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ABSTRUCT

Conventional design of a free standing stair is dependent on some approximate analytical

methods. The conventional methods fail to recognize the variation of stress resultants

across any cross section of the stair slab. Amanat (1993] made an extensive finite element

study on free standing stairs and proposed a simplified but rational guideline for easy

analysis of free standing stairs based on seven semi-empirical equations for direct

evaluation of forces and moments at critical locations. His approach recognizes the stress

variation across different sections of the free standing stair ..

Later, in the study of Zahid (1999], two equations were developed for two redundants,

namely the lateral shear and the bending moment at the mid-landing section. The

moments and forces at the other critical locations can be calculated using equilibrium

equations. In all these studies, supports were assumed completely fixed at floor levels. In

the present study, two sets of empirical equations are developed for three cases of loading

for stairs resting directly on the floor slab which can provide only partial rigidity as

support. Other necessary design parameters are obtained from equilibrium equations. Ten

example stairs are solved by using the proposed equations and. finite element analysis.

Comparison of these results establish the acceptability of the proposed equations.

The proposed method has rendered the calculations of forces and moments very easy, and

the estimation is found to be within the acceptable limits for commonly used proportions

of stairs.
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CHAPTER 1

INTRODUCTION

1.1GENERAL
Stair is an important functional element in a building, whether tall or low rise. It may be

defmed as a series of steps arranged for the purpose of connecting different floors of a

building. At the time of any emergency evacuation, like an earthquake or a fIre, stair is

subjected to its maximum loading. At the peak hour in a commercial, center or market, a

stair is used not only to facilitate transport of people between floors but also to provide an

elegant look to the building. Architecturally, it must be fuscinating and beautiful;

structurally, it must be strong, stiff, efficient; functionally it must allow smooth and free

transit of people from floor to floor; and seismically, it must be flexible enough to

withstand the shock load.

Depending on various architectural fOnDS,stairs may be classifIed as (Fig. 1.1) ;

• Free standing stair,

• Slabless stair,

• Helical stair, and

• Simple straight stair.

Compared with other structural components of a building, stairs have some unusual

characteristics. Stairs are an assemblage of interconnected plates in a three-dimensional

space and supported at the outer edges of these plates. Both in-plane and out-of-plane

forces may be predominant in the stair depending on the arrangement of supports. In

simple stairs, supports are provided at floor levels and at intermediate landing. Previous

investigations on this type of stairs revealed that load is transferred primarily through

bending of stairs slabs. In plane forces, although present, are of little signifIcance. The

situation changes totally when the supports at landing is removed and the stair is allowed

to stand freely between supports at floor levels only. The structural functioning of this

free standing stair is completely different from that of the simple stairs. While the

functioning of simple stairways can be approximated as a two dimensional flexure

~
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Fig. 1.1 Stairs of Different Types

a) Free standing stair

b) Siabless stair

c) Helical stair

d) Simple straight stair
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problem, there is no way of similar treatment to the free standing stair which is truly a

three dimensional problem. Consequently, the structural analysis of a free standing stair is

much more complex in comparison to that of the ordinary stairs. From architectural

viewpoint, free standing stairs are more attractive than simple stairs. Another

architecturally fascinating stair of similar structural action is the helicoidal stair. But

construction of a helicoidal stair is difficult because of its geometry. A considerable part

of the total cost goes to the construction of the formwork of a helicoid. On the contrary,

the formwork of a free standing stair is simple. Unlike simple stairs, a free standing stair

does not need a separate stair hall for its construction. Despite this , construction of free

standing stairs has been limited in the past. This is mainly due to the lack of adequate

knowledge about its complex three-dimensional behavior and absence of a simple design

procedure. Now, with the advent of finite element method along with the availability of

high speed digital computers, it is possible to analyze the free standing stair more

accurately and rationally.

1.2 BACKGROUND OF RESEARCH

Stair is the most essential feature of all types of buildings. Stairs, especially free-standing

stair received attention from researchers in the past. The subsequent methods of analysis

developed by various authors indicate it to be a structure carrying torsion and in-plane

moments besides bending and shear. In their analysis they made several assumptions to

simplifYthe actual structural behavior of the stair. Sauter (1964), Taleb (1964), Cusens

and Kuang (1966) replaced the slab structure by an equivalent skeletal rigid frame.

Liebenberg (1956) and Sieve (1962) retained the space plate configuration of the stair.

Amanat (1993) proposed a set of explicit empirical equations to determine the various

forces and moments at different critical locations of the stair which do not necessitate any

formal analysis of the stair. This simplified the analysis and design of the stair to a great

extent. Zahid (1999) simplified it further by developing the equations on the basis of

equilibrium of the stair. In all these studies, the stair is assumed to be held completely

fixed at floor levels. This assumption is reasonable if the stair is supported by a

sufficiently rigid beam at floor levels. In present days, with the increase in quality of

concrete materials, there is a general tendency of eliminating the supporting beam to give

2



the stair a better architectural look. In this case, the stair rests directly on the floor slab,

which can provide only partial rigidity as support. In such.a case the concept of rigid

support no longer holds valid and the stair analysis methods discussed so far becomes too

approximate to be followed for design. It is thus necessary to develop some guideline to

analyze and design such a free-standing stair resting directly on floor slabs

1.3 OBJECflVES AND ASSUMPTIONS

The objective of the present investigation is to develop semi-empirical design equations

for free standing stairs resting directly on floor slabs. For a free standing stair having

symmetric loading and fixed boundary conditions the redundants are the bending moment

and lateral shear at mid-landing section. It is assumed that this also holds reasonably true

for stairs resting on floor slabs. Thus, if these two redundants are known, the other forces

and moments can easily be determined from the equilibrium of the stair. The present

investigation is aimed at developing some explicit equations to determine these

redundants in terms of the basic design parameters of the stair. The proposed design

equations will simplify the analysis and design procedure. It is expected that this study

will lead to a simpler and time saving design guideline for free standing stairs resting on

floor slabs.

1.4 OUTLINE OF MEHTODOLOGY

A typical stair slab will be modeled with standard dimensions including a portion of floor

slab. Ahmad's (1969) thick shell fmite element will be used. A detailed parametric study

will be carried out. The effect of different design parameters on the bending moment and

lateral shear at the middle of landing will be studied. Based on the study a set of

equations will be developed to determine these redundants. Other design forces and

moments can be calculated considering the static equilibrium of the whole stair once

these redundants are known. A few comparisons will be made with the results from the

fmite element analysis to establish the validity of the proposed equation. Finally, a

practical design example will be solved to show the application of the proposed

simplified equations.

3



CHAPTER 2

FREE-STANDING STAIR PARAMETERS

2.1 GEOMETRY OF STAIR SLAB

A free-standing stair is a structure composed of interconnected plates, each located in

different planes in three-dimensional space. In its simplest form, it consists of three

rectangular plates, namely, lower flight, landing and upper flight. The upper end of upper

flight is held at upper floor level. Similarly, the lower end of the lower flight is held at

lower floor level. The other ends of flights are connected to a horizontal-landing slab.

Steps are provided on the flights.

According to the relative position of the flights, a free-standing stair may be right handed

or left handed, as shown in Figs 2.1 and 2.2 respectively. The dimensions required to

describe the geometry of the stair slab are shown in Figs 2.3 and 2.4. In these figures:

A =E = Extended portion of upper landing

B =D = Width of flights

C =Gap between flights

F =Width of upper landing

G = Projected length of flights

H = Width oflower landing =B=D

T 1 = Thickness of floor slab

T2 = Thickness of flights and lower landing

2.2 LOADS ON TIIE STAIR SLABS

A stair slab is primarily a functional unit in a building system. As a consequence, live

loads may act on it in several ways. But in analysis and design, only those few

possibilities are considered which produce maximum design moments, shear etc. at some

critical points. In this study three possible load combinations are considered. These are:

a) Load caes-I : Full live load throughout the stairway.

b) Load case-2: Full live load in both flights only.

c) Load case-3: Full live load in landing slab only.

4
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Load Case-2

Load Case-3

Note: Shaded portion indicates occupation oflive load

Fig. 2.5 Load Cases

Load Case-l



The above three load cases are schematically described in Fig. 2.5 where shaded portions

indicate occupation of live load. All of the above three load cases are symmetric.

There are other arrangements of live load such as full live load on one of the flights only.

Such unsymmetrical loading produce unsymmetrical stress in the stair. It was, however,

observed that the magnitude of the stresses does not become critical for such

unsymmetric loading. Hence only the three loading cases described above are adopted for

analysis.

2.3 SIGN CONVENTION

In order to keep consistency and clarity in the analysis and results presented in the

subsequent chapters, a unique sign convention for stresses, moments, deflections, etc.is

followed throughout. The deflection is presented in global system and is positive when it

occurs in positive direction of axes. The positive direction of moments, shears, etc. at a

section are set with respect to local axes system. Stresses and forces are positive when

they act in the positive direction of respective local axes. For moments, right hand screw

rule is followed. These are described in Figs. 2.6 and 2.7.

