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This dissertation presents an analysis and mathematical modelling of Bangia sound units,

which would enable to generate synthetic Bangia speech. In this work, the spectral features

and parameters of a speaker are investigated to determine their contribution to the occurrence

of BangIa speech. The linear predictive coding (LPC) technique has been used to extract the

spectral features and parameters, viz, pitch, gain, voiced I unvoiced decision etc., of Bangia

speech. Use has been made of Hamming window in. this feature extraction. To develop the

mathematical models of Bangia sound units, they (i. e., the sound units)are recorded for a

particular person using a sound card. Then the spectral features and parameters of the sound

units are extracted, and later on they are used to drive an all-pole digital filter The output of

this filter is thedesired synthetic speech ..Several software routines have been written for the

analysis and synthesis of the Bangia sound units. These routines have been written in

'PASCAL' programming language. Finally, the modelled sound units are compa~ed with the

corresponding recorded speech. The play back facility of the sound card has been used lor

this purpose. Some of the pos9ible applicatipns of the synthetic Bangia sound units are also

explored ..
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Introduction

1.1 Introduction

Chapter 1

Introduction

2

This chapter describes the definition of the speech synthesis, a brief research survey in this field,

the objective of the current research; and the organisation ofthis dissertation.

Speech synthesis is a process of generating artificial speech by analysing the OIiginal speech,

which would be as intelligibleand as natural soun~ing as if spoken by a person.

Speech research and speeoh technology is a field of great fascination and, therefore, inherently

also of fiustration .. Mimy engineers and scientists have entered this field with the high

expectations to carry.outresearch.on speech synthesizers. They have used the computer

technology,. electronics, .and high powered signal processing mathematics to explore this field,

which eventually has led to the great break-through in research on speech synthesis and

recognition.

Now, VLSI techniques and technical developments in speech processing and synthesis have

created a 'Speech Revolution'. Speech. synthesis by rule has not yet reached its limits of

intelligibilityand naturalness. Speech recognition is even further away rrom its ultimate goal: that

of speaker independent handling of connected speech. The research of speech processing is

improving slow and steadily with time and speech systems are now being used in certain

commercial applications [1, 2]. The present research is aimed at developing mathematical models

so as to be able to produce' artificialBangIa speech. The following section gives a brief litcra@e

survey and present state of the proposed research.

I'"
\.. ~.. ,, ,,
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1.2 Brief Survey and Present State of the Project

3

Research on English speech synthesis began in 1945. The speech synthesizers tori English,
language have been developed in the U. K and the USA [1, 2]. In 1981, speech synthesizers of

commercial quality came in the market for the first time.

Recently speech synthesizers have been developed for Hindi and Telegu language 'in India.

However, substantial research on BangIa speech synthesizers has not been done. Bangia is the

national and official language of Bangladesh and one of the fifteen working languages oflndia.

Bangia is the 7th international language It is a language of about 250 million peopl~ in the

eastern region of Indian subcontinent i.-e.,Bangladesh, Indian states of West Bengal, Tripura,

and around. Therefore, like other interriationallanguages, extensive research should be done on

Bangia language to develop Bangia speech sy'nthesisers.

At present a few researchers of the department of Applied Physics and Electronics of the

University of Rajshahi, are carrying out research to develop techniques to produce synthetic

Bangia speech. They have also analyzed Bangia speech to find out various speech parameters

(viz.-formant frequencies, pitch period, .fundamental frequency, voiced / unvoiced / fiicative /

silence decision making) for BangIa speech. These parameters are very essential tools for

producing synthetic speech. However, the achievement of the researchers at the University of

Rajshahi were confined only to determine the formant frequencies and pitch period of some

Bangia sound units and words using the formant analysis technique[ 1, 2]. However, this is the

preliminary stage of speech synthesis. On ,the other hand, formant analysis technique is not a

widely used technique. At present, the most widely used technique is the linear predictive coding

(LPC) technique The major difficulty with the formant analysis technique method lies in

assigning computed formants to specific second-order filters Formants seem to disappear during

certain sounds and additional formants seem to be present during other sounds. A large number

of either of these types can quickly render the synthetic output unintelligible or at best make its

quality unacceptable. It also requires development of special software routines and dedicated

hardware designs for generating synthetic BangIa speech.
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During the last twenty years [I-50], speech research has been emerging as an interdisciplinary

subject in its own right. During that time, r~searchers - both engineers and linguists at various

academic institutions and commercial laboratories have developed various techniques to produce

synthetic speech, and to allow computers to talk as natural as possible.

In 1971, a new digital teohnique was developed for analysing and synthesizing speech using

digital computers. The true speech revolution could be said to have begun in about 1977 with

the design of VLSI (Very Large Scale Integration) devices following the new understanding of

the speech mechanism and the emergence of suitable digital synthesis techniques [I, 2].

1.3 Objective of the Research.

This research is intended with a view to modelling BangIa sound units to produce synthetic

BangIa speech.

From the commercial point of view, software-based system modelling is more convenient and. .

less costly than hardware-based. system. Therefore, it is required to develop a computationally

efficient, software-based, user-friendly and most tlexible system for producing synthetic BangIa

speech. All these factorsw~re taken into consideration to develop the BangIa speech synthesizer."

The most commonly used and versatile modelling technique, which is known as linear predictive

coding (LPC), is selected to develop the.proposed BangIa speech synthesizer.

In this work,' various existing methods of producing synthetic speech were studied and the

method LPC was found to be the best choice for BangIa speech. Using this method, the

mathematical models for BangIa sound units have been developed to produce synthetic Bangia
"-.,'

speech.

1.4 Organization of the Dissertation

This dissertation has been organized in the following way. Chapter 2 describes the versatilitye
the human speech production mechanism and the origin and development of BangIa language.

Chapter 3 gives a brief description on Digital Signal Processing (DSP) and the techn~es that
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are used for speech synthesis. Techniques of pitch extraction for BangIa sound units, using LPC

technique is discussed in chapter 4. Chapter 5' covers the design and dcvclopmcnt of the

mathematical models for the BangIa sound units, using the LPC technique. Chapter 6 concludes

the results of the research, and comments on the topics of filrther research in this field.

References and appendices are included.at the end of this dissertation

••...

\
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HUMAN SPEECH PRODUCTION MECHANISM
AND BANGLA LANGUAGE
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Human.Speech ProductionMechanismand Bangia Language

Human Speech Production Mechanism
and BangIa Language

2.1 Introduction

7

Through the development of modem theory, the mechanism of human speech production is now

well understood, although some of the non-linearities in vocal-cord vibration and in sourcc-tract

interaction remain to be studied and quantified. This acoustic understanding forms the basis for

.all present-day efforts in speech synthesis. In contrast, knowledge is incomplete about the

relationship between the various articulators, which dictate the ordered motions of the vocal

tract system. Studies of speech prosody, relating to stress, pause, and pitch assignment, and
,

studies of the dynamic properties of articulato1y motions are all current topics of speech

research. This chapter describes the various speech production mechanisms and models of

human vocal chord.

2.2 SpeechRevolution

Man's amazing ability to communicate through speech sets him apart from other earthly species

and. is often regarded as a Sign of his spirituality. Speech is the most natural form of

communication between, humans Therefore, it is a subject, which has attracted much interest

and attention over many years. The st~cture '.of speech, its production and perception. . .
mechanisms have long occupied linguists, psychologists and physiologists. Scientists and

engineers have endeavoured to construct machines, which can synthesise and recognise human

speech. In recent years, this goal has begun to be realised; though the systems that have been

built are still a long way' from being able to emulate human perfonnance. Current speech

synthesis systems are capable of producing reasonably intelligible, though not natural-sounding,

speech. Nevertheless, the performance of speech synthesis systems is improving slowly and

steadily with time, and speech systems are now being used in certain commercial applications

~ [2].
'-.."

(



Human Speech ProductionMechanismand Bangia Language 8

There are three main areas in speech technology - speech synthesis, speech recognition and

speech coding. They will now be described in brief next [2].

2.2.1 Speech Synthesis

The ultimate goal in speech synthesis is to develop a machine which can accept as input a piece

of text, and convert it to natural-sounding speech, which would be as intelligible and as natural-

sounding as if spoken by a person. Applications of speech synthesis include speech output from

computers, reading machines fOfblind and public massaging systems [2]'

2.2.2 Speech Recognition

The ultimate goal in automatic speech recognition is to produce a system, which can recognise,

with human accuracy, unrestricted, .continuous speech utterances from any speaker of a given

language. One of the main application areas for speech recognition is voice input to computers

for such tasks as document creation (word processing), database interrogation and financial

transaction processing (telephone banking). Other applications include data entry systems for

automated baggage handiing, parcel sorting, quality control, computer-aided design and

manufacture, and command and control systems [2].

2.2.3 Speech Coding

Speech coding is concerned with the development of techniques, which exploit the redundancy

in the speech signal, in order to reduce the number of bits required representing it. This is

important when large quantities of speech are to be held on digital storage media, such as voice

mail systems, or when a limited bandwidth is available to transmit the signal over a

telecommunications channel, such as a cordless telephone channel or a mobile radio channel [2].

2.3 The Acoustic Model of the Vocal Tract

Acoustic understanding of voice production can be indicated with the help of Figure 2.1, a cross-
,

sectional x-ray of a man's head, and Figure 2.2, which shows the longitudinal section of a man's

/,
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head. The schematic diagram and the simple analogy of human vocal tract system arc shown in

Figures 2.3 and 2.4, respectively. Human vocal. apparatus consists essentially of the lungs,

trachea (windpipe), the larynx and the oral and nasal tracts. The larylLl: contains two folds of

skin called the I'ocal cortl~ as shown which can be made to repeatedly blow apart andtlap toge-

Figure 2.1 Sagittal-plane x-ray of the vocal system

ther as air is forced through the slit.between them which is called the glottis The physiological

stl1Jcture of the vocal cords is shown in Figure 2.5. The vibrating ligaments of the vocal cords

are about 18 nll11long and the mean glottal opening is typically 5 mm2 [1, 2]
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Glottis.

Trache<l

Nasal c~vilY

Velum

Uvula

Pharynx

Epiglottis

Food passage

Figure 2.2 Vocal organs

From an acoustic point of view, the oral tract or vocal tract proper is a non-unifornl tube about

17 cmlong in an adult male and therefore its first quarter-wave resonance occurs at a frequency

given by F,=e/4L = 34,000 /17 =500 Hz, e being the velocity of sound in air, and e=34,000

em/sec [2]. It is terminated at one end by the vocal cords (or by the opening between them, (he

glottis) and at the other by the lips. The,.cross-sectional area of the tract is determined by

placement of the lips, jaw, tongue, and velum, and can vary from zero (complete closure) to

about 20 em2 by muscular control. of the speech articulators. An ancillary cavity, the nasal tract,

can be coupled (0 the vocal tract by the trap-door action of the velum, a movable flap of skin.

The nasal tract begins at the velum and telminates at the nostrils. In man, cavity is about 12 em
I

long and has a volume of about 60 em'- During non-nasal sounds the velum seals off the nasal

cavity and no sound is radiated trom the nostrils. In the production of nasal sounds, the velum is

lowered and the nasal tract is acoustically coupled to the oral tract. However, in this situat~o.n,

the Ii.ontof the oral tract is completeiy closed and therc is again only a single sound transmission.
{'-
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Figure 2.3 Mid,sagital sectiori through the speech organs. 1 lower lip, 2 lower incisor, 3
tongue-tip, 4 tongue-blade, 5 tongue-front, 6 tongue-back, 7 tongue-root, 8
upper lip, 9 upper incisor, 10 alveolar ridge, 11 hard palate, 12 velum, 13 uvula,
14 pharynx wall, 15 larynx, 16 vocal cords and glottis

path via the nostrils. For sounds, which arc nasalised, sound emanates from both the lips and the

nostrils [2].

In speaking, the lungs arc lilled with air by Illuscular expansion of the rib cage and lowering of

the diaphragm as indicated in Figure 2.4. I\S the rib cage contracts, air is expelled and is forced

along the trachea (windpipe) and through the glottis. This flow of air is the source of energy for

speech generation. It can be contro.!led in diflerent ways to produce various modes 01'excitation

for the vocal system

Speech sounds can be divided into three classes according to the Illode of excitation, such as-

l'O;ced SOlilid,', III1t'o;ced sOIlI"l, {/I/(I plos;l'e sO/II"l,'. They will now be described in the

following subsections [5J
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Figure 2.4 Schematic diagram of the human speech production mechanism

2.3.1 Voiced Sounds

These sounds are produced when the vocal cords are tensed together and they vibrate in a

relaxation mode as the air pressure builds up, forcing the glottis open, ancl thell subsides as the

air passes through. This vibration of the cords produces an airflow waveform, which is

approximately triangular Being periodic, or at least quasi-periodic, it has a li'equency spectrum

of rich hamlOnics at multiples of the fundamental frequency of vibration, which is called pitch

frequency, and decaying at a rate of approximately 12 dB/octave. The vocal tract acts as a

resonant cavity, which amplifies some of these harmonics and attenuates others to produce

voiced sounds. The rate at which the vocal cords vibrate depends on the air pressure in the lungs

and the tension in the vocal cords, both of which can be controlled by the speaker to vary the

pitch of the sound being produced The range of pitch for an adult male is from about 50 Hz to

-
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about 250 Hz, with an average value of about 120 Hz. For an adult female the upper limit of the

range is much higher, perhaps as high as 500 Hz [2]

ARYTENOID
CARTILAGES

VOCAL
CORDS

Figure 2.5 Schematic view of the human larynx

2.3.2 Unvoiced Sounds"

In the production ofllllvoiced sOllllds the vocal cords do not vibrate. There are two basic types

of unvoiced sound-f.oicativc sounds ('mel aSJli •.at(~dsounds, For fj-i'cativc sounds, a point of

constriction is created at some point in the vocal tract and, as it is forced past it, a turbulence

occurs which causes a random noise excitation. Since the points of constriction tend to occur

near the front of the mouth, the resonances of the vocal tract have little effect in characterising
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the fiicative sound being produced. In aspirated sounds, the turbulent aiIilow occurs at the

glottis as the vocal cords flre held slightly apart. In this case, the resonances of the vocal tract

modulate the spectrum of the random noise. This effect can be clearly heard in the case of

whispered speech [2]

2.3.3 Plosivc Sounds

Plosive sounds are produced by creating by another type of excitation For this cl<lsSof sounds,

the vocal tract is closed at some point, the air pressure is allowed to build up behind this closure,

and then suddenly released. The rapid release of this pressure provides j transient excitation of

the vocal tract. The transient excitation. may occur with or without vocal cord vibration to

produce voiced or unvoiced plosive sounds [2].

2.4 Source-Filter Model of Speech Production

All the vocal sources-for periodic voiced sounds and lor aperiodic voiceless sounds-are relatively

broad in spectrum. The vocal 'system acts as a time-varying filter to impose its resonant

characteristics on the sources. Because of the relatively loose interaction between the vocal

system and the sound sources, these can be approximately represented as linearly separable. In

this form, their individual acoustic properties can be conveniently examined. Figure 2.6 (top)

represents the vocal tract as a time-varying filter, which is excited by broad-spectrum sources

having relatively fixed characteristics. The sound radiated from the mouth set) can, to a first

approximation, be considered the convolution of the excitation source get) and the transmission

characteristic h(t). For voiced sounds, the excitation source is the acoustic volume velocity at the

vocal cords. This is typically-plo~ive and periodic and has a line spectrum whose harmonics

diminish in amplitude approximately as lit" [sketched as IGWI in Figure 2.6 (middle)]. The
vocal tract filter function [sketched as IH(IJIJ has transmission poles corresponding to the

acoustic resonances (or formants) of the vocal tract. The tract length is comparable to the,
wavelength of the sound at the frequencies of interest. Because the tract is essentially open at the

mouth end and closed at the glottal end, its eigenfi'equencies correspond roughly to the odd

quarter-wave resonances of such a pipe [1,2].
... :"":

r
~I
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A very simple model of the vocal tract or pipe, when producing neutral vowel sound, is a

uniform tube oflength L, with a sound source at one end and open at the other end (the lips) as

shown in Fi!:,'Ure2.7. The odd frequency resonances of this pipe are [,,, 31'0,5[", ... etc., where [" =

c/4L, c being the velocity of sound in air. For a typical vocal tract, lel1b'!hL= 17 cm and taking

c=340 mls gives resonant rrequency values of 500 Hz, 1000 HZ,ISOO Hz, .. etc. In the vocal

tract, these resonances are referred to as formants. Of course, the vocal tract can take up many

different shapes which gives rise to difrerent resonant or fonnant rrequency values and hence

different sounds. Thus in continuous speech, the formant rrequencies are constantly changing.

For vowel sounds the pipe is excited at the glottal (vocal-cord) end, and it has no side-branch

resonators. Its transmission consequently has only poles (shown by the X's). Nasal sounds

typically exhibit an additional pole and zero in the rrequency range below 3 kHz (shown by the

dashed x-D) The output magnitude spectrum IS(f)1 is therefore a line spectrum, which has

imposed upon it the resonancesof the vocal transtnission. As the vocal tract takes on the shapes

for different sounds, the rrequencies of these resonances change. In a similar manner, the

unvoiced sounds are excited rrom a noise spurce, which is relatively flat in spectrum [Figure

2.6(lower»). This source is typically positioned at some point along the tracl, and the

transmission function is, to first order, approximated by a couple of poles and a zero. Again the

radiated sound reflects these resonances. In continuous speech, the fOllnant resonances move
,

around as the vocal tract changes shape Figure 2.8 shows a sound spectrogram (a time-

rrequency-intensity plot) of an english sentence in which the first three fOllnant frequencies are

traced. These parameters vary slowly (compared to the pressure fluctuations in the speech wave)

because of the physical limitations on how ~uickJy the vocal tract can change in shape. (That is,

the tongue, jaw, lips, etc. have si~n.ificantmass, and the forces that the articulatory muscles can

generate limit their accelerations) On the basis of these relations, a simple, reasonable, and

approximate model of speech generation includes a time-varying filter, whose resonances and

anti-resonances can change continuously to simulate the vocal-tract transmission, and whose

excitation is derived rrom two kinds of signal sources a periodic pulse generator of Variab~le

period to simulate voiced sounds, and a broad-band noise generator to simul~c voiceless

sounds Such a model is shown in Fi!:,'Ure2 9 for both voiced and unvoiced speech The gain
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controls Av and ANdetennine the intensity of the voiced and unvoiced excitations respectively.

The rrequency spectmm of the speech signal can he obtained hy multiplying the source spectrum.,
by the frequency characteristic of the filter [2; 4]'

The source-filter model is an over-simplification of the speech production process. As already

mentioned, the fiicative sounds are not filtered by the resohances of the vocal tracl to the same
,

extent that voiced and aspirated sounds are, and so the source-filter model is not very accurate

for fricative sounds. In addition, the source-tilter model assumes Ihat the source is linearly

separable from the filter and that there is no interaction between them. This is not strictly true

since the vibration of the vocal cords is affected by the sound pressure inside the vocal tract and

there is coupling between the vocal tract and the lungs during the period when the glottal is

open, thereby moditying the filter characteristics every cycle of the excitation. However, very

often these secondary factors are ignored and the ,~ource-filtermodel is perfectly adequate [I, 2].

2.5 Evolution ofthe Speaking Machines

From earliest times man has .sought to understand and duplicate the mechanism of the human

voice. Fundamental understanding still motivates today's efforts, but in partnership with the

important application of voice answer back from computers and the efficient transmission of

.speech signals. Early attempts to imitate man's speech invariably took the fonn of mechanical

devices: Modern efforts invariablydevelop in electrical tenns [I, 2].

2.5.1 History of Speech Synthesis

One of the earliest documented attempts at speech synthesis was made in 1779 wilen a Russian
I

scientist called Kratzellstein constructed a set offive acoustic resonators as shown in Figure 2.10

which, when activated by a vibrating reed, produced imitations of the vowels. In 1791 Wolfgang

Von Kemplen, a Hungarian, constructed a more elaborate machine which could be made to

speak whole words and phrases. As illustrated in Figure 2.11, it consisted of a large bellows that .-

supplied a stream of air to a reed, which, in tum, excited a hand-held rubber tube (resonator). <:>

Extra tubes and whistles were added to imitate the nasal and tricative sounds. A much more
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recent mechanical speech synthesise was constructed by Reisz in 1937, Pressing keys to vary the

shape of mechanical vocal tract simulated the motion of the speech articulators It could produce

connected speech when operated by a skilled person [I, 2,4],
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Figure 2,6 Source-System model of speech production
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The development of electronics signalled the demise of mechanical synthesisers and heralded the

production of more successful electricalones. One of the first was a device called the Yoder as

shown in Figure 2.12, built in 1938. This attempted to model the vocal tract electrically using ten

contiguous bandpass filters, connecied in parallel, which spanned the speech frequency band and

were excited by a periodic buzz source ora random noise source ..The gains of the bandpass

tilters, the choice of buzz or noise excitation and the pitch of the buzz source could be controlled

by finger keys, a wrist-bar and. a foot-pedal respectively. After considerable practice, it was

possible to manipulate the Yocoder to produce intelligible speech. The desire to reduce the

transmission bandwidth of speech in telephony led to Dudley's invention of the Yocoder in 1939.

As shown in Figure 2.13, the Yocoder consists of both an analyser and a synthesised. The

analyser consists of a set of sixteen' bandpass filters, connected in parallel, covering the speech

frequency band [2].

Speech
aound. come _
oul he,.

. J I
--\

/--'<
/ lUlner ':"'"'5' whil1l.

Au,Ui."; C N.",U' R•• d
~i1._ ,.~

__ • c~m~re •• ed
I.t chamber

Figure 2.11 Von Kempelen's talking machine

The amplitude of the filter outputs, a voiced/unvoiced decision and the pitch frequency for

voiced speech are continuously measured, multiplexed and transmitted to the synthesised. At the

synthesised end, the parameters are demultiplexed and used to control the gains of a set of

(
\
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bandpass filters, identical to those used in the analyser. These filters are excited by either a pulse

source, whose frequency is controlled by the pitch parameter, or a noise source, selected by the

voiced/unvoiced parameter. The speech signal is reconstructed by summing the outputs of the

bandpass lilters. Because of the relatively slow vmying propel1ies of the pitch and the speech

spectnl111 compared with the speech sign~litself, the parameters which define these quantities

can be transmitted using about one-tenth of the bandwidth required by the speech signal [I, 2].

Random
noise
• urce

Relaxation
o.cillator

Voiced
source

loud-
speaker

Pitch.
control
pedal

Figure 2.12 The Vocoder electronic synthesiser

In contrast to (he atorementioned electrical methods which synthesised speech by attempting to

model the speech signal itself, the Electrical Vocal Tract designed by Dunn in the late 1940s,.
attempted to model the detail of speech production. He represented the vocal tract as an acoustic

transmission line by splitting it into_'l.series of cylindrical sections as shown in Fi!,'Ure 2.14(a) and

then showed how each could be represented by an equivalent electrical network, with the values

of the elements in the network being derived from the dimensions and physical proper- ties of the

vocal tract. He built a transmission-line model which (a) consisted of 25 inductor-capacitor T-

networks each representing a cylinder 0.5 cmlong and 6 cm2 in cross-section ((Fi!,'Ure 2.14(b».

The line could be divided into two sections, representing two cavities, by inserting a variable

inductance between any two sections of the line to represent the tongue-hump constriction.

0: ~"
r /~
'"), ,.J

, .
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Another variable inductance at the end of the line represented the lip termination. A high-

impedance waveform generator was applied to the iliput of the line to produce vowel sounds [2].
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ou,

Filters

Spectrum Channel

0-25-

An.lyser

Pre.disloning
eQualiser

Figure 2.13 Block diagram of Vocoder

In 1953, a time-domain approach to the speech synthesis problem was pioneered by Lawrence

who utilised the.fact that the response of resonant systems, like the resonant cavities of the vocal

tract, to impulsive excitation is a damped sinusoidal oscillation. The frequency of the oscillation

i. dependen' on ,h" r".onl1n' O''''lu"ncy of the system and the damping factor on the bandwidth

of the system. Lawrence produced voiced sounds by adding together three damped sinusoid.

The damping fi.lI1ction for each iJitch period was produced by a fixed decaying exponential

signal, which was effectively multiplied by three individual sinusoid. The fi'equencies of these

sinusoids were inferred fi'om spectrogral11 measurements [1,2].

f
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1
Glonis

A, A, ........
I

(a) Cylindrical acoustiq~tube representation

All of the early speech synthesisers, both alticulatory. and tenninal analogue types, were

constructed using analogue circuits: These devices were difficult to control and proper
. .

evaluation of their capacity. for producing good-quality speech could not be carried out. The

developments in digital computing in the 1960s greatly revolutionised speech research. It then

become possible not Gillyto simulate. new synthesised designs but also to use digital computers

to supply data to control the synthesised in order to carry out a proper evaluation [1, 2].

3.5.2 Speech Synthcsis-A Modern Approuch

Speech synthesis is the process of process of producing an acoustic signal by controlling a model

of speech production with a set-GIl'parameters. If the model and parameters are sufficiently

accurate then the production of intelligible synthetic speech should be possible. There are two

basic approaches in modelling the speech production process. One is a direct approach, which

attempts to model the system in detail. This is commonly refelTed to as articulatory speech

synthesis and attempts to directly model the motion of the speech articulators as well as the

generation and propagation of sound inside the vocal tract. This approach is still the subject of

research and although it seems to have the potential for producing the most natural sounding

!
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Tongue
hump

speech in the long term, it has not as yet been as successful as approaches that attempt to simply

copy the frequency response characteristic of the vocal tract. Such approaches are based on the

sourccllilter model dcvelopcd as mcntioncdin section 2.5 are collectively known as tcrminal

analognc synthcsiscrs sincc tliey usc a systcm, which is an analoguc of the speech production

mechanism trom tellninal point of view [I, 2].

_.~

___1 IT-- -TI,.r I~- --

(b) Equivalent transmission line model

Figure 2.14 Dunn's electrical vocal-tract model

2.6 Digital Speech Synthesis Techniques

Synthesis of a mcaningful speech signal by a computcr program rcquires a dcscription, in some
fblOll1,or tht' vuolll-tract resonances corresponding to that speech signal. Following the source-

system representation of the vocal-tract, as described in Figure 2.6, leads to a digital synthesis

system made up of the componenis shown in Figure 2.15. A random number generator simulates

the source for voiceless sounds. Its variancc is controllcd as a function of the time by the noise

amplitude signal An. Similarly, a counter is used to produce pulses at the pitch frequency P to

simulate the vocal-cord source used for voiced sounds. Its amplitude is determined by the

voicing intensity parameter A-. These sources are filtered by a recursive filter whose coefficients

are determined by the speech fonnants as they change with time. Three variable resonances, as

shown in Figure 2.6, are typically used for voiced sounds, and a pole-zero combination for
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voicelcss sounds. Digital-to-analog (0/ A) conversion yields an audible output. The recursive

digital filter generates quantised samples of the speech signal and it represents these samples by

binary numbers. The filter can be implemented by discrete (digital) operation in a number of

ways. An especially convenient approach is to represent the resonances and aniiresonances

individually by second-order difference eq~ations. The recursion relation for a single resonance

and a single anti-resonance are indicated in the upper and lower paI1s, respectively, of Figure

2.16. The time between samples is 0, and the radian frequency and bandwidth bf the resonance

(or anti-resonance) are (lJ and (J', respectively. These recursion relations can be realized by

programmed instructions in the computer, or they can be accomplished by special digital

hardware. The control functions, which specify the resonances, anti-resonances, and excitation

of the filter, must be supplied externally. A number of computer techniques can be used for

obtaining these controls. Three are noted here. In one, called formant allaly.~isl.~yntltesis, the
. ....

data are measured from natural speech utterances. In second one, called text .~Yllt"esis, the data

are calculated from programmed knowledge of the speech process. The third one, a most

versatile and widely used techrlique in recent days, is known as linear predictiJ'e co"illg (LPC),

in which the filter characteristics are derived from natural speech, although the formant

frequencies may not be calculated explicitly ( I, 2J..

DIGITAL. SYNTHESISER

An
RAIlDOM
NUMBER
GEN. ..... RECURSIVE

DIGITAL
PITCH FILTER
PULSE
GEN.

