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ABSTRACT

Codes of practice suggest equivalent static force method for earthquake resistant design of

frame structures of moderate height. For regular frames, the codes propose approximate

formulae for fundamcntal pcriod required for the evaluation of base shear. These formulae

describe period cither as a function of height of the structure or number of stories. Lack of

reflection of other structure parameters makes them grossly approximate. An invcstigation

is conducted in this work to assess the influence of different structure parameters on the

period of regular framc structures. Model frames, divided into six major groups are

subjected to modal analysis to evaluate the fundamental frequency and corresponding

period. General purpose finite clement package ANSYS, Revision 5.2, has been employed

to conduct the analyses. The analysis tool assumes constant stiffuess and mass effects and

neglects damping. Appropriate elcments arc selected from ANSYS element library to model

the frames. ANSYS option of lumped mass approach has been used for mesh elements.

Masses of secondary structures arc added as point mass elements at nodal points. Modal

analysis has been used as analysis typc and reduced method as analysis option. The

extracted cigenvaleus and the corresponding eigenvectors represent the frequencies and

mode shapcs respectively. The fundamental period is obtained from the lowest frequency.

An extensive parametric study is conducted to idcntify influence of parameters like numbers

and width of bays, numbers and height of stories, stiffuess of columns and beams and

strength and density of concretc on fundamental period. Effect of inclusion of floor slabs

and masses of secondary structural elements in the analysis is also studied. The period has

been found to increase with decreasing number of bays along the direction of motion or

increasing number of bays transverse to the direction of motion. An increase of bay width,

story height or number of stories leads to an increase of period. Approximate code formulae

arc found to become increasingly conservative with increasing structure height in evaluation

of earthquake forces.

Usc of stiffcr columns and beams or concrete of higher strength has a reducing effect on

period. It has been revealed that application of approximate code formulae in cases of low

rise structurcs with stocky columns and beams or with concrete of higher strength may lead

to an underestimation of earthquake forces. A reduction in beam height or column

dimension in the direction of earthquake forces or choice of low strength concrete are found

to reduce design earthquake forces. In most practical eases, the approximate code formulae

lead to a conservative estimation of earthquakc forces.

v



CONTENTS

Declaration
Acknowledgment
Abstract
Contents
List of Figures
List of Plates
List of Tables
List of Symbols

Chapter 1: INTRODUCTION

1.1 General
1.2 Predominance of Frame as Structural System
1.3 Earthquake Resistant Design

1.3.1 General Principles
1.3.2 Equivalent Static Force Method

1.4 Stmcture Period and Earthquake Forces
J.5 Historical Review of Works
1.6 Objectives of the Research
1.7 Scope of the Work

Chapter 2: STRUCTURAL PROPERTY FORMULATION
FOR MDOF SYSTEMS

2.1 Introduction
2.2 Structural Discretization
2.3 Derivation of Equations of Motion for Multiple

Degrees of Freedom Systems
2.4 Formulation of Structural Property Matrices

2.4.1 Elastic Stiffness Matrix
2.4.2 Mass Properties
2.4.3 Lumped Mass Matrix

vi

Page

111

IV

V

VI

IX

XII

XIV
xv

1
2
5
5
9
11
12
22
22

25
25

28
34
34
38
38



2.4.4 Consistent Mass Matrix 41

2.4.5 Damping Matrix 44

2.4.6 External Loading 44

Chapter 3: FREE VIBRATION ANALYSIS AND PERIOD
OF FRAME STRUCTURES

3.1 Introduction 45

3.2 Analysis of Vibration Frequencies and Period 45

3.3 Analysis of Vibration Mode Shapes 48

3.4 Structure Parameters that Influence Period 51

Chapter 4: REVIEW OF SOME CODES OF PRACTICE FOR
EARTHQUAKE RESISTANT DESIGN

4.1 Introduction 52

4.2 Unifonn Building Code 52

4.3 Bangladesh National Building Code (BNBC 1993) 56

4.4 Standard Association of Australian Earthquake
Code (SAA) 57

4.5 Indian Standard Criteria for Earthquake Resistant
Design of Structures (IS) 58

4.6 Comparision of Methods for Detennination of
Period by Codes 59

Chapter 5: DETERMINATION OF PERIOD BY MODAL
ANALYSIS USING ANSYS

5.1 Introduction 62

5.2 General Discussions on ANSYS 62

5.3 Modal Analysis by ANSYS 63

5.3.1 Introduction 63

5.3.2 Assumptions and Restrictions 63

5.3.3 Analysis of Undamped Structures 63

5.3.4 Eigenvalue and Eigenvector Extraction 64

5.3.5 Modal Analysis Procedure 68

vii



Chapter 6: INFLUENCE OF STRUCTURAL PARAMETERS
ON PERIOD OF FRAME STRUCTURES

6.1 Introduction 73

6.2 Description of Models 74

6.3 Determination of period of Models Following
Approximate Code Formulae 85

6.4 Effect of Structure Parameters on Period 93

6.4.1 Determination of Period of Models
by Modal Analysis 93

6.4.2 Effect of Number of Bays 94

6.4.3 Effect of Bay Width 96

6.4.4 Effect of Story Height 98

6.4.5 Effect of Stiffness of Columns 100

6.4.6 Effect of Stiffness of Beams 103

6.4.7 Effect of Strength of Concrete lOS

6.4.8 Effect of Density of Concrete 107

6.4.9 Effect of Number of Stories 109

6.4.10 Effect of Inclusion of Floor Slabs and
Mass of Secondary structural Elements III

6.5 Comparison of Results of Modal Analysis
and Code Formulae 127

6.6 Investigating the Limitations of Approximate
Code Formulae 127

6.7 Choosing Structure Parameters to reduce
Earthquake Forces 131

Chapter 7: CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions
7.2 Recommendations for Future Study

REFERENCES

APPENDIX ANSYS Inputs and outputs

viii

134
135

136



Fig. 1.1

Fig. 1.2

Fig. 2.1

Fig. 2.2

Fig. 2.3

Fig. 2.4

Fig. 4.1

Fig. 4.2

Fig. 5.1

Fig. 5.2

Fig. 5.3

Fig. 6.1

Fig. 6.2

LIST OF FIGURES

Structural systems (a) Frame (b) Shear wall (c)
Framc-shear wall (d) Framed-tube

Structural concepts versus number of stories

Discretization of a general beam-type structure

(a) Non-uniform straight beam segment (b) Beam
deflection duc to unit nodal translation at left end
(c) Beam deflection due to unit nodal rotation at
left end (d) Real rotation and virtual translation of
node

Lumping of mass at beam nodes

Node subjected to real angular acceleration and
virtual translation

Variation of fundamental period with story number

Variation of proportionality factor, C with period,
T (value of S is considered to be I)

3-Dimensional elastic beam element

Elastic shell element

Structural mass element

Plan configurations of models included in group
GpA represcnting 6-story and 12-story 3-D frame
structures a) Model Al b) Model A2 c) Model A3
d) Model A4

Plan configurations of models included in group
GpB representing 6-story and 12-story 3-D frame
structures (a) Model BI (b) Model B2 (c) Model
B3 (d) Model B4

ix

page

4

6

31

37

40

43

61

61

71

72

72

75

77



Fig. 6.3

Fig. 6.4

Fig. 6.5

Fig. 6.6

Fig. 6.7

Fig. 6.8

Fig. 6.9

Fig. 6.10

Fig. 6. II

Fig. 6.12

Fig. 6.13

Fig. 6.14

Fig. 6.15

Plan configurations of models included in group
GpC representing 6-story and 12-story 3-D frame
structures (a) Model CI (b) Model C2 (c) Model
C3 (d)ModeIC4

Plan configurations of models included in group
GpD representing 6-story and 12-story 3-D frame
structures (a) 3x3 bays (b) 4x4 bays (c) 5x5 bays

Plans of models included m group GpE
representing 6-story, 8-story, 10-story, 12-story and
l4-story 3-D frame structures (a) 3x3 bays (b) 4x4
bays c) 5x5 bays

Plan configurations of models included in group
GpF representing 6-story and l2-story 3-D frame
structures (a) 2x2 bays (b) 3x3 bays (c) 4x4 bays
(d) 5x5 bays

Periods of 6-story and 12-story models following
approximate code formulae

Effect of story height on period of frame structures

Effect of number of stories on period of structures
following approximate code formulae

Effect of numbers of bays on period of 6-story
frame structures

Effect numbers of bays on period of 12-story frame
structures

Effect of bay width on period of 6-story frame
structures

Effect of bay width on period of l2-story frame
structures

Effect of story height on period of 6-story frame
structures

Effect of story height on period of 12-story frame
structures

x

79

81

83

84

89

91

92

95

95

97

97

99

99



Fig. 6.16

Fig. 6.17

Fig. 6.18

Fig. 6.19

Fig. 6.20

Fig. 6.21

Fig. 6.22

Fig. 6.23

Fig. 6.24

Fig. 6.25

Fig. 6.26

Fig. 6.27

Effect of column stiffness on period of 6-story
frame

Effect of column stiffness on period of 12-story
frame structures

Effect of beam stiffness on period of 6-story frame
structures

Effect of beam stiffness on period of 12-story
frame structures

Effect of concrete strength on period of 6-story
frame structures

Effect of concrete strength on period of 12-story
frame structures

Effect of density of concrete on period of 6-story
frame structures

Effect of density of concrete on period of 12-story
frame structures

Effect of number of stories on period of frame
structures

Effect of inclusion of floor slabs & mass of
secondary elements on period of 6-story frame
structures

Effect of inclusion of floor slabs & mass of
secondary clements on period of 12-story frame
structures

Comparison of periods determined by modal
analysis and approximate code formulae

xi

102

104

104

106

106

108

108

110

112

112

128



LIST OF PLATES
Page

Plate 6.1 3-Dimensional ANSYS display of 5x5 bay 6 story
frame structure without floor slab 86

Plate 6.2 3-Dimensional ANSYS display of 5x5 bay 12 story
frame structure without floor slab 86

Plate 6.3 3-Dimensional ANSYS display of 5x5 bay 6-story
frame structure with floor slab 87

Plate 6.4 3-Dimensional ANSYS display of 5x5 bay 12-story
frame structure with floor slab 87

Plate 6.5 Isometric view of 5x5 bay 6-story frame struehlre
without floor slab showing symbolic indication of
degrees of freedom and direction of excitation 115

Plate 6.6 Modal shape of 5x5 bay 6-story frame structure
without floor slab for Ist mode 115

Plate 6.7 Modal shape of 5x5. bay 6-story frame structure
without floor slab for 2nd mode 116

Plate 6.8 Modal shape of 5x5 bay 6-story frame structure
without floor slab for 3rd mode 116

Plate 6.9 Modal shape of 5x5 bay 6-story frame .structure
without floor slab for 4th mode 117

Plate 6. 10 Modal shape of 5x5 bay 6-story frame structure
without floor slab for 5th mode 117

Plate 6. II Isometric view of 5x5 bay 12-story frame structure
without floor slab showing symbolic indication of
degrees of freedom and direction of excitation 118

Plate 6.12 Modal shape of 5x5 bay 12-story framestructllre
without floor slab for Ist mode 118

Plate 6.13 Modal shape of 5x5 bay 12-story frame structure
without floor slab for 2nd mode 119

Plate 6.14 Modal shape of 5x5 bay 12-story frame structure
without floor slab for 3rd mode 119

xii



Plate 6.15 Modal shape of 5x5bay 12-story frame structure
without floor slab for 4th mode 120

Plate 6.16 Modal shape of 5x5 bay 12-story frame structure
without floor slab for 5th mode 120

Plate 6.17 Isometric view of 5x5 bay 6-story frame structure
with' floor slab showing symbolic indication of
degreesof freedom and direction of excitation 121

Plate 6.18 Modal shape of 5x5 bay 6-story frame structure
with floor slab for Ist mode 121

Plate 6.19 Modal shape of 5x5 bay 6-story frame structure
with floor slab for 2nd mode 122

Plate 6.20 Modal shape of 5x5 bay 6-story frame structure
with floor slab for 3rd mode 122

Plate 6.21 Modal shape of 5x5 bay 6-story frame structure
with floor slab for 4th mode 123

Plate 6.22 Modal shape of 5x5 bay 6-story frame structure
with floor slab for 5th mode 123

Plate 6.23 Isometric view of 5x5 bay 12-story frame structure
with floor slab showing symbolic indication of
degrees of freedom and direction of excitation 124

Plate 6.24 Modal shape of 5x5 bay 12-story frame structure
with floor slab for 1st mode 124

Plate 6.25 Modal shape of 5x5 bay 12-story frame structure
with floor slab for 2nd mode 125

Plate 6.26 Modal shape of 5x5 bay 12-story frame structure
. with floor slab for 3rd mode 125

Plate 6.27 Modal shape of 5x5 bay 12-story frame structure
with floor slab for 4th mode 126

Plate 6.28 Modal shape of 5x5 bay 12-story frame structure
with floor slab for 5th mode 126

xiii



Table 4.1

Table 6.1

LIST OF TABLES

Fundamental period and coefficient depending on
fundamental period for moment resisting frames,
deforming freely

Structure parameters applicable, m general to
selected models

xiv

Page

59

74 .



LIST OF SYMBOLS

a Coefficient, distance, maximum acceleration of building
[A] Symmetric matrix
[B] Tridiagonalized form of[A]
C Seismic coefficient
Cij Damping influence coefficient
c Damping matrix
E Modulus of elasticity
{Fs} Elastic force matrix
Fo Force due to damping
Fz Force due to inertia
Fs Force due to spring
F(t) Externally applied load
( Cylinder strength of concrete
f; ith natural frequency (cycles per unit time)
g Acceleration due to gravity
H Horizontal earthquake force
hn Height of building
I Moment of inertia, occupancy importance factor
K Horizontal force factor
k Stiffness
k Structural stiffness matrix
kij Stiffness influence coefficient
[L] Lower triangular matrix
L Length of beam
M Mass of building
M(x) Internal moment
m mass matrix
mij Mass influence coefficient
N, n Number of stories
Pa External nodal force
R Response modification factor
S Site coefficient for soil characteristics
T Fundamental period of vibration
[T] Matrix constructed to tridiagonalize [A]
{ Ii} Nodal velocity vector



{ii} Nodal acceleration vector

{ II} Nodal displacement vector

V Total horizontal seismic force
v Displacement
{I'} Displacement vector
{I; } Velocity vector

{ii} Acceleration vector

I' Displacement vector
Va Virtual displacement
W Building weight, total seismic load
w Unit weight of concrete
Xu Displacement
{x} Displacement vector
WE External work
WI Internal work
OWE External virtual work
oW, Internal virtual work
t Time
Z Seismic zone factor
'1/ Generalized displacement function

() Rotation, phase angle
(V Angular velocity
{w} Frequency vector
w, Lowest frequency
an Seismic coefficient

fJ A coefficient depending upon soil foundation system
,p Modal displacement

{,p } I mode shape of ith natural frequecy

w, ith natural circular frequency (radians per unit time)
{,p I } mode shape of mode i

{'I/ 0 } Eigen vector

A Eigen values

{i I} Eigen vector (unknown) mode shape
,pn nth mode shape

xvi



CHAPTER I

INTRODUCTION

I.I GENERAL

Reinforced concrete frames are the most widely used structural system in

building construction practice. Codes recommend equivalent static force

method for earthquake resistant design of such structures upto certain height.

Equivalent static force method suggests calculation of base shear and

distribution of this quantity as earthquake forces over the height of the

Structure. Major earthquake resistant design codes give different fonnulae to

calculate the base shear. Irrespective of the formula, the base shear is

always expressed as a function of the period of the structure.

Precise determination of the structure period for usmg it in base shear

calculation often constitutes certain difficulties. In the preliminary design

stage when the structure proportions are still not known, period may only be

determined approximately. Even when a structure is fmalized in geometry

and proportion, time consuming precise period calculation may not be wise

from the economy point of view or may be prohibitive for a ordinary

designer without access to a high level software. Codes of practice take these

factors in account and propose approximate formulae for the detennination

of stmcture period.

The formulae proposed by codes for the determination of period are usually

very simple. Most of them describe period as a sole function of a single
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structure parameter such as height or number of stories. It is anticipated that

the period should depend on all the stiffness and mass characteristics of the

structure. It is, therefore, intended in this work to study the influence of such

characteristics on the period of frame structures. Such a study might help in

finding boundaries of application of simple code formulae for the

.determination of period.

1.2 PREDOMINANCE OF FRAME AS STRUCTURAL SYSTEM

In general, the structural system of a building is a three-dimensional complex

assemblage of various combinations of interconnected structural elements.

These may be discrete members or continuous assemblages. The primary

function of the structural system is to carry effectively and safely all the

loads acting on the building, and eventually to transmit them to the

foundation. The different types of structural systems those are being used

commonly in reinforced concrete buildings for resisting lateral loads, like

earthquake, winds, etc. are enumerated below.

Frame: The term' Frame' denotes a structure that derives its resistance

to lateral forces from the rigidity of the connections between beams,

columns, and slabs. Moment resistant frames consist of linear, horizontal

members (beams) in plane and connected to linear, vertical members

(columns) with rigid or semirigid joints (Fig. l.I(a)). A moment resistant

frame is identified by the prominence of its flexibility due to the flexure

of the individual beams and columns and the rotation at their joints. The---
strength and stiffness of the frame are proportional to the column and----- ----.._------ -._---------------

_Q.eam size, and inversely proportional to the story heigh~unm_

,sp_acmg....••..•.••...
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Shear Wall: Shear wall can be defined as the structural system which

provides strength, stiffness, and stability to a building subjected to

lateral load, deriving their strength and stiffness from the inherent shape

(Fig. I.I(b)). Shear walls are supposed to resist predominantly bending

produced by lateral loads.

Frame-Shear Wall: The term frame-shear wall denotes any

combination of frames and shear wall (Fig. l.1(c)). Considerations of

shear wall-frame interaction leads to a more economical design.

Framed- Tube: The framed tube consists of a closely. spaced grid of

external colurrms, connected with beams (Fig. 1.1(d)). The framed tube

represents a logical evolution of the conventional frame structure

possessing the necessary lateral stiffness with excellent qualities while

retaining the planning flexibility of interior colurrms.

As the height of building increases, the structural system that has to be

adopted for neutralizing the effect of lateral forces economically, will be

different. The likely structural system that has to be applied for various

heights of the buildings (Schueller, 1977) are given in Figure 1.2.

From Fig. 1.2 it appears that frame structural systems are suitable for

construction of low & medium rise buildings. Due to economic reasons

and easy availability of reinforced concrete, construction of R.c. frame

structures has gained enormous popularity in our country. The simplicity

in design & construction is another major factor for choosing frame

structural systems to a large extent. Furthermore, with growing

tendency towards high rise construction, 15 to 20 storied buildings are

being extensively constructed in a growing city like Dhaka. Thus the

3
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quantum of frame structure construction has become more than any

other type of structural systems.

Since the construction of frame structures has become so extensive in

our country, it is appropriate to study the basic approximations laid in

their design. It is, therefore, intended here to investigate the influence of

structure parameters on period of frame structures, in particular and also

to find limitations of approximate formula for calculation of period of

such structures.

1.3 EARTHQUAKE RESISTANT DESIGN

1.3.1 General Principles

In earthquake-resistant design, it is not sufficient to make a member 'strong'.

It must also have a reserve of ductility. The seismic loads on the structure

during an earthquake result from internal inertia force, which are created by

ground accelerations. Forces are imposed on structures by earthquake

ground motions in response to the basic law of physics that bodies at rest

tend to stay at rest and bodies in motion tend to stay in motion. The inertia

of the structure tending to stay at rest as the ground starts to move and then

tending to move in the direction of the initial ground motion as the ground

reverses, imposes lateral forces on the structural framing. Seismic forces,

since they are due to inertia, are directly related to the height of the

structure.

The magnitude of the lateral forces which a structure will expenence IS

dependent on a number of factors. The intensity of ground motion and the

duration of shaking are of primary importance. Many structures little

recognizable to seismic forces may survive small intensity shaking and may

not be adversely affected by a fairly intense shaking of very short duration.

5
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The buildings which are to survive in an area of prolonged strong shaking

must be competently designed and well constructed.

The response of the structure to the ground motion is also a primary factor

( Fintel, 1974 ). The fundamental period and higher modes of the structure

and their relationship to the frequency content of the ground motion affect

the magnitude of the forces in the structures. Resonance between the

structure and the ground although noted in past earthquakes is not usually

important. The motions in the area close to the epicenter are highly erratic

and are in the short period range, so that resonance effects in this area are

not so pronounced. As the distance from the source of the ground motion

increases, the shorter period motions are dissipated and the long period

motions predominate. At these greater distances the longer period, taller

structures may respond resonantly ( Council of the Standards Association of

Australia, 1979).

As mentioned above, the forces are directly related to the weight of the

structure so that a reduction in the weight means a reduction in force. There

is, therefore, an advantage to be gaineq in reducing the weight of the

structure for seismic design. Heavy weights placed high in the structure will

increase the fundamental period of the structure.

In speaking of response, the normal thinking by the designer is that the

structure is remaining in an elastic state, that is, the structure will be

displaced by the lateral forces, and return to its original configuration

without having experienced any permanent deformation in any of its

members. This assumption is valid for most structures subjected to minor

seismic forces. This assumption is not valid for the strong ground motion

associated with a major earthquake. It would be economically unfeasible to

attempt to design a structure that would behave completely elastically in

7



such an event, and might even be impossible smce increased stiffness

attracts increased forces.