2.4 BOUNDARY CONDITIONS AND REDUNDANTS

Although the free-standing stair slab is a three dimensional plate structure involving 3-D

interaction of plates, the current practice to analyze it involves simplification of it into a

space frame structure consisting of linear bar elements. With such linear bar idealization,

the stair slab becomes, in general, indeterminate to sixth degrees. The moments Mx, My,

and Mz, shear forces Vz, Vy and axial force Vx at the upper flight or lower flight support

can be taken as redundants or these actions at the mid-landing section can be considered

as redundants. If both the stair slab and the loading are symmetric then the degree of

static indeterminacy becomes two. The bending moment (Mo) and in-plane shear (Ho) at

mid-landing section can be considered as redundants [Zahid, 1999]. The planner

representation of redundants are shown in Fig. 2.8.

The degree of indeterminacy cannot be described in such a simple way if we consider the

slab system as a 3-D plate structure. In a plate structure moments, shears, etc. are

5



Vz= Transverse shear

v~\=Axial force.
V)=Lateral shear

M.r =Torsion

AI)' =Bending moment

Mz =In-plane moment

B=HG

z

F

Fig. 2.6 Positive direction of moments.

Vz

Fig. 2.7 Positive direction of forces.

C/

y

Fig. 2.8 Planer Presentation of redundants at Mid-Landing Section
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2.6 STAIR SLAB UNDER STUDY

= as calculated

= 4.79 kN/m2 on horizontal projection

= 20680 kN/m2

275760 kN/m2

= 0.15

= 21525 'lfc'kN/m2

Live load

Material properties

Concrete strength, /C'
Yield strength of steel, fy

Poisson's ratio of concrete, fI

Modulus of elasticity of concrete, Ec

Examples of ten arbitrary stairs selected for study are shown in table 2.1

Ten stairs of different dimensions, are studied here. The dimensions and other proportions

of these stairs are chosen arbitrarily within practical range. The data for the reference stair

is given below .

In this study, it is assumed that the reinforced cement concrete used in the stair-slab is a

monolithic structure, homogeneous, isotropic materiel and it obeys Hook's law.

2.5 MATERIAL PROPERTIES

expressed in terms of stress-resultants at a point. Solution of such a plate structure

involves determination of all the stress resultants at all points of the structure.

. Extended portion of upper landing (A=E) = 500mm (Fixed)

Width oflower landing and flights (B=D=H) = 800-2000mm

Horizontal gap between flights (C) = 100-1OOOmm

Width of upper landing (F) = 1500mm (Fixed)

Horizontal span of flights (G) = 2250-3500mm

Floor to floor height (h) . = 3000mm (Fixed)

Waist slab and lower landing thickness (T2) = 125-250mm

Loads

Dead load



Table 2.1 Geometric Data of the arbitrary ten stairs

Width of lower Gap between Horizontal Thickness of
Landing and Flights projection of lower landing

Examples Flights
,

flights and flights

B(mm) CCmm) G(mm). T2 (mm)

I 1000 200 2500 125

2 1500 300 2800 150

3 1800 500 3200 175

4 2000 200 3500 225

5 1200 800 2700 . 150

6 1000 250 2500 125

7 1200 250 2600 150

8 1500 200 2800 150

9 1800 200 3000 175

10 2000 225 3200 200

A =500mm (fixed), B=D=H, and F=1500mm (fixed)

7



CHAPTER 3
LITERATURE REVIEW

3.1 INTRODUCTION

Shell or plate theories generally lead to considerable complexities in the analysis and

design of stairs. Analytical method or a modem numerical technique such as fmite

element method can be used to analyse the stairs. But practising engineers eagerly look

for a simple and straightforward design procedure, which may be somewhat approximate

but rational. Such demand resulted in approximation of the stair-slab as a space frame

structure composed of bar elements or as a determinate slab structure. A number of

papers on these approximate methods of solution of free-standing stair are available in the

literature. Amanat [1993] made an useful attempt to propose a simple and direct way of

finding the moments and forces required to design a free-standing stair, based on fmite

element approach. The seven empirical equations proposed by Amanat[1993] give

reasonable values of design moments and forces within the specified limit. He also

proposed a reinforcement layout scheme for the stair recognising the variation of stress

resultants across sections. Zahid [1999 ] further simplified the analysis by reducing the

number of empirical equations from seven to four. However, these proposals are valid

only for stairs with completely rigid supports at floor levels.

3.2 CODES AND PRACTICES

The structural behaviour of a free- standing stair is quite different from other ordinary two

flight stairs where the landings are supported by beams or side walls. In the ACI and

British Code of Practices there are no specific guidelines for the design of a free-standing

stair. It is true for the Indian and the other codes of practices as well. Absence of

guidelines in these codes discourages practising engineers to design or construct a free-

standing stair. Reinforced Concrete Designer's Handbook [Reynolds,1988] includes a

design method for a free-standing stair based on the paper published by Cusens and

Kuang [1965]. But the procedure described there is not very straightforward and is

somewhat abstract due to some simplification.

8



3.3 ANALYTICALAPPROACHES

The analytical approaches for the free-standing stair slabs may be divided into two types.

The first type idealises the stair structure as a space frame of some type. The methods of

Sauter [1964), Cusens and Kuang [1965), fall in this category. Idealisation ofa plate as a

straight frame element can only be justified when the width to length ratio of the plate is

small. But this is not true for a free-standing stair where width of plates is of comparable

magnitude with respect to its length. In such cases, space frame idealisation does not

seem to be a good approximation. The second type retains the plate configuration of the

stair but considers the structure to be a determinate one based oli some assumptions. The

overall structural rigidity resulting from the indeterminacy is lost when such assumption

is made. The methods ofSiev [1962) and Liebenberg [1956) are of this type.

Of the various analytical approaches, those of Cusens and Kuang[1965), and of Siev's

[1962] are preferred in design because of their relatively simple structural idealization and

analysis. The analysis suggested by Siev[1962] is the most elaborate one. However, the

analysis becomes simple only when the secondary stresses are ignored. In Sauter's

approach, once the bar idealization is made, the remaining treatment for analysis is

basically the same as discussed in the following articles.

3.3.1 CUSENSANDKUANG'S METHOD

Cusens and Kuang [1965] analysed the free standing stair assuming that its structural

behaviour could be simulated by the skeletal rigid frame shown in Fig. 3.2. In their

procedure a cut is introduced at the mid landing section and the horizontal restraining

force Vyo and bending moment Myo are applied at the two halves of the frame. These two

quantities are taken as the redundants. Equations for bending moment, shear and axial

forces, etc. in the flights are then readily expressed in terms of these two redundants.

Neglecting the effect of axial and shearing forces on deformation, the total strain energy

in the structure is evaluated in terms of Vyo and Myo• Following the concept ofleast work,

first partial derivative of the strain energy with respect to Vyo and Me are evaluated and

then these are equated to zero. This results in a set of two simultaneous equations in terms

of Vyo and Myo• Once these redundants are known, the structure becomes statically
f!
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determinate and the shear forces, bending moments and axial forces at any point of the

structure can be calculated using equations of static equilibrium. Cusens and Kuang

[1965], in their paper, dealt only symmetrical staircases under symmetrical loading.

3.3.2. SAUTER'S METHOD

Sauter's [1964] method of analysis is based on considering the stair as a space frame

composed of linear bar elements. The idealised stair frame consists of two cantilevered

straight members projecting out from the upper and lower floor supports and connected at

their ends by a horizontal bow girder representing the landing. In his method the two

redundants are the bending moments My at upper flight support and at mid-landing

section. First, the equations of moments and forces are written for unit values of the

redundants in turn for the unloaded structure and corresponding deformations are

calculated using work integral. Next, considering the redundants to be zero, the structure

is analysed and a determinate structure for unit distributed load in flights and then on

landing separately. Deformations are also evaluated for these loading in the usual manner.

In evaluating the work integrals, effect of shear and axial forces .are neglected. Once the

deformations are determined for each separate case, the redundants can be calculated

from compatibility conditions of deformations (Fig.3.3). In his analysis, Sauter [1964]

dealt only symmetric stair slab with symmetric loading.

