EFFECT OF ENCROACHMENT ON FLOW CHARACTERISTICS IN A COMPOUND MEANDERING CHANNEL: AN EXPERIMENTAL STUDY

SHARMINA NASREEN

DEPARTMENT OF WATER RESOURCES ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY (BUET), DHAKA – 1000

AUGUST 2013

EFFECT OF ENCROACHMENT ON FLOW CHARACTERISTICS IN A COMPOUND MEANDERING CHANNEL: AN EXPERIMENTAL STUDY

A Thesis Submitted by

Sharmina Nasreen (0409162020 P)

In partial fulfillment of the requirements for the degree of Master of Science in Water Resources Engineering

Department of Water Resources Engineering Bangladesh University of Engineering and Technology (BUET) DHAKA - 1000

August 2013

CERTIFICATION OF APPROVAL

The thesis titled **"Effect of Encroachment on Flow Characteristics in a Compound Meandering Channel : An Experimental Study"**, submitted by Sharmina Nasreen, Roll No. 0409162020P, Session: April 2009, has been accepted as satisfactory in partial fulfillment of the requirement for the degree of **Master of Science in Water Resources Engineering** on 17th August, 2013.

Dr. Md. Sabbir Mostafa Khan Professor Department of Water Resources Engineering BUET, Dhaka-1000, Bangladesh

Dr. Md. Sabbir Mostafa Khan Head Department of WRE, BUET, Dhaka.

Dr. Umme Kulsum Navera Professor Department of Water Resources Engineering, BUET, Dhaka-1000, Bangladesh Chairman

Member (Ex-Officio)

Member

Member

Dr. Anika Yunus Assistant Professor Department of Water Resources Engineering, BUET, Dhaka-1000, Bangladesh

Prof. Dr. M. R. Kabir

Pro Vice-Chancellor University of Asia Pacific, Block-A, House No. 49/C, Road No. 4/A Dhanmondi R/A, Dhaka-1209. Member (External)

AUGUST 2013

DECLARATION

It is hereby declared that this thesis work or any part of it has not been submitted elsewhere for the award of any degree or diploma.

Sharmina Nasreen Signature of the Candidate

TABLE OF CONTENTS

Certification of Approval	iii
Declaration	iv
Table of Contents	v
List of Figures	viii
List of Tables	xi
List of Symbols	xii
List of Abbreviations	xiii
Acknowledgement	xiv
Abstract	XV

CHAPTER ONE: INTRODUCTION

1.1	General	1
1.2	Background of the Study	1
1.3	Specific Objectives of the Study	4
1.4	Organization of the Report	4

CHAPTER TWO: LITERATURE REVIEW

2.1	General	5
2.2	Simple Meandering Channels	5
2.3	Floodplain Encroachment in Compound Channels	7
2.4	Compound Channels in Straight Reaches	8
2.5	Meandering Compound Channels	12
2.6	Shear Stress Distribution in Meandering Compound Channels	16
2.7	Shear Stress Distribution around Encroachment or Vertical Wall	19

CHAPTER THREE: METHODOLOGY OF LABORATORY EXPERIMENT

3.1	General		22
3.2 Expe		xperimental Set-up	
	3.2.1	The Experimental Reach	24
	3.2.2	The Experimental Facilities	25
3.3	Water	Circulation System	28
3.4	Measu	uring Equipments and Devices	29

	3.4.1	The Acoustic Doppler Velocity-Meter	29
	3.4.2	Current Meter	30
	3.4.3	Point Gauge and Reference Point	31
	3.4.4	Measuring Line and Measuring Bridge	31
	3.4.5	Plastic Container	31
3.5	Experi	mental Program	32
	3.5.1	Determination of Bed Slope	32
	3.5.2	Set-Up Installation	33
	3.5.3	Coordinate System	34
3.6	Experi	mental Procedure	34
	3.6.1	Channel Preparation	34
	3.6.2	Velocity Measurement	35
3.7	Proces	using of Data	37
	3.7.1	Velocity Distribution	37
	3.7.2	Depth Average Velocity	38
	3.7.3	Discharge Measurement	39
	3.7.4	Estimation of Bed Shear Stress	39
	3.7.5	Velocity Distribution Coefficient	41
3.8	Observ	vation of Flow Pattern with Dye	41

