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ABSTRACT

With the scaling down of MOSFET feature size, quantum mechanical (QM) ef-

fects on these devices are becoming important. It is found that, due to quan-

tization, carriers move a distance away from the Si/ Si02 interface, which in-
creases the effective gate oxide thickness and thereby affects the effective gate

capacitance, inversion charge density, threshold voltage etc. Hence, an accurate

modeling for such devices must be made to include these QM effects, which re-

quire calculation of eigenenergies and wavefunctions from Schr6dinger's equation.

Conventionally this calculation is done using a boundary condition, referred to as
conventional or zero boundary condition, that assumes that wavefunctions vanish
at the interface i.e. there is no wavefunction penetration inside the oxide region.

Actually, the validity of zero boundary condition is not justified for the deep sub-

micron (~ 3011 gate oxide thickness) devices, as the error made is comparable to

device dimensions. In such cases, for a more accurate modeling, the wavefunction

penetration in the oxide should be taken into account.
This work calculates gate capacitances of deep submicron MOSFETs by con-

sidering wavefunction penetration in the oxide using a new asymptotic boundary
condition. In this work, using both conventional and asymptotic boundary condi-
tions, shift of DC charge centroid and gate capacitance are calculated. To reduce

the computational complexity in QM calculations, a recently developed Green's
function formalism along with transmission line analogy is employed. A compar-
ison of the calculated results show that the results are dependent on the choice
of boundary conditions. It is also seen that the choice of appropriate boundary

condition becomes more important as the devices are scaled down with reduced

oxide thickness and increased surface electric field.
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In order to obtain lower chip area i.e. higher level of integration, and higher

speed of operation, the current trend of MOSFET fabrication is to increasingly

scale down the device feature size. But with the advancement of miniaturization

of MOSFET feature size, channel lengths approach deep submicron dimensions.

This results in successively lower gate oxide thickness (Tax) and higher levels of

channel doping concentration (NsUB) in order to simultaneously satisfy the need

for desired device turn-off and drive-current capabilities guided by the rules of

scaling methodology [1]. According to the National Technological Roadmap for

Semiconductors (NTRS) [2]' the scaling trend is such that Tax approaches to

less than 2.0 nm for a sub-lOO nm generation device; on the other hand NSUB

must be at least equal to 10 x 1018 cm-3 so that short channel effects can be

minimized.

In deep submicron (::; 0.25 Jlm gate length) technology, the combination of

extremely thin oxide (Tax ::; 10 nm) and high channel doping concentration

(NSUB ~ 1017 cm-3) results in very high transverse electric fields at the Si/Si02

interface [1]. The electric field is sufficiently high, even near the threshold of

inversion, to bend the energy bands at the interface significantly. With this band

bending, the potential well becomes sufficiently narrow and steep to quantize the

motion of inversion layer carriers in the direction normal to the interface. As

a result, energy levels are split into subbands (2-D density of states) in such a

manner that the lowest allowed energy level for electrons in the well does not

coincide with the bottom of the conduction band. Each of these subbands cor-

respond to a quantized level for motion in the direction normal to the interface,

with a continuum for motion parallel to the surface. These quantum mechani-

cal (QM) effects are manifested through measurable device parameters such as

inversion layer charge density and resistance, threshold voltage, and the oxide

thickness extracted from capacitance vs. voltage (C-V) or Fowler-Nordheim tun-
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neling current measurements. Modeling of these QM effects are important in

deep submicron device design. The use of traditional, or semi-classical, models in

device analysis and design, in which these effects are neglected, is inadequate at

deep submicron dimensions and will lead to erroneous and misleading predictions

of the device structure and electrical behaviour, such as the physical oxide thick-

ness, threshold voltage, drive current, capacitance, on-state series resistance, and

the polysilicon work function.

From the above discussion it is pointed out that an accurate physical de-

scription, including QM effects, of charge distribution in inversion layer formed

at SijSi02 interface due to large transverse field caused by gate bias becomes

increasingly important with decreasing MOSFET feature size. If semi-classical

picture of this charge distribution is used, accurate determination of gate oxide

thickness is not possiblc for submicron devices. From the QM viewpoint, carriers

actually move some distance away from the interface due to the quantization of

carrier energy states and thus leads to an increase of gate oxide thickness which

is significant in deep submicron dimensions. This, therefore, results in increased

threshold voltage and decreased gate capacitance.

1.1 Literature Review

In order to estimate various QM effects, it is necessary to calculate the energies of

the quantized states and the corresponding wave functions. Stern and Howard [3]

first considered this treatment and solved Schrodinger's equation mostly concern-

ing with the lowest levels of subbands split up from the conduction band. They

assumed the potential profile near the interface as triangular and calculated wave

functions from the variational principle. Later Stern [4]solved the self-consistent

solution of Schrodinger's and Poisson's equations. He calculated the wave func-

tions assuming that wave functions go to zero at the oxide-semiconductor inter-
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face. This assumption is equivalent to assuming an infinite potential barrier at

the interface. It is considered to be justified since the barrier height at the inter-

face is high enough( ~ 3.1 eV) and hence, the contribution of the wave function

tail inside the oxide is extremely small. Moglestue [5]extended the self-consistent

calculations to hole inversion charges in the same way as Stern did, but used the

Fermi-Dirac Statistics.

Using the self-consistent results, Ohkura [6] reported the dependence of self-

consistent solution on the substrate doping concentration. He showed that in-

crease in doping level results in shifting of subthreshold curves, especially for

impurity concentration greater than 1017 cm-3. He also proposed a method for

transferring the QM effects into the semi-classical calculation through the modi-

fication of gate oxide thickness and flat band voltage.

Since the quantization of electrons in inversion layer modifies the electron

density, the dependence of surface potential at the interface on the gate voltage

must be calculated considering the QM effects [7]. Actually it is found that, due

to this dependence both the non-degenerate and degenerate approximations have

deviated increasingly from the actual quantum case with increasing gate voltage.

This deviation also increases with decreasing oxide thickness.

The inversion layer capacitance (Ginv), inherent to MaS structure, plays a

significant role in ultra-thin gate oxide capacitance. The total gate capacitance

(Gtot) is the series combination of the oxide capacitance (Gox) and Ginv. With

the increased demand of scaling of MaS, gate oxide becomes thinner result-

ing in larger Gox and thereby causing larger reduction of Gtot and also of the

transconductance due to Ginv' There are two physical origins of Ginv: one due to

finite effective density-of-states called classical inversion capacitance, Ge.~sand

other due to the finite inversion layer thickness called QM inversion capacitance,

Gi~~ckness. In Ref. [8], the surface carrier concentration, Ns and temperature de-
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pendence of Ginv is qualitatively expressed as the series capacitance of these two

capacitances. It is shown that, at lower N., Ginv is determined by the first one

while at higher N., Ginv is determined by the later origin.

In his paper, Saha [9] investigated the effects of inversion layer quantization

on the performance of NMOS devices fabricated with different shapes of chan-

nel doping profiles. He showed that for nano-MOSFET devices, suitable channel

profile engineering could optimize the impact of QM effects and the variation in

the device performance due to dopant fluctuations. Applying the self-consistent

results with highly non uniform doping profiles, the dependence of QM effects on

the channel doping profiles was also shown in Ref. [10]. In this reference it has

been shown that introduction of low doped region at the device surface allows

tailoring the threshold voltage according to the circuit applications while high

doping leads to high threshold values for realistic applications. In addition, this

region reduces the electron effective field for a given charge sheet density result-

ing in an improvement of electron effective mobility. Though the displacement of

inversion charge from the silicon surface causes the reduction of total gate capac-

itance with respect to Gox, no significant additional degradation has been found

due to the introduction of low-doped epitaxial layer.