3.3.3 SIEV'S METHOD

Siev [1962] developed methods for solving stresses in free standing stair slabs under

symmetrical and anti-symmetrical loading conditions based on the concept of statically

determinate structures. In his procedure the overall stress analysis is accomplished in two

stages. In the fIrst stage, the line of intersection between flights and landing is considered

simply supported (Fig.3.4). The resulting structure is referred to as the primary slab

structure. Bending moments and reactions at the supports are calculated under various

possible positions of live load. In the second stage, the flights and landing are considered

as interconnected plates. This is referred to as the secondary plate structure. The reaction

at the assumed kink line support will act as the only load in opposite direction on this

10



(a)

(b)

(c)

Fig. 3.1 Idealisation in Different Analytical Approaches

a) Fuchsteiner, Sauter [1964]

b) Cusens & Kuang [1965]

c) Taleb [1964]
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Moments and forces acting on the stair slab
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Fig. 3.3 Sauter's Method of Analysis

My.

v~<;tl



R I unit length

Upper Flight &

Landing with Load

wi unit length

wi unit length

~
Upper Flight &

Loading on Horizontal

projection

Secondary plate system

Fig. 3.4 Siev's [1962] Method of Analysis

Primary slab system

R/ unit length

wi unit length



,

plate structure. This load is then resolved in the plane of flights, which develops in plane

moment and axial forces in flight slabs. Due to these forces, in-plane deflection of flights

occur which is calculated using the ordinary flexure formulas. Assuming that the landing

slab is very rigid in its plane, compatibility in deformation requires that the kink line will

remain straight.

From this compatibility condition, the secondary stresses are determined. Torsional

moments are calculated as secondary stresses. The final solution is the combination of

primary and secondary stresses. Later it was Siev's conclusion that the secondary effects

can be ignored in design.

3.4 SEMI-EMPIRICAL APPROACHES BASED ON FE ANALYSIS

The analytical approaches may not be dependable for the analysis of free-standing stair as

long as economy and efficiency in design are concerned. These methods filii to simulate

the actual interaction of plates in three dimensions. Also, these approaches cannot

demonstrate the variation of stress resultants across the width of the stair. Amanat

[1993] made a comprehensive study of the free standing stair based on rigorous finite

element analysis. Ahmad's [1969] thick shell elements were used in the analysis. It was

assumed that the flights are held completely fixed at floor levels, Le. the supports are fully

rigid. The structural behaviour of the stairway shows that load is transferred

predominantly through in-plane bending and torsional moments, assisted by some axial

forces. For a symmetric stair under symmetric loading, both flights are equally stressed.

That is, stresses and deflections of one flight will be the mirror irllageof the same in other

flight. This implies that the bending moment diagram of both flights will be the same in

magnitude and in direction. Axial forces of equal magnitude but opposite sign will

develop in flights. In-plane moment of the same magnitude and direction will be

developed in flights while flights will be under equal and opposite torsion. The flights

have usual transverse shear and zero lateral shears.

In landing, the predominant forces are the bending moments in both X and Y direction,

lateral shear at mid-landing section and some torsion at quarter span. All the three

11
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(3.2)

(3.1 )

Y=a +b (X-lowerragef

Here K is a numeric constant. FA is factor corresponding to the geometric parameter 'A'

and so on. Ff is the factor corresponding to /c'. The use of the above equations are

straightforward. Values of forces and moments can readily be calculated once the design

values of geometric parameters are prescribed.

Where, Y stands for either Ho , Mo ; X are the value of the concerned geometric

parameters and a, b and c are numerical constants. Using the results of finite element

Zahid [1999] proposed two sets of equations for the lateral shear (Vo) and bending

moment (Me) at the middle of landing for two load cases. The moments and forces at

other sections can be determined from equilibrium of the stair. In his study a reference

equation was adopted as:

components of displacements are equally dominant. Along with the deflection occurring

vertically, the whole stairway experiences a horizontal sway towards upper flight.

Amanat [1993] demonstrated that the prediction of bending moments at different critical

locations by approximate analytical methods might not always be acceptable. Support

bending moment is overestimated in Cusens and Kuang's [1965] approach and

underestimated in Siev's [1962] approach. In predicting the in-plane moment in landing,

Siev's method seems to overestimate it. Sauter's [1964] and Cusens and Kuang's

approaches give reasonably good values of in-plane moment. In case of flight torsion all

the analytical methods underestimate the bending moments. Based on the study, Amanat

[1993] proposed a set of empirical equations to explicitly determine the required design

forces and moments in terms of basic design parameters. These equations are presented in

table 3.1. It has been shown that these equations give reasonably accurate values within

their limit of applicability. The equations are valid for fully fixed support condition .. All

of the equations are of the form,



Table 3.1 Equatians Proposed by Amanat[1993] (SI Unit)

PAR":\IETRJC R;~CTlONSOF STAIR

.-
F, F, Fe F, FH F, F,..... -'~-'-- ._-~

Design Par.unefers Const.

14 <i,'(Mpa) < 40. Values of Design

ISO. < A(mm)< 100.0. 915 < B(mm) < 1875 915 < C(mm) < 190.0. 2a3<J.<Llmm)< 3550. 2440. < H(mm) < 4320. lao. < T(mm) < 280
Paramcters

2.0,3
I +().005"5~ -\_125)°.9" 1-o.OOI14{9_91")1.I I+O.OOI65(C_914)0.9,3

I- 7.8hIO. (L _ 2030)
1-19.68;( I0.{H-24-l0) 1-0.161 IT_100)0.334

1-1.07'h.IO"'(ic.' _1-lr9,3

Vertical deflection al
landing comer. nun

-4.712
1.555""'O.O<XJ787(A-50) 1.06-0.00022 (9-860) 1.2+O.oo276(C_864) I +0.OOO748(L_2030) I+S.9xIO.(H-2.J.40) 0.]9-0.ool73(T_9O) 1.0

Support ~gari\'e
moment, k,~-m

-1.526
1.1-,31.48;(1 0"(A-150) 1.52 1-70. J Ill;1O.{B_915)1.365 1.0 I ~O.128ll; IO.{l_2010)2.66 1+0.899-, IO.O{H_1-l40)2.77 1-.00165{T_IOO) 1.17

I

Flighl midspan
posilh.e moment.

k,'1-m

-].447 ,

O.95.0.~7(T.IOO)I.OJ

1.23--<:l.OOOSI1(A_12S) 1.01+0.00323(9.915) .8S+0.000709(C.915) 1.0 1.0
I

:-':egati\'e moment af
kink. k..':-m

.-6,14
1+O.000]03(A_150) 1.•.0.OOI18(R-915) 1-+-{).00106(C-915)

J +0.OOO.W](l:20JO) 1"'26.37-, I0""(H-20-l0) 1-o.OOI85{T_100) I

!'\egati\'e moment al

~

midsection or
landing, kN'-m

34.69
1+0.000136(A-125) 1+0.000787(B_915) I +O,OOO827(C_915) I +O.OOO3.54(L-2030) 1.(l.OOOI57{H_2440) 1+0.00276(1"_100) I

A:\ial force in flights.

.
".'I

.

2.312
1+0.001 i7{A-125) 1+0.0006,3(8_915) 1+0.OO268(C_915) 1-8.0x I0.(l-2030r 75

1:0 I •.O.00,358{T_IOO) I

Torsion in flights.
)(N-m.

-14,,35
1.1-0.OOOS66{:\_150) 1';'0.000984(8-915) l:"O,(XlJ57(C-915) I+O.OOO59(L-20;OJ 1.().OOOI97(H_2-l-l0J I •.O.OO~6(T.IOO) 1

Inplane moille"' in
flights. k.'"-nt

30.17
I-O.000276{ ..s..ISO)

l"O.0l?138(B_915) 1-oo-().OOO709(C.9IS) I +O.000669(l-20;O)
I-O.OOO24(H.2-l40) I-O.OOO746{T.IOO)I.J

I

Latml shear in mid-
seclion of landing_

kN

('~. -



Table 3.2 Equations for Calculating Ho and Mo under Loading-! [Zahid,1999)

P..\RA~IETRrc FL::-':CTIO\'S OF 51 AIR

Loading-l F. Fe Fe F, FH F, F,
."--_ ..._-----"'", .....

Design Paramelers' Canst.
\'3ke~ 01150 < A(mm)< 1500 915 < B(mm) < 2500 915 < C(mm) < 2500 2030 <L(mm)< 4000 2440 < H(mm) < 5000 100 < T(mm) < 350 14 <I: (Mpa) < 40 Dt.'~'gn:
P3r.li.\'elC,::'

-5.75 1+0.000078(A-50)"; 1+0.000142(8-915)'" I+0.009069(C-915)'" I+0.000589(L-2030)'o. 1-0.0000071 (H-2440) 1+0.009311 (T-I 00)'.-' I:'\'~gati\'e moment at
midsection of

landing.
(kN-m)

30.97 1-0.000462(A-150)''''" 1+0.000051 (B-915)'." I+0.002283(C-915)'." 1+0.000227(L-2030)' " 1-0.003359(H2440)'." 1+0.004528(T-I 00)''' 1Lateral shear in mid-
section of landing.

(kK) .



Table 3.3 Equations for Calculating Ho and Mo under Loading-2 [ZRhid,1999]

P,-\RA.~IETRJC Fl,.J;,CTIOSS OF S1 AIR

lU:lIling~2 F, F. Fe F, F" F, F,
-_. --~.

