be the only choice for legacy data sources. Most

contemporary database systems provide replication servers that support incremental

techniques for propagating updates from a primary database to one or more replicas.

Such replication servers can be used to incrementally refresh a warehouse when the

sources change.

2.6 Vendor Provided Back-End Tools and Utilities

Vendor provided RDBMS MSSQL Server and Oracle contain back-end tools. Oracle

Data Integrator (ODI) is a back-end tool used in Oracle database management system.

This tool is used for data extraction, loading and transformation. It allows

heterogeneous access from a wide range of data sources such as SQL Server, MySQL,

DB2, CSV, XML and many other databases and format. SQ!- Server Integration

Services (SSIS) is also a back-end tool used in SQL Server database management

system. It not only allows data extraction, loading and transformation but also provides

excelent data cleaning facilities.

10

2.7 Open-Source Technology

Open-Source is a development methodology which offers practical accessibility to a

product's source (goods and knowledge). Some consider open-source as one of various

possible design approaches, while others consider it a critical strategic element of their

operations. Before open-source became widely adopted, developers and producers used

a variety of phrases to describe the concept; the term open-source gained popularity

with the rise of the Internet, which provided access to diverse production models,

communication paths, and interactive communities.

Open-Source software (OSS) began as a marketing campaign for free software. OSS

can be defined as computer software for which the human-readable source code is made

available under a copyright license that meets the Open-Source Definition. This

permits users to use, change, improve and redistribute the software in modified or

unmodified fom1. It is very often developed in a public, collaborative manner.

2.7.1 Open-Source DBMSs

Available open-source DBMSs are MySQL, PostgreSQL and mSQL. MySQL is the

most popular and best known open-source DBMS. It is distributed under General Public

License (GPL) and Lesser General Public License (LGPL). This permits users to use,

change, modify, and redistribute it without payment. PostgreSQL is also an object-

relational database management system (ORDBMS). It is released under a BSD-style

(Berkeley Software Distribution) license and is thus free software. As with many other

open-source programs, PostgreSQL is not controlled by any single company, but relies

on a global community of developers and companies to develop it.

11

Chapter 3

Analysis and Design of the Back-End Tool

3.1 Introduction

Data warehouse is an essential element of decision support system. Its demand is

growing rapidly for complex business decision and analysis. As a result, it has

increasingly become a focus of database industry. In this chapter we have discussed

data warehouse architecture and its different component, data warehouse schema for

this project and step by step back-end tool design.

3.2 Data Warehouse Architecture

Fig. 3.1 shows the data warehouse architecture.

Fig. 3.1: Data Warehouse Architecture

0,. War"",,,,

E,~acl
Transform

I.oa<l
Refresh

Mooi:oci\) &MJTiosv,,,,
(~-) ()

B=
Extern,l
Sou"",

6

12

Its data extracting component extracts data from a range of different sources. Its data

transforming component removes data inconsistency and data are represented in a

consistent way. After completion of data extraction and transformation, data are

integrated and loaded into data warehouse using data loading tool. Refreshing tool

periodically update data warehouse on the source data. In addition to the main

warehouse, there may be several departmental data marts. Data in the warehouse and

data marts is stored and managed by one or more warehouse servers. These servcr

present multidimensional views of data through a variety of front end tools. It includes

query tools, report writers, analysis tools and data mining tools. Finally, there IS a

repository for storing and managing metadata and tools for monitoring and

administering the warehousing system.

3.3 Database Design Methodology for Data Warehouse

Entity Relationship diagrams and normalization techniques are popularly used for

database design in On-line Transaction Processing (OLTP) environments. However, the

database designs recommended by ER diagrams are inappropriate for decision support

systems. Because the major concern of decision support system is faster query

throughput and data loading (including incremental loads) rather than transaction

throughput. Most of the data warehouses use a star schema to represent the

multidimensional data model. The database consists of a single fact table and a single

table for each dimension. Each tuple in the fact table consists of a pointer (foreign key-

often uses a generated key for efficiency) to each of the dimensions that provide its

multidimensional coordinates, and stores the numeric measures for those coordinates.

Each dimension table consists of columns that correspond to attributes of the

dimension.

Distributed sales infornlation of an imaginary organization is selected for the test case

of this project. Sales related to four normalised table are shown in Fig. 3.2. The tables

13

are Sales, Customer, Site and Product. The sales table of the operational database

contain sales related detail information in nomlalized form, Sales infomlation include

SiteJD, Customer JD, Product JD, Date, Quantity, adjustment, vat, waiver,

total amount and remarks. The sales table contain thrce foreign keys. These are

Site_ID, Customer JD and Product JD coming from Site, Customer and Product table

respectively. Site table contains SiteJD, Site_name and Site_address information.

Customer table contains Customer _ID, Customer_name, Customer _address and

Phone_number information, while Product table contains product_ID, Product_name
and Sales rate information.

Site

Site lD
Site name
'Site address

Site lD
Customer ID
Product id
Date
Quantitiy
adjustment
vat
WaIver
total amount
remarks

SalesCustomer

Product

Customer ID
Customer name
Customer address
Phone number

Product lD
Product Name
Sales rate

Fig. 3.2: Operational Database Schema for sales information

But all the sales information are not selected for data warehouse. Data warehouse

schema includes only important measure attributes and dimensional attributes. Fig. 3.3

shows data warehouse schema for this project. This schema schema contains five tables

: one fact table and four dimensional tables. The fact table is sales_Fact table and the

dimensional tables are Customer, Site, Product and Date. The field of Sales_Fact table

is selected from Sales table of the operational database. It contains a measure attribute

14

Quantity and a set of foreign key.' SitejD, CustolllerjD, ProductjD and Date from

each dimension table.

Customer

Customer ID
Customer name
Customer address
Phone number

Date

Date key
Date
Month
year

Sales Fact

Site ID
Customer ID
Product ID
Date key
Quantitiy

Site

Site ID
Site name
Site address

Product

Product ID
Product Name
Sales rate

Fig. 3.3: Data Warehouse Schema for this Project

3.4 Critical Issues for Data Loading

The loading utilities for data warehouses have to deal with much larger data volumes

than that of operational database. Two issues are critical for data loading. First issue is

which measures will be taken if a failure occurs during the load. This issue has been

solved using periodic checkpoints. It ensures that if a failure occurs during the load, the

process can restart from the last checkpoint. The second issue is how to refresh the data

warehouse. Extracting an entire database is too expensive. So we have followed

incremental technique for propagating updates from the source database to the data

warehouse. It incrementally refreshes a warehouse when the sources changes i.e. it only

incorporates change infomlation into data warehouse.

15

3.4 Design of the Back-End Tool

Fig. 3.5: shows data warehouse architecture with data loading. There are two types of

warehouse architecture in tenns of data loading. These are:

>- Source driven architecture: data sources transmit new information to

warehouse, either continuously or periodically (e.g. at night).

>- Destination driven architecture: warehouse periodically requests new

information from data sources.

The project tool supports both of the architecture.

data warehouse

query and
analysis tools

DBMS

8
8-

data
loaders

data source I

data source 2

data source n

Fig. 3.4: Data Warehouse with Data Loading

Data sourcing and data profiling

Target schema design

Data mapping

Data extraction

Script generation

Data loading

16

In order to design data loading tool for data warehouse, the following steps are followed

sequentially.