Seismic codes for designing earthquake resistant structures have been

developed bearing in mind that the phenomena that is being dealt with, is

dynamic in nature, but that for most structures which are built, a rigorous

. dynamic analysis is not practicable even with the present high speed

computer capabilities. The framers of the codes, therefore sought provisions

which would approximate the results of the more rigorous approach in an

easily usable procedure applicable to a large range of types of structures.

The code levels of equivalent ground accelerations are lower than the

recorded accelerations during moderate to strong earthquakes. The inelastic

response described above is one of the reasons why code forces have been

lower than that obtained using recorded motions and an assumed elastic

structural response. Most structures, and especially buildings which house

people, have many secondary strengths and energy absorbing features which

are not calculated in the structural seismic force resisting system, and thus

justifY lower code values without jeopardizing safety.

Girder and column stiffnesses appear to be the important factors in

determining the magnitude and distribution of deformations and member

forces which will result from a ground excitation. For low-rise building the

base shear decreases with the increase of girder stiffness (Ahmad, 1983).

The earthquake resistant design of structures can be done ( Taranath, 1976)

following the three accepted methods, namely,

i) The equivalent static force or the building code method.

ii) The response spectrum method

iii) The time history method

8



According to the specifications given by different earthquake resistant codes,

the response spectrum and time history method of analysis are not essential

for earthquake resistant design of low and medium rise regular frame

structures. For such structures, equivalent static force method is usually

recommended. As the present study will focus on low and medium rise

regular frame structures only equivalent static force method will be

described further as appropriate design method for such structures.

1.3.2 Equivalent Static Force Method

In Equivalent Static Force Method, static analysis is used with equivalent

static loadings to represent the dynamic action of the earthquake on the

structure. The continued use of the static approach in the design of buildings

is based on the premise that buildings so designed have performed well in

the past earthquakes. These good performances may have been made due to

other factors that were present in the older buildings but ignored in the

analysis, such as contribution to strength and stiffuess by constructional

elements and ductility of the structure. The vertical seismic forces are not

generally considered for the design of structures except for the effect of

uplift forces and for very important structures such as nuclear reactor

building. In typical building design only the horizontal components of

earthquake forces are considered and are assumed to act nonconcurrentIy

along the two major structural axes. Earthquake-resistant design involves

engineering judgment and experience as well as application of scientific

principles. The design involves economic considerations and probabilities.

Earthquake resistance calls for energy absorption rather than strength

resistance only. For convenience in design, an earthquake is translated into

an equivalent static load acting horizontally on the building and is intended

9



to represent the inertia force, which is mass times acceleration occuring at

the critical instant of maximum deflection and zero velocity during the

largest cycle of vibration as the structure responds to the earthquake motion.

These design loadings, however, incorporate modifYing factors to cover

local variations in seismicity, type of construction, soil conditions, usage of

building, etc.

The concept of an assumed constant lateral acceleration permits the

determination oflateral force as simply the product of weight of the element

considered and the ratio of the selected lateral acceleration to the

acceleration due to gravity. This is called the seismic coefficient and is the

basis of most codes.

Using Newton's second law of motion, the total lateral seismic force, also

called the base shear, is determined by the relation,

V=Ma

where,

V = total horizontal seismic force over the height of the building

(also called the base shear)

M = mass of the building

a = the maximum acceleration of the building

Since, M = Wig

where,

W = building weight

g = acceleration due to gravity

V=Wa/g=Wc

10



where, c is called the seismic coefficient, which represents the ratio of

maximum earthquake acceleration to the acceleration due to gravity. The

base shear is distributed over the height of the structure by considering the

response of the structure during an earthquake. The seismic coefficient is

modified by factors which take into account the following:

• Dynamic properties of the structures

• Seismicity of the region

• Importance of the structure

• Subsoil conditions

• Allowable stresses and load factors

Here, again, the dynamic properties of the structure are dependent on natural

period of vibration, modal shapes and damping characteristics of the

structures. The code formula may therefore underestimate the response of

longer period buildings because it does not properly recongize the

contributions of higher modes of vibrations (Chopra and Vim, 1987)

1.4 STRUCTURE PERIOD AND EARTHQUAKE FORCES

The natural frequency can be defined as the frequency with which the whole

system oscillates in the absence of external forces, or for a system with more

than one degree of freedom, the frequency of one of the normal modes of

vibration. The natural period of vibration can be defined as the period of the

free oscillation of a body or system, when the period varies with amplitude.

The natural period is the period when the amplitude approaches to zero.

Mathematically, the natural frequency is inversely proportional to the natural
period of a system.
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For earthquake resistant design of regular frame structures design codes

generally recommend simplified formulae for the determination of natural

period. These fOlmulae are either function of story height or number of

stories. But actually the period of vibration of an elastic system is a function

of its mass and stiffness properties. Hence the base shear or the earthquake

forces are also function of mass and stiffness distribution of the structure.

Again the period of vibration of a structure is proportional to the stiffness,

mass and dynamic properties of materials of structures. So, the base shear is

dependent on the stiffness, mass and dynamic properties of materials of

structures.

I.S HISTORICAL REVIEW OF WORKS

The fundamental period plays a key role in dictating the magnitude of design

earthquake forces of frame structures. For making frame structures

earthquake resistant, it is important to determine the design earthquake

forces as precisely as possible so that they can reflect the actual conditions.

It is essential, therefore, to determine the period of the structure with high

accuracy. Many advances have been made to develop simple approximate

formulae for determining the period of a structure. But still these formulae

have got ample rooms for further improvement. Even now these formulae

suffer from serious shortcomings and limitations which warrant further

investigations and study for necessary improvement.

Tangachi of Tokyo Institute of Technology took an initiative for

determining the periods of structures by actual observations of the vibrations

of the buildings. Based on his numerous observations, he suggested an

empirical relation for the fundamental period of buildings as

12



TN= (.07 to .09) N Sec

where,

N is the number of stories

Again, it was seen that, in addition to the proportions of buildings, relative

rigidity influences the period. The effect of rigidity on the period was

illustrated by the observations on the Marunonchi Building taking Tokyo

Station. When the building was completed, its period was. 94 sec. After semi

destructive earthquake of Apr. 26, 1922, when the building suffered slight

damage, the period increased to l.01 sec. Repairing and strengthening of the

building reduced the period to .71 sec. The building suffered serious damage

in the 1923 earthquake and in this condition it had a period of 1.I 8 sec.

After rehabilitation, the period of free vibration became .48 sec, which was

indicative of its high rigidity.

Building codes specifY design and construction requirements which are

intended to protect buildings from major structural damage and the public

from loss of life and il1iury. These requirements are based to a large extent

on past earthquake experience and judgment. Because of differences in the

magnitude of earthquakes, geological formations, types of construction, and

other factors, the philosophy of seismic design among different countries of

engineers varied in different aspects. The first edition of the Uniform

Building Code was published in 1927. It was prepared by the Pacific Coast

Building Officials Conference after the Santa Barbare earthquake of June 29,

1925. As experience and usage increased, provisions were modified and

revised editions have appeared time to time. The Uniform Building Code,

1927 edition, required that all building more than 20 ft in height, except

exposed steel-frame and wood-frame buildings, be designed for earthquake

forces using 7.5% of the specified vertical loads as the seismic coefficient

when allowable bearing capacity of soil was 2 or more tons per square foot

13



and 10% for soils of lesser bearing capacity. An increase of 33.2% in the

allowable unit stresses was permitted for all materials, except for structural

steel, which was allowed a 50% increase.

Andrus (1952) summarised the chronological historical development of

Uniform Building Codes published in different times. The Uniform Building

Code, 1937 edition, adopted a formula for calculating the lateral force F as

F=CW

where,

C = seismic coefficient

W = total dead load plus halflive load

Here the seismic coefficients were established on zone basis.

Los Angles Code, 1940 edition, proposed formula for calculating the base

shear of a structure whose height is not more than 150 feet as (Housner,

1959)

(
.6 )V - --- W

II + 3.5

where,

n = number of stories

W = weight of the structure

Uniform Building Code, 1949 edition, modified the procedure for

determining the seismic coefficient (Biggs et aI., 1959) by introducing a

formula

.15c=---
N +4.5
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where,

N is number of stories above the story under consideration.

Joint Committee of San Francisco, California Section (1951) prepared the

Lateral Force Code which represents a work of outstanding significance and

value in pointing out a rational approach to the dynamic problem of

earthquake resistant design. For the first time, the determination of the

seismic coefficient C took into consideration the dynamic behavior of

buildings.

Ulrich and Carder (1952) listed some of the results of the work done by the

Coast and Geodetic Survey. The Coast and Geodetic Survey measured the

period of vibration of hundreds of buildings, water-tank towers, and ground

vibrations. Basing on this data, the Joint Committee of San Francisco

proposed an empirical relation for the period of vibration of buildings taking

into consideration the height and width of buildings as follows

H
r. = .06 .Jb

where,

H = height, ft

b = width in ft, in the direction of motion considered

The Joint Committee however, recommended the use of a more conservative

coefficient (.05) in the above equation in the computation of the seismic

coefficient C = .015 / T. The total seismic force V is determined from the

relationship V= CWo Where, W represents the weight of the building

considered in seismic computation.
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The SeismolOb'YCommittee of Structural Engineers Association, California

(1958) proposed a formula for calculating base shear of frame structures for

earthquake resistant design as,

V=KCW

where,

.05
C = 3n

.OSH
T= .JD

Above, T is considered to be the fundamental period of vibration; H & D are

the height and width of the structure, respectively.

Apart from developing empirical formulae for determining base shear and

period of structure by different codes, simultaneous research works by the

individuals were carried out for relating theory of structural dynamics for

earthquake resistant design of structures.

Blume (1958) analyzed the frame structure applying the theory of dynamics

and concluded that the fundamental period of vibration is a logical index of

base shear for general code purposes. However, the height and width of the

building considered either individually or together are not adequate

indicators of period of modern, flexible structures without walls. He also

suggested that, these periods should be specifically computed or improved

approximate method should be utilized. He narrated that the present-day

seismic codes are reasonably adequate for moderate earthquakes but,

because of the oversimplification of a very complex subject, they can not

produce consistent results. The real.earthquake values of various types of

buildings and structures are not necessarily proportionate to the lateral force
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factors used in design. Stated in another way, code requirements are not

producing constant safety factors because of too much reliance on

coefficients without . adequate regard to the structural-dynamics

phenomenaand ultimate resistances involved in various types and rigidities

of construction.

Clough (1960) summarized the principal factors controlling the dynamic

response of structures to the earthquake. He also related these principal

factors controlling the dynamic response of structures to the earthquakes

with the lateral force provisions recommended for inclusion in the Uniform

Building Code by Structural Engineers Association of California. He showed

that the base shear, V, can be determined with the following formula:

[ T]'1- -
7'r

iiv=w-
g

where,

T=2n) W
gk

T= fundamental period of vibration

W= weight of the structure

k = stiffness of structure

g = acceleration due to gravity

Tp= period of structure due to harmonic motion

ii = ground acceleration

It is seen that the response of a structure depends, in a very direct fashion, on

the natural period of the structure, which depends, in tum, on its stiffness

and weight.
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Blume (1967) studied how the natural period of vibration of structure can be

determined applying the theory of structural dynamics. He has shown that an

idealized model of a building can be analyzed and its dynamic properties can

be obtained according to the established theory. He stressed the need for

calculating natural period of vibration of structure for undamped condition

with the formula

where,

Tj = natural period of vibration in sec

Pi = natural angular frequency of the ith mode in radian per sec

Uniform Building Code, 1971 edition developed by the International

Conference of Building Officials (1971) modified the earlier empirical

formula for the lateral force. According to this code the base shear of

moment resisting space frame can be determined with the following formula

V=ZKCW

where,

Z= numerical coefficient dependent upon zone .

.05
C=ifi
T= O.IN

C = numerical coefficient for base shear

T= fundamental period of vibration

N = number of stories

K = horizontal force factor

W = weight of the structure

18



Here, it is seen that the fundamental period of vibration of structure is

considered in computing seismic coefficient. The fundamental period of

vibration was taken as the function of the number of stories of the structure.

Uniform Building Code, 1991 edition, of International Conference of

Building Officials (1991) modified the earlier formula for calculating the

design earthquake forces of structure. Here the fundamental period of

vibration of structure, T is considered to be the function of height of the

structure.

Selvam and Jayasree (1993) presented a paper on the simplified manual

procedure for estimating the period and amplitudes of concrete shear

buildings. From the analysis of nearly one hundred and fifty buildings, the

following fonnula was evolved for determining the fundamental period of

structures

M
T' =;;[1611' + 1611+7.3]

where,

T = natural period in sec

M = total mass of all floors in a frame

K = total stiffness of all columns in a frame

n = number of stories

.JBangladesh National Building Code (1993) and Uniform Building Code,

1994 edition, developed by International Conference of Building Officials

(1994) formulated identical approximate formula for calculating period of

structure. They formulated empirical relationship for base shear calculation

as
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z/cv=--w
R

where,

Z = seismic zone coefficient

I = structure importance coefficient

R = response modification coefficient for structural system

W = total seismic load

C = numerical coefficient given by the relation

1.25S
C'---- ,

T'

T = fundamental period of vibration in sec

S = site coefficient for soil characteristics

For regular concrete frames, period T may be approximated as

where,

h n = height of structure

Here, it is seen that according to the above formula the period of regular

frame structure is function of height of structure only.

A lot of research works is being carried out to formulate simple empirical

formula for calculating base shear and period of frame structure for

earthquake resistant design. The base shear depends on several coefficients

and the accuracy of design earthquake forces certainly depends on the

precise evaluation of these coefficients. It is also apparent that all
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coefficients related with base shear calculation doesn't suffer with much of

limitations except fundamental period of vibration, T, and horizontal force

factor or response modification factor, K. Shen and Wang (1987) have

shown that the horizontal force factor, K, specified by USC, does not ensure

the ultimate lateral resistant capacity equal to design lateral load, 1.403V.

They have also shown with the help of equal energy concept, that K has got

upper limit as welI as lower limit. Ultimately, they have suggested rational K

value for pure plane frames which decreases with increasing degrees of

redundancy .

It appears from the above review that formulae suggested by design c04es

for base shear of structures largely depend on the coefficients. Of alI the

coefficients, the coefficient related with fundamental period of vibration

needs special attention.

This reviewing shows that a lot of empirical formulae have been developed

so far for determining the period of frame structures. These formulae are

simple and handy but approximate. AlI approximate formulae except very

few developed so far, for determining the period of structure are based on a

single structure parameter. According to the theory of dynamics, however,

the period of a structure can not be a function of single structure parameter,

rather it is dependent on total mass and stiffness of the structure. It would be

appropriate, therefore, to investigate the effect of different structure

parameters on the period of regular frame structures by finite element based

computer softwares. Frequency evaluated through modal analysis procedure

could be used for calculating corresponding period. This study would further

lead to evaluate the limitations of the approximate code formulae, now

being used for determining the period of a structure.
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1.6 OBJECTIVES OF THE RESEARCH

The objectives of the present research are.:

i) To reView the major codes for earthquake resistant design and

approximate evaluation of period of regular frame structures.

ii) To investigate the limitations of approximate formulae suggested by

codes for the determination of period of regular frames.

iii) To evaluate period of selected model frames through modal analysis

procedure of ANSYS and to study the influence of stiffness and mass

parameters of frame structures on their period.

iv) To study the effect of bay widths, story heights, number of bays,

column and beam proportions and other parameters on the period.

v). To investigate the effect of inclusion of slabs and secondary structural

elements on the determination of period of frame structures.

vi) To identifY factors that increase period and reduce earthquake forces

and thus to provide designers with a guidance towards a rational

design.

1.7 SCOPE OF THE WORK

The work reported here represents an investigation of the influence of

structure parameters on the period of frame structures for earthquake

resistant design. A preliminary review of major codes including the

Bangladesh National Building Code for earthquake resistant design was

22



conducted to identify the code recommendations for determining the period

of frame structures. A study was conducted for finding the limitations of the

approximate code formulae for the determination of the period of frame

structures. An extensive parametric study was undertaken to clearly

identify the influence of stiffness and mass parameters of frame structures on

their period.

The study was conducted following modal analysis method. Numerical

determination of structure period was carried out by using the powerful

software, ANSYS. Effect of varying the stiffness,' story heights and other

parameters, including the dynamic properties of the materials, on the period

of structures were studied.

Periods obtained by modal analysis were compared with those obtained from

approximate formulae of method A suggested by codes. Influence of rigid

slabs, and secondary structural elements on the period of structures were

also studied.

The problem is introduced and the objectives are stated in Chapter 1.

Chapter 2 and 3 deal with formulation of structural property matrices for

MDOF structures and describe the theoretical basis of vibration analysis and

determination of period of frame structures. Structure parameters that may

influence period are also identified in Chapter 3. Major Codes for

earthquake resistant design are reviewed in Chapter 4. A comparison of

approximate methods for the determination of period of regular frame

structures by design codes is also done in this chapter.

Chapter 5 describes the methodology of determination of period of frame

structures by modal analysis by ANSYS. Chapter 6 is dedicated to a detail

parametric study on influence of different structure parameters on period.
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Investigation conducted in this chapter leads to a recommendation on choice

of structure parameters to reduce earthquake forces.

The conclusions made from the study are presented In Chapter 7. The

chapter also recommends future work in this and related. fields. Finally,

ANSYS inputs and outputs for selected sample models are given in the
Appendix.

24



CHAPTER 2

STRUCTURAL PROPERTY FORMULATION FOR MDOF
SYSTEMS

2.1 INTRODUCTION

The response (i.e the distribution of internal forces and displacements) of a
frame structure resulting from its base motion is influenced by the properties
of both the structure and the foundation, as well as the character of exciting
motion. The character of the exciting motion can be considered to be
dynamic in nature. It is, therefore, necessary to formulate the problem in
terms of differential equations by relating the inertia forces to the second
derivative of structural displacements. The resulting equations are called
equations of motion which express the dynamic equilibrium of all forces,
including the inertia forces acting on the structure.

2.2 STRUCTURAL DISCRETIZATION

In the dynamic system, the analysis obviously is greatly complicated by the
fact that the inertia forces result from structural displacements which in tum
are influenced by the magnitudes of inertia forces. This close cycle of cause
and effect can be attached directly only by formulating the problem in terms
of differential equations. Furthermore, because the mass of a system may be
distributed continuously along its length, the displacements and accelerations
must be defined for each point along the axis if the inertia forces are to be
completely defined. In this case the analysis must be formulated in terms of
partial differential equations because the position along the span as well as
the time must be taken as independent variables. There are several methods
of transforming a continuous system to a discrete one in order to reduce the
dimensions of the problem and simplify its solution. Some of these methods
of discretization are described below.

Lumped-mass Procedure: If the mass of a system were concentrated in a
series of discrete points or lumps, the analytical problem would be greatly
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simplified because inertia forces would be developed only at these mass
points. In this case it is necessary to define the displacements and
accelerations only at these discrete points.

The lumped-mass idealization described above provides a simple means of
limiting the number of degrees of freedom that must be considered in the
analysis of arbitrary problems in structural dynamics. The lumping
procedure is most effective in treating systems in which a large proportion of
the total mass actually is concentrated in a few discrete points. Then it may
be assumed that the mass of the structure which supports those point
concentration are included in the lumps and the structure itself is weightless.

Generalized Displacements: If the mass of the system is quite uniformly
distributed throughout, an alternative approach to limiting the degrees of
freedom may be preferable. This procedure is based on the assumption that
the deflected shape of the structure can be expressed as the sum of a series
of specified displacement patterns; these patterns then become the
displacement coordinates of the structure. A simple example of this approach
of expressing deflections in structures is the trigonometric series
representation of the deflection of a simple beam. In this case, the deflection
may be expressed as the sum of independent sine-wave contributions.

In general, any arbitrary shape compatible with the prescribed support
conditions can be represented by an infinite series of such sine-wave
components. The amplitudes of the sine-wave shapes may be considered to
be the coordinates of the system, and the infinite number of degrees of
freedom of the actual beam are represented by the infinite number of terms
included in the series. The advantage of this approach is that a good
approximation to the actual shape can be achieved by a truncated series of
sine-wave components.

This concept can be further generalized by recognizing that the sine-wave
shapes used as the assumed displacement patterns were an arbitrary choice
in this example. In general, any shape which is compatible with the
prescribed geometric support conditions and which maintain the necessary
continuity of internal displacement may be assumed. For any assumed set of
displacements functions, the resulting shape of the structure depends upon
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the amplitude tenns which may be referred to as generalized coordinates.
The number of assumed shape patterns represents the number of degrees of
freedom considered in this fonn of idealization. In general, better accuracy
can be achieved in a dynamic analysis for a given number of degrees of
freedom by using the shape-function method of idealization than by the
lumped-mass approach. However, it also should be recognized that greater
computational effort is required for each degree of freedom when such
generalized coordinates are employed.

Finite-Element Concept: The displacements of any given structure can be
expressed in tenns of finite number of discrete displacement coordinates,
which combines certain features of both the lumped-mass and the
generalized coordinate procedures. This approach, which is the basis of the
finite-element method of analysis of structural continua, provides a
convenient and reliable idealization of the system and is particularly
effective in computer analysis.

The finite-element type of idealization is applicable to structures of all types:
frame structures, which comprise assemblages of one-dimensional members
(beams, columns, etc.); plane-stress or plate or shell-type structures, which
are made up of two-dimensional components; and general three dimensional
solids.

The first step in the finite-element idealization of any structure, involves
dividing it into an appropriate number of segments or elements. Their size is
arbitrary, they may be all of the same size or all different. The ends of the
segments, at which they are interconnected, are called nodal points. The
displacements of these nodal points then become the generalized coordinates
of the structure.