Design I'arameters Cons!. ValUC's of
150 < A(mm)< 1500 915 < B(mm) < 2500 915 < C(mm) < 2500 2030 <L(mm)< 4000 2440 < H(mm) < 5000 100 < T(mm) < 350 14 <fe' (Mpa) < 40 Design

Parameters

.].70 I+0.000095(A-150)1.1 1+0.000143(11-915)"" I+0.009144(C-915)'u 1+0.000578(L-2030) 1-0.000001(H-2440) 1+0.0 13169(T -100)'" ISegJli\f momenl at
miJ'n:lion of

l.tntling.
i~:-.l-nl)

22.17 1-0.001144(A-150)'" 1+0.000025(8-915)'-'" I+0.003693(C-9I 5),.m 1+0.0001 54(L-2030)w 1-0.0 I748(H-2440)'" 1+0.006851 (T-I 00)'." ILaltral ,hnr in mid-
secll.'" ,,(landing.

IJ..S)



analysis and minimising the error we found the values of constants. This finally led to an

optimum empirical equation for each governing factor. The equations give directly the

corresponding values ofHo and Mo in each case. Based on this Scheme, two tables (Table

3.2 and 3.3) were presented for fmding the values ofHo and Moat mid-landing section.

3.5 REMARKS

All the previous study of free standing stair were made for fully fixed support condition.

In the present study, effort is given to study the behaviour of free standing stair resting

directly on floor slabs without the presence of any beams or other stiffening member.

Based on the investigation an attempt shall be made to propose semi-empirical equations

for. lateral shear (Vo) and bending moment (Mo) at the middle of landing for this kind of

free standing stair.
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CHAPTER 4

FINITE ELEMENT MODELING AND ANALYSIS OF

FREE STANDING STAIR

4.1 INTRODUCTION

Finite element technique is a powerful and versatile tool for the analysis of problems of

structural and continuum mechanics. Analysis of the free standing stair using this

technique is discussed here. The element-wise discretisation procedure in finite element

process reduces a continuum problem of infinite number of variables to one ofa fmite

number of unknowns. The analysis of a continuum by fmite element technique has

three basic steps: structural idealization which is the sub-division of the actual

continuum into an assemblage of discrete structural elements, evaluation of element

characteristics such as stiffuess, stress & mass matrices and structural analysis of the

element assemblage.

4.2 FINITEELEMENTAPPROACH

4.2.1 Choiceof Element
In. finite element technique, selection of a suitable element type is important. There are

various types of elements, that is, beam elements, frame elements, solid elements, plate

elements, shell elements, etc. Each of these elements is suitable for some particular types

of structures. For example, frame elements are suitable for ordinary beam-column latticed

structures. Similarly, shell elements are suitable for shell structures. There are many

variations of shell elements, each ,,;ith their own characteristics. The free standing stair is

a space structure composed of interconnected plates. Hence, shell elements are preferred

for this structure.

4.2.2 ShellElement
There are various types of shell elements developed so far. All ofthem fall in either of the

two general categories, namely the thin shell elements and thick shell elements. In the

thin shell elements, it is assumed that the normal to the middle surface before deformation

remains normal after deformation. This means that the out of plane shear, that is,

14



transverse shear stress is neglected in this type of elements. The thick shell elements

include bending as well as shear deformations. In these elements, nodal lines are straight

and 'normal' to the un-deformed middle surface. They are in-extensible and remain

straight after deformation. However , they are in general not normal to the deformed

middle surface after deformation, allowing the calculation of transverse shear stresses and

strains. Consequently, this type of elements is suitable for modeling plates and shells

where transverse shear is important. For the free standing stair under study, the 8-noded

general thick shell element developed by Ahmad [1969] is adopted.

4.2.3 Features of the Computer program

Ahmad [1969] developed a computer program, which can analyze any shell or plate

structure using the thick shell elements. The program was written in FORTRAN language

and is quite general. It requires a considerable amount of data for input. The output of the

program gives deflections and stresses at nodes with respect to global co-ordinate system..

To simplify the input output process, separate computer programs were developed which

can generate necessary data for the Ahmad's program from minimum input and can

calculate the necessary design parameters such as bending moments, shear forces, etc.,

from the output of the general thick shell program.

4.2.4 Assumptions and Limitations

The thick shell elements developed by Ahmad [1969] are based on some assumptions

such as the material within an element is isotropic and elastic and obeys Hooke's law.

However such elastic properties are allowed to differ from element to element, which

allows the program to handle structures made of composite materials. Besides these

global assumptions, the additional assumptions, particular to the free standing stair are as

follows:

• The additional stiffening effect provided by the steps to the waist-slab of flights is

neglected. They only contribute to dead weight.

• The slab thickness is assumed to be sufficient to withstand the stresses developed and

no account was given to slenderness.

15



4.3 FINITE ELEMENT IDEALISATION OF THE FREE STANDING STAIR

4.3.1 The Thick Shell Element

The thick shell elements may be curved about either one or both of its planes and may

have variable thickness along its axes. The edges of elements may thus be either curved

or straight. The program allows the users to use any of the two types of elements, that is ,

either the 8-noded parabolic element or the 12-noded cubic element. In the present study

the 8-noded elements are used.

Proper idealization of a structure into an assemblage of fmite number of elements is

important in the analysis. The process involves division ofthe structure into elements in a

suitable manner, numbering the elements and nodes in an efficient way, selection of local

and glohal axes system, etc. Efficiency in these steps is necessary for optimal utilization

of the computer memory and computational speed. Some of these aspects of finite

element idealization of the stair slab are discussed in the following articles.

4.3.2 Element Mesh Configuration

A structure can be subdivided into elements in many possible ways. It depends on many

factors such as the element characteristics, accuracy needed, available computer memory,

etc. It is in general accepted that the finer the subdivision the better the idealization.

However, with proper choice of elements, the rate of gain in accuracy decreases after a

certain degree of fineness in subdivision. Element mesh can be finer near points of stress

concentration in comparison to the other parts of the structure. Considering all these

factors the subdivision shown in Figs. 4.1 (a, b, c) and 4.2 were adopted for the study. The

floor level supports, flight-landing junction and the mid~landing section are the places of

possible stress concentration and hence the element sizes there are taken to be smaller in

these areas in comparison to the other parts of the stair.

16
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Fig. 4.2 Isometric view of the FE Model



4.3.3 Element and Node Numbering Scheme

The thick shell finite element program uses frontal solution technique to evaluate the

displacement vectors of elements. Front width is dependent on the numbering sequence of

elements. To keep the front width minimum the following two general rules are followed

while numbering the elements:

• Numbering should preferably start at one end of the structure and terminate at the

other end.

• The difference in element numbers between two adjacent elements should be kept

minimum.

Following the above concept, the element numbering scheme shown in Figs. 4.1a, 4.1b,

and 4.1c is adopted here for the stair. The original program requires the global co-

ordinates of the nodes as input data. It is rather troublesome to enter the co-ordinates of

all the nodes. However , the program offers one advantage in this regard. If only the

comer nodes data are given, the program can automatically generate the co-ordinates of

mid-side nodes assuming a straight line interpolation between the comer nodes. As the

elements of the stair slab are perfectly rectangular, advantage of this feature of the

program has been utilized in the study. First, the comer nodes are numbered from left to

right starting from the front towards the back of the stair. Then the mid-side nodes are

numbered in a systematic sequence as shown in Figs. 4.1(a, b, c). Although nodes can be

numbered in any arbitrary way, the regular pattern of Figs. 4.l(a, b, c) is adopted for ease

in developing the data generation program.

4.3.4 Adjusted Unit Weight for Gravity Loading

The general thick shell program can accept loading data in many ways, depending upon

the nature of loading. For the present study, live load due to transiting people is assumed

uniformly distributed on horizontal plane. In this case the easiest way to incorporate the

load is to increase the weight density of the material. The weights of the steps and

uniformly distributed live load have been included in the stair slab by properly increasing

the unit weight of material. It is observed that the flight slabs are inclined at an angle a.
{

whereas the landing slab is horizontal. For this reason the thickness measured vertically is

17
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different in flight slabs and in landing slab. Hence adjusted unit weight for flight slab and

landing slab differ although the slab thickness is same everywhere.

Where i=1,3 and j= 1,3

Here aij and a'ij are the element at i-th row and j-th colulTm of[ a] and [a'] respectively.

The direction cosine matrix is:

(4.3)

(4.1)

(4.2 )

18

,
[a ] = [A][a][A]T

3 3
L L azk Gkl alj

K=1I=1

[A] = a2]

(J"' if =

[a ] = Stress tensor in X ,Y ,Z system

where,

4.3.5 Transformation of Stresses

The original fmite element program gives stresses as output with respect to global co-

ordinate system. The global stresses cannot be used directly for design. These are to be

transformed into local stresses with respect to local axes system for determining forces

and moments, which will subsequently be required for design.