POLE.ZERD
AV DATA

P

Figure 2.15 Digital circuit model of speech generation
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Figure2,16 Recuq;ive relations for digital approximation of a resonance,
(Top) Sampled data approximation of a continuous simple
resonance, (Bottom) Approximation of a simple anti resonance,

,2.7 'BangIa Language

Ban!;\la is the commonlangu'age of Bangladesh, It is the language of about 250 million people in

the world, Most of them live in Baniliadesh. Indian states of West Bengal. Tripura. Asam and

around, and also in some pm1s of England and the U. S A It is the national and official

language of Bangladesh and one oi'the filleen working language of India, In our country Bangia

is used as the first language upto post graduate level in humanities and upto Higher Secondary

level in all branches of education, Bangia is the seventh widely spoken language in the world,

About 1500 news papers and different types of journals are published in Bangia, Though BangIa

is the only widely used language, there arc a number of dialects in our countlY [4, 45].
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2.8 Bangia Language -Origin and Development

27

The history of Bangia begins in the early centuries of the present Millennium and before that

there was only a family of dialects commonly known as Pra/,ril. The speech or the upper classes

in Bangia, the west central dialect, has now b.ecome the accepted colloquial of educated Bengali

people and may be considered as Standard Bangia or Bengali. The gradual development and the

location of Bangia in the Indo-European family of language are shown in Table 2. I. The

systematic structure of the Bangia language is as follows: It goes from lell to right but unlike
•Roman hangs. from a line. English alphabet has lowercase and uppercase letters. However,

Bangia has no such cases. It is syllabary, some what modified toward becoming an alphabet and

used diacritics in all four directions to indicate non-initial vowels and some consonants. There

are ten vowels, five semi-vowels and thirty five consonants in present day Bangia but in early

days two more vowels namelyhri( ~ ) and Wi ( ~ ) were used. The list of vowels together

with their pronunciation diacritics are given in Table 2.2. In BangIa, sound comes first and not

writing i.e., while making a Bangia sound it is worth thinking that this sound has this sign and

not this letter is 'pronounced like thai. Any kind of combination of vowels, semivowels and

consonants can form a syllable in Bangia but a consonant is always uttered with the first vowel

/0/ caIied theinlterenfl'owe/s'unless it is followed by a sign ( J. Usually this symbol is known as

hash (4, 45).
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Table 2.1 TIlE GRADUAL DEVEWPMENT OF BANGLALANGUAGE

\

Slavic

"',.

Baltic

J J
~,_n_i_an B_a_lt~o~,;,

Old PrussianLithunian

Pro Indo-European

------~*-------"'t •
Satem Language Centum Language

~
~

Indo- Iranian

1-,1-1
Iranie Indie

1 1
Old Iranie Sanskrit

1 P~kit

Persian

~
Albanian

Lettish

.South West East Urdu Hindi Bangia Romany

~

I
'V

J 1 Russian

JBulgarian Siovenian Serbo-Croatian t ~
Polish Czeeho-Slovae
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Table 2.2 BANGLA CUARACTERS FOR VOWELS. TUEIR PRONUN-
CIATION AND PUONETIC SYMBOLS [45]

29

\
'.

,.

•
BANGLACHARACTERS PRONUNCIATION PHONETICSYMBOL

'"'! 0 AS IN LOST 101
"'It A AS IN ARE lal
~ I AS IN CITY

.

IiI
~

.

EE AS IN BEE liil
"IS U AS IN SUIT luI
"S UU AS IN GOOD luul
<£l E. AS IN EGG leI
'6 0 AS IN HOLE 101

.

~ 01 ASOI loil

~ OU ASOU loul

2.9 The Sound Units of BangIa Language

For a language to be practical medium of information interchange, it must have a finite number

of distinguishable mutually exclusive sounds. For this reason the language must be constructed
A

of basic linguistic units which have the property that if one replaces another in an utterance the

meaning is changed. The basic sound unit for describing how speech conveys linguistic meaning

is the phoneme. Roughly speaking, a phoneme is a group of similar', but uot identical souuds

that differ from one another in accordance with the context in which each occurf It

should be emphasised that a phoneme is not a sound. It is an abstraction, in that it is a conver

term for a set of sounds. The individual members of the set are called allophones. The phonemes

might therefore be looked upon as a code uniquely related to the articulatory gestures of a

given language. The allophones of a given p.honeme might be considered representative of the

acoustic freedom permissible in specifYinga code symbol. This freedom is not only dependent

upon the phoneme but also upon its position in an utterance [45].
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Another way of viewing the phonemic principle is to regard the set of phonemes in a language as

the set of units that are required for representing utterances in an unambiguous manner. Thus the

fact that these two different words'~' and ~. indicates that, from a phonemic point of

view, there are two different sounds that have to be represented differently in BangIa. In English

'thigh' and 'thy' indicate two different sounds having almost same pronunciation, WOl'king

on these principles, we can show that there are about 44 phonemes in Bangia [45].

2.9.1 Vowels

Nearly all vo':\'el sounds are I'oiced, i.e., they are produced with vibrating vocal cords. Each time

vocal cords open and close: there is apulse of air from the lungs. These pulses act like sharp taps

on the air in the vocal tract-which is accordingly set into vibration in a way that is determined by

its size and shape. In a vowel sound, the air in the vocal tract vibrates at some ii-equencies

.simultaneously. These frequencies are known as tne resonant frequencies of that particular vocal

tract shape. Irrespective of the fundamental frequency, which is determined by the rate of

vibration of the vocal cords; the air in the vocal tract will resonate at over-tone fi-equencies

known as the formant frequencies as long as the position of the vocal organ remains the same.

Using only the .firstthree or fQur f0n11ants the respective vowel sound can be constructed as

intelligibleas possible [4, 45].

The vowels are further characterised by negligible (if any) nasal coupling, and by radiation only

from the mouth (except that which passes through the cavity walls). If the nasal-tract is

effectively coupled to the vocal tract during the production o( a vowel, the vowel becomes,
nasalized..

In Bangia, there are six fundamental vowels. These are: '51, '5lT, ~, '@, <£I, '8. These vowels

have a tendency towards centralisation Each of the eight vowels is a phoneme or phonological

unit. Out of these seven vowels, ~, <£IJl, <£Iare called front vowels and '51, '5lT, '8, '@ are

called back vowels. ~ is front close vowel; <£I is front half close vowel; and '5lT is front and

back-half open voweL There may be 31 diphthongs [45] in Bangia A diphthong is a gliding
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monosyllabic speech item that starts at or near the articulatory position from one vowel and

moves to or toward the position for another.The diphthongs are produced by varying the vocal

tract smootWy between vowel configurations appropriate to the diphthong [35, 45]. The

acoustic waveforms of several Bangia vowels are shown in Figures 2.17 to 2.27.
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Figure 2.17 The acoustic wave-form of Bangia vowel ~
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Figure 2.18 .The acoustic wave-form of Bangia vowel ~
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Figure 2.22 The acoustic wayecform of Bangia vowel '<is
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Figure 2.23The acoustic wave-form of Bangia vowel <1<
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2.9.2 Consonants

37

Those sounds, which are not exclusively voiced and mouth-radiated from a relatively stable

vocal configuration, constitute consonants. Consonants are characterised by greater constrictions

than the vowels. They are excited or radiated or both differently. The short-time dynamic

motions of the vocal apparatus are crucial to the production of an important class of consonants.

Those consonants from which vocal motion is not requisite may.be uttered as sustained sounds

(as vowels may be) and hence are termed continuant [45].

2.9.2.1 Fricative Consonants

Fricatives are produced from an incoherent noise. excitation of the vocal tract. The noise is

generated by turbulent airflow at some point of constriction. Fricative consonants are produced

by common constrictions formed by the tongue ~ehind the teeth (dental), the upper teeth on the

lower lip (labio-dental),the tongue to the gum ridge (alveolar), the tongue against the hard or

soft palate (palatal or velar, respectively), and the vocal cords constricted and fixed (glottal).

Radiation .of fricative normally occurs' from. the mouth. If the vocal cord source operates in

conjunction with the noise. source, the fricative is unvoiced. The examples of some Bangia

fricative (oraffiicate) are"', <1". D, ~, ;sf. ~. Their acoustic .wave-forms are shown in

Figures2.28 to 2.33 [35,45].
. .

(
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Figure 2.28 The acoustic wave-form of Bangia fricative consonant ~
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Figure 2.29 The acoustic wave-form of Bangia fricative consonant ~
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T ~rn8 ( me)

Figure 2.30 The acoustic wave-form of Bangia fricative consonant 1>
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2.9.2.2 Stop Consonants

41

The BangIa consonants which depend upon the vocal tract dynamics to produce the utterances

are known as Stop Consonants. To produce these sounds'a complete closure is formed at some

point in the vocal tract. The lungs build up pressure behind this acclusion and this pressure is

suddenly released by an abrupt motion of the articulators. The explosion and aspiration of the air

help to characterise the stops. The closure can be labial, alveolar, palatal, or velar. The stop can

be produced with or without simultaneously voicing. In fact, a voiced consonant may employ

voiced excitation to build up the requisite pressure, in which case voicing starts before the

pressure release. The stop consonants are also known as Plosive sounds. The stop consonants

of BangIa language are<l', ~, '3, '5, 1>, 91, <r, '" and their acoustic wave-fon11Sare shown

in Figures 234 to 2.41 [45].
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Figure 2.34 The acoustic wave-form of Bangia stop consonant <IS
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Figure 2.41The acoustic wave-form of Bangia stop consonant ~

2.9.2.3 Nasal Consonants

The nasal consonants, or nasal, are normally excited by the vocal cords and hence are voiced. A

complete closure is made towards the front of the vocal tract, either by the lips, by the tongue at

the ridge or by the tongue at the hard or soft palate. The velum is opened wide and the nasal

iract provides the main sound transmission channel. Most of the sound radiation takes place at

the nostrils. The closed oral cavity functions as a side branch resonator coupled to the main path,

and it can substantially influence the sound radiated. Because the nasal can be sustained, they are

classed as continuant The effective nasal consonants in Bangia are only three in terms of their

pronunciation and they are I!!>,Of, ~, although there are six nasal consonants in BangIa alphabet

as I!!>, .tl3, Of, ~, ct, and It. The acoustic wave-forms of nasal consonants and are shown in

Figures 2.42 to 2.44 [45]
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2.9.3 Glides and Semivowels

Two small groups of Bangia cOnsonants contain sounds that greatly resemble vowels. Both are

characterised by voiced excitation of the vocal tract. No effective nasal cOupling and nasal

radiation from'the mouth exist The glides are dynamic, which invariably precede a vowel and

exhibit movement toward t)le vowel. The semivowels are continuant in which the oral channel is

moved constricted compared to. the most vowels, and the tongue tip is not down. The

semivowels of Bangia lanb'Uageare~, and .!t, and their acOusticwave-forms are already shown

in Figures 2.25 to 2.28, respectively (in section 2.9.1) [45].

2.9.4 Combination Sounds: Diphthong

The preceding vowels -{:;>, and ~ are also known as dipthongs. Their basic sounds depend upon

voeal tract motion, and they are formed of an appropriate pair of vowels. For example, -{:;> '5[

+'5 and .!t = '5[ + ~. A diphthong is vowel-like in nature, but is characterised by change
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from one vowel position to another. The acoustic wave forms of remaining BangIa consonants,

which do not have special classification, are shown in Figures 2.45 to 2.60 [45].

2.10 Observation of Electro-Acoustic Wave-Forms of
Bangia Alphabets

In this work, the electro-acoustic waveforms of all the 44 alphabets-both vowels and consonants,
•of BangIa language have already been shown in the figures from 2.17 to 2.60 in the earlier

sections. We can analyse these electro-acoustic waveforms as follows:

I. The electro-acoustic waveforms of sorne alphabets mainly vowels are purely voiced. These

waveforms have three portions-rising edge, steady state edge and falling edge. The pitch

varies very slowly with time. Each waveform is characterized with high formant frequencies

in association with the fundamental frequency These frequencies are non-stationary in

nature, i.e., they varies with time.

2. Some .waveforms of BangIa consonants consist of unvoiced portion and voiced pOliion such

as,~, ~, 1>, l::(, ~, <t>,~, "', >f, ><I, <I, ~ .. The waveforms of these alphabets start

with unvoiced part, which are noises. The noises have white spectrum. At the end of the

unvoiced wave the voiced portion. started. This transition occurred sharply. The voiced

portion has three edges-the rising edge, the steady state edge and the falling edge. The slope

of the rising edge is very sharp. The falljng edge decays slowly. These voiced waveforms are

similar as those described above in paragraph 1.

3. Some waveforms consist of three parts-at the starting low pitch voiced portion, then noise or

unvoiced portion and finallyvoiced portion, such as, <!l, 1>, '<>.

4. Some waveforms consists of low pitch voiced waveform and high pitch voiced waveform.

For example: \!O, <f, ." q, ~, "i, "f, <I, "l, "'T, 'i', and <I
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5. The waveform of consonant N consists of low pitch voiced wave and high pitch voiced

wave. In between these two types of waveforms, there exit a voiced- unvoiced mixed wave

fonn. These type of waveform contain both poles and zeros and could not be analyzed using

LPC techniques. Same exits for the waveforms orl?

2.11 Conclusion

The basic acoustic model of the human vocal tract, the digital speech synthesis techniques and

the brief history of Bangia language and the classification of Bangia alphabets have been

described in this chapter. The electro-acoustic waveforms of these alphabets and their analysis

are also illustrated in this chapter From this chapter we can get an overview of Bangia language.

The next chapter will describe the digital signal processing techniques used in modem speech

analysis by digital computers.

,
\-..~...:.

l
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Digital Signal Processing

3.1 Introduction

S9

Digital signal processing (DSP) refers to the use of digital logic and arithmetic circuits to

implement signal processing functions on digitized signal wavetorms [4] Digita' signal

processing can be applied to either analog or digital waveforms. Amplification, equalization,

modulation, and filtering are common examples of signal processing functions Digital signal

processing is a very important tool for signal analysis, synthesis or modification, and

information extraction. This chapter describes the basic concepts and techniques of digital

signal processing (DSP) ..

3.2 Brief Historical Introduction

Since World War II, ifnot earlier, it was the speculation of electronics engineers to find out

the applicability of digital hardware techniques to the many problem areas in which signal

processing plays a role. In 1948, Laemmel reports lunchtime conversation among Shannon,

Bode, and several other Bell Telephone Laboratories scientists on the possibility of

employing digital elements tei construct a fIlter. Needless to say, the conclusion then was

not favorable. Cost, size and reliability strongly favored analog filtering and analog

spectrum analysis techniques [2, 4].

, ~-,

The first major contributions to the field of digital signal processing were by Kaiser (at Bell

Laboratories) [2, 4] in the area of digital filter design and synthesis Kaiser's work showed

clearly how to design useful digital filters using bilinear transform. At about that time

tremendous impetus was given to this emerging field by the Cooley- Tukey [4] paper on a

fast method of computing the discrete Fourier transform, a method that was subsequently

popularized and extended via many papers in the IEEE Transactions of the Group on Audio

and Electroacoustics and other journals. This set of techniques has come to be known as the
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fast Fourier transform (FFT). Its value lies in the reduction (by one to two orders of

magnitude for most practical problems) in computing time for the discrete Fourier transform

(DfT).

At the time of the Cooley- Tukey [4] paper, the development of a formal and quite

comprehensive theory of digital filters was well underway. The great importance of the FFT

was that it showed quite strikingly how digital, as opposed to analog, methods could be

intrinsically more economic to employ for spectrum analysis: This resulted in accelerated

activity that now has led to a wide variety of applications for signal processing problems

extending from the low-frequency spectrum of seismology through the acoustic spectrum of

sonar and speech into the video spectrum of radar system.

Perhaps the most interesting aspect of the development of the field of digital signal
,

processing is the changing relationship between the roles of FIR (finite impulse response)

and IIR (infinite impulse response) digital filters. Initially Kaiser [4] analyzed FIR filters

using window functions, which indicate that llR filters were much more efficient than FIR

filters. However, Stockham's [4] work on the FFT method of performing convolution, or

more specifically FIR digital filtering, indicated that implementation of high-order FIR filters

could be made extremely computa\ionally efficient; thus comparison between FIRand IIR

filters are no longer strongly biased toward the later. These results also inspired significant

research for efficient designs for FIR filters.

The book, named 'Digital Processing of Signals', by Gold and Rader (1969) [4] was the first

attempt at a comprehensive theory of digital signal processing.

Generally we can say-fmm one point of view, digital signal processing is a collection of

computer algorithms and thus can be thought of as simply another branch of computational

mathematics.
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3.3 Review of Digital Signal Processing

Digital signal processing (DSP) is a technology-driven field. which dates its growth as a

separaie discipline lI'om the mid-I960s when computers and other digital circuitry became

fast enough to process large amounts of data elliciently [4]. Figure 3.1 illustrates one view

of how the field has emerged and spread out.

THCORY or 04SCA[1( 11101( LTt
SYSTEMS AND THE DIs.=P£TE
FOUAIEA TAANsrORIoI lorTi

TH(O~Y Of'
OUA~TIZATIO"i
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PROGAAI,UII!';G

I"'PlC"'CN1A11('1N
OF Sol'£( TlIUIil
ANAlY1(IlS

~""'''''''''''CATIONS
SPH~"
SlIS"'::J~OGY

Figure 3.1 Overview of Digital Signal Processing (DSP)

The major subdivisions of the field of digital signa! processmg are digital filtering and

spectrum analysis. The field of digital filtering is further divided into finite impulse response

(FIR) filters and infinite impulse response (IIR) filters. The field of spectrum analysis is

broken into calculation of spectra via the discrete Fourier transform (DFT) and via
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statistical techniques as in the case of random signals e.g., quantization noise in a digital

system. The remaining aspects of digital signal processing, as shown in Figure 3.1, are the

important topics of implementations of digital systems and application areas. To summarize,

the importance of digital signal processing would eventually surpass that of analog signal

processing for the same reasons that digital computers have surpassed analog computers.

3.4 Discrete-Time Signals or Sequences

A discrete time-signal consists of a sequence of numbers denoted alternatively by x" . x(n),

or x(nT), with n being an integer index. The later notation implies that the sequence is

derived from or related to a continuous time signal x(t) althe time instant t = nT.

Various types of discrete-time signal are definetl below.

The unit- sample or impulse sequence is defined for alln by

o(n) ={l,
0,

The unit-step sequence u(n) is defined by

........................ (3.1)

{
I,

1/(11)=
0,

,
1120

11<0
...................... (3.2)

In addition to its direct usage, the unit step is often employed to describe other sequences

such as the exponential sequence

{

H > °H() a,lI_a 1/11 = _
0, n <0

.............................................. (3.3)

The impulse, unit-step and exponential sequences are illustrated in Figure 3.2

'.0:'
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An important operation on a sequence x(n) is its delay by n" to produce another sequence

yen), ie,

yen) = xenon,,) ... . ..(3.4)

The term delay reflects our assumption that the index n corresponds to discrete-time values.

If the value ofn" is actually negative, this would mean that x(n) is advanced by the time n".

n01 2 3 4 ...... -2 -1

Ii(n)

J ... -2 -1 o 1 2 3 4 ...
~

n

~

't( u(n)

~
1

.

... -2 - 1 0 1 2 3 4.:. n

anu(n)
(O<a<1)

a

(-1<a<0)

... -2 -1 0 n

a

Figure 3.2 The impulse, unit-step, and exponential sequences.
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A sequence x(n) is said to be periodic if, and only if,

X(I/) = x(I/:tl/p)

for some integer n" and all n.

64

............................. (3.5)

The smallest nonzero value of np for which equation (3.5) holds is the period of x(n) It is

important to say that the. sampling of a periodic continuos-signal to produce x(n) does not

ensure that x(n) is a periodic sequence unless n"T is, in fact, an integral multiple of the

period of the continuous-time signal, where T is the sampling interval [4, 46].

3.5 DISCRETE-TIME SYSTEMS AND FILTERS

The basic concepts and relationships of the theory of discrete"time signals and systems are
~,.

analogous to those for continuous-time signals and systems. In some respects, however,

they are more simplyderivedand perhaps easier to visluilize in the discrete-time case.

If a sequence x(n). is operated. upon to produce another sequence y(n), we may think of. . ,
these sequences as the input and output, respectively, of a discrete-time system or filter, as

depicted in Figure 3.3. If x(n) and y(n) can assume only a finite number of possible

amplitude values, we will call this, instead, a digital filter. However, if y(n) can take On any

(real) values, and x(n) is discrete, then this is simply a discrete-time filter [4, 46]'

'In) l~F_iIt_e_r -------. y(n)

Figure 3.3/,1. discrete-time filter with input x(n) and output y(n).
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A discrete-time filter is said to be linear if, for any two input sequences x,(n) and x,(n) that

produce, respectively, the output sequences as y,(n) and y,(n), and the input sequence

X(II) = ax, (11)+hx, (11)

produces the output sequence

Y(II) = ay,(II) +hy,(n)

for all values of a and b.

A time-invariant (or shift-invariant) filter, on the other hand, illlplies that if x(n) produces

y(n), then x(n~nd)produces y(n-nd) for all n and any value ofnd .

. 1
.~"

8(11) Filter • hen)

Figure 3.4 A discrete~time filter with impulse input 8(11) and response h(n)

If the input is the impulse sequence 8(11), the resulting output is called the impulse response

(or Unit-sample response) of the filter and is denoted by h(n) as shown in Figure 3.4. The

input and output of a linear time-invarialll discrete-time filter may be easily related via the

impulse response of the filter as follows: Any input x(n) can be thought of as the SUIllof an,
infinite number of delayed and weighted impulse sequences, with the kth impulse 8(11- k)

weighted by x(k), as illustrated in Figure 3.5. Mathematically, we may thus write

00

X(II) = L x(k )"(11 - k)
k=-u_,

.................................... (36)
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By time-invariance, the input 0(11- k) will produce the output h(n-k), and by linearity, the

output corresponding to the weighted sum in (3.6) is thus

~,

Y(II) = 'Lx(k)h(lI- k)
k=-UJ

'" ",. , ,"" , (3. 7)

Here, it is assumed that if o(n) produces hen), then o(n- k) would produce h(n-k) As

x(k) is simply a weighting factor, x(k)8(n - k) would produce an output x(k)h(n- k)

This is the convolution sum relating the 'input and output of a discrete-time tilter. The

convolution sum may also be written as

y,

y(n) = 'Lx(n-k)h(k) .
k.-,--'I'

'.

Ifwe USethe symbol * to denoteconvolutioti, then we may write,

..,(38)

yen) =' x(n) * hen)
. .

which implies either (3,7) or (3,8)

"",.".,.., " ..".",(3.9)

3.5.1 Stability and causality of a discrete time filtu

A discrete-time filter is stable if a bounded input sequence produces a bounded output

sequence, i,e" if

implies that

ly(n)1 sM,

for some finite M, and M2 For a linear time-invariant filter, we can show that stability holds

if, and only if,
y,

'Llh(k)1 < 00
k""'-lfJ

", "" ""'" , (3. j 0)
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Figure 3.5 Individual impulse components comprising the sequence x(n).

To prove that (3.10) is sul1ic;ent we use the convolution sum in (3.8) as follows:

u.

s 2: IX(II- k )1'lh(k)1
1:" -,F'

u.

s M, 2:1"(k)1 = M, < <XJ
k=-,,_'
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SInce by assumption the sum of the absolute values ofh(n) is finite. To prove the necessity

of (3.9), we assume that x(n) = +M, for all n with a sign sequence such that for n = no

. sgn [x(no-k)] = sgn [h(k)],

for all k, and thus the output for real-valued h(k) is given by

",
y(n" = L: M,lh( k 11

"'
= M, L:lh(k11

k=c-w

Hence, if this summation is not finite, then neither is y(no), and the output is not bounded [4,

46].

3.6 Type of Digital Filters "

The transfer function of a digitalfiliercan often be realized in a variety of ways, Noise and

inaccuracies caused by quantization of any practical digital filter implementation are very

dependent on the precise digital filter structure. [n a broad sense, the methods of realization

can be divided into two classes, recursive and non recursive,

For a recursive realization, the functional relationship between the input sequence of the

filter {x(n)}, and the resulting output sequence (yen)} can be described as

y(n) = F[y(n-I),y(n-2), ...x(JI),x(n~ I)",,]

i,e" the current output sample yen) is a function of past outputs as well as present and past

input samples,

For a nonrecursive realization, the relation between the output and input sequ'ences,
becomes

y(n) = F[x(n),x(n-l), ,., ... ,]

i,e" the current output sample yen) is a function only of past and present inputs.

".~:j,.
)

\
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There are a number of difTerent but equivalent ways to describe the relationship between the

input and output of a discrete-time' .filter, including the impulse response, the system

function, the frequency response, difference equations, and state variables. Each has its own

particular advantages in certain derivations and calcLilations. We have already introduced

the impulse response in section 34. According to the impulse response, digital filters may

be classified as-Finite Impulse Response (FIR) Filter and Intinite Impulse Response (lIR)

Filter [4].

3.6.1 System Function and Frequency Response

In equation no. (3.8), we found that for a linear time-invariant filter with impulse response

h(n), the output y(n) for an arbitrary input x(n) is given by the convolution,

y(n) = L x(n- k )h(k) ... .(3. II)

But we can express this relationship in terms of the corresponding z transform as

Y(z) = X(z)H(z)

where H(z) is, therefore,

11=-00

................................... (3 .12)

................................ (3.13)

and Ry::J (Rt nRh). H(z) is called the sy~tem furiction of the digital filter; from equation

(3. 13) , it can also be written as,

H(z) = Y(z)
. X(z)

................................ (3 .14)

The system function H(z) is the key function in analysis and synthesis of discrete and digital

filters. It is due to the simplicity of the relation in equation (3.12), as opposed to the

convolution in (3.13). The process of obtaining the frequency response of the filter trom

H(z) will be described now:
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Let us assume that the steady-state input to a linear time-invariant filter in the complex

sinusoid

-00<11<00.

Then, from (311),

'"y(n) = ~>(k~j(uT(n-k)
k=-oo

'"= ejW"TL: h(k)e-JWkT
k=-CQ .

= ejW"Ti:h(k)e(JWTl-kJ

k",-rJ)

and the output thus equals the input multiplied by the complex quantity

The function H'( (j)) is the fi'eqtiency response of the discrete filter.

It may be noted that the frequency response given by H(z) is evaluated on the unit circle in

the z-plane since Izl= lej(uT I = 1. In particular, the dc or zero frequency response is given by

H'(O) = H(1), and the respdnse at the Nyquist frequency OJ = ';/;, is given by'

H'(';/;) = H(-I). This is depicted in figure 3.6. Since ej(uT is periodic in ({) with period

2:;1; , we have immediately from (4.15) that W(({)) is also periodic with the same period.

(...j

I- '. or
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In addition, for h(n) real, it follows from /1(11) = /1'(11) and Y(z) = X'(z'), R,.=R, that

H'(Ol)= [H'(-m)]" '[4, 46J.

Hence, the magnitude response IH'((v)1 is even function of (V for h(n) real; while the phase

response LH'(w) is an odd function of w. These properties are illustrated in Figure 3.7.

Im(z)

Re(z)

. .- 1

HH) ,H' (ITIl) /'

-j

H(e jwT ),H'(w)

/
/H(ll,H'(O)

1

Figure 3.6 The Unit circle in the z-plane

3.6,2 DifferenceEquations

For a large and important class oflinear time-invariant discrete filters, the input and output

sequences satisfy difference equations of the form

fakY(II- k) = fh",x(lI-m)"
k.=O m=(J

..................... (3.16)

where bon and ak are constant coefficients. However, (3.11) alone is not sufficient to

completely specify the filter; additional information concerning causality and initial

considerations is required [4, 46].

'NOD I . ..' ••• : ~.comp cx eonJU~lItlfm • ,or J(n) = x (n) • then Y(z) = X (z ) • R,.= R.
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Assuming that the filter is casual and scaling thc coe!fJcients such that ao = I, equation

(3. 16) can be rewriltenin the form

i\ ( '"
Y(II) = L,h",X(II-I1I)- L,Gi,Y(II-k)

/1/=0 k=1

......... (3.17)

which shows that the present output value y(n) can be computed .from the present and M

past input values and N past output values. This may be. done directly as expressed by

(3.17) , or in other cquivalcnt computational lorms. If past output valucs (intcrmcdiatc or

final ) arc actually uscd in thc computation of thc prcscnt output, i.c., if thc filtcr

implcmcntation is said to bc rccursive, othcrwise the filter implemcntation is nonrecursive .