Previously, the effects of channel quantization on the capacitance character-

istics was determined by the AC charge centroid of the charge layer, although

this is not directly relevant to predict transistor current. In fact, a model of

DC charge centroid can accurately explain the direct current in a transistor. The

conventional method of electrical oxide thickness characterization using C-V mea-

surements in the accumulation region reflects the approximate value of the AC

centroid in the inversion region but not the DC centroid. In Ref. [11]' an empirical

model for the DC charge centroid in terms of the gate voltage, threshold volt-

age and oxide thickness was developed. This model developed a one dimensional
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simulator using a self-consistent method by solving Schrodinger's and Poisson's

equations iteratively along with Fermi-Dirac Statistics. Employing this model, a

universal expression for this DC charge centroid from the accumulation to deple-

tion region was later derived by Liu et.al. [12]. They considered the finite charge

layer thickness due to quantization effects in all operating regions and thereby

proposed an accurate model for C-V characterization.

In the modeling of carrier quantization in strong inversion and accumulation,

it is commonly assumed that a semi-classical model is acceptable near flat bands,

when confinement of majority carriers is weak due to small surface electric field.

However, this assumption is not correct, as the carrier quantization effects ex-

tends to the weak accumulation and flat band operating regions. The presence of

abrupt potential discontinuity at the Si/Si02 interface causes a dark space of a

few nanometers, where the concentration of majority carriers is much lower than

in the bulk even for a small or vanishing electric field [13]. This quantum effect

is practically significant only if the dark space is comparable to or larger than

the Debye screening length in the semiconductor. When screening length is much

larger than the dark space, no quantization effect is observed. Again, while the

Debye length depends both on the doping and the temperature, the dark space

depends only on the temperature. Therefore, a significant capacitance attenua-

tion is observed at room temperature only for relatively high doping concentration

(::::1 x 1017 cm-3).

Self-consistent solution by coupling Schrodinger's and Poisson's equations is

very much computationally expensive. Various models [2, 14, 15, 16, 17, 18, 19]

were devised to reduce the computational hazards without sacrificing the accu-

racy. One model proposed by Hareland et. al. [1] utilized analytical descriptions

for the first three subbands of a 2-D density-of-states in a quantized electron

inversion layer. This model predicted significant threshold voltage shifts and dif-
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ferent oxide thicknesses compared to semi-classical simulations. Later Jallepalli

et. al. [20] provided a compact analytical model to describe the threshold volt-

age shifts due to QM effects as a function of the doping concentration and oxide

thickness. The increase of the effective oxide thickness due to quantization was

presented as a function .of the oxide field for a range of doping concentrations.

1.2 Scope of the Work

Various research works in the field of QM effects in MOS structures used a bound-

ary condition in their wave function calculation that wave function penetration

into the oxide is zero, as proposed by Stern [4]. The validity of this assumption

lies in the fact that the barrier height at the interface of oxide-semiconductor

is high and the error is negligible compared to the device dimensions. But the

current trend in scaling down in the MOS feature size questions its validity as

today's submicron devices progressively approach to the dimensions in which the

error is no longer insignificant. This effect was first pointed out in Ref. [21] for a

device of ~ 20 11 gate oxide thickness. This Ref. showed that the conventional

assumption leads to an over-estimation of the distances moved by the carriers

from the interface by a few angstroms and proposed a new boundary condition

called the asymptotic boundary condition that accounts this effect.

Throughout the present work, it has been studied whether there exists any

justification of the use of the conventional boundary condition as proposed by

Stern and its appropriateness in the ultra-thin gate oxide MOS modeling. The

boundary conditions are also employed to study various physical and elelcctrical

parametric variation, such as doping density variation, oxide thickness variation

and electric field variation.

Throughout the work, a two terminal MOS capacitor is considered. The in-

terface charge is neglected. Body-effect is considered to be absent. The room
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temperature is assumed for all calculations. Polysilicon effect is not considered

as gate was thought to be made of a metal, AI. Moreover, the main focus was

given onto the strong inversion. The inversion well at the Sil Si02 interface is as-

sumed to be exponential at strong inversion. In spite of all these approximations,

the results obtained through this study can draw significant attention of device

engineers. Especially for submicron devices, the significance becomes prominent.

1.3 Organization of the Thesis

The semi-clasical and quantum mechanical view of MOSFET are reviewed in

chapter 2. The analytical expresions for inversion charge density, shift of DC

charge centroid from the interface and the effective gate capacitance including

quantum effects are presented in this chapter. The conventional method of cal-

culating eigenenrgies and wave functions is also described briefly in this chapter.

The present work uses quantum mechanical generalized impedance concept anal-

ogous to transmission line [22] along with Green's function formalism [23] to

calculate eigenenrgies and wave functions. A brief discussion of these methods is

presented in chapter 3.

Chapter 4 presents the calculated results using both boundary conditions.

The results obtained by varying different parameters, such as oxide thickness,

doping concentration, surface electric field and gate voltage are presented in this

chapter. A comparison between the effects of both boundary conditions is made

in this chapter.

The concluding remarks and suggested recommendations for future work are

included in chapter 5 of this thesis.
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Chapter 2

REVIEW OF MOS THEORY:
SEMI-CLASSICAL AND
QUANTUM APPROACH

9



An n-channel metal-oxide-semiconductor (NMOS) transistor is based on the idea

developed more than half a century ago by J.E. Lilenfeld in the early 1930's.

Now-a-days this device is getting increasingly keen attention from the scientists

and and engineers due to its relatively lower cost, less power consumption and

smaller real estate area than the other types of transistor devices i.e. bipolar

junction transistors. A simple preview of this NMOS transistor is offered in this

chapter.

2.1 Basic Structure

A simplified structure of NMOS transistor (enhancement type) is shown in Fig. 2.l.

The transistor is formed on a p-type silicon wafer (doping concentration generally

ranges from 1016 to 1018 cm-3), called body or substrate. The dopant concen-

tration is assumed unifrom throughout the body, unless otherwise specified. An

insulator, typically silicon-dioxide and hence often referred to simply as oxide

and usually of 35 to 100 A thickness, covers the central structure. The body

interface to the oxide is often called as surface. On the top of this oxide is a

low-resistivity electrode, called gate. Polycrystalline silicon (heavily doped p or

n-type e.g. 1020 cm-3) is commonly used for the gate. Aluminium metal is also

used for the gate. On the two sides, just outside the "shadow" of the gate, are

shown the n+ regions (heavily doped n, which causes low-resistivity for these

regions) formed by implanting donor atoms indicated as source and drain; these

regions are typically 0.04 to 0.2 p,m deep. The region between them is called the

channel.

Under the condition when sufficiently positive gate-source voltage (Vas) is

applied, positive charges are placed on the gate which repel the holes from the

surface, thus leaving the latter depleted. The resulting depletion region contains

a number of negatively charged acceptor ions; this situation is called as depletion.

10



Drain

Metal

p

Substrate

Figure 2.1: An enhancement type n-channel MOS transistor.

