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Abstract

This thesis discusses device physics and simulation issues of symmetrical nanoscale double-

gate transistors at the quantum level. The purpose of the thesis is threefold l) an understanding

of the basic physics oLsymmetricai ~ouble"gate...MOSEET$_(oLanynanoscale_de¥ice--f{)f-that

matter), 2) implementation of appropriate physics and methodology in nanoscale device

modeling; 3) development of a new TCAD_(technolo~_computef-aide<Ldesign)_tool Jor quantullL

level device simulation. We concentrate on the technical issues by investigating a double-gate

structure~ which. _has-been w.jdely_accepted...as ihe ideaLdevlce--.S1ructure JoI--U1timate-GMBS

scaling in the future. After ~. brief look at the basic. physics of symmetrical double-gate

MOSFEI, ""e focus on ;<llJll11tumeffects and non-equilibrium balliStic transport in extremely .

sc~led transistors (in contr~t to qljllsi-equilibrium, scattering-dominant transport in long channel

devi~es), where a non-equHibt1)lIll Green's fimction (NEGF) formalism has been used to deaj

with the quantum transport problem. The self-consistent solution of Poisson's equation anq

NEGF in nanoscale device modeling-is--shown- to--Be-very_promising and-gen€ral.- Results-have_

been compared with those of a standard simulator and it has been found that the developed

simulator _produces similar.results _huLrequires JDllCh.Jess .1imeJ>ecause_oLthe_use--Of--our-fast

uncoupled mode space (FUMS) approach. Finite element method (FEM) has been used in

4iscreti;zing the relllV/11ltFDEs. FEM can handlll CQlllple" gemnetj{' ~o~e easily than the usually
.':' .,: I

used finite difference (FDM) method. FEM a\(lnj! with FUM~ jI1,*e~ uffiloscale ?evic~

simulation efficjellt M4 ~~xible.
;

"",
' .....~ -xi-



Intr6duction

1.1. .. Overview of the Problem

CMOS technology has been ]:lroven as one of the most important achievements in

modern engineering history. For decades, progress in device scaling has followed an

exponential curve: device densi!y on a micrQProcessor doubles eyel)' thre.uears. Tllls-is

known as the Moore's law [1]. The minimum dimension size of a single device for

present <fay technnlogy. is less-than- 100. IJJlLin_gate"length•.Gootimled-success-.ill.de~i=_

scaling is necessary for further development of the semiconductor industry in the years to

come. A group ofleading.companies-publishes.theiLprojections~or.the.next.decade inlhe

recent 'International Technology Roadmap for Semiconductors (ITRS-05) [2]. The

roadmap projects-a'devicegare-Iength- down. to--3G- nm around-2014{2 ].Scaling beyond--

30 nm, however, can be much more difficult and different for it is quite close to the

fundamental limit oLsemiconductocphysicsLEv.en,if lithographic_and.etching techniques

can pr-ovide the necessary dimensions, bulk CMOS will run into a number of short

channel effects--associate<Lwith transistor .scaling. The _short_channel effect (SCE).is

characterized by threshold voltage VTH roll-off, drain induced barrier lowering (DIBL)

and sub-threshold swing. AS.tbe.gate length of a MOSFET is scaled with all other deyice

Pafllllleters held constant, sub-threshold swing increases and VTH decreases, which

. --degrade.MOSFET p~rfOl:mance. The ..ratio of on. CllITenLto__off_current (.ION! laFF) is

reduced, giving designers a tradeoff between circuit speed and static power dissipation.

Without doubt, we are facing numerous .challenges, hoth-practically..and.1heGf-etically.

Device simulation requires new theory and approaches to understand device physics and

to design devices--at-the soo-30nm.sc-ale. Effurts.hav€-been.put-furth-in-recent-yellFs-[3-11

but much more is needed.

The principle objectives of this .thesis .are: 1) .to .understand.1hebasic.ph¥sies-of

symmetrical double-gate MOSFETs, 2) to implement appropriate physics and

methodology in nanoscale device modeling, and 3) to develop a new TCAD (technology

1



computer aided .-design) _tool JOr .quantum-level .device3imulation. We .address--the

technic!!1 issues by investigating a double-gate structure, which more and more research

evidence indicates to-be.the ideal-device strmlWe. fOFuitimate.GMOSscaling.[ 4}After-a--

brief look at the basic physics of symmetrical double-gate MOSFET, we focus on

quantum .effectsand non"equilibrium, ..near-ballistic ..transport. -in-extremely--sGaled

transistors (in contrast to quasi-equilibrium, scattering-dominant transport in long channel

devices), where-a-non-equilibrium.Green's .functions-fermaiism.(NEGF+1las.been-used -to- .

deal with the quantum transport problem [8-10). In the remaining parts of this chapter, we

will give a .quick.reYiew.of why the .double..gate_structure.ilLprefet:r.ed-for-fuwe-device

scaling. Comprehensive discussions on device scaling can be found in various literatures

[3,11-12) and-detaileddeoonptions.ofNEGF framework can be found in [10, 13). In the

next section we give a quick review of wliy the. double gate structure is preferred for

futuredevice.scaling.

1.2. .S~ling-Devices-trrf:;imits--

There are two primary device structures that have been widldY studied and used in

CMOS technology. One is the bulk structure, where a transistor is directly fabricated on

the senncenductor...substrate_The.0ther one is called ..sOL(silicon-on-insulator), where a

transistor is built on a thin silicon layer, which is separated from the substrate by a layer

of insulator. The bulk structure is relatively simple from a device..process-point...o-f-view,

and it is still the standard structure in almost all CMOS based products. For device

-scaling, we basically try to balance two things: device functionality and device reliability.

Both of them have to be maintained at a smaller dimensional size. To accomplish this, we

need to suppress any dimension related effects or short channel effects (SCEs) as much as

possible. SCEs include threshold voltage ( VTH ) variations versus channel length,

typically VTH roll-off at shorter channel lengths. This effect is usually accompanied by

degraded subthreshold swing (S), which causes difficulty in turning off a device. SCEs

also include the drain-induced barrier lowering (DIBL) effect. DIBL results in a drain

voltage dependent VTH ' which complicates CMOS design at a circuit level. As a transistor

scales, reliability concerns.JJecome--mere-cpretlGllIlCed:-Unwanted leakage currents can

2



0.1) _

make the deviceJail te,function-properly.Jlrimarily,Jhere-'lI"eiwO-kinds-Of-leakages; gate

tunneljng current and junctien tunneling current. Beth ef them result frem extremely

scaled dimensions_ and high _,electric fields. Accerdin~_ to. device scalin~_physics"

increasing channel deping cencentratien (N B ) can effectively suppress SCEs. Frank et

al. published their werkguantifying the d~endence ef the scale lengthen, N-B_[14J. To. a

first erder..appreximatien, their theery gives the fellewing equatien,

A = Wdm + (csJc})T}_

insulater-,t\)ickness, and c;{ is the ratio. ef dielectric censtants ef silicen and the

insulater.Wdmcan be directly related to. NB (see fer example [IS]). Depending en the

cemplexity ef the channel deping profile, this theery.Jlredicts that the minimum design

length LG lies between A to. 2 A . It is quite clear in Eq. (1.1) that high NB results in

reduceaWdm, therefere a sherter scale lengtb A. Of ceurse,_ thinner T1__er Illgher c I, also.

helps device scaling.

Device scaling has come a leng way. In the early days, LG was relatively)e.Jlg, a lew

uniform NB ceuld be used providing satisfactery immunity ef SCEs. A lew NB gives a

small bedy effect- coefl-'cient,which- improves- the subthr.eshold_swmg-[+.S]' -As.--the----

channel length decreases, a retrograde er ground plane deping pro.file can be intreduced

[16-17]. This deping profile has a lew doping regien near Jhe_SilOxide.interfaee,-but a
'-

high ,deping regien underneath. The tep regien provides better bedy effect, while the

--OOttem-region-suppresses-SGEs~T-Oachieve even.shel'ter-channel--Iengths,_a.ground-plane---

prefile is net eneugh, a mere cemplicated deping profile has to. be added, namely the

super halo. [18]. In this case, high gradient halo. do.pings..areJOnned~xt--to---the -

so.urql1drain junctien regio.n. These heavily deped regiens can effectively protect the

so.urce end o.f the channel regio.n from the influence due to. the electric fields from the

draindiffusio.n regio.n.
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As the channel length varies around the nominal LG, a shorter leI!gth causes the halo

regions to merge, ending up with higher N B' which resists VTH rolloff. By using the

ground plane- and-halo-doping-pmtiles,- simulations-show--that-the-bulk_srructure can-be---

scaled down to -25 nm regime [18]. Beyond that, device scaling of the bulk structure is

limited by severe degradation of junction leakage. whichis _caused _by..1he..high-huilt--in

fields, and can not be avoided in the wake of the super halo engineering. Partially

depleted SOl M0SFE"I's-scale-in-a- very-simiJar-manner--as-the- bulk.-devices -do .. The_

buried oxide layer in a SOl device can provide superior electric isolation between the

active device region and the substrate region. This property is _considered -a -big

improvement over bulk devices. Body isolation, however, also results in charge buildup

(majority carriers)-within-the body- region, which-gives-nse-to-the- unwanted-floating- bod)'--

effect (FBE) [19]. A fully depleted SOl MOSFET can help relieve the FBE, but a fully

depleted single gate SOl MOSEET .is_noLconsidered _a_desired.structure..for ..scaling;-A

single -gate SOl device typically has a thick buried oxide layer, which can not terminate

any electric lines-from-the-drainend,leaving theSOill"{;e-vulnerablc-to.the-influellCc ot"the- .

drain [17, 20]. All recent studies indicate that the ultra-thin body double gate (DG) SOl

MOSFET is the ideal device structure for ultimate.scaling.{4, 2h22J. 1n an .ultra.thin

body rDG MOSFET, the second gate electrode can significantly suppress the SeEs.