• IH'(wl\

o
LH'(w)

ITIT 2IT IT w

w

Figurc 3.7 Thc magnitude responsc IH'(ro)i and phasc rcsponse LH'((v)

A block diagram of one filter implementation may be produced directly from (3.17), as

shown in Figure 3.8. The unit-delays are denoted by the corresponding z-transform

opcrator z", and the constant coeflicient multipliers bm and ak are shown as gain factors.
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Each delay is realized by some form of storage element (register, memory location,

switched capacitor, etc) whose present output equals its preceding input. In general, a

discrete time or digital filter consists of these three basic components, namely: adders,

multipliers, and delays.

y(n)

y(n-l)

y(n-2)

• •
•

y(n-N)

Figure 3.8 A direct implementation of equation (3.17)

The system function corresponding 10 (3.16) is readily derived by taking the z-transform of

both sides of thaI ditference equation to produce.

,v ,\/
2:>k=[Y(II- k)] = 2)1Il=[x(lI- m)]
k =0 m=()

where z[ ] denotes the z-transform.

......................... (3.18)
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But we know

N M

'L;akZ-k Y(Z) =2:hmz-mX(z)
k=O m=O

and thus,

A few examples of simple digital filters will now be described.

74

................................. (3 .19)

................................ (3.20)

Example I: A moving average filter[2]

A common technique for smoothing a data sequence is to take a simple weighted average of

M+ I adjacent input values to produce each output value. A casual version of this filtering

operation is thus described by the difference equation

At

. Y(I1)=2:h",x(l1-m)
m=O

and can be implementednonrecursively as shown in Figure 3.9. The corresponding system

function is simply

M

H(z) = 2:b",z-'"
m=O

and the impulse response hen) is <?~taineddirectly from H(z) or from the block diagram as

n ::: 0.1,2, .. , In

Otherwise.

The impulse response of this filter has nonzero values only for a finite duration; such filters

will be called finite-impulse-response (FIR) filters. Usually, FIR filters are implemented
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nonrecursively, as in this case, however, recursive iniplementations can also be generated.

Hence, we can maintain this distinction, reserving FIR to describe the filter type and

non recursive todescribe the filter implementation [2].

x(n) X(n-M)

Figure 3.9 A nonrecursive implementation of an FIR Filter

Example 2:- An accumulator[2].

A common recursive technique for smoothing a sequence with a decay or leak in the

accumulator a •• ho.wn in tho block diagram of Ftgure 3.10. The corresponding dltlerence. .

equation is thus

Y(II) = X(II) + aY(II- 1)
and the system function is

H(z) =
I

I-az-I
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x(n)
+

y(n)

76

Figure 3.IOAleaky accumulator is a recursive IlR Filter

The region of convergence for H(z) is not obvious at first since we didn't sum anything to

obtain it. However, the filter is casual and there is a pole at z = a, which means that R" must

be of the form 1=1> lal. The iinpulse response i~thus the familiar exponential sequence

h(lI) = a"I/(II)',

For stability,lal < I.

It may be noted thath(n) for positive n is nonzero for an infinite duration, and this is,

therefore, an infinite-impulse-response (IIR) tilter. As opposed to the FIR case, IlR filters

will usually be implemented' recursively; however since an IIR filter can have a

p,'edominantly nonrecursive implementation, we will maintain the distinction between an I1R

tilter and a recursive implementation (2, 4].

3.1 Zero Padding -,

Zero padding refers to the operation of extending a sequence of length N], to a length N2•

where N2>N1• by appending N2-N] zero samples to the given sequence. There are two

principal reasons for doing this:

I. Circular convolution can be used to implement linear convolution if both sequences

contain sufficient zero samples to prevent circular wrap-around and overlap of the result.

•
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2. The density of DFT samples of the spectrum over the interval 0 oS kCD"oSCD, is

increased from N, to N2. Hence spectrum between the DFT samples can be interpolated to

an arbitrary density by sufficient zero padding [4]

In order to implement these two applications, windowing technique has been introduced in

digital filter design, especially for FIR filters and spectrum analysis .
•

3.8 Windowing-A Design Technique

There are essentially three well known classes of design techniques for linear phase FIR

filters-namely, the window method, the frequency sampling, and optimal ( in the Chebyshev

sense) filter design methods. Among these methods, windowing appears. to be a most

attractive technique for designing FIR tilters [2, 4, 46].

Since H( ei'''), the frequency response of any digital lilter, is periodic in ti'equency. it can be

expressed in aFourier series. The resultant series is of the form

,,'-

H(eJ"')= 2:>(n)e J"'"
n=-(f.,

where,

hen) = _1 f2RH(eiw kJ'V"dCD
21t Jo ?

(321 )

.... ..(322)

The coefficient of the Fourier series hen) are easily recognized as being identical to the

impulse response of a digital filter:

Th~re are two ditticulties with the representation of equation (321) for designing FIR tillers

. First, the filter impulse response is infinite in duration since the summation in equation

(321) extends to :too. Second, the filter is unrealizable because the impulse response begins
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at -00; i.e, no finite amount of delay can make the impulse response realizable. Hence the

filter resulting from a Fourier series representation of H( ej
'" ) is an unrealizable IlR filter.

One possible way of oblaining an FIR filler thal alJlJroxinlales ll( e ".,) would be lo lrUIH.oalc

the infinite Fourier series (equation (3.21)) at n = fM. Direct truncation of the series leads

to the well-known Gibbs Phenomenon, however, which manifests itself as a fixed

percentage overshot and ripple before and after an approximated discontinuity in the

frequency response. Thus, for example, in the approximation of such standard filters as the

ideal lowpass or bandpass filter, the largest ripple in the frequency response is about 9% of

the size of the discontimlity' and its amplitude does not decrease with incrcasing impulsc

response duration-i.e., including more and more terms in the Fourier series does not

decrease the amplitude of the largest ripple. Instead, the overshot is conti ned to smaller and

smaller frequency range as N is increased. Since any reasonable design technique must be
'.

capable of designing good approximations to ideal lowpass filters, direct lruncalion of

Equation (3.21) is not a reasonable way of obtaining an FIR filter [4].

A more successful way of obtaininganFTR filter is to use a finite weighting sequence 0) (n) ,

called a window, to modify the Fourier coefficients h(n) in Equation (:321) to control the

convergence of the Fourierseries The technique of windowing is illustrated in Figure 3.11.

At the top ofthis figure is shown the' desired periodic frequency response H( eY'» and its

Fourier series coefficients (h(n») The next row shows a finite duration weighting sequence

w (n) with Fourier transf~rm W( ej
",). W( ei"'), for most reasonable windows, consists of a

central lobe which contains most of the energy of the window and side lobes which

generally decay rapidly.
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w 1 ~;' 0
rr -MJ ~

'.

g(o)

h(l, 0

: : ;, ' ,
0 N-' N-'
T

I'igurc 3..11 Illustration of windowing

To producc a FIR approxil11ationto H(ci"'),the. scqucncc 11(n)= h(n}ro(n) is formcd. Out

side the interval -M" n" M, h(n) is zero exactly. The third row of Figure 3.11 shows

h(11) and its Fourier transform ~"(c J'" ) , which is readily seen to be the circular convolution

of H(cj,.,) and W(c J'" ), since 11(n) is the product of the sequences L\n) and ~n). Finally,

the last row of Figure 3.1 I shows the realizable sequence g(n), which is shifted version of

h(n) and may be used as the desired filter impulse response,
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As seen in the simple example of Figure 3.11, there are several noteworthy elrects of

windowing the Fourier coefficients of the tiJter onlhe resulting (j'equency response. A major

effect is that discontinuities in H(ej
",) became transition bands between values on either side

of .the discontinuity. Since the final frequency response of the filler is the circular

convolution of the ideal frequency response with the window's frequency response, it is

clear that the width of these transition bands depends on the width of the main lobe of

H(ej
,,,). A secondary effect of windowing is that ripple from the side lobes of W( el"')

produces approximation errors (ripple in the resulting frequency response) for all OJ .

Finally, since the filter frequency response is obtained via a convolution relation, it is clear

that the resulting filters are never ..optimal in any sense, even though the windows trom

which they are obtained may satis!)' some reasonable optimality criterion [4]

The desirable characteristics of window functions are as follow:

I. Small width bf main lobe of the frequency response of the window containing as much

of the total energy as possible ..

2. Side lobes of the frequency response that decrease in energy rapidly as OJ tends to IT.

3.8.1 Types of Windows

There have been many windows proposed that approximate the desired characteristics

namely, the rectangular window, the "generalized" Hamming window, and the Kaiser

window.

3.8.1.1 Rectangular Window

The N-point rectangular window, which corresponds to direcl lruncation (with no

modification) of the Fourier series, has the weighting function [4]
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WI( (n)= JIO
loo

-~(.f\i :--:~~)~~ ~_( N-I)
I :::,.11:::: ._~
- 2

elsewhere

81

.... (3.23)

The l1-equeney response of the rectangular window is

IN I) ,

WI< (e'''') = :L-e i""
W.IIn'. . . ,

=

;"'IIN II~ I( )
e 1- e ""

(I - e'''')
....................... (3.24)

e",,(N,I_e twiN,)
=------

,I''',) .~i('<)e - -e .-

A sketch of equation (322)is shown in Figure 3.12 for the case N=25 .

... (325)

• • • •. . w

Figure 3.12 Frequency response of a rectangular window
--"\;
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3.8.1.2 "Generalized" Hamming Window

The generalized Hamming window is or the form

82

(~11:n)a+(l-a)cos -N

0.0

(.N-I) (N~I)---<n--
2 - 2

elsewhere
..................... (3.26)

where u is in the range 0,; (t'; to. If (t ~Oj4 , the window is called a Hamming window;

if u ~OJ, it is called a hanning window [4].

This window can be represented as the product of a rectangular window and an infinite

duration window of the form of Equation (3.26) but defined for all n; I.e.,

........................ (3.27)

where wR(n) is a rectangular window. The frequency response of the generalized Hamming

window is therefore the convolution (circular) of the frequency response of the rectangular

window WR (eJ"') with an impulse train, which can be written as

W (iW) W (J"') [ () (l-a).( 211:) (l-a) ( 211:)] 0
H e =. R e, * au" co + "2 u" co -N + ,-2- Un CO +N .(J.28)

or,
... (3.29)

Figure 3.13 shows a plot of the three components of W" (el''') (at the top) and the resulting

frequency response (at the bottom) for a = 054,N = 25. For a = 0.54, ie, the
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conventationl Hamming window, 99.96% of the spectral energy is in the main lobe and the

peak side lobe ripple is down about 40dB from the main lobe peak [4].

3.8.1.3 Kaiser Window

The Kaiser window is of the form

(3.30)

where 13 is a constant that specifies a frequency response tradeoff between the peak height

of the side lobe ripples and width or energy of the main lobe and I,,(x) is the modified

zeroth-order Bessel function [4].

(1-0)". '(w+Z1I'"/Nl .' ~ w (e jlw-Z,,-/N1)
-Z-WRlei I"., ,_ -, ./ 2 R

. ", / V. 'I'" / '
~ -~ w

".". 2'" Z". .".-IT -IT N N

- £!:
N

.".N w

foigure 3.13 forequency response ofa I-lamming window for a = 0.54
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A closed form express for the frequency response of the digital Kaiser window has not been

obtained, although Kaiser has shown lhat, in (he continuos-time case, the frequency

response is proportional to

Sin[fl)(W )-1]
(0"

~(( wwJ -IJ
where w ~ is approximately the spectral width of the central lobe of the frequency response

. Different type of windows and their corresponding frequency responses arc shown in

Figures 3.14,3.15, a;,d 3.16 respc~tively[4].

wIn)
I'

1.0
.

RECTANGUL.AR WINDOW
N.2~7

oL-.:--.:...----------~,.----no ~6

(a) A257 poini rectangular window

.0

-10

m -30 ".
'C I,
~ ,
w -40,
o
"1;: -50
z
~
" -60
8
.J -70

-80

-90

0.1

RECTANGULAR WINDOW.
N"257

0.2 0.3
FREOUENCY

0.4 0.5

Figure 3.14 Rectangular window function
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HAMMING WINDOW

128

SAMPLE NUMBER
256

85

o
-,10

-20

-30
III -40~

-1-10

(a) A 257 point Hamming window

HAMMING WINDOW
N"257

-120

-13~0 0.1 02 0.3 0.4 0,5
FREQuENCY

(b) Freql,l~_nEY response of a 257 point Hamming window
. Figure 3.15 Hamming window function

3.9 Convolution

Convolution of two functions is a significant physical concept in many diverse scientific

fields. Convolution integral p).ays a vital role in digital signal processing such as digital

filtering, power spectrum analysis, simulation, system analysis, communication theory etc.,.

This integral can be computed by means of the discrete Fourier transform. However, as in

the case of many important mathematical relationships, the convolution integral does not

readily unveil itself as to its true implicatiolls(2, 4, 48].
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1.0
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o
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(a) A 257 point Kaiser window

KAISER WINDOW
N~257

256

3.9.1

I.
-1500 .0-1 0.2 0.3 0.4 ~.5 .

.FREQUENCY _ . _.. ., . __._

(bfFrequency response of a 257 point Kaiser WIndow
Figure 3.16 Kaiser window function.

Convolution Integral

'rlle convolution integral is given by

y(t) '" f.x(t)l1(t - 't)d~", x(t)*h(t)

Function y(t) is said to be the convolution of the functions x(t) and l1(t) It is extremely

diflicult to visualize the mathematical operation of equation (3.31), but the true meaning of

the convolution comes through the graphical analysis [4, 48J.
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3.9.2 Graphical Evaluation of thc Convolution Intcg,'al

~7

Let x(t) and h(t) be two time functions given by graphs as represented in Figure 3.17(a) and

(b) respectively To evaluate equation (3.31),tunctions x(,) and h(t - ,) are required.

x(,) and h(,) are simply x(t) and h(t), respectively, where the variable t has been replaced

by the variable,. h(-,) is the image of h(,) about the ordinate axis and h( t - ,) is simply

the function h( -,) shilled by the quantity t Fllnctions x(,) , h( -,), and h( t - ,) are

shown in Figure 3.18. To compute the integral equation (4.28), it is necessary to multiply

and integrate the tilllclions x(,) [Figure 4. 18(a)] and h( t - ,) [Figure 4.18( c)] for each value

oft Ii'om -x; to +00 1481

The procedure of a convenient graphical t~chnique for evaluating convolution integrals are

as follows:

• Foltlillg: Take the mirror image of h(,) about ordinate axis.

• Di.\ploccmcl/f: Shill h(-,) by the amount t.

• MulfiplicafiOlI: Multiply the shilled function h( t - ,) by x(,).

• IlItcgratiol/: Area under the product of h(t - ,) and x(,) is the value of the

cOlivolution at time t.

xttl t'lill

Y.

(.1 (bl

Figure 3.17 Example waveforms for convolution
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3.9.3 Convolution ThcOI.cm

Possibly the most important and powerful tool in modern scientific analysis is the

relationship between equation (3.31) and its Fourier transform. This relationship, known as

the convolution theorem, allows one of the complete freedom to convolve mathematically

(or visually) in the time domain by simple multiplication in the frequency domain. That is, if

h(t) has the Fourier transform H(f) and x(t) has the Fourier transform X(f), then h(t)* x(t)

has the Fourier transform H(t)X(f). The convolution theorem is thus given by the Fourier

transform pair

h(t)* x(t) <=> l-I(f)X(f) ............................... (3.32)

The graphical example of the convolution theorem is shown in Figure 3.19 and application
. ~,.

of the convolution theorem is shown in Figure 3.20 [48].
KITI

T

1.1

h(.TI

-I

h(HI

T

Ibl

If- T

leI

Figure 3.18 Graphical description of folding operation
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3.9.4 Types of convolution

Convolution procedures are of two types: a) Circular Convolution and b) Linear

Convolution.

(9)

T

Figure 3.19 Graphical example of the convolution theorem

3.8.4.1 Circular convolution

The process of convolution for a discret<:Hime linear time-invariant system. In Figure 3.21,

illustrates the process of convolution performed as the product of two constant sequences

of length. This process results iir"'a circular convolution due to the periodicity of the DFT

operation. That is, the DFT of a finite-length signal results in a periodic sequence in the

frequency domain. To eliminate the circular effect and ensure the DFT method of evaluating

the convolution results in a linear convolution, the signal must be zero padded [4, 48].
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The circular convolution of two periodic discrete signals with period N is given by

N-l

y(n) = Lx(m)h(n-m)

l)()

N-l

= Lh(m)x(n-m)
m=O

(000)..... -).~)~)

where y(n) is also periodic with period N. This expression is derived by performing the

operation shown in Figure 3.22, that is consider the IDFT y(n) of the' product or two

DFT's:
N-l

y(n) = L X(k)H(k)W~'"
k=O ,.

where,
1 N-l.

X(k) = ~ L x(i'M't
N i~1)

H(k)=~ I;h(m)W:'
N 1n __11 ..

Substituting the expression for X(k) and H(k) into the expression for y(n) gives

Rewriting by combining the twiddle factor terms

The summation over.k equals N for i = n-m , and zero otherwise. Therefore
N-l

y(n) =X, Lx(n - m)h(m)
q=()

where the quantity n-m is module N.

(334)

(335)

(336)

(3 37)
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x(t)
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2ATo

(dJ
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Figure 3.20 Example application of the convolution theorem
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To perform the circular (or cyclic) convolution, N samples of one signal are displayed. .
equally spaced .around an outer circle in a clockwise direction and N samples of the signal

are displayed on the inner circle in a counter clockwise direction starting at the same point.

Next, corresponding samples on the two circles are multiplied, and the resultant product are

summed to produce an o~tput. Successive values of the circuiar convolution are obtained

by rotating the inner circle one sample at the time in a clockwise direction; the outputs are

computed via the summation of the corresponding products. The process is iterated until

the inner circle first sample lines up with the first sample of the exterior circle again This

process is illustrated in Figure 3.23 where it is noted that are equal number of samples are

required to perform circular convolution [4,.48].

3.9.4.2 Linear convolution

Let us consider two finite duration sequence.x(n) and l1(n) The duration of x(n) is N,

samples; i.e., x(n) is 'nonzero only in the interval 0 <; n <; N, -1. The duration ofh(n) is N,

samples ;i.e., h(n) is nonzero only in the interval 0 <; n <; N, - 1. The linear or aperiodic

convolution ofx(n) and h(n) yields the sequence y(n) defined as

"
y(n)~ Lh(m)x(n - m)

where hem) and x(n-m) are .zero.outside the appropriately defined intervals. f'igllre 3,24

shows typical sequences x(n), h(n) and y(n). Clearly y(n) is a finite duration sequence of

duration (N,+N,-l) samples. However, exactly the same values of y(n) can be generated by

circular convolution provided the length or (x(n)} is extended by adding at least three

zerovalued samples. So if the i"nglh of one or both of the sequence is increased by 'zero

padding', i.e., adding zero valued samples to the sequences, then unwanted convolution

products are removed and the result of the two types of convolution can be identical [4,

48].
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3.10 Transformation Representation of Signals and
Systems

Transform techniques are an important tool in the analysis of signals and linear time

invariant (LTl) systems. By using transform analysis techniques, we can reduce the

complexity in obtaining a solution of the pl'oblem. The analysis and design of linear systems.

are greatly facilitated by frequency domain representations of both signals and systems.

Thus it is useful to discuss Fourier transform and z'transform rep.resentation of discrete-

time signals and systems. ,

3.10.1 Z-Transform

Z-transform is a powerful mathematical method for the analysis of discrete- time, linear-

time invariant systems in frequency domain, which is more efficient than is time domain; the

z-transform applies. to discrete-time systems whereas the Laplace transform does to

continuous-time.systems. [4, 48].

Let us consider the discrete-time sequence x (nT), n= 0,Il,:t2,.. . This sequence is

considered two-sided since the time index n is considered for both positive and negative

values. The two sided z-transform of this sequence is defined as

x(z) = z[x(nT)] '" fx(nT)z-'

where z is a complex variable expressed by

..(3.39)

............................ (3 40)
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Figure 3.23 Circular convolution of two sequences

We can interpret z'" as a delay operator. That is, a delay of nT seconds for each element in

the Qequence x(nT). Equatioll (4.40) i.!J the representation of z in the complex z~plane in

polar form. It is noted that when r = 1, Izl= I and the z-transform is then equivalent to

discrete Fourier transform.
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Figure ).24 Linear or aperiodic convolution

Since causal sequences form thebasis of most physical systems, right-sided z-transform are

emphasized. Then the time index. n IS defined for positive values, and the transform of

equation (3.36) is then expressed as '.

a.

X(z) =Z[x(nT)] "L x(nT)z"
ri'.f)

..... (341)

Thus z-transform can be thought of s a transformation that maps an input sequence x(nT)

into a complex function X(z') .Li,~car limc invariant discrctc systems. can bc analyzed

analytically more easilyusing process ofz-transform [4, 45, 48].

3.10.2 Fourier Transform

A principal analysis tool in many of today's scientific challenges is the Fourier transform.

Possibly the most well-known-'i1pplication of this mathematical technique is the analysis of

linear time invariant systems. The essence of the Fourier transform of a waveform is to

decompose or separate the waveform into a sum of sinusoids of different frequencies. If

these sinusoids sum to the original waveform then we have determined the Fourier

translorm of the waveform. The pictorial represcntation of the Fouricr transform is a

diagram, which displays the amplitude and frequency of each of the determined sinusoids.
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The Fourier transform identifies or distinguishes the different frequency sinusoids (and their

respective amplitudes) which combine to form an arbitrary waveform. Mathematically, this

relationship is stated as

X(f) = (~]rx(t) ei'n11dt (3.42)

where x(t) is the waveform to be decomposed into a sum of sinusoids . X(f) is the Fourier

transform ofx(t) and j = ~.

The Fourier transform is then a frequency domain representation of a function, Frequency

domain contains exactly the same' information as that of the original function. If digital

analysis techniques are to be used for analyzing a continuous waveform, then it is necessary

that the data be sampled (sense at a regular i~terval) in order to produce a time series of

discrete samples, which can be fed into a digital computer. As in well known, such a time

series completelyrepresents the continuous band-limited signal and the samples are taken at

a rate that is at least twice the highest frequency present in the waveform Whcn these

samples are equally spaced they are known as Nyquist samples. Now, if we desire to

determine the amplitude to N separate sinusoids, then computation time is proportional to

N2, the number of multiplication, as we shall see later. Even with high speed computers,

computation of the discrftte Fourier transform (DFT) requires excessive machine time for

large N [4, 45, 48]

An obvious requirement existedJor the development of techniques to reduce the computing

time of the DFT, and in 1965 Cooley and Tukey published the famous paper "An algorithm

for the machine calculation of complex Fourier series" [45] in the Mathematics of

computation. The algorithm used in their paper is known as the Fast Fourier transform,

abbreviated as FFT.
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The FFT is a computational tool, which facilitates signal analysis such as power spectrum

analysis, ttlter simulation and related tields by means of digital computers. It is an ellicienl

method of computing the DFTof a series of data samples. The efficiency of this method is

such that solutions to many problems can now be obtained substantially more economically

than in the past. This is the reason for the very great current interest in this technique.

Actually, the FFT is a computational algorithm which reduces the computing time, (for the

DFT) proportional to Nlog2N in place ofN2 i.e., a dramatic computation savings offered by

the FFT [48].

3.10.2.1 Relation Between The Z -Transform And The Fourier

Transform of a Sequence

,
The z-transform of a sequence may be viewed as a unique representation of that sequence in

the complex z-plane.From the equation (3.36) i:ve see that if the z-transform is evaluated on

a circle of unit radius, i.e., z = ej"" then we find

X(z)[ .= X(ej',,) = ~ x(n)e .J"'"
z=eJ(l) ~

n==~<I'

which is the Fourier transform of the sequence. It will also be shown that in the case where

all singularities of x(z) are inside the unit circle, the system whose impulse response is

represented by the given sequence is stable. For these reasons the unit circle in the z-plane

plays a very definite role. For example, there are many important unrealizable systems, such,.
as the ideal lowpass filter and the ideal differentiator, whose z-transforms converge only on

the unit circle; i.e., they have only.Fourier transform and no z-transform [48].

3.10.3 The Discrete Fourier Transform

For the special cases of a signal to be represented as a sequence of finite duration, ie., if it

has only a finite number of non-zero values, it is possible to develop a Fourier

representation, referred to as the discrete Fourier transform (DFT). The DFT is a Fourier
(-,

, '-..F

l
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representation of a finite-length sequence ~hich is itself a sequence rather than a continuous

function, and it corresponds to samples equally spaced in frequency of the Fourier transform

of the signal [48].

Let us consider a sequence x(n) that is periodic with period N so that x(n) = x(n+kN) for

any integer value ofk. The sequence x(n) can be represented in.terms of Fourier series by a

sum of sine and cosine sequences or equivalently complex exponential' sequences with

frequencies that are integer multiples of the llmdamentalll'equency 2 n / associated with the. /N

periodic sequence. In contrast to Fourier series for continuous periodic functions m there

are only N distinct complex exponential having a period that is ati integer sub-multiple of

the fundamental period N. This is a consequence of the fact that the complex exponential

is periodic in k with a period ofN. Thus,

...........(344)

We know that

(1 )N-l Jl'2"1" {I-Le.N) ::: '

N n=O 0 ~

. X=-" J'Oke . N

for r = m N, man int eger

otherwise

(345)

(346)

Now multiplying both sides of el]uation (442) by e -; (':eN)" and summing from n = 0 to N-l,

we obtain
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~ ( )e-J('~~' ~ ()[( 1J~l'~,)1'<10 Jor L,x n,N = L,X k - L,e N
, n",n k",fI N n""() _

Now using equation (346) in (347), we get

n"'O

Thus replacing r by k, we get

X(k) =I: x( nVii'),,)"'
n=(]

these are the Fourier coefficients as mentioned in equation (345),

If, we define

100

,(347)

""""'" ",(3 48)

,(349)

"" '" ""'" ,,(3 ,50)

where WN constitute the complex basis functions, or twiddle factors of the OFT, The

,twiddle factors are periodic and define points on the unit circle in the complex plane, Figure

3,25 illustrates the cyclic property of the twiddle factors for and eight point OFT,

So OFT in more compact'form is

N-I

x(k)=2:x(n)W~O , k=O,'I" N-l
n-fl

and lDFT (inverse Discrete Fo~rler Transform) is

""'" ,(3,51)

(
1 IN-I ,x(n)= N ~x(k)W~'" , n=O,I,,,,,,,,,,N-l

The form of the equation for the IDFT is identical to the DFT with the exception of the

normalizing factor ~ and the sign of the exponent of the twiddle factors,
N

,?
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Figure 3.25. Cyclic property of Twiddle factor

..•....

Rewriting equation (3 :51) in the matrix form

X(k) '.~[WN] x(n) ..

that implies as,

. (3.5.3)

x(o) W" W~I W" W" Wfl x(O). N .N N N N

x(t) W.11 W.1 W' WJ W I(N-I) x(l)N N N N N

x(2) W" W' W" W6 W 2(N-1) x(2)N N N N N
x(3) "" W" W.l W" 'W9 W.l(N-I) x(3) ...... (3.5.4)N .N ~. N N N

x(N - I)

From equation (3.5.4), it is clear that since WN and possibly X(k) are complex, then N2

complex multiplication and N(N-I) complex additions are necessary to perform the direct

computation of X(k) . Since the amount of computation, and thus the computation time, is

approximately proportional to N2
, it is evident that the number of arithmetic operations

required to compute the DFT by the direct method becomes very large for large values ofN
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,
For this reason, computational procedures that reduce the number of multiplication and

additions are of considerable interest [48].

3.11 . Speech Signal Processing (SSP)

Some of the most important applications of digital signal processing techniques have been in

the area of speech processing. In fact, a large percentage of the theoretical background of digital

signal processing has been derived rrom speech studies and by speech researchers. Digital signal

processing has been applied to a wide range of problems in speech including spectrum analysis,

channel vocoders, homomorphic. processing systems, speech synthesizers, linear prediction

systems, and computer voice response system. In the following sections we present discussions

about one among various methods of speech processing systems where digital signal processing

has played an important role in the realization of the system [2, 4].
•

3.11.1 Techniques of Speech Analysis

Speech processing has been an area of interest for the last four decades; but the last decade has

witnessed. significant progress in this area of research. This progress has been possible mainly

due to. the recent advances iIi.the development of powerful and efficient speech processing

.techniques using modem digital computers. It is now possible to develop ambitious speech

processing application systems such as the 800 bits/s linear prediction(LP) vocoder, the 4.8

kbits/s stochastic excitedLP coder, the speaker-independent large-vocabulary continuous speech

recognition system, and so on [2, 43].

The aim of this section is to pro.vide a brief overview of the speech processing techniques to

show how these techniques are used in different speech processing applications such as speech
,

coding, speech synthesis, speech recognition, speaker recognition and speech enhancement.