By applying more and more positive Vcs, the surface even can be made attractive

to electrons. In this situation, the surface of the p-type body, which normally

would have an abundance of holes, now has plenty of electrons; the situation is

termed as inversion and the layer of electrons at the surface is called as inversion

layer.

The electron-density in the channel can be varied through the gate potential.

This can cause a variation of "strength" of the connection between the two n+

regions, resulting in transistor action. If the two n+ regions are biased at different

potentials, the lower potential one acts as a source for electrons and the higher

potential one as the drain. Electrons flow from the source through the channel

and collected by the drain. The source, drain, gate and body are denoted by S,

D, G and B respectively.

11



2.2 Energy Band Diagram

2.2.1 Zero Bias

The energy band diagrams of two ideal MOS structures [24]' one with p-type

substrate and the other with n-type subatrate at equilibrium condition for zero

bias are shown in Figs. 2.2and 2.3, respectively. In these figures, <Pm is the work

function for the metal-Si02 interface which is the energy required to move an elec-

tron from metal Fermi level to Si02 conduction band; <Psi is the work function for

Si-Si02 interface which is the energy required to move an electron from Si-Fermi

level to to Si02 conduction band; X is the semiconductor electron affinity and is

measured from semiconductor conduction band to Si02 conduction band; Eg is

the energy gap for semiconductor and is the energy difference between semicon-

ductor conduction band and semiconductor valence band; <PB, also expressed as

<PF is the separation between the Fermi level and intrinsic level in Si and is an

indication of doping concentration in the substrate; Ei, Ec and Ev are intrinsic

Fermi level, conduction band and valence band edges, respectively.

For idealized case, <Pm = <Psi. But for an actual device, this condition does

not hold as metal Fermi level is at lower level than the semiconductor Fermi level.

As a result, a tilting is found for oxide conduction band and Ec bends near the

surface. Under such conditions, the difference between the two work functions

can be written as [25]

2.2.2 Positive Bias

for p-type substrate

for n-type substrate

(2.1)

(2.2)

For an enhancement type NMOS device with a small positive gate voltage Y, the

metal potential increases and thereby lowers the metal Fermi level by an amount

12
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Figure 2.2: Energy band diagram for zero bias condition assuming <Pm = <Psi for
p-type substrate.

"" "" ""X q<P,i
q<Pm

T ... ~.. .... ... .... .... .... .... .. .... .... ..

Eg q~
,j

Ec

E.
1

Ev

Metal SIlt can
Dioxide

SemIconductor
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equal to qV relative to its equilibrium condition as shown in Fig. 2.4. The electron

and hole concentrations in the bulk are given by

under the assumptions that

EF-Ei

npO = nie KT

EeEp

PpO = nie KT

~e KT »1 and

~e KT «1

(2.3)

(2.4)

(2.5)

(2.6)

where ni is the intrinsic electron concentration (for Si, it is equal to 1.5 x

1016 cm-3), K is Boltzman's constant and T is assumed to be equal to room

temperature i.e. T = 3000 K.

With positive voltage applied to the gate, a depletion region for holes is created

near the interface, as then positive charges are deposited on the metal and hence,

repel holes from the regions near the interface. As a result, Ei moves closer to

EF near the interface as required by Eq. 2.4, which causes band bending near the

interface as shown in Fig. 2.4.

If positive gate voltage is continued to increase, the bands bend more strongly.

At a certain level of gate voltage, Ei crosses EF [Fig. 2.5]. From equation 2.3,

this results in a large electron concentration near the interface. In this case, the

p-type semiconductor is converted to n-type near the surface. This situation is

inversion. Fig. 2.5 shows the condition under strong inversion. In this figure, rP

defines a potential to give the extent of band bending of Ei from its equilibrium

condition.

Electron and hole concentrations in terms of band bending potential rP (Fig 2.5),

can be expressed as

(2.7)
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(2.8)

where, <P is considered to be positive when bands bend downward. At the Si-Si02

interface <P = <p" where <Ps is called the surface potential.

2.3 Semi-classical Approach

At zero bias, the band bending at the semiconductor layer is determined by the

difference of the work functions of the metal and the semiconductor. This band

bending may be compensated by applying a voltage difference, called Flat-Band

Voltage, VFB is given by [24]

Qi
VPB = .pms - -C

ox
(2.9)

(2.10)

where, .pms is defined in Eqs. 2.1 and 2.2. For Al-Si work function potential

difference, .pms is always negative and is most negative for heavily doped p-type

Si, because for aluminium gate, .pm is constant and is equal to 0.6 V, while .ps is

negative and depends on the doping concentration of the semiconductor [24, 26].

In Eq. 2.9, Qi is the interface charge and Cox is the oxide capacitance per

unit area, given as
c _ fOXfO
ox - T.ox

where, fOX is the relative permittivity of the oxide, fO is the absolute permittivity

and Tax is the oxide thickness. For simplicity, Qi is assumed to be zero and hence,

Eq. 2.9 reduces to

(2.11)

If the voltage applied to the gate is negative, the band bends such that the

Fermi level at the interface is closer to the top of the valence band than in the

bulk. Hence, the majority carrier concentration at the interface is larger than

that in the bulk [27]. This situation is termed as accumulation. Therefore,
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there exists four situations depending on the voltage level applied to the gate.

Mathematically, all four situations can be expressed as follows [26]:

Flat-Band Condition

Accumulation Condition

Depletion Condition

Inversion Condition

cPs = 0

o < cPs < cPF

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

VCB is the applied potential between gate and substrate and cPs is the surface

potentia!. Depending on the value of cPs, the inversion region is roughly divided

into two regions: weak and strong inversion. The weak inversion is defined as:

(2.20)

From Fig. 2.7, the onset of strong inversion is defined as [24, 26]:

(2.21)
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and in strong inversion,

(2.22)

(2.23)

Of all these, strong inversion is the most important operating region. The

voltage required for the onset of the strong inversion is called as threshold voltage,

VT which can be expressed as [26]:

VT = VFB + 2rjJF + IV2rjJF

where,
J2qEsiEONA1= --- (2.24)

Cox
and is called the body effect coefficient; here, NA is the acceptor doping concen-

tration and Esi is the relative permittivity of the semiconductor. According to

the charge sheet approximation, the potential drop across the inversion layer is

negligible and hence, all of the surface potential drop occurs across the depletion

region of the p-type substrate. The validity of this approximation lies in the fact

that most of the charge in the inversion layer is concentrated so close to the sur-

face that this layer is considered to be a sheet of negligible thickness compared

to the depth of the depletion region and the depletion region is implied to be

devoid of electrons. Moreover, using the depletion approximation, it is further

assumed that the mobile carrier concentration, p is negligible in comparison to

the acceptor concentration inside the depletion region. Under these assumptions,

Poisson's equation, given by

d2rjJ -q[p - n - NA]
dz2 EsiEO

reduces to

The solution of the Eq. 2.26 then gives the depletion depth, Zd,

19
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From Eq. 2.27, it is obvious that Zd is the function of rps' At threshold, Zd reaches

its maximum value and after that it will not be increased with the increase of rps'

Hence, in strong inversion, Zd is given by [24, 26]'

2 EsiEO A,
Zd= --<pF

qNA

The gate voltage is usually expressed as [26],

QB+QI
Vc = VFB + rps - nvox

(2.28)

(2.29)

where, QI is the inversion layer charge per unit area, QB is the charge per unit

area due to ionized acceptor impurities in the depletion region, given by

(2.30)

and rps is greater than 2rpF' In semi-classical approach, to calculate QI, first the

depletion region charge, QB is calculated, using Eqs. 2.28 and 2.30. Next the

total charge in the semiconductor under the oxide per unit area, Qc, which is the

sum of inversion layer and depletion region charges, is calculated and then QB is

deducted from Qc. Here [26]'

(2.31)

where, rp, = ~T. The gate capacitance at inversion can be expressed as a se-

ries combination of oxide capacitance, Cox, depletion capacitance, CB and the

inversion capacitance, C1 [26]' where,

CB = _ dQB
drps

C1 = _ dQI
drps

20
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2.4 Quantum Mechanical Approach

2.4.1 Basic Formulation

As already discussed in the previous chapter that at high doping concentrations

(1017 to 1018 cm-3) QM effects are nontrivial for device engineers. At this level

of doping concentration, quantization results in a redistribution of the carrier

density near the Si/Si02 interface as compared to the semi-classical prediction.