Referring to Eq. 1.1, and noting that Wdm can be approximated by I:" / 2 (TSi is the silicon

body thickness), when TSi is scaled to nanometer thicknesses (close to T{), clearly the

scale length will downsize into the nanometer regime.Jt should be_also .noticed.that high

body doping is not needed here, so the band-to-band tunneling junction leakage is no

__longer a big concern. Moreover, the use of ultra-thin bodies will result in reduced

metallurgical junction perimeter, therefore low junction capacitance. The bodies are

typically lightly doped, giving other advantages: 1) there is barely room for the FBE to

come into play, 2) the V'1i variation due to dopant fluctuations can be eliminated, 3)

close-to-ioeal" subthreshold- swing- (W-m.\l/dec)-can-- bec.achieved,- 4}--severe mobility-

degradation due to ion scattering might be avoided. From a technical point of view, DG

MOSFETs are difficult to build. Gate self-alignment is hard to achieve. A misaligned

gate will cause high overlap capacitances--{)n--{)ne-side-tlf-the-gate, -and-large-unaer1ap

4



junction resistancesnn the other~ideoLthe_gate. Recent _works.show.that-c1ever-precess

designs can help get rid of gate misalignment [23-24]. Extension region resistances pose

another concem-in- IX.-MOSF-E1"-lksign. Due. tG-the. use- of-uItrao.thin..bodies,. thestL-"

resistances can be very high, limiting device performance. The proposed solution is to

use fanned out source/drainrtegions as close as possible to the channel region [25]. The

use of ultra-thin bodies also leaves limited room for adjusting VTH with body doping.

Gate stacK engineering-has to be_done_to obtain-an.appropriale.J[m.,_either by.employing_._

new contact materials with desirable workfunctions, or maintaining an offset voltage

between the two gate electrodes to mimic a different workfunction-l24,,26]. _Quantum

effects (subbband splitting) can become significant as the confinement of carriers

becomes stronger..witllin ultra-thin bodies, translatingjQ.sensitivity_of V17L t<>. the body-

thickness. This fundamental physics effect poses an additional difficulty to control VTH in

ultra-thin bodes. (It is worthwhile Jo-point _out JhaLthis subband splitting..effecl-wiU

increase the band gap between lowest electron subband and highest hole subband, which

may considerably. suppress- the-.band-te-band- tunneling leakage. -in-uItra-thin-silicon--

bodies.) Despite the existence of numerous difficulties, the excellent scaling capability

demonstrated by the ultra-thin body DO structurecan.neyer.be .underestimated.-EGr--this

reason" therefore, this thesis will be concentrated on a study of ultra-thin body DG

MOSFETs.

1.3. Overview of the Th~sis

ll1le thesis is organized as follows. In Chapter 2, we describe the numerical

--techniques- used-in-de.veloping a-2D- simuIator- fm'- nanoscaIe-douhIe,.gate.MOSEETs.- -

First, we implement aquanturiJ ballistic transport model by employing fast uncoupled

mode space (FUMS) approach in the nonequilibrium Green's...function --fNEGF)

form¥ism. Then the 2D Poisson equation is solved using the Gummel iteration. All the

releyant equations (ID Schriidinger equation, ID NEGF and 2D Poisson equation) are

dis~retized using the finite element method (FEM).

5



In Chapter 3, we_presem.simulation resulis'6(QnL~orLDjfferentproperties-Gf-the

nanoscale DG MOSFET are demonstrate(i'\hfd~~h relevant plots. We provide eigen

energy and eigen-function-profiles, electron-densitypmfiles,cooouction.band.edgeplots,

and drain current profiles taking into account bias, thickness and maximum number of

subbands dependence. _ We _also _demonstrate validity _oLJ:he --EUMS -appmach-by

comparison with the uncoupled mode space (VMS) approach. Finally, results of our, .

simulation process-are llompared-with-those-JT{lm-a-standarii simlllator~

Ch1lJlter 4..summarizes _the .conclusions. of _this..researcl1, and.lists-ll...few-petential

directjons for future work. A sample 2D mesh generator code developed for the

simvlation and a flow chart of the simulation process are given in Appendix A.

,-;
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CHAPTER 2

2D Simulation of Nanoscale Double Gate MOSFET

Recently Jaucetal. -I:29.=31Jhas~eveloped_analyticaLsolutionsof --eharge,-potentia!

and drain-current for symmetric undoped double-gate MOSFETs. Quantum effects have

been neglected-in the-development-- of those. analytiGal- formulatigns.-But-as--transistOl:- ..

dimensions are scaled down, quantum effects, which affect the threshold voltage

(confinement), gate capacitance (charge centroid shift), _off-current..(source-harrier

tunneting) and gate leakage begin to manifest themselves and semiclassical methods or

the analytical--models- that- disregard-these effeGts-b€cgme- inadequate--in-capturing- the. _.

physics of ballistic transport. The Nonequilibrium Green's Function (NEGF) approach

[35-36] provides a general simulation framework for quantum mechanical simulation

(with or withoutscattering)_and.it.will be. appliedJo_modeLelectron-tr.anspml-in-this work.

Intllis chapter, we presentLhe1wo-dimensional-(29-)-quantunl-rnechanical-simruation-.- -

of nanoscale double gate (DG) MOSFETs in the finite element method (FEM domain)

approach. Effective mass approximation (whose validity£or .nanoscaledevice...simulation

has b~n established in [37]) is used and we determine the upper performance limit of the

devices so that scattering is.disnlgar-ded. ForametOOd-for-mGerporatign.gf.scatlering -into---

the simulation refer to [38]. For the solution of 2D Schrodinger equation, instead of the

usually usedJ'eal-spaceapproach, we _use.the Jllode.space-approaG!I.{J9] -whiG!I-has-been

shown to be very efficient for the device geometry simulated in this work. The geometry

-also-perrnits us to decouple the modes thereby greatly reducing the simulation cost. As

the silicon channel thickness is less than 5 nm, strong quantum confinement is present so

that only a few lower subbands are occupied and need to be treated. We further show that

due tf) the small device size there exists a strong co-relation between the potentials at

differenLJloints of the device and an averaging approach cap be utilized to speed up the

simulation witliiJutsacrifieing-accuracy.

7
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2.1 Solution_of 2D.Schrodinger. Equation

In this section .we show how the 20 problem can De rendered to a number of' ID

problems through the use of the novel mode space [39) (subband decomposition)

_approach. Utilizing.the .convenient structural.symmetry ..of DO geometry. the_modes_can

be uncoupled and only a few are needed consideration, which greatly improves

simulation efficiency. The simulation can be further speeded up through the use of an

averaging approach called theJast uncoupled mode space (FUMS) apr-roach.

2.1.1 !hccouplcd modc.spacc.(CMS).appr:oach

- -'[he double gate MOSFET geometry that we use is shown in Fig. 2.LWe_assume an-..... - -

intrinsic device. The device is wide in the y-direction and no confining potential exists in

this direction, -SO -the-wave -functions-in -this--<!ireGt10n-are-plane -waves -and -the 2))

simulation is perfonned-in the_xoz,plane.as.shown-in-Fig. 2.-1.

-TopGate

Drain
Contact

!1ffi-_._- •••••••••••••_-_ •....".-:lffiIe-m==-":::-'::-:'---:: ••-:=--=!ffi!3
BottomGate

..__ ....._.__ .__ ._---- --....._ ............__ .........._ ....-................................. __ ......._.---

to;r D - --

Lv
:
I

n~ (undoped)
I n+ -

tsi
I
I ~

Lsd "
i

Xtox II

,/-.y
r--X
z
Source
Contacf

Fig. 2) .SymmetricaLdouble_gate MOSFELstructure _studied..in_this work_The_source/drain

doping is around I x 10'0 em", the channel is intrinsic and the transistor is assumed to be wide

(y-dimension is treated as very large and only an x-z plane is considered in the simulation).

8



Thus the total wave function can be written as \V(x,y,z) = l1J(x,z)e'k"y / JW where

Wis the width ofthe device/iny-direction) and 11J(.l:,z) is obtained from

hi o211J(X,Z)

2m: ax2

h2 0211J(X,Z)
• 2 + Ec(x,z)l1J(x,z) = (E-Eky)l1J(x,z) =E,I1J(x,z)

2m, OZ

(f.t)

wh<;re m:, m; are the electron effective masses in the X-, and z-directions respectively,

r 2 2
tLk /'

E is the assumed energy, E, = E - Eky is the longitudinal energy, and Eky = -+. ,,'
2my

We ..can ..directly_ discretize ~q. -{2.J,) ..in-real ..space.but -it- -imposes-a --heavy

computational burden [39]. For MOSFETs with a thin body «5nm), quantum

confinement in-the- z-direetion--introdllces--subbands,- and-onI¥- a-few_of the lowest

subbands are necessary as population of the higher subbands are negligible. Accordingly,----..

we can expand 11J.(x, z) in the subband eigenfunctioll.5pace,

<l>(x,z) =L <pn(x),;:'(z;x)
n - .-

(2.2)

where n indicates the subband number, rpn(x) are expansion coefficients, qn (z;x = xo) is

the 11theigenfunction of the following ID SchrOdinger equation at the slice x = Xo of the

DGMOSFE'F;

PI' o'qn(z;xo) E ( »):n( ) En (»):n( )
- --. 2 + c z;xo 1:lo z;xo = sub Xo ~ Z;XO,2m

7
.OZ

(2.3)

w,bere Ec(z;xo) is the conduction band profile along z-direction at slice

x = xo' E::b (xo) is the nth subband energy level due to Ec(z;xo)' According to the

property of eigenfunctions, qn(Z;x) satisfies the following equation for any x

9
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(2.4)
z

whj(re 0m.nis the Kronecker delta function. Inserting Eq. (2.2) into Eq. (2.1) and making

use ofEq. (23)'we-get; .-- ..