(i)

(ii)

(iii)

(iv)

(v)

(vi)

3.4.1 Data Sourcing and Data Profiling

Digital data may come from many sources and different format. It may be offline or

online. It may be stored in main frame computer, database server, mini computer,

personal computer or any other storage device. It may be stored as XLS, MOB, DBF,

CSV, XML, WSDL, SQL script or text. Whatever its source is, it is identified first.

After identification of data source, data profiling activities are initiated. Major data

profiling activities are to examine data structure, content, format, functional

dependency, anomalies and derive data rules that will later be used within data

warehouse.

3.4.2 Target Schema Design

In this phase, data warehouse shema is defined. Constraints, relations, checkings and

data rules that are extracted from data source during data profiling are incorporated in

data warehouse schema. It significantly ensures quality data loading from a range of

different data sources. Star Schema is widely adopted data warehouse schema. This

database design methodology is used in this project. The project scema has been shown

in Fig. 3.3.

17

3.4.3 Data Mapping

Once data source idenfication and schema design are completed then data mapping

between source schema and warehouse schema are determined. Operational data

sources contain detail transaction information. So selective fields from operational

database table schema are mapped with data warehouse schema. Data mapping

between sales table and salesJact table is shown in Fig. 3.5.

Sales FactSales -
Site ID Site ID
Customer ID Customer ID
Product ID Product ID
Date Date key
Quantitiy Quantitiy
adjustment
vat
waIver
total amount
remarks

Fig. 3.5: Data mapping between Sales and Sales_Fact table

3.4.4 Data Extraction

In this phase data are extracted from data source in accordance with previously defined

data mapping. For example, the peer mapping between the two tables as shown in Fig.

3.5 is: {(Site_ID, I), (CustomeUD, 3274), (ProducUD, 3), (Date_key, 23-10-2007),

(Quantity, IO)}. Here, the values are extracted from source in accordance with data

mapping between source and target schema.

18

3.4.5 SQL Script Generation

In this phase extracted data, mapped with corresponding schema are represented using

SQL syntax. In this case, data are converted and formatted according to data type. A

sample SQL script is: "insert into saiesJact(Site_ID, Customer_ID, Product_ID,

Date_key, Quantity)values ('1', '3274', '3', format(23-1 0-2007,'yyyy-mm-dd'), 10)"

3.4.6 Data Loading

In this phase Generated SQL scripts are executed into data warehouse SQL engine. If

SQL engine does not find any error after parsing the SQL script, it will be executed and

data are stored in data warehouse schema. When SQL scripts are generated, each SQL

command is terminated with a delimiter. So by marking delimiter, each SQL command

is identified and executed into data warehouse.

19

Chapter 4

Back-End Tool Implementation and Testing

4.1 System Infrastructure of Data Warehouse

The following Fig. 4.1 shows the system infrastructure of data warehouse. It includes