The deflection of the complete structure can now be expressed in tenns of
these generalized coordinates by means of an appropriate set of assumed
displacement functions. Sometimes the displacement functions are called
interpolation functions because they define the shape between the specified
nodal displacements. These interpolation functions could be any curve which
is internally continuous and which satisfies the geometric displacement
conditions imposed by nodal displacements. For example, in case of one
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dimensional elements it is convenient to use the shapes which would be
produced by the nodal displacements in a uniform beam. From the above
discussion, it is apparent that coordinates used in the fInite element method
are just a special form of generalized coordinates.

The advantages of this special procedure are as follows:

• Any desired number of generalized coordinates can be introduced merely
by dividing the structure into an appropriate number of segments.

• Since the displacement functions chosen for each segment may be
identical, computations are simplifIed.

• The equations which are developed by this approach are largely
uncoupled because each nodal displacement affects only the
neighbouring elements; thus the solution process is greatly simplifIed.

In general, the fInite-element approach provides the most efficient procedure
for expressing the displacements of arbitrary structural confIgurations by
means of a discrete set of coordinates.

2.3 DERIVATION OF EQUATIONS OF MOTION FOR
MULTIPLE DEGREES OF FREEDOM SYSTEMS

Mass, elastic properties (flexibility or stiffness), energy-loss mechanism, or
damping, and the external source of excitation or loading are the essential
properties of any linearly elastic structural system subjected to dynamic
loads. The dynamic response of a single degree of freedom system can be
evaluated by the solution of a single differential equation of motion. If the
physical properties of the system are such that its motion can be described
by a single co-ordinate and no other motion is possible, then it actually is a
single degree of freedom system and the solution of the equation provides
the exact dynamic response. On the other hand, if the structure actually has
more than one possible mode of displacement and it is reduced
mathematically to a single degree of freedom approximation by assuming its
deformed shape, the solution of the equation of motion is only an
approximation of the true dynamic behaviour. The quality of the result
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obtained with a single degree of freedom approximation depends on many
factors, principally the spatial distribution and time variation of the loading
and the stiffness and mass properties of the structure. If the physical
properties of the system, constrain it to move most easily with the assumed
shape, and if the loading is such as to excite a significant response in this
shape, the single degree of freedom solution will probably be a good
approximation; otherwise, the true behaviour may bear little resemblance to
the computed response. One of the major disadvantages of the single degree
of freedom approximation is that it is difficult to asses the reliability of the
results obtained from it.

In general, the dynamic response of a structure can not be described
adequately by a single degree of freedom model; usually the response
includes time variation of the displacement shape as well as its amplitude.
Such behaviour can be described only in terms of more than one
displacement coordinate; that is, the motion must be represented by more
than one degree of freedom. As noted earlier, the degrees of freedom in a
discrete parameter system may be taken as the displacement amplitudes of
certain selected points in the structure, or they may be generalized
coordinates representing the amplitudes of a specified set of displacement
patterns.

~ In deriving the equations of motion of a general multiple degrees of freedom
system., it will be convenient to refer to the general simple beam shown in
Fig. 2. I as a typical example. The discussion applies equally to any type of
structure, but the visualization of the physical factors involved in evaluating
all the forces acting is simplified for this type of structure. The motion of
this structure will be assumed to be defined by the displacement of a set of
discrete points on the beam: VI(t), v2(t) v,(t) vN(t)

In principle, these points may be located arbitrarily on the structure; III

practice, they should be associated with any specific features of the physical
properties which may be significant and should be distributed so as to
provide a good definition of the deflected shape. The number of degrees of
freedom (displacement components) to be considered may vary. However,
greater numbers provide better approximations of the true dynamic behavior.
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In the beam of Fig. 2. I only one displacement component has been
associated with each nodal point on the beam. It should be noted, however,
that several displacement components could be identified with each point;
e.g the rotation and longitudinal motions might be used as additional degrees
of freedom at each point. The equation of motion of the system of Fig. 2. I
can be formulated by expressing the equilibrium of the effective forces
associated with each of its degrees of freedom. In general, four types of
forces will be involved at any point i; the externally applied load P. (t) and
the forces resulting from the motion, that is, inertia fl' damping fDi and
elastic fs. Thus for each of the several degrees of freedom the dynamic

equilibrium may be expressed as

fIl +

fJ2 +
fI3 +

fm + fSI =
fD2 + fS2 =
fD3 + fS3 =

(2.1)

fDn + fSn = Pn(t)

or when the force vectors are represented in matrix form,

(2.2)

Each of the resisting forces is expressed most conveniently by means of an
appropriate set of influence coefficients. Let, for example, the elastic force
component developed at point I be considered ; this depends, in general,
upon the displacement components developed at all points of the structure.

(2.3a)

and, in general,

(2.3b)
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Fig .2.1 Discretization of a general beam-type
structure
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In matrix form, the complete set of elastic force relationship may be written
as:

In these expressions it has been assumed that the structural behaviour is
linear, so that the principle of superposition applies. The coefficients k ij are

called stiffness influence coefficients, defined as follows:

lSI kl1 kl2 k13 kll kIN VI

IS2 k21 k22 k2J k21 IsN V2

-

f~1 kil ki2 kl3 kll kIN
(2.5)

VI

(2.4)

k ij = force corresponding to coordinate i due to

a unit displacement of coordinate j

or,

f - kvs- ( 2.6)

in which the matrix of stiffness coefficients k is called the stiffness matrix of
the structure (or the specified set of displacement coordinates) and v is the
displacement vector representing the displaced shape of the structure. If it is
assumed that the damping depends on the velocity, that is, viscous type, the
damping forces corresponding to the selected degrees of freedom may be
expressed by means of damping influence coefficients in similar fashion. By
analo!,'Ywith Eq. 2.5, the complete set of damping forces is given by

.f~Jl cIl CI2 c13 CII CIN VI

1m cl1 cIl cIl eIl CIN v2

=

IDI
(2.7)

CII Cl1 el1 el1 CIN VI
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in which the matrix of damping coefficients c is called the damping matrix
of the structure (for the specified degrees of freedom) and v is called the
velocity vector.

in which 1\ represents velocity of the ith displacement coordinate and the
coefficients clf are called the damping influence coefficients. The definition

of these coefficients is identical to that in Eq. 2.4:

The inertia forces may also be expressed by a set of influence coefficients
called the mass coefficients. These represent the relationship between the
accelerations of the degrees of freedom and the resulting inertia forces; by
analogy with Eq. 2.5, the inertia forces may be expressed as

(2.9)

(2.8)

Clf = force at coordinate i due to unit velocity at

coordinate j

f -c VD-

Using matrix notations, Eq. 2.7 may be written as

ill mil ml2 ml3 mli miN VI

i/2 m21 m" m23 m2i m2N V2

= (2.10)

in mil mi2 mi3 mjj mJN Vj

where v, is the acceleration of the ith displacement coordinate and the
coefficients mjj are the mass influence coefficients, defined as follows:

mjj = force at coordinate i due to unit acceleration
at coordinate j (2 .11)

In matrix notations, Eq .2.10 may be written as
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The equation expressed above is the equation of multiple degrees of freedom
systems. Matrix Eq. 2.13 represents N algebraic equations of motion which
serve to define the response of the multiple degrees of freedom system.

in which m is the mass matrix of the structure, ii acceleration vector and f]
inertia force vector. Substitution of Eqs. 2.6, 2.9 and 2.12 into Eq. 2.2 gives
the complete dynamic equilibrium of the structure, considering all degrees of
freedom. Thus,

mv+cv + kv=p(t) (2.13)

2.4 FORMULATION OF STRUCTURAL PROPERTY MATRICES

2.4.1 Elastic Stiffness Matrix

Several methods have been developed for the elements of a structure
stiffuess matrix. In this work the finite-element method has been used for it.

In principle, the stiffness coefficient associated with any prescribed set of
nodal displacements can be obtained by direct application of their
definitions. In practice, however, the finite element concept frequently
provides the most convenient means for evaluating the elastic properties. By
this approach the structure is assumed to be divided into a system of discrete
elements which are interconnected only at a finite number of nodal' points.
The properties of the complete structure are then found by evaluating the
properties of the. individual finite elements and superposing them
appropriately.

The problem of defining the stiffness properties of any structure is thus
reduced basically to the evaluation of the stiffness of a typical element.
Stiffness coefficients of the element represent the nodal forces due to unit
nodal displacements. The nodal forces associated with any nodal
displacement component can be determined by the principle of virtual
displacements. Stiffness coefficients ar~ developed here for a nonuniform
straight beam segment shown in Fig. 2.2a. Let VI, and V2 be the
displacements of ends a and b respectively and V3 and V4 are corresponding
rotations. The deflected shapes resulting from applying a unit displacement



of each type at the left end of the element are shown in Fig.2b & c .These
displacement functions are selected as shapes which satisfy nodal and
internal continuity requirements. Generally, cubic hermitian polynomials
satisfY these conditions. Hence corresponding shapes may be expressed as

(2.14)

(2.15)

The equivalent shape functions for displacements applied at the right end
are

(2.16)

(2.17)

With these four interpolation functions, the deflected shapes of the element
can now be expressed in terms of its nodal displacements as

(2.18)

For example, the vertical force developed at end 'a' due to a unit rotation
applied at that point can be termed as stiffness coefficients k13. This force
component can be evaluated by introducing a virtual vertical displacement at
end a, as shown in Fig. 2.2d, while the unit rotation is applied as shown, and
equating the work done by the external forces to the work done by the
internal forces: WE=WI . In this case, the external work is done only by the
vertical force component at "a" because the initial displacements of all other
nodal components vanish; so

(2.19)
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The internal virtual work is done by the internal moments associated with
8 a =1 acting on the virtual curvatures,

o ' .
ox' [OV(x)] = '1/, (x)ov\ (neglecting the effects of shear distortion)

However, the internal moment due to 80= v3 = I may be expressed as

M(x) = EI(x) 'I/;(x)

Thus the internal work is given by

L

I1j = ov\J El(x)'I/: (x) '1/; (x)dx
o

(2.20)

(2.21)

When the work expressions of Eq. 2.19 and 2.21 are equated, the expression
for this stiffness coefficient is

L

klJ = J El(x)'I/: (x)'I/; (x)dx
o

(2.22)

Any stiffness coefficient associated with beam flexure, therefore, may be
written equivalently as

L

k'i = f El (x) '1/,.(x)dx
o

(2.23)

When the stiffness coefficients of all the finite elements in a structure have
been evaluated, the stiffness of the complete structure is obtained by merely
adding the element stiffness coefficients appropriately. The method is known
as direct stiffness method. In effect, any stiffness coefficient kij of the
complete structure can be obtained by adding together the corresponding
stiffness coefficients of the elements associated with those nodal points.
Thus if the elements m, a, and p were all attached to nodal point i of the
complete structure, the structure stiffness coefficient for this point would be

,.. ,.. ..• ..•
k = j(m) + j(n) + jcP)
II " II II
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m which the superscripts identify the individual elements. Before the
element stiffness can be superposed in this fashion, they are expressed in a
common global coordinate system which is applied to the entire structure.
The double hats are placed over each element stiffness symbol in Eq. 2.24 to
indicate that they have been transformed from their local coordinate to the
global coordinates.

2.4.2 Mass Properties

The mass of an actual structure is continuously distributed over the spatial
extent of the structure and, as a result, actual structures have an infmite
number of degrees of freedom. Often, however, the important features of the
dynamic response of an actual structure may be adequately approximated
with far less tedious computations by idealizing the structure. In such an
idealization, the mass of the structure is considered to be lumped or
concentrated at certain finite number of mass points and the resistance of the
structure to deflection is then represented by members of elements which are
considered to be weightless but have structural strength and stiffness. These
idealized structures are said to be concentrated mass structures.

In general six co-ordinates may be required to specify the position of each
mass of a concentrated-mass system, three linear displacements and three
angular displacements. Thus, such a system would have six degrees of
freedom per mass.

It is also possible to consider the mass distributed over the length of the
member. In this case, a consistent mass matrix may be generated and the
approach is known as consistent mass approach. The teclmiques of
generation of lumped mass matrix and consistent mass matrix are described
below.

2.4.3 Lumped Mass Matrix

The simplest procedure for defining the mass properties of any structure is to
assume that the entire mass is concentrated at the points at which the
translational displacements are defined. The usual procedure for defining the



point mass to be located at each, node is to assume that the structure IS

divided into elements, the nodes serving as connection points.

Fig. 2.3 illustrates the procedure for a beam-type structure. The mass of each
segment is assumed to be concentrated in point masses at each of its nodes,
the distribution of the segment mass to these points being determined by
statics.

The total mass concentrated at any node of the complete structure then is the
sum of the nodal contributions form all the. elements attached to that node. In
the beam system of Fig. 2.3, there are two segments contributing to each
node; for example,

For a system in which only translational degrees of freedom are defined, the
lumped-mass matrix has a diagonal form; for the system of Fig. 2.3 it would
be written as

m, 0 0 0 0

0 m, 0 0 0

0 0 m, 0 0

m= (2.25)
0 0 0 m, 0

0 0 0 0 mN

in which there are as many terms as there are degrees of freedom. The off-

diagonal terms mijof this matrix vanish because an acceleration of any mass

point produces an inertia force at that point only. The inertia force at i due to

a unit acceleration of point i is obviously equal to the mass concentrated at

that point; thus, the mass influence coefficient mjj = mj in a lumped mass

system.
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If more than one transitional degree of freedom is specified at any nodal
point, the same point mass will be associated with each degree of freedom.
On the other hand, the mass associated with any rotational degree of
freedom will be zero because of the assumption that the mass is lumped in
points which have no rotational inertia. Of course, if a rigid mass having a
finite rotational inertia is associated with a rotational degree of freedom, the
diagonal mass coefficient for that degree of freedom would be the rotational
inertia of the mass. Thus the lumped mass matrix is a diagonal matrix which
includes zero diagonal elements for the rotational degrees of freedom, in
general.

2.4.4 Consistent Mass Matrix

Making use of the finite element concept, it is possible to evaluate mass
influence coefficients for each element of a structure by a procedure similar
to the analysis of element stiffness coefficients. A non uniform beam
segment is considered for the purpose as shown in Fig. 2.4 The degrees of
freedom of the segment are the translation and rotation at each end, and it
will be assumed that the displacements within the span are defined by the
same interpolation functions '1/, (x) used in deriving the element stiffness.

If the beam were subjected to a unit angular acceleration of the left end,
Y3 = Bo = 1, accelerations would be developed along its length, as follows

(2.26)

By d' Alembert's principle, the inertia force resisting this acceleration is

fl (x) = m(x) vex) = m(x) '1/3 (x) V3 (2.27)

Now the mass influence coefficients associated with this acceleration are
defined as the nodal inertia forces produced by it; these can be evaluated
from the distributed inertia force of Eq. 2.27 by the principle of virtual
displacements. The vertical force at the left end can be evaluated by
introducing a vertical virtual displacement and equating the work done by
the external nodal force p. to the work done on the distributed inertia forces
f; (x). Thus

41



Pa <5Va = J /1 (X)<5 v(x)dx ( 2.28)
o

Expressing the vertical virtual displacement in terms of the interpolation
function and substitution of Eq. 2.27 leads finally to

L

mn = J m(x)flll (x)fII3 (x)dx (2.29)
o

It should be noted in Fig. 2.4 that the mass influence coefficient represents
the inertia force opposing the acceleration, but it is also numerically equal to
the external force producing the acceleration.

From Eq. 2.29 it is evident that any mass influence coefficient mij can be
evaluated from the expression.

L

mij= Jm(x)flli (X)fllj (x)dx
o

(2.30)

The symmetric form of this equation shows that the mass matrix is
symmetric; that is mij = mji. When the mass coefficients are computed,
using the interpolation functions, the result is called the consistent mass
matrix.

When the mass coefficients of the elements of a structure have been
evaluated, the mass matrix of the complete element assemblage can be
developed by adding the element mass coefficients appropriately. In effect,
any mass coefficient mij of the complete structure can be obtained by adding
together the corresponding mass coefficients of the elements associated with
those nodal points.

The dynamic analysis of a consistent mass system generally requires
considerably more computational effort than a lumped-mass system does, for
two reasons:

(i) The lumped mass matrix is diagonal, while the consistent-mass
matrix has many off-diagonal terms.
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(ii) The rotational degrees of freedom can be eliminated from a
lumped-mass analysis, whereas all rotational and transitional
degrees of freedom must be included in a consistent-mass analysis.

2.4.5 Damping Matrix

If the various damping forces acting on a structure could be determined
quantitatively, the finite element concept could be used to define the
damping coefficients of the system. After determining the element damping
influence coefficients, the damping matrix of the complete structure could be
determined by a superposition process equivalent to the direct stiffuess
method. In practice, however, evaluation of the damping property by this
method is very cumbersome. For this reason, the damping is generally
expressed in terms of a percentage of mass or in terms of damping ratios
established from experiments on similar structures. When damping IS

assumed as a percentage of mass, mathematically, it is expressed as

c= Am

where,
A is a constant.

2.4.6 External Loading

If the dynamic loading acting on a structure consists of concentrated forces
corresponding with the displacement coordinates, the load vector of Eq. 2.2
can be written directly. In general, however, the load is applied at other
points as well as at the nodes and may include distributed landings. In this
case, the load terms in Eq. 2.2 are generalized forces associated with the
corresponding displacement components. The most direct means of
determining the effective nodal forces generated by loads distributed
between the nodes is by application of the principles of simple statics. In
other words, the nodal forces are defined as a set of concentrated loads
which are statically equivalent to the distributed loading.
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CHAPTER 3

FREE VlBRAnON ANALYSIS AND PERIOD OF
FRAME STRUCTURES

3.1 INTRODUCTION

Detennining the behaviour of a structure during an earthquake is basically a
vibration problem. The seismic motions of the ground cause the structure to
vibrate and the amplitude of vibration of its dynamic defonnation and its
duration are of concern to the engineer. If the motion of a body is reciprocating
or oscillating in character, it is called vibration. If the vibration of an elastic
structure takes place in the absence of any externaly imposed force but in the
presence of external and internal frictional forces, the motion is tenned as
damped free vibration (Chandrapatla and Belegmdu, 1991). In the hypothetical
case where it is assumed that the frictional forces are also absent, the motion is
called an undamped free vibration. The undamped motion is defined simply by
the elastic resistance and the inertial forces of the system, by the initial
condition of the state of motion, and by the boundary conditions of the
structure. The response for the hypothetical undamped vibration is an
approximation of the actual damped vibration experienced by the real strictures.

3.2 ANALYSIS OF VIBRATION FREQUENCIES AND PERIOD

The equations of motion for a freely vibrating undamped ( Clough and Penzien,
1993 ) system can be obtained by omitting the damping matrix and applied-
load vector from Eq. 2.13. Thus,

mii+kv=O (3.1)

in which 0 is a zero vector. The problem of vibration analysis consists of
detennining the condition under which the equilibrium condition expressed by



which (since the sine term is arbitrary and may be omitted) may be written as

Eq. 3.1 will be satisfied. By analogy with the behavior of MDOF systems, it
will be assumed that the free-vibration motion is simple harmonic, which may
be expressed as

In this expression v represents the shape of the system (which does not change
with time; only the amplitude varies) and e is a phase angle. When the second
time derivative of Eq. 3.2 is taken, the accelerations in free vibration are

(3.2)

(3.3)v = w' V Sin(wt + 8 ) = -w' y

-w' mvsin(wt+8) +kvsin(wt+8)=O

v(t)=vsin(wt+8 )

Substituting Eq. 3.2 and 3.3 into Eq. 3.1 gives

(3.4)

Eq. 3.4 constitutes an eigenvalue or characteristic value problem. The quantities
m2 are the eigenvalues or characteristic values indicating the square of the free-
vibration frequencies, while the corresponding displacement vectors v express
the corresponding shapes of the vibrating system, known as the eigenvectors or
mode shapes. Now it can be shown by Cramer's rule that the solution of this set
of simultaneous equations is of the fonn

, 0y--II k-w'mll (3.5)

Hence, a nontrivial solution is possible only when the denominator determinant
vanishes. In other words, finite-amplitude free vibrations are possible only
when



Eq. 3.6 is called the frequency equation of the system. Expanding the
detenninant will give an algebraic equation of the Nth degree in the frequency
parameter 0)2 for a system having N degrees of freedom. The N roots of this
equation (00 i,oo~ ,0023 , oo~) represent the frequencies of the N modes

of vibration which are possible in the system. The mode having the lowest
frequency is the first mode, the next higher frequency is the second mode, etc.
The vector made up of the entire set of modal frequencies, arranged in
sequence, will be the frequency vector (j):

IIk - (j)2mll = 0 (3.6)

(3.7)

For the real, symmetric, positive definite mass and stiffness matrices which
pertain to stable structural systems, all roots of the frequency equation will be
real and positive.

The ith period Tj may be found from ith frequency, as

2J[T--
i-OJ ,

Therefore, the fundamental period is

(3.8)

(3.9)



3.3 ANALYSIS OF VIBRATION MODE SHAPES

When the frequencies of vibration have been determined from Eq. 3.6, the
equations of motion, Eq. 3.4, may be expressed as

(3.1 I)

(3.10)

ECn) = k - I1J 2 m
n

in which,

Thus, E(n) represents the matrix obtained by subtracting 11J~m from the stiffness

matrix; since it depends on the frequency, it is different for each mode. Eq. 3.10
is satisfied identically because the frequencies were evaluated from this
condition; therefore the amplitude of the vibrations is indeterminate. However,
the shape of the vibrating system can be determined by solving for all the
displacements in terms of anyone coordinate.