Hence, a QM calculation is necessary to accurately describe the behaviour of

the electron inversion layer. One common approach to make QM calculation is to

solve coupled Schrodinger's and Poisson's equations in a self-consistent manner. A

number of assumptions are used to obtain a balance between acceptable physical

accuracy and computational eficiency when analyzing the electrical behaviour of

MOS [4J:

1. Effective mass approxiamtion is valid. This approximation leads to decou-

ple the 3-D Schrodinger's equation into a 1-D Schrodinger's equation that

describes the envelope function normal to the interface.

2. The envelope wave function vanishes at the oxide-semiconductor interface

as the potential barrier (~ 3.1 eV) to electrons in the well is assumed as

infinitely high at the Si/Si02 interface.

3. Surface states are negelcted and an equivalent electric field replaces the

effect of any changes in the oxide or insulator adjacent to the semiconductor.

In QM consideration, the band bending can be characterized by an electro-

static potential, rjJ(z). The electronic wave function parallel to the interface is

assumed to be a plane wave and as effective mass approximation is considered,

the wave function is expressed as the product of Bloch function at the bottom
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of the conduction band and an envelope function normal to the interface (z-

direction) [4]' Le.,

(2.34)

where 1'1 and 1'2 are measured relative to the band edge, e depends on 1'1 and 1'2,

7/Jij(Z) is the solution of

(2.35)

where mzi is the effective mass perpendicular to the interface in the ith valley, Eij

and 7/Jij are the eigenenergy and normalized eigen function (the envelope function)

respectively, of the jth subband in the ith valley. Here, parabolic bandstructure

is used.

According to the conventional approach, for calculating the bound solutions

of Eq. 2.35, two boundary conditions are used [4]:

7/Jij(oo) = 0

7/Jij(O) = 0

(2.36)

(2.37)

where, Z = 00 and Z = 0 are the bulk and the interface, respectively. Each

eigenvalue, Eij found from the solutions of Eq. 2.35 is the bottom of a contin-

uum of levels called a subband. The potential ,p(z) is the solution of Poisson's

equation [4]:
Pdepl(Z) + Pinv(Z) (2.38)

Unlike the semi-classical calculation, inversion electron density, Pinv is given as

follows

Pinv(Z) = -qL nijl7/Jij(ZW
ij

22
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(2.40)

where nij is the carrier concentration in the jth subband of the ith valley, given

by [4]
n 'md.KT EF-Eij

nij(Eij) = m 1rh~ x In(l + e KT )

nvi is the valley degenaracy (which are degenarate in pairs in the effective mass

approximation), mdi is density-of-states effective mass per valley. Pdep/(Z) is the

depletion layer charge density, expressed as [4]

(Z) _ { -qNA if 0 < Z < Zd
Pdep/ - 0 Z > Zd (2.41 )

The boundary conditions for Eq. 2.38 are that ~ vanishes for large z i.e. III

the bulk and that its value at the surface equals - F., given by [4]

Fs = q(Ninv + Ndep/)
EsiEO

(2.42)

where, Fs is the surface electric field and Ninv and Ndep/ are the number of charges

per unit area in the inversion layer and in the deplation layer, respectively and

expresed as

ij
(2.43)

(2.44)

As quantization is in effect, the carriers move some distance away from the

interface. So charges are now confined within a distance not equal to the physical

oxide thickness, but with a larger thickness. That is, due to this QM effect,

the effective electrical oxide thickness is no longer equal to the physical oxide

thickness; instead, a correction factor is added to it. This factor is called DC

charge centroid shift, XDc. This can be expressed as [11]

XDC = J Pinv(z)zdz
J Pinv(z)dz
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This factor is added after multiplying with a factor ~ to Tox to determine'..
the effective oxide thickness. Since, the multiplying factor=I/3 (EOX = 3.9,

Esi = 11.7), the effective oxide thickness is expressed as

1
TEFF = Tox + 3XDC

The effective oxide capacitance can be expressed by

C _ EoxEO
EFF--- TEFF

(2.46)

(2.47)

The expression for threshold voltage are similar to Eq. 2.23 and can also be

expressed in the form

IT Vi + 2A. + qNdeplVT = FB ,+,F C
ox

The gate voltage can be expressed by Eq. 2.29, with QI given by

and QB given by Eq.2.30. Hence,

v; - Vi + A. + q(Ndepl + Ninv)
G - FB '+'. Cox

(2.48)

(2.49)

(2.50)

Cox is replaced by CEFF expressed by Eq. 2.47 instead of Eq. 2.10 to account

the QM effect. The new expression for tP. used in Eq. 2.50 is given as [11]

(2.51)

2.4.2 Approximate Techniques of QM Solution

Since the self-consistent formulation, outlined in the previous section, is compli-

cated to implement and computationally time-consuming, a number of approxi-

mate techniques have been proposed to obtain QM solutions.
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2.4.2.1 Airy Function Approximation

The simplest approximation is to replace IjJ(z) in Eq. 2.35 by -F.z for z > 0

and by an infinite potential barrier for z < O. This is sometimes called the

triangular-potential approximation [4].

Using the triangular-potential, the general solution of Eq. 2.35 is a combina-

tion of the two Airy functions Ai(z') and Bi(z') [5]

with

'l/Jij = aAi(z') + /3Bi(z') (2.52)

(2.53)
1 g.

z' = (2m*qF.n-2)3[z -~]
qF.

where a and /3 are constants. As Bi(z') diverges for z -+ 00, this is rejected as a

solution. Ai(z') decays monotonically to zero for z' > 0 and oscillates for z' < O.