_ h~,-a','(L<pn (x)qn (Z;X)] _ h", <J"-(L<pn (xW (;;x;) + Ec (;;X)(L<pn (xW (Z;x;)
2m, ax n 2mz az n n

= E{ ~-<pn(xW(Z;X)r

or,-~ a', (L<pn (xW (Z;X») + L(-~ a', qn(z;x) + Ec (z;x)qn (Z;X»)<pn(X)
2m, ax n n 2m, az

= E{t<pn(X)(n{z;x) r -'
or'_,h' ,.-8',1 L<pn (XW(Z~X») + L<pn(x)E7'b(XW (z;x) = E;(L<pn (xW (;;X)]

,2ff.lxax:ln n n

E2.5)---

Now we multiply on both sides by qm (z;x) and do an integral in z-direction. According

to Eq. (2.4), we_obtain_the.following.lD-Schrodiagerequation:

- 2h'. tL-amn(x»)-a~;<pm(X)- 2h->:L~~m~(x)rpm(x)- h': L-bmn(X)a°<P"(X)
mx l n x mx n mx n X

+ E;;'b(X)<Pml,x)= E,<p"'-(.x-)

(2_6)

amn(x) = fqm (z;x)qn (z;x)dz = 0mn
z

bmn(x) = fqm (z;x)~n (z;x)dz-- axz

and emn(x)= fqm(z;x) a',;"(z;x)dz
z ax

10
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Eg. (2.6)Js_the.-hasic-equationfor -the. coupled mode-space-(CMS)-approach.-From

the derivation above, it is clear that the CMS formalism is mathematically equivalent to

the real space-calculation-if' all-the modes Ehe.,.m;-n= 1,.-2,_3,.,.. , Nz,wher-e Nz-isthe .'-

number of nodes in the z-direction) are included. In practice, due to strong quantum

confinemenLusually_only-afew ofJheJowest-subbands{i,e.,-m,-n=-1 ,2, ... ,M; .M« Nz)-ar-e

occl;lPjed and need to be included in the calculation (which means that if we increase the

mode numoer M;-the-deviee-.characteristics ..sueh-as- the. ekctron-density. profile all<:L.-

terminal currents will not change any more). Thus with the first M subbands considered,

Eq. (2.6) represents an equation group that contains M equations, each representing a

seleckdmode. We.can write.downJ:heseMequations-in-amatrix-format

~'(x) hll 11..2 11..3 h.M qJl(x) . . -Ip'(xj-

11'2(x) h21 h22 h23 h2M 11'2(x) 11'2(x)
H - =-E, . -12:1\)

qlM(XY- h hM-2. h hMM._ 1pA1(X). t!l''.(x,)MI __ ,M3_ -

whe~e,

(2.9)

(m, n=l, 2, ... ,M)

I3Y l!sing the collpled mode ~pace (CMSLap-proach, the sIze df the_ deviee

HaIjIiltonian H has been reduced to (M x.N x) x (M x N x) (Nx is the number of nodes in

. --x-direction, and-.tbe. modenumber.M-that we-need.is-normally_lesiLthan.3 for the ...DG_

MOSFET structure we simulate), which is much smaller than that requited in the real

space representation, (N z x N x) x (N zN x) (Nz is -40 for the device structures simulated

in this work).

II



2.1.2 The_lUl£onpledmodupace-QJMS)-approach

FOr the DO MOSFET,we-assume thaUhe-shapeof the-Si-bod¥-is_uniformalong the __ ..

x direction. As a result, the confinement potential profile (in the z direction) varies very

slowly_ alOI}g the channel direction. For instance, the conduction band edge ./1;(;:;x}

takes the same shape but different values at different x. For this reason, the

ei~enfunctions .;m(z;x) are approximately the same along the channel although the

eigenvalues E;:b(X) are different. So we assume

or

- q"'(:t;x)=S(z)

~.;m(-z~x) = 0 (m=1,2, ... ,M),
i)x - -

(2.10)

(2.11 )

which when substituted in Eq. (2.7) results iri0m~(X)=t) and- Cm~(X)=O (m,

n='1,2; ,M). Using the results in Eq. (2.9), we obtain hmn =O-(-m;On_and m, .

n=I,2, ,M), which means that the coupling between the modes is negligible (all the

modes are unco1!Pled). Tlms..the-lievice Hamiltonian-H-bec-Bmes a-block-diagonalmatrix,

hll 0 0

0 h 22 0

- -ff-'= (}-- (2.11)

0

I 0-,- 0 hMM

[
h2 i)2 ]

where, hmn =t5mn ---. -2 +E:b(x)
. 2m EJx-

x

12
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2.1.3 A fast~oupledmode_space-<.E'UMS)-3pproach

As mentioned-earlier, for.pMS __approach,.- we-need--to-sglve-Nc¥- .ID-SGhrodingeF-

equations in a self-consistent loop to obtain the electron subbands and eigenfunctions.

This part .of the simulation _takes.most.oLthe_simuiation.1ime. To increaseJ:he-Simulation

efficiency, we introduce an FUMS approach, which involves only one ID Schrodinger

equation in--the z-directioIL_ and _still. provides_excellentcoIDputational accuracy as_ .

compared to UMS approach.

Recall the assumption made in Sec. 2.1.2 that the eigenfunctions {m(z;~)are almost

inva(iant along the x direction, {m (z;x) = {m (z). Now we suppose that the average wave

functions {m (z-)--arethe-eigeofunctionsof the_following_LD_Schriidingerequation.

(2.14)

Here the average.conduction band edg~_Bc (z) is obtained as.
. . ."

(2.15)

where--Lx is the total length of the simulated DG MOSFET (including the source/drain

extensions). After computing the eigenvalues E':b and eigenfunctions {m (z) of this

Schrodinger equation, we use the first -order stationery perturbation theory to obtain the

subband profile-as-f4(lJ

E:b(x) = E:b + fEc(X;z*m (Z)I' dz- JEc(z*m(Z)I' dz
r- z

(2.16)

The use ofFUMS approach highly improves the efficiency of the simulation and makes it

a practical model for extensive device simulation and design.

13



2.1.4 The.nonequilibrium GJ:een~lLfunction-(NEGF)

} , .
After the device Hamiltonian H is obtliined~ wecan-calculate-the-electron-density and_ -

current using the non-equilibrium Green function (NEGF) approach [35, 10]. NEGF is a'

very general formalism in that it is equally _applicable----for-DG.MQSFET,-nanowire,

molecular transistor, etc. Here we present the relevant equations for our particular case.

The retarded Green's function for mode m is defined as [10]

(2.17)

where m represents mode/subband number, E, is the longitudinal energy, S is a

discretization method dependent matrix defined below in Eq. (2.18), hmm is defined by

Eq. (2.13), ~; is called the self energy (potential) that accounts for scattering inside the

devi(;C.itself (for the ballistic case, which is assumed in this work, it is a null matrix.), ~~

( ~;) is the- selfenergy' (potential)-caused- by-the- coupling between-the-device-and.the_.

source (drain) reservoir-or contact,--as-shown--below-in -Fig.2.2._ ... .

]

Drain
Contact

]

Device
[HI

Devlce--[__H_J!.
[ :H--+2:.

(a)Source
Contact

Fig. 2.2 Self'Cnergyconcept. (a)_The interaction of a device with a reservoir,can be represented

by a self-energy matriX1:. (b) Self-energy of the device itself (Is) along with the self-energies

of source (~,) and drain (~2) reservoirs. (From [35])

14
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If we discretize the equations by the finite element method (FEM), then S is an

N x x N xmatrix given by_[ 40l

a/3 a/6 0
a/6 2a/3 a/6
-B a1"6 2a13'S=

()--. ~-

o
2a/3 a/6

0_ a/6. an

(2.18)

where a is the discretization grid spacing along the x-direction. The self-energies, L~

and L~' are defined a$-[40j

and

0-.-

o

o

'.._.-0--

o

{2.19)

_.-
o 0

o 0 - jkmN at• x

-(m=-J,2,;•.,Mand-P;-fJ~-J,2, ...,MNx)

(2.20r -

[E, = E':b(x= (Nx -1)a)+2t(l-coskmN a)].. x

15



2.1.5 Calculation of charge_density_and-emTent

After-the--retarded-Green:s~function __G(EJ_aLa~iven_energJ __E_ has_beeILCalculated

using Eq. (2.17), the spectral density functions due to the source/drain contacts can be

obtainedasJ4()J (mode number m has noLbeen.shown fOLclarity~

_A]_(E)-=-G(-E)r:] (E)!Y_( E), A, (E) = G(E)r ,JE)G+ (E),_ (2.21)

where '+' means transpose conjugate and _r](E) '" j[L] (E) - L: (E)] and
r, (f) '" j[L, (E) - L; (E)]. I] and r, are known as broadening functions [35], which

determine-electron-exchange- rates-between -the-acti-ve-device-region-and-the-source/ drain--

reservoirs at energy E. Although the device itself may be in a non-equilibrium state,

electrons _are_inJ.ected.from_the...equilibrium_source/.drainieservoirs...Note-thauhe-spectral

functions are Nx by Nx matrices and the diagonal entries represent the local density-of-

states (LOOS)-at-eaeh-node, The-source related-spectral-functiOll-is-Jilied up according to

the Fermi energy in the source contact, while the drain related spectral function is filled

up according to the EermLenergyinJ:he..drain-oontact.

-The2D-eleetmndensitymatrix- is-obtained-as-{4-l-]-

(2.22a)

where f is the Fermi-Dirac function (for an_analytical expressioll,-see -[42]),-,ur(,u,j-is

source (drain) contact chemical potential, and .3... i m;. r.epresents the transverse mode
ph 2£ k

_ J- __ ~

state density (including spin degeneracy). Since the spectral functions depend on the

longitudinal energy only, they can be moved out of the integration sign. Therefore, Eq.