For this purpose it may be assumed that the first element of the displacement
vector has a unit amplitude; that is

vln
V2n V2n

V3n = V3n (3.12)

vNn VNn
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in which partItioning is indicated to correspond with the as yet unknown
displacement amplitudes. For convenience, Eq. 3.13 is expressed in matrix
notations as

<n) <n) <n) <n) 0ell elZ el3 elN

e'l
<n)

ezz
<n)

en
<n) e2N

<n) V2n 0
= (3.13)

e(n) <n) <n) <n)
V 031 e32 e33 e3N 'n

eN!
<n)

eN2
<nJ eN.l

<n) <nJ
Von 0eNN

(3.14)~~~)]{,I } = {OJ
E'n) v 0

00 011

In expanded form, Eq. 3.10 may then be written

from which,

Etll
) + E (n)" = 001 00 on (3.15)

and
(3.16)

Eq.3.16 can be solved simultaneously for the displacement amplitudes

v = _(E(nJ)-' E <nJ
on Ql) 01 (3.17)

and Eq. 3.16 is redundant; the redundancy corresponds to the fact that it is
satisfied identically. The displacement vector obtained in Eq. 3.17 must satisfy



Eq. 3.16, however, and this condition provides a useful check on the accuracy
of the solution.

Here it may be mentioned that it is not always wise to let the first element of the
displacement vector unity; numerical accuracy will be improved if the unit
element is associated with one of the larger displacement amplitudes. The same
solution process can be employed in any case, however, by merely rearranging
the order of the rows and columns of E(o) appropriately.

The displacement amplitudes obtained from Eq. 3.17 together with the unit
amplitude of the first component constitute the displacement vector associated
with the nth mode of vibration. For convenience the vector is usually expressed
in dimensionless form by dividing all the components by one reference
component (usually the largest).

The resulting vector is called the nth mode shape fjJ 0 ; thus

(3.18)

in which,

"'0 is the reference component, taken as the first component here.

The shape of each of the N modes of vibration can be found by the same
process; the square matrix made up of the N mode shapes will be represented
byfjJ as
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3.4 STRUCTURE PARAMETERS THAT INFLUENCE PERIOD

The Eq. 3.6 clearly states that the frequency of a structure is directly
proportional to the stiffuess properties and inversely proportional to the mass
properties of the structure. The stiffuess properties are directly proportional to
the modulus of elasticity of the materials and moment of inertia of the structural
elements. The stiffuess properties are also inversely proportional to height of
vertical members and span of horizontal members. Therefore the stiffuess
properties and hence the frequency will be influenced by modulus of elasticity
as well as by sectional dimensions, width and height of a structure. Again the
effect of shearing deformation could be significant on the periods corresponding
to the higher mode ( Basu et aI., 1982).

(3.19)

Mass properties depend on the density of the material. Thus the material density
will certainly affect the frequency. Since the period of the structure is inversely
proportional to the frequency, the period of the structure will similarly be a
function of the stiffuess and mass properties of the structure. Furthermore, the
material properties will also influence the magnitude of the period of a
structure. Hence, the period of a structure will be a function of its parameters.
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CHAPTER 4

REVIEW OF SOME CODES OF PRACTICE FOR
EARTHQUAKE RESISTANT DESIGN

4.1 INTRODUCTION

The design of buildings considering earthquakes usually employs static loads
that are determined in accordance with provisions in the applicable building
code. The appropriate earthquake-resistant regulations for one country are
not necessarily the same as for other countries. But the prime objectives and
aims of formulating empirical formulae and code for earthquake resistant
structures ( International Association for Earthquake Engineering, 1973 ) are
mainly

• to keep the number of deaths from earthquakes to an acceptably small
number, and

• to design and construct buildings so that the long term cost of repairing
damage does not exceed the extra cost that would have been required to
prevent damage.

The determination of earthquake forces by the Uniform Building Code,
Bangladesh National Building Code, Standards Association of Australian
Earthquake Code and Indian Standard Criteria for Earthquake Resistant
Design of Structures are mainly based on constant acceleration concept.
Equivalent static force method of design for regular structures of height less
than 240 ft suggested by the above codes are discussed below for the
comparative study of seismic design and evaluation of period.

4.2 UNIFORM BUILDING CODE

The procedures and limitations for the design of structures by Uniform
Building Code (UBC) are determined considering zoning, site
characteristics, occupancy, configuration, structural system and height. Two
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of the major parameters in the selection of design criteria are occupancy and
structural configuration.

The total lateral force or base shear, according to Uniform Building Code
1985, 1991, and 1994 are enumerated below.

UBC-85

The base shear, V is given by ( Uniform Building Code, 1985 )

V=ZIKCSW

where,
Z = seismic zone factor
I = occupancy importance factor
K = horizontal force factor
S = site coefficient for soil characteristics
W = the total seismic dead load
C = vibration characteristic factor expressed as a coefficient related to

the flexibility of a structure,

1
C= 15.fi~ 0.12

where T is the elastic undamped fundamental period of vibration of the
building (in secs) in the direction of the motion considered. The value of T
may be determined from one of the ~ollowing methods:

Method A
The fundamental period of vibration, T, is established using the structural
properties and deformation characteristics of the resisting elements in a
properly substantiated analysis. In absence of precise determination ofT, the
fundamental period of a building, in which lateral-load resisting system
consists of moment-resisting space frames capable of resisting 100% of the
required lateral forces and the frames are not enclosed or adjoined by more
rigid elements tending to prevent them from resisting the lateral forces,
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T= O.IN

where,
N = total number of stories between the base and the

upper most level in the main portion of the structure.

Method B
The fundamental period T may be calculated using the strcutural properties
and deformational characteristics of the resisting elements in a properly
substantiated analysis. The formula for determining the period is

The values of ti represent any lateral force disributed approximately in
accordance with rational distribution. The elastic deflections, ()i, shall be

calculated using the applied lateral forces, ti .The value of C shall be not less
than 80 percent of the value obtained by using T from Method A..

UBC-91 and 94

UBC-91 and 94 are identical in defining base shear, which, according to
them, is given by

where,

Z = seismic zone factor
I = occupancy importance factor
Rw= numerical coefficient
W = total seismic load

L25SC = T213 ?.075R., ,s; 2.75

S = site coefficient for soil characteristics



T = fundamental period of vibration in secs

The value of the fundamental period, T of the structure shall be determined

from one of the following methods:

Method A
For all buildings the value of T may be approximated by the following

formula:

where,
C. = numerical coefficient
hn = building height in ft above base.

For moment resisting concrete frame structures

C,=.03

Method B
The fundamental period T may be calculated using the strcutural properties
and defonnational characteristics of the resisting elements in a properly
substantiated analysis. The requirement may be satisfied by using the

formula:

The values of f
j
represent any lateral force disributed approximately in

accordance with rational distribution. The elastic deflections, 1)i, shall be

calculated using the applied lateral forces, fi. The value of T from Method B
shall not be over 30 percent than the value of T obtained from Method A.
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4.3 BANGLADESH NATIONAL BUILDING CODE (BNBC 1993)

Bangladesh National Building Code was published in 1993. The code
suggests to determine the total design base shear in a given direction from

the following relationship:

V
Zle=-w
R

where,
Z = seismic zone coefficient
I = structure importance coefficient
R = response modification coefficient for structural system

W = the total seismic dead load
C = numerical coefficient given by the relation

where,
S = site coefficient for soil characteristics
T = fundamental period of vibration in seconds, of the structure

for the direction under consideration.

The value of C need not exceed 2.75 and this value may be used for any
structure without regard to soil type or. structure period. Except for those
requirements where code prescribed forces are scaled up by .375R, the
minimum value of the ratio C/R shall be .075.

The value of the fundamental period, T of the structure shall be determined

from one of the following methods:

Method A
The value of the fundamental period, T for reinforced concrete moment
resisting frames can be determined approximately from the following

empirical formula:

T= 073h'/4• n
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where,
h
n
= height in meters above the base to level n.

Method B
The fundamental period T may be calculated using the strcutural properties
and defonnational characteristics of the resisting elements in a properly
substantiated analysis. This requirement may be satisfied by using the

following formula:

The values of fj represent any lateral force disributed approximately in
accordance with rational distribution. The elastic deflections, OJ, shall be

calculated using the applied lateral forces, ii. The value of T determined
from the above formula shall not exceed that calculated from Method A by

more than 40%.

4.4 STANDARD ASSOCIATION OF AUSTRALIAN
EARTHQUAKE CODE (SAA)

According to Standards Association of Australian Earthquake Code (1979),
the minimum total horizontal earthquake force to be resisted by a building

shall be

H=ZIKCSW

with a minimum value of H = .02W, for non-zero values of Z. For the
purpose of design, this force shall be taken to act non-concurrently in the
direction of each of the main axes of the building.
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Above,

H = the equivalent static horizontal force for which the structure may
be designed instead of the actual inertia forces generated in the
structure by the movement of the ground.

Z = seismic zone coefficient
I = occupancy importance factor
K = horizontal force factor
S = site structure resource factor
W = total seismic dead load
C = the seismic response factor

1
= -- > 12IS..{i .

T = fundamental period of vibration
= D.ln

where,
n = total number of levels above the base upto and including level n.

4.5 INDIAN STANDARD CRITERIA FOR EARTHQUAKE
RESISTANT DESIGN OF STRUCTURES (IS)

In Indian Standard Criteria for Earthquake Resistant design of Structures of
1970, the base shear V IJ is given by the following formula:

VB =Ca JJ W

where,
an = seismic coefficient
fJ = a coefficient depending upon the soil foundation system

W = total amount of seismic load
C = a coefficient defining the flexibility of structure with the

increase in number of stories =X-1/3
T = fundamental time period of the building in seconds. For

moment resisting frames without bracing or shear walls,
the fundamental penod is taken to be .In.

n = number of stories including the basement floors.



4.6 COMPARISION OF METHODS FOR
DETERMINATION OF PERIOD BY CODES

The analytical formulae for the fundamental period and the coefficient
depending on fundamental period of the structure are suggested to be
computed by UBC-85, UBC-91, UBC-94, Bangladesh National Building
Code (following Method A), Standard Association of Australian Earthquake
Code and Indian Standard Criteria for Earthquake Resistant Design of

Structures, are summarized in Table 4.1

Table 4.1 Fundamental period and coefficient depending on fundamental
period for moment resisting frames, deforming freely

UBC-85 UBC-91 & BNBC SAA IS

UBC-94

T= O.IN T=.03hn'/4 T=.03h/4 T= O.ln T= O.ln

C=_I- c= 1.255' C= I.2S5 I C=.5/T1/3

IS.JT y'll3 7"/3 C= lS.ff

~ .12 ~ 0.75Rw ~0.75Rw > 2.75

~ 2.75 ~ 2.75

According to UBC-85, SAA & IS, the fundamental period of vibration is a
function of number of stories. According to UBC-94, and BNBC, however,

it is a function of height of the structure.

In Fig. 4.1, its variation with story number or height are plotted following
different codes. It has been assumed that the height of each story is lOft. As
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per UBC-85, and SAA the coefficient of fundamental period of vibration is
proportional to 1/.,ff. According to UBC-9I, UBC-94 and BNBC, it is
proportional to lfr2/3 and according to IS I/T1/3. The variation of, C ,with
the fundamental period T, following above codes, are shown in Fig. 4.2.

60



1.6

1.4 --- UBC-91 ,94
and BNBC

1.2 --+-- UBC-85,8M
&18

1.0

0., 0.8U>

"C
0
'C 0.6.,
a.

0.4

0.2

0.0
0 2 4 6 8 10 12 14 16

Number of stories

Fig. 4.1 Variation of fundamental period with story number

2.5

2.0

1.5
U

<5u 1.0,fl
.~
iiic
0 0.5'E
0a.
0~a.

0.0

I I

"" --- UBC-91&94
and BNBC

~
~ UBC-85,8M

~ --- 18

~ '------., '-

-0.5
0.2 0.4 06 0.8 1.0 1.2 1.4 1.6

Period, sec

Fig. 4.2 Variation of proportionality factor,C with period,
T ( value of S is considered to be 1)

61



CHAPTERS

DETERMINATION OF PERIOD BY MODAL ANALYSIS
USINGANSYS

5.1 INTRODUCTION

The period of a frame structure can be determined by applying the theory of
structural dynamics. The application of the theory involves a great deal of
calculation and requires solution of differential equations, leading to
evalution of eigenvalues. It is cumbersome except for very small, simple
structures. For determining the period of three dimensional frame structures
of high degree of indeterminancy, the use of computer programme, specially,
finite element based type of analysis, is essential (Rankaj and Gambhir,
1992). ANSYS is the most powerful general purpose finite element package,
which may be used for the purpose. The effects of variation of different
structure parameters on the period of three dimensional frame structures is
studied here using ANSYS.

5.2 GENERAL DISCUSSION ON ANSYS

The ANSYS program, was introduced in 1970, by Swanson Analysis System
(1995). Since that time ANSYS Supports Distributors have grown as part of
a commitment to provide latest finite element analysis and design technology
to engineers, world wide. ANSYS capabilities can be utilized in computers
that range from pes to super main frames. ANSYS is a general-purpose
program constantly updated with new features, enhancements of existing
features, and error corrections. The current release of the program followed
in this research work, is Revision 5.2.
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5.3 MODAL ANALYSIS BY ANSYS

.5.3.1 Introduction

Modal analysis helps the determination of the vibration characteristics of
structure. It is used to determine the natural frequencies and mode of a
structure or its component. Modal analysis in the ANSYS is a linear
analysis. Any nonlinearities such as plasticity and contact elements, are
ignored even if they are defined.

5.3.2 Assumptions & Restrictions

The assumptions and restrictions in ANSYS are enumerated below:

~

i)

ii)~
()
~ iii)

iv)

Valid for structural and fluid degrees of freedom

The structure has constant stiffness and mass effects

There is no damping unless the damped eigensolver is selected

The structure has no time varying forces, displacements, pressures, or
temperature applied ( that is, free vibration).

5.3.3 Analysis of Undamped Structures

This analysis is used for natural frequency and mode shape. The governing
equation in matrix notation is

where,

[M]{u} + [k]{u} = {a}

[M] = structural mass matrix,
[k] = structural stiffness matrix
{ti}= nodal acceleration vector

{u} = nodal displacement vector
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For a linear system,

(5.2)

where,
{ljl}i ~ eigenvector representing the mode shape of the ith natural

frequency.
OJ; = angular frequency corresponding to i th mode

t = time

Substituting of Eq. 5.2 in Eq.5.1 leads to

(5.3)

This equlity is satisfied if either {ljl}, = to} or if the determinant

([k]-ro2[M]) is zero. The first option is trivial and, therefore, is not of

interest. Hence,

I[k] - OJ' [M]I = 0 (5.4)

This is an eigenvalue problem which may be solved for n values of OJ2 and n
eigenvectors {tP } i . Here, n is the number of degrees of freedom.

5.3.4 Eigenvalue and Eigenvector Extraction

The eigenvalue and eigenvector problem needs to be solved for mode-
frequency analysis. It has the form of:

where,

[k1= structural stiffness matrix

{tP i} = eigenvector
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A.j = eigenvalue

[M] = structure mass matrix

The Eq. 5.3 can be rewritten as

(5.6)

The Eq. 5.5 and Eq. 5.6 are of same nature, where (0 i is the natural circular
frequency of mode i «(O~is the eigenvalue). The natural frequency f; and
period Tj are given by

Tj = 27f / (Oi

(5.7)

(5.8)

The eigenvalues and eigenvectors may be extracted following four different
methods. These are reduced method, subspace method, Wlsymmetric method
and damped method. Eigenvalues and eigenvectors, extracted by ANSYS
following reduced method, which has been used in the present work, is
elaborated below.

Reduced Method

For the reduced procedure, the system of equations is first condensed down
to those degrees of freedoms (OOFs)associated with the master OOFs by
Guyan Reduction. Master OOFs actually specifY which existing OOFs are to
be retained. The set ofn master OOFs characterize the natural frequencies of
interest in the system. The number of master OOFs selected should usually
be at least equal to twice the number of frequencies of interest. The reduced
form may be expressed as

where,

[i] = reduced stiffness matrix (known)

{~j } = eigenvector (unknown)
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A.i = eigen value (unknown)
[M] = reduced mass matrix (known)

The actual eigenvalue extraction is performed. The extraction employed is
the HBI (Householder Bisection Inverse iteration) extraction technique and
consists of the following five steps.

Step I: Transformation of the Generalized Eigen Problem to a Standard
Eigen Problem. The Eq. 5.9 must be transformed to the desired form of
standard eigen problem. This form may be of following type

[AJ{ IjI } = A.{IjI}

where,

[A] is symmetric.

Transformation to above form may be as follows:

Premultiplying both sides of Eq. 5.9 by [Mr I .
(5.10)

Decomposing [M]into [L][L]T by Cholesky decomposition, where [L] is a

lower triangular matrix Eq. 5.10, becomes

(5.11)

It is convenient to define

(5.12)

Substitution of Eq. 5.11 into Eq. 5.12 yields

(5.13)
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or,

(5.14)

where,

Hence the symmetry of [Aj has been ensured by this procedure.

Step 2: Reducing [Aj to Tridiagonal Form

This step is performed by Householder's method through a senes of a
similarity transformations, yielding

[B] = [Tf[ A][T]

where,
[Bj = tridiagonalized form of [Aj
[Tj =matrix constructed to tridiagonalize [Aj, solved for iteratively

The eigenproblem is reduced to

Here it can be mentioned that the eigenvalues (A) have not changed through
these transformations, but the eigenvectors are related by

(5.15)

Step 3: Eigenvalue Calculation

Strum sequence checks are used with the bisection method to determine the
eigenvalues. The strum sequence check computes the number of negative
main diagonals ecountered during the traingularization of the shifted matrix.
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Step 4: Eigenvector Calculation

The eigenvectors are evaluated using increase iteration with shifting. The
eigenvectors associated with multiple eigenvalues are evaluated using initial
v€ctor deflation by Grain-Schmidt orthogonalization in the inverse iteration
procedure.

Step 5: Eigenvector Transformation

After the eigenvectors {If! i} are evaluated, {~ i}mode shapes are recovered
through Eq. 5.15. In the expansion pass, the eigenvectors are expanded from
the master DOFs to the total DOFs.

5.3.5 Modal Analysis Procedure

The procedure for a modal analysis consists of four main steps:

• Building the model
• Load application and solution
• Expansion of modes
• Reviewing the results

Building the Model: In this step the model geometry is defined. The
structure, to be analysed, has to be formulated as a model foIlowing the
frame work of modal analysis.

Models developed must adequately characterize the actual response. The
elements with which the model is made of, represent the actual components.
ANSYS program has a large library of different types of element. Out of
these large numbers of dif.Terent elements, elements which are suitable for
building up the required models are choosen. For modeling 3 dimensional
frame structures, beam elements, sheIl elements, and mass elements were
choosen. The individual elements are described below.

Beam Element: Beam element is an elastic, uniaxial, 3 dimensional element
which can withstand tension, compression, torsion and bending. The element
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has two nodes with six degrees of freedom at each node; translations in the
nodal x, y, and z directions and rotations about the nodal x, y and z axes.
The geometry, node locations and coordinate systems for this element are
shown in Fig 5.1. The beams and columns of 3 dimensional frame structures
are represented by beam elements while formulating the model of the frame
structure.

Shell Element: Elastic shell element has been used for slab. It withstands
both bending and membrane forces. The element is capable of taking both
the inplane and nonnal loads .The element has six degrees of freedom at
each node; translations in the nodal x,y and z directions and rotations about
the nodal x, y and z axes ( Ahmed et al. 1968 ). The geometry, node
locations, and the coordinate system for this element are shown in Fig. 5.2.
The element is defined by four nodes, thickness and orthrotropic material
properties. For building the model, the shell element is used as thick plate
element. The curvature of the shell element is considered as zero. The effect
of bending stiffness is considered only and the effect of membrane stiffness
is not considered. So the shell element will response like thick plate element
which will represent the slab of the frame structure.

Mass Element: Mass element is a point element used as a structural mass on
each nodal points of the model formulated. The node of mass element has
got six degrees of freedom: translations in the nodal x, y and z directions and
rotations about nodal, x, y and z axes (Zienkiewicz, 1979 ). The geometry,
node locations, and coordinate systems for typical mass element are given in
Fig: 5.3. The vertical walls, widely used as partition walls in between rooms
of frame structure, are considered as mass elements. So mass elements
actually represent the vertical wall loads at each nodal point of the frame
structure.

Load Application and Solution: In this step, the type of analysis, analysis
option, load step options, etc., are defined to initiate the finite element
solution for the natural frequencies. In this work modal analysis has been
used as analysis type and reduced methods were used as analysis options.



Expansion of Modes: In the modal analysis, the term "expansion" means
writing the mode shapes to the result file. This step is required to review the
mode shapes in result file.

Reviewing the Results: In this step the required parts of results written in
the result file are brought out for easy reference.
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CHAPTER 6

INFLUENCE OF STRUCTURAL PARAMETERS ON PERIOD
OF FRAME STRUCTURES

6.1 INTRODUCTION

In the preceding chapters theories for calculating the period of frame
structures are described. The procedure and methodology following which
ANSYS works for calculating period are described in Chapter 5. The
empirical formulae proposed by different codes for calculating the period of
regular frame structures are discussed in Chapter 4:

Discussions in Chapter 4 revealed that the approximate formulae proposed
by codes for evaluation of period describe period as a sole function of
structure height or number of stories. From the theories of evaluation of
period, presented in Chapter 3 & 5, it is clear that all the parameters
contributing to stiffness and mass properties should have influence on
period. In, order to ascertain the degree of influence of such structure
parameters on period, a set of model frame structure are first selected in this
chapter. In selecting such models, care has been taken so that they can
adequately reflect influence of different parameters after proper analysis is
conducted for period. While designing the models, emphasis is given on
clear identification of parameters, which may significantly affect period.
Series of models are designed so that influence of desired parameters may be
clearly established.