CHAPTER FOUR: RESULTS AND DISCUSSIONS

General		42
Veloci	ty Distribution	42
4.2.1	Individual Velocity Profile	42
Distrib	oution of Flow	55
4.3.1	Encroachment at Bend	55
4.3.2	Encroachment at Crossover	58
Variat	ion of Shear Stress	61
4.4.1	Effect of Encroachment on both sides of Bend	61
4.4.2	Effect of Encroachment on single side of Crossover	63
Veloci	ty Distribution Coefficient	64
Quali	tative observation of Flow	67
	Veloci 4.2.1 Distrib 4.3.1 4.3.2 Variat 4.4.1 4.4.2 Veloci	 Velocity Distribution 4.2.1 Individual Velocity Profile Distribution of Flow 4.3.1 Encroachment at Bend 4.3.2 Encroachment at Crossover Variation of Shear Stress

CHAPTER FIVE: CONCLUSIONS AND RECOMMENDATIONS

5.1	General	69
5.2	Conclusions	69
5.3	Recommendations	70

•

Appendix A

Appendix B

LIST OF FIGURES

Figure 1.1: 1	Illustration of a typical meandering channel reaches	1
Figure 1.2: Y	Various type of encroachments in rivers and floodplains	2
Figure 2.1: S	Schematic diagram of meandering channel with characteristic	
I	Parameters	5
Figure 2.2: 1	Descriptions of flow in meandering channel	6
Figure 2.3: 7	Typical floodplain encroachment in a compound channel	7
Figure 2.4: 1	Hydraulic parameters in compound open channel	9
Figure 2.5: 1	Pattern in meandering channel with floodplain (a)inbank (b)overbank	13
Figure 2.6: 1	Effect of secondary flow on boundary shear stress	18
Figure 2.7: S	Schematic sketch of velocity profile and large coherent motions that	
e	emerge at the groin heads and grow during their travel downstream.	20
Figure 3.1: 1	Experimental set-up at Physical Modeling Facility, DWRE, BUET	22
Figure 3.2: 1	Plan view of model set-up	23
Figure 3.3: 1	Dimensions of experimental reach	24
Figure 3.4: S	Storage reservoir	25
Figure 3.5: (Centrifugal pump	25
Figure 3.6: 1	Upstream reservoir	26
Figure 3.7: A	Approach channel	26
Figure 3.8: 1	Downstream reservoir	27
Figure 3.9: 7	Tail gate and flow over tail gate	27
Figure 3.10:	Stilling basin and transition flumes	28
Figure 3.11:	Guiding vanes and tubes	28
Figure 3.12:	Water supply system with various components	29
Figure 3.13:	The probe and control unit	30
Figure 3.14:	Current meter and counter unit	30
Figure 3.15:	Measuring line on the side wall and measuring bridge	
	across the channel	31
Figure 3.16:	Various Encroachment condition at floodplain	33
Figure 3.17:	Coordinate system of the experimental channel	34
Figure 3.18:	Layout of cross section	36
Figure 4.1:	Cross sectional location for encroachment on both side at bend	42
Figure 4.2: 1	Longitudinal velocity profile of without encroachment at section 1	
	a) at right floodplain, b) at main channel and c) at left floodplain	43