Operational DB server

Modem

OLAP Server

Router and DSL

Operational DB server

EJ EJ B
~ ~ ~
I-I I-I I-I
I "I I "I I "ID D 0
~~~~~~ ~~~mDDU~UDD

OOOUOOO Data Warehouse
Data Mart Server

Fig. 4.1: System Infrastructure of Data warehous,?



20

distributed operational database servers, data warehouse servers, OLAP servers, data

mart servers, work stations and client laptops which are connected through networks.

Distributed operational database are the data sources of the data warehouse and they are

connected through LAN, MAN, VPN or PSTN network. Data warehouse server

contains information of all department of a organization whereas data mart server only

contains information of one or more departments. Decision making queries, analysis

and reporting tools access data mart and OLAP server through client computer.

4.2 Implementation of the Back-End Tool

Figure 4.2 shows back-end tool's process diagram.

Database connectivity

Fetching Target Schema and
Source Schema

Data mapping

Data extraction

SQL script generation

SQL script execution

Data into Data warehouse

Fig. 4.2: Tool's process diagram



21

In order to load data from operational source to data warehouse, a number of software

modules has been developed and integrated. For database connectivity a module has

been developed that connect source database and data warehouse using Open Database

Connectivity (ODBC). It allows database users to access database through the tool. The

next module has been developed for accessing meta data information of both source

database and data warehouse. These meta data information are fed as input for data

mapping module. Data mapping module maps field of data warehouse schema with

fields of source database schema. Now data extraction module extracts data from source

database in accordance with mapped fields. After then extracted data are represented as

SQL format through SQL generation module. Finally generated SQL commands are

executed by SQL execution module and data are loaded into data warehouse.

4.3 Features of the Back-End Tool

The back-end tool contains the following features:

>- The tool is user-friendly.

>- The back-end tool can upload data into data warehouse from both operational

database and backup database stored in hard drive, CD, DVD or any other

media.

:-- This tool also periodically refreshes data warehouse on updated source data of

operational DBMS connected through computer network.

>- It uses record by record commit. So if any failure occurs during the data load

from operational database, the process can restart from the last committed

record. In case of data loading from SQL script, it uses periodic checkpoints. So

if a failure occurs during the load, the process can restart from the last

checkpoint. Hence, the tool loads data without loss of data integrity.

:-- It supports both source driven and destination driven data loading.

:-- This tool contains a automated PSTN network connectivity component.



22

4.4 Operation of the Back-End Tool

Figure 4.3 shows the initial screen of the backend tool. It has three Menus: Connection,

Database and About. Connection menu has four sub menus: Dail, hangup, login,

logout, while Database menu contain three sub menus: Generate File, Upload and

Execute. The operation of this menu and submenu are discussed respectively.

Fig. 4.3: Snapshot of back-end tool



23

Generate File menu is used to generate SQL script for the source database. Figure 4.4

shows a snapshot of SQL script generation from operational database. The SQL script is

generated by clicking the button Generate SQL File.

Connection Datab,;;"B About

File locati
IO'ISRIMONGO

complete

I•••••••••
OK

Fig. 4.4: A Snapshot of SQL Script Generation

o
••••••••
C.w~ralE: SQL F=-l



24

Figure 4.5 shows a snapshot of data loading into data warehouse from operational

database. Here operational database is configured with Data warehouse. The loading

process is started by clicking the button upload now.

~ DATAWAREHOUSE SERVERUPLOAD. [upload)
~'. Connection Database About

r Upload into Data warehouse server

I Available Reords 120lJO

Uplo-:ld Records f'IOiN IH.lO

close I upload Now I

Fig. 4.5: A Snapshot of Data Loading into Data Warehouse



25

Figure 4.4 shows a snapshot of SQL script execution into data warehouse. In this form

generated SQL file is loaded and is executed by clicking the button Execute SQLfile

[J
Execute SQL file

Fig. 4.6: A Snapshot of SQL Script Execution

•



26

For PSTN network connectivity, a Application Programming Interface (API) is used

and is tested its functionality. Figure 4.6 shows a snapshot of PSTN network connection

establishment. Here, dial up connection is initiated by clicking the sub menu Dial from

Connection menu. If the connection is successful, it shows the message "Connection is

established" otherwise it shows the message "Connection is failed, Redial Again".

~!lATA WAREHOUSE,SERVERUPLOAD , .
Connection Database About

OK

Connection is eastllblished

connectedConnection status

Fig. 4.7: A Snapshot ofPSTN Network Connection Establishment



27

4.5 Test Case Design Showing Data Loading into Warehouse

We have considered three operational databases as a test case to load data into data

warehouse. The test data sets are as follows:

Table 4. I: Data Set of Site I

,sitejd customerjd :p.roductjd aate_kex ,~uanti~ value ~djustment vat

rl10974 11 :2008-08-11fi753F7s30010 1233[388"1775145 !(NULL)I
[1- r1121---[2 !2-ooii-:08-12j3509- 13509001175 [l05rus [35iOos- RNUiL51
1-1-[11221 [2 12008-08-04,9485 [94850010 1285!474 1948311 !(NULL)1
r[m07 12 '2008-08-198402 :84020010 1252WI840032 '(NULL)I
ri11938 12 :2008-08-0511766117660010 f53 rss-I176565 [(NULL)1
rjJ2522 122008-08-04 14305 [43050010 [129 '21S""" 1430414 !(NULL)I
[1-[12802 [2--~g:-3015089 1508900/0--[153,254 IS0879-9-jiNUll5!

rl13169 12 12008-08-2119635196350010 12891482 1963307 [(NULL)1
'-I -113542!2 [2008-08-20~1281300 10 [84 [1411281243 j(NULL)I
rl13769 13 12008-08-12!8089;808900 10 12431404 1808739 !(NULL)1

--- --------------~-------------".

Table 4.2: Data Set of Site 2

productjd iJate_kex guanti8i, alue adjustment Ivat waivenotal_amountremarks'

~ll0---[3'--12008-08-0719504 195040010 12851475 [950210 I(NULL)[

~110079 11 12008-08-06[8393183930010 [252W[839132 [(NULL)[
~ 110089 13 [2008-08-0417335173350010 1220!367 1733353 I(NULL)[
~ 11022 12 12008-08-02196351963500[0 12891482 '963307 I(NULL)[
12-- [1OsOii----2-[2008-08-04"!4670 [467000ro-----[140 123'4--1466906 [(NUll)[