In this chapter, the selected models are first described. The period of the
models are then evaluated following both approximate code formulae
(following Method A ) and modal analysis technique. In evaluating period
by modal analysis, ANSYS has been extensively used. A detail parametric
study is conducted further to identify influence of different parameters.
Results of modal analysis are compared with those obtained from using
approximate code formulae. Limitations of code formulae of Method A are
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established. Finally, a guideline is provided to choose structure parameters
for reducing earthquake forces on the structure in its design.

It should be noted that the investigation carried out in this work applies to
regular 3-D concrete frame structures only.

6.2 DESCRIPTION OF MODELS

Various numbers of regular 3-dimensional model frame structures are
selected following the framework given by finite element based computer
software ANSYS. For convenience of studying the influence of various
structure parameters on period, such models are grouped. The values of
parameters, in general, applicable for all groups of models are given in
Table 6.1.

Table 6.1 Structure parameters applicable, in general, to selected models

Sl. No. Parameters Values

I Modulus of Elasticity 2.07xI07kN/m2

2 Density of Concrete 23.56 kN/m3

3 Acceleration due to Gravity 9.81 m/sec2

4 Width of the Bay 5.0m

5 Story Height 3.2m

6 Size of Columns 0.5 m x 0.5 m

7 Size of Beams 0.35 m x 0.5m

8 Thickness of Slab 0.15 m

The models are divided into six major groups. These are GpA, GpB, GpC,
GpO, GpE, & GpF respectively. Several submodels are developed within a
group by addition of different structural members and elements and or
variation of their parameters. The models developed are described below.
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Models of GpA, GpB & GpC: These are models of 6-and lZ-story 3-
dimensional frame structures with slabs. Values of parameters cited in Table
6. I are applicable to all of them. Plan configuration of models included in
groups GpA, GpB and GpC are shown in Fig.6.1, Fig.6.Z and Fig. 6.3
respectively. The models of groups GpA, GpB & GpC account for
investigating the variation of the period of the structure for increase or
decrease of the number of bays along and transverse to the direction of
motion.

Models of GPA: All models of GpA have two bays in the direction
perpendicular to the direction of motion. They differ among themselves by
the number of bays along the direction of motion (Fig.6.1). Models included
in this group are described below.

Model AI: Composed of frame structures with Z bays along the direction of
motion and Z bays in the direction perpendicular to the direction of
motion (Fig. 6. I(a».

Model A2: Composed of frame structures with 3 bays along the direction of
motion and 2 bays along the direction perpendicular to the direction of
motion (Fig.6.1 (b».

Model A3: Composed of frame structures with 4 bays along the direction of
motion and 2 bays along the direction perpendicular to the direction of
motion (Fig. 6.I(c)).

Model A4: Composed of frame structures with 5 bays along the direction of
motion and 2 bays along the direction perpendicular to the direction of
motion (Fig.6.1(d)).

Models of GpB: All models of this group have three bays in the direction
perpendicular to the direction of motion. They differ among themselves by
the number of bays along the direction of motion (Fig. 6.2). Models
included in GpB are described below.
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Model B1: Composed of frame structures with 2 bays along the direction of
motion and 3 bays along the direction perpendicular to the direction of
motion (Fig.62 (a».

Model B2: Composed of frame structures with 3 bays along the direction of
motion and 3 bays along the direction perpendicular to the direction of
motion (Fig.6.2 (b».

Model B3: Composed by frame structures with 4 bays along the direction of
motion and 3 bays along the direction perpendicular to the direction of
motion (Fig.6.2 (c».

Model B4: Composed of frame structure with 5 bays along the direction of
motion and 3 bays along the direction perpendicular to the direction of
motion ( Fig.6.2 (d».

Models of GpC: All models of this group have four bays in the direction
perpendicular to the direction of motion. They differ among themselves by
the number of bays along the direction of motion (Fig. 6.3). Models of GpC
are described below.

Model Cl: Composed of frame structure with 2 bays along the direction of
motion and 4 bays along the direction perpendicular to the direction of
motion (Fig. 6.3 (a».

Model C2: Composed of frame structures with 3 bays along the direction of
motion and 4 bays along the direction perpendicular to the direction of
motion (Fig.6.3 (b».

Model C3: Composed of frame structures with 4 bays along the direction of
motion and 4 bays along the direction perpendicular to the direction of
motion (Fig. 6.3 (c».

Model C4: Composed of frame structures with 5 bays along the direction of
motion and 4 bays along the direction perpendicular to the direction of
motion (Fig.6.3 (d».
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Models of GpO: Models of GpO are selected to investigate the effect of
variation of bay width, story height, sizes of columns, sizes of beams,
cylinder strength of concrete and density of concrete on period of frame
structures. Models of GpO comprise of 6-story and 12-stOlY3x3 bays, 4x4
bays and 5x5 bays in plan 3-dimensional frame structures. In GpO, a total of
6 numbers of models are designed following the numerical data of
Table.6.1. Plans of models of GpO are shown in Fig.6. 4. Models included
in group GpO are described below.

Model Db: Models Db are generated to investigate the effect of variation of
bay width on the period of the structures. The bay widths of all the models
of GpO, shown in Fig.6.4 are varied from 5.0 m to 7.0 m at a rate of 0.5 m.
For each of the above bay widths the periods are calculated. In this case, all
numerical data given in Table.6.1 remains unaltered except bay width.

Model Oh: Models Dh are designed to study the effect of variation of story
height on the period of the structure. Models Oh are generated from models
of GpO. The plan configurations of the models of Oh correspond to those
shown in Fig. 6.4. All model parameters exccpt story height remain same as
those given in Table 6.1. The story height for the models is varied from 3 m
to 4 m at a step of 0.25 m.

Model Dc: Models Oc are used to study the effect of variation of column
sizes on the period of the structures. Models Oc are developed from models
of GpO. All model parameters except column sizes remain same as those
shown in Table.6.I.Column size are chosen as .4 m x .4 m, 0.45 m x 0.45 m,
0.5 m x 0.5 m and 0.55 m x 0.55 m. For each size of columns, the periods of
the 6-story and 12-stOlYmodels are calculated. The plan configurations of
models Oc correspond to those shown in Fig. 6.4.

Model Dbm: Models Obm are used for investigating the effect of sizes of
beams on the period of the structure. These models are developed from the
models of GpO. All the numerical data given in Table 6.1 are used except
the size of the beams. The periods of 6-story and 12-story models, the plan
configurations of which are shown in Fig. 6.4, are calculated for beam sizes
0.25 m x 0.4 m, 0.3 m x 0.45 m, 0.35 m x 0.5 m, 0.4 m x 0.55 m and
0.45 m x 0.6 m.
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Model Des: Models Ocs are used for investigating the effect of cylinder

strength of concrete on period of the structure. These models are developed

from models of GpO. All the numerical data given in Table 6.1 are used

except the cylinder strength of the concrete. The periods of 6-story and 12-

story models, the plan configurations of which are shown in Fig. 6.4 are

calculated for cylinder strength 17244 kN/m2, 20692.8 kN/m2, 27590.4

kN/m2, 34488 kN/m2 and 41385.6 kN/m2 .

Model Dd: Models Od are used for investigating the effect of density of

concrete on the period of the structures. These models are developed from

models of GpO. All the numerical data given in Table.6.1 are used except

the density of the concrete. The periods of the 6-story and 12-story models,

the plan configurations of which are shown in Fig. 6.4, are calculated for

density of concrete 22 kN/m3 ,22.78 kN/m3, 23.565 kN/m3, 24.3505 kN/m3,

and 25.136 kN/m3.

Model of GpE: Models of GpE are utilized to study the effect of numbers of
stories on the period of the structures. Models of GpE are 3x3 bays, 4x4
bays and 5x5 bays, in plan 3-dimensional frame structures which are shown
in Fig.6.5. The frames shown in Fig.6.5 are 6-story, 8-story, 10-story, 12-
story and 14-story high. In GpE a total of 15 numbers of models are included
and the numerical data given in Table.6.1 apply for these models.

Models of GpF: Models of GpF are 6-story and 12-story, 2x2 bays, 3x3
bays, 4x4 bays, and 5x5 bays frame structures, the plan configurations of
which are shown in Fig.6.6. These models are developed to study the effect
of inclusion of slabs and mass distribution of secondary structural elements
on the period of 3 dimensional frame structures. In GpF a total of 8 numbers
of models are included. The numerical data given in Table.6.1 are applicable
for the models. Models of GpF are utilized to generate three subgroups of
models which are, models FF, models FS and models FMS. These models
are described below.
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Model FF: Models FF are 3-dimensional frame structures without slab.
Models FF are used to calculate the periods of 2x2 bays, 3x3 bays, 4x4 bays
and 5x5 bays 6-and 12-storied frame structures. Model parameters
correspond to the numerical data given in Table 6.1. The plans of models

are shown in Fig. 6.6.

The 3-Dimensional ANSYS display of 5x5 bay 6-story and 12-story frame
structure without floorslabs are shown in plate 6.1 and plate 6.2 respectively.

Model FS: Models FS are similar to models FF, except that they include
slabs at each story level. Here the periods are calculated with the inclusion
of slabs at each story. Models FS are used to investigate the effect of
inclusion of slabs on period of frame structures.

The 3-Dimensional ANSYS display of 5x5 bay 6-story and 12-story frame
structure with floorslabs are shown in plate 6.3 and plate 6.4 respectively.

Models FMS: These models are developed from models FS by adding mass
of secondary structural elements to the respective nodal points. Here the
periods of the models are calculated to investigate the effect of inclusion
slabs and masses of secondary structural elements on period of frame

structures.

6.3 DETERMINATION OF PERIOD OF MODELS
FOLLOWING APPROXIMATE CODE FORMULAE

In this article the periods of the models, described in Art. 6.2, are calculated
following approximate empirical fonnulae given by design codes. The
design codes state that the period of a regular unbraced concrete frame
structure is either function of height or function of number of stories of the

structure.

According to UBC-85, SAA and IS codes, the period may be calculated by

the formula,
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Plate 6.1 5 bay 6-story. ANSYS display of 5x
3-DimenslOnal .thout floor slabtructure WIframe s

Plate 6.2 5 5 bay 12-story. ANSYS display of x
3-DimensJOnal . I ut floor slab

tructure Wit10frame s
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Plate 6.3 3-Dimensional ANSYS display of 5x5 bay 6-story
frame structure with floor slab

Plate 6.4 3-Dimensional ANSYS display of 5x5 bay l2-story
frame structure with floor slab
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where,

T=O.1 N

N = number of stories

(6.1 )

Again, according to UBC-91, UBC-94 and BNBC the may be evaluated by
the fonnula,

where,

T = .03 (hn)3/4

hn = height of the building in ft.

(6.2)

The periods of the models are calculated by the above formulae and
described below.

Periods of models GpA, GpB, GpC, GpD and GpF: All the models of
these groups are composed of 6-story and 12-story frame structures. The
total height of the 6-story and 12-story models (except model Dh) are taken
as 19.2 m and 38.4 m respectively. According to Eq. 6.1, the periods of the 6
-story and 12-story models mentioned above are 0.6 and 1.2 seconds
respectively.

Again, according to Eq. 6.2, the period of the same models are 0.67 and 1.14
seconds for 6-and 12-storied structures respectively.

The periods of the models calculated by approximate code formulae are
plotted in Fig. 6.7. Periods of 6-story models are plotted in Fig. 6.7 (a) and
periods of 12-story models are shown in Fig. 6.7 (b).

From Fig. 6.7 the following conclusions may be drawn.

i) The period of 6-story models calculated by Eq.6.2 is higher than the
period calculated by Eq.6.1. In other words, period of 6-story building
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calculated by UBC-85, SAA and IS design Code is lower in magnitude than
the period obtained by following UBC-91, UBC-94 and BNBC formulae.

ii) The period of 12-story models calculated by Eq. 6.2 is smaller than
the period calculated by Eq. 6.1. The period of 12-story building calculated
by UBC-85, SAA and IS formulae is higher in magnitude than the period
calculated by following UBC-91, UBC-94 and BNBC.

iii) The period of the frame structure increases as its height or number of
stories increases.

iv) Eq. 6.1 will lead to more conservative evaluation of base shear for
low rise structures compared to Eq. 6.2. Whereas, for high rise structures Eq.
6.2 becomes more conservative than Eq. 6.1.

Periods of models Dh: Models Dh are of 3x3, 4x4 and 5x5 bays of 6-story
and 12-story frame structures. The story heights of 6-story and 12-story
models are varied for calculating their period. The periods determined by
using Eqs. 6.1 & 6.2 for 6-story and 12-story models are plotted against

story height in Fig .6.8 .

From Fig. 6.8, the following conclusions are drawn

i) Period increases as the story height increases when the UBC-91,
UBC-94 and BNBC design codes are used. This is because Eq. 6.2 depends
on structure height.

ii) Period remains constant as the story height increases if the formulae
given by UBC-85, SAA and IS are used. This is because Eq. 6.1 depends on

number of stories only.

Periods of models GpE: Group GpE comprises of models which are 6- ,
8-, 10- , 12- , and 14-story high. The period of the models are calculated
following Eq. 6.1 and Eq. 6.2 respectively. The results are plotted in Fig. 6.9
Eq. 6.1 is invariant of story height; whereas Eq. 6.2 depends on height of
stories. That is why two curves for story heights 2.8 m and 3.2 m are plotted

using Eq. 6.2.
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The following observations are made from Fig. 6.9 .
i) The period of a structure increases with the increase of both number
of stories and height of the structure. Constant positive slope for the curves
corresponding to both Eq. 6.1 and Eq. 6.2 confirms this observation.

ii) For stol)' height of 3.2 m, Eq. 6.1 yields lower period than Eq. 6.2
when a structure is less than 10 storied in height. If the stol)' height would be
less than 3.2 m, this observation would be, in general, true, but for structures
of lower than 10 storied. To visualize this, a curve following Eq. 6.2 and
with stol)' height 2.8 m is added in Fig. 6.9. This curve intersects the curve
for Eq. 6.1 near 6 stol)' level which is less than 10 stol)' obtained for 3.2 m
stol)' height.

iii) For structures of more than 10 storied, Eq. 6.1 gives higher periods
than Eq. 6.2, when stol)' height is 3.2 m. However, for stol)' height of 2.8 m,
Eq. 6.1 yields higher period than Eq. 6.2 for structures above 6-stol)'.

6.4 EFFECT OF STRUCTURE PARAMETERS ON PERIOD

6.4.1 Determination of Period of Models by Modal Analysis

The periods of the models developed in Art. 6.2 are calculated below by
modal analysis method using ANSYS. The analyses for period of these
models are already done in the preceding article using empirical formulae
given by design codes. A numerical investigation is carried out here to
compare periods of the models obtained by modal analysis and by the
empirical fonnula of UBC-94. Necessal)' curves are drawn to study the
effect of the structure parameters on the magnitude of period of the
structures. Discussions on effect of individual structure parameters on period
and comparison of period determined by modal analysis with that by UBC-
94 follows.
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6.4.2 Effect of Number of Bays

For studying the effect of increase or decrease of number of bays on the
period of a structure, models of GpA, GpB and GpC are analyzed by modal
analysis. Periods of 6-story models given by ANSYS are plotted against
number of bays along the direction of motion in Fig.6.1O. The corresponding
curves for 12-story models are plotted in Fig.6.11. The period-number of bay
relationships of same models obtained by using approximate fonnula of
UBC-94 are also plotted in Fig.6.IO and Fig.6.1!. In each of Fig. 6.10 & Fig.
6. II, top three curves represent period-number of bay relationships as
obtained by modal analysis for 2, 3 and 4 numbers of transverse bays
respectively. While the bottom most curve represents the same relationship
corresponding to approximate fonnula of UBC-94. The code fonnula gives a
curve which is invariant of number of bays along any direction and which is
a sole function of total structure height only.

The following observations are made from Fig. 6.10 and Fig. 6.11.

i) The period of a structure decreases as the number of bays increases
along the direction of motion. This may be explained by the fact that as
frequency is directly proportional to stiffness and as increase of bays along
the direction of motion makes the structure stiffer, this leads to increase in
frequency and corresponding decrease in period.

ii) On the contrary, the period of a structure increases as the number of
bays increases transverse to the direction of motion. This may be explained
by the fact that increase of bays transverse to direction of motion adds mass,
while the stiffuess along the direction of motion remains virtually
unaffected. As frequency of a structure is inversely proportional to mass,
addition of mass leads to decrease in frequency and corresponding increase

in period.

iii) The increase of period due to increase of number of bays transverse
to the direction of motion is more significant than the decrease of period due
to increase of number of bays along the direction of motion. This becomes
more prominent with increase in number of stories.
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iv) The period of these models according to UBC-94 formula remains
constant with the variation of number of bays both transverse and along the
direction of motion. However, for higher storied frames the period increases.
This is because the corresponding formula is a direct function of structure
height only.

v) UBC-94 formula yields lower periods than those obtained by modal
analysis. This difference increases with increase in number of transverse
bays and decreases with increase in number of bays along the direction of
motion. Again, the difference becomes more significant for higher storied
structures. Hence, approximate UBC-94 formula is supposed to lead to more
conservative base shear computation. For higher storied structures, this
conservativeness would be more prominent.

6.4.3 Effect of Bay Width

For studying the effect of bay width on the period of a structure, models Db
are subjected to modal analysis by ANSYS. The variation of period with
bay width for six storied models of group Db are plotted in Fig.6.l2. The
conesponding variation for twelve storied models of Db are plotted in Fig.
6.13. In both the figures, bay widths are varied from 5 m to 7 m at an
increment of 0.5 m. The top three curves in these figures represent period-
bay width relationships for structures with 3x3, 4x4, and 5x5 bays in plan
respectively. The bottom most curve in both these figures corresponds to
empirical formula of UBC-94 for period evaluation. The curves obtained by
using empirical formula of UBC-94 are invariant of both numbers' and
widths of bays. This is because the formula represents period as a sole and
direct function of structure height.

The following observations are made from Fig. 6.12 and Fig. 6.13 .

i) Curves drawn from modal analysis show that the period of a structure
increases as its bay width increases. With increase in bay width, the stiffness
of a structure decreases and mass increases. This leads to a decrease of
structure frequency which is directly proportional to stiffness and inversely
proportional to mass. Decrease in frequency leads to increase in period.
Therefore, the results obtained are consistent.
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ii) The period of a structure increases with the increase of number of
bays. This is so because with increase in number of bays, both the stiffness
and mass of a structure increase. As frequency is directly proportional to
stiffness, and inversely proportional to mass, increase in stiffness leads to
increase in frequency while increase in mass leads to decrease in frequency.
However, influence of mass dominates over influence of stiffness which
leads to a resultant decrease in frequency with corresponding increase in
period.

iii) The periods of the models calculated by the approximate formula of
UBC-94 remain constant for any bay width or number of bays. However, for
higher storied building the period is higher because the approximate formula
is a direct function of structure height.

iv) The magnitude of the period obtained through modal analysis is
always higher than the magnitude of the period computed with the
approximate formula of UBC-94. However, this difference is more
significant with increasing bay width and increasing number of stories. For
example, for 5x5 bay 6-storied structures this difference for 7m bay width is
38.65% higher than that for 5 m bay width. The corresponding difference for
12-storied structures in case of 7 m bay width is 37.48% higher than that of
5m bay width. Again, with 7m bay width, the difference in frequency for
5x5 bay 12-storied structure is 267.28 % higher than that of 6-storied
structure. Thus, the approximate code formula is supposed to lead to more
conservative evaluation of base shear. This conservativeness increases with
increasing bay width and increasing number of stories.

6.4.4 Effect of Story Height

For studying the effect of story height on the period of a structure, models
Dh are considered. Models Dh are 6-and 12-storied structures of 3x3, 4x4
and 5x5 bays in plan with story heights varying from 3 m to 4 m at an
interval of 0.25 m. The period of the models are calculated by modal
analysis method using ANSYS. The period of the same models are also
calculated using empirical fonnula of UBC-94. Periods of 6 storied models
are plotted against story height in Fig.6.14. In Fig. 6.15, the corresponding
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relationships for 12- storied models are plotted. In both of these figures, the
top three curves represent period-story height relationships for 3x3, 4x4 and
5x5 bay structures respectively. The bottom curve in both of them represents
the period-stOlY height relationship as defined by approximate code formula
ofUBC-94. The UBC-94 curve is invariant of number of bays and therefore,
is represented by a single curve for all three cases of 3x3, 4x4 and 5x5 bays.
However, the period defined by UBC-94 curve increases with increasing
story height, as the UBC-94 formula expresses period as a direct function of
building height.

The following observations are made from Fig. 6.14 and Fig. 6.15.

i) The period of a structure, in general, increases as the story height of
the structure increases.

ii) The increase in period for increase in number of bays is more for 6-
story buildings than for 12-story buildings. However, this increase is not
very significant.

iii) Modal analysis of structures yields higher periods than that given by
approximate code formula of UBC-94. The difference increases with
increasing story height. It signifies that the code formula becomes more
conservative with increase in story height. Again the difference between
periods obtained through modal analysis and defined by approximate code
formula increases with increasing number of stories. For example, this
difference for 5x5 bays 12-storied structure is 202.69 % higher than that of
6-storied structure when story height is taken 3 m.