The stress output is in tensor form with respect to global axes. The state of stress at any

point can completely be defined by the stress tensor with respect to a set of three mutually

perpendicular axes. If the stress tensor corresponding to X, Y, Z system is known, it can
•

readily be transformed to any other X " Y " Z axes system with the help of the well

known stress transformation rule,

[a] = Stress tensor in X, Y, Z system

[A] =Direction cosine matrix of X ,Y ,Z system with respect to X, Y, Z system

[Af =Transpose of[A]

This transformation rule can best be represented by the index notation as:
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(4.4)

(4.6)

(4.5)

(4.7)

(4.8)

(aJJ, a]2, a13 ) = Direction cosines of X .axis w.r.t. X, Y, Z axes

(a21, a22, a23) = Direction cosines ofY .axis w.r.t. X, Y, Z axes

(a31, a32, a33) = Direction cosines ofZ' axis w.r.t X, Y, Z axes

[
Utl+

2
Ubl]tVxl = ----

Vyt = [ttl ~ tbl ] t

Vzl = [Ptl : Pbl }

Mxl = ['!'b\;'!'tl ]t2

two steps. First the nodal stress resultants are calculated with the above mentioned

equations. The above equations are for node 1 (Fig.4.3). Such quantities at other nodes

can be calculated in a similar way. The forces and moments from stress resultants

(shown in Fig. 4.4) are calculated as follows. For a three nodded section the variation of

where,

4.3.6 Determination of Forces and Moments at a section

The procedure described below demonstrates how to calculate these forces from stresses.

A transverse section with three nodes, numbered 1,2 and 3 are shown in (Fig.4.3) where

the stresses are :

a = normal stress

r = lateral shear stress and

p = transverse shear stress

The stresses in Fig. 4.3 have two subscripts. The first subscript indicates whether it is , at

the top or at the bottom of the node, and the second subscript indicates the node. For

example Ubi means the normal stress at bottom of node 1. The calculation is carried out in
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Fig 4.3 Calculation of Forces from Nodal Stresses

Fig 4.4 Calculation of Moments from Nodal Stresses



(4.11 )

(4.10)

(4.9)

(4.12)

(4.14)

(4.13)
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If there are more than three nodes, a similar approach can be used with appropriate

integration rule.

stress resultants across the width of the section can be assumed parabolic so that

Simpson's integration rule can be applied. Thus:
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Landing Outside

4

3

I. Support section

2. Flight mid-span section

3. Flight-landing junction section

4. Mid-landing section

Fig. 4.5 Critical Sections of the Stair

Lower flight!

Upper flight
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Average dead load from slab

T (Thickness. of slab in mm) x 23576 (N/m 2)
1000

Live load

In the following process the live load is assumed as 4786 N/m2,which is equivalent to 100 .

psf, as used by Amanat [1993] and Zahid [1999].

When both the stair slab and the loading are symmetric then the degree of static

indeterminacy becomes two. The bending moment Mo and in-plane shear Ho at mid-

landing section can be considered as redundant. The relevant quantities used in the

equilibrium equations are shown below:

4.4 EQUILmRIUM APPROACH

The critical sections for the analysis and design of free standing stair slab is shown in

Fig. 4.5.



Average Dead Load from steps

!..-x Rise x Tread x-1-x23576 (,vIm 2)
2 ~(Rise 2 + Tread 2 ) 1000

WI = Resultant load acting on mid point of flight

. W2 =Resultant load acting on mid point of landing

After calculating the values of the bending moment Mo and in-plane shear Ho at rnid-

landing section by the empirical equations, the equation of forces and moments at other

critical location can be found from the equations of equilibrium (Fig. 4.5 ). Taking

moments about the critical locations the following equations are developed as stated

below:

I) Support Negative Moment

=-Ho[~J+ i[~+GJ+Wl[~J (4.15)

2) Flight Mid span Positive Moment

=Ho[~J- i[~+~J-[;I~J (From right side) (4.16)

=-Ms-Ho ~ +[Wl+ iJ~-[;I~J ( From left side) (4.17)

~) Negative moment at kink

=W2X[~J
(4.18)

4) Axial force in flights

= (Horizontal force )Cosa+ (Vertical force) Sina

(4.19)
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5) Torsion in Flights

6) In plane Moment in Flights

[
B CJ W2. C .Ho -+- Cosa+-Sma-+Mo Sma
2 2 2 4

23
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5.2 STAIR DESIGN PARAMETER

5.3 GEOMETRIC PARAMETERS OF THE STAIR

The geometric parameters studied here are shown in Fig.5.1.

= 500mm (Fixed)

= 1200mm

= 250mm

24

Extended portion of upper landing (A)

Width oflanding and Flights (B)

Horizontal gap between Flights (C)

CHAPTER 5

SENSITIVITY ANALYSIS

The thickness of upper landing is T J, which is equal to 1.25T 2. Each of these parameters

is varied independently keeping the other remaining parameters constant at their initial .

values. The initial values are taken as:

5.1 INJ"RODUCTION

As a reference model of analysis, a stairway of most common dimensions is used

throughout. Changing one dimension within the selected range and keeping the other

dimensions constant the sensitivity analysis is done in order to analyze the effect of these

parameters.

Other necessary quantities at the critical locations can be derived from the equations of

equilibrium. Extensive parametric study is done to investigate the change in these two

design parameters with the variation of geometric parameters. The study is made for the

three cases of loading. The general arrangements and boundary conditions defmed in

chapter two are maintained throughout this study.

To determine the forces and moments at every section, in this equilibrium approach, only

two redundants are required because of symmetry which are:

• Lateral shear at mid-landing section, and

• Bending moment at mid-landing section.
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Range of Geometric Parameters used in Sensitivity analysis.

HG

Fig. 5.1 Plan of a free standing stair

F=1500

.

Upper Upper Flight

Landing Landing

Lower Flight

Geometric parameters Range

A 500nun(Fixed)

B 800 - 2000nun

C 100 -I OOOnun

F 1500nun (Fixed)

G 2250 - 3500nun

T2 125 - 250nun

B

A

c

D

E

The range of variation of different parameters which are used in this analysis, is presented

in table 5.1

Width of upper landing (F) = 1500nun (Fixed)

Horizontal span of flights (G) = 2250nun

Waist slab and lower landing thickness (T2) = 150nun

Slop of waist slab (a) = 0.54 radian



The variation of Moment (Mo) and Lateral shear (Ho) at mid-landing section for different

values of design parameters are Tabulated in Table 5.2 and 5.3 for three different load

cases. The graphical representation ofthe variations ofMo and Ho are shown in Fig. 5.2 to

5.9. The mentioned equations will more or less satisfy the curve plotted in Fig.'s 5.2 to

5.9 with the results found from the Finite Element Analysis, for variation of one

parameter but keeping the, other parameters constant.

5.4 RESULTS OF PARAMETRIC STUDY

The findings of the parametric study are discussed in the following sections:

a) The effect of variation of landing width (B), on bending moment and lateral shear at

the mid-landing section, for three loading cases, is presented in Fig. 5.2 and 5.3. For all

the three cases Mo and Ho increased with the increasing values of 'B'. The variation is not

linear. In the higher range of values for 'B' the values of Mo and He increase at an

increasing rate.

b) The effect of variation of horizontal gap between flights (C), on bending moment and

lateral shear at mid-landing section, is represented in Figs 5.4 and 5.5. In all the three

cases, the lateral shear at mid-landing section decreased with the increasing values of 'C'.

But the bending moment at mid-landing section (Me) initially decreases and then

increases with the increasing values of 'C'.

c) Figs 5.6 and 5.7 show the behavior of bending moment and lateral shear at mid-landing

section in response to the variation of horizontal span of flights (G). In all the cases, the

values of Me and He increase with the increasing value of 'G'. The nature of the curves

are nearly linear.

d) The effect of slab thickness(T 2) on bending moment and lateral shear at mid-landing

section is presented in Figs 5.8 and 5.9. The lateral shear for all the cases, shows almost a

linearly increasing trend, and the moment increases with the increasing values of T2, but

the nature of the curves are nearly linear.
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TABLE 5.2 VARIATION OF MOMENT (Mo) AT MID-LANDING SECTION

FOR DEFFERENT VALUES OF GEOMETRIC PARAMETERS OF STAIR

B C G T2 Load Case-1 Load Case-2 LoadCase3
800 100 2250 125 4750895 7362483 6564932

1000 " " " 8563712 14136350 12434530
1200 " " " 14013130 24326670 21177020
1500 " " " 25930450 47697940 41050380
1800 " " " 43132020 82843570 70716090
2000 " " " 57865350 113749700 96683240

800 100 2250 125 4750895 7362483 6564932
" 150 " " 4235059 6597435 5875991
" 250 " " 4043944 6330887 5632479
" 375 " " 4155710 6526703 5802628
" 600 " " 4542160 7170005 6367489
" 1000 " " 5233045 8358619 7404103

800 100 2250 125 4750895 7362483 6564932
" " 2500 " 5291127 7936850 7128875
" " 2800 " 5930126 8605402 7788402
" " 3000 " 6352388 9042643 8221069
" " 3200 " 6772581 9475113 8649789
" " 3500 " 7400140 10117330 9287527

800 100 2250 125 4750895 7362483 6564932
" " " 150 5151118 7735185 6947052
" " " 175 5498749 8036149 7262592
" " " 200 5793896 8268912 7514483
" " " 225 6036365 8434850 7703694
" " " 250 6227167 8539525 7834373

"

,'., ,

.'