~ 110645 13 12008-08-0619496194960010 1285!475 1949410 I(NULL)[
~110668 13 12008-08-15[7767177670010 1233,388 1776545 I(NULL)I
~ll0681 11 [2008-08-211699"169900 135 [21[35"",69921 [(NULL)[
12--rwm-- i2"""-!2008-08- 17[5835 [583500~- rm [292--1583383 -liNUiLl 1
~ll0729 '2 12008-08-10fi5J2[15i2oOlo i45rz-[151169 [(NULL)r



28

Table 4.3: Data Set of Site 3

sitejd :custoIT,lerjd 'p'rocluctjd, 'oate_key' guanti!Y.,value 'adjustment 'vat waivertotaL~0U1'l~ ,remarks'

~117097 12 12008-08-23]9977 1997700;0 12991499 1997500 !(NULL)r
13- [i86iT-- 12.--2008:0°8:07" [9789"'978900 10 [294-[4-89[978705- :<NULG[
~f33054 [2 2008-08-1319973,997300 10 [299 !499 1997100 I(NULL)[
~~8133 11 2008-08-25j9813981300 [0 1294:491'[981103 :<NUiL)[
~:6314 13 [2008-08-30'98581985800 1-493 [296 ;:193[985110 '(NULL)[
~!658 :2 12008-08-21110000011000000010 13000,500019998000 !(NULL)[
[3---;80-649-[1"--12008-08-2919855 [985500-[0---[29-6- '493-- [985303 [(NULL)[

~182616 12 '2008-08-06,9845984500 ;0 1295ii921984303 j(NULL)[
13--187489-- [2---°12008-08-06 19934--[993400-10--- [298-[497--[993201- 'cNUiiJ r
~19723 12 2008-08-079865 ,986500 10 12961493 1986303 (NULL)[

4.6 Results

For each data set, the generated SQL script is given bellow. These scripts are executed

into data warehouse. After execution of the generated SQL scripts of test case, data

warehouse shows the data of Table 4.4.

Generated SQL for Data set of Site 1:

insert into sales_fact(site _id,customcr _id,producl_id,date _key,quantity)values(' I',' I0974',' 1" '2008-08-11',7753);

insert into sales_fact(sitejd,customer _id,producl_id,datc_kcy,quantity)values(' I',' 11121 ','2', '2008-08-12',3509);

insert into salcs_fact(site _id,customcr _id,product_id,date _key,quantity)valucs(' 1','11221 ','2', '2008-08-04',9485);

insert into sales _ fact(sitc _id,customcr _id,productjd,date _ key,quantity)valuesC 1',' 11707','2', '2008-08-19',8402);

insert into sales_fact(site_ id,customer jd,product_ id,datc_key,quantity)valuesC 1',' 11938','2', '2008-08-05',1766);

insert into sales_fact(sitc_id,customcr jd,product_id,date_ key,quantity)values(' 1',' 12522','2', '2008-08-04',4305);

insert into sales_fact(site _ id,customer _id,productjd,date_kcy,quantity)valucs(' 1',' 12802','2', '2008-08-30',5089);

insert into sales _fact(site_id,customer_id,product_id,date _key,quantity)values(' 1',' 13169','2', '2008-08-21 ',9635);

insert into salcs_fact(sitc_id,customer _id,product_ id,datc_ kcy,quantity)valucs(' I',' 13542','2', '2008-08-20',2813);

insert into sales_ fact(sitc_id,customcr_id,productjd,datc _key,quantity)values(' 1',' 13769','3', '2008-08-12',8089);



Generated SQL for Data set of Site 2:

insert into sales _ faet( site _ id,customer _ id,product_ id,datc _ kcy,quantity)val ues('2',' 10','3', '2008-08-01' ,9504);

insert into sales _ fact( site _ id,customcr _ id,product_ id,date _key,quantity)valucs('2',' 10079',' 1'. '2008-08-06',8393);

insert into sales _ faet( site_ id,custorner _ id,product_ id,date _key,quantity)val ucs('2',' 10089','3', '2008-08-04',7335);

insert into sales _ faet( site _ id,customer jd,product_ id,date _key,quantity)val ucs('2',' 1022','2', '2008-08-02',9635);

insert into sales _ fact( site_ id,customcr _ id,product_ id,datc _kcy,quantity)values('2',' 10508','2', '2008-08-04',4670);

insert into sales _ faet( site_ id,customcr _ id,produet_ id,date _key,quantity)valucse2',' I0645','3', '2008-08-06',9496);

insert into salcs_ faet(sitc_id,eustomer _ id,produet_id,date _key,quantity)values('2','I 0668','3', '2008-08-15',7767);

insert into sales_faet(site _id,eustomcr_id,produet_id,datc_key,quantity)valucse2','10681 ',' I', '2008-08-21 ',699);

insert into sales_faet(site_id,customer _id,produet_ id,date_ key,quantity)valuese2','1 0711 ','2', '2008-08-17',5835);

insert into sales_faet(sitejd,customer _id,produet_id,date_ key,quantity)valuese2',' I0729','2', '2008-08-10',1512);

Generated SQL for Data set of Site 3:

insert into sales _ faet( site_ id,eustomer _ id,produet_ id,date _key,quantity)valuese3',' I709i,'2', '2008-08-23',9977);

insert into sales_ fact( site_ id,eustomer _ id,product_ id,date _key,q uantity )valucse3', '2861 7','2', '2008-08-07',9789);

insert into sales _ fact( site_ id,eustomer _ id,produet_ id,date _key,quantity)val uese3', '33054','2', '2008-08-13' ,997 3);

insert into salcs_fact(site _id,eustomer_id,produetjd,date_key,quantity)valuese3','48133','1 " '2008-08-25',9813);

insert into sales _ faet( site_ id,eustomer _ id,product_ id,date _key,quantity)val uese3', '63 14','3', '2008-08-30' ,985 8);

insert into sales _faet(sitc_id,customer _id,product_id,datc_key,quantity)valucseJ','658','2', '2008-08-21 " I00000);

insert into sales _ fact( site_ id,eustomer _ id,productjd,date _key,quantity)valuese3 ','80649',' I" '2008-08-29',9855);

insert into sales _ faet( site _ id,eustomcr _ id,produet_id,datc _key,quantity)valuese3' ,'82616' ,'2', '2008-08-06',9845);

insert into sales _ fact( site_ id,customer _ id,produet_ id,datc _ key,quantity)val ues('3', '87 489','2', '2008-08-06',9934);

insert into sales _ fact( site _ id,eustomer _ id,produet_ id,date _key,quantity)valuese3', '9723','2', '2008-08-07',9865);

29



30

_id leustomer _i.5! !P~U.l!~~LkeyJ LqUal'ltit)l

110974 11 12008-08-11 1m3

111121 12 12008-08-12 13509

111221 12 12008-08-0419485

111707 12 12008-08-19 [8402

111938 12 [2008-08-0511766

112522 12 12008-08-0414305

112802 12 12008-08-30 15089

113169 12 12008-08-21 19635

113542 12 [2008-08-2012813

113769 13
I Ij2008-08-12 j8089

110 13 '2008-08-07 19504

110079 11 :2008-08-0618393

110089 13 [2008-08-0417335

11022 12 12008-08-0219635

110508 12 12008-08-0414670

110645 13 12008-08-0619496

110668 13 12008-08-1517767

110681 11 12008-08-21 1699

110711 12 12008-08-1715835

110729 12 12008-08-10 11512

117097 12 [2008-08-2319977

128617 12 12008-08-0719789

133054 12 12008-08-1319973

148133 11 [2008-08-2519813

16314 13 12008-08-30 19858

1658 12 !2008-08-21 1100000

180649 11 '2008-08-2919855

182616 12 '2008-08-06 [9845

187489 12
I

12008-08-06 19934

19723 12 12008-08-07 19865

site

Table 4.2: loaded data into the data warehouse



31

Chapter 5

Conclusion and Future work

5.1 Conclusion

Historical, summarized and consolidated data are important for making business

decision and analysis. Data loading tool of data warehouse is able. to bring in data from

a range of different data sources and integrates the information in a single system.

The objective of this project is to develop a back-end tool using open-source technology