(2.22a) reduces to [41]

16



(2.22b)

where th-e-Fenni-Dirac integral of 3_1/2 accounts for all transverse mode contributions

(see [42] for analytical approximation for 3-ll2'and also note that all quantities appearing

as arguments _oLFermi~Dirac integrals-are--normalized -to -kBT). To-Obtain-the -total-2D

electron density, we need to integrate Eq. (2.22b) over EI. We also need to sum

contributions from--aH-theconduction--ban<! valleys-and- thllir -subbands~Einally, we-can-

get the 3D electron density by multiplying the corresponding distribution function

is:"(,z;x)1
2

to the 2D density matrix at each longitudinal lattice node. The 3D electron

density is fed back to the Poisson-equation solver for the self-consistent solution.

Once self-consistency is achieved, the terminal current can be expressed as a

function of the transmission coefficient [10]. The transmission coefficient from the

source c.ontact lo.1he drain-contact -is-defined in terms-Ofthe-Green 'sfunction-as{1-0j

(2.23)

where trace means sum of the diagonal elements of a square matrix and (, _[G] is the

source. (drain) broadening function defined above. It is straightforward to write the

transmitted-current-as-

(2.24a)_ - --

where the 2 in the numerator is for spin degeneracy. Note that TSD is ind~endent of

transverse energy Ekj and can therefore be moved out of the integration sign. Eq. (2.24a)

then reduces to

17



q
[(E,) =-2
- --li-

(2.24b)

The ~Qtal current is obtained from integrating over E, and summing over all valleys and

subbando.-

2.1.6 Solution oUD Schl"iidinger--Equation

IJl this subsection we show the discretization of ID Schrodinger equation using the

finite element technique:Consider-the-lI}-Schredinger-equation-- .

(2.25)

wherem' is the electron effective mass, Ec (x) is the conduction band edge (with the

confining potential-iReluded}-and-E- is-the energy,' with-the-beundaF)'-eooditmns-- -

(2.26)

(For open boundary conditions with self-energies, i.e., for Green's functiQn see [40]). In

FEM, Eq. (2.25) can be solved along with its associated boundary conditionsCby solving

the equivalent variational-pmble-m-<!efined by-{44j

(2.27)

where

(2.28)
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The differenLstepsofthe lDYEM are explained-below:

(i) DiSCretization--

This is the first step of FEM. Here we divide the solution domain (0, Lx) into small

subdomains, which in this case will be short line1>egments-<lS-BhowninEig. 2.3.

Elemerlt- 1
•

Node 1

x=o

•
2

•
3

•
4

•
N-2

(a)

e.- •
1 2

f< Ie
.~

_(b)

•
N-1

~-

•
N

X=Lx

Fig~.2.3One-dimensional domain subdivided into linear elements. (a) Element and global node

numbers. (b)--c-inear-elementwith-locaHtode-numbers~.

Let f (e=L2,...~_denote _the.1ength _oLthe..eth...elemenLM---deIlote-the-total-number-of

elements and Xi (i=I,2, ... ,N) denote the position of the ith node with x]=O and xN=L
x

• In

the fonowing; the-superscript-e-is-used to--denete the quantity-with a}ocal number as its

subscript, while for all other quantities the subscript is a global number. In this simple ID

case, the local and global~~tems are.related -by

e/, ..J.e ,£" 12 Mx;-.=x, anlrX2-~Xe+lIOLe""., ,... , .

(ii) Sele.etion-of--intefpGlation function:

(2.29)

We select linear interpolation functions for simplicity because they are adequate for

--the-mest-cases.-In-this-oase; Ij1(xt-within-the-eth-element-ma-y-be appr-oximated-as--

'f'e(x) = q'+-bex

19
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where ae and be are constants to be determined. Enforcing Eq. (2.30) at the two ends of

element e, we obtain

2

If! , (x) = IN; {x)lf!;
j==l

(2.31 )

. ~
where N,' and N; are the interpolation or basis functions given by Nt (x) = x21~x and

,
N;(x) = X ~,XI with l' = x; - xt . Obviously, N; (x;) = oij as shown in Fig. 2.4.

1

2 2

~_..
1

Fig. 2.4 One dimensional linear interpolation functions

(iii) Formulation ofJhc-sysrem-efequations

Derivation-ofEkmental-Equtiens~

For the formulation we use Ritz method. Assuming homogenous Neumann boundary

conditipn-fm-the-timebeing-Eq: (2:25) canoewfitten as

where

M

F(Ij/) = IF'(Ij/')
e=t"

20
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Substituting Eq. (2.33) into Eq. (2.32) and then taking the derivative of F' with respect

to If/' , ~e obtain

8,,,"' 2 ,( ,,2 dN' dN' J
_'I'_ = "" ,I'" _,, , _1 +E N' N' - EN' N' dx
8 ' L.1f/).Ie; 2 ' dx dx c,) ')If/, )"' - m... -

which in matrix form.can.be-WFitten'as

with

,( ,,2 dN' dN' )
K' = .,-n , ) E .N'N' dx.- I ..

lj ! 2m' dx dx c. ,- J.

(2.34)

(Z.JSr-

and S' =. Il(N.' N' \.,--
IJ • I _i.F- , (2.37)

We note that [K'ran:d-fS'+are-symmetric and,.if m' and Ec are constant or can be

approximated by constants within each element, their matrix elements can be evaluated

analytically [44]. The rpsult is

(238a)

(2.38b)

S' S' ['
11= 22=-

3

21

(2.39)
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Asse"!blyto.FormJhe~stem-{)f Equations

We will not discuss the assembly procedure for 1D as it is similar to and yet simpler

than the 2D case discussed in the next section for 2D FEM formulation of Poisson

equation. After ..tbe-assembly-is-complete, we get-

[K]= i:[rland [8]= i:~l
e=l e",l

(2.40)

where bar denotes that the corresponding matrix has been augmented by zero filling so

that it is the same size as K or S.

Finally, standard procedures [44] can be used to find the eigenvalues and

associated eigenfunctions.

2.2 SOlutio ••.ef.2D-~()iss()D-Equati()D-

For self=consistency oLthe_solution,Schriidinger equation-hasto-besolveR-iterati¥ely

with the Poisson equation. In this section, we show solution technique for the 2D Poisson

equation m the-x~z plane-shewn-in-Fig, 2.1. The-Poisson-eEjuatien-m-thiscasei-s-

(2.41)

where t/J_(x,z) is the potential, n(x,z) is the electron density, Nv(x,z)is the ionized

donor density (complete ionization is assumed) at position (x, z), q is the magnitude of

electronic char.ge, lFl) is absoh.lteyermittivity, 6.x and {;, are the relative_permittivities in

the x-and z directions, respectively.

-We-can -soIve-EEj. {2.41-)-using- FI>M oL-I'EM-approllGh~.However, whensolving-a-.-

coupled set of equations (the Poisson equation and transport equation), direct use of Eq.

(2.41) leads to slow convergence [45]. Fortunately, there is a better solution algorithm for

solving the Poisson equation [45]. This_algonthm-can-provide-moreefficient convergence
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in the iteration_loop of the Poisson _and transport equation. Ihis ..algorithm involves

perfofllling a variable change to n, namely expressing n in terms of the potential and a

quasi-Fermi energy, Fn• The quasi-Fermi potential energy is computed based on the old

potential as

(2.42)

where ~;2stands_for the inverse Fermi-Dirac integ@l of order 1/2 and NG-_the.effective

density of states in the conduction band (a normalization factor). Analytical

approximation for ;j~;2 can be found inj46].) The electron densi!Y term in Eq.(2.41)

now becomes

(2.43)

With th,is ",ariable _change,Eq._(2.4I)..now .represents_a.set _of_nonlinear...equations--f{lr-the

potential. The advantage of this approach is that it builds a negative feedback into the

iterative proeess-[4;l}.--Ifthe potentiaLincreases_(conduction_band.decreases) duripg. the.

Poisson solution, the subsequent transport solution will increase n(x, z) as carriers flow

to regions of lower .energy. This _couplingjs built into Jhe.J>oisson_equation-When-Eq.

(2.42) is used. This approach has proven effective in previous quantum and semiclassical

transport simulations [4"7-4-9}-and-proved similarl)'..effective in this work.

We now discretize the Poisson equation using tile FEM approach and for the time

being we rewrite Eq ..J2.4l-) as

(2.44)

with

(2.45)
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and use homogeneous Neumann boundary condition. Real boundary ,conditions-wiH-be

impospd after the assembly of the system of equations, as was done for the ID

Schr{\dinger equation. The variational problem equivalent to the boundary,value problem

in Eq. (2.44) is given-by[44j-

__-{2.46)

where

(2.47)

2.2.1 DOJllain-Discr~tization

This is. the- fifStstep-in~the--F-EM- approach~ The two.dimensional-DG-MOSFET

structure is subdivided into a number of small triangular elements as shown in Fig. 2.5.

There exist other methods-J:44J for..the discretization_o[2D..region_usingJinear--tl'ianguiar

elements? but they are not suited for this case because of our requirement that we need to

solve' the ill'Schr&linger-itrthe.vertiGal- sliGes-(z-dire6tion)-and-the-NEGEinothe.-x-

direction. So the grid points in the in both the dimensions should on straight lines (grid

spacing may non-uniform). The nodes and the triangular elements are numbered as

shown in the figure. The discretization provides us witlLthe followinginfllFmation:

Nn: humbe-r'of-.(_globaLJ..noGies -. "

Ne: number of (triangular) elements
x x-=o:r:d-inate.of .t-Re-nodes (-Ne x 1)
z z-coordinate of the nodes (Ne x 1)
--t--e:--connectivity matrix (3 x Ne)
Nb: no. of boundary points (at the two gate contacts)
td: array of the global numbers of boundary nodes (Nb x 1)
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(2,vr-2)X{Nz-l)

" NxXNz

.' • O' ••••••• ~

.••.
.••.

.••.

Fig.2.5 Doma,it).discretization of the 2D DG MOSFET structure. Global node numbers and the

element.numbers are.also.shown.
.'