Moment, Mo (N-mm)

27

(From finiteelementanalysis)
Geometric parametersof stair(mm)



Lateral shear , Ho (N)

TABLE 5.3 VARIATION OF LATERAL SHEAR (lIo) AT MID-LANDING

SECTION FOR DEFFERENT VALUES OF GEOMETRIC PARAMETERS OF

STAIR (From finite element analysis)

Geometric parameters of stair (mm)

B C G T2 Load Case-1 Load Case-2 Load Case

800 100 2250 125 -27905 -41239 -37167

1000 " " " -41976 -65602 -58387

1200 " " " -59647 -97711 -86086

1500 " " " -93737 -162681 -141626

1800 " " " -138057 -250914 -216449

2000 " " " -173986 -324510 -278541

800 100 2250 125 -27905 -41239 -37167

" 150 " " -25848 -38443 -34597

" 250 " " -24076 -36256 -32536

" 375 " " -22760 -34788 -31114

" 600 " " -20357 -31902 -28376

" 1000 " " -14011 -22845 -20147

800 100 2250 125 -27905 -41239 -37167

" " 2500 " -29601 -42674 -38682

" " 2800 " -31676 -44492 -40578

" " 3000 " -33079 -45749 -41880

" " 3200 " -34494 -47036 -43206

" " 3500 " -36638 -49012 -45233

800 100 2250 125 -27905 -41239 -37167

" " " 150 -30637 -43921 -39869
.

" " " 175 -33319 -46548 -42515

" " " 200 -35950 -49116 -45103

" " " 225 -38525 -51612 -47622

" " " 250 -41046 -54044 -50080
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Load Case
M" (N-mm)

I 4750895 [1+1.8 x 10-4(B-800) U5]

2 7362483 [J + 1.4 X 10-4(B-800) 1.63]

3 6564932 [1+ 1.4 x 1O-4(B-800) 162]

.......-L Case.'
_l. Case--2
....-- L. ea ••. 3

2500

___ 0 ._ •• __ • __ ._--

--"- ..__ •....._---

200015001000

Values of landing width (8), mm

500

RELATiON BETWEEN M" WITH LANDING WIDTH (B)

Fig. 5.2 Variation of Mid-landing Moment Due to Variation of Width of Landing (B)
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Fig. 5.3 Variation of Lateral shear (Ho) at Mid-landing due to variation of Width of

Landihg (B)
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200

Load Case Mo(N-mm)

1 5]62284 [1_O.05l4(C-lOO)o287 +1.897 x lO-4(C-375)]

2 7999275 [J-O.053(C-]OO) 0.272+5.3 XW-4(C-250)]

3 7133668 []-0052(C-I00) 0.276+ 5.31 X lO'\C-250)]
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Fig. 5.4 Variation of Mid-landing Moment (Mo) Due to Variation of Horizontal gap
between Flights (C)
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Fig.5.5 Variation of Mid-landing shear due to Variation of Horizontal gap between

Flights (C)
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Load Case H", (N)

1 -26522 [1- 9.2 x 10-\C-IOO) 0.487-1.897 x 1O-4(C-375))
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Fig. 5,6 Variation of Mid-landing Moment (M.,) due to Variation of Horizontal Span of

Flights (G)
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Fig. 5.7 Variation of Mid-landing Lateral Shear (Ho) due to Variation of
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Fig. 5.8 Variation of Mid-landing Moment due to Variation of Waist & Lower Landing

Slab Thickness (T2)
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Fig. 5.9 Variation of Mid-landing Lateral Shear due to Variation of Waist &Lower

landing Slab Thickness (T2)
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CHAPTER 6

DEVELOPMENT OF SIMPLIFIED DESIGN RATIONALE

6.1 GENERAL

In this chapter an attempt is made to quantifY the effects of design parameters on the

bending moment and lateral shear at mid-landing section. Semi-empirical equations for

Mo and Ho are proposed. In these equations Mo and Ho are expressed as functions of

design parameters such as B, C, G, etc. Once the values of Mo and Ho are known from

these equations, the moments and forces at other sections can be approximated by using

the equilibrium equations.

6.2 DEVEWPMENT OF EMPIRICAL EQUATIONS

The variation of Mo and Ho with respect to a single design parameter is assumed to be of

the following form

y= a + b (X- d) C (6.1)

where Y is either Mo or Ho.

X is the value of the parameter concerned.

d is the lowest values of X.

a, band c are constants.

Each of the curves of Fig. 5.2 to 5.9 are least-square fitted with the above form of

equations. For each curve, the valued of a, b and c are thus determined from the least-

square fit.

The expressions are explicit and of empirical nature. Hence care must be taken to use

proper units of measurements. In these equations, the unit of force is Newton (N) and that

of length is mm. The unit of moment is N-mm. The range of the different geometric

parameters in the proposed equations is similar to that of table 5.1.

Since elastic analysis is made throughout, it is possible to calculate forc~s and moments

for other values of live load by simple proportioning. The equations thus developed are

shown with their corresponding figures (Fig. 5.2 to 5.9). Each of these equations
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represents the effect of a single parameter on Mo and Ho. In order to formulate general

expressions forMo and Ho, these equations are combined in the following form,

(6.2)

(6.3)

800<B<2000mm

100<C< 1000mm

2250<G<350Omm

125<T z<250mm

(6.4)

800<B<2000mm

100<C< 1000mm

2250<G<3500mm

I25<Tz<250mm

(6.5)

800<B<2000mm

100<C< 1000mm

2250<G<3500mm

125<T z<250mm

Mo or Ho =K.FBo Fe- F(}o F1"2
Here, K is a numeric constant. The factors FR, Fe represent the effect of a single

parameter. For example FB represents the effect of B in the form of equation (6.1). After

combining in the form of equation (6.2), numeric constant a, b and c for each of the

parameters are further adjusted. The adjustment is made by comparing the values of Mo

and Ho given by the proposed equations with those obtained from fmite element modeling

of several stairs whose geometry were arbitrarily selected within the practical range.

The Equation of Moment (Mo) are as follows:

For load Case-l

MOl= Kl.FBI.Fcl.FGl.FTzl (N-mm)

K[ = 4750895

FBI = [1+ 1.9 x 10-4(B-800) 1.60]

FCI = [1- 0.060 (C-100) 0.315+2.5 x 10-4(C-250)]

FGl = [1+ 5x 10-5(G-2250)]

FTzl = [1+ 4.5 X 10-3(Tz -120) 0.9]

For load Case-2

Moz= Kz.FB2.Fcz.FGz.FTzz (N-mm)

Kz = 7362483

FB2= [I +1.5 X 10-4(B_800)1.60]

Fcz = [1- 0.050 (C-100) 0.Z5 +5 X 10-5(C-100)]

FGZ = [1+'2.5 X 10-4(G-2250) ]

FTzz= [1+ 0.003(Tz-I20 )0.85]

.For load Case-3

M03= K3.FBJ.Fc3.FGJ.FTz3 (N-mm)

K3 = 6564932

FBJ= [1+ 1.3 X 10-4(B-800/"60 ]

FC3 = [I. 0.Q40 (C-IOO) 0.30+5 X 10-5(C-250)]

FGJ = [1+ 5 X 10-4(G-2250)]

FTZ3= [1+ 3 X IO-\Tz -125 )0.85]



The use of the above equations is straightforward. Values of forces and moments can

readily be calculated once the design values of geometric parameters are known.

6.3 EFFIOENCY OF THE PROPOSED EQUATIONS

In order to justifY the applicability of the proposed equations, the results given by the

equations are compared with the corresponding results obtained from fmite element

modeling. Ten examples of stairs are chosen with arbitrarily selected values of parameters

within practical range. A description of these stairs is already given in chapter-2.