6.4.5 Effect of Stiffness of Columns

For studying the effect of stiffness of columns on the period of a structure,
models Dc are considered. These models represent 6-story and 12-story
frames 3x3, 4x4 and 5x5 bays in plan with column sizes varying from
0.45x0.45 m to 0.6 x 0.6 m. The periods of the models are calculated by
modal analysis method using ANSYS. The periods of the same models are
also calculated by approximate formula of UBC-94. The periods of the 6-
storied models determined by modal analysis method and by approximate
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UBC-94 formula are plotted against column stiffness in Fig. 6.16. Identical
relationships for 12-storied models are plotted in Fig 6.17. In all the
analyses, the column height, h and modulus of elasticity, E of the column
material do not change. The stiffness of columns is represented by EI / h of
the respective models.

In Fig 6.16 and Fig 6.17, the top three curves represent relationships
established through modal analysis for 3x3, 4x4, and 5x5 bays structures.
The bottom curve represents the relationship obtained through approximate
code formula for the same structures. The code formula, however, remains
invariant of number of bays and column stiffness. As already mentioned, the
approximate fonnula expresses period as a sole function of structure height
only.

The following salient feahITes may be identified from Fig 6.16 and Fig 6.17

i) The period of a struchlre decreases with increase of the stiffness of
the columns. However, the rate of decrease of period diminishes with
increasing column stiffness. This fact, however, remains unidentified by the
approximate code formula.

ii) The period of a structure, in general, increases as the number of bays
of the structure increases. The increase of period due to increase of number
of bays is more for 6-story buildings than 12-story buildings.

iii) The magnitude of the period of 12-story frames calculated by ANSYS
is higher than the period obtained from the empirical formula of UBC-94.

iv) The magnitude of the period of 6-story frames calculated by ANSYS
is higher than the period obtained from UBC-94 as long as the stiffness of
the model column is less than 0.0485 GNm. For higher column stiffnesses,
the approximate code fonnula will no longer remain conservative in base
shear calculation. This leads to a very important conclusion. Designers must
be very careful in the application of approximate code formula, because in
every individual case there may be a boundary of column stiffness beyond
which the approximate code formula no longer remains conservative. In
other words, application of approximate code formula must be limited in
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cases of stocky colwnns. For the range of column stiffnesses studied for the
12-story frames, however, the code formula yields lower period than the
modal analysis.

6.4.6 Effect of Stiffness of Beams

For studying the effect of stiffness of beams on the period of a structure,
models Obm are considered. These models represent 6- and 12- story frames
3x3, 4x4 and 5x5 bays in plan, with beam sizes varying from 0.25 x 0.4 m to
0.45 x 0.6 m. The periods of the models are calculated by modal analysis
technique with ANSYS. The periods of the same models are also calculated
by the empirical formula of UBC-94. The periods of 6-story frames are
plotted against beam stiffness in Fig. 6.18. The same relationships for 12-
story frames are plotted in Fig. 6.19. Here the beam span, L and modulus of
elasticity, E of beam material do not change for the models. The beam
stiffness is represented by El/L of the respective model.

The top three curves in these figures represent period-beam stiffness
relationships for 3x3, 4x4, and 5x5 bay structures respectively as obtained
through modal analysis. The bottom curve represents the same relationship
for the same models but obtained by using approximate UBC-94 formula.
The approximate code formula is invariant of number of bays in plan or
beam stiffness. As mentioned earlier the formula is a sole function of
structure height only.

The following observations are made from Figs. 6.18 and 6.19.

i) The period of a structure decreases with the increase of the stiffness
of beams. However, the rate of decrease of period diminishes with
increasing stiffness. The approximate code formula can not identitY this fact.

ii) The period of a structure increases as the number of bays of the
structure increases. This increase in period due to increase of number of
bays is more for 6-storied structures than for 12-storied structures.

iii) The period remains constant with the increase of the stiffness of the
beams, according to empirical formula ofUBC-94.
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iv) The periods of 6-story frames obtained through modal analysis are
higher than those calculated by approximate formula of UBC-94, as long as
the stiffnesses of the beams of the models are less than 0.0228 GNm. For
higher beam stiffnesses, the approximate code formula will no longer remain
conservative in base shear evaluation. Designers must, therefore, be very
careful in application of approximate code formula, because in every
individual case, there may be a boundary of beam stiffness beyond which the
formula no longer remains conservative. In other words, application of
approximate fonnula must be limited for stocky beams like that for stocky
columns. For the range of beam stiffnesses considered for 12-story frames,
however, the code formula yields lower period than modal analysis.

6.4.7 Effect of Strength of Concrete

For studying the effect of cylinder strength of concrete on period, models
Dcs are considered. These models represent 6-story and 12-story frame
structures, 3x3, 4x4, and 5x5 bays in plan with cylinder strength of concrete
varying from 17244 kN/m2 to 41386 kN/m2. The value of cylinder strength
of concrete is related with the modulus of elasticity by

E = 33wl.5 K
Where, E is modulus of elasticity, w is unit weight, and (' is cylinder
strength of concrete respectively. While the cylinder strength varies between
the above range, the modulus of elasticity will vary between 2.09x I07 kN/m2

and 3.24x107 kN/m2
. The periods of these models are first detennined by

modal analysis using ANSYS. The periods of the same models are also
calculated with the empirical formula of UBC-94. The periods of 6-story
models are plotted against concrete strength in Fig. 6.20. The identical
relationships for 12-story models are plotted in Fig. 6.21. The three inclined
curves in each of these figures correspond to periods of 3x3, 4x4 and 5x5
bay structures. The horizontal curves in these figures represent period-
cylinder strength relationships for the same models but defined by
approximate UBC-94 formula. The later ones are invariant of number of
bays or concrete strength. This is because the code formula defines period as
a sole function of structure height.

The following observations are made from the figures drawn.
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i) The period of a stlllcture decreases with the increase of cylinder
strength of concrete. The rate of decreases of period slightly diminishes with
increase in concrete strength. This fact, however, remains unrecognised by
approximate formula ofUBC-94.

ii) The period of a structure increases as the number of bays of the
structure increases. This increase of period due to increase of number of
bays are more for 6-story buildings than for 12-story buildings.

iii) The period remains constant with the increase of cylinder strength of
concrete when determined from the empirical formula ofUBC-94.

iv) The magnitude of the period of 6-story frame structures obtained
through modal analysis is higher than the magnitude of the period calculated
by approximate UBC-94 formula as long as the cylinder strength of concrete
remains less than 20693 kN/m2

. For higher strengths, UBC-94 formula gives
higher periods making base shear evaluation by approximate formula no
longer conservative. It may be concluded, therefore, that there is a limit in
material strength in each individual case beyond which base shear evaluation
based on approximate code fonnula will no longer remain conservative.

v) There must be a limit in application of approximate UBC-94 formula
when higher strength concretes are used. This will be specially vital when
low-rise structures are built using high strength concretes. For the range of
concrete strength investigated, such a limit could not be attained for 12-
story stmctures. It appears from Fig. 6.21 that such a limit lies beyond the
concrete strength of 41386 kN/m2.

6.4.8 Effect of Density of Concrete

For studying the effect of density of concrete on period, models Dd are
considered. These models represent 6-story and 12-story frame stmctures,
3x3, 4x4 and 5x5 bays in plan with density of concrete varying from 22.0 to
25.2 kN/m3

. The periods of these models are first determined by modal
analysis using ANSYS. The periods of the same models are also calculated
with empirical formula of UBC-94. The periods of the 6-tory models are
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plotted against density of concrete in Fig. 6.22. The identical relationships
for 12-story models are plotted in Fig. 6.23. The three top lines in each of
these figures correspond to periods of 3x3, 4x4 and 5x5 bay structures, as
detennined by modal analysis technique. The horizontal curves in these
figures represent period-concrete density relationships for the same models
defined by approximate UBC-94 formula. The code formula is invariant of
number of bays or density of concrete. Because it defines period as a sole
function of structure height.

The following observations are made from Fig. 6.22 and Fig. 6.23

i) The period of a structure increases with the increase in density of the
concrete.

ii) The period remains constant with the increase in density of concrete,
when calculated with empirical formula ofUBC-94.

iii) The magnitude of the period determined by modal analysis method is
found to be higher than the magnitude of the, period found by empirical
formula of the code.

iv) The difference between the magnitude of period of a structure
determined by modal analysis and empirical formula of UBC-94 increases as
number of stories increases .

.
6.4.9 Effect of Number of Stories:

For studying the effect of number of stories on the period, models of group
GpE are considered. These models are analyzed by modal analysis technique
using ANSYS. Models of GpE consist of 6, 8, 10, 12 and 14 storied
structures, 3x3, 4x4 and 5x5 bays in plan each. The periods obtained through
modal analysis of these models are plotted in Fig. 6.24. The top three curves
represent period-number of story relationships for 3x3, 4x4 and 5x5 bays
respectively. The periods of the same models are calculated by the empirical
formula proposed by UBC-94. The corresponding period-number of story
relationship is represented by the bottom curve in Fig. 6.24. It may be noted
that the curve is invariant of number of bays in plan and, therefore, is
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represented by a single curve for all three case of 3x3, 4x4 and 5x5 bays.
However, the period varies linearly with the number of stories as the formula
expresses period as a direct function of structure height. Fig. 6.24 leads to
following observations:

i) The period of a structure increases as the number of stories increases.
In other words, the period of a structure increases with the increase of the
height of the structure.

ii) The magnitude of the period of a model obtained through modal
analysis is greater than the magnitude of the period of the same model
calculated by approximate code formula of UBC-94. This difference of
periods increases as number of stories or height of a building increases. For
example, for a 5x5 bay structure, the corresponding difference in case of 14-
storied structure is 237.63 % higher than that for 6-storied structure.

iii) Modal analysis of structures show that the difference in periods for
3x3, 4x4, and 5x5 bays structures are insignificant for any number of stories
and this difference reduces with increasing number of stories. As both mass
and stiffuess of a structure increases with increasing number of bays in plan,
perhaps effect of mass neutralizes the effect of stiffness on period and
thereby leads to insignificant difference.

iv) As slopes of the modal analysis curves are greater than the slope of
the UBC-94 curve, the approximate UBC-94 formula becomes more and
more conservative in base shear evaluation with increasing number of
stories.

6.4.10 Effect of Inclusion of Floor Slabs and Mass of Secondary
Structural Elements

Models included in GpF are analyzed to study the effect of inclusion of floor
slabs and mass of secondary structural elements. Models FF, FS and FMS
constitute models GpF. These are 6-story and 12-story structures 2x2, 3x3,
4x4 and 5x5 bays in plan. Models FF represent bare frame structures,
models FS represent frames with floor slabs and models FMS represent
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frames including both floor slabs and masses of secondary structural
elements.

The periods of the above mentioned models are first calculated by modal
analysis with ANSYS. The periods of these models are also calculated by
empirical formula of UBC-94. The periods of the models determined by
modal analysis and by approximate formula are plotted against number of
bays in plan. The curves for 6-story models are plotted in Fig. 6.25 and those
for l2-story models in Fig. 6.26. Three curves represent results of modal
analysis for bare frames, for frames with floor slabs and for frames with
floor slabs and masses of secondary structural elements respectively. The
fourth curve in each of these figures represents the period-number of bays
relationship if approximate UBC-94 formula is used.

The following observations are made from Fig. 6.25 and Fig. 6.26.

i) The period of a frame structure without floor slab decreases with the
increase of number of bays. However, this decrease is not very significant
and the rate of decrease diminishes with increasing number of bays.

ii) The period of a frame structure with floor slabs increase with the
increase of number of bays. Again, this increase is not very significant.
However, inclusion of floor slabs at story levels increases the magnitude of
period significantly when compared to cases without floor slabs.

iii) The period of a frame structure with floor slabs and mass of
secondalY structural elements included, decreases with the increase of
number of bays of the structures. The rate of decrease diminishes with
increasing number of bays. The magnitude of the period of a frame structure
with floor slabs and masses of secondary elements included is much higher
than cases of bare frames or frames with floor slabs only.

iv) The period of a frame structure remains invariant of number of bays
or inclusion of floor slabs and masses of secondary structural elements
according to UBC-94 fonnula.

v) The periods calculated by approximate formula of UBC-94 are
always lower than the periods determined by including effect of floor slabs
or masses of secondary elements. However, periods detennined by UBC-'.l4
fonnula are higher then those for bare frames. UBC-94 formula will,
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therefore, lead to conservative base shear evaluation for frames with floor
slabs or with masses of secondary elements included. Ignorance of floor
slabs and secondary elements may lead to underestimation of the earthquake
forces.

Plate 6.5 presents the isometric view of 5x5 bays 6-story frame structure
with floor slabs in each floor and ANSYS symbolic indication of degrees of
freedom at the base support of the structure and direction of excitation at
each node of the structure. Plate 6.6, 6.7, 6.8, 6.9 & 6.10 present the mode
shapes of the structure for 1st, 2nd, 3rd, 4th, & 5th mode respectively. The
dot lines in the plot indicate the original shape of the structure and the firm
lines indicate the modal shape of the structure

Plate 6. II presents the isometric view of 5x5 bays 12-story frame structure
with floor slabs in each floor and ANSYS symbolic indication of degrees of
freedom at the base support of the structure and direction of excitation at
each node of the structure. Plate 6.12, 6.13, 6.14, 6.15 & 6.16 present the
mode shapes of the structure for 1st, 2nd, 3rd, 4th, & 5th mode respectively.
The dot lines in the plot indicate the original shape of the structure and the
firm lines indicate the modal shape of the structure

Plate 6.17 presents the isometric view of 5x5 bays 6-story frame structure
without floor slabs in each floor and ANS YS symbolic indication of degrees
of freedom at the base support of the structure and direction of excitation at
each node of the structure. Plate 6.18, 6.19, 6.20, 6.21 & 6.22 present the
mode shapes of the structure for 1st, 2nd, 3rd, 4th, & 5th mode respectively.
The dot lines in the plot indicate the original shape of the structure and the
firm lines indicate the modal shape of the structure.

Plate 6.23 presents the isometric view of 5x5 bays 12-story frame structure
without floor slabs in each floor and ANS YS symbolic indication of degrees
of freedom at the base support of the structure and direction of excitation at
each node of the structure. Plate 6.24, 6.25, 6.26, 6.27 & 6.28 present the
mode shapes of the structure for 1st, 2nd, 3rd, 4th, & 5th mode respectively.
The dot lines in the plot indicate the original shape of the structure and the
finn lines indicate the modal shape of the structure.
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Plate 6.5 Isometric view of 5x5 bay 6-story frame structure
without floor slab showing symbolic indication of
degrees of freedom and direction of excitation

Plate 6.6 Modal shape of 5x5 bay 6-story frame structure
without floor slab for Ist mode
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Plate 6.7 Modal shape of 5x5 bay 6-story frame structure
without floor slab for 2nd mode

Plate 6.8 Modal shape of 5x5 bay 6-story frame structure
without floor slab for 3rd mode
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Plate 6.9 Modal shape of 5x5 bay 6-story frame structure
without floor slab for 4th mode

Plate 6.10 Modal shape of 5x5 bay 6-story frame structure
without floor slab for 5th mode
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Plate 6.11 Isometric view of 5x5 bay 12-story frame structure
without floor slab showing symbolic indication of
degrees of freedom and direction of excitation

Plate 6.12 Modal shape of 5x5 bay 12-story frame stmcture
without floor slab for 1st mode
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Plate 6.13 Modal shape of 5x5 bay 12-story frame structure
without floor slab for 2nd mode

Plate 6.14 Modal shape of 5x5 bay 12-story frame structure
without floor slab for 3rd mode
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Plate 6.15 Modal shape of 5x5 bay 12-story frame structure
without floor slab for 4th mode

Plate 6.16 Modal shape of 5x5 bay 12-story frame structure
without floor slab for 5th mode
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Plate 6.17 Isometric view of 5x5 bay 6-story frame structure
with floor slab showing symbolic indication of
degrees of freedom and direction of excitation

Plate 6.18 Modal shape of 5x5 bay 6-story frame structure
with floor slab for 1st mode
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Plate 6.19 Modal shape of 5x5 bay 6-story frame structure
with floor slab for 2nd mode

Plate 6.20 Modal shape of 5x5 bay 6-story frame structure
with floor slab for 3rd mode
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Plate 6.21 Modal shape of 5x5 bay 6-story frame structure
with floor slab for 4th mode

Plate 6.22 Modal shape of 5x5 bay 6-story frame structure with
floor slab for 5th mode
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Plate 6.23 Isometric view of 5x5 bay 12-story frame structure with
floor slab showing symbolic indication of degrees
of freedom and direction of excitation

Plate 6.24 Modal shape of 5x5 bay 12-story frame structure with
floor slab for 1st mode
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Plate 6.25 Modal shape of 5x5 bay l2-story frame structure with
floor slab for 2nd mode

Plate 6.26 Modal shape of 5x5 bay l2-story frame structure with
floor slab for 3rd mode
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Plate 6.27 Modal shape of 5x5 bay 12-story frame structure with
floor slab for 4th mode

Plate 6.28 Modal shape of 5x5 bay 12-story frame structure with
floor slab for 5th mode
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6.5 COMPARISON OF RESULTS OF MODAL ANALYSIS AND
CODE FORMULAE

From a comparative review of design codes, it has been observed in Art. 4.6
that the codes propose approximate evaluation of structure period by two
different formulae. These are given by Eqs. 6. I and 6.2 respectively. Eq. 6. I
assumes period as a sole function of number of. stories, while Eq. 6.2
expresses period as a sole function of structure height. UBC-94 and BNBC
suggest identical approximate formula given by Eq. 6.2.

In the preceding article, the periods of model frames found by modal
analysis and by approximate UBC-94 fonnula are compared. It has been
observed that the UBC-94 formula is invariant of any structural parameter
other than structure height.

. For a comparison of period evaluation by code formulae ( Eq. 6. I and Eq.
6.2) with that by modal analysis, models of GpE are considered. These are 6,
8, 10, 12 and 14 story frames 3x3, 4x4, 5x5 bays in plan. Periods of these
models determined by Eq. 6. I and Eq. 6.2 and by modal analysis are plotted
against structure height (number of stories) in Fig.6.27. It may be observed
that both Eqs. 6. I and 6.2 yield lower periods than modal analysis. All the
curves indicate that period of a structure increases with increasing structure
height. However, the rate of increase of period is not same for all of them.
For number of stories less than 10, Eq. 6.2 yields higher periods while for
number of stories greater than 10, Eq. 6.1 yields higher period. Thus Eq. 6.1
is more conservative compared to Eq. 6.2 for structures less than 10-story
high. For structures more than 10-storied, the reverse is true. Eq. 6. I shows
higher rate of increase of period with height compared to Eq. 6.2.

6.6 INVESTIGATING THE LIMITATIONS OF APPROXIMATE
CODE FORMULAE

According to the empirical formula, given by UBC-85, SAA and IS, the
period of a structure is a function of the number of stories of the structure.
Again, according to UBC-9 I, UBC-94 and BNBC the period of a structure is
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a function of the height of the structure only. While deriving the formula
from the principles and theory of structural dynamics for calculating the
period of a structure in Art. 3.2, it was observed that it is a function of
stiffness and mass properties of the structure.

While analyzing for periods of the models by modal analysis in Art.6.4, it
was observed that the period of a structure is not only dependent on the
height of the structure, but it is also dependent on the number of bays, width
of bays, height of the stories, stiffness of the beams and columns, strength of
the materials, density of concrete and masses of structural and nonstructural
elements. However the approximate empirical formulae proposed by codes
do not include all these factors. The approximate formulae reviewed in this
work expresses period either as a function of structure height or as a function
of number of stories. In other words, the approximate code formulae for
period evaluation in some way or other are functions of structure height
only. Ignorance of other factors makes the code formulae grossly
approximate. Although, in most cases they have been found to be
conservative in evaluation of earthquake forces.

Though the height of the structure is a major factor in determining the period
of a structure, other factors may influence the period significantly. Hence,
empirical formulae developed without considering these effects suffer from
large approximations. Some evidences in support of this observation are
given in the following paragraphs.

For example, it is observed from Fig. 6.13 that, for increase of bay width of .
a structure by 40%, the period of the structure increases by about 37%. From
Fig.6.17 it is seen that for increase of stiffness of columns by 267% the
period of the structure reduces by 18%. From Fig. 6.19 it is observed that for
increase of stiffness of beams by 567%, the period of the structure reduces
by 21%. From Fig. 6.21 it is seen that for increase of cylinder strength of
concrete by 240% the period of a structure decreases by 20%. From Figs.
6.25 and 6.26, it can be observed that the inclusion of the floor slabs and
masses of secondary structural elements increases the magnitude of the

period of a structure.
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The period of a structure determined by UBC-94 formula is generally lower
than the period of the structure calculated by modal analysis. For the ranges
of values of structural parameters considered for different models, it has
been observed that the UBC-94 formula may yield 56% lower period than
the modal analysis for not considering other structural parameters.

Inclusion of certain structure parameters in analysis may lead to lower
period of a structure by modal analysis than by UBC-94 fonnula. These are
column and beam sizes and cylinder strength of concrete. For example,
designers must be very careful in application of UBC-94 formula in cases of
stocky columns and beams and in cases of use of higher strength concrete in
low- rise structures.