Most speech processing applications require parametric modelling of the speech signal during the

analysis phase. In order to select a proper parametric model for the speech signal, it is necessary

to know how speech is produced. Section 3.11.2 describes the speech production process and
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represents this process by a source-system model. In this model, the speech signal is generated as

the output of a time-varying linear system which is excited either by a periodic pulse train (for

voiced speech) or by a white random number sequence (for unvoiced speech). Section 3.11.3

describes three speech analysis techniques: (1) the short-Fourier analysis technique, (2) the

cepstral analysis technique, and. (3). the LP analysis technique. The short-time Fourier analysis

technique computes the spectrum of the speech signal, while the cepstral and the LP analysis

techniques decompose this spectrum into two parts, one corresponding to the excitation source

and the other to the linear system. These two parts can be characterised nicely in tenns of the

pitch and the formant parameters. The techniques for pitch extraction are described in Section

3.11.4. In LP analysis technique, the formant parameters are extracted in the form of linear

predictive coding (LPC) coefficients by solving a 13th order linear equation. This process will be

described in chapter 5 [2,4,48].

3.11.2 Speech Production Process

In order to perform efficient analysis of the speech signal at the acoustic level, it is advantageous
. .

to exploit the knowledge about the speech production process. This knowledge is useful in

selecting a suitableparametric model for speech production. Once a speech production model is
selected, the role of speech analysis techniques is to estimate the parameters of this model

accurately and efficiently

Figure 3.26 shows the IlUnianspeech production system along with its schematic representation.

The speech production process can be decomposed into three components (1) the generation of

the excitation-source signal, (2) its modulation by the vocal-tract system, and (3) the radiation of

the speech signal. These three components are shown in Figure 3.27. 1n order to generate the

excitation-source signal, the lungs and the associated respiratory muscles constitute tie source of

power This power is used to generate the quasi-periodic acoustic signal by means of the

vibrating vocal cords for voiced sounds such as vowels. For fiicative sounds, it is converted into

an aperiodic (noisy) signal due to the high velocity frictional flow of air through a narrow

constriction formed in the mouth. For plosive sounds, it is convel1ed into shol1 burst of noise by
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•

the sudden release of prcssurc, which is built up by completely closing the vocal tract for short

duration. Thus, all of the above mcchanisms convel1 thc more or Icss stcady pressure of the

lungs (DC ()ower) into an acoustic signal (AC power) which forms the excitation-source signal.

.....
•~I•••'

l»)))

)))))))......•...•...
L••.• n.

" ••• 1 t" •.....
.t •••••••••".~..,

~,,~,..."...

Figure 3.26 Speech production system and its schematic representation
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Vocol~trQct
system

Speech
slrilnol

Figure 3.27 Three components of the spee.chproduction process: (1) thc excitation source,
(2) the vocal-tract system, and (3) the radiation outlet.

During thc production of voiced speech, the vocal tract is excited by the periodic glottal

waveform generated by vocal cords. The periodicity of this wavcfonn is called the pitch period.

The glottal waveform is triangular in shape as shown in Figurc 3.28. The excitation for the

unvoiced speech sounds is random white noise. The shape of the vocal tract uniquely dctermines

the sound that is produced. For a given speech sound, the vocal tract represents an acoustic

cavity and, hencc, it is usually charactcriscd by natural frequcncies (or formants) which

correspond to thc resonant fi'cqucncics of thc acoustic cavity. DifTcrcnt specch sounds are
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produced by dynamically changing the shape of the vocal tract. This change is affected by the

movement of the articulators: tongue, lips, jaws, and velum. These speech sounds are radiated

through the lips. For the production of nasal sounds, the vocal tract is blocked at some point

detennined by the identity of the nasal consonant and the velum is moved to connect the nasal

tract to the vocal tract.The nasal sounds are radiated through the nostrils [1,2,4, 45].

~...
~o . SO ,tr> If"

'T~ (W SH4'L(S loT gt<I-I.1

Figure 3.2X Glottal wave-form

'00

The rrequency-wise distril1ution of acoustic enerh'Yfor a given speech sound depends on the

excitation source, the vocal-tract system and the radiation impedance. As the excitation source,

the vocalctract system and the radiation impedance are relatively independent, the speech

production process can be Ihodelledas the source-system model shown in Figure 3.29. This

model consists of the following two parts: the excitation source and the speech-generating linear

system. These two parts work independently. The excitation-source generates the excitation

signa;!either in the fonn of a periodic impulse train (for voiced speech) or in the fom1 of a white

random number sequence (for 1II1\1oicedspeech). The speech-generating linear system contains

the combined spectral contributions of the glottal-wave shape (within a pitch period), the vocal

tract system and the radiation impedance. In both voiced and unvoiced speech cases, the gain

factor controls the intensity of the excitation to the speech-generating linear system. The speech-

generating linear system uses the excitation-source signal at its input and produces the speech

signal at its output. In the time-domain, the output speech signal is the convolution of the

excitation-source signal and the impulse response of the speech-generating linear system. In the (
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frequency domain, the spectnull of the output speech is the product of the source and system

spectra. Different speech sounds are produced by this model by changing the excitation-source

and the linear-system configurations [2, 4, 43].

Pitch period

Impulse
I roin

LJ.e.ne ro tor

Random
number:
gen.erotor

Goin

Linear
system

Speech
signal

.Figure 3.29 Source-system'Tllodel of speech production

3.11.3 Various Techniques ofSpeechAllalysis
The aim of speech analysis techniqucs is to analyse the spcech signal and estimate the parameters

useful. for the given specch proccssing application. Sincc the parameters used in Illost of the

speech processing applications are derived '/Tom the /Tequency-domain representation of the

speech signal, the main task of the speech analysis techniques is to compute the spcech spectrum.

There are som'e speech processing applications where time-domain parameters (such as energy

and zero-crossing rate) are,useful. However, these parameters can be estimated from the speech

signal in a straightlorward fashion. In this section three speech processing techniques are

described: (1) the shor,t-time Fourier' analysis techuique, (2) the cepstml aualysis

technique, and (3) the lineal" (lj'ediction (Lt') analysis technique. The short time Fourier

analysis technique computes the spectrum of the speech signal, while the cepstraI and LP analysis

techniques can decompose this spectnull into two components corresponding to the excitation-

source and the linear-system parts of the speech production model (shown in Figure 3.29).

Before performing any type of digital processing on the speech signal, it is first necessary to

digitise the analog speech signal. For this, the speech signal is filtered by a lowpass filter with a
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cut-off frequency of W Hz to avoid aliasing effects 11is then digitised using an analog-to-digital

convelter at a sampling frequency higher than the Nyquist rate of 2WHz [2].lt is prclcrable to

select the eut-offfrequency, w: to be high toget more information in the digitised speech signal,
which might be useful in a given speech processing application. However, this increase the

computational load as the number of samples to be processed increases with w: Thus, there is a
trade-off involved in the selection oflowpass filter cut-off frequency, w: The value of the cut-off

, .
frequency, w: depends on the speech processing application and is typically in the range of 3-10
kHz. In our research of BangIa sound units, we used a sampling frequency of 11,025 Hz ie,

11.025 kHz and an analog filter having a higher cut-off frequency 5.5 kHz using the Sound card

[49J

The speech signal is nonstationary in nature, but it can be assumed to be stationary over short

duration for the purpose of analysis. This assumption is not valid for regions where there are

sharp transitions, as when the articulators are moving fast from the target positions of one sound

to those of another. For the stationarity assumption to be valid, it is necessary to choose as short

an analysis segment as possible. In pitch-synchronous analysis, the pitch pulses mark the

boundaries of the analysis segments: the analysis segments can then be quite short (usually less

then one pitch period): Thus, thestationarity assumption is quite easily satisfied for segment to

that extent for pitch-asynchronous analysis. However, it is not possible to reduce tie analysis
•segment to that. extent for pitch-asynchronous analysis. This is because arbitralY placement of

analysis segments (with respect to pitch pulse) can cause large errors in spectral estimation if the

analysis segment is too short. A reasonable compromise for pitch-asynchronous analysis is to use

a segment duration, which is two to four times the pitch period. Thus, in practice, the speech

signal is analysed frame-wise, with a frame-rate of 50-00 frames/s and for each frame the

duration of speech segment is tak~n to be 20-40 ms [2, 4, 43].

3.11.4 Pitch Extraction Techniques

Pitch is an important parameter for characterising the excitation source in the speech production

model (shown in Figure 3.8). 11conveys the prosodic information about the speech signal and,

hence, is useful for speech synthesis and speech recognition application. It characterises the
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speaker differences and is therefore used for speaker recog" ':c",','cver, its most popular use

has been in the area of speech coding where it has been used tor defining excitation for speech

vocoders and for compressing speech using time-domain harmonic scaling (THDS) technique [2,

4,43,45].

In order to define the excitation source for the speech production model (shown in Figure 3.28),

it is necessary to determine whether the given speech fraine or segment is voiced or unvoiced,

and if it is voiced, what is its pitch period. Therefore, any pitch extraction technique has to

perform the dual functions of voiced-unvoiced detection and pitch estimation. Although pitch

extraction is easy and straightforward in the case of perfectly periodic signals, the same becomes

difficult for speech because of the following problems: (l) nonstationary within a speech frame

or segment due to variation in pitch, amplitude and formant frequencies, (2) interaction between

the vocal tract and glottal excitation, (3) simultaneous presence of periodic and random

excitations for certain speech sounds such as the.yoiced fricatives, (4) difficulty in distinguishing

between unvoiced and speechand low-level voiced speech, (5) noisy environment, (6) absence

of fundamental due to band-limiting, and (7) nonlinear distortion introduced due to the

telephonic transmission system in the'form of phase distortion, fading, crosstalk and clipping.

Because of these problems, .it is extremely difficult to develop a perfect technique for pitch

extraction .. Due to the challenging nature of these problems, there are a number of pitch

extraction techniques reported in the literature, but none of them perfornls the task of pitch

extraction satisfactorily. These techniques and their relative merits and demerits are discussed in

detail in recently published books [2] and journals Among the various types of pitch extraction

techniques, we are going to use the Autocorrelation Technique, which is the most widely used

technique for pitch extract,ion. The basic principal of the autocorrelation technique has already

been described in the previous"section 3.9 in the form of convolution. The basis for the

autocorrelation-based pitch' extraction technique is that if the signal is periodic, its

autocorrelation function shows a peak at a lag equal 10 the pitch period, at other lags(except at

zero lag) the autocorrelation value will be less. The aperiodic signal does not show such a

pronounced peak in the autocorrelation function [43].
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3.12 Summary

109

In this chapter, the mathematical tools that are used in digital signal processing, especially,

in speech signal processing have been discussed The aim of this chapter was to illustrate

the basic principles of various signal processing techniques, e.g., digital filtering,

convolution technique (autocorrelation function), z-transform, Discrete Fourier Transform,

etc. The process of windowing and zero-padding are also discussed in this chapter. Shon

windows (intervals of speech to be analyzed) give good time resolution of the changing

features of speech but yield poorly defined frequency information. Longer windows smear

events together but yield finely defined frequency information. Therefore, a compromise'

must be made between the two, while' processing speech signals. The convolution

technique, which is very imponantfor digital speech, and signal processing have also been

discussed here. The linear convolution will be used for pitch extraction and modeling of

BangIa speech signal (BangIa sound units) The next chapter will describe how to extract

the pitch information, gain function and voiced / unvoiced decision of Bangia sound units,
using the LPC technique
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Chapter 4

Analysis of Bangia Speech

4.1 Introductuon.

111

In this chapter, sound units of Bangia speech are analysed in order to obtain the speech

parameters, such as pitch, gainfunction and voiced/unvoiced decision. Extraction of these

parameters is essential for mathematical modelling of the speech signal in the linear predictive

coding (LPC) method of speech modelling. In this analysis, use has been made of the

autocorrelation technique, which has been discussed in chapter 3.

4.2 Speech Parameters of Bangia Sound Units
,,: ..

The basis for the autocorrelation-based pitch .extraction technique is that if the signal is periodic,

its autocorrelation function shows a peak at a lag equal to the pitch period; at a; other

lags(except at zero lag) the autocorrelation value will be less. The aperiodic signal does not show

such a pronounced peak in the autocorrelation function. This is shown in Figure 4.1 where the

autocorrelation. functions. for. the voiced speech (vowel ~) and the unvoiced speech (the

unvoiced portion of Bangia fricative consonant ""1") are plotted. In this technique, the

autocorrelation function is 'searched for its maximum value over a range of lags (2 ms to 12 ms)

range [43]. If the maximum is above a given threshold, the speech frame is classified as voiced

and the location of the maximum is the pitch period. Otherwise, the speech frame is classified as

unvoiced [43].

This technique of pitch extraction has two advantages: (1) it can work even when the

fundamental is missing from the speech signal, as is the case with the telephone speech, and (2) it

is robust with respect to the additive white noise [43]. This is due to the technique for pitch

extraction. First, the speech signal is not perfectly periodic within the speech frame due to

changes in pitch, amplitude and formants. Second, the fommnt structure in the speech signal

introduces spurious peaks in the autocorrelation function as can be seen from the Figure 4. I.
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(a) .Autocorrelation function.of the speech signal: for the vowel signal"5f
shown in Figure 2.17

These spurious peaks may cause interference in the pitch extraction process. This interference is

more from first formant frequency, especially when its amplitude is relatively high and ils value is
•

closer to the fundamental frequency. Tnorder to avoid this problem, the speech signal is pre-

processed before applying the autocorrelation analysis on it. Tnthe pre-processing, the speech

signal is spectrally flattened i.e., all the harmonics in the spectrum are made of equal size. As a

result, the formant structure does not introduce any spurious peaks in the autocorrelation

function and the technique works well [43]

A number of techniques have been suggested in the literature for spectral flattening. These

include: (1) adaptive filtering [43J, (2) centre clipping [43J, (3) cubing [43J and (4) inverse

filtering [43] Among these techniques, the centre clipping and the inverse filtering techniques

are used most commonly for spectral flattening. Tn this research work, we have followed the

inverse filtering technique [43, 45]
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Figure 4.1 Autocorrelation function of the speech signal

In the inverse filtering technique, the LP,.analysis method is used to estimate the spectral
•

envelope of the speech frame in terms of an all-pole filter. The output of the inverse of the all-

pole filter, called the residual-error signal, has a flat spectrum as shown in Figure 4.2. The

autocorrelation function of the error signal, shown in Figure 43, is relatively free from tormant

effects and can be used tor pitch extraction. This technique of pitch extraction is referred to as

the simplified inverse filtering technique (SIFT) in the literature [43] The inverse filtering

technique has the disadvantage that it makes more pitch extraction errors in the presence of the

additive white noise [43] This happens because inverse filtering tends to reduce the signal-to-

noise ratio (SNR) of the speech signal [43]
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4.2.1 Pitch Extraction of Bangia Sound Units Using SIFT Technique

116

The pitch of several Bangia sound units - both vowels and consonants have extracted using LP

coding technique by computer simulation. For recording different BangIa sound units, a

Bangia speaking male, capable of producing .quality sounds, has been selected. To process

the speech, it is necessary to control the acoustic quality of the sounds during recording. A

Sound card has been used to record the sound units and store them on the hard disk of a

computer. Tnorder to maintain the quality of sounds during recording, the sound units have

been recorded in a room, which possesses good acoustic design. The recorded sounds are

saved as wave tiles (tile with .wav extension) The chosen frequency was sutTicient to retain

most of the useful information of the speech signal.

The following steps were followed to extract the pitch infonnation and calculate the gam

function of the BangIa sound units.

i . The .basicBangIa sound units, which are 44 in number, of a male speaker are recorded

with the help of a'.sound card. The following basic configuration was chosen in the

recording process.

(a) Sampling rate . 11.025 kHz

(b) Bit resolution.. 8 bit / sample

(c) Recording channeL. .Mono

(d) Filter bandwidth.. 5.5 kHz

(e) Recording level.............. 5 volt PP

ll. The recorded sound units were stored on the PC hard disk as wave file with .WAV

extension.

111. A software routine was developed using 'PASCAL' programming language to separate

the header file from the stored wave file. These header files were stored on a separate

location on the hard disk of Pc. At the same time, each wave file was converted to the

corresponding ASCII code and saved on the disk. The sound was recorded with a de
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offset. During conversion, this reference axis was shifted to '0' axis as the reference x-

axis by subtracting 128 from the ASCII value.

IV. Each converted speech file was observed on the computer screen using a package

software called 'Grapher'. In this process the following parameters were investigated.

(a) Its physical structure - the starting point, the steady state part and the end point

(b) Voiced part

(c) Unvoiced part .

(d) Mixed part (if any)

v. To find out voiced /unvoiced / mixed part (if any), it was observed on an enlarged x-axis

These time spans were collected for further use in the analysis. From this observation it,
was noticed that

(a) Generally, allBangIa vowels are voiced in their construction.

(b) Most of the consonants, (such as, ~, '"<l', 1), ~, 1S'f, <!', ~, '», '<t, 'of, ><I,<i, and

~), are associated with unvoiced part at the beginning of their utterance, which is

immediately. followed bya voiced part, and finally end with a voiced part. The

transition from unvoiced to voiced is sharp.

. (c) Some consonants, (such as, 1>, \S, <i, <f, oq, -.:r, "I, "t, "', '1, <r, ~, "'I, ~, and

'I), are purely voiced.

. (d) Some consonants are associated' with unvoiced or voiced part at the beginning of

their utterance, then followed by either a mixed part (voiced and unvoiced

combinedly) or an unvoiced part and then followed by a voiced part. The examples

of these consonants are <It, 1>, 'b, "l, and 11. The mixed part of these sound units

contains both the poles.and zeros and could not be modelled using an all-pole digital

filter, which was intended in this research work to be used. Therefore, they were

exempted from this research.

VI. Depending on the information obtained in 'v', the segment size of each speech tile was

selected as follows.

(a) The segment size was chosen in the range of(20 ms to 40 ms) because of the chosen

sampling rate of I 1025 kHz.
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Vlll. Depending on the information in section VI and VII, a software routine was developed

in 'PASCAL' programming language to extract the following features.

(a) Gain function (r. m.s value) of each segment (both voiced and unvoiced) for a

particular sound unit, and

(b) pitch of each voiced segment for a particular sound unit

IX. The process of pitch and gain extraction, as mentioned in 'viii' is as follows.

(a) First of all, the data of a particular sound unit was stored in a one-dimensional array

from the specific file of the sound unit. During this process, the total data number of

data points wascaiculated and stored in memory.

(b) If the sound urlit is completely voiced, it was segmented in a 20 ms time span A 20

ms. segment contains 220 data points (at 11.025 kHz sampling rate). The last

segment was also made equal to the same size by zero padding at the ends if it is

smaller than 20 ms.

(c) If the sound unit consisted of both voiced and unvoiced part, it was segmented by

the following way

• The unvoiced part was segmented into a suitable length depending on its

total time length and wave shape.

• The voiced part was segmented accordingly as mentioned in (b)
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X. Each segmented data was copied ITom the corresponding array of the sound unit to

another array. This segmented data information was also written in a file for further use

in the second part of the process.

XI. .The r. m. s value (gain) of the segmented data was calculated, and stored in a tile.

Xll. In order for windowing the segmented data, a Hamming window function was chosen.

The window length was set equal to the length of the segmented data. The advantage of

windowing has already been discussed in chapter 3.

Xlii. Next the segmented data was weighted by multiplying it with the Hamming window

function and then the weighted data was stored in another array for further analysis.

XlV. The autocorrelation technique was used to solve a 13th order differential equation in

order to detenninethe coefficients of that equation. These coefficients were stored in an

array. At the same time, they were also stored in a tile, where the coefficients of other

segments would also be written in a chronological order during the process of
. ....,

computation. These coefficients would be used for mathematical modelling of Bangia

sound units using an all-pole digital filter in the second part of the process.

xv. Using these coefficients in the 13th order equation (5.14) as mentioned in the next

chapter, the predicted value of the segmented data was deiemlined.

XVI. Next the predicted data was subtracted ITomthe corresponding original segmented data

to find out the error signal.

XVII. The autocorrelation function of this error signal was then calculated.

XVlll. For voiced-segmented data, the corresponding autocorrelation function showed a large

peak leg at the pitch period. This,.peak was repeated at pitch period interval with a

decreasing amplitude.

XIX. For unvoiced-segmented data, the autocorrelation function did not show any sharp peak

legs at pitch period. Rather it showed many peaks distributed randomly along the x-axis.

XX. For voiced segment, the instant of the maximum peak, showed by Ihe autocorrelation

function within the range of 2 ms to 12ms, is the pitch of that particular voiced segment.
A threshold limit was set to detect this peak. When this peak was detected, its

corresponding x-aXisvalue was calculated and stored in a file. A software routine was
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developed in 'PASCAL' programming language to detect this pitch. This algorithm was

used to detect the maximum peak value of the autocorrelation function within the range

of 2 ms to 12 ms by setting a threshold limit [43]. For voiced segment, this algorithm

detects a peak within the prescribed limit if the set threshold is crossed only by one peak.

The algorithm then calculates the corresponding x-axis value in ms, which is the pitch of

the voiced segment. The pitch information was recorded in a file. Since the

autocorrelation function of unvoiced segment shows many random peaks, the threshold

limit will be crossed by more than one peak within the (2 ms to 12 ms) time interval.

Therefore, the algorithm will detect it as an unvoiced speech segment. A logical '0' was

written as unvoiced.information in the pitch file chronologically.

The threshold limit for a particular sound unit was set as follows:

• At first, the autocorrelation function of the error signal of a few voiced and unvoiced
,..

segments of the particular sound unit was observed on the PC screen along the x-y axis

using 'Grapher'. From the observation, the threshold limit was chosen in such a way that

only one maximum peak would be detected within the range from 2 ms to 12 ms time

interval for each voiced segment of that particular sound unit. However, owing to

background noise, some times more than one sharp peak, could arise for a voiced

segment within this time interval. These harmonics are relatively smaller in amplitude,
compared to the amplitude corresponding to the pitch. Therefore, these harmonics can

be avoided by choosing an appropriate threshold limit.

• In the case of an unvoiced speech"segment, the autocorrelation function of the error

signal generated a number of peaks randomly distributed along the x-axis within the 2 ms

to 12 ms time interval. Therefore, a number of peaks crossed the threshold limit. This

information was used to detect the segment as an unvoiced segment by the developed

software routine, and a logical '0' was written in the pitch information to represent it as

an unvoiced segment.
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XXI. The processes from 'i' to 'xviii' were repeated to find out the gain, pitch tor voiced

segments and logical '0' for unvoiced segments for each Bangia sound unit at different

segment lengths (20 ms, 25ms, 30ms, and 40 ms where applicable) This intonnation

was stored separately on the hard disk of the Pc.

Appendix A includes the flow-diagram for pitch extraction of Bangia sound units. The source

code, which has been written in 'PASCAL' programming language [44] is given in Appendices

B. In this analysis we have found that some Bangia sound units are fully voiced such as '!if, '5lT,

,?<:, <l, '@ etc. Some are unvoiced at the starting and then sharply become voiced. In these sound

units, such as Cl', "I, D, 0>:,u; ~, \30, <T, q, ~ etc., the voiced portion is much greater than

the unvoiced portion. There are some units which are voiced at the starting and at the ending

position but there is a mixed voiced~~nvoicedpart in-between the two, such as <lI, U, ~, 1>, <r,,
\5, '>'I, "1. Therefore, it was not possible to extract the pitch of these sound units using LP. . ~.
coding technique. Because LPcoding technique generally uses an all pole filter. However, mixed

voiced~ui1Voicedspeech signal requires pole-zero filter to extract the pitch information. Hence,

we have analysed only the. first two categories of Bangia sound units. The processed pitch

information of these BangIa. sounds along with the gain function ate shown in tabular form in

section 4.2.2.' In this case, we processed each BangIa sound unit in segmented fom] having a

segment lenl:,'thranging from 20. ms to 40 ms. In most cases, each BangIa sound unit was

processed several times for several segment 1enh>th-usinga particular segment length for each

case. Also one segment length for unvoiced portion and another segment length for a voiced

portion of several BangIa sound units were used. In every case, we have found that the pitch

changed continuously with time for voiced sound unit and voiced portion of the other sound

units [43].
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4.2.2 Pitch and Gain Function of Bangia Sound Units inTabular
form

Table 4.1 Pitch and Gain Function of Bangia Sound Unit '5f

122

Segment No. Segment Length (ms) Pitch(ms) Gain Function (RMS Value) Voiced(V)jUnvoiced(UV)
1 20 6.712018 - 32.692124 V
2 20 7.437642 35.592294 Do
3 20 ,

6.258503 38.352699 Do• 20 2.902494 36.396241 Do
5 20 9,160998 28.507455 Do
6 20 9.523810 24.982494 Do
7 20 9.705215 18.36412 Do
8 20 9;886612 15.917615 . Do• 20 9.886621 13.939561 Do
10 . 20 3.174603 . 13.638682 Do
11 20 3.809524 12.462489 Do12 20' 7.4376,42 11.257422 Do13 20 5.8"95692 9.78856 Do1. 20 . 9.886621 8.837935 Do . -15 20 9. 3~2.404 6.964194 . .Do16 .. 20 4'.535147 -. 4.428729 Do17 20 . 3.628118 0.780443 Do

. '.

Table 4.2 Pitch and Gain Function of Bangia Sound Unit '5f1

Segment No-. Segment Length (ms) Pitch (ms) Gain Function (RMSValue) Voiced(V)jUnvoiced(UV)1 20 6.984127 18.426471 V2 . . 20 . .8.435374 25.212461 Do3 20 , 9.1'60998 , 29.621143 Do• 20 9.52381 25.685982 Do5 20 9.795918 22.622428 Do6 . 20 10.249433 20.023547 Do7 20 . 10.430839 16.111449 Do
8 20 10.249433 13.879732 Do•• . 20 9.977324 13.066613 Do10 20 . 9.150998 10.212218 Do11 20 8.072562 6.063677 Do12 20 5.804989 2.886489 Do~...
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Table 4.3 Pi'chand Gain Function of Bangia Sound Unit~
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Segment No. Segment Length (msl Pitch(ms) Gain Function (RMS Value) Voiced(V)jUnvoiced(UV)
1 20 5.170068 . 13.745826 V

2 20 6.1678 23.82264 Do
3 20 6.802721 31.090703 Do
4 20 7.256236 30.317337 Do
5 20 3.809524 .29.09233 Do
• 20 5.89569!2 25.45196 Do
7 20 2.630385 21.969348 Do
8 20 3.265306 20.310879 Do
• 20 2.630385 19.92776-7 Do
10 20 6.802721 18.177721 Do
11 20 3.628118. 18.751485 Do
12 20 2.902494 16.420746 Do
13 20 0 7.346939 14.459426 Do
1. 20 7.1(i5533 .9.45119 Do
15 20 3.628118 5.763127 Do
1. 20 5.260771 3.242123 Do
17 20 2.539683 1.55066 Do

Table 4.4 Pitch and Gain Function of Bangia Sound Unit'5f
I ",:.