for loading data into data warehouse from a number of data sources.

In order to develop the project, we have designed data warehouse schema using open-

source DBMS MySQL. We have developed an SQL generator that represents data as

SQL format. We have also developed data loader that execute generated SQL

commands and load data into data warehouse. This tool also periodically refreshes data

warehouse on updated source data of operational DBMS connected through computer

network. It use incremental loading during refresh to reduce the volume of data that has

to be incorporated into the warehouse. The tool contains an integrated PSTN network

connectivity component that establishes dial up connection easily.

The developed tool has been tested for both operational database and backup database

and it successfully worked for both cases. The test results show that the tool generates

SQL script correctly and loads data into data warehouse without loss of data integrity.



32

5.2 Scope of Future Work

The suggested future works are as follows:

(i) Development of Data Cleaning Tool: Heterogeneous data drawn from multiple

sources present a number of errors and inconsistencies. The inconsistencies and errors

are removed by using data cleaning tools before loading data into data warehouse. So

another project can be initiated to develop this tool.

(ii) Incorporation of Pipelined and Parallelism Feature: The developed tool uses

sequential loading technique. So it can take a very long time in case of huge amount of

data. Even it can take weeks and months to load terabyte of data. Hence, pipelined and

parallelism feature can be incorporated with the developed tool to handle massive data

loading into the warehouse.



33

References:

[I] A. Sen and A.P. Sinha, "A Comparison of Data Warehousing Methodologies",
Communications of the ACM, Vol. 48, No.3, pp. 79-84, March 2005.

[2] S. Chaudhury and U. Dayal, "An Overview of Data Warehousing and OLAP
Technology", ACM SIGMOD, Vol. 26, No. I, pp. 65-74, March 1997.

[3] http://www.oracle.com/solutionslbusinessintelligence/dwhome.htm!(last
access on 30-05-2007)

[4] http://www.microsoft.com/sgllso!utions/dw/default.mspx (last access on 30-05-
2007)

[5] http://www.mysgI.COI11 (last access on 30-08-2007)

[6] http://www.postgresgl.com (last access on 30-08-2007)

[7] M.A. Islam, " Online Analytical Processing System for Student's Information of
BUET using Open Source Technology", M.Engg. Project Report, nCT, BUET,
November, 2006.

[8] W.H. Inmon, "Building the Data Warehouse". John Wiley, 1992.

[9] R. Kimball, "The Data Warehouse Toolkit". John Wiley, 1996.

[10] A. Silberschatz, H. F. Korth and S. Sudarshan, "Database System Concepts", 5th
ed., McGraw-Hill, 2005.

http://www.oracle.com/solutionslbusinessintelligence/dwhome.htm!last
http://www.microsoft.com/sgllso!utions/dw/default.mspx
http://www.mysgI.COI11
http://www.postgresgl.com


34

Appendix A: Program Codes of the Developed Back-End Tool

Source Code for SQL script generation

Private Sub data_transfer_insert(table_uame As String)
Dim tableyroperties(50, 2) As Byte
Dim I As Integer

Dim column_number As Integer
Dim conditional_clause As String
Dim fields(50) As String
Dim tblyrop_rs As ADODB.Recordset
Dim sqlstr As String
Dim table_field_str As String
Set tblyropJs ~ New ADODI3.Recordsct
sqIstr = "show fields from" & table_name & ''''
tblyrop_rs.Open sqlstr, local_adoconnection
table_field_str ~ "("
'column_number = tblyrop_fs.RecordCount
1=0
conditional_clause = ''''

While Not tblyrop_rs.EOF
'it holds tag of data type for each column
tableyropertics(l, 0) ~ I1f(lnStr(tblyropJs'Type, "date"), I, I1f(lnStr(tblyropJs'Type, "char"),
2, I1f(InStr(tblyrop_rs!Type, "enum"), 2, I1f(JnStr(tblyroPJs!Type, "blob"),
4, I1f(InStr(tblyrop_rs!Type, "timestamp"), 5, 3»))))
'it holds tag of each column wether it is part of primary ke or not
tableyroperties(l, I) ~ I1f(lnStr(tblyrop_rs!Key, "PRJ"), I, 0)
'it holds each column name of a table
fields(l) ~ tblyrop_rs!Field
table_field_str ~ table_field_str & tblyrop_rs!Field
tblyrop_rs.MoveNext
If Not tblyrop_rs.EOF Then
table_field_SIr ~ table_field_str & ","

Else
table _field_str ~ table_field_str & ")"

End If
I~I+ I

Wend
table_field_str = Replace(table_field_str, ",g_id,o_id", "")

'Next i
colunm _number = I
, select records from the table for insert
sqlstr = tlselect * from II & table_name & " where 0_ id='l til

Dim upload_rs As ADODB.Recordset
Set upload_rs = New ADODB.Recordset
uploadJs.Open sqlstr, local_adoconnection, 3, 3

While (Not uploadJs.EOF And record_count < Val(Me.Txt_available_record))
'initialisation for insert query



35

sglstr ~ "insert into" & table_name & table_field_str & "values("
'initialisation for conditional clause

conditional clause = ''''

For I = 0 To column number - 4
'it generates sqI for both the receds to be inserted and conditional clause
Select Case tableyroperties(l, 0)
Case I

'it is for date type column
sglstr ~ sglstr +" to_dateC" & upload_rs(l) & "','mm-dd-yyyy'),"
conditional_clause ~ conditional_clause + llf(tableyroperties(I, I) = I,
llf(conditioual_clause = "", "where" & fields(l) &"~ to_dateC" & upload_rs(I) & "',
'mm-dd-yyyy')", " and" & fields(I) & "~to_date('" & upload_rs(l) & ''','mm-dd-yyyy')''), "")

Case 2
'it is for string type column
sqlstr = sqIstr & "It, & upload_fs(l) & ''',II

conditional_clause = conditional_clause + IIf(tableyroperties(I, I) = I,
Uf(conditional_c1ause = "It, "where" & fields(I) & "= III & upload_fs(I) & "''', " and" &
fields(I) & "='" & upload_rs(I) & ""'), "")

Case 3
'it is for number type column
sgIstr = sglstr & '''' & upload_rs(l) & ","
conditional_clause = conditional_clause + IIf(tableyroperties(I, I) ~ I,
IIf(conditional_clause = "","where II & fields(I) & "= II & upload_fs(I) & "", " and" &
fields(l) & "~,,& upload _rs(I) & ""), "")

Case 4
'it is for image type column
sglstr ~ sglstr & "NULL, "
conditional_clause ~ conditional_clause + IIf(tableyroperties(l, I) = I,
IIf{conditional_clause = '''', "where" & fields(I) & "=" & upload_fs(I) & ""," and" &
fields(l) & "=" & upload_rs(l) & ""), "")

Case 5
sglstr ~ sglstr + "to_dateC" & upload_rs(I) & "','mm-dd-yyyy HH:Mi:ss PM'),"
conditional_clause = conditional_clause + IIf(tableyroperties(l, I) = I,
IIf(conditional_clause = "", "where" & fields(l) & "~to_dateC" & upload_rs(l) & "',
'mm-dd-yyyy')"," and" & fields(l) & "=to_date('" & uploadJs(l) & "',
'mm-dd-yyyy HH:Mi:ss PM')"), "")

End Select
Next I

Select Case table yroperties(l, 0)
Case I