All the quantities are self-explanatory, except Ie. Any node in the domain 0 has a local

number in the triangle it is a vertex of (and, of course, the global number). Ie connects a

local numbecto-.its .associated..global.number._le-has Ne .rows,_each .for_a ~triangle.-In.a

singl,e,row, a column contains the global number of the node with the column number as•.
its local number;- ... '_.'

2.2.2 Elemental1nter:poJation..Function
" \ .

After the discretization is compJet.e, we need to apPJ'o)(i!nate the unknown

function tP within each element through the use of interpolation functions. For ~he linear

triangular elements, the unknown function _tP within each element is apjJroximated as

tP'(x,z) = o:.+..b_'x.~.c'z . (2.48)

where .0:' b".,..and_c' .are.constanLcoefficients.to_be _determined.and.e .is_the_element

number. The interpolation function for a node has a value of one at its associated node,
and)t linearly goes to zero as we move towards the other two nodes, as shown ih Fig. 2.6,
below.
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(a)

1

(b)

2 'I,. 1

(e)

Fig. 2.6 Linear interpolation functions for a triangular element. (a) N; ,(b) N;, (c) N;. The
planar surfaces ofthe functions are shaded.

Enforcing Eq. (2.48) at the three nodes, we obtain

""(x z) = a' +b'x' +c'z'Y'l , 1 I

""( ) 'b" "'1'2 x, Z = a + x, + c z,

"" ( ) 'b" "'1'3 X,Z =a + x3+c Z3

where I/J; is the value of I/J' at node j and x; and z; (j=1,2,3) denote the co-ordinate

values of the jth node in the eth element. Solving for the constants a', be, and c' in

terms <if I/J'~and substituting them back into Eq. (2.48) yieldsJ _ ..

3

I/J' (x, z) = :L N; (x, z)l/J;
_..j=d

where- N;(x,z) are the inteIT1olati()nor expansion functions gh'~n!1L

(2.49)
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and

be e e.
3=Zj-Z2'

-

I
,A,.' =.!.. I

2 I

e-.- e-
X, Z,

, , I (b" b")X, z, ="2 jC,- 'Cj

xe Ze
3 3

It can 6e seen that the interpolation functions have the property

i= j

L*j
(2.51)

As result, at node i, t/J'reduces to its nodal value rp:. Another point to note is that

N;(x,z) vanishes when the observation point (x,z) is on the element side opposite to the

jth npde. Therefore, the value of t/J' at an element side is not related to the value of fJ at

the opposite node-oot-rather-iLis determined by the values at the two end points of its

associated side. This important feature guarantees the continuity of the solution across the

element sides.,

2.2.3 FormulatiOn of-tbe-System-of-EquatioRS-

With the expansion offJ .given in Eq. (2.49), we use RitzmethodJo.formulate-the

syste}Il of equations. For simplicity, let us first consider the homogeneous Neumann

-boundary conditio~:Irrthis case,.ihecfunctiona1-ean~en-as .. -
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M

F(,p) =LF' (,p')
~ --e=l

(2.52)

where !\Ii denotes the total number of elements and F' is the subfunctional given by

(2.53)

with ,p' denoting the domain of the eth element. Introducing the expression in Eq. (2.49)

for ,p' and differentiatinll F' .with_respecLto,p' ¥_ields

or

where

The elements ofthe.matrix-fK"+are-deterrnined -by

(2.55)

- - -while-the-elements-of-tbe-vectortbe}-by
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b,' ,=-J1. iN,' dxdz j = 1,2,3 (2.57)

It is evident that [K] is a symmetric matrix. If 6x' 6, and fare constant within each

element and equal to 6;, 6:, and f' ,respectively, then

b' = If f'
, 3---_

2.2.4 ~ssemblyto_fonn.the.system.Df.Equatwns

(2.58)

(2.59)

With. the elemental Eq. (2.53), we can assemble all M elements, and then impose

the stationarity requirement-on-F-tofmd-the-system-ofequatiens--

(2.60)

which canbe-written-compaetly-as--

..L

where [K] is assembled from [K'], and similarly, {b} is assembled from {b'}:

-{2.6H

[K]= f[K'],
-- --e=l

{b}= ff}.
e=l

(2.62)

-eJivencthe- connectivity-matrix;fe;-we-need--to-add- K;. to K ,,( i .' )_ " ( j ,') and b,' to

b Ie (i, e) to find the augmented parameters.
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2.2.5 I.mposition of ActuaL Boundary -Condition

Up to this [loint, we.assumed Neumann. or zero field boundaries on all the sides of

the simulated 2D surface. Now before the system of equations is ready to solve, we need

to impose .the_actualboundary.conditionsof .the.device. The ,only.modi fication.needed-for

this is to impose the DirichleLboundary30n~ition on the Nb boundary..R0jnts at the two

gate contacts ..Ihe boundary conditions are shown in Fig. 2.7.

_----_oj.--l'ixed (Dirichlet)boundary~Ifo' --- _

~ ~
~ ~_.~ ~~ ~
i -2-c n .-'

1 -1-- 2-g g
j j------ .....r--Fixed(DirichlEt)boundary~ ••------

...Fig•.2.7.Actual-boundary.conditions

The reason f~r using the zero field boundary condition instead of the usual1y-used- ,-

Dirichlet boundary condition on the source contact and drain contact is given in [49]

where)t .is.shown.that.in .the .baIlistic.simulation.if .DirichleLboundary.condition-is.used.in
"

these.,{wo contacts then the electron density profile becomes sharply peaked at the two

ends. To ensure a smooth d~nsity at the-source and drain contacts the zero field boundary

are more appropriate [49]. To impose the Diric_~.I.etboundary condition at the two gate

contacls.we-set

b'd(l) = p(i) ~

and

K:d(i)jil(i) ..= I., (2.63a)

bj +- bj - Kj;d(l)p(i),

for i= 1,2,3,...,Nd .

30

for j * td(i) (2.63b)
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2.2.6 SQlution ofthe_S}'Stem-m-Equations

After the actual boundary conditions have been imposed Eq. (2.61) is ready to be

solved. Standard routines [44] are available for solution ofEq. (2.61).
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CHAPTER 3

Results andDiscussions.

We presented the -se1f-consistenLsirnu1ation 'methodusingFUMSappr-oach in

Chapter 2. The results of the calculation for silicon symmetric double-gate nMOSFETs

along with, rer~vant discussions- are presented in' this j2hapter" We- assllffie <LO(».

orientation for silicon and, as stated in the previous Chapter, effective mass

approximation has.he<:n.considered valid ..Effuctiv.e-mass-approximation ,has-been -found

accurate in describing the quantization effects of electrons in a MOS inversion layer [50].

The values of different parameters used in the calculation are given in Table 3.1.

. -f'arameter '-Value
Electronic charge, q 1.602 x lO'IYC
Planck constant, h 6.626 JL1O::".ks-.
Reduced Planck constant, n -1.055 x 10'" J-s
Free electron mass, m 9.11 x 10,;j kg

Longitudinal effective mass, m{ 0.91
Transverse effective mass, m, 0.19
Oxide effective mass, mox 0.5
Permittivity of free space, li 0 8.854 X 10'1"F/m

Relatiye --permittivity of silicon, 11.7
Esi

Relative. _permittivity of. silicolL .3.9 __
dioxide, li ox

.

. Metal workfunction, Wm - 4.25 eV
Work function difference between 3.34eV
silicon and oxide, X

Boltzmann constant, k 1.38 x 10.2; JIK

Effective density of states at 2.8 xlO"' m-'
conduction band. egge, Nc -

Table 3;1:Jmportant physical parameters values used in the simulation
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3.1 Eigen-E-nergies-and-Eigenfunctions

The-schematic diagram of the simulated device is as that is shown in Fig. 2.1. Due

the confinement, the carriers are quantized in the vertical direction and subbands are

formed at different enexgies. In this section, the various ejgen _energies _and~e

cOfJesponding eigen functions are shown at different conditions. Unless specified

otherwise; all-the-sirnulations-have- been- done at-room tempemture. ~il()O--K}-withu"type.

source and drain regions doped at 1020 cm-3. The channel is intrinsic, and the

source/drain-channel Junction is._abrupLN o-gate~to-S!D -ovcrlap-is_assumed. -The -exide

thickness is 1.5 urn for both top and bottom gates.

Fig. J:"t- shows-the subband--ellel"gies atcdifterent- veItical-slices-of--the-device in_the

transport or x-direction (Vg=Vd=O.OV). Electron penetration into the oxide is necessary

in the nanoscale thickness levels involved and has duly been considered in the

calculations, although it is trivial to do the simulation without .considering---the
penetration.

prrmed,is

primed,2nd

primed, Jrd

5o
X~nml

-5

IEigen e,r:.ergy lIeve'!.s of lIInjpr;imed and Ipr,irned 'band
1.4

1.2

1.

Lg-1Hllnn
0.8 tsi=3nrll:s:

t ='1.5nm,£. '.,
,>. 0,6 Vg=Vd=OHV'Cl
'~,"<::w

0.4

unprimed, 3rd0.'.L

unprimed. 2nd
D

unprimed,lst

-0.2
-15 .10

Fig; 3,1 Eigen energy levels along tbe transport direction (unbiased condition)
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As_expected at this unbiased _condition -PI g=Yd=oO,OV-:J;-.the_eigen_energy_levels-are
symmetric about the middle of the transport direction, and the are higher in the undoped

silicon body-regiofr.- The- different--simulation-par-ameters are-given-inside the _fig\ITe,-IL

evident from the figure that the unprimed energy level (without symbol) is at a lower

ener~ compared~o the _corresponding_primed-leveL_The_reason_is-that_the--llllprimetl

vall~y has higher effective mass in the density of states. As the level number increases so

does the-energyinv.olved: Now- the lower the energy ilLvolved-the. higheF- the carrier

population so higher band will have lower electron concentration. In Fig. 3.1, the third

primed _energy level is-at -veryhigh-energy-levels-comparro-to-the-other-Iower--levels so

that it will contain negligible carrier population compared to the other lower levels and

can t1ius be totally disregarded without affecting the accuracy to any perceptible level but

simulation time will be lower.