Eij is chosen such that Ai(z') has j roots and 'l/Jij is taken to be zero for z' below

this jth root. Then the energy becomes [5]

(2.54)

(2.55)

2.4.2.2 Variational Approach

The triangular-approximation described in the previous subsection fails when

charge density per unit area in the inversion layer is comparable to or exceeds that

in the depletion layer. In the electric quantum limit (i.e. when only one subband

is occupied), the variational approach is a reasonable estimation for the energy

of the lowest subband. For this, Fang and Howard introduced a wavefunction of

the lowest subband [4].
b3(2

'l/JlO(Z) = .j2ze-bZ
(2

where the parameter b is determined by minimizing the energy of the system

using the wavefunction given by Eq. 2.55. From the variational approach, the
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(2.56)

approximate expression for the ground state of the subband energy, ElO can be

found as [4J

(
q2h ) 2/3 55 ( 11

ElO = 2 ,;m;iESi (NdePl + 96 Ninv) Ndep1 + 32 Ninv)

Eigenenergies for the higher lying subbands are calculated (following Stern [4])

using a perturbation technique

4Eij,deplF + qFinvzo - lOme V
15q deplZdepl

(2.57)

where Eij,depl is the energy obtained from Eq. 2.54 using only the surface electric

field, Fs, due to the depletion charges. Zo is the average distance of the charge

density away from the interface associated with the variational wave function, and

Fdepl and Finv are the surface electric fields due to the depletion and inversion

layer charges, respectively. However, in order to obtain better overall agreement

with self-consistent calculations, a correction factor of approximately -10 meV

was added to the eigenenergies calculated in Eq. 2.57.
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Chapter 3

TRANSMISSION LINE
ANALOGY AND GREEN'S
FUNCTION FORMALISM: AN
OVERVIEW
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After Stern's publication [4] it is evident that QM effects can no longer be ne-

glected to make a balance between the theoretical model and the practical results

with the incresing trend of scaling down the MOS feature size. To accurately

model the QM effects, it is a must to solve Schr6dinger's equation. But this gen-

erally requires lengthy matrix manipulation. Hence, some assumptions are made

to reduce the complicacy of the problem. Various researchers worked on to derive

a simple solver to reduce the computational hazards in solving the QM approach.

Of those, some are mentioned in chapter 1. In this chapter, a quite simple ap-

proach is presented. This approach first uses the well-known transmission line

concept used in microwave engineering. Realizing the power of this approach to

solve QM problems, later Green's function is introduced to calculate eigenener-

gies and wave functions. When these are known, other quantities of interest can

be calculated easily.

3.1 Transmission Line Analogy

Transmission line analogy to solve Schr6dinger's equation is described briefly as

follows [22]. The well known equations for voltage (V) and current (I) used in

transmission line theory are, with time variation assumed as e-iwt instead of usual

eiwt ,

I(z) = I+(e"YrZ - f,e-"YrZ)

V(z) = 1+Zo(e"YrZ + f,e-"YrZ)

(3.1)

(3.2)

(3.3)

where, "Ir is the propagation constant and f, is the wave amplitude reflection

coefficient given by

f _ Zit - Zot,-
Zit + Zot

where Zit and Zot are the load and the characteristics impedance of the transmis-

sion line, respectively.
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Region 1

Incident Electron

..•...................................
Ref! ected Ele ctron

------10

Region 2

z••

Figure 3.1: A potential barrier with an incident electron (solid line) and the
reflected wave (dashed line).

If an electron with an energy E is incident on the potential barrier (Fig. 3.1),

then the corresponding wave function can be expressed as

where time-variation is implicitely assumed as e- i~t and

J2m'1= C'< + i(3= i y(E - V)

(3.4)

(3.5)

is the propagation constant, m' is the effective mass, V is the potential and - p is

the wave amplitude reflection coefficient. For the two regions shown in Fig. 3.1,

Eq. 3.4 is rewritten as

1/Jl(Z) = Aj(e'Ylz - pe-'Y7.Z) Z < 0

1/J2(Z) = Ate'Y'z z > 0

(3.6)

(3.7)

where, Ij = C'<j+ i(3j = it:;} (E - Vj), mj and Vj (j = 1,2), are the effective

mass and the potential, respectively, for the jth region. Since, for z > 0 the
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region is of infinite extent, it is evident that there is no reflection. The boundary

conditions for this problem, with regard to the continuty of wave function, are

1PJ(0) = 1/12(0)
1/1;(0) 1/1~(0)-- --

Using these boundary conditions an expression for p is found as
.:l"Z- _ .1:Lm. m.p _, 1

-.:l"Z-+.1:L
m:i mi

If a function, </J( z), is defined as

</J(z) = 2fi d1/1
~m'dz

then,

where,
Z _ 2,fi
0- . *~m

Using the value of Zo in Eq. 3.10, it is found that

Z02 - Zo 1p=' .
ZO,2 + ZO,1

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

where ZO,1 and ZO,2 are defined for region 1 and region 2, respectively.

From the above discussion, an analogy is found between voltage and current

expressed by Eqs. 3.1 and 3.2 with </J and 1/1 expressed by Eqs. 3.12 and 3.4,

respectively. Since, the transmission line impedance is the ratio of V and I, so

the ratio of </J and 1/1 is called as wave impedance by using this analogy. This

fact can be verified by using another analogy found between the equation of wave

amplitude reflection coefficient for electron wave (p) and the equation of wave

amplitude reflection coefficient for transmission line (ft), as seen in Eqs 3.14
••

and 3.3, with Zit replaced by ZO,2 and Zot replaced by ZO,1. Moreover, 1/1 and \
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rjJ are continuous across the boundary between the two regions, which directly

corresponds to the continuty conditions for voltage and current at the junction

between two transmission lines. All these leads to a conclusion that a quantum

mechanical wave impedance concept can be introduced analogous to transmission

line impedance as given by at any plane z

Z( ) = rjJ(z)
z 'lj;(z)

(3.15)

Thus, transmission line concept can be applied for QM calculations. For

example, the input impedance, Zi at z = -I may be expressed in terms of load

impedance, Zl at z = 0 as in transmission line

Zlcosh( II) - Zosinh( II)
Zi = Zo () . ( )Zocosh II - Zlsmh II

(3.16)

An important feature of using transmission line concept in QM calculations is its

ability to calculate the eigenenergy of any arbitrary potential well. Becasue, from

Eq. 3.15, at any eigenenrgy, the wave impedances looking to the right (positive

direction) and to the left (negative direction), at any plane z must be equal, i.e.

(3.17)

3.2 Green's Function Formalism

Green's function formalism is introduced as an extension of the transmission line

analogy to include the effects of energy broadening of the density-of-states due

to either finite particle lifetime in a well (i.e. when particles laek out from a

quantum well) or the presence of inelastic scattering processing. Although this

formalism is based on a complicated Green's function approach, it allows one

to calculate easily the normalized wave functions in arbitrary 1-D quantum well

structures [231.
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In this formalism the QM wave impedance is redifined in terms of the loga-

rithmic derivative of the retarded Green's function, CR as

Z(z, z'; E) = 2ft [8CR(~, z'; E) jCR(z, z'; E)]
2m; z

where CR satisfies the equation,

[E + 2~;::2 - V(z) + it] CR(z, z'; E) = 8(z - z')

(3.18)

(3.19)

where t is an infinitesimally small positive energy. The Green's function in this

context is discussed in detail in Ref. [28]. Owing to the property of CR, Z(z, z'; E)

has a discontinuty at z = z', and one needs two boundary conditions to determine

Z(z, z'; E). To obatin these boundary conditions, the potential profile is assumed

flat sufficiently far from z = z' in both directions. If VR is the constant potential

at z = 00 and if VL is the constant potential at z = -00, the Green's function in

these regions can be expressed as [23]:

where

CR(z .....•00, z'; E) ~ e'YR(Z-Z')

2m*
!R(L) = i ft2 Z (E - VR(L»)

(3.20)

(3.21)

(3.22)

!R(L) is imaginary if E > VR(L), else this is real. From the above relationships,

the boundary conditions are found as

where

Z(z .....•oo,z';E) = Zo(oo)

Z(z .....•-oo,z';E) = -Zo(-oo)

2ft
Zo(:l:oo) = -, -!R(L)

2m;
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From the properties of the Green's functions it can be shown that [28]

Z(z, z'; E) = ZiR(Z; E) for all z' < z

Z(z, z'; E) = ZiL(Z; E) for all z' > z

(3.26)

(3.27)

It is noteworthy that ZiR (ZiL) does not depend on z' as long as z > z' (z < z').