Segment No. segrrient Length (InS) 'Pitch(ms) Gain Function (RMS Value) Voiced(V)/Unvoiced(UV}
1 20 6.712018 10.772018 V

2 20 0 6.984127 15.581676 ' Do
3 .20 7.165533 18.153011 Do
4 20 7.25'6236 19.395231 Do

I 5 o 2.0. 7,346939 19.634443 Do
• 20 7'.256236 21.774151 Do
7 • 0 20 7.346939 23.768151 Do
8

0 20 7.528345 24.356724 Do
• 20 .7.619048 26.293795 Do
10 20 0 7.709751 29.20344 Do
11 20 o. 7.891'156 27.899332 Do

0 12 20 7.981859 29.845435 Do
13 20 8.072562 27.691726 Do
1. 20 7.961659 29.029413 Do
15 20 0 .7.600454" 25.341934 Do
1. 20 7.526345 23.84462 Do
17 20 7.346939 16.743423 Do
.'8 20 6.984127 12.274882 Do
1. 20 "6.439909 8.129632 Do
20 20 6.621315 4.519905 Do
21 20 6.893424 3.116671 Do
22 20 • 0 0 1.636932 W
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Table 4.5 Pitch and Gain Function of Bangia Sound Unit'is
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Segment No. Segment Length(ms) Pitch(ms) Gain Function (RMS Value) Voiced(V)/Unvoiced(UV)
1 20 5.260771 .13.432999 V

2 20 6.802721 21.37793. Do
3 20 6.893424 22.032981 Do
4 20 6.893424 23.303287 Do
5 20 6.893424 24.634602 Do
• 20 6.89342~ 25.29009 Do
7 20 6.984127 25.667498 Do
8 20 6.893424 26.361775 Do
• 20 . 6.802721 26.097762 Do
10 20 6.712018 . 25.502852 -C- Do
11 20 6.530612 27.365456 Do
12 20 6.439909 28.230021 Do
13 20 6.258503 28.205576 Do
14 20 ' 6.1678 25,701654 Do
15 20 5.986395 23.797441 Do
1. 20 . 5'.804989 20.597385 Do
17 20 5.623583 14.714786 Do
18 20 9 ..160998 ' 10-.296955 Do
1. . 20 4.535147 4.516133 Do
20 20 4.353742 1.50831 Do

Table 4;6 Pitch and Gain Function of Bangia Sound Unit~

segment No. S.egment L~.ngth (ms) Pi':-ch(ms) Gain Function (RMS Value) VOiced(V)/Unvoiced(UV)
1 20 . 6;258503 15.626609 V

2 20. 6.1678 29.475298 . Do
3 20 6.1678 , 33.957828 Do
4. 20 5.986395 40.213521 Do
5 20 5..804989 44.845112 Do
6 . 20 5.804989 48.141364 Do

. 7 20 5.804989 54.023543 Do
8 20 5.895692 52.89374 Do
• 20 5.986395 5. .139174 Do
10 20 6.1678\_ 54.368942 Do
11 20 6.258503 48.487346 Do
12 20 6.530612 44.41322 Do

'13 20 6.802721 37.165967 Do
14 20 :'1.256236 29.297844 Do
15 20 7.800454 25.940009 Do
1. 20 8.253968 27.100403 Do
17 20 8.707483 20.395465 Do
18 20 9.251701 14.278082 Do
1. 20 9.614512 12.134006 Do
20 20 5.53288 9.718188 Do
21 20 5.260771 7.521333 Do
22 20 5.079365 5.820028 Do
23 20 5.17006B 3.691206 Do
24 20 7.346939 1.985172 Do
25 20 0 0.158114 UV

c

,i
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Table 4.7 Pitch and Gain Function of Bangia Sound Unit ~

125

Segment No_ Segment Length (=)Pitch (ms) Gain Function (RMS Value) Voiced(V)jUnvoiccd(UV)
1 30 7.528345 ,5.961747 V

2 30 8.707483 11.177494 06
3 30 8.798186 14.'46511 Do
4 30 - 8.979592 14.384546 Do
5 30 8.072562 24.443627 00
6 30 7,709751 27.82317 Do
7 30 ".619048 27.292468 Do
6 30 7_691156 25.423772 Do

• 30 8.344671 22.381168 Do
10 30 8.979592 ' 17.997264 Do
11 30 9.342404 15.744792 Do
12 30 9.977324 12.542232 Do
13 30 10.793651 8 ..941815 ' Do
14 30 6-,1678 6.051671 Do
15 30 9 ..886621 3.936427 Do
16 30 10.793651 - 2.036783 Do
17 30 8 ..979592. 1.045916 Do

Table 4.8 Pitch and Gain Function of BangIa Sound Unit <!:l

Segment No._ Segment Length (ms) Pit.ch(ms) Gain "t'llnction (RMS Value) Voiced(V)junvoiced(UV)
1 -- 20 3.,809524 11.121948 V

2 - 20 - 7.528345 25.151586 Do
3 20 7.800454 28.412785 Do
4 20 8.072562 30.427746 Do

-- 5 -20 7.8.91156 31.982062 Do
6 -20

-
7,800454 29.195345 Do

7 20_ 7.891156 30.461302 Do
6 20 '7.981859 30.386824 Do
• 20 8. d725,62 32.456124 Do

-10 20 "8.072562 34.050731 Do
11 20 8.072562 34.138089 Do
12 20 7.800454 31.792545 Do
13 20 7.619048 35.423958 Do
14 20 7.256236 31.231467 Do
15 20 6.893424 27.789305 Do,-
16 20 6.530612" 26.19928 Do
17 20 5.895692 16.630339 Do

'.18 20 5.53288 8.557294 Do
1. 20 '.5.260771 8.696917 Do
20 20 4.172336 6.575436 Do
21 20 4.444444 5.571845 Do
22 20 a 4.688477 lJV

23 20 0 3.427164 . ---- --~-_.-
lJV

24 20 4.081633 1.045553 Do

,

.'
"
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Table 4.9 Pitch and Gain Function of Bangia Sound Unit ~
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Segment No. segment Length (ms) Pitch(ms) Gain Function (PMS Value) VOiced(V)/Unvoiced(UV)
1 23.58 6.893424 15.44139 V

2 23.58 7.528345 25.01661 Do
3 23.58 7.891156 29.382229 Do
4 23.58 8.072562 32.085852 Do
5 23.58 7.800454 30.297214 Do.
6 23.58 7.891156 29.681903 Do
7 23.58 7.981859 30.90911 Do
8 23.58 8.072562 33.088663 Do
9 23.58. 8.012562 . 34.422851 Do
10 23.58 7.891156 32.536134 Do
11 23.58 7.619048 34.257369 Do
12 23.58 7.256236 31.245061 ' Do
13 23.58 6.802721 27.547721 Do
14 23.58 6.258503 22.274079 Do
15 23.58 5.-623583 10.754963 Do
16 23.58 . 5.260771 8.666137 Do
17 23.58 4.172336 6.236986 Do
18 23.58 4.353742 5.535549 Do
19 . 23.58 6.893424 4.681182 Do
20 23.58 . 3.446712 1.73094 Do

Table 4.1.0 Pitch and Gain Function of Bangia Sound Unit 'G

Segment No. segment Length (ms) Pitch(ms) Gain Function (PMS Value) Voiced(V)junvoiced(UV)
. 1 2,5.4 5.804989 19.86908 V

2 25..:4 6.893424 36.377878 Do
3 2"5.4 . 6 ;,984127 49.108808 Do
4 .. 25.4 6.802721 50.67468 Do
5 . 25.4 . ... .6.602721. 50.417684 Do
.6 25.4 6.802721 50.2315 Do
7 25.4. 6.893424 51.670401 Do
8 25.4 . .. 6.984127 55.121619 Do
9 25.4 7.165533 53.548309 Do
10 25.4 7.346939 56.042761 Do
11 25.4 7.709751 41.857027 Do
12 .25.4 8.072562\" 38.228986 Do
13 25.4 8.526077 31.813631 Do
14 25.4 6.888889 27.183799 Do
15 25.4 4.081633 20.884718 Do
16 25.4 4.988662 13.653623 Do
17 25.4 2.267574 9.693886 Do
18 25.4 2.811791 8.521297 Do
19 25.4 4.62585 5.015868 Do
20 25.4 5.079365 2.606996 Do
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Table 4.11 Pitch and Gain Function of Bangia Sound Unit ~
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Segment No. Segment Length (ms) Pitch(rns) Gain Function (RMS Value) Voiced(V)jUnvoiced(UV)
1 40 6.893424 25.067704 V
2 40 7.528345 37.363251 Do
3. 40 7.256236 40.48'9491 Do
4 40 7.528345 . ' 33.327967 Do
5 40 8.072562 24.844448 Do
• 40 8.707483 15.512715 Do
7 40 9.52381 9.149081 Do
8 40 10.1-5873 4.900835 Do
• 40 • 9.886621 2.480148 Do
10 . 40 6.712018 0.457265 Do

Table 4.12 Pitch and Gain Function of Bangia Sound Unit<f.i

segment No. Segment Length (ms) Pitch(rns) Gain Function (RMS Value) Voiced(V)junvoiced(UV)
1 20.00 6.258503 _ 2.547726 V

2 23.58 5.986395 10.183603 Do
3 23.5~ .. 8.163265 22.049725 Do
4 23.58 8.253968 . ~'" 22-.519009 Do
5

. 23.58 ~.344671 22.312725 Do
• 23.56 8.435374 23.294106 Do
7 23'.58 . 8.435374 22. 691829 Do
8 23.58 8.435374 22 .546192 Do
• 23.58 8.435374 20.245037 Do
10 . . 2~~5B 8:61678 21.262327 Do
11 23.58 . .8.616780 22.090896 Do
12 23 ..58 8.707483 23. 153875 ~

. Do
13 23.58 , 8.707483 21 .020457 Do
14 . 23.58 • 8.526077 21.576741 Do
15 . .' .23.58 8.253968 19.954564 Do
1. 23.58 8.072562 15.547137 Do
17 23.58 7.709751 11.504681 Do
18 . 23.58 7.256236 7.258947 Do,
1. 23.58 6.621315 4.447558 Do
20 23.58 6.167800 2.126753 Do
21 23.58 .:~.'258503 0.799038 Do
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Table 4.13 Pitch and Gain Function of Bangia Sound Unit ~
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Segment No. Segment Length lms> Pitch(ms) Gain Function (RMS Value) Voiced(V)jUnvoiced(UV)
1 20.00 0 3.381433 uv
2 20.00 0 1.48094 Do
3. 20.00 . 0 1.042288 Do
4 20.00 0 .. 3.209361 Do
5 20.00 0 .4.877127 Do
6 23.63 8.163265 8.913728 V

7 23.63 7.891156 9.870679 Do
B 23.63 8.163265 15.913069 Do
9 23.63 8.626077 19.069716 Do
10 23.63 8.979592 . 16.62079 Do
11 23.63 9.160998 16.600166 . Do
12 23.63 9.070296. 15.871692 Do .

13 23.63 9.160998 15.033951 . . Do
14 23.63 .8.888889 16.186168 Do
15 23.63 8:798186 . 14.760204 Do
16 23.63 .8.435374 13.331837 Do
17 23.63 • 8.263968 12.744518 Do

Table 4.14Pitch and Gain Function of Bangia Sound Unit"'t

Segment No. segment ~ength lms> Pitch(rns) Gain Function (RMS Value) Voiced(V)jUnvoiced(UV}
1 25 7.800454 4.015551 V

2 25 .9.160998 5.038218 Do
3 25 9.251701 4.093454 Do
4 . 25 5.079365 4.911582 00
5 40 8.253968 27.888455 Do
6 .

. .. 40. . 8.435374 33.278952 Do
7 40 8.526077 28.245776 Do
B . .40 8.61678 26.749581 Do
9 40 8.61678 25.159742 Do
10 . 40 8.435374 .23.813814 Do
l';J. . 40 . . 8.072562 18.827446 Do
12 40 7.346939 12.228971 Do
13 40 6.258503 7.306286 00
14 . 40 5.53288 2.2381 Do
15 40 8.253968 0.544602 Do
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Table 4.15 Pitch and Gain Function of Bangia Sound Unit~
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Segment No. segment Length (ms) Pitch(ms) Gain Function (RMS Value) Voiced(V)jUnvoiced(UV)
1 30 4.897959 2.972857 V

2 30 7.528345 7.02819 Do
3 30 0 7.581377 UV

4 30 O. . 12.855785 Do
5 30 7.07483 19.04357 V

• 30 7.891156' 24.094857 Do
-- -----------

7 30 • 7.437642 24.339113 . Do
8 30 7.437642 27.466371 Do
9 . 30 8.344671 32.308785' . Do
10 30 8.798186 28.137676 Do
11 30 .9.251701 23.913766 . Do
12 30 9.795918 17.513285 Do
13 30 10.15873 11.733467 Do
14 30 10.15873 5.780846 Do
15 30 .. 5.53288 2.771609 Do
1. 30 . 8.072562 1.24499 Do

Table 4.16Pitch and Gain Function of Bangia Sound Unitl>

segment No. Segment- Length (msl Pitch'(ms) , Gain ..;E'Unction (RMS Value) VOiced(V)/unvoiced(UV)
1 . 17 0 1.573511 UV
2 17 0 . 2.836451 Do
3 40 7.619048 18.139892 V
4 40 8.435374 22.582198 Do
5 40 8.979592 21.90068 Do
6 '40 8.979592 . 19.739756 Do
7 40 9.070295 18.45606 Do
8 40 9.070295 16.888505 Do
9 40 . 8.888889 13.709279 Do
10 40 8.253968 12.482169 Do
11 40 7.265235 9.514881 Do
12 40 6.530612 5.238407 Do
13 40 5.986395 2.730718 Do
14 40 . 0 0.829156 UV

Table 4.17 Pitch and Gain-Function of Bangia Sound Unit ilJf

Segment No. Segment Length (ms) P1tch(ms) Gain FUnction (RMS Value) Voiced(V}jUnvoiced(UV)
1 15 .... 3.0839 2.807458 V
2 15 0 5.790274 UV
3 40 7.709751 20.571632 V
4 40 8.163265 23.684863 Do
5 40 8.798186 23.651999 Do
• 40 9.342404 18.702911 Do
7 40 9.795918 14.253827 Do
8 40 10.430839 8.714995 Do
9 40 10.975057 5.063236 Do
10 40 10.793651 3.097286 Do
11 40 8.526077 1.812206 Do
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Table 4.18 Pitch and Gain Function of Bangia Sound Unit '!O

130

Segment No. Segment Length lms) Pitch(ms) Gain Function (RMS Value) Voiced(V)/unvoiced(UV)
1 36 6.1678 2.45361 V
2 36 8.888889 2.596375 00
3 36 9.251701 3.271008 Do
• 36 9.705215 3.17304 Do
5 36 9.342404 . 3.439961 Do
6 30 8.61678 16.735962 Do
7 30 8.888889 23.21014 Do
B 30 9.070295 21.450826 Do
9 30 9.251701 20.77028 Do
10 30 9.251701 19.647654 Do
11 30 9.251701 18.857118 Do
12 30 9.160998 18.835371 Do
13 30 8.979592 18.209305 Do
14 30 8.61678 16.861311 Do
15 30 8.253968 . 17.648375 Do
16 30 7.528345 15.790196 Do
17 30 6,802721 . 12.174116 Do
18 30 6.1678 7.097802 Do
19 30 '10.340136 3.059511 Do
20 30 6.258503. 1.935709 Do
21 . .. 30 . . 7.165533 0.965307 Do

Table 4.19 Pitch and .Gain Function of Bangia Sound Unit q

Segment ~o. Segment- Length oems) Pitch(ms) Gain Function (RMS Value) Voiced(V)jUnvoiced(UV)
1 32.50 . 5.63288 3.553855 V
2 32.5.0 8.798186 8.143785 Do
3 32.50 8.798186 11.178403 Do• 32.50 8.888889 11.893381 Do
5 30.00 8.979592 15.984841 Do
6 . 30.00 • 9.251701 17.769185 Do
7 30.00 9.433107 16.78365 Do
8 30.00 . 9.705215 14.058158 Do
9 .30.00 10.068027 11.028407 Do
10 30.00 10.34013~. 8.260897 Do
11 30.00 10.521542 5.500964 Do
12 30.00 10.884364 3.217848 Do
13 30.00 5.623583 2.382067 Do
1. 30.00 . 6.439909 1.250454 Do
15 30.00 7.891156 0.91121 Do
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Table 4.20 Pitch and Gain Function of Bangia Sound Unit ~
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Segment No. Segment Length (ms) Pitch(ms) Gain Function (RMS Value) VOiced(V)/Unvoiced(UV)
1 8 2.902494 2.35729 V
2 . 25 7.256236 18.596285 Do
3 25 7.981869 19.769904 Do
4 25 8.344671 . 24.816061 Do
5 25 8.344671 28.518351 Do
• 25 8.436374 28.376691 Do
7 25 8.435374 26.646803 Do
8 25 8.626077 24.277699 Do
9 25 8.61678 20.286942 Do
10 25 8.61678 17.871765 Do
11 25 8.436374 16.416234 Do
12 25 8.072562 16.186976 Do
13 25 7.8004.64 .13.896762 Do
14 25 7.437642 11.662917 Do
15 25 6.984127 8.516616 Do
16 25 6.621315 5.729192 . Do
17 25 5.986395 3.469608 Do
18 25 5:170068 2.216067 Do
19 25 0 1.588596 w

•Table 4.21 Pitch and Gain Function of Bangia Sound Unit ~

Segment No'. Segment Length (ms~ P1tch(ms) Gain Function (RMS Value) Voiced(V)jUnvoiced(UV)
1 21.00 0 4.275308 w
2 .21.00 0 4.648292. Do
3 21.00 . 0 3.554544 Do
4 21.00 0 2.669473 Do
5 21.00 0 2.0103 . Do

. • 21.00 0 3.862723 Do
7 31.00 7.891166 10.973229 v
8 .. 31.00 8.4353.74 18.133532 Do

. 9 31.00 8.798186 17.58337.3 Do
10 31.00 8.979592 18.918206 Do
11 31.00 8.888889 17.547834 Do
12 .31.00 8.707483 ,. 17.670472 Do
13 31.00 8.435374 15.555877 Do
14 31.00 7.891156 15.272284 Do
15 31.00 '.'7.709751 11.973623 Do
16 31.00 7.256236 8.504929 Do
17 31.00 6.712018 4.841457 Do
18 31.00 6.1678 2.988704 Do
19 31.00 5.079365 1.309468 Do
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Table 4.22 Pitch and Gain Function of Bangia Sound Unit"'f
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Segment No. Segment Length (msl Pitch(rns) Gain Function (RMS Value) Voiced(V)/Unvoiced(UV)
1 35 7.528345 . 4.962032 V
2 35 9.070295 3.631604 Do
3 35 8.707483 3.926461 Do
4 35 8.072662 . 4.366915 Do
5 30 8.436374 17.644126 Do
6 30 8.61678. 20.295245 Do
7 30 8.798186 19.632919 Do
8 30 8.979592 17.663865 Do
9 30 9.160998 18.720107 Do
10 30 9.160998 . 16.147708 Do
11 30 .9.160998 15.302753 Do
12 30 8.888889 13.504545 Do .

13 30 , 8.61678 12.558228 Do
14 30 8.163265 12.867978 Do
15 30 7.709751 8.120961 Do
16 30 7.07483 4.212715 Do
17 30 6.896692 2.485717 Do
18 30 4.S88662 2.037155 Do
19 30 4.62585 1.195319 Do

Table 4.23 Pitch and Gain Function of Bangia Sound Unit ":f

Segment No. segment 'Length (ms) Pitch(rns) Gain Function (RMS Value) Voiced(V)jUnvoiced(UV)
.1 27.00 O. 3.490399 UV
2 .27.00 0 3.063369 Do
3 27.00 0 2.89816 Do
4 27.00 0 2.252143 Do
5 27.00 0 2.905387 Do
6. 25.00 7.891156 7.730342 V
7 26.00 8.707483 12.856551 Do
8 25.00 . 8.979592 15.315233 Do
9 25.00 9.160998 17.942687 Do
10 25.00 9.251701 17.077151 Do
11 25.00 9.160998 15.359332 Do
12 .25.00 8.979592 14.621591 Do

"13 25.00 8.798186 13.980506 Do
14 25.00 8.435374 12.422926 Do
15 25.00 .,7.891156 10.34742 Do
16 25.00 7.619048 9.631766 Do
17 25.00 7.165533 6.801337 Do
18 25.00 6.712018 4.381573 Do
1. 25.00 6.349206 2.844452 Do
20 25.00 5.53288 1.901674 Do
21 25.00 5.079365 1.398701 Do
22 25.00 3.537415 0.661953 Do
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Table 4.24 Pitch and Gain Function of Bangia Sound Unit"""
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Segment No. Segment Length ems) Pitch(ms) Gain Function (RMS Value) Voiced(V)jUnvoiced(UV)
1 24 6.439909 3.178347 V
2 24 8.253968 6.815493 Do
3 24 8.707483 7.912493 Do
4 24 . 8.979592 9.6468.,8 Do
5 2. 8.253968 9.187563 Do• 30 9.160998 11.915294 Do
7 30 9.342404 11.428433 Do
B 30 9.705215 10.40702 Do
9 30 9.977324 8.268322 . Do
10 30 10.249433 6.501865 Do
11 30 10.621542 4.331352 Do
12 30 . 10.612246 2.970563 Do
13 30 10.430839 2.298221 Do
1. 30 10.15873 1.697146 Do
15 30 7.800454 0.647a4 Do

Table 4.25 Pitch and Gain Function of Bangia Sound Unit 9f

segment No. segment Length ems) Pi.tch (ms) . Gain ...~nction (RMS Value) Voiced(V)/unvoiced(UV)
1 3.0.00 7.346939 17.221023 V
2 30.00 8;526077 34.246743 Do
3 . 30.00 8.798186 41.056834 Do
4 30.00 8.979592 43.620644 Do
5 30.00 8.979592 45.529045 Do
6 30.00 8.888889 48.113833 Do
7 30.00 8.979592 42.701803 Do

--B 30.00 8.979692 39.477573 Do
9 30.00 8.979592 36.58475 Do
10 30.00 8.888889 32.828734 Do
11 30.00 • 8.435374 37.981176 Do
12 30.00 8.072562 33.029326 Do
13 .. 30.00 .' 7.528345 27.896291 Do
14 30.00 6.712018 18.832837 Do
15 3MO 6.1678 1G.~9011 Do
1. .30.00 5.442177 " 4.452102 Do
17 30.00 5.079365 2.304146 Do
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Table 4.26 Pitch and Gain Function of Bangia Sound Unit<iS
segment No. segment Length (ms) Pitch (ms) Gain Function (RMS,Value) Voiced(V)jUnvoiced(UV)

1 25 3.537415 7.859216 V

2 25 3.628118 2.503089 Do
3 25 5.079365 3.5291 Do
4 25 3.537415 2.992718 Do
5 25 6.802721 3.614365 Do

• 30 7.619048 18.367173 Do
7 30 8.526077 25.48963 , Do
8 30 8.707483 29.21034 Do
• 30 'I 8.888889 25.319893 Do
10 30 8.798186 27.006621 Do
11 30 , 8.707483 24.57749 'Do
12 30 8.344671 22.832791 Do
13 30 8.163265 17.953306 Do
14 30 7.89.1166 17.24933 Do
15 30 7.709751 12.647969 Do
1. 30 7.266236 8.62203 Do
17 30 6.712018 ' 6.000605 Do
18 30 6.077098 3.340523 Do
19 30 4.988662 2.117031 00
20 30' 4.172336 0.363068 Do

Table 4.27 Pitch and Gain Function of Bangia Sound Unit <f
Segment No. Segment Length (ms) Pitch(ms) Gain Functiqn (RMS Value) Voiced(V)/Unvoiced(UV)

1 23.68 4.988662 6.122726 V
2 23.68 , 6.361474 7.29291 Do
3

, 23.68 , 4.636147 7.077864 Do
4 ,23.68 9.160998 8.020766 Do
5 , 23.58 9.160998 8.10413 Do• 23.68 8.888889 24.50671 Do
7 23.68 8.888889 29.612448 Do
8 23.58 8.888889 34.634469 Do• 23.58 • 8.888889 37.030679 Do
10 23.68, 9.070295 34.227435 Do
11 ' 23.58 9.160998 32.991287 Do
12 23.58 g.261701 29.788066 Do
13 23.68 9.342404 27.976161 Do
14 23.58 9.261701 .' 25.544418 Do
15 23.68 9.261701 24.347366 Do
, 1. 23.58 9.160998 23.626664 Do
17 23.58 ..8.979692 20.745167 Do
18 23.58 8.888889 22.061251 Do
1. 23.58 8.61678 21.987934 Do
20 23.58 8.253968 19.821269 Do
21 23.58 7.800454 16.876246 Do
22 23.68 7.346939 11.803194 Do
23 23.68 6.893424 7.676898 Do
24 23.58 6.077098 4.457492 Do
25 23.58 5.442177 2.983287 Do
2. 23.68 4.716653 2.392697 Do
27 23.68 3.808524 0.770864 Do

"
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Table 4.28 Pitch and Gain Function of Bangia Sound Unit~
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Segment No. segment Length (ms) Pit:-ch(ms) Gain Function (RMS Value) Voiced(V)/Unvoiced(UV)
1 27 • 6.439909 4.690952 V

2 27 8.435374 10.261432 Do
3 27 9.160998 13.371185 Do
4 27 9.160998 14.810662 Do
5 30 9.251701 18.4418 Do
6 30 9.52381 19.401639 Do
7 30 9.795918 15.203917 Do
8 30 10.068027 12.552737 Do
9 30 10.340136 9.883795 Do
10 30 10.612246 8.011166 000

11 30 10.793651 5.295367 Do
12 30 0 10.884354 3.73152 Do
13 30 00 7.346939 o 2.103388 Do
14 30 0 0.087039 IN

Table 4.29Pitch and Gain Function of Bangia Sound Unit~

segment No. Segment Length (rn.s:> P1tch(rns) Gain Function (RHS Value) Voiced(V)/Unvoiccd(UV)
1 25.00 3.537415 4.614798 V

2 25.00 7.981859 9.362692 Do
3 25.00 • 8.526077 8.211965 Do
4 -,,-

26.00 7.891166 4.404956 Do
5 25,00 9.52381 2.181742 Do
6 0 26.00 0 8.344671 2.641625 0 Do
7 25.00 8~253968 10.212559 Do
8 25.00 0 8.626077 17.291143 Do
9 26.00 o 8.798186 0 17.645602 Do
10 26.00 8.888889 16.138379 Do
11 25.00 9.070296 16.305771 Do
12 25.00 9.160998 16.995965 Do
1~ 26.00 9.160998 13.864897 Do
14 25.00 9.261701 15.052152 Do
15 25.00 9.261701 14.601868 Do
16 026.00 0 9.261701 " 12.721136 Do
17 26.00 9.342404 13.64791 Do
18 26.00 9.261701 12.65062 Do
19 26.00 9.160998 11.376012 Do
20 26.00 '8.888889 9.839623 Do
21 25.00 8.435374 9.31509 Do
22 25.00 7.800454 7.691199 Do
23 26.00 7.165533 4.989443 Do
24 26.00 6.530612 3.890548 Do
25 26.00 5.986395 2.815541 Do
26 26.00 5.260771 2.336275 Do
27 25.00 4.62585 1.647036 Do
28 25.00 3.628118 0.509902 Do

,-
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Table 4.30 Pitch and Gain Function of Bangia Sound Unit ~
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Segment No. Segment Length (ma) Pitch(ms} Gain Function (RMS Value) Voiced(V)/Unvoiced(UV)
1 23.58 4.807255 . 3.71975 V

2 23.58 7.981859 5.308556 Do
3' 25 8.979592 4.752033 Do

• 25 9.160998 7.632824 Do
5 25 9.070295 12.667281 Do
6 25 9.160998 15.237573 . Do
7 25 9.342404 16.447824 Do
8 25 9.52381 15.518903 Do
9 . 25 9.614512 15.270471 Do
10 25 9.706215 12.803561 Do
11 25 9.705215 13.534333 Do
12 25 . 9.705216 11.254494 Do
13 25 9.614612 10.949139 Do

" . 25 9.705215 . 10.704035 Do
15 . 25 9.52381 9.082951 Do
16 25 9.433107 9.489612 Do
17 25 9..160998 8.197006 Do
18 25 8.798186 . 6.700611 Do
.19 25', . 8.163265 6.248927 Do
20 25 . .7.256236 4.10897 Do
21 25 . 6.1678 ~~ 2.658434 Do
22 25 6:170068 1.985401 . Do
23 25 4.353742 1.368476 Do

table 4.31 Pitch and Gain Function of Bangia Sound Unit Q'[

Segment. No. Segment Length (ma) Pitch(ms) Gain Function (RMS Value) Voiced(V)jUnvoiced(UV)
1 40.00 . 7.800454 6.524081 V

2 .. 40.00 9.070296 9.62891 Do
3 40.00 9.251701 12.688443 Do
• 40.00 9.433107 15.757141 Do

. 5 .40.00' 9.433107 17.835868 Do
6 . 40.00 . 9.52381 17.547954 Do
7 40.00 9.706216 16.765973 Do
8 40.00 9.705215 12.95122 Do
9 40.00 9.614512 . 11.71261 Do
10 40.00 9.433107 11.059806 Do,

~,11 40.00 8.979592 9.102385 Do
12 40.00 ,..8.435374 6.779146 Do
13 40.00 8;712018 4.160966 Do
1. 40.00 5.53288 2.286571 Do
15 40.00 2.993197 1.418626 Do
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. Table 4.32 Pitch and Gain Function of Bangia Sound Unit--t
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Segment No. segment Length (ms) P1tch(ms) Gain Function (RMS Value) VOiced(V)/Unvoiced(UV)
1 25 0 . 1.694376 UV
2 25 0 1.765323 Do
3. 25 0 2.700842 Do
4 25 0 . 3.11127 Do
5 25 0 .2.477535 Do
• 25 0 . 1.772005 Do
7 20 .7.07483 8.513892 V

8 20 8.526077 11.863427 Do
9 20 8.979592 12.840278 . Do
10 20 3.446712 13.158302 Do
11 20 -:-

9.52381 12.377123 Do
12 20 . 9.614512 11.785488 Do'
13 20 9.614512 11.371116 Do
14 20 9.614512 11.431118 Do
15 20 , 9.52381 11.913514 Do
16 20 9.52381 11.882761. Do
17 20 9.342404 . 11.625012 Do
18 .: 20 9.251701 12.114886 Do
19 20 9.070295 12.451999 Do
20 20 8.979592 11.547333 Do
21 20 8.798186 ,. 11.483387 Do
22- .20 B:526077 12.1458 Do
23 .. .20 8.163265 I: 12.341817 Do
24 20 . 7.800454 10.050215 Do
25 . 20 6.893424 6.322938 Do

. 26 20 6.258503 5.710437 Do
27 . "20. 5.351474 3.129043 Do
28 . 20 4..716553 2.438796 Do
29 20 3.900227 . 1.667197 Do
30 20 3.356009 0.381385 Do
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Table 4.33 Pitch and Gain Function of Bangia Sound Unit~
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segment No. Segment Length <ms) Pitch (ms) Gain Function (RMS Value) VOiced(V)/Unvoiced(UV)
1 21.00 0 1.46364 . UV
2 21.00 0 1.647883 Do
3 21.00 . . 0 2.243765 Do
• 21.00 0 2,534673 Do
5 25.00 7.528345 .8.557512 V

• 25.00 8.435374 14.47525 Do
7 25.00 8.979592 17.151903 Do
8 25.00 9.25HOl 21.767855 Do
• 25.00 .. 9.433107 21.869655 Do
10 25.00 • 9.342404 19.671022 Do
11 25.00 '. 9.251701 20.388855 .Do
12 25.00 9.342404 18.96341 Do
13 25.00 8.979592 16.63634 Do
1. 26.00 I . 8.707483 14.994605 Do
15 . 25.00 ' .. 8.253968 15.294087 Do
1. 25.00 .7.528345 11.972772 Do
17 25.00 6.621315 . 6.091574 Do
18 .25.00 6.714286 3.3815 Do
1. 25.00 . 4.897959 2.38213 Do
20 25.00 4.535147 1.509967 Do

Table 4.34 Pitch and Gain Function of BangIaSound Unit~

selJlYl.ent No. Segment Length (rns) Pitch.(ms) Gain Function (RMS Value) VOiced(V)/Unvoiced(UV)
1 25 6.893424 9.73614 V
2 25 '9.886621 8.311912 . Do
3 25. 8.888889 17.823971 Do
• 25 8.979592 19.895675 Do
5 25 9.070295 21.342375 Do
• 25 .. 9.160998 20.257172 Do
7 20 . . 9.251701 17.747172 Do
8 . . .. ' 20 . 9.52381 16.082929 Do
• 20 9.52381 13.538459 Do
10 20 9.614512 12.802817 Do
11 20 9.342404 .. 13.344105 Do
12 20 8.979592 . 11.998737 Do
13 20 8.072562 11.355082 Do
,14 . 20 7.165533 6.94284 Do
15 20 ,'6.439909 3.663704 Do
16 20 5.260771 2.069622 Do
17 20 8.61678 0.755786 Do
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Table 4.35 Pitch and Gain Function of Bangia Sound Unitlj
•
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Seginent No. Segment -Length ems) Pitch(rns) Gain Function (RMS Value) Voiced(V)/Unvoiced(UV)
1 26.00 3.0839 3.469376 V

2 26.00 7.346939 8.636708 Do
3 26.00 7.981869 8.696088 Do
• 26.00 8.707483 11.190499 Do
5 26.00 7.266236 8.219268 Do
• 26.00 7.628345 7.939773 Do
7 26.00 8.888889 9.364148 Do
8 26.00 8.61678 11.706962 Do
• 26.00 9.070295 12.317762 .Do
10 26.00 9.160998 14.448162 Do
11 26.00 9.342404 14.896676 Do
12 26.00 9.62381 13.036592 Do
13 26.00 . 9.342404 13.740187 Do .