We will.now _consider _theeigen_energy.levels..at-a.biased-eondition:-Vg=-Vd"'O.JV,

which_ is typical of the device considered in this work. Note that the energy levels are

considerably-constant-in- the-SOUf-Ge(x=--~.0--nm-to--15 .O__nm).and-the.drain-(x= 5.0 nm.to

15.0 nm) r~ions because the electron concentrations are flat in these regions. _As-we

progress along the channel eigen energy levels fall down until they are flat in the drain

- . -region: The'source t()-cRanne! barrier is -lower due to-Vg anddue-to- Vd.the bands bend

down as we move towards drain.

Eigen ,eneJrgy ~e'Vels ,of lunprlmed and IPw.imed lbar.I'd1'S

_-Lg-1'Omn
tsi::::3111~1l

o.e t =1.-5nrn primed,3rd
'"V9=Vd=D.3V

06:>~~ 04:~
-'"-co~w unprimed, 3rd

0.2

unprimed. 2nd primed, 2nd

" unprimed,1st

--0.2

primed,1st
-0.4
.-15 -'10 --5- 0 5 -,10 "115

X{nmi-

1.2

Fig. 3,2 Eigen energy levels along the transport direction (biased condition). From source to drain

the eigen energy levels fall although there is an increase near the source-channel contact,
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Let us now concentrate .on_the. (unprimed) ..ground...state .eigen .energy_along-the
,

channel Fig. 3.3 shows variation of the ground eigen state along the channel with Vg at a

fixed Vd, For a particular Vd; as Vg increases it lowers down the barrier in the channel

region so the eigen energy decreases but the eigen energy in the source and drain region

remains constant irr~spective'of"the-valuelJf'Vd,
."'" "

0.1 O:~-.
S" S"-

0
"~ .!!!.

CD 0 lD
:> ... ;:::J -0.1'<n 'VI

IUJ . UJ
-0:1 -0.2 IVd'=01VIIvd=oovl
-0.2

10 -10 0 10-'10. °X' [nm~- X.I[nm].

0.2
0~1 '

''':"g increasing

0

:! O. SO
,,-0.1 ~. ,,0.2

CD to
:> -0.2 ::>
<n '"IW W -0.4-0.3 J V,,=O.3VI I Vd=05VI-0.4. -0,6 '.

-0.5
-;10 0 10 -10 0 10

X.[nm] ... ~[I1I'Il':ll

The IFir.st Sub'band energY.lProfoile a'iong ,tl;lechal1lnelat,dif,fe:r,ent V'Q
0.2 d.2 .

Fig. 3.3 The first (groundstate) eigen energy variation along the channel with Vg. Vd is (clock
!

wi~efrom top left comer) O.OV,O.IV, O.3V,and O.5V

Fig,..3A...shows .variation .of the.ground .eigen.state.along-the.channel-with -Vd-at a

fixedVg. For a particular Vg, as Vd increases it lowers down the barrier in the drain side

of channel' so tJi~ eigen energ)' decreases in this region, Also clear from the figure is that

the eigen energy decreases in the drain region as drain voltage pulls down Ec in drain

region but the eigen energy in the source-remainsconstant'irrespective'of-the'value'ofV3:
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The IFlrst Sublbandel1ler,g.ypr.ofile along the ,channel at differelnt V
d0.2 0.2,------------,

0 --IX~~>
,2

CD -0.2 Vd iln,cre.:nsiing 1=>U>
UJ

-0.4
1 V ,=OOV

19 .

-o~O -'W .. 0 '10
X [1"1111\1

0.2,

0

"='s:":~
CD -0.2=>U>

JUI Vd-lnc,easing ~
-0.4

-I Vg=O.3V 1

. _0 --(X--~
'ID -0.2

Vdincreasing E::>,<n
'0'

W . W
-0.4 .IYg=(J.1V I
-0,6

20 -20 .'I{J 0 10 20
X![l1lm]

O.il

-o.~' ~.-

~<0.2'. ,X~~\--.
,~. -<3".3. '!d'lnC!rea~I_,~g,_~L-

-w -O.A. . "'=
-05. I Vg=(J.5V'1 ..

-0.6
-20 -;10 -0 ;10

X.[nmL
20 -20 -10 0 '10 20

X !['!1mL. _.'

Fig. 3.4 The first (groundstate) eigen energy variation along the channel with Yd. Vg is (clock

wise from top left corner) O.OV,0,1V, 0.3V, and 0.5V

The squared eigen functions or wavefunctions along a vertical slice (y-direction) at

the middle if the channel (x=O) of the device at Vd=Vg=O.OV are shown in Fig. 3.5. The

area under.any ..function jsJ; .buUhe_unprimed wav.efunct~ons-have-higher-rnaxima:i)ue

to the silicon-to-oxide energy barrier, the eigen functions are zero in the oxide regions

except near tbe-oxide-silicon- interface. where. because of. penetration- of .electron. the

wavefunctions are nonzero. As stated earlier, the incorporation of penetration effect in the

calculationjs.necessary Jor .the_thickness.of_oxide_involved, We .can.al so .clearly-see-that

the I?-enetrationeffect for primed valley is higher due to the lower density of state mass.

Fig 3,6 sliows.the-samething.ex-eept-that in.this.case V:g=V:d;;;(DV.,-Ascan be seen from

data cursors of the two figures there is a slight drop in amplitude' ~f different

wavefunctions as the gate and drain voltage is increased,
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IElecttJroJnwav.efunction.s ,of '.tbe sub:balnds ,along 'the verticall dilrection
'0.1

unp.-imed
primed

s'ili.cClI1'l

25.2

:~
, _" ~x~i~I_~

".-os 0 0.5
Z(,nn'j

-"

,t .-3_0nnl
t:~o(=11.Or~m
V ~v =00'1__9 d: - _

-'i_5-.2o
-2.5

0.01

o.oa.

Fig. 3.5 The unprimed and primed eigen functions aibng.z-d~rectionat the middle of the channel:

Curves without symbol are for unprimed valley while those witlrsymbol are for primed valleys,

Vg;=Vd=O,OV,

IElec1broln w.avefIJ""cth:>n.s -of,tbe,sub'bslnd.s ,alolng.the ve:rticall -diJrectiorn
'0.1

c: .oxidle siliic'l)on ollliiCle

O.G4

0.03

0.01

a
.-2.5 -.2 -1

, x: 1.~::?,.2e--:?,15.
Y: O-,OED71

.-0.5 '0 o.s
,Z(,"mj

" .2 2.5

Fig..3.6 Ihe.unprimed and.primed eigen.functions.along..z--..directien.atthe-middle-of.the channel,

Curves without symbal are far unprimed valley while those with symhol are for primed

valleys. Vg=Vd=O.3V,
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3.2 Eleetron-Density--Profile

In this section, we present simulation results fOr electron-density-in--thedevice fol'

different stated conditions. In Fig. 3.7, 2D electron density of different subbands along

the channeLisshown,-Jn-thisunbiased-eondition;-the4ensity-profiIe -should-be-symmetric

abolli_the middle of the channel and this is supported by Fig. 3.1 I. If we consider the

comparatiVe population, then- contFibutioo. of-three Iew- Iloollentratien- bands- may-be--

neglected in the self-consistent calculation.

For the t)'Pica! biased_condition-0!g=-¥d=~,5:V);-the-COllcentrmion_profile_is_pletted

in Fig, 3.8. Similar to the unbiased case, the contribution of three low concentration

bands may- be.-neglellted in-this1Jendition-t()(h I~is~xpected- that-the-oonsity-p£OfiIe wiU-

not be symmetrical, but concentration at the drain side of the channel is lower due to the

presence of a source to drain voltage, !his is a direct result of the curves in Fig, 3.3 and

Fig. 3.4.

.-20

Lg=10nrn
tsi=3nm
'~oX"=1.5nm _
Vg=Vd=O.OV~

-15 .-5 I)
X l[nrnD

5 10

unprimed
primed

20

Fig, 3.7 20 electron densjtyof different subbands along the channel (unbiased condition)
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"

2D .elec1bro:ndelnsit,Y .of th.e slllb'balr:lds along ',the ,channel /

----~~~:::::::=~.z-::::.::..=-=-=-=-=-....;::::: 'l""

unprimed
primed'

-

10" 19", 1011111
(>311111
SI

t =l.!:-nhl
0:( -

Vg.=Vd=0.5V

-15 -'110 -5 I) 5
X j[nmt.

10 i15 20

Fig. 3.8 :m electron density of different subbands along tbe channel (biased condition)

Then Fig, 3,9 shows variation of2D electron concentration with Vg at two different

drain voltages; upper part (Vd=O,OV) and lower part (O,5V), As Vg increases, the

eleptron density in the channel increases, In the case ofVd=O.sV; due to lower channel to

gate voltage, concentration is lower in the drain side compared to the source side,

Next vaFiatffin~f-2Dcharge density-with.drain.voltage is-shoWll-for-the casesof-Vg~ .

O.OVand Vg=O.5V is depicted in Fig, 3.10. As Vd increases, concentration at the drain

side of ,the.channel _decreases; _but_concentratioo...at .the....sOlITCe-remains-constant.,ror

higher Vg concentration in the channel is higher as can be seen from a comparison of the

upper (Vg=O,OV) and lower (Vg=O,5~).part of'Eigc 3dO,.
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K'I01:3 20 electron density along .the channel at different Vg
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Fig. 3.9 2D electron density variation along the channel with V~. ll.pper.part for Vd=O.OV_and
lower part tor Vd=o.sV-

X'I01:3 2D electron density_along the (:hannel at different '~d
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Fig. 3.10 2D electron density variation along the channel with Yd. Upper part for Vg=O.OV and
lower part.-for y:g=O,?V
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Finally the 3D .electron density "ariation-along -with-thegreund-state-waverUllction is

shown below for three different device thicknesses in Fig. 3.11. Here, Vg=V d=O.5V. Fig.