Using transmission line analogy, ZiR (Zid can be calculated. The eigenenergies

of an arbitrary quantum well can be determined using following condition:

(3.28)

as from tranmission line analogy, at any eigenenergy and for all values of z inside

the quantum well the above equation must be satisfied. Once an eigenenergy is

found, the corresponding normalized wavefunction can be calculated using the

following relationship:

(3.29)

Equations 3.28 and 3.29 are used to find the eigenenergies and wavefunc-

tions in MOS inversion layers. Note that in calculating the wavefunctions the

conventional boundary conditions that the wavefunction is zero at the oxide-

semiconductor interface and inside the bulk (Equations 2.36 and 2.37) are not

used. Rather, the boundary conditions used (Equations 3.23 and 3.24) assume

that the potential profile is flat sufficiently far from the interface in both direc-

tions. These boundary conditions, known as the asymptotic boundary conditions,

are definitely physically more acceptable boundary conditions and allow one to

include the expoenetially decreasing tail of the wavefunction inside the oxide in

the calculation.
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Chapter 4

RESULTS AND DISCUSSION
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In this chapter, the results of the numerical calculations are presented. The

effects of variation of gate oxide thickness (Tax), doping concentration (NA),

surface electric field (Fs) and gate voltage (Ve) on various physical quantities

such as inversion charge density (Ninv), DC charge centroid shift from the oxide-

semiconductor interface (Xvc) and effective gate capacitance (CEFF) are studied.

The quantities of interest are calculated using both the boundary conditions in

order to determine the effects of the choice of boundary condition on simulated

results.

4.1 Potential Profile

The potential profile used in the work is approximated by an exponential function.

The potential well is bounded by the oxide-semiconductor interface on one side

and by the bulk on the other side. The height of the potential barrier at the

interface is 3.1 eV. Conventionally, this height of barrier is considered as infinity.

In this work, this conventional boundary condition is simulated by considering

the barrier height as very large (~ 33.1 eV). However, in calculations with the

asymptotic boundary conditions, the actual height 3.1 eV of the oxide barrier is

used.

Since self consistent method is not employed in this work, an empirical for-

mula is assumed to relate the total band bending with surface electric field, which

closely matches with the self-consistent results found from Ref. [29]. The rela-

tionship between these two can be expressed by the following relationship:

(4.1)

where A is a constant that depends on doping concentration. Fig. 4.1 shows

this variation of surface potential against surface electric field for three doping

concentrations. As the electric field increases from 0.6 MV fcm to 1.5 MVfcm,
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Figure 4.1: Surface Potential, tPs vs. Surface Electric Field, F" with Doping
Concentrations, NA = 1X 1017 cm-3, NA = 5x 1017 cm-3 and NA = lOx 1017 cm-3

and oxide thickness, Tax = 20 A. Here, T = 3000 K.
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the band bending increases by about 0.2 V.

Fig. 4.2 shows the potential profile for asymptotic condition under two surface

electric fields i.e. Fs = 0.75 MVjcm and 1.5 MV jcm. The Fermi energy in AI-gate

is chosen as the reference for zero energy.

4.2 General Effects of the Boundary Conditions

Eigenenergies, normalized wavefunctions and inversion charge density are calcu-

lated to study the effects of boundary conditions on these quantities.

The eigenenergies of an electron in a quantum well depends on the bound-

ary conditions, more specifically on the degree of restriction applied to it on the

boundary. If the elctron wavefunction is forced to vanish on the boundaries, the

eigenenergies will be higher than those found in case of an electron whose wave-

function penetrates the boundaries. This is the case in this work. Conventional

assumption leads to zero wavefunction penetration at the oxide-semiconductor

interface and hence the eigenenergies found using this condition are higher than

the eigenenergies calculated using the asymptotic boundary condition for a given

field.

Table 4.1 demonstrates the above statement. As the number of eigen state is

increased, the effect becomes less pronounced, as wavefunctions for higher eigen-

states penetrate more into Si and consequently are less restricted (See Fig. 4.3). In

this table, the eigenenergies are calculated for two surface electric fields, Fs = 0.75

MVjcm and Fs = 1.5 MVjcm. It is found that with higher electric field, the same

eigenstate is found at higher energies. When electric field is increased, the slope

of the profile in the semiconductor and the amount of band bending increases.

This results in a deeper and narrower quantum well i.e. increases the degree of

restriction applied to the quantum well and hence, the same eigenstate occurs at

a higher value.

37



5

4

..--.>
~3
>-
2'
Q)
c

LU
~:;:;2c
Q)

(5a..

1

J,'.,.,,,, Fs=O.75 MV/cm
------ F -1 5 MV/cm5- .

----------------------------------
""",,,

""""

o
-50 o 50 100 150 200 250 300

Distance From the Interface (Ao)

Figure 4.2: Potential profile for Fs = 0.75 MV/cm and 1.5 MV/cm. Doping
concentration, NA = 5 X 1017 cm-3, Oxide thickness, Tax = 20 A, T = 3000 K.
The interface is at 0 A.

38

~~..
I



Eigen State F, = 0.75 MV /cm F, - 1.5 MV /cm
Number En,ASYM (eV) En,CONV (eV) En,ASYM (eV) En,CONV (eV)

1 0.6450 0.6551 1.0187 1.0381
2 0.7859 0.7949 1.2292 1.2458
3 0.8909 0.8991 1.3793 1.3936
4 0.9762 0.9837 1.4956 1.5080
5 1.0481 1.0549 1.5887 1.5993
6 1.1098 1.1160 1.6643 1.6734
7 1.1634 1.1691 1.7259 1.7335
8 1.2104 1.2156 1.7758 1.7821
9 1.2517 1.2564 1.8158 1.8209
10 1.2881 1.2923 1.8472 1.8512
11 1.3201 1.3238 1.8710 1.8740
12 1.3482 1.3515 1.8880 1.8900
13 1.3728 1.3758 1.8989 1.9001
14 1.3942 1.3968 - -
15 1.4127 1.4149 - -
16 1.4285 1.4304 - -
17 1.4417 1.4434 - -
18 1.4527 1.4540 - -
19 1.4615 1.4625 - -
20 1.4682 1.4690 - -
21 1.4731 1.4736 - -

Table 4.1: Calculated eigenenergies, En with respect to Si potential energy at the
interface for both boundary conditions with Fs = 0.75 MV /cm and 1.5 MV /cm.
Doping concentration, iVA = 5 X 1017 cm-3, Oxide thickness, Tox = 20 A, T =
3000 K.

The normalized wavefunctions for three lowest eigenstates are shown in Fig. 4.3,

calculated with both boundary conditions. In these figures the asymptotic wave-

function is seen closer to the interface than its conventional counterpart by about

2 A while the span for both boundary conditions is found same; it is also observed

that the asymptotic wavefunction penetrates into the oxide region by 2-3 A while

the conventional counterpart vanishes at the interface. Although 2 A is very

small for general MOS devices, this can not be neglected for a device wtih oxide

thickness of 20 A, since this dimension becomes comparable to the device thick-

ness. Again, it is seen that with higher electric field, the span of wavefunction
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decreases while the peak value increases, as at higher electric field quantum well

is narrower and deeper. It is also seen that wavefunctions approach closer to the

interface when the electric field increases.