sglstr ~ sglstr & " to_dateC" & uploadJs(I) & "','mm-dd-yyyy'»)"
conditional_clause = conditional_clause + IIf(tableyroperties(I, I) ~ I,
llf(conditional_clause ~ "", "where" & fields(l) &"~ to_dateC" & upload_rs(l) & ''',
'mm-dd-yyyy')"," and" & fields(l) & "=to_date('" & upload_rs(I) & "','mm-dd-yyyy')"), "")

Case 2
sglstr = sglstr & "'" & upload_rs(I) & ''')''
conditional_clause ~ conditional_clause + IIf(tableyroperties(I, Ir= I,
Uf(conditional_clause = It", '\vhere" & fields(I) & "= ll! & upload_fs(I) & ""'," and" &
fields(I) & "~,,,& upload_rs(l) & "'''), "")

Case 3
sglstr = sglstr & ''', & upload _rs(l) & ")"



conditional_clause ~ conditional_clause + lIf(tableyroperties(I, I).~ I,
IIftconditional_clause == II", "where II & fields(I) & It=" & upload_fs(I) & ""," and" &
fields(I) & "=" & upload_rs(I) & ""), "")

Case 4
sqlstr = sqlstr & "NULL) "
conditional_clause = conditional_clause + lIf(tableyroperties(l, I) ~ I,
IIf(conditional_clause == '''', "where" & fields(I) & "=" & upload_fs(l) & ""," and" &
fields(l) & "=" & upload_rs(l) & ""), "")

Case 5
sqlstr ~ sqlstr +" to_date(''' & upload_rs(I) & ''','mm-dd-yyyy HH:Mi:ss PM'))"
conditional_clause = conditional_clause + IIf(tableyroperties(l, I) ~ I,
IIf(conditional_clause ~ '''', "where" & fields(I) & "~to_date(''' & uploadJs(l) & ''',
'mm-dd-yyyy')", " and" & fields(l) & "~to_date(''' & uploadJs(I) & "',
'mm-dd-yyyy HH:Mi:ss PM')"), "")

End Select
'On Error Resume Next
'it is for central server
'adoConnection.Execute (sqlstr)

Print #2, sqlstr & ";" & vbCrLf

'it is for local server
'On Error Resume Next

If Err.Number ~ 0 Then
sqlstr = "update" & table_name &" set o_id='O' "& conditional clause & ''''
On Error Resume Next
local_ adoconnection.Execute (sqlstr)

End If
On Error GoTo 0

upload_rs.MoveNext
record_count == record_count + I
ProgressBar 1.value == ProgressBar I.value + I
Wend

End Sub

Private Sub data_transfer _update(table _name As String)
Dim tableyroperties(50, 2) As Byte
Dim I As Integer

Dim column_number As Integer
Dim conditional_clause As String
Dim fields(50) As String
Dim tblyrop_rs As ADODB.Recordset
Dim sqlstr As String
Set tblyrop _rs ~ New ADODB.Recordset
sqlstr == ushow fields from" & table_name & till

tblyrop _rs.Open sqlstr, local_adoconnection

36



37

'column_number = tbl-prop_rs.RecordCount
1=0
conditional_clause = ""

While Not tblyrop _rs.EOF
'it holds tag of data type for each column
tableyroperties(I, 0) ~ I1f(lnStr(tblyropJs!Type, "date"), I, IIf(InStr(tblyrop_rs!Type, "char"),
2, lIf(InStr(tblyrop_rs!Type, "enum"), 2, 1If(lnStr(tbIyropJs!Type, "blob"), 4, 3»)))
'it holds tag of each colunm wether it is part of primary ke or not
tableyroperties(I, I) ~ IIf(InStr(tblyrop_rs!Key, "PRI"), 1,0)
'it holds each column name of a table
fields(I) = tblyrop _rs!Field
tblyrop_rs.MoveNext

1=1+ I
Wend
'Next i

colunm number = I
, select records from the table for update
sqlstr = "select * from" & table_name & " where 0_id='2'"
Dim upIoad_rs As ADODB.Recordset
Set upload_rs = New ADODB.Recordset
upload_rs.Open sqlstr, local_adoconnection, 3, 3

While (Not upload_rs.EOF And record_count < Val(Me.Txt_avaiIable_record))
'initialisation for update query
sqlstr = "update" & table_name &" set"
'initialisation for conditional clause

conditional_clause = ""
For I = 0 To column number _4

Select Case table yroperties(I, 0)
Case I

'it is for date type colunm
sqlstr = sqlstr +" "& fields(I) & "~to_date('" & uploadJs(I) & ''','mm-dd-yyyy'),''
conditional_clause ~ conditional_clause + lIf(tableyroperties(I, I) = I,
lIf(conditionaI_clause ~ "", "where" & fields(I) & "= to_date('" & upload_rs(l) & ''',
'mm-dd-yyyy')", " and" & fields(I) & "=to_date(''' & upload_rs(I) & "','mm-dd-yyyy')"), "")

Case 2
'it is for string type colunm
sqlstr ~ sqlstr & "" & fields(I) & "='" & upload_rs(I) & "',"
conditional_clause = conditional_clause + lIf(tableyroperties(I, I) ~ I,
IIf(conditional_c1ause = "","where" & fields(l) & "= '"& upload_rs(l) & ''''', " and" &
fields(I) & "='" & upload _rs(I) & ""'), '''')

Case 3
'it is for number type column
sqIstr = sqlstr & "" & fields(I) & "=" & uploadJs(I) & ","
conditional_clause = conditional_clause + lIf(tabIeyroperties(I, 1) = I,
IIf(conditional_clause = "", "where" & fields(I) & "=" & upload_rs(I) & "", " and" &
fields(I) & "=" & upload_rs(I) & ""), "")

Case 4
'it is for image type column
sqlstr = sqlstr & '''' & fields(I) & "~NULL, "



38

conditional_clause ~ conditional_clause + I1f(tableyroperties(l, I) = I,
IIf(conditional_clause = '''', "where" & fields(I) & "=" & upload_fs(I) & "", " and II &
fields(l) & "=" & upload _rs(l) & ""), "")

End Select
Next I

Select Case table yroperties(I, 0)
Case I
sqlstr ~ sqlstr & " " & fields(I) & "~to_date('" & upload_rs(I) & ''','mm-dd-yyyy') "
conditional_clause ~ conditional_clause + lIf(tableyroperties(I, I) = I,
I1f(conditional_clause = "", "where" & fields(I) & "= to_dateC" & upload_rs(I) & ''',
'mm-dd-yyyy')"," and" & fieIds(I) & "=to_date('" & upload_rs(l) & ''','mm-dd-yyyy')''), "")

Case 2
sqlstr = sqlstr & "" & fields(I) & "='" & uploadJs(I) & ,,,"
conditional_clause = conditional_clause + I1f(tableyroperties(I, I) = I,
Irf(conditional_c1ause = "", "where" & fields(l) & "= III & upload_fs(l) & ""', II and" &
fields(l) & "='" & uploadJs(I) & ""'), "")

Case 3
sqlstr = sqlstr & ,,,'& fields(I) & "~,,& upload_rs(I) &" "
conditional_clause = conditional_clause + lIf(tableyroperties(I, I) ~ I,
IIf(conditional_clause = '''',"where" & fields(I) & "= It & upload_fs(I) & "", " and" &
fields(I) & "~,,& upload_rs(I) & ""), "")

Case 4
sqlstr = sqlstr & '''' & fields(l) & "=NULL "
conditional_clause ~ conditional_clause + I1f(tableyroperties(I, I) = 1,
lIf(conditional_clause = "", '\vhere "& fields(l) & It=" & upload_fs(I) & "", It and" &
fields(I) & "~,,& upload_rs(I) & ''''), "")

End Select
sqlstr = sqlstr & conditional_clause

'On Error Resume Next
'it is for central server
'adoConnection.Execute (sqlstr)
Print #2, sqlstr & ";" & vbCrLf
If Err.Number ~ 0 Then

sqlstr = "update" & table_name & " set 0_ id='O' "& conditional_clause & ''''
'it is for local server

On Error Resume Next
loca1_adoconnection.Execute (sqlstr)

End If
On Error GoTo 0

upload _rs.MoveNext
record_count = record_count + I
ProgressBar1.value = ProgressBarl.value + 1
Wend

End Sub



Source Code for SQL script execution
Sub ExecuteSqlScriptO
Dim Script As String
Dim FileNumber As Integer
Dim Delimiter As String
Dim aSubscriptO As String

Dim Subscript As String
Dim I As Long
Delimiter = ";"
FileNumber = FreeFile