14 26.00 .9.070296 13.961766 Do
15 26.00 8.798186 . 12.600938 Do
1. 26.00 8A36374 11.760203 Do
17 26.00 7.981859 8.911586 Do
18 26.00 . 7.528346 6.366201 Do
1. I 26.00 6.4.39909 3.111662 Do
20 26.00 5.170068 1.961223 Do
21 : 25.00 .. 3.809524 1.267783 Do
22 26.00 • 0 0.08528 UV

Table 4.36 Pitch and.Gain Function of Bangia Sound Unit~

Segment No," Segment- Length ems) Pitch(ms) Gain Function (RMS Value) Voiced(V)jUnvoiced(UV)
1 20 6.984127 2.166861 v
2 20 7.709751 .6.898287 Do
3 . 20 . 8.436374 9.810129 Do• 20 ; 8.61678 13.056259 Do
5 20 ,8.888889 16.813144 Do
6 20 8.888889 17.223728 Do
7 20 8.888889 16.666356 Do
8 20 9.07029.6 • 16.316263 Do• 20 . 9.160998 19.003469 Do
10 20 9.342404 15.11336 Do
11 20 ..~.614612 13.732768 Do
12 20 9.705215 10.63382 Do
13 20 9.796918 8.486754 Do
1. 20 9.977324 6.58873 Do
16 20 10.068027 5.675706 Do
16 20 10.068027 4.28024 Do
17 20 6.802721 2.961879 Do
18 20 9.796918 2.201239 Do
19 20 8.979692 1.693571 Do
20 20 8.163266 0.770183 Do
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4.3 Discussion
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The pitch information and gain function of Bangia sound units have been extracted for a

particular Bangia speaking male. Based on this information, the mathematical model of Bangia

sound units have been developed in the next chapter. These information are vital for speech

analysis using LPC technique. The whole process has been carried out by computer simulation.

Tn this computer simulation, use has been made of the high-level computer programming

language 'PASCAL'. An effort has been made to develop a general process of Bangia speech

analysis. Further investigation is required to' develop the complete pitch detection process for

Bangia speech. It was not possible to generalise the voiced / unvoiced segmenl detection

process. Because, it involves many tedious processes like calculating the zero crossing rate,

power spectrum etc., to srparate the unvoiced speech from the voiced one (especially, in the

case where there is a mixed speech of both voiced and unvoiced portion). This case has been

avoided, because such mixed speech contains both poles and zeros. However, LPC technique is

not applicable for such mixed speech, as it is only applicable for voiced speech having only poles.

The voiced speech has been separated from the unvoiced speech manually i.e., by observing the

waveform of the specific sound unit in an enlarged scale, and then counting the time span of both

the voiced speech and unvoiced speech.' However, voiced speech has a periodicity in its

structure. On the other hand, unvoiced speech is random and noisy in nature. Use has been made

. of these information in the process of pitch extraction. It has been found that simplified inverse

filtering technique of voiced speech shows only one large peak at pitch period (as shown in

Figure 4. 1a). On the other hand, unvoiced speech does not show such a dominant peak. Instead,

it shows a lot of random peaks (as shown'in Figure 4.1b). For unvoiced speech, a '0' has been

written inthe file to represent it logically, and for the voiced speech segmeni, the pitch period

has been written directly in'ms in~he filewhile the computer simulation has been carried out.
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5.1 Introduction
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In the early 1970s,within justa few years, linear prediction (LP). analysis technique became by

far the most popular method for the digital analysis and synthesis of speech signals. In this

chapter the basic methods and properties of linear prediction (LP) analysis and synthesis

techniques are examined to synthesis Bangia sound units. This will.promote an appreciation of

the time-domain and fTequency-domain aspects of linear prediction and some insight into its

principle [2, 4].

Although the most general LP modelling contains zeros as well as poles, the present LP analysis

technique has been restricted attention to the assumption of an all-pole (or, autoregressive)

model for the linear system since it is, practically speaking, the only model in serious use today.

To go forward for the LP mo.dellingtechnique it is necessary to say something about the formant

analysis and synthesis technique. The basic idea offormant analysis and synthesis is that speech

production is well modelled. by excitIng a cascade of linear time-varying second-order section

digital filters (formant resonators) as shown in Figure 5.1, with either quasi-periodic pulses or

noise. The major difficulty with this idea lies in assigning computed formants to specific second-

order sections. Formants seem to disappear. during certain sounds and additional formants seem

to be present during other sounds. A large number of errors of either of these types can quickly

render the synthetic output unintelligibleor at best make its quality unacceptable. Such errors are

generally not uncommon across sentence length utterances. To remedy this problem, the basic

speech synthesis (production) model can be modified slightly to the form as shown in Figure 5.2.

The L individual second-order systems of the formant model are combined to give one pth order

linear system (where p 22L). This system accounts for the vocal tract transmission, the source

pulse shape, and the radiation characteristics. The input J(n) is either a system of digital

impulses or a quasi-random input. The transfer function of the filter is of the form [4]
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Figure 5.1 Schematic block diagram of a formant synthesizer

5.2 Basic Synthesis Model

Figure 5.3 shows a schematic of the Qasicmodel used in LP synthesis. The model has two major

components: a flat-spectrum excitation source and a spectral shaping filter H(z). The excitation

source generates a signal n(n) with a flat spectral envelope, which is used to derive the filter

"(z) resulting in the synthetic speech signal ii(lr) .,Because the input to the filter I-1(z)has a flat

spectrum, the spectral envelope of the output signal will have the same shape as spectrum of the

filter H(z): Therefore, for synthesis, one endeavours to set the parameters of H(z) on a time-
'0'.'.

varying basis that its short-term spectrum is the same as the short-term speech spectral envelope

one desires. Given a particular speech signal sen), one can obtain its short-term spectral

envelope by appropriate inverse filtering as shown in Figure 5.4. The parameters of the inverse

filter A(z) are adjusted such that the residual signal e(n) has a flat spectral envelope. In essence,

A(z) is a time-varying spectral whitening filter. If the excitation u(n) in Figure 5.3 is set equal to
r-Z\ .

the residual e(n) and H(z), i.e., "(z) = l/A(z), or, H(z) = lI(l+a,z"+a,z"+ ..•+a"z'P), then the
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synthetic signal s (n) will be equal to the original signal s(n). The denominator polynomial,
A(z), defines the inverse filter (also called the LP error filter). When the speech signal is applied

to this filter as its input, it outputs the LP drror signal (or, the residual signal).

VOICED Wl

UNVOICED .••••••••

+

TIME-VARVING
LINEAR

PREDICTOR
P

Figure 5:2 Linear prediction model of speech production [5]

FLAT-SP,ECTRUM SPECTRAL
EXCITATION EXCITATION SHAPING SYNTHETIC

,

I SOURCE .SIGNAL FILTER H(z SPEECH
u n

,-

Figure 5:3 Basic speech synthesis model

5 (n)

sen)
SPEECH

SIGNAL
SPECTRAL INVERSE FILTER A(z)

RESIDUAL

t-------.,>,. e(n)
SIGNAL

Figure 5.4 Spectral whitening of the speech signal by an inverse filter. The output
residual signal has a flat spectral envelope.
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5.3 Mathematical Modelling

In the early I970s-the technique of linear prediction was shown to be applicable to speech by

Atal and Hanuer[I,2, 5] as mentioned in section 5.2. It is a very important and powerful speech

processing technique, which is used in systems for speech synthesis, speech recognition and

speech coding. The basic idea behind the method is that sample values of speech, x[n], can be

approximated asa linear combination of the past p speech samples as shown in Figure (55) (a

value ofp=12 is normally sufficient for both voiced and unvoiced speech). Mathematically, the

linear predictor is described by the equation

x[n]= a1x[n-]]+ a2x[n-2]+ + apx[n-p]
P .

::::;.x[n] = L x[n - k] ( S.2)
k~1

where XIn] is the predicted sample at instant n anda1, a2, ....., ap are the predictor co-efficients.

It will generally be impossible to predict each signal sample exactly and this leads to a prediction
. ~-,.

error e[n] at each sample instani:

e[nJ= x(n] -,-xtn] .. ( S3)

By minimising the mean-squared error between the actual speech samples and the linearly

predicted ones, the predictor' co-efficients (that is the weighting co-efficients of the linear

.combination) can be determined by solving a set of linear equations A set of predictor co-

efficients can predict the speech signal reasonably accurately over stationary portions. In order to

match the time-varying properties of the speech signal, a new set of predictor co-efficient are

calculated at every 20-40 ms.

In linear prediction analysis technique, the predictor co-efficient 3k are computed as the result of

the minimisation of the energy in the prediction error ern) This computation must be performed

on a short-term basis so as to follow the speech dynamics. The speech signal is not known for all

time and it is impossible and impractical to compute the infinite summations required obtaining

the auto-correlation values! In addition, it is necessary to re calculate a new set of co-efficient, 3k

r
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Figtire5.5Graphical interpretation of linear prediction
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every 20-40 ms to reflect the changing nature of the speech signal, and hence short-time

autocorrelation values will be used. There are two methods of effecting the short-time aspect of

the computation: (1) by windowing the speech signal, and (2) by windowing the residual
- ".:".

signal. In the present research, the first method, i.e., windowing the speech signal method has

been used. In this method, the speech signals[ n] is first multiplied by a soft window function,

w[n], which has N samples. Here, use has been made of the most popular window function

called Hamming Window fu~ction as shown in Figure 5.6. The length of this window is taken as

same as that of the segment. of the speech signal. It might be varied ITom 20 ms to 40 ms

depending on the pitch characteristics of the speech signal. It is customary to take it as two to

four times the pitch period of the speech signal in digital speech signal processing. The most

popular data windows are finite in extent. The window fimction is written as follows:

s[n] w[n];
x[n] =

o,
N-i

=> x[n] = I s[n]w[n]
n"'O

O:$n:$N-l

otherwise

................. (7.4)

/

where, it has been assumed that the window is zero outside the interval 0 $ n $N - J • The window

width N is usually set to correspond to 20-40 ms for the short-time analysis. A soft window

function is essential in order to reduce the prediction error at the beginning and end of the speech
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segment Large prediction errors will arise at the start of the interval (OsnSp-J)since the

predictor is effectively being required .to predict the signal from samples which have arbitrarily

been set to zero, while at the end of the interval (NsnSN+p-J) it is endeavouring to prediCt

zero signal from samples that are non-zero.

'501'( window
e.9. Ho!Imming .

~~.

Figure 5.6 Hamming window

Typically, a window of duration 20-40 ms (220 to 440 samples at an 11025 Hz sampling rate) is

used in the current study. Now, x[nJ in equation (5.4) is the sample value of speech signal after

windowing a particular. segment of speech. In order to perform the LP analysis of a speech

segment consisting ofN samples, lSI, s" S3, ... , SN }, a p-th order all-pole filter has been assumed

.which has H(z) as follows:

H(z);=l/A(z), .

= 1/(1 + a, z" + a,z,2+ ... + apz'P) ..

Here, {a" a', ....3o } are the LP co-efficient The denominator polynomial, A(z), defines the

inverse filter ( also called the LP error filter) . When the speech signal is applied to this filter as
''''

its input, it outputs the LP error signal (or, the residual signal) as shown in Figure 5.4 whose n-th

sample is given by:

N-'
c[n]= x[n]- I.kx[n -k]

1<=1

........... ( 5 .5)

'1\
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The problem in linear prediction is to determine the ak coeflicients so as to minimise the mean

square error, E, over a specified number of samples (usually 220 to 440 samples at a rate of

11.025 kHz), Now

N-!

E = I e2[n]
0=0

Using equation (5,2), (5J) and (55) in (5.6), we have,

N-l
E= Lrx[n}x[nn2

no(l

N-l P 2
E = L: [x[n] - L: ak x[n -kJ]n=O k=] ..

...... ( 5.6)

,..".",(57)

The number of samples n over which the error is"minimisedranges from 220 to 440 windowed

sample values at a sampling rate of I1.025 kHz in this research work depending on the pitch of

the speech signal.

IfE is to be minimised by appropriate choice of the ak co-efficient, then the partial derivative of

E with respect to.each co-efficient ai,j = ], 2, ,.., p should be zero, that is

&E . P8 = -2L:[x[n] - L: ak x[n - k]]'xfn - j] = 0
a] n k = I

.p

=> 2Ia.Ix[n - kJ-x[n- j] -2Ix[nJ-x[n - j] = 0
k.--I " "

"=> 2Ia.Ix[n -klx[n - j] = 2Ix[nlx[n - j]
k-] n n

Therefore, we can write:

" ,IlliIx[n-k],x[n- j] = Ix[nlx[n- j]
L~ n n

where j = 1,2,3, , p.

..( 58)

__ , __,__ .,(5,9)

., ( 5. I 0)
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Equation (59) represents a set ofp linear equations for the p unknowns ak. Therefore, it should

be possible to find a solution by matrix inversion. However, finding the solution to a system of

equations in perhaps 10-15 unknowns is not a trivial problem even il'the cquations arc lincarl

Fortunately, two different methods exist for tinding the solution of this system of equations.

These are as follows:(1) The Autocorrelation Method and (2) The Covariance Method[2]. In the

present work, the autocorrelation method has been adopted. In the autocorrelation method of,
LP analysis [2], the summation range in equation (5.6) is [-0'),+0')], which means that the speech

signal is available for all time. For short-time LP analysis, this can be achieved by windowing the

speech signal and assuming the samples outside this window to be zero [2]. For windowing, the

tapered cosine window functions (such as the Hamming and Hanning window functions) are

preferred over the rectangular window function [2].

The choice of the to be used for speech analysis depends on the application. Since the

autocorrelation method requires windowing, it introduces unwanted spectral distortion, which is

more for shorter speech segments Thus, for the pitch-asynchronous analysis where the duration

of speech trame is more than two times the pitch period, the two methods are comparable.

However, for pitch-synchronous analysis where the duration is less than or equal to a pitch

period, the covariance method resultsin better perlormance than the autocorrelation method l2].
,

Before solving the equation (5.9), certain assumptions have to be made through the limits of the

summation in the expressions Lx(n- j]'x[n-k], and L x[n]'x[n - j] in equation (59) Suppose,

initially that it is assumed that the signal is,.stationary with finite energy, which of course is not

the ease for speech, and the range of summation is - OCJ to + OCJ with xln] being defined as zero

for n<O,then:

f x[n-j]'x[n- k)= f x[n-j +1).x[n-k+ 1)=.....
n~ '" 11=_'"

i.e.,Ix[n- j],x[n-k]= I x[n]'x [nt-j-k]
n~'" 11=.'.0

Therefore, the system of equations can be written as:

........... (510)
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P q, .y,

La, L x[n]'x[nt j-k]= L x[n],x[n- j]
k:[ 11=-'" 11=_'"

where j = 1,2,3,., p.
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........(5 II)

The multipliers of the ak co-efficient and the right-hand sides of the system of equations are in

the form of autocorrelation values of the speech signal for specific time (sample) shifts. IfR(k) is

defined as the autocorrelation value for a shift ofk samples; that is

R(k)= I x[n].x[ntk]
Jl=-«>

the system of equations can be written as

(512)

R(p-I) R(p-2) R(p-3)

R(O)
R(l)
R(2)

R(I)
R(O)
R(l)

R(2)
R'(l)
R(O)

R(p-I)
R(p-2)
R(p-3)

R(O)

a., liR(I)
a, R(2)
a, R(3)

a,j R(p)

(513)

This is a symmetric matrix and all diagonal elements are the same .. It is known as a Toeplitz

matrix and a very efficient method due to Durbin and Levinson [2] exists for solving this special

system of equations. The Durbin-Levinson method requires much less computational effort than

is generally needed for solving a system oflinear equations. Oft' course, the speech signal is not

known for all time and it is impossible and impracticable to compute the infinite summations

required having the autocorrelation values. pquation (713) can be written as

=

R(O)
R(l)
R(2)

R(l)...
R(O)
R(I)

R(2)
, R(I)

R(O)

R(p-I)
R(p-2)
R(p-3)

.,
R(I)
R(2)
R(3)

R(p-I) R(p-2) R(P-3)

Le, [<lk]=[X] -I [R]

R(O) R(P)

................ (514)

C'
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From equation (5.14), we can easily find out the predictor co-efficients ak, where k =1,2,3,

p, by inverse matricing of [X].

This autocorrelation analysis on LP analysis technique shows that it is essentially a time-domain

waveform coding technique which allows perhaps 220 to 440 samples of a speech signal to be

represented by about 10 to' 15 co-efticients. In LP analysis,the choice of order, p (the number of

co-efficients), of the all-pole filter is very important. A value of p much lower than necessary

results in a spectral envelope which does not capture all the infommtion about the vocal-tract

system, while a larger value of p causes a part of the excitation~source information to appear in

the estimated spectral envelope. In both cases, of p, the total-squared LP error provides a

reasonably good measure for this purpose. Figure 5.7 shows the normalized total-squared LP

error as a function '01' order, p, for vowel and fricative signals. The total-squared LP error

decreases fast for the lower values of p and slowly for the higher values. Also, there is no

appreciable decrease in the total-squared LP errol'for values of p larger than 10. There!ore, the

value of p can be chosen to be 10 for these speech signals [2]. In general, the values of p should

be such that it is possible to represent all the formants in the speech signal plus 2-4 poles to

approximate possible zeros in the spectrum as well as the general spectrum shaping due to the

glottal-wave shape and the radiation impedance There is a rule of thumb, which determines the,
value of p as the sampling rrequency (in kHz), plus 2. Thus, for the sampling frequency of. .

11.025 kHz, the optimum value of p according to this rule isl3 (i.e., I 1+2 = 13) in the present

work [2, 43].

The error signal e[n] can be easily computed using the predicted co-efficients, ak, since it follows

rromequation (53) and (52) that.

p

e[n]= x[n]- L8kx[n-k]
k=]

ie, e[n]= x[n]-a] x[n-1]-a2x[n-2]- ... -a"x[ncp]

r,
\

, (';14)
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Therefore, if the error signal, ern], is known, it is possible to reconstruct the original signal x[n]

exactly from the predicted signal x [n] ,that is:

x[n]= ern] + x [n]
p

=>x[n]=e[n]+ L: akx[n-k]
k",l

Taking z-transforrns would give:

P -I..:X(z) ~ E(z) + [L: a, z ].X(z)
k --1

p

=> X(z)-D': 3k z"k).X(Z)= fez)
k=1

::::> X(z) = :(z) .
. (1- I a,z")

k =1

ie, X(z) = H(z)E(z)

where X(z) and E(z) are the z~transforrns of x[n] and e[n] respectively and

IH(z) =--p --.

(I-I3kz"')
k""i

.( :i 17)

is the transfer function of a digital -system' or filter which contains only powers of z in its

denominator and for this reason is often referred to as an all-pole system (ie, filter) (The

'poles' are the roots of the denominator polynomial in z.)

• . . ' i' ',r..
From a systems viewpoint, equation (5.17) shows that the speech signal x[n] may be \iiewed as

the output of this all-pole filter w.hen the input is the error signal e[nJ The all-pole filter H(z),

therefore models the vocal tract response and e[n] denotes the vocal tract excitation function. An

estimation of the vocal tract spectral envelope, H(z), may be obtained by putting z = ei"T in the

transfer function H(z) of the all-pole linear predictor, that is

1 H(z) 1=1
I

P k
(1- Ia,z' )

k~1

....( 5.18).
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The spectrum is estimated by evaluating II-I(z) I at various values of CD in the equation (518),

and taking 10glO I H(z) I as the amplitude [2]. Figure (5.7) and Figure (5.8) show the linear

prediction spectrum of a 20 ms segment of voiced speech taken from the Bangia vowels "'f and

"'It respectively. Figure (59) shows the linear prediction spectrum of a 28 ms segment of

unvoiced speech taken 11'0111 the Bangia consonant '1 and Figure (5 10) shows the linear

prediction spectrum of a 25 ms segment of unvoiced speech taken from the Bangia consonant

""t. The autocorrelation method was used to compute the coefficients of a 13'h order linear

predictor. A Hamming window was used to multiply the speech segment prior to the analysis.

For voiced speech, the spectrum is clearly very smooth and exhibits no harmonic ripple due to

pitch. The formant structure of the vowel is clearly apparent. Although the computed linear

prediction spectrum will not match exactly the true spectrum of the speech signal, it is a very

close approximation.
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Figure 5.7 Typical short-time linear prediction spectrum of Bangia vowel "'f

The process of minimising'the mean squared error between the original speech samples and the

linearly predicted ones tends to produce an error signal, which has a broadly flat or 'white'

spectrum. The degree of whiteness in the error spectrum depends on h9w good the predictor is



154
---------------------------~----------- ._._--

in modelling the signal. FOi voiced speech, the error signal is a periodic pulse-like signal at pitch

frequency. Such error signals of Bangia vowels '!>l, '5lt, for example, are shown in Figure (5,11)

and Figure (5.12) respectively [2]'

Mathematical Modelling Of Bangia Sound Units

The peaks it the signal occur at points corresponding to glottal closure when the amplitude of
the speech signal reaches.a maximum At this points the predictor finds it more difficult to model

. . ,
the speech signal. At points other than glottal closure, when the vocal tract is in force-free

oscillation, the predictor is able to model the signal very well and the prediction error is small.
• ,', I

For an ideal predictor, the error signal would consist of an impulse train at pitch fi'equen<,y,

which has an exactly flat or.white spectrum. In the case of unvoiced speech, minimisation of the

mean squarederrorresults in an error signal, which is close to white noise, which again has a flat

spectrum. Such error signal of Bangia consonants ~'. --t, lor example, are shown in

Figures(513) and (514) respectively [2].,
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Figure 5.8 Typical short-time linear prediction spectrum of Bangia vowel '5lt

Using this ff.:tthematical model the basic sound units of Bangia speech, for both vowels and

consonants, have been modelled.
"

(\- ,
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5.3.1 Merits of LP Synthesizer

The main attraction of linear predictive analysis is that it offers great accuracy and speed of

computation. In addition, the theory underlying the method has been the subject of intensive

research in recent years and, as a result, is highly developed and well understood. Based on this,
theory, a large variety and range of applications of linear predictive analysis to speech processing

have evolved.
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Figure 5.9 Typical short-time linear prediction spectrum of Bangia vowel 'i

One reason that linear prediction does a good job in modelling speech spectra is because most

speech sounds consist largely of vocal t~act resonances, which are well modelled by poles.

Another reason is that human auditory perception is more sensitive to the location of resonance's

than of antiresonances or zeros,-and therefore, a process that model resonances well should

result in good speech quality.
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5.3.2 Demerits of LP Synthesizer
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The mam drawback with linear predictive analysis is that an all-pole model is used to

approximate the vocal tract transfer function. As might be expected, this type of analysis is

capable of describing reasonably well the transfer function during non-nasal vowel and vowel

like sounds. However, a general transfer function of a real vocal tract has both poles and zeros in

its transfer function, and therefore, an accurate analysis or synthesis model of speech production

should be of the pole-zero type. This is particularly true in the case of sounds like nasals and

stops and indeed to account for any zeros present in tlie source-spectrum. When zeros are

introduced into the model for linear predictive analysis, many of the convenient properties of the

method have to beabandOl;Ied.Thernain problem is that there is a requirement to solve a system

of non-linear equation, which involvesan iterative process rather than a simple matrix inversion.