From the above discussions it may be concluded that the empirical formulae
given by codes suffer from limitations by not considering the effect of
structural parameters like bay widths, number of bays, stiffness of beams
and columns, cylinder strength of concrete, density of concrete and masses
of secondary structural elements. These limitations could be overcomed only
by appropriate modification of the fonnulae. However, the code formulae in
their present form have to be used carefully in cases of stocky columns and
beams and in cases of use of higher strength concrete.
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6.7 CHOOSING STRUCTURE PARAMETERS TO REDUCE

EARTHQUAKE FORCES

As discussed in Art. 4.2, the formula for calculating the base shear by UBC -

94 is

ZICv=-wRw
(6.3)

It is seen that the base shear increases as the C value increases. Again, the C

value is inversely proportional to the period of the structure. So, as the

period of the structure increases, the C value of the structure decreases and

thereby the magnitude of the base shear decreases. With the decrease of the

value of the base shear the design earthquake forces also decrease. The

variation of the structure parameters that increase the magnitude of the

period and thereby decrease the C-value of the structure leading to reduction

of earthquake forces are enumerated below.

• Increasing the number of bays of the structure in the direction

transverse to the direction of motion.

• Increasing the bay width

• Reducing the colunm size

• Reducing the beam size

• Increasing the masses of secondary structural elements.

• Reducing cylinder strength of concrete.

• Increasing density of concrete

The above variation of the parameters will increase the magnitude of the

period of a structure. But due to these variations the weight/mass of the

structure may also increase or decrease. Eq. 6.3 shows that the earthquake

131



forces are directly proportional to structure weight as well as to C.

Therefore, any variation of weight while trying to influence C-value would

additionally affect the earthquake forces on the structure. As mentioned

earlier, the increase of the period of the structure will decrease the C value

of the structure. So the variation of the structure parameters that would

reduce both the C value and the weight of the structure would positively

reduce earthquake forces.

The variation of the structure parameters those effectively can reduce design

earthquake forces on a structure are discussed below.

• By increasing the number of bays of the structure in the direction

perpendicular to the direction of motion, the magnitude of the period of

the structure will increase and thereby the C-value of the structure will

decrease. But due to the increase of the number of bays the weight of the

structure will also increase. If the reduction of earthquake forces caused

by reduction of C-value exceeds the increment caused by the increase of

the weight of the structure, the magnitude of the earthquake forces will

be effectively reduced.

• By increasing bay width, the C-value may be reduced. Hence, the

earthquake forces on the structure may be effectively reduced by

increasing bay width, only if the weight of the structure is contained

accordingly.

• By selecting column size as small as possible, both the C-value and the

weight of the structure will be reduced. As the C-value and the weight of

the structure reduce simultaneously, the magnitude of the design

earthquake forces will also be effectively reduced.
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• By decreasing the beam sIze as much as possible, simultaneous

reduction in values of C and weight of the structure can be achieved.

Hence, the design earthquake forces may be effectively reduced by

decreasing beam size.

• Use of lower cylinder strengths of concrete leads to higher values of

period and lower values of C. As the weight of the structure remains

unaffected, therefore use of concrete of lower cylinder strengths will

effectively reduce design earthquake forces on a structure .

•
• Inclusion of additional masses increases the period of the structure.

Increase of period of the structure means decrease of C value and

decrease of design earthquake forces. However, weights of these masses

wi II increase the weight the structure itself which will increase the design

earthquake forces of the structure. Hence, secondary masses can only

lead to reduction of earthquake forces, if their influence on C-values can

supersede their effect on total structure weight.

• Increase in density of concrete leads to simultaneous increase of C-value

and structure weight. Hence increase in density of concrete may only

reduce earthquake forces provided its effect on period becomes more

prominent than its effect on weight.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS

The effects of different structure parameters on period of regular frame
structures for earthquake resistant design are investigated in this work. The
structure parameters those play key role in reducing the design earthquake
forces are also identified. Major earthquake resistant design codes and the
empirical formulae proposed by them for determining the periods of
structures are studied. Based on the investigations conducted in this work,
the following conclusions are drawn regarding period of regular frame

structures:

I) The period increases with decreasing number of bays along the
direction of motion and increasing number of bays transverse to the direction
of motion. Also, an increase in bay width leads to an increase in period.
Approximate code formulae can not recognise these facts.

2) The period is found to increase with increasing story height and
number of stories. The code formulae recognize this fact. Although, the
codes become increasingly conservative with taller structures in calculating

period.

3) Inclusion of floor slabs and masses of secondary structural elements
in analyzing frame structures gives higher period than that for bare frames.

4) Use of stiffer columns and beams leads to a reduction in the period of
a frame. Beyond certain limit of stiffness, the approximate code formulae
may no longer remain conservative in calculation of period for base shear
evaluation. Designers thus should be cautious in applying approximate code
formulae in cases where stocky columns and beams are selected. Because
these formulae may lead in these cases to an underestimation of earthquake
forces. Special care has to be taken in cases of low-rise structures with

stocky columns and beams.



5) Use of concrete of higher strengths reduce period. Especially for low-
rise structures with high strength concrete code formulae may evaluate
higher period leading to an underestimation of earthquake forces. Hence, for
a certain height of a structure, there is a limit of concrete strength, beyond
which application of approximate code formulae for period must be

restricted.

6) Design earthquake forces on a structure may be reduced by choosing
smaller dimensions for beams and columns. Especially, reduction of
dimension of a column cross section in the direction of earthquake forces
and the height of the beam cross section can effectively minimize these
forces. Another means of reducing design earthquake forces is to use lower

strength concrete.

7) Approximate code formulae for evaluation of period are invariant of
structure parameters other than height. However, in most practical cases
these formulae are found to lead to conservative estimation of earthquake

forces.

7.2 RECOMMENDATIONS FOR FUTURE STUDY

The following recommendations are made for future study:

I) Investigations may be carried out for reviewing and reforming the
present code formulae for period, so that influence of structure parameters
other than height may be incorporated in the formula. Such study would
facilitate the determination of period and the design earthquake forces more

accurately.

2) Influence of structure parameters on period of structural systems

other than frames may be studied.
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APPENDIX

ANSYS INPUTS AND OUTPUTS

INPUT DATA FOR MODELS

MODEL Al (6 & 12 story building)

1 Modulus of elasticity = 2.07XI06 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m

2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 2
II Number of bays along the direction

perpendicular to the direction of motion = 2

MODEL A2 (6 & 12 story building)

1 Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete =.23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m

2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3
II Number of bays along the direction perpendicular to the

direction of motion = 2
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MODEL A3 (6 & 12 story building)

I Modulus of elasticity = 2.07X 106 kN/m2
2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 4
11 Number of bays along the direction

perpendicular to the direction of motion = 2

MODEL A4 (6 & 12 story building)

I Modulus of elasticity = 2.07XI06 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 5
11 Number of bays along the direction

perpendicular to the direction of motion = 2
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MODEL 81 (6 & 12 story building)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 2
II Number of bays along the direction perpendicular to the

direction of motion = 3

MODEL 82 (6 & 12 story building)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3
II Number of bays along the direction perpendicular to the

direction of motion = 3
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MODEL B3 (6 & 12 story building)

1 Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete =17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 4
11 Number of bays along the direction perpendicular to the

motion = 3

MODEL B4 (6 & 12 story building)

1 Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 4
11 Number of bays along the direction perpendicular to the

direction of motion = 3

A-4



MODEL Ct (6 & 12 story building)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 2
II Number of bays along the direction perpendicular to the

direction of motion = 4

MODEL C2 (6 &12 story building)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction of motion = 5
II Number of bays along the direction perpendicular

to the direction of motion = 3
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MODEL C3 (6 &12 story building)

1 Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 rnIsec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 4
11 Number of bays along the direction perpendicular to the

direction of motion = 4

MODEL C4 (6 & 12 story building)

1 Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 rnIsec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 5
II Number of bays along the direction perpendicular to the

direction of motion = 4
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MODEL Dbl (6 &12 story 3x3, 4x4, 5x5 bays structures)

1 Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3
II Number of bays along the direction perpendicular to the

direction of motion = 3

MODEL Db2 (6& 12 story, 3x3, 4x4, 5x5 bays structures)

1 Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.5 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5
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MODEL Db3 (6 & 12 story, 3x3, 4x4, 5x5 bays structures)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 rnIsec2
4 Bay width = 6.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion. = 3,4,5

MODEL Db4 (6 & 12 story, 3x3, 4x4, 5x5 bays structures)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 rnIsec2
4 Bay width = 6.5 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5
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MODEL DbS (6 &12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 7.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

diction of motion = 3,4,5

MODEL Dhl (6 & 12story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.0 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness =. 15m
10 Number of bays along the direction

of motion = 3,4,5
11 Number of bays along the direction perpendicular to the

direction of motion = 3,4,5
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MODEL Dh2 (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07XI06 kN/m2
2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 rnlsec2
4 Bay width = 5.0 m
5 Story height = 3.25 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5

MODEL Dh3 (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 rnlsec2
4 Bay width = 5.0 m
5 Story height = 3.5 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5
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MODEL DM (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07XI06 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.75 m
6 Cylinder strength of concrete =17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion. = 3,4,5

MODEL DhS (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 4.0 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to

the direction of motion. = 3,4,5
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MODEL Del (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07Xto6 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = Am x Am
8 Beam size = .35m x .5m
9 Slab thickness = .15m
to Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion. = 3,4,5

MODEL Dc2 (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07XI 06 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = A5m x A5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
to Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5

A-12



MODEL Dc3 (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5

MODEL Dc 4 (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .55m x .55m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5
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MODEL Dbm1 (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 rnIsec2

.4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .25m x Am
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5

MODEL Dbm2 (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07XI 06 kN/m2
2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 rnIsec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .3m x A5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
11 Number of bays along the direction perpendicular to the

direction of motion = 3,4,5

A-14



MODEL Dbm3 (6 & 12 story, 3x3, 4x4, 5x5 bays structures)

I Modulus of elasticity = 2.07XI 06 kN/m2

2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
IO Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5

MODEL Dbm4 (6 & 12 story, 3x3, 4x4, 5x5 bays structures)

I Modulus of elasticity = 2.07XI 06 kN/m2

2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m/sec2

4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = Am x .55m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
11 Number of bays along the direction perpendicular to the

direction of motion = 3,4,5
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MODEL DbmS (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m1sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 17244 kN/m2

7 Column size = .5m x .5m
8 Beam size = .45m x .6m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
11 Number of bays along the direction perpendicular to the

direction of motion = 3,4,5

MODEL Dcsl (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 23.56 kN/m2

3 Acceleration due to gravity = 9.81 m1sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete =17244 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
IO Number of bays along the direction

of motion = 3,4,5
11 Number of bays along the direction perpendicular to the

direction of motion = 3,4,5
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MODEL Dcs2 (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete =20692.8 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5

MODEL Dcs3 (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete =27590.4 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5
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MODEL Dcs4 (6 & 12 story, 3x3, 4x4, 5x5 bays structures)

I Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 rnIsec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete =34488 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
11 Number of bays along the direction perpendicular to the

direction of motion = 3,4,5

MODEL Dcs5 (6 & 12 story, 3x3, 4x4, 5x5 bays structures)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m2
3 Acceleration due to gravity = 9.81 rnIsec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 41385.65 kN/m2

7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
11 Number of bays along the direction perpendicular to the

direction of motion = 3,4,5
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MODEL Ddt (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 22.0 kN/m2
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 41385.65 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
11 Number of bays along the direction perpendicular to the

direction of motion. = 3,4,5

MODEL Dd2 (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07XI06 kN/m2
2 Density of concrete = 22.78 kN/m2
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 41385.65 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
11 Number of bays along the direction perpendicular to the

direction of motion = 3,4,5
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MODEL Dd3 (6 & 12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 23.565 kN/m3
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 41385.65 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5

MODEL Dd4 (6 story &12 story ,3x3,4x4,SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 24.3505 kN/m3
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 413 85.65 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5
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MODEL DdS (6 story &12 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 25.136 kN/m3

3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 41385.65 kN/m2
7 Coluinn size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5

MODEL El (4 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2

2 Density of concrete = 23.56 kN/m3
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 41385.65 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5
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MODEL E2 (6 story, 3x3, 4x4, SxS bays structures)

1 Modulus of elasticity = 2.07Xl06 kN/m2
2 Density of concrete = 23.56 kN/m3
3 Acceleration due to gravity = 9.81 mlsec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 41385.65 kN/m2
7 Colunm size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
II Number of bays along the direction perpendicular to the

direction of motion = 3,4,5

MODEL E3 ( 8 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X I06 kN/m2
2 Density of concrete = 23.56 kN/m3

3 Acceleration due to gravity = 9.81 mlsec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 41385.65 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
11 Number of bays along the direction perpendicular to the

direction of motion = 3,4,5
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MODEL E4 (10 story, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X 106 kN/m2
2 Density of concrete = 23.56 kN/m3
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 41385.65 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
11 Number of bays along the direction perpendicular to the

direction of motion = 3,4,5

MODEL ES (12 story, 3x3, 4x4, SxS bays structures)

1 Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 23.56 kN/m3

3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 41385.65 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
11 Number of bays along the direction perpendicular to the

direction of motion = 3,4,5
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MODEL E6 (14 story, 3x3, 4x4, 5x5 bays structures)

1 Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 23.56 kN/m3
3 Acceleration due to gravity = 9.8 I m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 41385.65 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
10 Number of bays along the direction

of motion = 3,4,5
11 Number of bays along the direction perpendicular to the

direction of motion = 3,4,5

MODEL FF (6 & 12 story, 2x2, 3x3, 4x4, 5x5 bays structures)

1 Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 23.56 kN/m3
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 41385.65 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
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MODEL FS (6 & 12story, 2x2, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07XI06 kN/m2
2 Density of concrete = 23.56 kN/m3
3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder stren/:,>thof concrete = 41385.65 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m

MODEL FMS (6 & 12story, 2x2, 3x3, 4x4, SxS bays structures)

I Modulus of elasticity = 2.07X106 kN/m2
2 Density of concrete = 23.56 kN/m3
3 Mass = 8.0299 kN-sec2/m

3 Acceleration due to gravity = 9.81 m/sec2
4 Bay width = 5.0 m
5 Story height = 3.2 m
6 Cylinder strength of concrete = 41385.65 kN/m2
7 Column size = .5m x .5m
8 Beam size = .35m x .5m
9 Slab thickness = .15m
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OUTPUT FOR MODELS

SLI TYPEOF MODEL FREQUENCY PERIOD REMARKS
NO
1 AI 1.4475 .690846 for
2 A2 1.4535 .687994 6story
3 A3 1.4564 .6866245 structures
4 A4 1.46 .6849315

5 AI .68581 1.458129 for
6 A2 .70136 1.425801 12 story
7 A3 .70909 1.410258 structures
8 A4 .712 1.404494

9 81 1.4009 .7138268 for
10 82 1.4059 .7112881 6 story
I I 83 1.4083 .7100759 structures
12 84 1.4096 .709421 I

13 81 .66474 1.504347 for
14 82 .67955 1.471562 12 story
15 83 ..6869 1.455815 structures
16 84 .69127 1.446612

17 CI 1.3754 .7270612 for
18 C2 1.3799 .72469 6 story
19 C3 1.382 .723589 structures
20 C4 1.3832 .722961

21 CI .65322 1.53087 for
22 C2 .66763 1.497835 12 story
23 C3 .67479 1.48194 structures
24 C4 .7904 1.472667
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25 Db for 5.0m 1.4059 .711288 for
26 Db for 5.5m 1.2894 .77555 3x3 bays
27. Db for 6.0m 1.1883 .841538 6 story
28 Db for6.5m 1.0999 .90917 frames
29 Db for 7.0m 1.0222 .97828

30 Db for 5.0m 1.382 .723589 for
31 Db for 5.5m 1.2653 .790326 4x4 bays
32 Db for6.0m 1.1644 .85881 6 story
33 Db for 6.5m 1.0766 .92885 frames
34 Db for 7.0m .99956 1.0

35 Db for 5.0m 1.3665 .731796 for
36 Db for 5.5m 1.2499 .8 5x5 bays
37 Db for6.0m 1.1493 .870095 6 story
38 Db for 6.5m 1.0619 .941708 frames
39 Db for 7.0m .98549 1.0147

40 Db for 5.0m .67955 1.471562 for
41 Db for 5.5m .62649 1.59619 3x3 bays
42 Db for6.0m .57963 1.72523 12 story
43 Db for6.5m .53821 1.85801 frames
44 Db for 7.0m .50148 1.9941

45 Db for 5.0m 1.4059 .711288 for
46 Db for 5.5m 1.2894 .77555 4x4 bays

.47 Db for6.0m 1.1883 .841538 12 story
48 Db for 6.5m 1.0999 .90917 frames
49 Db for 7.0m 1.0222 .97828

50 Db for 5.0m 1.382 .723589 for
51 Db for 5.5m 1.2653 .790326 5x5 bays
52 Db for6.0m 1.1644 .85881 12 story
53 Db for6.5m 1.0766 .92885 frames
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55 Dh for 3.0m 1.5269 .65492 for
56 Dh for 3.25m 1.3782 .72558 3x3 bays
57 Dh for 3.5m 1.2522 .798594 6 story
58 Dh for 3.75m 1.442 .87397 frames
59 Dh for4.00m 1.0509 .95156

60 Dh for 3.0m 1.5004 .666488 for
61 Dh for 3.25m 1.3548 .738116 4x4 bays
62 Dh for 3.5m 1.2314 .81208 6 story
63 Dh for 3.75m 1.1256 .88841 frames
64 Dh for4.00m 1.034 .96711

65 Dh for 3.0m 1.4834 .67412 for
66 Dh for 3.25m 1.3397 .7464 5x5 bays
67 Dh for 3.5m 1.2179 .821085 6 story
68 Dh for 3.75m 1.1135 .89806 frames
69 Dh for4.00m 1.0231 .97742

70 Dh for 3.0m .73825 1.35455 for
71 Dh for 3.25m .66609 1.5012 3x3 bays
72 Dh for 3.5m .60496 1.653 12 story
73 Dh for 3.75m .55259 1.80965 frames
74 Dh for4.00m .50731 1.97118

75 Dh for 3.0m .73272 1.364778 for
76 Dh for 3.25m .66149 1.5117 4x4 bays
77 Dh for 3.5m .60112 1.66356 12 story
78 Dh for 3.75m .54938 1.820233 frames
79 Dh for4.00m .50461 1.98173

80 Dh for 3.0m .73180 1.36649 for
81 Dh for 3.25m .66087 1.5132 5x5 bays
82 Dh for3.5m .60073 1.6646 12 story
83 Dh for3.75m .54918 1.82089 frames

54 Db for7.0m .99956
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85 Dc for .4m x .4m 1.1637 .85932 for
86 Dc for .45m x .45m 1.3 .76923 3x3 bays
87 . Dc for .5m x .5m 1.4059 .711288 6 story
88 Dc for .55m x .5m 1.4864 .672766 frames

89 Dc for .4m x .4m 1.1339 .8819 for
90 Dc for .45m x .45m 1.2729 .7856 4x4 bays
91 Dc for .5m x .5m 1.382 .723589 6 story
92 Dc for .55m x .5m 1.4657 .682267 frames

93 Dc for .4m x .4m 1.1152 .8967 for
94 Dc for .45m x .45m 1.2556 .79643 5x5 bays
95 Dc for .5m x .5m 1.3665 .731797 6 story
96 Dc for .55m x .5m 1.4521 .68865 frames

97 Dc for .4m x .4m .57237 1.74712 for
98 Dc for .45m x .45m .63387 1.57761 3x3 bays
99 Dc for .5m x .5m .67955 1.47156 12 story
100 Dc for .55m x .5m .71192 1.4046 frames

101 Dc for .4m x .4m .56318 1.77563 for
102 Dc for .45m x .45m .62691 1.5951 4x4 bays
103 Dc for .5m x .5m .67479 1.48194 12 story
104 Dc for .55m x .5m .7091 1.4102 frames

105 Dc for .4m x .4m .56006 1.78553 for
106 Dc for .45m x .45m .62505 1.59987 5x5 bays
107 Dc for .5m x .5m .67411 1.48343 12 story
108 Dc for .55m x .5m .70939 1.40966 frames

84 Dh for4.00m .50456
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109 Obm for .25m x Am 1.2161 .8223 for
110 Obm for .3m x A5m 1.3127 .761788 3x3 bays
III Obm for .35m x .5m 104059 .71128 6 story
112 Obm for Am x .55m 104852 .67331 frames
113 Obm for A5m x .6m 1.5445 .647458

114 Obm for .25m x Am 1.201 .832639 for
115 Obm for .3m x A5m 1.2929 .77345 4x4 bays
116 Obm for .35m x .5m 1.382 .723589 6 story
117 Obm for Am x .55m 1.4576 .686059 frames
118 Obm for A5m x .6m 1.5139 .660545

119 Obm for .25m x Am 1.1912 .839489 for
120 Obm for .3m x A5m 1.2802 .781127 5x5 bays
121 Obm for .35m x .5m 1.3665 .731796 6 story
122 Obm for Am x .55m 1.4399 .69449 frames
123 Obm for A5m x .6m 1.4944 .6691648

124 Obm for .25m x Am .58211 1.71788 for
125 Obm for .3m x A5m .63211 1.582 3x3 bays
126 Obm for .35m x .5m .67955 1.47156 12 story
127 Obm for Am x .55m .71916 1.3905 frames
128 Obm for A5m x .6m .74818 1.3365

129 Obm for .25m x Am .5799 1.72443 for
130 Obm for .3m x A5m .62838 1.59139 4x4 bays
131 Obm for .35m x .5m .67479 1.48194 12 story
132 Obm for Am x .55m .71385 104008 frames
133 Obm for A5m x .6m .7427 1.34643