•

(6.7)

(6.8)

(6.6)

800<B<2000mm

100<C< 1000mm

2250<G<3500mm

I25<T2<250mm

(N)

800<B<2000mm

X 10-4 (C-375)] 100<C< 1000mm

2250<G<3500mm

I25<T2<250mm

(N)

K3 = -37167

FB3 = [1+ 2.6 X 10-4 (B-800)I. 36 ]

FC3 = [1- IXIO.2(C-IOO)0.42-1.8XI0-4(C-375)]

Fm = [ 1+ 2.5 X 10-4 (G-2250)]

FT 23= [1+ 3.2 X 1O,3(T2 -125 )0.92]

The Equation offorce (Ho) are as follows:

For load Case-l

Ho = K1 .FBI. FCl. FGl .FT21 (N)

K1 = -27905

FBI = [1+ 2.5 X 10-4 (B-800l36
]

FCl = [1- 9 X 10,3 (C-100) 0.48-1.8*

FGl = [I + 2.5 X 10-4 (G-2250)]

FT21 = [1+ 4 X 10-3 (T2 -125) 0.9]

For load Case-2

Ho = K2 .FB2. FC2. FG2 . FT 22

K2 = -41239

FB2 = [1+ 2.5 X 10-4 (B-800)1. 37]

Fez = [1- I X 10,2 (C-100) 0.45- 1.8 X 10-4 (C-375)]

FG2 = [I + 2.5 X 10-4 (G-2250)]

FT22 = [1+ 3.5 X 1O-3(T2-125 )0.9]

For load Case-3

Ho = K3 .FB3. FC3. Fm .FT23
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Comparison is made for the mid-landing lateral shear Ho and bending moment Mo for

different load cases. A summarized comparison of moment Mo is given in table 6.1 and

the same for shear Ho is given in table 6.2. The same comparison is graphically shown in

figs 6.1 through 6.6 by means of bar graph. A visual inspection of the bar graphs reveals

that in most cases the proposed equations are able to predict the values with very good

accuracy as compared to analysis. For Ho the variation is below 5% in most cases while

only for two cases the variation exceeds 5%. But in all cases of Ho the variation is less

than 7%. For Mo the variation is somewhat higher but still within acceptable range. The

highest variation is around 17%, but in majority of the cases the variation is around 10%

to 12%.

It is thus established that the proposed semi-empirical equations are capable of predicting

the values ofMo and Ho with reasonable accuracy.
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Table 6.1 For ten arbitrary selected stairs, following are the comparison (in %) between the negative moments (Mo) found from finite

element method and that (Mo) calculated from empirical formula for three different cases

Moment atmid-landingsection(Mo) N-mm
Variablegeometric

parameters Load Case-1 Load Case-2 Load Case-3
F.E.M Emp. m Variation F.E.M Emp.m Variation F.E.M Emp.m Variation

B C G T, (%) (%) (%)

1000 200 2500 125 8075042 6774067 -16% 12889570 11533584 -10.5 11419270 10057785 -11.92

1500 300 2800 150 24312970 28874851 16% 40485770 46065023 13.8 35559110 39801523 11.95

1800 500 3200 175 44640680 48995290 9.75 72232800 82797502 14.6 63821000 74447434 16.65

2000 200 3500 225 91354710 79612665 -12.85 138867600 129404905 -Q.81 124383700 123247585 -9.1

1200 800 2700 150 14747090 13082219 -11.29 23600370 21385598 -9.38 20900140 18064671 -13.57

1000 250 2500 125 7897937 6566929 -16.85 12629210 11337910 -10.2 11184330 9840735 -12.01
, .

1200 250 2600 150 13612680 13882170 1.98 21831640 22375240 2.49 19324880 19152252 -0.9

1500 200 2800 150 26466780 29735174 12.35 43980370 47461386 7.91 38638770 41371381 7.07

1800 200 3000 175 50027620 53271632 6.48 82075050 84489572 2.94 72304990 75441169 4.36

2000 225 3200 200 73891780 73327078 -0.76 118010800 117503470 -0.43 104562500 107431414 2.74



Table 6.2 .For ten arbitrary selected stairs, followings are the comparison (in%) between the Lateral Shear (Ho) at mid-landing, found

from finite element method analysis and (Ho) calculated from empirical formula for three different cases

Variable geometric Lateral shear at mid-landing section (Ha) N

parameters

Load Case-l Load Case-2 Load Case-3

F.E.M Emp.m Variation F.E.M Emp.m Variation F.E.M Emp.m Variation

B C G T2 (%) (%) (%)

1000 200 2500 125 -36731 -37629 2.45 -57118 -56230 -1.03 -50890 -51312 0.82

1500 300 2800 150 -81604 -87237 6.9 -131940 -134338 1.82 -116587 -120904 3.7

1800 500 3200 175 -121519 -128426 . 5.68 -193207 -199757 3.4 -171352 -180950 5.6

2000 200 3500 225 -216645 -211276 -2.48 -321628 -323018 0.43 -289625 -286997 -0.91

1200 800 2700 150 -46099 -44361 -3.77 -70479 -tl8568 -2.71 -tl5545 -tl3968 -2.45

1000 250 2500 .125 -35539 -36573 2.91 -55548 -55051 -0.9 -49437 -50147 .1.44

1200 250 2600 150 -54636 -55995 2.49 -85155 -84803 -0.41 -75847 -76652 1.06

1500 200 2800 150 -88212 -92128 4.44 -141736 -141326 -2.9 -125411 -126337 0.74

1800 200 3000 175 -141088 -143067 1.4 -224314 -220070 -1.89 -198942 -195741 -1.61

2000 225 3200 200 -187729 -187287 -0.24 -291773 -288039 -1.28 -260059 -256149 -1.52. .
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6.4 PROPOSAL FOR A DESIGN GUlDE

The structural design procedure of a free standing stair may be divided into three stages,

namely:

a) Analysis for stresses ( forces and moments)

b) Checking of the thickness and calculation of the reinforcements

c) Detailing of the reinforcement layout.

These steps are described in the following sub-sections.

6.4.1 Analysis

The values of forces and moments at the critical locations are obtained from equations 6.3

to 6.8 and equations of equilibrium.

6.4.2 Calculation of reinforcement

• Longitudinal steel for bending moments.

• Longitudinal steel for axial force.

• Longitudinal steel for in-plane moment.

• Transverse stirrup for the for the combined effect of torsion and shear.

The theoretical details of the reinforcement calculation are not given here. They are found

in any standard text book on reinforced concrete design. The equations presented in the

previous sections give working values of moments and forces. Since elastic analysis is

followed throughout, these forces and moments are directly proportional to load. To

convert these working values to ultimate design values these are to be multiplied by some

factor. This factor can be calculated as the ratio offactored ultimate load to working load.

Details of these design aspects are shown through a design example.
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Fig. 6.7 Plan of free standing stair for design example

= As calculated.

H

= 500mm (Fixed)

= 1200mm

= 250mm

=2250mm

= 1500 mm (Fixed)

= 150mm

= 6:10 or 0.54 Radian (Fixed)

Dead load

GF

= 20.68 N/mm 2

= 275.76 N/mm2

=4786 N/m2

E

B

A

D

C

Ie
.h

Load

Live load

Material

Forces and moments are calculated using equation of equilibrium.(Eqns.4.15 to 4.21).

The geometric parameters ofa design example are shown in Fig. 6.7.

6.4.3 Design Example

The application of the proposed analysis and design guide is shown here through an

example. A reference stair model is used for the design. The data for design is shown

below.

Geometry

Extended-portions of upper landing (A)

Width of flights and lower landing (B)

Horizontal gap between flights (C )

Horizontal span of flights (G)

Width of upper landing (F)

Waist and lower landing slab thickness (T2)

Slop of flights (a)



About 45% [Amanat-1993] of the Mo will be distributed among the inner one-third of the

section.

So max. moment per meter width of mid-landing

Using the equation 6.3 for Casel

Negative moment (Mo) at midsection oflanding for the above mentioned dimensions is

Mo= 4750895 [1+ 1.9 x 10 '\B-800) J.'1[I-.06(C-IOO) .315+2.5 x 10 -4(C-250)]

[1+ 5 x 10.5(0-2250)][1+ 4.5 x 10 .3(T2-120) .9] N-mm

= 13911.69 kN-mm

(6.9)

OK

[assuming a = 15mm]

= 8137N/m2

=6597 N/n\2

= 928.19 mm2

14734 = 1.55
9498

a= As iy _ 928.19x27576 -14.56mm
.85 ie' b .85x 20.68x 1000

35

check,

As =928.19 mm2

Provide 12mm dia @ 120mm c/c

Negative steel at Mid-Landing section

A _ Mu

s- ~iy(d-%J
J. 55 x 15650650

.0.85 x 275.76 X(119 - In

Therefore multiplying factor for conversion to ultimate value is

CALCULATION

= 1391 J. 69 x .45 x _1_ kN - mm per meter width
0.4

= 15650.65 kN-mm per meter width

Factored live load =1.7 X4786 N/m2

Factored Dead load =1.4 X 4712 N/m2

Total Factored Load =14734 N/m2

. Total unfactored load =9498 N/m2
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(6.10)

z

y

Landing~
...•
/

I
II

Mk

Free body diagram of Fig. 6.8

Fig.6.8 Part plan

Mil

Flight

=-51489.31 N

Torsion in Flights (Mu)

36

= [Mo+;x ~Jcosa-Ho Sina[~ +~J
= -6467241.3 N-mm per width of flight

Ultimate value ofMuu = 1.55 x Mt2

=-10024224 N-mm

. Vertical Shear at flight -landing junction (V2) =Total load on half landing
= 1200 X 1325X .009501