Tn female speech, the spectral harmonics are separated by about twice as much as for male

. speech, because female pitch is about twice male-pitch. Therefore, the vocal-tract resonances are

not as obvious on the spectrum as for male speech .Because LP modelling tends to follow the

harmonics, the error. in .modelling spectral resonances for female in much higher than for males

[43].
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Figure 5.10 Typical short-time linear prediction spectrum of Bangia vowel >of
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5.4 Basic Model of All-Pole LP Synthesizer
The all-pole technique of LP analysis using autocorrelation method for pitch

157

asynchronous

process of speech signal has been described in section 5J. It was shown there that if the error

signal e[n] and the linear predictor co-efficients, <!k. {k '= 1, 2, 3, .... , p}, are known then the,
original.speech signal can be reconstructed by applying the error signal e[n] to an all-pole digital

filter with transfer function:

H(z) =
1

P .k
(l:L:akz')

k =1

as mentioned in equation (517).
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Figure 5.11 Linear prediction error signal for voiced speech ('5f)

When viewed in this way, it is clear that the process of Linear Prediction results in a source-tilter

model of speech production in which the error signal represents the excitation signal and the

vocal tract is represented by the all-pole filter H(z). This leads to the structure of a linear

predictive synthesiser as shown in Figure 5.15 in which the error signal is 'stylised' as a petiodic

unit sample generator at pitch frequency in the case of voiced speech or a random-number

generator in the case of unvoiced speech.
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The synthetic speech samples are given by the equations

p
x = G.u[n] + I akx[n - k]

k=1
and,

p
x=G.r[n]+ L akx[n-k]

k=1
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........ (5.19)

........ (5.20)

Equation (5.19) is to be used for voiced speech synthesiserwhile equation (5.20) is tor unvoiced
•

speech synthesizer where urn] is a unit-step sequence, r[n] is a random noise source, and G is a

gain control parameter, which determines theLms. value of the synthesised signal. In order to

synthesise, a time-varying set of contr61 parameters are required which specifYthe pitch-period,

a voiced/unvoiced decision, the gain G and the p predictOl' co-ellicients. These parameters

would be typically supplied every 20~40 ms though, for voiced sounds, they would normally be

constrained to change pitch synchronously, that is at the beginning of each glottal cycle. This is
",": ..,

much preferable to a pitch-synchronous update in that the co-efficients are changed when the

40
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5.12 Linear prediction error signal for voiced speech ('''It)

filter contains minimum energy and this reduces the effect of the sensitivity of the filter structure

to co-efficient change. However, the pitch-synchronous method requires that the control

parameters be interpolated to obtain the values at the beginning of each pitch period. In this

work, the pitch-asynchronous technique has been used to synthesise the Bangia sound units
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5.5 Source Model

In LPC technique, three types of sources are used to produce the synthetic speech. These
sources are (a) Unit pulse generator, (b) Random noise generator, and (c) a combination of these
two sources.

5.5.1 Unit Pulse Generator.

The most general form of a pulse source is the impulse response of an all- pass filter. The
•

simplest and most popular form is the single impulse. When the pulse source produces a

sequence of pulses separated by a pitch period, it is known as a buzz source, and is used to

synthesise the voiced sounds. In the present work, the unit pulses are generated at pitch period

by software control.

4

LO 0
"

-2
~.,
'- ,
0

'- -4'-w

T,lm.,;,( ms)

-6

Figure 5.13 Linear prediction error signal for unvoiced speech (<f)

5.5.2 Random Number Generator (Noise Source)

:.J()

The noise or hiss source is a white noise source that can be simply a random number generator

producing random sample values with a fl.at spectral envelope. A noise source is used_-to

synthesise unvoiced or IDeated sounds. A random number generator algorithm is descrihed here
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for software implementatibn as a source of noise. The pseudo-random number generator is

needed as the source for the unvoiced sounds. The specific pseudo-number generator used in the

present work is a 16-bit maximal length shift register sequence. This algorithm generates a

random bit from mod-2 sum of the previous 16 bits, shifts out the bit generated 16 clock pulses

earlier, and shifts in the new bit: The algorithm used to generate the current bit is:

Xn = Xn-l EB Xn-12 EB Xn-14 EB Xn-IS .(521 )

where n = I, 2, 3, ... and each X is either 1 or 0, and a 1 physically corresponds to a positive

excitation pulse and a 1 toa negative excitation pulse. Thus, the noise generator output consists

of a random succession of positive and. negative pulses. The spectrum of the noise generator

output is flat:
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Figure 5.14 Linear prediction error signal for unvoiced speech (>Of)

5.5.3 Mixed Source Model ,r;
\ -~

While most sounds can be generated by either a pulse source or a noise source, there are some

sounds, such as "', 1Q., ~, ~, ?i, U, J'[ and <I, that are best synthesised by a combination ;r
the two sources. If such a mixed-source model is used, the speech is found to be more natural
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sounding. In order to synthesise such a combination, that is, speech signal consisting of both the

voiced and unvoiced, by LP technique, it requires a pole-zero filter, which is now, under

extensive research in the various Universities of the world.

5.5.4 Demerits in using error signal, ern], as the
excitation source

The major problem in using e[n] as the excitation signal in practice is the large number of bits

required storing it For example, at a sampling rate of 10kHz, if one quantizes each sample to

one bit only, the required storage would be 10,000 bits/s, which for many commercial

applications would be prohibited One effective .solution to this problem has been to model the

excitation as coming from one. of two sources mentioned above. Therefore, the coding of the

parameters of the source model described above requires on the order of a few hundred bitsls

only. The resulting speech quality is not quite .as natural as using the error signal e[n] for the
,":'"

excitation, but vast reduction in bit rate more than offsets the loss in speech quality for many

applications: The later.process has .been adopted for the current modelling.

5.5.5 .Stability of All-pole Filter

The condition for stability of an all-pole filter is as follows

. 1 kn 1< 1, l=:::n=:::p ....... ( 5.22)

The intermediate quantities kn is known as the reflection co-efficients. In the statistical literature,

in autoregressive modelling, the negatives ofkn are known as partial correlation (PARCOR) co-

efficients Equation (522) can be shown to be a necessary and sufficient condition for the all-

pole filter H(z) to be stable, i~.: all poles are inside the unit circle. Filter stability is ~

important in speech synthesis, because an unstable filter can lead to 'pops' and 'clicks' in' the

synthetic speech If 1kp1= 1, all the poles will be on the unit circle, which is an unstable condition .

..
f
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Figure 5:15 Linear Predictive Synthesiser

5.6 Mathematical Modelling of Bangia Sound Units

The following steps have been followed for modelling the Bangia sound units using the LPC

technique.

i . The results, .such as gain, pitch period for voiced segment and voiced /unvoiced

decision, segment length infonnation and coefficients obtained in the previous

chapter 4 (as mentioned in section 4.2.1), were used in this second phase of

modelling Bangia sound units as the inputs of an allcpole digital filter. The output

of this digital Hiter is' the synthetic speech for the particular sound unit. A

.. software routine was written 'PASCAL' programming language to produce the

modelled waveform. Eaeh sound unit was modelled separately for every

segment length ranging from 20 ms to 40 ms. The process of mathematical

modelling of a Bangia sound unit for a particular segment length could be

described as foll~~s.

(a) First of all we collect the,segment length infonnation from the file, which was

obtained as mentioned in 'i'. The software reads the segment length infonnation

for the first segment of sound unit from this file and stores it in the memory

array.

..,f.~
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(b) At the same time, it reads the coefficients for the corresponding segment rrom

the coefficient file and stores them in an array.

(c) Similarly,it reads the gain for the corresponding segment rrom the gain file.

(d) Then, it reads the file which previously stored the pitch period. Depending on the

value read, it would activate either a unit pulse generator or a random noise

generator in the following way.

o If the value read for the corresponding segmented speech is greater than

'0', the software would trigger a unit pulse generator This unit pulse

generator would generate a unit pulse train at pitch period. The pulse

train is stored in another array.

o On the other hand, if the value read was a '0' the software would tligger

a random noise (random number) generator to generate white noise. The
"':'.

noise signalwas stored in another array.

(e) Now, if the segment is voiced, the unit pulses were multiplied by the gain. For

an unvoiced' segment, the values corresponding to the random noise were

multiplied by the gain.

(f) The coefficients stored in array were used to model the all-pole digital filter as

shown in figure 5.8 for the corresponding speech segment. The results obtained

in 'e'were used to drive this filter. Equations (5.19) and (5.20) were used to,.
calculate the output in the developed software routine. The output of this filter

was the synthetic.speech for the corresponding speech segment. This synthetic

speech was stored in a file on'the hard disk.

II. The processes mentioned in 'i' were repeated for each segment of a paIlicular

BangIa sound unit, and the corresponding synthetic speech data were stored

chronologically in a file.
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"5.7 Flow-Diagrams for Computer Simulation
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Starting from the beginning of the LP analysisfor mathematical modelling of Bangia sound units,

several algorithms for software simulation were developed, Appendix C includes the flow-

diagram for mathematical modelling of BangIa sound units, The source code, which has been

written in 'PASCAL' programming laoguage is given in Appendix D,

5.8 Comments

The following problems were encountered while developing the mathematical models for the

Bangia sound units using all all-pole filtertechnique oflinear prediction,

• The precondition of good modelling of synthetic speech is noise free (especially, background

noise) recording of speech signal ofa person with a quality speech, To do this, it is necessary

to record the speech signal in a recording studio, Recording of the speech signal in a noise-

free environment is very important, as noisy speech may cause the pitch information of the

speech to disappear, The noise of microphone also affects the speech quality, Theretore, a

unidirectional microphone should be used to minimise the background noise, However, in
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this case. an omnidirectional microphone was used owing to cost constraint. This

microphone picks more background noise.

•
• The structure of BangIa sound units is very complex. There are seven fundamental vowels in

Bangia. Except these vowels, all the sound units are compound sound units and complex in

nature. Most of the Bangia consonants consist of two parts: unvoiced and voiced. The

unvoiced part is either plosive type or fiicative type. Modelling unvoiced part is not a

problem. In most of the cases,. unvoiced part starts at the beginning of the consonants and

ends sharply before the starting of the voiced part. In some. cases, the starting of some

consonants is .not purely unvoiced: Instead, it starts either purely unvoiced, then becomes a

mixed voiced-unvoiced source, and then transforms into voiced source or with a mixture of

voiced and unvoiced speech. Su'chconsonants are '5, ~, ~, ~, ~, ", ." and ~. It is not

possible to model such mixed speech segments using the. all-pole filter in the process of LP
,-

analysis. A pole-zero filter'is suitable to model these mixed sounds.

• Though, the'diphthons v0'fels such as:.!i'(.!r='8+~), -i3'(-i3'='8+~) are compound

sounduni.ts; they are ITee ITomany unvoiced part. Therefore, they could be modelled easily
using an all-pole filter.

The modelled waves of'5[, '5lT, .<Ii, <fand their corresponding recorded waves, for example,

are shownFigures ITom5.16tb 5.23.

The modelled waveforms of other BangIa. sound units (both the vowels and consonants) are

sho~ in Figures ITom5.24 to 5.55.

If the actual recorded waveforms for a Bangia sound unit is compared with the corresponding

waveform generated by the mathematical model, the following observations are noticed:

Comparison by observing the wave shapes:
,

I . The autocorrelation function of the error signal usually generates a sharp peak legs at pitch

period within the range from 2 ms to 12 ms for purely voiced speech segment. However, in
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actual analysis of voiced segments of BangIa sound units, it was found that the aucorrelation

function of some voiced segment generated harmonics of the pitch within the range trom 2

ms to 12 ms. This was due to the background noise, which was added to the recorded

speech signal during recording. These hannonics made the setup of the threshnlrl limit very

difficult in the pitch detection process. Because, the background noise would make the pitch

to disappear from the exact pitch location. In some cases, it was tcund that the peak legs at

pitch was associated with adjacent harmonic peak, which was nearly equal to the pitch peak.

These might lead to wrong pitch detection, which in tum would make the segment

unintelligible.

2. After modelling the sound units, it was found that the total number of sample of the

modelled sound unit was slightly greater than that of the corresponding original sound unit.

This is due to the zero padding at the last segment of each sound unit. In some cases, the

software treated the zero-padded segment as an unvoiced speech, though it was a voiced

segment. This is due to the fact that the last. segment was very smaller than the selected

segment The general rule in pitch asynchronous method is that the segment should be at least

3 to .4 times theactua:I pitch period. Therefore, the last voiced segment lost its pitch. . ,

. information and thea:Igorithm detected it as an unvoiced speech. The models for ~, ';;f, '1,

1), and '!i suffered this dr;wback,

3. The modelled unvoiced part of some BangIa consonants, such as, 'Ol, '<T, ~, "f, <J>,<r, and

1?, did not follow the actual unvoiced part of the corresponding Bangia consonant In some

cases, they were completely different from the actual one. However, they did not lose their

naturalness and intelligibility, though they are not as natural and intelligible as the original

sound units,

4. Some BangIa consonants are associated with a voiced part, having a low pitch rate, at the

start of their utterance and followed by a voiced part, having a high pitch rate. The examples

of such consonants are <[, "'l, "'l, q, and <;'f. In such cases, the segmentation of the low-

pitched voiced part was different from that of the high-pitched one, This procedure was

adopted in order to model the low-pitched voiced part separately li'om that of the high
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pitched one for the following reasons. The observation of the waveforms of the

corresponding Bangia sound units on the PC screen showed that if a general segmentation

process is followed, it may lead a segment which falls in between the low-pitched and the

high-pitched voiced segments. This kind of segments contains two types of pitch. However,

a voiced segment should consisi of one type of pitch information only. Therefore; to obtain

the exact pitch of each type of voiced speech, the low-pitched voiced part was separated

from that of the high"pitched one

5. The plots of the electroacoustic waveforms of the modelled Bangia sound units were

observed and compared wiih those of the recorded BangIa sound units. The results of the

observation are as follows.

(a) The envelope of the modelled Bangia voiced sound units followed the envelope of

their corresponding original recoided.,soimd unit.

(b) The envelopeof the voiced part of the speech corresponding to the modelled Bangia

consonants also followed the envelope of the same corresponding to recorded ones

(c) Inmost cases, the envelope of the unvoiced part of the modelled Bangia consonants

did not follow the ervelope of the envelope of the unvoiced pall of the

corresponding recorded ones. This error occurs due to the following reasons

o .Since theLP analysis technique assumes the speech-generating system to be

anall-pole filter, its estimation accuracy gets worse if there exit, in addition

to poles, some zeros iQthe system transfer function as is the case with the

nasal arid fricative sounds Also, in the case of noisy speech, the additive

noise introduces zeros in' the spectrum and the performance of the all-pole

LP analysis technique gelS affected drastically.

(d) In the same scale factor, it was found that the average amplitude of the modelled

Bangia sound units is greater than that of the original Bangia sound units. However,

they seem to be in proportion. The difference occurred due to the following reasons:

Prediction error
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"

The pitch detected for a segment was not the exact pitch. The detected pitch was an

approximate one. As speech is non-stationary in nature, the pitch of speech is also

non-stationary.

Comparison by listening to the audio sounds:

Playing the original speech and the modelled speech corresponding to a Bangia sound unit can

make the following comments:

1. The modelled Bangl<tvowels were as intelligible and natural as the corresponding original

recorded vowels.

2 . Most of the. BangIa consonants were as intelli'gible and natural as the corresponding

recorded consonants. However, the audio sounds of some modelled consonants seem to be

not quite in conformity with their original sounds. These consonants areD. i!lf. '3. "f. ><f.

<i:. 1! and <T.The reasons for thishave alrea{!ybeen described in article 5(c)

The next chapier describes the results of the research and suggests for further research in this

field.
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Results, Discussions, and Suggestions for Further
Research

6.1 Introduction

The fundamental theories and practical process for mathematical modelling of Bangia

sound units using the linear predictive coding (LPC) technique have been discussed in the

previous chapters. The results of the pitch information and gain function of various Bangia

sound units are given in tabular form in chapter 4. The modelled waveforms of various

BangIa sound units are given in graphical form in chapter 5. The practical analysis and

modelling are carried out using the LPC technique on the basis of the recorded waveform

of Bangia sound units of a male speaker. In this chapter, tbe results are discussed and

compared with the results obtained from a similar research carried out at the University of

Rajshahi. Finally, some topics for future research in this field have been proposed.

6.2 Results and Discussions

The method of linear predictive coding (LPC) has been used to analyze and model the

BangIa sound units. LP.c technique is a widely used technique for speech analysis and

synthesis. It. does not require any formant frequency information directly The

mathematical modeling based on the LPC technique requires solving a 131h order nonlinear

differential equation. The co-efficient of this equation contains the formant frequency

information.

The results obtained from the present research may be discussed as follows.

L Bangia speech may be thought of as a combination of some speech segments,

which may be called the basic sound units. These sound units may contain

only voiced part of speech, unvoiced part of speech and of the mixed (both

voiced and unvoiced combined) part of speech,
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. .and finally followed by a purely voiced part. However, consonants, having the

voiced and unvoiced part mixed, contain both poles and zeros For example,

~. <II, 1>, "21, 1>, "'. "". andJf These BangIa consonants can not be modelled

using an all-pole LPC technique. In spite of these problems, 36 BangIa sound

units out of 44 could be modelled successfully using the LPC technique.

iii. The generation of synthetic Bangia sound units was based on the recorded

sound units of a BangIa speaking male. A particular male sample was chosen

as an experiment to test whether it is possible to generate synthetic Bangia

speech arnot. Thus, it was a test case for Bangia speech, and has been found

to be successful. .
iv. The process of mathematical modelling of BangIa sound units consisted of two

parts.
(a) Voiced-unvoiced decision making/Pitch detection/Gain extraction, and

•
(b) Developing the model,for BangIa sound units

II. All BangIa vowels are purely voiced. Most of the BangIa consonants consist of

both voiced and unvoiced segments. Generally, unvoiced segment remains at

the starting position of a particular utterance of BangIa speech. The later part

of the speech segment becomes voiced quickly, which is obvious from the

rules that form a consonant. In most cases, the transition from unvoiced to

voiced speech occurs almost sharply. Consonants .having this sharp transition

between voiced and unvoiced segment can be modeled by the LPC technique.

There are some consonants which have voiced or unvoiced part at the

beginning, followed by the mixed part (voiced and unvoiced part combined),

(a). 'Voiced-unvoiced decision O)l!okingiPitchdetection/Gain extraction

The pitch, gain function, and voiced / unvoiced decisions are the most important spectral

features in speech signal processing. A software routine was developed in 'PASCAL'

programming language to extract these spectral features of Bangia sound units by LPC

technique. Generally, the pitch of voiced speech signal varies from (2 ms to 12 ms) [43].

However, the extracted pitch of13angla sound units varies Irom 2.267574 ms to lU.Y75U57

ms. The minimum pitch is 2.267574 ms for '8 and the maximum pitch is 2267574 ms
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l.

,
for;sr. The gain varies from 0..0.8528 (rms value) to 56.139174 (rms value). The voiced /

unvoiced decision was made manually using package software 'Grapher'.

(b). Mathematical Modelling of Bangia sound units

The parameters obtained in part (a) for a pal1icular BangIa sound unit was used to
drive an all-pole digital filter to model that Bangia speech. Most of the Bangia
sound units were modelled successfully. Some units could not be modelled quite
well due to background noise, which introduced zeros in the signal. These zeros
cause the pitch to disappear and introduce false pitch. Therefore, the modelled
speech lost its quality. Some others could not be modelled as they contain both
voiced and unvoiced part combined. These sound units require a pole-zero digital
filter.

Results of the research

I. The naturalness and intelligibi lity of the Bangia consonants are associated with
. ,

the unvoiced part at the starting of their utterance, and therefore, depend on the

degree of accuracy of the modelling of their unvoiced part

11. The voiced .parts of Bangia sound units show their pitch within the segment

length from 20. l11S to 40. ms at a sampling rate of 11.0.25 kHz.

111. 36 out of 44 basic BangIa sound units are modelled successfully. The vowels,

which are 11 in number, are modelled successfully. Success rate of modelling

forvowels is 100.%. 8 consonants ~, <ll, u, ?5, 1>, <!, and "T failed to model.

Ariother4 consonants "', <f, ~, and <l are not as natural sounding and

intelligible. Success rate for'modelling of Bangia consonants is 63% Total

success rate for modelling of Bangia sound units is 73.16%

IV. Synthetic Bangia speech can be generated from the following information if

they are stored once in PC hard disk just by running the software routine

'BSSPPAS', which is included in Appendix D.

Gain information

Pitch information

Voiced I unvoiced decision

,
\~

, •. -
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Segment length information

Coefficients of each segments ofthe speech

193

These information require only small storage area on the hard disk of a Pc. For an example

of Bangia sound unit~;

a). Storage area occupied by the pitch information 170 Bytes

b). Storage areaoccupied by the gain information 182.Bytes

c). Storage area occupied by the coefficients : 3094 Bytes

Therefore, total space occupied by these information 3446 Bytes

Total space occupied by the recorded~. in ASCII format: 28489 Bytes

Space saved 25043 Bytes (879%)

v. The BangIa speech synthesizers can be easily implemented using a low cost PC,

with the following specification.
. '.' ",,'

. CPU: Intel 386 and above

Storage area: Minimum 100 MB free space ofHDD

. RAM: 8 ME (minimum)

. Mu1tiinediakits (sound card, speaker, and microphone)

The mathematical modelling of BangIa sound units using the linear predictive coding

(LPC) technique, is the first of its kind in Bangladesh It has been mentioned earlier that

similar research has been carried out on BangIa speech in the Department of Applied

Physics and Electronics of the University of Rajshahi. They used the formant analysis

technique in their work. However, their effort could not yet produce mathematical models

to geperate synthetic BangIa speech. Thus, their results and findings are yet to be verified.

The work presented in this dissertation can be claimed to be the first one, which is able to

generate synthetic BangIa speech. It is worth mentioning here that the formant analysis

technique is not a widely used technique. It depends on the exact extraction of the formant

frequencies of the s'peech signal. A slight deviation from the true formant frequency may

cause complete loss of naturalness and intelligibility. Some formants also attenuate in the

vocal tract before the radiation of the speech from the mouth. Therefore, it is very difficult

to track the formants exactly as they are non-stationary in nature To overcome this



Results, Discussions, and Suggestions for Futlll'e Research 194

problem, the LPC technique was developed, which is widely used for speech analysis and

synthesis. It is easy to determine, in the LP analysis technique, which speech segment is

voiced and which one is unvoiced. Depending on this decision, the pitch of each voiced

speech can easily be obtained.

In the present work, owing to time constraints, a general process for generating synthetic

BangIa speech could not be developed. It would also require complete analysis of the

BangIa speech, identify various problems, formulate solutions there of and develop

complex software routines. Therefore, a study was carried out to decide on the voiced,

unvoiced, and mixed source of speech by studying and observing the corresponding.

waveforms on the computer screen using a software package called 'Grapher' The

waveform was viewed on the x-axis in an enlarged form. In this way, it was easy to decide

which speech segment is voiced, which is unvoiced, and which segment is a mixed one

without developing complex software routines-. The commercially available 16-bit sound

card was used to record the sound units.

The generation of synthetic Bangia sound units was based on the recorded sound units of a

BangIa speaking male. A particular male sample was chosen as an experiment to test

whether it is possible to generate synthetic BangIa speech or not. Thus, it was a test case

for BangIa speech, and has been found to be successful

An English voice synthesizer can produce the synthetic speech using the phoneme method.

However, for generating ,synthetic Bangia speech it would be easier to use the modelled

sound units rather than the phoneme method.

A Bangia text-to-speech converter that';as developed earlier by Md. Nazrul Islam [47],

can be used widely as a language tool for the dumb (who can write, but can not speak), and

a talking computer in a class room. It may also be used for advertisement and

announcement purposes in public places and in telecommunication. This text-to-speech

converter uses pre-recorded BangIa speech segments as the basic sound units. However,

the modelled Bangia sound units can be used as the basic sound units for that Bangia text-
to-speech converter.
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The main advantage of this mathematical modeling is that without storing the recorded

speech, it is possible to store the pitch, gain, coefficieilts, voiced I unvoiced decision and

segment length information of the speech in a very small space of the computer storage

device. Using this stored information, it will be possible to generate the synthetic speech

using a software routine.

In this dissertation, focus has been given only on the mathematical modelling of the basic

Bangia sound units. Most of the sounds units could be modelled successlully. Some units

can not be modelled as part of their waveforms contain mixed source (voiced and

unvoiced) of speech, for example, '<>, W, ~, 1>:'?5,1>, ~ and <1. These mixed sources of

speech contain both poles and zeros. Therefore, the LPC technique fails to model these

sound units, as it can model the speech that contains poles only. Thus, these sound units, if

modelled using the LPC, technique, lose their naturalness and intelligibility. At present,

efforts are being made in the world renowned speech research-laboratories all over the
. ",

world to develop a pole-zero LPCiechnique to over come the problem [43].

6.4 Suggestions for further Research in this Field
The mathematical modelling of the Bangia sound units, which has been developed and

desGribed in this dissertation, uses the linear predictive coding (LPC) technique. The LPC

techniquejs based on an all-pole filter to generate artificial speech If speech contains both

poles and zeros, and if it is modelled using the LPC technique, it will lose its naturalness

and intelligibility, and would fail to repro,Juce the speech. These problems exist lor some

BangIa consonants. To solve these problems, a further study and research is required in

this regard. The following are some of the works that could be undertaken to promote the

present development.
,

(a) This research was carried out using voice of only a single male speaker. However,

extensive research may be carried out based on a considerable number of male and

female speakers. This would tend to make the study on Bangia speech more

complete, and would lead to develop a general algorithm for modelling Bangia

speech.
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(b) Further research may be carried out to produce naturalness of Bangia sound units

by using pole-zero model of LPC technique. In this regard, extensive analysis of

the BangIa sound units may be required.

(c) Research may alsp be carried out to develop BangIa speech recognition systems

using linear predictive coding technique and neural network based system.

(d) Research may also be carried out to develop complete application software for

BangIa text-to-speech converter, and education tools for PC using the modelled

BangIa sound units.