The inversion charge density variation in the device for both the boundary

conditions for two surface electric fields corresponding to the lowest three eigenen-

ergies are shown in Fig. 4.4. Comparison of Figs. 4.3 and 4.4 shows that the

inversion charge density variation is similar to the wavefunction variation i.e. for

an eigenstate the asymptotic charge density plot is closer to the interface than the

conventional charge density plot by about 2 11 and at higher electric field, both

asymptotic and conventional chrage density plots approach closer to the interface.

This similarity is consistent with Eq. 2.40, which relates inversion charge density

with the normalized wavefunction, for an eigenstate. From this equation, it is

also seen that the inversion charge density has an exponential dependancy on the

eigenenergy with respect to Si Fermi energy. Since the conventional eigenenergy

is higher than the asymptotic eigenenergy with respect to the Fermi energy, the

asymptotic charge density for any eigenstate is higher than the corresponding

conventional one. Again, for the same reasoning, the charge densities associated

with an eigenenergy, for same electric field, decrease exponentially with increas-

ing energy and hence, the contribution of the lowest state is the most significant

in the total charge density, as revealed from Figs. 4.4 and 4.6.

As surface electric field increases, the amount of band bending increases. This

results in steeper and deeper quantum well and hence, eigenenergies are raised.

On the other hand, as band bending increases, the Fermi energy level is also

raised by the same amount, since the energy difference between the conduction

band in the bulk and the Fermi energy is fixed for a fixed doping density. But,

with increasing surface electric field, the rate of increase of Fermi energy level and

the rate of increase of eigenenergies are not same i.e. the difference between the
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with Fs = 0.75 and Fs = 1.5 MV/cm. Doping concentration = 5 x 1017 cm-3,
Oxide thickness=20 11, T = 3000 K. The interface is at 0 A.
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Fermi energy level and an eigenenergy (EF - Ei, where i indicates an eigenstate,

in Eq. 2.40) and hence, the charge density for an eigenstate are affected in a

complicated way by the increasing electric field. From Fig. 4.4, it is observed

that charge density for first eigenstate increases when electric field increases, while

that for second and third eigenstates decreases when electric field increases. This

is due to the fact that for first eigenstate, EF - Ei increases, while EF - Ei

decreases for second and third eigenstate when surface electric field increases

(Fig. 4.5). In other words, with increasing electric field, first eigenstate approaches

closer to the Fermi energy level, but second and third eigenstates move away

from the Fermi level. Therefore, the contribution of first eigenenergy to the

total charge density increases rapidly while that of higher eigenenergies decreases

drastically as electric field increases i.e. with increasing electric field, total charge

density resembles more and more to the increasing trend of chrage density plot

for first eigenstate overshadowing the decreasing trend of those plots for higher

eigenstates. Moreover, it is seen that with increasing electric field the asymptotic

eigenstates are closer to the Fermi level than the conventional eigenstates and

hence, the above-mentioned effects are more prominent in asymptotic condition.

Fig. 4.6 shows the total inversion charge density variation. It is seen that the

total charge density plots resembles to those for first eigenstate as expected. It

is also observed that at higher surface electric field the plots approach closer to

the interface with their peak increased and span decreased and the peak is seen

higher in asymptotic condition. Therefore, the inversion charge density, pinv and

the inversion carrier density, Ninv is higher for higher electric field. A closer look

also reveals that for a fixed surface electric field, the asymptotic plot is closer to

the interface by about 2 A than the conventinal plot with same span for both

plots but with higher peak in asymptotic condition.

DC inversion charge centroid shift from the interface, XDC can be calculated
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using Eq. 2.45. From this equation it is seen that XDc is the distance of the

centroid of the inversion charge density plot measured from the interface. Hence,

the value of XDC depends on the span of inversion charge density plot and also

on how closer to the interface this plot is. Hence a study of Fig. 4.6 reveals

that about 2 11 lower value of XDc should be found for asymptotic condition

than for conventional condition for all electric fields and at higher electric field,

the value of XDC for both boundary conditions should be decreased. All these

results are tabulated in Table 4.2. It is noteworthy that although XDc decreases

with increasing electric field (i.e. with increasing degree of restriction applied

to the quantum well) for both boundary conditions, the difference between the

asymptotic XDc and conventional XDc remains unaffected.

Due to QM effects, the gate capacitance is corrected by a factor, XDc as

included in the Eqs. 2.46 and 2.47. This correction factor increases the gate

oxide thickness by about one third of XDc and hence decreases the value of

effective gate capacitance. Since, conventional XDC is higher than asymptotic

XDc, the asymptotic CEFF is higher than the conventional CEFF. Again, with

higher electric field, as XDC decreases, CEFF is expected to increase. These

results are summarized in Table 4.3.

From the above discussion it can be argued that the choice of appropriate

boundary condition is important for deep submicron devices, as for such devices

the change of effective gate oxdie thickness and hence, effective gate capacitance

due to asymptotic boundary condition compared with the conventional boundary

condition can no longer be neglected.

4.3 Effects of Variation of Oxide Thickness

This section presents the results of the effects of variation of oxide thickness on

QM calculations and compares the asymptotic results with conventional results.
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Fs (MV/cm) Asymptotic, (A) Conventional, (A)
0.75 17.96 19.58
1.50 13.93 15.61

Table 4.2: Calculated DC charge centroid shift from the interface, XDc for both
boundary conditions with Fs = 0.75 MV/cm and 1.5 MV/cm. Doping concen-
tration, NA = 5 X 1017 cm-3, Oxide thickness, Tax = 20 A, T = 3000 K.

Fs (MV/cm) Asymptotic, (/IF/cm~) Conventional, (/IF / cm~)
0.75 1.33 1.30
1.50 1.40 1.37

Table 4.3: Calculated effective gate capacitance, CEFF for both boundary con-
ditions with Fs = 0.75 MV/cm and 1.5 MV/cm. Doping concentration, NA =
5 X 1017 cm-3, Oxide thickness, Tax = 20 A, T = 3000 K.

For this, oxide thickness is varied from 15 A to 30 A. The calculations are done

for three doping densities: 1 x 1017 cm-3, 5 X 1017 cm-3 and 10 x 1017 cm-3. In

all cases, potential profile is chosen at the onset of strong inversion.

With increasing oxide thickness, XDc shows no variation at all for both bound-

ary conditions for all three doping densities. In all cases, asymptotic XDC is found

lower than the conventional counterpart by about 2 A as expected. Since, increase

of doping density increases the surface electric field ( Eq.2.42) XDC decreases for

both boundary conditions with increasing doping density. These results are also

observed in Fig. 4.7. Some fluctuations of XDC calculated with conventional

boundary condition are due to numerical instability of the program and has no

physical significance.