= 15107 N

Using the equation 6.6 for load case-l

Lateral shear (Ho) at mid-landing section
H
o
= -27905 [1+ 2.5 x 10 -4(B-800) 1.36][1_9x 10 -3(C-I00) 0.48- 1.8 x 10 -4(C-375)]

[1+2.5 x 10 -4(G-2250)][1+4 x 10 -3(T2-125) 0.9]
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(6.13)

(6.15)

(6.14)

(6.16)

(6.11 )

(6.12)

OK0.34 bw s =0.34x 150x300 <157
fy 275.76

now,

Longitudinal steel for torsion ,(Ai)

= 2A XI + Y1_ 2xl13.09x 100+1150
t s 300

=942.42 mm2 per 1.2 meter width. [Using 12mm dia bar]

XI + YI -312.5mm
4

Use closed rectangular stirrups of dia 10mm bar @ 300mm c/c

= 50967372.2 N-mm which is greater than Torsional moment

Shear resisted by concrete ( Vc) = 31812 N

Maximum spacing permitted by code is

Y]at =0.66+0.33-5,].5
X]

= 4.45 >1.5

Torsion resisted by concrete(Tc)

Therefore a t = 1.5

Ct = bd = 1200xll9 -0.0053
x2y 150xl50xl200

check minimum web reinforcement, (2At + Av):::: 0.34 b
w s. fy

Ultimate value of V2= V2u=1.55 XI51 07 N = 23416 N

Stirrup for torsion in flights

Dimension of flight cross section is 1200mm X 150mm

x =150 mm ,y= 1200 mm, XJ = 100 mm ,YJ = 1150 mm.
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'= 785.34 mm2 per meter width, which will be added to other longitudinal steels.

[assuming a = 12mm]

[ From equation of equilibrium]

10.10mm

Ms = 10155400 N-mm.

As fy 643.82x275.76
a=--~'=

0.85 t' c b 0.85 x 20.68 x 1000

check,

Maximum moment occurs within the outer half of the flight , which is about

65%.[Amanat 1993]

h "M ., [0.65XIOI55400]N "dhT ere,ore oment at Junction = ------ - mm per meter WI t0.6
= 11001683.33 N-mm per meter width

Ultimate value of Moment at junction (Ms)

= 1.55 x 11001683.33 = 17052609.17 N - mm per meter width

N. I Mu
egatlve stee , As = (a)

rp fy d-Z
17052609.17

0.85X275.76X(1I9-
1

;)

=643.82 mm2

So revised steel = 586.47 mm2

Total steel including torsion effect 586.47 + 50 % of 785.34 =979.14 mm2 per meter

width. Le. 12mm dia @ 115.50 mm c/c. Say 12 dia @ 115 mm C/C

Stirrup for Landing

Ultimate Lateral Shear in Landing, (Vu) =1.55 x51489.31 N = 79808.43 N

= 9064200 N-mm per width of Flight

Negative moment at slab-flight junction is

Negative Moment at kink = W2xB (6.17)2 2

= [~XI200 x 2650X.009501][12~0] N -mmper width of flight



Taking half of the width of section as effective in shear (Zahid-1999), the shear capacity

of the section is,

(6.20)

(6.18)

[Using cp IOmm] (6.19)
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=H [~]_W2[B+G]_[WI][G]
04222 24

cpAvfyd 0.85 x (2 x 78.53)x 275.76 x 570=--~--~-----
Vu -cpVc 79808.43-0.85x66098

=1045mm

But

= -457054.50 N-mm

Ultimate Moment = -1.55 X457054.50N-mm = -708434.48 N-mm

Flight Mid-span Moment

Hence stirrup spacing =285mm

Use closed rectangular stirrup of 10mm dia bar @ 285mm c/c
Minimum steel area in the bottom layer ofthe landing is 0.25% ofthe concrete area [ACI

code ], which is =0.0025 x 1000 x ISO

= 375mm2

=<plOmmbar @209.4lmm c/c

Say <pIOmmbar@200 mm c/c

WI ( The load acting on mid~point of flight) =

[Liveload x G x B + (Dead load from slab +Dead load from steps) x B x ~] (N)
Cosu

=32543.16 N

W2 (The load acting on mid-point oflanding) = 30214 N

Stirrup spacing, s

Vc = 0.17~ bd =0.17 x ../20.68 x 150x 570= 66098 N



The moment Diagram along the length of the stair and sections of stair showing the

reinforcements are shown in Fig. 6.9 and 6.10 respectively.

Maximum Moment within one-third, ",:hich is about 45%(Amanat,1993)

1= 0.45 x 708434.48 x -. (N - mrn) per meter width
'0.4

= -796988.78 N-mrn per meter width

Steel area (As) = 30.09 mrn2 [assuming a=12mrnj

Check, a = 0.472mrn. Revised As =.28.52 mrn2 per meter width.

Total steel (As) including torsion effect =28.52 + 50% of785.34 = 392.67mrn2

= q>10 mrn bar @ 180.73 mrn c/c.

Say q>10 mrn bar @ 180 mm c/c

In plane moment in flights (Md

= Ho[B + C] Cosa + W2 Sina C + MoSina
2 2 2 4

= 51489.31[1200 + 250]cosa+ 30214Sina 250 + 13911690Sina
2 2 . 4 .

= 33211463.60 N-mrn

Ultimate value of moment, (Mi2u)= 1.55 x 33211463.60 = 51477768.57 N-mrn

As =201.49 mrn2 assuming a =120mrn

Check, a = 3.16mrn

Revised As= 191.23 mrn2

Provide q>16mrn bar 2 nos.
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SECTION OF UPPER FLIGHT SHOWING THE
REINFORCEMENT DETAILS.

Fig. 6.9 Moment diagram along the stair projected length, kN-mm
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CHAPTER 7

CONCLUSIONS

7.1 GENERAL

Conclusions are drawn from the study of the reference stair, the sensitivity analysis, the

results obtained from the finite element method and the proposed method. Unless

otherwise specified, the conclusions listed here refer to the free standing stair slab held

partially fixed at upper and lower floor levels and acted upon by uniformly distributed

symmetric loading.

7.2 FINDINGS OF THE PRESENT STUDY

Amanat's [1993] developed equations for forces and moments at different locations of the

stair in terms of parameters. Zahid [1999] proposed the equations on the basis of

equilibrium of the stair. In all these studies, the stair is assumed to be held completely

fixed at floor levels. But in present days, there is a tendency of eliminating the supporting

beams to give the stair better architectural looks. In this case, the stair rests directly on the

floor slab, which can provide only partial rigidity as support. In this study, an attempt was

made to develop some guideline to analyze and design such a free standing stair resting

directly on the floor slab.

• A free standing stair resting on floor slab was modeled and analyzed in detail using

Ahmed's thick shell finite element. The investigation reveals typical characteristics of

free standing stair resting dir~ctly on floor slab.

• A detail sensitivity analysis is performed under different conditions of design

parameters. The study established the relative importance of the design parameters.

• Based on the sensitivity analysis semi-empirical equations are suggested for the

bending moment and lateral shear at mid-landing section for three different loading

conditions.

• The performance of the proposed equations are investigated by comparing the values

given by three equations with the corresponding values obtained from finite element

method analysis for ten arbitrary chosen examples of free standing stair.
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• It is found that the suggested semi-empirical equations are capable of predicting

bending moments and lateral shears with acceptable accuracy. It is now possible to

make an acceptable estimate of the bending moment and lateral shear at mid-landing

section directly using these equations, without making any formal structural analysis
of the stair.

• Once the moment and shear at mid-landing section are estimated with acceptable

accuracy, moments and shears at other locations can be easily obtained using

equilibrium equations. Thus the analysis of free standing stair resting directly on floor
slab is greatly simplified.

7.3 THE DESIGN RATIONALE

Based on this study, a simple design example is presented in chapter six. The range of

validity of the method covers the most frequently occurring cases. The main advantages

of the proposed method are:

a) The number of empirical equations are only two for each load case. The other

required forces and moments can be obtained by the equation of equilibrium directly.

This relieves the designer from the rigorous calculation required even in the
approximate analytical methods.

b) The empirical equations were made on the basis of the stair directly resting on the
floor slab, which is a more realistic case.

c) The proposed equations can be applied for stair slabs of commonly occurring
proportions.

7.4 SCOPE FOR FURTURE INVESTIGATION

Consistent with the objectives of the present study, the overall behavior of the free

standing stair, held partially fixed at supports and acted upon by symmetric loading, has

been analyzed and specific design guidelines have been formulated. Further works may

be carried out, some indications of which are given below.

• To gain confidence in the application of the proposed equations, a physical model

may be constructed and tested.

• The analysis of stair was made, considering partially fixed supports. The equations
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can also be derived for stairs with simply supported conditions. A detail study may be

made considering simple supports at floor levels.

• Linear elastic analysis was made throughout. A finite element analysis with non-linear

material properties can be attempted in future.

• Two possible symmetric loading were used in the analysis. Investigation for

unsymmetrical loading, such as live load only on upper flight, may be carried out.
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