Figure 4.3: Longitudinal velocity profile of encroachment on both sides at be	nd at
section 1 a) at right floodplain, b) at main channel	
and c) at left floodplain	43
Figure 4.4: Longitudinal velocity profile of without encroachment at section 2	2
a) at right floodplain, b) at main channel and c) at left floodplain	45
Figure 4.5: Longitudinal velocity profile of encroachment on both sides at	
bend at section 2 a) at right floodplain, b) at main channel	
and c) at left floodplain	45
Figure 4.6: Longitudinal velocity profile of without encroachment at section 3	3
at main channel	46
Figure 4.7: Longitudinal velocity profile of encroachment on both sides of	
bend at section 3 at main channel	46
Figure 4.8: Longitudinal velocity profile of without encroachment at section 4	4
a) at right floodplain, b) at main channel and c) at left floodplain	47
Figure 4.9: Longitudinal velocity profile of encroachment on both sides at	
bend at section 4 a) at right floodplain, b) at main channel	
and c) at left floodplain	47
Figure 4.10: Cross sectional location for encroachment on both sides at crosso	over 48
Figure 4.11: Longitudinal velocity profile of without encroachment at section	1
a) at right floodplain, b) at main channel and c) at left floodplain	49
Figure 4.12: Longitudinal velocity profile of encroachment on both sides at	
crossover at section 1 a) at right floodplain, b) at main channel	
and c) at left floodplain	49
Figure 4.13: Longitudinal velocity profile of without encroachment at section	2
at main channel	51
Figure 4.14: Longitudinal velocity profile of encroachment on both sides of	
bend at section 2 at main channel	51
Figure 4.15: Longitudinal velocity profile of without encroachment at section	3
a) at right floodplain, b) at main channel and c) at left floodplain	52
Figure 4.16: Longitudinal velocity profile of encroachment on both sides at	
crossover at section 3 a) at right floodplain, b) at main channel	
and c) at left floodplain	52
Figure 4.17: Longitudinal velocity profile of without encroachment at section	4
a) at right floodplain, b) at main channel and c) at left floodplain	54

Figure 4.18: Longitudinal velocity profile of encroachment on both sides at	
crossover at section 4 a) at right floodplain, b) at main channel	
and c) at left floodplain	54
Figure 4.19: Cross sectional location for encroachment on left side at bend	55
Figure 4.20: Cross sectional location for encroachment on both sides at bend	57
Figure 4.21: Cross sectional location for encroachment on left side at crossover	58
Figure 4.22: Cross sectional location for encroachment on both sides at crossover	60
Figure 4.23: Shear stress profile across the channel at cross section 1	61
Figure 4.24: Shear stress profile across the channel at cross section 2	62
Figure 4.25: Shear stress profile across the channel at cross section 3	62
Figure 4.26: Shear stress profile across the channel at cross section 4	62
Figure 4.27: Shear stress profile across the channel at cross section 1	63
Figure 4.28: Shear stress profile across the channel at cross section 2	63
Figure 4.29: Shear stress profile across the channel at cross section 3	63
Figure 4.30: Shear stress profile across the channel at cross section 4	64
Figure 4.31: Distribution of α and β for encroachment on bend at a) section 1,	
b) section 2 and c) section 4. (Here, Location $1 = RF$,	
Location $2 = MC$, Location $3 = LF$)	65
Figure 4.32: Distribution of α and β for encroachment on crossover at	
section 1, b) section 3 and c) section 4. (Here, Location $1 = RF$,	
Location $2 = MC$, Location $3 = LF$)	66
Figure 4.33: Image of dye distribution at verious time step for encroachment at	
both sides of bend for depth ratio 0.285	67
Figure 4.34: Image of dye distribution at verious time step for encroachment at	
single side of crossover for dept ratio 0.285	67
Figure 4.35: Image of dye distribution at verious time step for encroachment	
at both sides of crossover for dept ratio 0.285	68
Figure 4.36: Image of dye distribution at verious time step for encroachment	
at both side of crossover for dept ratio 0.375	68

LIST OF TABLES

Table 3.1: Determination of bed slope	32
Table 3.2: Placement of encroachment	34
Table 3.3: The experimental set-up	37
Table 4.1: Variation of percentage of discharge for encroachment	
at left side on bend	56
Table 4.2: Variation of percentage of discharge for encroachment	
at both side on bend	57
Table 4.3: Variation of percentage of discharge for encroachment	
at left side on crossover	58
Table 4.4: Variation of percentage of discharge for encroachment	
at left side on crossover	60