Since TEFF increases with increasing gate oxide thickness, Tax (Eq. 2.46),

CEFF is expected to be decreasing with increasing Tax (Eq. 2.47). Fig. 4.8 sup-

ports this point. This figure also shows that asymptotic CEFF is higher than

conventional CEFF as expected. It is also seen that the change of asymptotic

CEFF with respect to conventional CEFF increases with decreasing Tax. This

is explained with the fact that at Tax = 30 A, a 2 A difference between the
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asymptotic XDc and the conventional XDc causes no significant change in TEFF

and hence, in CEFF, but this change in those physical parameters is significantly

increased for asymptotic condition when Tax :"::20 A. From this Figure, the

effect of doping densities on CEFF is also observed. The figure shows that CEFF

increases for both boundary conditions with increasing doping density, as ex-

pexted. This figure also shows that with increasing doping density, for same

oxide thickness, the change in CEFF due to asymptotic condition compared with

conventional condition remains almost unaffected. This is due to the fact that

for constant Tax, a constant 2 A difference of XDc found between the boundary

conditions cause no signifacnt chnage when doping density is increased.

Figs. 4.7 and 4.8 illustrate that the significance of the appropriate choice of

boundary conditions become increasingly important as the device is scaled down.

Again, for same oxide thickness, the choice of appropriate boundary condition

has no significant effects when doping density is increased.

4.4 Effects of Variation of Surface Electric Field

This section presents the effects on the physical quantities for both the boundary

conditions due to variation of surface electric field with three doping concentra-

tions: 1 x 1017 cm-3, 5 X 1017 cm-3 and 10 x 1017 cm-3 . Here, oxide thickness is

chosen as 20 A. Surface electric field is varied from 0.6 MV jcm to 1.5 MVjcm.

While varying this field, the device is operating from the onset of strong inversion

to deep into the strong inversion.

With increasing electric field, the amount of band bending increases (Sec-

tion 4.2), thus causing eigenenergies to be raised at a higher level. Figs. 4.9, 4.10

and 4.11, plotted with respect to the Si surface potential energy, show that

eigenenergies increase with increasing electric field. From all these Figures, it

is seen that the increase is slightly nonlinear and increases more rapidly at higher
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electric field. In all these Figures, it is also seen that conventional eigenener-

gies are higher than the asymptotic eigenenergies and increase in doping density

results in higher eigen values.

When surface electric field is increasing, inversion carrier density per unit

area (Ninv) increases by more than one order of magnitude as shown in Fig. 4.12.

From this plot it is seen that with increasing electric field Ninv is higher and

increases more rapidly for asymptotic condition than for conventional condition

as expected from the expalation in Section 4.2. Also, the effect of doping density

is observed. Since, F. is proportional to the sum of depletion layer charge den-

sity, NAzd (where, Zd is the depletion layer thickness) and inversion layer charge

density, Ninv (Eqs. 2.42, 2.43, 2.44), for a given Fs higher doping density results

in lower Ninv. This fact is reflected in the Fig. 4.12.

Fig. 4.13 shows the effects of increasing surface electric field on XDC for three

doping densities. From the figure, XDc is found decreasing while Fs is increasing

in all cases. In this figure, again an about 2 11 difference is observed between

the two boundary conditions and asymptotic XDC is found lower than the con-

ventional X DC. These results are in consistent with the discussion presented in

Section 4.2. The insignificant effect of doping density on XDC is due to the fact

that XDC depends on the degree of restriction applied to the quantum well, which

increases when surface electric field increases. For a fixed surface electric field,

increase of doping density causes no change on the degree of restriction and hence

no change in XDC values for both boundary conditions is observed in Fig. 4.13.

From the reference of discussion presented in Section 4.2 it is expected that

with increasing electric field effective gate capacitance, CEFF increases for both

boundary conditions and the asymptotic CEFF is higher than the conventional

CEFF. Fig. 4.14 reflects these facts for all doping densities. A closer look into

. this figure shows that the asymptotic CEFF increases more rapidly than the con-
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ventional CEFF, for a fixed doping density. This is because of the fact that a 2 A
difference in XDc for Fs = 150 MV/em causes more signifacnt change in TEFF

and hence, in CEFF than that for Fs :'S 90 MV/em. This figure also depicts the

insignificant effect of doping density variation on CEFF. Here the explanation is

that, for same surface electric field and for same device oxide thickness, increase

of doping density causes no change in XDC for both boundary conditions and

also in the difference of XDc between the two boundary conditions.

The above discussion argues that the choice of appropriate boundary condition

for deep submicron devices is increasingly important when surface electric field is

increasing, but is not significant with increasing doping density keeping surface

electric field constant. In other words, a submicron device when operates in deep

strong inversion region, the choice of appropriate boundary condition is important

for accurate modeling.

4.5 Effects of Variation of Gate Voltage

Gate voltage is related to surface electric field, as seen from the Eq. 2.50. Hence,

variation of surface electric field means variation of gate voltage. Here, oxide

thickness is chosen as 20 A; three doping densities are chosen: 1 x 1017 em-3,

5 x 1017 em -3 and 10 x 1017 em -3. While varying this voltage, the device is

operating from the onset of strong inversion to deep into the strong inversion.

Figs. 4.15, 4.16 and 4.17 show that the effects of Vc on Ninv, XDC and

CEFF that are similar to surface electric field variation (see Figs. 4.12, 4.13 and

4.14). The effects of doping density are also insignificant in these plots, except

that increasing doping density results in a decreasing gate voltage. This is ex-

plained with the help of Eq. 2.50 and Fig. 4.1. For a given Fs, the first term in

Eq. 2.50 varies slightly (since cPF depends logarithmically on NA) and the third

term remains unchanged (Eq. 2.42) with respect to change in the doping density.
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However, Fig. 4.1 shows a reduction in tPs (second term in Eq. 2.50) with increas-

ing doping density. As a consequence, VG is smaller for higher doping density

corresponding to a fixed surface electric field.

Due to the variation of gate voltage the same argument given for the effects on

the choice of appropriate boundary ccondition due to variation of surface electric

field holds true.
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Chapter 5

CONCLUSION
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The quantization effects in MaS inversion layer using a new boundary condition

as well as the conventional boundary condition are studied, and a comparative

study of the effects of these boundary conditions is made in this work.

5.1 Discussion

In the study of quantization effects in MaS inversion layer, conventionally the

wavefunction penetration inside the oxide region is neglected. Since the present

MaS devices approach the deep submicron dimensions, this boundary condition is

no longer justified. Hence, a new boundary condition which encounters the wave-

function penetration is introduced. In this work both these boundary conditions

are employed in calculation of eigenenergies, normalized wavefunctions, inversion

charge density (Ninv), DC charge centroid shift from the oxide-semiconductor in-

terface (XDc) and effective gate oxide capacitance (CEFF). A comparative study

of the effects of these boundary conditions made in this work suggests that the

choice of boundary condition for deep submicron devices is significant. Results

show that the choice becomes increasingly more important as the devicies are

scaled down, i.e. as the oxide thickness is decreased and the surface electric field

is increased.

5.2 Suggestions for Future Work

In the present analysis, exponential potential profile is assumed instead of actual

potential distribution. Moreover, the potential profile is assumed to be known

i.e. self-consistency is not used. Another assumption of this work is that an ideal

device is chosen, that is no interface charge is present and no scatteing processes

are associated with this device. All these assumptions make the analysis simple so

that a quick insight can be made into whether the asymptotic boundary condition
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is more justified over the conventional boundary condition.

The scope of a complete research requires an extensive study considering not

only the self-consistency, but also the actual device condition. After that, all the

operating regions should be considered. Though the work verifies the need to

use asymptotic boundary condition in calculating inversion charge density, DC

charge centroid and gate capacitance, the verification should be made for other

quantities such as the thershold voltage and gate leakage current. Scattering

processes and interface charges may be included in the simulation to make the

results more meaningful.
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