3,II(a) shows 3ll for tsi=l,5 inn while fig, 3,11.(b) shows the..samc-fQr--t"i=3..onm,As the-

thickness increases the density maximum decreases. If increase in tsi in continued then the

3D density _profile_de"elops..a v.alley_in_the..somce..and-dI"ain.regmns-as-depietedln Fig,

3.16(9). Thusat sufficiently large tsi there will be two independent channel close to the

two oxide-silicon interfaces, Bu1 as the thickness is reduced the valley vaniShes as the

two channels combine.

3D Electron density variation with t . (a,b,c)w . ~ ~
x10. x10

2

-5 -20.
(a) .

o
lqrimj

o
-;Z-(nrnj -5 -20

(b)

o
X (nmj

20

-5 -20
(e)

X(nm]

02

10 WlM!function along v-direction at different t .
~.

-t.=1.5nm
SI

-1.=3.0nm
SI.

2 3 4 5

Fig. 3.n Variation-of-3Delectron-density withsiliconthickness,t;;; (a),(b), and {c).soow the 3&- -

density for 1,;; values 1.5, 3.0, and 5.0 nm, respectively; while (d) shows the ground state

eigenfunction along a vertical slice in the middle of-the source region in the x-direction.
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3.3 3D Conduction Band Edge Pmfile

In this section the 3D conduction band edge (Ec) profile is pictured for different

biasing conditions and silicon thickness. Fig. 3.12 plots the 3D and ID conduction band

edge in the device with silicon thickness t,;=3;0 nm; Note that the barrier from silicon to

oxide 'is not considered when plotting the data. Fig. 3.12(a) shows the profile for

Vg=03\'; Vd=O;OV while Fig; 3.l2(b) shows the profile at Vg=Vd=03V; The self-

consistent Be profile in (a) is symmetric along the lines x=O and y=0. Ec is higher at the

channel region .as the silicon in -this region is -undoped while it is Jow.:Lin_the dqped

source and drain regions. For the Vd=O.3V case (b), when moving from source towards

the draln through the channel; a small barrier is encountered at the source and channel

junction (electrons from the source are reflected by this small barrier). After this barrier,

Ec decre)lSeJLdue.l0 V_1LClearl}';.electronsJToill_drain.face..a-veryhigh barrier towards the

channel and are mostly reflected back. The conduction band is almost flat in the two

oxide reg~ons; (c) and (d) show z;-directed 1D !;:c, for conditiQ,ns (a) and (b?; respectiyely;

In the silicon film Ec changes-s~ape. very slowly as assumed for UMS/FUMS approach.

Shape of conrdiu,ctionband ed~gc

O•

. w'U -0.2

() --o.~
source

channel --0.2 channel

,..l:' -0.1 o1i' -,1),3

J-04k
drain

. -0.2 -0.:5-. 0 1 -1 0 •
(-oj Z (nIT~J

(0)
Z [ol1nl

Fig. 3.12 Conduction band profile; (al 3D,Yg=Jl.3V~V..d'C'O\',_(b)3D,Y.g=O.3V,Vd=O.3V,(c)

!D, Vg=O.3V,Vd=OV,(d) !D, Yg=03V, Vd=O.3V

42

. ,. ':



1510

v.=o_ov

5-5 0

X Inrn]

-10

3D Condluc'tion band edge potential p..-ofile at: dlrferent: V
g0.3

0.2'

0.1

0 I-Vd=O.5V I
-0.1

~ -0.2
3~
w -0.3

-0.4

-0.5

-0.6

-0.7
5

0

-5
Z (nm] ~115

Fig. 3.13 3D conduction band_profileat different Vg. Vd=O.5V

3D ..Co'nduction band edge potential profile at-.different Vd',
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Fig. 3.14 3D conduction band profile at different Yd. Vg=O.5V

Variation oLEc with Y...g_and \Td.are..shown mFig. 3_1land .Eig.3_14,-r~eGtively.

As V,g in increased with Vd fixed (O.5V), Ee is almost constant in the source and drain

region, out it-drops-4own-in thechanneIregion (Hg, :h-13). As- shewn..in Fig. 3,14,~with. __

increase in-Vd for a constant Vg (O.5V), Ee drops down in the drain region (due to

increasing Vd); but it is constant in the source and the source side of the channeL
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3.4 DrJlin-Cur~ent

the transport characteristic of the double gate (DO) MOSFET is discussed in this

section. The general IDs-YDs characteristic of a DO MOSFET with Lg=IO.O run and

tSi=3,0 nm-is shown-in-the -Fig, .:l~15,-As .-the-drain-voltage ~ncrea8es--f{)r-a--fixed-gate

voltag,e the drain to source current increases. For lower YDSthe increase in high, but as

YDSis increased~above 0.2-0:3Y the current starts to saturate, For a certain-Yus vaIueethe_ ..

current is higher for larger YGS.Saturation is slow at-larger Vos cempared.tolower Vcis-

21)00

2000. -

'E 1500
-2.
"'3.
._i'i"000

50D

V.=O.4V•

V .=O.3V•

- V----=O.2V•
V.=O.OV

0,05 0:1 0.15 0_2 <0.25 <J.3 03.13 0.4. 0.45 0.5
Vos 1[vI.

.Fig. 3.15 los-VDS characteristic of a DG MQSFET with L.g=10.0 nm and t,,=3.0 nm. Current

values are _per-L,u.m width.of-the.device.

The second figure in this section (Fig, 3,16) illustrates the effect of silicon thickness

on the IDs-VDs.characteristics. As the silicon thickness is increased the drain current

increases-for_fixed Yosand Y-G~...As1,;isjnCl'llased-the-channel area-increases-because-the

who I.eof the silicon acts as channel, so larger thickness gives more current. Of course,

this' is only true for thickness level less than 5 run, Beyond 5 run two distinct channel

develops and tJMS/FUMS is not:applicable4'oHsi';>--'5orun. .'
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Fig. 3.17 IDs (per J.l m width) vs. VDScharacteristic dependence on maJomum number of

su~bands considered in the calculation

Above the effect of the number of subbands considered on the drain current is shown

in Fig. 3.17. When 2 or 3 subbands are considered there is essentially no difference in the

drainGUITent -and -a -single -subband-also -gives-CIlITent -va!ues-c1ose--to when 2 or 3

subbands are considered. Usually 2 subbands are sufficient for the thicknesses involved

irrthis thesisi
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3.5 Validity ofFUMS approach

In this section we demonstrate the validity of our FUMS approach by comparing

its results with those of UMS approach. Fig. 3.18 shows comparison of subband levels and

tbeir populations produced by FIJMS and IJMS approach. The two approaches produce
/.

essentially the same results. But the adVantl!geof the FUMS approach is that it requires-much'less

time. Similar result is expected for los versus Vos characteristics as is supported by Fi.g.3.19.

02
FlJMS VS. 'UMS: sullballd levels and !populations

1017

01

o

~ -0.1 prllTI

,.,
~
:g -02w

-0.3

-0.4

lJine FUMS
Symbol: UMS

-0.5-15 -10 -5 o
x lrunl

5 10
1015

15

Fig. 3.18 Comparison of subband levels and their populations produced by FUMS and VMS

approach. Solid line represents results ofFUMS and symbolr~presents results ofUMS.

Thus extensive simulation necessary to exploring novel devices can be made
practical by our FUMS approach with FEM taking the responsibility of handling complex
geometry.
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Fig. 3.19 Comparison ofIDS (per f.l mwidth) vs, VDS profiles produced by FUMS and VMS

approach, Solid line represents results ofFUMS and symbol represents results ofUMS,

3.6 Comparjson..betweenJ"emne.t_and nanomos simulation-results

In this section we show the validity of our simulation method by comparing the

simulation outcomes of this work, called femne! (finite element method nanoelectronic

transistor simulator), with similar results of the famous nanomos [45] in the nanohub

[51]. The theory behind the two simulators is similar but not exactly; nanomos uses

UMS approach for solving the ID SchrOdinger equation in the vertical direction (z-

direction) while femnet uses the novel FUMS approach to reduce the time required to

solve the ID Schrodinger equation, Of course, the two simulators differ greatly in their

PDE discretization; nanomos uses the simple FDM approach and femnet uses the more

appropriate FEM approach, FEM allows easy handling of complex geometry and we can

concentrate on a region where any variable can change rapidly by using dense mesh

there, Still, the simulators produce similar-resu!ts-as-sooWfl-in-Figs, -320-322
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Fig. 3.20 Comparison between e'gen energy levels produced by femnet (blue) and nanomos

(red). (a) ul!primedsubbands, (btprimed subbands.

Fig. 3.20 plots the different subband energy levels in the DGMOSFET. The lower

levels are very close but the higher levels have greater deviations. For femnet, the source

to channel barrier is smaller so greater drain current is expected from FEM simulation.
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Fig. 3.21 Comparison between 2D subband populations produGed by femnet (blue) and

nancimos (red), (a) unprimed subbands, (b) primed subbands,

Herein,Fig, 3,2-1,,we ~lot,the,subband-pepulatien-ef-ditferentsubbands-botllfor

femnetand nanomos, The lowest subband population is very close but as the energy

increases the difference becomes larger, still general trend is similar,
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Fig. 3.22 Comparison between drain currents produced by femnet (solid filled circle in blue) and

na~mos (solid open circle in red)

W-e..{lGmpare-the-IDS-vs, VDS--Gharacteristic-for-the -twGsimulation-approach-in -Fig,

3.22. As stated earlier, femnet shows larger currents for same VGS although the general

behi;lVioris again confirmed to be in agreement
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CHAPTER 4

Conclusion

A modified-and-Gomputatienally-efficient --simulation--approach -for-BG -MOOFETs was
presented in the previous Chapter. This Chapter summarizes the work along with directions for
further study.