LIST OF SYMBOLS

А	Area of channel cross section
a	Dimensionless property of the fluid (function of velocity)
b	Width of the main channel bottom
D	Depth ratio
d	Depth of water
g	Gravitational acceleration
Н	Total water depth
h _f	Floodplain water depth
i	Cross section location number
k	Von Karman constant
Р	Wetted perimeter of the channel section
R	Hydraulic radius of the channel cross section
r _m	Radius of curvature
S _r	Channel sinuosity
U*	The friction velocity
V _x	Longitudinal velocity
V_y	Transverse velocity
W	River width
Z	Height above bed
Z _o	Height of hydraulic roughness
α_{m}	Amplitude
ΔA_{i}	Area of the segment
θ_{o}	Meandering angle
ρ	Density of flowing fluid,
τ_{b}	Bed shear stress
α	Coriolis coefficient
β	Boussinesq coefficient

LIST OF ABBREVIATIONS

ADV	Acoustic Doppler Velocity-meter
BUET	Bangladesh University of Engineering and Technology
LF	Left Floodplain
MC	Main Channel
RF	Right Floodplain

ACKNOWLEDGEMENT

The author acknowledges her deepest gratitude to her supervisor Dr. Md. Sabbir Mostofa Khan, Professor, Department of Water Resources Engineering, BUET for providing an interesting idea for the thesis and encouraging to work with it. His cordial supervision, valuable suggestion and expertise contributed greatly to this dissertation.

The author is also grateful to the members of the examination committee Dr. Umme Kulsum Navera, Professor, Department of Water Resources Engineering, BUET, Dr. Anika Yunus, Assistant Professor, Department of Water Resources Engineering, BUET and Prof. Dr. M. R. Kabir, Pro Vice-Chancellor, University of Asia Pacific. Their valuable comments on this thesis are duly acknowledged.

Above all, the author is grateful to almighty Allah, Who has given him the opportunity to work hard.

Sharmina Nasreen August 2013

ABSTRACT

The behavior of flow in a compound meandering channel, consisting of a deep main channel bounded by shallow floodplains, is very complex and influenced by several kinds of forces and hydraulic parameters. Encroachment of floodplains, i.e. various human settlements and related activities modifies such overbank flow processes due to the presence of different types of interventions. Hence, in addition to the classical turbulent interaction at the interface between the main channel and floodplain, the presence of an obstacle strongly disturbs the flow dynamics of the encroached compound channels. The location of encroachment, i.e., whether encroachment occurs in the bends or straight cross-over portion of a meandering channel, also affects the velocity and shear stress distribution at and near the encroached area. Moreover, the presence of encroachment in single overbank or both overbanks is likely to have a considerable effect on the variation of these hydraulic parameters. To investigate these effects, a systematic experimental study was carried out in the physical modeling facility of the Department of Water Resources Engineering, BUET. The experiment was conducted in a compound meandering channel with five different set-ups of various encroachment conditions for depth ratio of 0.285 and 0.375. A large volume of data was collected using Acoustic Doppler Velocity-meter (ADV) from ten experimental runs. Analyses of the study showed that the distribution of flow in a compound meandering channel is affected by the encroachment condition. When encroachment occurs in bend, the floodplain flow reduces significantly compared to encroachment in crossover. The non-uniform velocity distribution near the encroached area increases the value of both the energy and momentum coefficients, specially when encroachment occurs on both floodplains of a bend. For this condition the main channel velocity was found maximum. There has been no rapid change of shear stress at main channel at any conditions but shear stress increases at the location when encroachment was placed on both side of floodplain at bend and crossover. Finally, dye tracer technique was utilized to visualize the complex flow pattern for various encroachment conditions and the observations were found consistent with the experimental measurements and analyses.