Script = String(FileLen(CommonDialoLulpoad.FileName), vbNullChar)
, Grab the scripts inside the file
Open CommonDialog_ulpoad.FileName For Binary As #FileNumber
Get #FileNumber, , Script
Close #FileNumher ' Put the scripts into an array
aSubscript = Split(Script, Delimiter) , Run each script in the array
ProgressBarl.Max ~ UBound(aSubscript)
For I = 0 To UBound(aSubscript) - I
aSubscript(l) ~ Trim(aSubscript(l))
Subscript = aSubscript(l)
Subscript = Replace(Subscript, vbCr, "")
Subscript = Replace(Subscript, vbLf, "")
ProgressBar I.value = I
'On Error Resume Next
adoConnection.Execute (Subscript)
'CurrentProject.connection. Execute Subscript
Next I

End Sub

39



Source Code for PSTN network connectivity

Private Function Dial(ByYal connection As String, ByYal UserName As String, ByYal password As
String) As Boolean
Dim rp As RASDIALP ARAMS, h As Long, resp As Long
rp.dwSize ~ Len(rp) + 6
ChangeBytes connection, rp.szEntryName
ChallgeBytes "", rp.szPhoneNumber 'Phone number stored for the connection
ChangeBytes "''', rp.szCalibackNumber 'Callback number stored for the connection
Changellytes UserName, rp.szUserName
ChangeBytes password, rp.szPassword
ChangeBytes "*", rp.szDomain 'Domain stored for the connection
'Dial
resp ~ RasDial(ByYal 0&, vbNuliString, rp, &HFFFF, Me.hWnd, h) 'AddressOfRasDialFunc
Dial ~ (resp ~ 0)

End Function

Private Function ChangeToStringUni(BytesO As Byte) As String
'Changes an byte array to a Visual Basic unicode string
Dim temp As String
temp ~ StrConv(Bytes, vbUnicode)
ChangeToStringUni = Left(temp, InStr(temp, Chr(O)) - I)

End Function

Private Function ChangeBytes(ByYal str As String, BytesO As Byte) As Boolean
'Changes a Visual Basic unicode string to an byte array
'Returns True if it truncates str
Dim lenBs As Long 'length of the byte array
Dim lenStr As Long 'length of the string
lenBs = UBound(Bytes) - LBound(Bytes)
lenStr = LenB(StrConv(str, vbFromUnicode))
If lenBs > lenStr Then
CopyMemory llytes(O), str, lenStr
ZeroMemory Bytes(lenStr), lenBs - lenStr

Eiself lenBs ~ lenStr Then
CopyMemory Bytes(O), str, lenStr

Else
CopyMemory Bytes(O), str, lenBs 'Queda truncado
ChangeBytes = True

End If
End Function

Private Sub List 1_ClickO
Dim rdp As RASDIALPARAMS, t As Long
rdp.dwSize = Len(rdp) + 6

40



ChangeBytes Listl.Text, rdp.szEntryName
'Get User name and password for the connection
t = RasGetEntryDiaIParams(Listl.Text, rdp, 0)
1ft = 0 Then
nser = ChangeToStringUni(rdp.szUserName)
password = ChangeToStringUni(rdp.szPassword)

End If
End Sub

Private Sub Form_LoadO
'example created by Daniel Kaufmann (daniel@i.com. uy)
'load the connections
timmer_flag = True
Timerl.Enabled ~ True
Cmdredial.Enabled ~ False
Cmdredial.Visible = False
cmdcancel.Enabled = False
cmdcancel.Visible ~ False
counter = 0
Me.Width ~ 15360
Me. Height ~ 11520
Me. Left = frmMDImain. Width / 2 - 2500
Me.Top = frmMDImain.Height / 2 - 3800
Me. Width = frmMDImain. Width / 3
Me.Height = frmMDImain.Height / 3
user = "test"
password = lltest123"

Dim s As Long, I As Long, In As Long, a$
ReDim r(255) As RASENTRYNAME95

r(O).dwSize ~ 264
s = 256 • r(O).dwSize
1= RasEnumEntries(vbNullString, vbNullString, r(O), s, In)
For I = 0 To In - I
a$ = StrConv(r(l).szEntryNameO, vbUnicode)
Listl.AddItem Left$(a$, InStr(a$, Chr$(O» - I)

Next
If Listl.ListCount > 0 Then

Listl.Listlndex = 0
Listl_ Click

End If
flag = Dial(Listl.Text, user, password)

End Sub

41

mailto:daniel@i.com.


42

Source Code for Data loading

Private Sub data_transfer_insert(table_name As String)
Dim tableyroperties(50, 2) As Byte
Dim I As Integer

Dim column_number As Integer
Dim conditional_clause As String
Dim fields(50) As String
Dim tblyrop_rs As ADODB.Recordset
Dim sqlstr As String
Dim table_field _ str As String
Set tblyrop_rs = New ADODB.Recordset
sqlstr = "show fields from" & table_name & ''',
tbI--'prop_fs.Open sqlstr, local_adoconnection
'column_number = tblyrop_rs.RecordCountI~O
conditional_clause = ''''

While Not tblyropJs.EOF
'it holds tag of data type for each column
tableyroperties(I, 0) ~ IIf(lnStr(tblyrop_rs!Type, "date"), I, IIf(InStr(tblyrop_rs!Type, "char"),
2, IIf(InStr(tblyrop_rs!Type, "enum"), 2, IIf(InStr(tblyropJs!Type, "blob"), 4,
IIf(InStr(tblyrop Js!Type, "timestamp"), 5, 3»)))
'it holds tag of each column wether it is part of primary ke or not
tableyroperties(l, I) = IIf(InStr(tblyrop_rs'Key, "PRI"), 1,0)
'it holds each column name of a table
fields(l) = tblyrop _rs!Field
table_field_str = table_field_str & tblyrop_rs!Field
tblyrop_rs.MoveNext
If Not tblyropJs.EOF Then
table_field_str ~ table_field_str & ","

Else
table_field_str = table_field_str & ")"

End If
I= I+ I

Wend
table_field_str ~ Replace(table_field_str, ",g_id,o_id", "")
'Next i
column_number = I
t select records from the table for insert
sqlstr = "select * from" & table_name & " where 0_ id=' 1'"
Dim upload JS As ADODB.Recordset
Set upload_rs = New ADODB.Recordset
upload_rs.Open sqlstr, local_adoconnection, 3, 3

While (Not upload_rs.EOF And record_count < Val(Me.Txt_upload_record))
'initialisation for insert query
sqlstr = "insert into" & table_name & table _field_str & "values("
'initialisation for conditional clause
conditional clause = ''''

For I = 0 To column number _4
'it generates sql for both the recods to be inserted and conditional clause



43

Select Case table -properties(l, 0)
Case I

'it is for date type column
sglstr = sglstr +" 10_dateC" & upload_rs(l) & ''','nun-dd-yyyy'),''
conditional_clause = conditional_clause + Ilf(table-properties(I, I) ~ I,
IIf(conditional_c1ause ~ "", "where" & fields(l) & "~to_date('" & upload_rs(l) & ''',
'mm-dd-yyyy')"," and" & fields(l) & "=to_date('" & upload_rs(I) & ''','mm-dd-yyyy')''), '''')

Case 2
'it is for string type column
sgIstr ~ sglstr & "," & upload_rs(I) & "',"
conditional_clause ~ conditional_clause + IIf(table-properties(I, I) = I,
IIf(conditional_c1ause = "","where II & fields(I) & "=," & upload_fs(l) & "'II," and" &
fields(l) & ,,~'"& uploadJs(I) & ""'), "")

Case 3
'it is for number type colunm
sglstr ~ sglstr & ''', & upload_rs(I) & ","
conditional_clause = conditional_clause + Ilf(table-properties(l, I) = I,
lIf(conditional_c1ause = "", "where" & fields(I) & "=" & upload_fs(I) & ""," and tI &
fields(I) & "~,,& upload_rs(!) & ""), "")

Case 4
'it is for image type column
sglstr ~ sglstr & "NULL, "
conditional_clause = conditional_clause + Ilf(table-properties(l, I) = I,
I1f(conditional_clause = "", "where" & fields(I) & "=" & upload_fs(I) & "", "and" &
fields(I) & "=" & upload_rs(!) & ""), "")

Case 5