(e) Research may also be carried out to generate synthetic BangIa speech from the

scanned Bangia texts using the modelled sound units along with a Bangia text-to-

speech converter

(t) Research may be carried out for developing the speaker verification and

identification systems for security purposes, such as, telephone banking, automatic

money teller, PC banking etc. '
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APPENDIX A

FLOW-DIAGRAM FOR PITCH AND GAIN EXTRACTION OF
BANGLA SOUND UNITS
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APPENDIX B

COMPUTER PROGRAMMING SOURCE CODE FOR PITCH AND
GAIN EXTRACTION OF BNAGLA SOUND UNITS IN PASCAL

program Pitchdet;
{This program uscs LPA technique 10determine the pilch of speech signals
by Autocorelation method from error signal}
USES
vari 1,vari2,datain,segmdata,gain func, window ,auto,coeffi, pred iet,error ,Ipcauto,
pitchpr,crt,dos;
BEGIN
new(o);
data_input;
nw:=440; {nw is the data segment or window size}
nwl:=440;
{endval:~1+Round(M div nw);} {sets endval>1 to stim calculation)
endval:~1 +Round«M-nw*4) divnwl )+4;
nl:~880; {sels lower index of segmented dala 100)
01:=1; . .. .

writeln(The no. of data segment is: "endval:4);
assign(f4,'c:llpalgain I.da!');
rewrite(f4); . ,
assign(fS,'c:\Ipallpp I.dat');
rewrite(f5);
repeat
if(ol < 5) then nw:~nw else nw:~nwl;
segment_data_inpui(nl;nw); .
gain(nw); .
window_data(nw);
auto_value(nw);
coefficient;
predict_ value(nw);
Ipc_error _data(nw);
autocorelation(nw);
{pitch_draw;}
pitchyeriod(nw); .
{increment nl and ol}
nl:=nl+nw;
ol:~ol+ 1;
endval:=endval-l;
{endval:~O;}
until end val < I;
close(f4);
close(f5);
dispose( 0);
writeln('l am at the end of main program loop');
writeln('Hit Enter Key');
read In;
END.
* *** ** '"* *** '"'"'"'"** '"* ~***** * '"*** End of main program * '"* '"** * * * '"** * * '"* * '"'"** * '"'"'"*** '"* * * * * * * * '"* *



{Iowerlimit of the segmented data of array o[n]}
"{lower limit of the predictor ol'iginal value}

{p[.] store< the predicted value}
{er.] stores error signal values}
{used a~a counter when end of calculation is reached}

{stores the.current data value read from the input file}
:{current index of array o[n])
{current index of array x(n]}
{siie of the data window) ..
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unit varil;
interface
uses crt;
type
memorisize ~ 0..8000;
disvalues = array[memorisize] of real;
const
delt=(lll 1025);
VAR
to, f1, 12, fl, f4, f5, f6, 17, fS, 19, flO, f11, f12;text;
o:l\disvalues; {o(.] stores original data}
x;array[0 ..700] of real; {x[.] stores segment of original' data}
u;array[0 ..700] of real; {u[.] stores unit pulse for voiced speech)
matrix;array[O .. 12,0.. 13] of real; {stores matrix elements}
w;array[O .. IOOO]of real; {w[.] stores data window values}
R;array[O .. \ 000] of rcal; {R[.] storcs the autocorrelation value of weighted x[n])
a;array[1..13] of real; {a[.] stores 12 coefficients)
y;array[0 ..600] of real; {stores the output data of AR Digital Filter]
1'1;array [0.. 15] of integer;
pr;array[0 ..600] of real;
e;array[O .. IOOO]of real;
endval;integer;
temp:integer;
val, val beal;
n;integer;
bnteger;
nw ;integer; .
nwl,nw2,nw3;integer;
k:integer;
kl :real;
nl:integer;
ol:integer;
NN,NNI,M;integer;
n I ,treal;
ij,kk:integer;
pivot, pivi:real;
pitch:real;
p,p I :rcal;
max:real;
ch;char;
q;byte;
cal,tal:real;
Dt,tax,pal;real;
wW,xx,yy:real;
rise,fall:real;
peakl,peak2;integer;
z:integer;
implementation'
begin
end.
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***************************************************************************************
unit vari2;
interface
uses crt;
val'
ap:array[0 ..350] of real; {unit pitchpr}
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bp:array[O ..350] of real;
ep:array[0 ..350] of real;
period;array[0 ..350] of real;
ta:array[0 ..350] of real;
te:array[0 ..350] of real;
G,a I ,a2,a3:real;
a4,a5 :real;
implementation
begin
end.
***********************************************************************~***************
unit datain;
interface
uses crt,vari I ,vari2,dos;
procedure data_input;
implementation
procedure data_input;
begin
clrscr;
for i:~O 10 8000 do begin oA[iJ:~O.O; ond;
writelnCNow data is read from the input ti Ie');
assign(fl ,'c:\sound\a I.dat');
rcsct(fI );
n:=O;
M:~O;
while not cot(fI) do
begin
readln(f1, val);
oArn1:~val;
0:=0+1;
M:~M+I;

end;
close(f1 );
0:=0;
end;
begin
end.
***************************************************************************************
unit segmdata;
interface
uses vari l,vari2,crt;
procedure segment_data _input(nl,nw: integer);
implementation
procedure segment_data _input(nl,nw: int~ger);
begin .
for i:~O to 700 do begin x[il:~O.O; end;
{writeln(nl:4);
writeln(nw:4);
read In;}
I:~O;
for n:~nl to nl+nw-I do
begin
x[I]:~OA[ n];
I:~I+I;
end;

writelnCI have finished collecting the segmented data');
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{wait;}
end;
begin
end.
***************************************************~***********************************
unit GainFunc;
interface
uses crt, vari I,vari2;
procedure gain(nw:integer);
implementation
procedure gain(nw:illteger);
begin{l}
writelnCNow I am calculating the RMs value of the segmented data'):
writeln;
al:~O.O;
I:~O;
for n:~O to nw-I do
begin{3}
al :~al +Sqr(x[IJ);
I:~I+I;
{writeln(l:2);}

end{3};
1:~0;
a2:~ O.S*(Sqr(x[I])+Sqr(x[nw-I]));
a3:~(al-a2); . ,
a4:~(a3/nw);
as:~Sqrt(a4);
writeln(f4,aS:8:6);
writelnCGain is: ',as:8:6);.
writeln('l have finished the computation of gain(RMS) of segmented data');
end{ I); . .
begin
end.
***************************~*****-******************************************************
unit window;
interface
uses vari I,vari2,crt;. '.
procedure window _data(nw:integer);
implementation
procedure window _data(nw:integer);
begin
for i:~O to 1000 do begin w[i]:~O.O; end;
for n:~O to nw-! do
begin
w[n]:=0.S4-0.46*cos«2*pi*n )/(nw-l));
end;

writelnCI have finished entering the window function');
{wait;} ,
end;
begin
end.
********************************************************~,******************************
unit auto;
interface
uses vari] ,vari2,crt;
procedure auto_value(nw:integer);
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implementation
procedure auto _value(nw:integer);
begin
for i:~O to 1000 do begin R[il:~O.O; end;
for k:~O to 13 do
begin
R[k]:~O.O;
for n:~O to nw-l do
begin
R[k]:~ R[k]+w[ n] *x[n]*w[n+k] *x[n+k];
end;
R[kl:~R[k ]/20000.0;
writeln('lndex~',k:2,' Autocorrelatioll value',RlkJ: I0:5);
wait;} .

end;
writcln('1 have finished calculating the autocorrelation values');
{wait;}
end;
begin
end.
***************************************************************************************
unit coeffi;
interface
uses vari I ,vari2,crt;
procedure coefficient;
implementation
{The following procedure calculates the coefficients of 13th' order}
{linear equations}
procedure coefficient;
begin
for i:~1 to 13' do begin a[i]:~O.O; e~d;
for i:~O to 12 do

begin
for j:~O to 13 do
begin
matrix[iJl:~O.O;
end;.

end;
{inputs matrix elements of 13th column}
for k:~O 10 12 do

begin
matrix[k, 13]:~R[k+ I];

end;,
{inputs matrix elemenls of other columlls}
for j:~O to 12 do
begin
for k:~O to 12 do
begin
kk:=k-j;
if (kk<O) then kk:~-kk;
matrix[j,k ]:~R[kk J;
end;

end;
{writeln(This will show the matrix elements');
for j:~O 10 II do
begin

o
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writeln;
wait;
for k:~O to 12 do
begin
write(matrix[j,k ]:4: I,' ');
end;

end; }
{The matrix inversion and coefficient calculation starts here}
for k:~O to 12 do
begin {411}
pivot:~matrix[k,k ];

{ writeln(k:3,' ','This is diagonal element',pivot:8:5);
ch:~readkey; }
for j:=k to 13 do
begin {412}
matrix[kj 1:=matrix[k,j]/pi vat;.
end; {412}

for i:~O to 12 do
begin {413}
if(i<>k) then

begin
pivi:~matrix[i,k ];
for j:~k to 13 do
begin {414} ,
matrix [ij] :=matrix[ij ]-pivi *matrix [kj];
end; {414}

e'nd; .
end; (413}

end; {411}
{Now transfering the coefficients from 13th column to coefficient array a[k]}.
for k:~O to 12 do .

begin
a[k+ 1]:=matrix[k,13];
kk:=k+l;

{writeln('fndex~',kk:2,' Thisis the coefficient value=',a[k+ I]: I0:6);
wait;}
end;

writelne! have finished calculating the coefficients');
{wait; }
end;
begin
end.

** * * * * *~* * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * *.* * * * * * ** *** * * ** * * * * * * * **** * * * * ** * * * ** * * * * * * *unit predict;
interface
uses vari I ,crt, dos;
procedure predict_ value(nw:integer);
implementation
Procedure predict_ value(nw:integer);
begin
for i:~ 0 to 600 do begin pr[i]:~O.O;end;
writelnCNow [ am computing the predicted data value');
for n:=O to nw-I do {calculates nw sample values using 13 coemciellt'}
begin .
for k:= I to 13 do
begin

•
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kk:~n-k;
if(kk<O) then pr[nl:~pr(n]+a(k]*O.O else

pr( n]:~pr( n]+a(k]*x[kk];
end;

{writelnCindex~',n:2,' ','Actual value~',x(n]:8:3,' ','Predicted value~'.pr[n]:8:3);
readln;}

end;
end;
begin
end.

***************************************************************************************
unit error;
interface
uses
vari I,crt; ,
procedure Ipe_error _data(nw: integer);
implementation
procedure Ipc_error _data(nw:integer);
begin
for i:~O to 1000 do begin e[i]:~O:O; end;
{assign( fO,'c:llpalerr 13.dat'); .
rewrite(fO);}
I:~O;
t:~O.O;
for n:~O to nw-I do
begin
e[ll:~x( n]-pr( n];
{writeln(llJ,e[l]: I0:6,' ',1:14:8);}
{writeln( e[IJ:8:6);
readln;)
I:~t+delt* 1000.0;
I:~I+I;

end;
close(fO);
end;
begin
end.

**********'*****************************************************************************
unit Ipcauto;
interface
uses vari I ,crt;
procedure autocorelation(nw:integer);
implementation
procedure autocorelation(nw:integer);
begin

writelnCNow I am calculating the pitch period by autocorrelation method');
assign( 12,'c:IIpaIlpitch.dat');
rewrite(12);
for i:~O to 700 do begin R[i]:~O.O; end;
I:~O.O;
max:=O.O;
for k:~O to nw-I do
begin
R(k]:~O.O;
for n:~O to nw-I do
begin
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,

R[kJ:~R[k ]+w(n J*e[nJ*w( n+k ]*e[ n+k]:
end;
if (max < Abs(R[k))) then max:~Abs(R[k]) else max:~max;
R[k]:~R(k]/max;
{if(R[kJ < 0.0) then R[kl:~o.b;}
(writeln('lndex~',k:2,; Autocorrelation value',R(k]: 10:5);
writeln(t:8:6);}
writeln(12,R[k): I0:6,' ',t: 14:8);
t:~t+dell*1 000.0;
{readln;}

end;
close(12);
writeln('1 have finished calculating the pitch data from autocorrelation values'):
end;
begin
end.
***************************************************************************************
unit pitchpr;
interface
uses vari 1,vari2,crt,dos;
procedure pitch _period(nw: integer);
{This program is to determine the pitch period of speech signal by using
Ipc autocarelation method i.e., simplied inverse filtering technique(SlfT)}
implementation
procedure pitch yeriod(nw: integer);
begin
for i:~O to 350 do begin ap[i]:~O,O; end;
lor ;:=0 to 350 do begin bp[i):~O:O;end;
for i:~O to 350 do begin ep[i]:~O.O; end;
for j:~O to-350 do begin period(i]:~O.O;end;
fori:~Oto 350 do begin ta[i]:='O.O;end;
for i:=O to 350 do begin to[i]:",O.O; end;
assign( f3,'c:Ilpalip itch.dat ');
reset(f3);
NN:~O;
I:~O;
if(ol < 5) then nw3:='Round«(nwdiv.4)*I.5) else nw3:~Round(nw div 3)* 1.5);
for i:~ 0 to (nw3-1) do
begin

if(ol < 5) then NNI :~28 else NN I:~28;
if(NN<NNl) then
begin
readln( f3,val,tal);
NN:~NN+l;
end
else
begin
readln(fJ, val,tal);
if (val<O.O) then val:~O.O ;
bp[I]:~val;
period[l] :~tal;
1:=1+1;
NN:~NN+I;
end;

end;
close(f3);

(
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peak 1:=0;
peak2:=O;
k:~O;
I:~O;
xx:=O.O;
if(bp[I»bp[O]) then

begin
rise:=1.0;
fall:~O.O;

end;
if (bp[ I]=bp[O]) then

begin
rise:~O.O;
fall:~O.O;

end;
if (bp[ I]<bp[O]) then
begin
peak2:~peak2+ ];
rise:~O.O;
fall:~I.O;
ep[k):~bp[O];
te[k ]:~period[O];
k:~k+]; .
end;

for j;~I to NN do
begin
if (bplJ] < bp[j-I]) and (rise= I) then
begin
peak2:~peak2+ I;

. rise:=O.O;
fall:~1.0;
ep[k]:~bp(j-I ];
te[k ]:",period(j-I];
k:=k+l;

end;
if (bplJ] < bp(j-]]) and (bplJ]~O.O)then
begin.

for kk:~ 0 to (peak2-j) do
begin
yy:=ep[kk] ;
if (yy>xx) then
begin
xx:~yy;
ww:=te[kk);
end
else

begin
xx:=xx;
ww:=ww;

end;
end;
ap[ll:~xx;
ta[ll:~ww;

1:=1+1;
peak 1:~peak I+ I ;
peak2:~0;

214

f



Appendix B

k:=O;
xx:=O.O;
end;
if (bpljl>O.O) and U~NN) then
begin

for kk:~O to (peak2-1) do
begin
yy:~e[kk] ;
if (yy>xx) then
begin
xx:=yy;
ww:~te[kk];
end
else
begin
xx:=xx;
ww:=ww;
end;

end;
if (xx>bp[NN]) then'
begin
xx:=xx;
ww:=ww;

end
else
begin
xx:=bp(NN];

. ww:=NN;
end;

ap[l]:~xx;
ta[I]:~ww;

1:~I+l;
peak 1:~peakl + I;
peak2:=O;
k:~0;.

xx:=O.O;
end;
if (bpl.iJ >bplj, I]) then
begin
rise:=\.O;
tall:~O.O;

end;
if(bpl.iJ < bplj-I]) then
begin
rise:=O.O;
fall:~\.O;

end;
if (bpl.iJ ~ bplj-I]) then
begin
rise:=O.O;
fall:~\.O;
end;

end;
peak I :~peak 1-1;
{writeln(The number of data point is: ',NN:4);
writeln('The number of largest positive peak: ',peak 1:4);
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writeln;}
max:~O.O;
lax:=O.O;
I:~O;
for i:~O to peak I do
begin
if(max < ap[l]) then
begin
max:~ap[I];
tax:=1a[I];
1:~I+l;
end
else
begin
max:=max;
tax:=tax;
I:~I+I;
end;

end;
{writcln(max:8:6);
writeln(tax:8:6);
writeln;
read In;)
{ voiced/unvoiced decesion and pitch periodofvoieed speech}'
NN:=O; ,.
I:~O;
if (01< 5) then Dt:~(max/1.0 1) else Dt:=(max/1.0 I);
{writeln(Dt:8:6);
writeln(peak 1:4);
read In;}
for i:~ 0 to peak I .do.
begin
if(ap[i] > Dt) then
begin .
pal:~apli];
tal:=ta[i);
I:~I+J;
NN:=NN+I;

end
else
begin
max:=max;
I:~I+I;
end;

end;
if (NN~ I) then vall :~tal else val I :~O.O;.
writeln(f5,vall :8:6);
writelnCHellow! 1am from unit pitehpr');
writeln;
writelnCPitch is: ',vall :8:6);
writeln('No. of segment is: ',01:4);
writeln;
write In;
end;
begin
end.
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FLOW-DIAGRAM FOR MATHEMATICAL MODELLING
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COMPUTER PROGRAMMING SOURCE CODE FOR
MATHEMATICAL MODELLING OF BANGLA SOUND UNITS IN

PASCAL

PROGRAM Autorecursive_Digital_Filter~~as;
{This program designs the Auto..Recursive Diital Filter .and the basic model}
{of synthetic speech us~ng Linear Predictive Analysis}
USES
crt, varil, vari2, textnurn, datairil, segmdata,"window,auto, coeffi, dos;
procedure wait;
begin
ch:~readkey;
end;
{The following procedur8 will gcmc:roLc uniL pul~3e uno r.-dlluOlli pulse ULCf,)(,,:lIdiJIY}

{on the voiced/unvoiced. decision} .
procedure unit_pulse_randoffi_pulse;"
begin{O}
for i:~O to 700 do begin uli] :~O.O; end;
readln(f3,vall);
writeln(vall:lO:8);
If (vall > 0) then

begin{l}
pitch:~(vall!lOOO ..O);
writeln (',Now r- am computing' the unit pulse train for voiced speech');
writeln ( I ,at pitch period interval', vall: 10: 6) ;
kl:~O.O;
nl:~O.O;
NN:~O;
for n:=O to nw-l,.do
begin{2}

if (kl~O~O) then
begin{3) .
.u[n]:~l.O;.
{writeln(u[n] :4:2);)
NN:~NN+l;
kl:~k1+1.0;
nl:~nl+round(pitch!d~lt);
{writeln(nl:4:2); }
end{3)

else
begin{4)

urn] :~O.O;
{writeln (u [n] :4:2);)
NN:~NN+l;
if (NN~nl-l) then kl:~O.O;

end{ 4};
end{2);

writeln('I have computed the unit pulse train of pitch pC;:I"lod');
{wait; )

cnd{l};
If (vall~O.O) then

begin(l}
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xor r1[lS]);

writeln('Now I am computing the random number as a noise source');
begin
{Provide initial bits to the shift register array r[i]}
r1[0] :~1;
r1 [1] :~1;
r1[2]:~0;
r1[3] :~1;
r1[4] :~1;
rl[S] :~1;
rl[6] :=0;
r1 [7] :~1;
r1[8]:~1;
rl[9] :=0;
r1[10] :~O;
r1[1l] :~O;
r1 [12] :=1;
r1[13] :~O;
r1[14] :=1;
rl[lSf:=l;
u[O] :~r1[0];
for i:~l to nw-l do

begin
temp:.~,r1 [l]xor r1 [12] xor rl [14]
if (ternp~O)then:u[i] :=-1 else
"u(i] :=temp; . ~,
for j:~O to 14 do

begin
ri[lS~j] :';'r1[14-j];

endj'
rl [0] .:~temp;

en.di:
end;

end{l};
end{O};
procedure AR Digital filter-(nw, nwl:-integer);
begin{O} - - '.
for i:~O to 600 do b~gin. y[i] :~O.O; end;
{t:""O.O;}

. i:=Oi
read1n (f4, G);
write1n(G:6:4);
writelni
writeln (' I. am computing the synthetic speech data from AR Digital Filter');
writeln(lfor a gain function ',G:6:4);
for n:= Oto nw - 1 do -'"

begin{l}
p:~O.O;
for k:= 1 to 13 do

begin{2}
kk:~n-k;
if (kk<O) then p:~p+a[kJ*O.O else

p:~p+a[k] *y[kk];
end{2};
{write1n ( 'p~ ',p: 8: 3) ; }
p1:=G*u[n]+p;
y[n] :~p1;
if (max <~ Abslp1)) then max:~Abs(p1) else max:~max;
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i:=i+l;
writeln(fll,y[n] :B:4,' ',t:14:6);
writeln(f2,y(n] :B:4);
t:=t+delt*lOOO;

{writeln('index=',n:2, I Actual value=',x(n):8:4;
value=',y[n] :B:4);)

endl I};
writeln('Maxirnum data is: ',max:6:4);
writelnj
writeln('r have modeled synthetic .speech data for
writeln( 'Now I am going to "the..next section');
writeln;
writeln;
writeln;
{readln;)
end{O);
procedure headerdatgen;'
begin
assign(fS, 'c:\sound\a13";"av" ).;
assign(f6, 'c: \lpa\heager.dat')-; ..
reset(fS); .
rewrite (f6) ;
for i:=l to 44 db.

begin'.
read(fS,ch);
j :=byte(ch);
writeln.(f6;j )'; .

end:
. close (tS);
close(f6);
etH;i;
.procedure .nurritext"j
begin . . . . . ' .
. assign (f7 i 'c:\ipa\header .dat' .)';
assig'n (fB•.' c: \ipa \mode13q. dat ' ) ;.
assign(f9, 'C:\bssp\modebq.wav.'); .'
. reset (f7") ; ." .
rewrite.(f9) ;
while not eof(f7) do

begin
read (f7 , q) ;
ch:=char(q) ;
write (f9, ch);

end;
close (f7) ;
reset (fB) ;
while not eof(fB) do

begin
read(fB,cal);
cal:=(cal/max)*12B.O;
cal:=cal+12B.O; .
q:=round(cal);
ch:=char(q) ;
write (f9, ch);

end;
close(fB);
close(f9);

Modeled

segment ',01);
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{sets lower index of segmented data to O}

{nw is the data segment or window size}

end:
BEGIN
c!rscr;
{This is the main program}
New(o);
{initialize_arrays;.!
text_ nurn:
data_input:
nw:=275;
nwl:~330;
{endval:=l+rQund(M. div nw):} {sets endval to 1 to. start calculation}
endval:~l+round( (M-nw*4) div nwl)+4; {sets endval to 1 to .start calculation}
writeln ('The no. of da.ta segment is.: '., endval: 4);
readln:
nl:~O;
01:=1:
t:=O.O;
max:=O.O:
assign (£11, 'c :\lpa \mode13q .dat ' ) ;
rewrite(fll); .
assign (f2, 'c: \lpa\mode13q. dat' ) ;
rewrite(f2);
assign(n, 'c:\lpa\lpp13c.dat');
reset (n); •
assign (f4, 'c: \lpa \gain13c. dat ,.) ;
reset(f4);
repeat
if (01 <5). then nw:.~nwelse nw:~nwl;
writeln(nw:4);
segment data input (n1-,nw~;
window_data (flw); . .
auto_value (nw);
coefficient:
unit yulse _ranq.omYL).lS8i'
. ARDigital Filter (nw,nwr)i
{inciernent-nl and ol}
nl:=nl+nw;
ol:~ol+l;
e~dval:=endval-l;
until endval < I:
close (f2);
close (n);
close(f4);
close.{ £11);
Dispose (0);
max:=round(rnax) +2.0:
. writeln('The maximum amplitude is: ',max:8:6);
headerdatgen:
nurntext;
writeln('I have finished modeling of BangIa sound/speech using LQCModel');
writeln('I am at the end of main program loop');
writeln('Hit Enter Key');
readln;
END.
************************End of main program** ******** ***** ****** *** *** *** ******



.,

{lower limit of the segmented data of array o[n]}
{lower limit of the predictor original value}

{stores the current data value read from the input file}
{current index o[array o[n]}
{c~nt index of array x[n]}
. {size of the data window}
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unitvaril;
interface
uses crt;
type
memorisize = 0..8000;
disvalues = array(memorisize] of real;
const
delt=( 1/11025);
VAR
ro, fI, 12,13, f4,5, fli, fI, 1&,19,flO, fI I, fJ2:teXl;
o:"disvalues; {o[.] stores original data}
x:array[0..700] of real; {x[.] stores segment of original data}
u:array[0..700] of real; , . {u[.] stores unit pulse for voiced speech}
matrix:array[O..12,0..13]of real; {stores matrix elements}
w:array(0 ..1000] of real; {w[.] stores data window values}
R:array[0..1000] of real; {R[.] stores the autocorrelation value of weighted x[n]}
a:array( l..13] of real; {a[.]stores 12coefficients}
y:array[0 ..600] of real; {stores the output data of AR Digital Filter)
rl: array [0..15] of integer; . .
pr:array[0..600] of real; {p[.] stores the predicted value}
e:array[0..1000] of real; {e[.] stores error signal values}
endval:integer; {used as.acounter when end of calculation is reached}
temp:integer;
val, vall :real;
n:integer;
I:integer;
nw:integer;
nwl,nw2,nw3:inieger; .
k:integer;
kl:real;
nl:integer; .
ol:integer;
NN,NNJ,M:integer;
. n I ,t"real;
iJ,~:integer;
pivot, pivi:real;
. pitch:real;
p,plireal;
max:real;
ch:char;
q:byte;
cal,tal:real;
Dt,tax,pal:real;
ww,xx,yY:real;
rise,full:real;
peak I,peak2:integer;
. z:integer;
implementation
begin
end.
***************************************************************************************
unit vari2;
interface
uses crt;
var
ap:array(0..350] of real; {unit pitchpr}
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bp:array[O..350] ofre.l;
ep:array[O..350] of real;
period:array[O..350] ofre.l;
ta:array[O..350] ofre.l;
le:array[O..350] ofre.l;
G,a l,a2,aJ :real;
o4,o5:roo1;
implementation
begin
end.
*****************************************************~***********************
unit textnum; '{This is ,one of th~Sub-Routinesof.the Main program ARDFMD2}
interface
uses varil, vari2, crt.;
procedure text~num;
implementation
procedure text num;'
begin - ,
assign(fl, 'c:\souno\al.way'): ..
assignlf2, 'c:\lpa\al.dat');
resetlf1); ,
rewrite (f2);
for i:'=l to 8000 do ,begin o',[il:~O.O; end;
i:=O;
j:~1;
while not eof 1 tll do
begin
if li<44) then read{tl,ch) else

begin
read (fl., chi ;
q:~byte(ch) ;
b'[j]:'=q; "
o'[j] :~o' [j]~128.0; ,
writeln (f2',o' [j] ,:.6:4) ;
j:~j+1; ,
end;

i:=if1;
end;

j:~j-1;
close (tl);
close(f2);
writeln{ 'The number of data is, j= I', j :,4);
writeln;
writeln('Hellow ! I am at the end of unit textnum');
writeln;
end:
BEGIN
END.
***********************~*****************************************************
uni t datainl ;
interface
uses crt,varil,vari2,dos;
procedure data input;
implementation-
procedure data lnput;
begin

{
<
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clrscri
for i:~O to 8000 do begin oAli] :~O.O; end;
writeln('Now data is read from the input file');
assign(fl, 'c:\lpa\a13.dat');
reset(fl); .
n:=Oi
M:~O;
while not eof(fl) do
begin

readln (fl,val) ;.
oAln] :~val;
n:=n+li
M:=M+l;

end;
close (fl);
n:=Oi
end;
begin
end.
*******************~**~*******~**~*~*******~************~********************
unit segmdata;
interface
uses vari 1,vari2,crt;
procedure segment_data _input(nl,nw:integer); .
implementation ,.
procedure segmenUlatajnput(nl,nw:integer);'
begin
for i:~to 700 do begin x[i]:~.O; 'end;
{writeln(nl:4); . .
writeln(nwA);
readln;} .

.I:~;
for n:~1 to nl+nw-] do
. begin

x[ll:~A[nl;
1:=1+1;
end; .

Writeln('I have finished collecting thli segmented dilta');
{Wait;} .
end;
begin
end .
••*************************************************************************************
unit GalnFunc~
interface
uses crt,van] ,vari2;
procedure gain(nw:integer);
implementation
procedure gain(nw:integer);
begin{l}
writeln('Now I am calculating the RMs value ofthi: segmented data');
writeln;
al:~.O;
I:~;
for n:~ to nw-] do
begin{3}
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al :~aI+Sqr(x[I]);
1:=1+1;
{writeln(l:2);}
end{3};

I:~;
o2:~ 0.5*(Sqr(x[lj)+Sqr(x[nw-1 J));
o3:=(al-02);
a4:=(o3/nw);
o5:~Sqrt(a4);
writeln(f4,o5:8:6);
writeln('Gain is: ',05:8:6);
writeln('1 have finished the computation of gain(RMS) of segmented data');
end{l};
begin
end ..
**********************~****************************************************************
unit window;
interface
uses van I,vari2,crt;
procedure window3ata(nw:integer);
implementation
procedure window_data(nw:integer);
begin
for i:~to 1000 do begin w[ij:~.O; end;
for n:~ to nw-I do -..
begin
w[nj:~.54-o.46*cos«2 *pi*n)/(nw-I »);

end;
writeln('l have finished entering the window function');
{wait;}
end;
begin
end. .'.
*****************~**********~****************************************~*****************
unit auto;
interface
'uses varil,vari2,crt; c. . •

procedure aoto~value(nw:integer);
implementation

. procedure auto_value(nw:inieger);
begin
for i:~ to I 000 do begin R[i]:~.O; end;
for k:~ to 13 do
begin
R[k]:~.O;
for n:~ to nw-1 do
begin
R[k]:=R[k]+w[n]*x[nj*w[n+kj*x[n+k];
end;
R[k]:~R[k]/20000.0;
writeln('lndex~',k:2: Autocorrelation value',R[k]: I0:5);
wait;}

end;
writeln('l have finished calculating ihe autocorrelation values');
{wait;}
end;
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begin
end.
***************************************************************************************
unit coeffi;
intemce
uses val; 1,vari2,crt;
procedure coefficient;
implementation
{The following procedure calculates the coefficients of 13th order}
{linear equations} ,
procedure coefficient;
begin
for i;=I to 13 do begin ali] ;=(l.O;end;
for I;={)to 12 do '
begin
for j;={) to 13 do
begin
matrix[ij);={).O;
end;

end;
{inputs matrix elements of 13th column}
for k;={)to 12 do
begin
matrix[k, 13];=R[k+ I];

, end;
{inputs matrix elements of other columns}
for j;={) to 12 do '
begin
for k;={)to 12 do
begin
kk;=k-j;
if (kk<O) then kk;=:kk; ,
matrixD,k];=R[kk];
end; .

end;. . ..
{Writeln(This will show the matri,x elements');
for j;={) toll do
begin
writeln;
wait; .
for k;={)to 12 do
begin
write(matrixD,k];4; I,' ');
end;

end; }
{The matrix inversion and coefficient calculation starts here}
for k;={)to 12 do
begin {411}
pivot=matrix[k,k];

{ writeln(k:3,' ',This is diagonal eiement',pivot8;5);
ch:=readkey; I
for j:~k to 13 do
begin {412}
matrix[kj]:=matrix[kj]/pivot;
end; {412}

for i:={)to 12 do
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begin {413}
if(iOk) then

begin
pivi;~atrix[i,k];
forj;=kto 13do '
begin {4l4}
matrix[ij] ;~atrix[ ij]-pi vi*matrix[kj];
end; {414}

end;
end; {413}

end; {411}
{Nowtransfering the coefficients from 13thcolumn to coefficient array ark]}
for k:~ to 12do
begin
a[k+1];~atrix[k, 13];
kk;~k+I;
(writeln('lndex=',kk;2,' This is the coeflicient value=',a[k+ I); I0;6);
wait;}
end; . .

writeln('1have finished calculating the coeflicients'); .
{wait; } .
end;
begin
end.
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