4.1 Summary

This thesis addressed device physics, modeling and design issues of nanoscale .double gate

MOSFETs at the -quantum-Ievels.- A-double gate.-MOSFE"I"devWe-with-e"*tr{lmely-scaledchanne\.-

lengths (less than 20 nm) and body thicknesses (less than 5 nm) was considered in this study. To _

accomplish the _objectiv_es,_a_simulationJooi was.preparell_using.MATLAB. J"he.fundamental

physics equations that were solved include the Poisson equation, which dictates the electrostatics

in the devices, and-the SehrOdinger-equatien, which--describes-the.transpOl"l-and. distributiOll-ot'---

carriers in the devices.

In ChapteL:1, _.we.prepared-ll.2Dsimulator, _termed Cemnet, .£or .nanuscale.double-gate

MOSFETs. The program solves open-boundary transport problems using non-equilibrium

Green's function-(NEGF}-formalisffi-using--fast-UIlWupled mooe.space-(-FTJMS)-approach,-&lth-

NEGF and FEM were employed in the simulation ofnanoscale DG MOSFETs. The ballistic DG

_MOSEETs .simulation results _oflhis.work were_compared with..results_of.a_standard .simulation

tool [45] and the appropriateness of our method and hence the use of FEM was justified. Due to

the use of FUMS approach the simulation process is speeded up, but results are essentially

similar to those obtained from the use ofUMS approach.

Important _conclusions are: i) ..MOSF.EIs._essentially _operare..as _c1assical.de¥ices .until.-the

channel length shrinks below 10 nm, when quantum tunneling through the channel barrier

becomes significlll!t, limiting device scaling, ii) solving the Green's .fUnction in a mode space

representation (l!m .greatly reauce the size of the problem and provides good accuracy as
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compared to full 2D spatial discretization, iii) fast uncoupled mode space approach with FEM

makes the method computationally affordable at the PC level.

4.2 Future Work

Furtherextensions)n this study may include:

I) The NEGF approach can_be.used_to-'limula1e_gate _oxide \eakage-characteristics-of -ID -MGS

structures. _Currently, the widely used method in modeling gate leakage is the WKB

approxlmation-15r-53}. In-this-method- quantum-transmissiOlls-tllr-ough.the oxide layers-are- -

evaluated approximately in a post-process operation. The electrostatic profile is obtained

separately~ without-considering _the_effec.ts.on_the__charge_distrihutionoftheJunneling-GlHTent.

In addition, incident electrons are represented by plane-waves, so the effects of 2D carriers in

the inversion-layer-on-the gate tunneling may-not.be properlyasscssed.- 'fhc-NEGF method,.

however, can exactly solve the transport problem, when coupled to the Poisson equation,

providing a way.ofselfoconsistently _assessing1he..gate leakage aIld_electr-Ostatics_profile,.This

method also allows us to examine the energy spectrum of the leakage current, which

distinguishes the-eontributions-fr-em-the 2Q discrete-states-andID-{;ontimuHls-states.- _

2) Different .scattering _modeLare available.and..scatter.can_he.includedin.the-simulation -as.it

will give the method a real life touch. One method to study the dissipative transport can be

the use oflhe--Biittiker-probe-baseG-SGattering- m-ode1s-wherc-scattering centers-are- treated-as---

reservoirs that change the energy or momentum of the carriers and not the total number of

-carriers.in _the_system...lt _has.he.en _used.in.the nanoMO.8_[A5J,.and.1'ecentl}',in-a-nanewire

simulation [54]. Each scattering center is modeled through a perturbation strength

characterized by a position dependent self-energy, which can be mapped onto an equivalent

m-obility.

3) Strained silicon MOSFETs are being studied in recent years. The methods presented in this

work can be extended for the study of both uniaxially and biaxially strained DG MOSFETs.
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In this case, the simple effective mass approximation might not be true because the electron

and hole effective masses change with strain as does the band alignment.

The NEGF approach is a very powerful mathematical tool for addressing how a quantum-

state evolutes temporally under a varieties of interactions within any tiny system (or quantum

level device).AS-device .scaling_continues,~0Ye1.stnlcturesl4esigns must ~¥entually-take.over.the

role clMfently being played by semiconductor-based transistors. Some recent works have brought

carbon-tuDe and- moleeule-cluster-llased. device_structur~s-into-.foous-[-S5-S8]~These new-areas--.

provide us plenty of opportunities to apply the NEGF approach at theoretical research levels. In

principle, _theJ'lEGF _formalism~ot_on1y .enables_usJo_understand-the-microscopic-phenomena,

but also enable us to exploit the hidden potential. Moreover, it should be noted that this approach

is applicable in all non-equilibrium systems beyond electron devices [9, 59].
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Appendix A

A.12D meshgenel'ation-using-MA'fLAB- .

%==========================================================================
function mesh~dgmGs2d
%====~====================================================================
%mesh_dgmos2d - 2d mesh generator function for rectangular DGMOSFET
%This function is used in FEM solution of 2D Poisson equation
%
%Related parameters:%--------------------------------------------------------------------------
%Lsd: dJ;.ain_or...source-J.-engt:ch
%Lg_top : gate length
%t top: top oxide thickness
%t-bot~ bottom oxide thickness
%t si: silicon thickness
%dx: x-grid spacing
%dy: y-grid spacing
%ns: no. of smaller grids
%
%Nn: number of nodes
%Ne: number of (triangular) elements
%x : x-coordinate of nodes (nexl)
%y : y-coordinate of nodes (nexl)
%te: connectivity matrix (3xne)
%Nb: no. of boundary points
%td: array of global. number of Nb's
%---7----------------------------------------------------------------------

%--------------------------------------------------------------------------
global Lsd Lg_top Lg_bot t_top t_bot t_si dx dy ns dys
global Lsda Lg_topa Lg_bota t_topa t_bota t sia
global Nn Ne Nx Ny Nb x y te td~row
globF~ eps_top eps~bot eps_si-alpx alpy%--------------------------------------------------------------------------
%Set up Nn,Ne,x,y:%-----~--------------------------------------------------------------------
dys~dy/2;
~sd~round(Lsd/dx)*dx;
Lg_top~round(Lg_top/dx)*dx;
Lg_bot~round(Lg_bot/dx)*dx;
Lx~round((2*Lsd+Lg top)/dx)*dx;
t_top~round(t_top/dys)kdys7
t_bot~round(t_bot/dys)*dys;
t_si~round(t_si/dys)*dys;
Ly~ro\>nd.((t_top+t_si+t_bot) Idyl *dy;
%
Lsda-round(Lsd/dx);
Lg topa=round(Lg top/dx);
Lg=:bota~round( Lg=:bor/dx).,
Nx~round(Lx/dx)+l
t_topa=2*ns+round((t_top-2*ns*dys)/dy);
t_bota~2*ns+round((t-bot-2*ns*dys)/dy);
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t_sia~2*ns+round(lt si-2*ns*dys)/dy);
Ny~6*ns+round((Ly-6*ns*dys)/dy)+1
Nn=Nx*Ny
Ne~2':(Nx-l)*(Ny-l);
x=zeros (-Nh, -1).;
y=zeros(Nn,l);
for i=l:Nx

xcolli)~(i-l)*dx;
end
x=repmat(xcol',Ny,l);
fOI:-.j_~l:Ny __

if j<=ns+l
yrow(j)~(j-l)*dys;

elseif j>~(t_topa+l-ns+l)&j<~Jt_topa+l+ns)
yrow(j)~yrow(j-l)+dys;

e~seif j>~(t_topa+t_sia+l-ns+l)&j<~(t_topa+t sia+l+ns)
yrow(j)~yrow(j-l)+dys;

elseif j>-(-Ny--ns+-l-}&j<-Ny--
yrow(j)~yrowlj-l)+dys;

else
yrowJj )~yrow (j-1) +.dy_;

end
end
yrow=yrow I ;

yd=repma.t_(yrow, 1, Nx);
y=reshape {yd' 1Nn-,1 )--i-%--------------------------------------------------------------------------
%Set up teo
%---~----------------------------------------------------------------------
te=zeros(3,Ne)i
vel~[1;2_;Nx+l] ;
ve2~ [2;Nx+z'-;Nx+-lj;_
for jj~l: (Ny-I)

for ii~1:2: (2*(Nx-l))
ee~(jj-l)*(2*(Nx-l))+ii;
if ii==l

te (: I eel =vel;
te C=- 1_ee+1) =ve2 i _

else
tel:,ee)~te(:,ee-2)+1;
te(:,ee+l)~te(:,ee-l)+l;

end
end

.1 vel=vel+Nx;
ve2=~e2+Nx;

end
%--------------------------------------------------------------------------

%Set up Nb,td:%--------------------------------------------------------------------------
Nb~2*(Lg_topa+l);
td~tnp~[Lsda+l:Lsda+Lg_topa+lJ ';
(Nn- (Lsda'l-Lg_topa-'Fl)+1);-
td_bot~ [-INn'-(Lsda+Lg_ topa+ 1)+1) : INn- (Lsda+ 1)+1) ] ';
td~[td_top;td_bot];
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%---r----------------------------------------------------------------------
%Set up alpx and alpy:
%-~--~---------------------------------------------------------------------
alpx=eps si*ones(Ne,l);
alpy=eps_~i*onC?B (Ne,.-l)-; ~
alpx(l: (Nx-l)*2*t_topa)=eps top;
alpx((Nx-l)*2*(t_topa+t_sia) :Ne)=eps_bot;
alpy=alpx;
%--r-----------------------------------------------------------------------

A.2 Flow chart of the self-consistent simulatioB-- _.

Guess initial
potential Void

Solve the ID Schrodinger equation in tIje /
confinement direction (z) for subband

(eigen energy) profiles arid wave functions

Solve the !D, x-directed NEGF to
evaluate the 2D charge density at

each x

Distribute the 20 charge at each x in z-
direction and solve the Poisson eqution for'

Vnew

Check for convergence:
Compare V_with Void
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