sglstr ~ sglstr + " to_daleC" & upload_rs(l) & "','mm-dd-yyyy'),"
conditional_clause ~ conditional_clause + Ilf(table-properties(l, I) = I,
IIf(conditional_c1ause = "", "where" & fields(l) &"~ to_daleC" & upload_rs(!) & "',
'mm-dd-yyyy')", " and" & fields(I) & "~to_dateC" & upload_rs(l) & "',
'mm-dd-yyyy HH:Mi:ss PM')"), "")

End Select
Next I

Select Case table-properties(I, 0)
Case 1
sglstr ~ sglstr & "to_dateC" & uploadJs(l) & ''','mm-dd-yyyy'))''
conditional_clause ~ conditional_clause + Ilf(table-properties(l, I) = I,
Ilf(conditional_c1ause ~ "", "where" & fields(l) & "= to_daleC" & upload_rs(l) & ''',
'nun-dd-yyyy')", " and" & fields(l) & "~to_date('" & upload_rs(l) & ''','mm-dd-yyyy')''), "")

Case 2
sglstr = sglstr & "'" & upload_rs(l) & "')"
conditional_clause = conditional_clause + IIf(table-properties(l, I) = I,
IIf(conditional_clause = "", "where" & fields(I) & "= II' & upload_fs(I) & "''', " and" &
fields(l) & "~,,,& upload _rs(l) & '''''), "")

Case 3
sglstr = sglstr & "" & upload_rs(I) & ")"
conditional_clause = conditional_clause + Ilf(table-properties(I, I) = I,
IIf(conditional_c1ause = "", "where" & fields(l) & "=" & upload_rs(l) & "", "and" &
fields(l) & "=" & upload_rs(I) & ""), "")

Case 4
sglstr = sglstr & "NULL) "
conditional_clause = conditional_clause + Ilf(table-properties(l, I) = I,



IIf(conditional_clause = "","where" & fields(I) &"=" & upload_rs(I) & ""," and" &
Fields(l) & "~,,& upload _rs(l) & ""), "")

Case 5
sglstr = sglstr +" to_dater'"~& uploadJs(l) & ''','mm-dd-yyyy')''
conditional_clause ~ conditional_clause + I1f\tableyroperties(l, 1) ~ 1,
lIf\conditional_c1ause = "", "where" & fields(l) & "= to_date(''' & uploadJs(l) & ''',
'mm-dd-yyyy')"," and" & fields(I) & "~to_date('" & upload_rs(l) & "',
'mm-dd-yyyy HH:Mi:ss PM')"), "")

End Select
On Error Resume Next
'it is for central server
adoConnection.Execute (sglstr)
If Err.Number = 0 Then

sqlstr = "update" & table_name & " set o_id='O' It & conditional_clause & 'It,

'it is for local server
local_ adoconnection.Execute (sglstr)

End If
uploadJs.MoveNext
record_count = record_count + I
ProgressBarl.value = ProgressBarl.value + I
Wend

End Sub

Private Sub data_transfer_update(table_name As String)
Dim tableyroperties(50, 2) As Byte
Dim I As Integer

Dim colunm_number As Integer
Dim conditional_clause As String
Dim fields( 50) As String
Dim tblyropJs As ADODB.Recordset
Dim sglstr As String
Set tblyrop_rs = New ADODB.Recordset
sglstr = "show fields from" & table_name & ''''
tbljJrop_rs.Open sqlstr, local_adoconnection
'column_number = tbljJrop _rs.RecordCount
1=0
conditional clause = ""

While Not tblyrop Js.EOF
'it holds tag of data type for each column
tableyroperties(l, 0) ~ I1f\InStr(tblyrop_rs!Type, "date"), 1, lIf\lnStr(tblyrop_rs!Type, "char"),
2, I1f(lnStr(tblyropJs!Type, "enum"), 2, lIf\InStr(tblyropJs!Type, "blob"), 4, 3))))
'it holds tag of each column wether it is part of primary ke or not
tableyroperties(l, I) = lIf\lnStr(tblyrop_rs!Key, "PRI"), 1,0)
'it holds each column name of a table
fields(l) ~ tblyrop_rs!Field
tblyrop _rs.MoveNext

1=1+ 1

44



Wend
'Next i

colunID_ number =:: I
, select records from the table for update
sqlstr =:: "select * from" & table_name &" where o_id='2'"
Dim upload _rs As ADODB.Recordset
Set upload_rs ~ New ADODB.Recordset
upload_fs.Open sqlstr, local_adoconnection, 3, 3

While (Not upload_rs.EOF And record_count < Val(Me.Txt_upload_record))
'initialisation for update query
sqIstr =:: "update" & table_name &" set II

'initialisation for conditional clause
conditional clause =:: ""

For I=::O To column_number _ 4

Select Case tableyroperties(l, 0)
Case I

'it is for date type column

sqlstr ~ sqlstr +" "& fields(l) & "~to_datee" & upload _rs(l) & "','mm-dd-yyyy'),"
conditional_clause ~ conditional_clause + lIf(tableyroperties(l, I) = I,
lIf(conditional_c1ause ~ "", "where" & fields(l) & "= to_date('" & upload_rs(l) & "',
'mm-dd-yyyy')", " and" & fields(l) & "=to_date('" & upload_rs(l) & "','mm-dd-yyyy')"J, "")Case 2
'it is for string type column

sqlstr ~ sqlstr & "" & fields(l) & "='" & upload_rs(l) & "',"
conditional_clause = conditional_clause + lIf(tableyroperties(l, I) ~ I,
Uf(conditional_clause =:: "", "where" & fields(I) & "= '" & upload_fs(l) & '''''," and" &
fields(l) & ,,~'"& upload_rs(l) & ""'), "")

Case 3
'it is for number type column
sqlstr = sqlstr & ,,,'& fields(l) & "=" & upload_rs(I) & ","
conditional_clause = conditionatclause + lIf(tableyroperties(l, I) = I,
lIf(conditional_c1ause = "", "where" & fields(l) & "=" & upload_rs(l) & "", "and" &
fields(I) & "=" & upload_rs(l) & ''''), "")

Case 4
'it is for image type column
sqlstr = sqlstr & '''' & fields(l) & "=NULL, "
conditional_clause = conditional_clause + lIf(tableyroperties(l, I) = I,
IIf(conditional_clause =:: "", "where" & fields(I) & "=" & upload_rs(l) & 'It', "and H &
fields(l) & "=" & upload_rs(l) & ""), "")

End Select
Next I

Select Case tableyroperties(l, 0)
Case 1

sqlstr ~ sqlstr & " " & fields(l) & "~to_date('" & upload_rs(l) & "','mm-dd-yyyy') "
conditional_clause = conditionatclause + IIf(tableyroperties(I, I) ~ I,
IIf(conditional_c1ause = "", "where" & fields(I) & "= to_date('" & uploadJs(l) & "',
'mm-dd-yyyy')", "and" & fields(l) & "=to_date('" & upload_rs(l) & ''','mm-dd-yyyy'J''), "")Case 2

sqlstr = sqlstr & "" & fields(l) & "='" & upload_rs(l) & '" "
conditionatclause = conditional_clause + IIf(tahleyroperties(l, I) ~ I,

45



IIf(conditional_clause = "", ltwhere It & fields(l) & n= III & upload_fs(l) & ""'," and" &
fields(I) & ,,~'"& uploadJs(I) & ""'), "")

Case 3
sqlstr ~ sqlstr & "" & fields(I) & "~,,& upIoad_rs(I) & "
conditional_clause ~ conditional_clause + IIf(table -"roperties(I, I) ~ 1,
IIf(conditional_clause = "", "where" & fields(I) & "=" & upload_rs(l) & "", " and" &
fields(I) & "=" & uploadJs(I) & ""), '''')

Case 4
sqlstr ~ sqlstr & "" & fields(I) & "=NULL "
conditional_clause ~ conditional_clause + IIf(table-"roperties(l, I) ~ I,
IIf(conditional_c1ause = "It, "where" & fields(I) & n=" & upload_fs(I) & '''', " and" &
fields(l) & "~,,& upload _rs(l) & ""), "")

End Select
sqlstr ~ sqlstr & conditional_clause

On Error Resume Next
'it is for central server
adoConnection.Execute (sqlstr)
If Err.Number ~ 0 Then

sqlstr = "update" & table_name & "set o_id='O' tI & conditional clause & ,,"
'it is for local server

local_ adoconnection.Execute (sqlstr)
End If
upload_rs.MoveNext
record_count = record_count + 1 ProgressBarl.value = ProgressBarl.value + 1

Wend

End Sub

46


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055