134 Obm for .25m x Am .5799 1.72443 for
135 Obm for .3m x A5m .62838 1.59139 5x5 bays
136 Obm for .35m x .5m .67479 1.48194 12 story
137 Obm for Am x .55m .71385 1.4008 frames
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139 Des for 17244 kN/m2 1.413 .70771 for
140 Des for 20692.8 kN/m2 1.4788 .676223 3x3 bays
141 Des for 27590.4 kN/m2 1.5892 .629247 6 story
142 Des for 34488 kN/m2 1.6803 .59513 frames
143 Des for 41385.6 kN/m2 1.7587 .5686

144 Des for 17244 kN/m2 1.389 .71994 for
145 Des for 20692.8 kN/m2 1.4537 .687899 4x4 bays
146 Des for 27590.4 kN/m2 1.5622 .640123 6 story
147 Des for 34488 kN/m2 1.6517 .605436 frames
148 Des for 41385.6 kN/m2 1.7287 .578469

149 Des for 17244 kN/m2 1.3735 .728066 for
150 Des for 20692.8 kN/m2 1.4374 .6957 5x5 bays
151 Des for 27590.4 kN/m2 1.5447 .647374 6 story
152 Des for 34488 kN/m2 1.6333 .61225 frames
153 Des for 41385.6 kN/m2 1.7094 .585

154 Des for 17244 kN/m2 .68299 1.46415 for
155 Des for 20692.8 kN/m2 .71480 1.39899 3x3 bays
156 Des for 27590.4 kN/m2 .76816 1.3018 12 story
157 Des for 34488 kN/m2 .81218 1.231254 frames
158 Des for 41385.6 kN/m2 .85005 1.1764

159 Des for 17244 kN/m2 .6782 1.4745 for
160 Des for 20692.8 kN/m2 .70979 1.408867 4x4 bays
161 Des for 27590.4 kN/m2 .76277 1.31101 12 story
162 Des for 34488 kN/m2 .80649 1.23994 frames
163 Des for 41385.6 kN/m2 .84409 1.1847

164 Des for 17244 kN/m2 .67752 1.47597 for
165 Des for 20692.8 kN/m2 .70907 1.41029 5x5 bays
166 Des for 27590.4 kN/m2 .762 1.3123 12 story

138 Dbm for .45m x .6m .7427
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167 Des for 34488 kN/m2 .86568 1.241187 frames
168 Des for 41385.6 kN/m2 .84324 1.1859
169 Dd for 22 kN/m3 .70371 1.421 for
170 Dd for 22.78 kN/m3 .69117 1.4468 3x3 bays
171 Dd for 23.565 kN/m3 .67955 1,4716 6 story
172 Dd for 24.3505 kN/m3 .6685 1.49588 frames
173 Dd for 25.136 kN/m3 .65826 1.5192

174 Dd for 22 kN/m3 .69878 1.4311 for
175 Dd for 22.78 kN/m3 .68633 1.457 4x4 bays
176 Dd for 23.565 kN/m3 .67479 1.4819 6 story
177 Dd for 24.3505 kN/m3 .66381 1.5065 frames
178 Dd for 25.136 kN/m3 .65364 1.53

179 Dd for 22 kN/m3 .69807 1.43252 for
180 Dd for 22.78 kN/m3 .68564 1.45849 5x5 bays
181 Dd for 23.565 kN/m3 .67411 1.48343 6 story
182 Dd for 24.3505 kN/m3 .66314 1.5079 frames
183 Dd for 25.136 kN/m3 .65299 1.5314

184 Dd for 22 kN/m3 1.4559 .6868 for
185 Dd for 22.78 kN/m3 1.43 .6993 3x3 bays
186 Dd for 23.565 kN/m3 1.4059 .71128 12 story
187 Dd for 24.3505 kN/m3 1.3831 .723 frames
188 Dd for 25.136 kN/m3 1.3619 .73426

189 Dd for 22 kN/m3 1.4311 .69876 for
190 Dd for 22.77 kN/m3 1.4056 .71143 4x4 bays
191 Dd for 23.565 kN/m3 1.382 .72358 12 story
192 Dd for 24.3505 kN/m3 1.3595 .73556 Ii-ames
193 Dd for 25.136 kN/m3 1.3387 .74699

194 Dd for 22 kN/m3 1.4151 .70666 for
195 Dd for 22.78 kN/m3 1.3899 .71947 5x5 bays
196 Dd for 23.565 kN/m3 1.3665 .73179 12 story
197 Dd for 24.3505 kN/m3 1.3445 .74388 frames
198 Dd for 25.136 kN/m3 1.3237 .75545
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199 E for 6 stol)' 1.4059 .711288 All models
200 E for 8 stol)' 1.043 .95877 are composed of
201 E for 10 stOl)' .82518 1.211856 3x3bays
202 E for 12 stol)' .67955 1.47156 frame structures
203 E for 14 stol)' .57509 1.738858

204 E for 6 stOl)' 1.3820 .72358 All models
205 E for 8 stol)' 1.0289 .971911 are composed of
206 E for 10 stol)' .82969 1.205269 4x4bays
207 E for 12 stol)' .67479 1.4819 frame structures
208 E for 14 stol)' .58494 1.7389

209 E for 6 stol)' 1.3665 .73179 All models
210 E for 8 stol)' 1.0196 .98077 are composed of
211 E for 10 stOl)' .81085 1.23327 5x5bays
212 E for 12 stol)' .67411 1.4834 frame structures
213 E for 14 stol)' .575043 1.739

214 FF for 2x2 bays 1.8739 .53364 All models
215 FF for 3x3 bays 1.8835 .5309 are 6 stori ed
216 FF for 4x4 bays 1.881 .52963 without floor slabs
217 FF for 5x5 bays 1.8909. .528848 in each stOl)'

218 FF for 2x2 bays .87987 1.13653 All models
219 FF for 3x3 bays .89977 1.1114 are 12 storied
220 FF for 4x4 bays .90979 1.1 without floor slabs
221 FF for 5x5 bays .91582 1.092 in each stol)'

222 FS for 2x2 bays 1.4475 .69084 All models
223 FS for 3x3 bays 1.4059 .711288 are 6 storied
224 FS for 4x4 bays 1.382 .723589 with floor slabs
225 FS for 5x5 bays 1.3665 .73179 in each stol)'

226 FS for 2x2 bays .68581 1.4581 All models
227 FS for 3x3 bays .67955 1.4716 are 12 storied
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228 FS for 4x4 bays .67479 1.482 with floor slabs
229 FS for 5x5 bays .67411 1.48343 in each story
230 Fms for 2x2 bays 1.0365 .96478 All models
231 Fms for 3x3 bays 1.0453 .95666 are 6 storied
232 Fms for 4x4 bays 1.0484 .95383 with floor slabs&
233 Fms for 5x5 bays 1.0496 .952743 masses in each stor

234 Fms for 2x2 bays .49268 2.0297 All models
235 Fms for 3x3 bays .50605 1.9761 are 12 storied
236 Fms for 4x4 bays .51224 1.9522 with floor slabs &
237 Fms for 5x5 bays .51648 1.9361 masses in each stor
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ANSYS INPUT FILE AND OUTPUT FILE FOR
5X5 BAYS 6 STORY FRAME STRUCTURE
WITHOUT FLOOR SLABS IN EACH STORY

/BATCH
IPREP7
fITfLE,F666
KAN,2
KAY,2,5
ET,I,4
ET,2,4
R,I,.175,.0036458,.fJOI78645,.35,.5
R,2,.25,.005208,.005208,.5,.5
MP,EX,I,20700000
DENS,I,2.4021
MP,NUXY,I,.15
N,I
N,6,O,O,25
FILL, 1,6
NGEN,7,6,1,6,1,0,3.2,O
NGEN,6,42,1,42,1,5,0,0
REAL,2
E.],7
EGEN,5,1,73
EGEN,6,6,67,77,1
REAL,2
E,85,91
EGEN,6,I,B3
REAL, I
E,9I,92
EGEN,5,I,B9
EGEN,6,6, 133, 143, I
REAL,2
E,127,B3
EGEN,6,1,199
REAL, I
E,133,B4
EGEN,5,1,205
EGEN,6,6, I99,209, I
REAL,2
E,169,175
EGEN,6,1,265
REAL, I
E,175,176
EGEN,5,I,271
EGEN,6,6,265,275,1
REAL,2
E,211,217
EGEN,6,1,331
REAL, 1
E,217,218
EGEN,5,1,337
EGEN,6,6,33 1,341 ,1
E,7,49
EGEN,5,42,397
EGEN,6,6,397,401,1
E,8,50
EGEN,5,42,427
EGEN,6,6,427,431, I
E,9,51
EGEN,5,42,457
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EGEN,6,6,457,461,1
E,IO,52
EGEN,5,42,487
EGEN,6,6,487,49I , I
E,II,53
EGEN,5,42,517
EGEN,6,6,517,521,1
E,12,54
EGEN,5,42,547
EGEN,6,6,547,551, I
NIEW,I,I,I,I
IEDGE,I,1
IESHAPE,1
ENUM,l
NNUM,I
EPLOT
FINISH
ISOLU
D, I ,ALL,O,,6, I
D,43,ALL,O,,48,1
D,85,ALL,O,,90,1
D,127,ALL,O,,132, I
D, 169,ALL,O" 174, 1
D,211,ALL,O,,216,1
M,7,UX,42,1
M,49,UX,84,1
M,91,UX,126,1
M,133,UX,168,1
M,I 75,UX,2 10, I
M,2I 7,UX,252,1
TOTAL, 10
LUMPM,ON
SAVE
SOLVE
FINISH
/POST 1
/NUMBER, 1
EPLOT
SET,I,l
PLDISP,I
Iwait,1O
SET,I,2
PLDISP,l
IWAIT,1O
SET, 1,3
PLDISP,I
IWAIT,1O
SET, 1,4
PLDISP,I
IWAfr,1O
SET,I,5
PLDISP,I
IWAIT,1O
FINISH
IEOF

lansys52/binlansysunv.e52

*-------------------_._-*
I I
I WELCOME TO THE ANSYS PROGRAM
I I
*-----------------*
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••••• DISCLAIMER OF WARRANTy •••••
••••• AND NOTICE OF COPYRIGIIT •••••

lbe Program should only be used hy qualified persons. ll1e
detcnnination as to who is qualified to usc Ule Program is the
obligation of tJle Licensee tmder tJle License Agreement.

NEITlIER ANSYS, INC. NOR TIlE DISTRIDlJrOR SUPPL YlNG TIlE PROGRAM
(TilE DISTRIBUTOR) GUARANTEES THE USEFULNESS OF TIlE RESULTS OF
ANY ANALYSIS PERFORMED wmITIllS PROGRAM, ITS IIELP SYSTEM, OR
DOCUMENTATION. It is the responsibility of the Licensee or
user to confirm the usefulness and accuracy of all the
solutions.

._----*._---------------

ll1is ANSYS(R) software product (the Program), its lIelp Systcm
(Help System), and program documentation (Docwnentation) arc
fumishcd by ANSYS, Inc. under an ANSYS Liccnse Agreement that
contains provisions concerning non-discIosure, copying, length
and nature of use, warranties, disclaimers and remedies, and
oUler provisions. 111c Program may be used or copied only in
accordance with the terms of that License Agreement. Some of
those tenns are sununarized here.

The Help System and Docwnentation consist of the ANSYS User's
Manual and various oUler manuals. TIIC User's Manual consists
ONLY of the folJowing four volwnes: Procedures, Conunands,
Elcments, and 'Illeory. Tbe User's Manual is identified with the
words "ANSYS User's Manual" at the bottom of each page.

EXCEPT AS PROVIDED IN HlE LICENSE AGREEMENT, NEITllER ANSYS,
INC. NOR HIE DISTRIBUTOR SHALL BE LIABLE FOR TIlE NEGLIGENT
PREPARATION OF HlE PROGRAM, TIill HELP SYSTEM, OR USER'S MANUAL;
OR FOR ANY TECHNICAL, EDrroRlAL, OR OTIlER ERRORS OR OMISSIONS
WIlICII THE HELP SYSTEM OR USER'S MANUAL MlGlIT CONTAIN. ANSYS,
INC. SIlALL NOT BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL,
COMPENSATORY OR EXEMPLARY DAMAGES RESULTING FROM ANY SUCII
NEGLIGENT PREPARATION OR ERROR.

EXCEPT AS PROVIDED IN TIlE LICENSE AGREEMENT, ANSYS, INC. AND
TIlE DISTRIBUTOR HEREBY DISCLAIM ANY EXPRESS OR IMPLIED
WARRANTY, INCLUDING BUT NOT LIMITED TO, THE WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE wrrn REGARD
TO TIlE PROGRAM OR .nlE CONTENTS, INFORMATION, AND INSTRUCTIONS
CONTAINED IN TIlE llELP SYSTEM OR USER'S MANUAL, WllETHER SAID
WARRANI1ES ARISE UNDER PROVISIONS OF ANY LAW OF THE UNITED
STATES OF AMERICA OR ANY STATE THEREOF OR ANY OHlER COUNTRY, OR
PURSUANT TO TI IE PROVISIONS OF TIill UNnED NATIONS CONVENTION ON
CONTRACTS FOR THE INTERNATIONAL SALE OF GOODS.

Examples, solutions, theories, results, metJu>ds,and references
to other docwnents are provided in the Help System and User's
Manual for guidance and explanation only. TIlEY ARE NOT
GUARANTEED TO PROVIDE TIIE USER wmf THE MOST ACCURATE, USEFUL,
OR CORRECT ANALYSIS FOR ANY PARllCULAR PROBLEM.

The Program, Help System, and Documentation are protected by
United States cop}Tight Jaw. You may print pages from the Help
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GENERATE 6 TOTAL SETS OF ELEMENTS wmI NODE INCREMENT OF 6
SET IS SELECTED ELEMENTS IN RANGE 199TO 209 IN STEPS OF I
MAXIMUM ELEMENT NUMBER= 264

REALCONSTANr NUMBER= 2

ELEMENT 265 169 175 0

GENERATE 6 TOTAl. SETS OF ELEMENTS wmI NODE INCREMENT OF
SET IS SELECTED ELEMENrS IN RANGE 265 TO 265 IN STEPS OF I
MAXIMUM ELEMENr NUMBER= 270

REAl. CONSTANT NUMBER=

ELEMENT 271 175 176 0

GENERATE 5 TOTAL SETS OF ELEMENrS WilTI NODE INCREMENT OF
SET IS SELECTED ELEMENTS IN RANGE 271 TO 271 IN STEPS OF I
MAXIMUM ELEMENT NUMBER= 275

GENERATE 6 TOTAL SETS OF ELEMENrS Willl NODE INCREMENT OF 6
SET IS SELECTED ELEMENTS IN RANGE 265 TO 275 IN STEPS OF I
MAXIMUMELEMENT NUMBER= 330

REAL CONSTANTNUMBER= 2

ELEMENT 331 211 217 0

GENERATE 6 TOTAL SETS OF ELEMENTS WlTIl NODE INCREMENT OF
SET IS SELECTED ELEMENTS IN RANGE 331 TO 331 IN STEPS OF 1
MAXIMUM ELEMENT NUMBER= 336

REALCONSTANT NUMBER=

ELEMENr 337 217 218 0

GENERATE 5 TOTAL SETS OF ELEMENTS WlTIl NODE INCREMENT OF
SET IS SELECTED ELEMENrS IN RANGE 337 TO 337 IN STEPS OF I
MAXIMUMELEMENT NUMBER= 341

GENERATE 6 TOTAL SETS OF ELEMENTS WlTIl NODE INCREMENT OF 6
SETlS SELECTED ELEMENTS IN RANGE 331 TO 341 IN STEPS OF I
MAXIMUM ELEMENT NUMBER= 396

ELEMENT 397 7 49 0

GENERATE 5 TOTAL SETS OF ELEMENTS wmI NODE INCREMENT OF 42
SET IS SELECTED ELEMENTS IN RANGE 397 TO 397 IN STEPS OF I
MAXIMUM ELEMENT NUMBER= 401

GENERATE 6 TOTAL SETS OF ELEMENTS wmI NODE INCREMENr OF 6
SET IS SELECTED ELEMENrS IN RANGE 397 TO 40 I IN STEPS OF I
MAXIMUM ELEMENr NUMBER= 426

ELEMENT 427 8 50 0

GENERATE 5 TOTAL SETS OF ELEMENTS wmI NODE INCREMENr OF 42
SET IS SELECTED ELEMENTS IN RANGE 427 TO 427 IN STEPS OF I
MAXIMUM ELEMENT NUMBER= 431

GENERATE 6 TOTAL SETS OF ELEMENTS wml NODE INCREMENT OF 6
SET IS SELECTED ELEMENTS IN RANGE 427 TO 43 I IN STEPS OF I
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System to a printer for your 0\\11 personal usc. You may not
furtllcr copy or reproduce such pages in any form without the
prior \\Titlen pennission of ANSYS, Inc.

ANSYS, Inc. is endeavoring to make the ANSYS program as
complcte, accurate, and easy to use as possible. Suggestions
and comments are welcome. Please bring any errors in either
the Docwnentation or the Program results to the attention of
ANSYS, Inc. by contacting your Distributor.

Copyright 1971, 1978, 1982, 1983, 1985, 1987, 1989, 1992, 1993,
1994, 1995 by SAS IF as an unpublished work. Proprietary
data--unauthorized use, distribution, or duplication, is
prohibited. All rights reserved.
••• WARNING".
AUTII0RlZA nON FILEWilL SOON EXPIRE.
CONTACT YOUR LOCALANSYS DISTRIDlJroR FOR DETAILS.

AFTER YOU lIAVE READAND lJNDERSTOOD TIlE PREVIOUSDISCLAIMER,
PRESS <CR>OR <ENTER> TO CONTINUE

••••• ANSYS COMMAND LINE ARGUMENTS •••••
INITIALJOBNAME = file
MEMORY REQUESTED (ME) 64.0
BATCHMODE REQUESTED = NOLlST
START-UP FILEMODE = READ
DATABASE SIZE REQUESTED (ME) = 16

••• NOTE ••• CP= 1.040 TIME= 14:37:20
"Ibereare no parameters and no abbreviations defined.

000 II-52 VERSION=RS6000 REVISION= 5.2
FOR SUPPORT CALL SUPPORT PERSON PHONE SUPPORT PHONE FAX SUPPORT FAX
CURRENT JOBNAME=file 14:37:20 OCT 13, 1996CP= 1.060

RlJN SETUP PROCEDURE FROM FILE=/ausys52/doculstart.ans

/INPUT FILE= /ansys52/doculstart.ans LINE= a
I

••••• ANSYS - ENGINEERINGANALYSISSYSTEM REVISION 5.2 •••••
0001 I-52 VERSION=RS6000 14:37:21 OCT 13, 1996CP= 1.570
FOR SUPPORT CALL SUPPORT PERSON PHONE SUPPORT PHONE FAX SUPPORT FAX

•• ANSYS VERSION FOR UNIVERSITYTEACIllNG PURPOSES ONLY"

••••• ANSYS ANALYSISDEFINITION(PREP7) •••••

illLE=
F666

ANALYSIS TYPE= 2 (MODE-FREQUENCY ANALYSIS)

EXPAND FIRST 5 MODE SIIAPES (MODEXP= 5)

ELEMENT TYPE I IS BEAM4 3-D ELASTICBEAM
KEYOPT(I-I2)= a a a a a a a a a a a a
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CURRENT NODALDOF SET IS UX UY UZ ROTX ROTY ROTZ
THREE-DIMENSIONALMODEL

CURRENT NODAL DOl' SET IS UX UY UZ ROTX ROTY ROTZ
THREE-DIMENSIONALMODEL

CURRENT NODAL DOl' SET IS UX UY UZ ROlX ROTY ROTZ
TIJREE-DIMENSIONALMODEL

DENS = 2.402100

EX = .2070000E+08

NUXY = .1500000

MATERIAL

MATERIAL

MATERIAL

ELEMENT TYPE 2 IS BEAM4 3-D ELASTICBEAM
KEYOPT(I-12)= 0 0 0 0 0 0 0 0 0 0 0 0

REALCONSTANT SET 3 ITEMS I TO 6
.I5000 .00000E+OO .00000E+00 .OOOOOE+OO.00000E+OO .OOOOOE+OO

REALCONSTANT SET 2 ITEMS I TO 6
.25000 .52080E-02 .52080E-02 .50000 .50000 .OOOOOE+OO

REALCONSTANT SET I ITEMS I TO 6
17500 .36458E-02 .I7864E-l)2 .35000 .50000 .OOOOOE+OO

ELEMENT TYPE 3 IS SHELL63 ELASTIC SHELL
KEYOPT(I-12)= 0 0 0 0 0 0 0 0 0 0 0 0

ELEMENT TYPE 3 IS SIIELL63 ELASTIC SHELL
KEYOPT(I-12)= 2 0 0 0 0 0 0 0 0 0 0 0

CURRENT NODAL DOl' SET IS UX UY UZ ROTX ROTY ROTZ
TIlREE-DlMENSIONAL MODEL

NODE I KCS= 0 X,Y,Z= .00000E+OO .00000E+oO .00000E+oO

NODE 6 KCS= 0 X,Y,Z= .OOOOOE+OO.OOOOOE+OO25.000

FILL 4 POINTS IlElWEEN NODE I AND NODE 6
STARTWIDl NODE 2 AND INCREMENT BY I

GENERATE 7 TOTAL SETS OF NODES WITH INCREMENT 6
SET IS SELECTIm NODES IN RANGE I TO 6 IN STEPS OF I
GEOMETRY INCREMENTS ARE .0000010+00 3.2000 .OOOOOE+OOSPACING= 1.0000

GENERATE 6 TOTAL SETS OF NODES WID! INCREMENT 42
SET IS SELECTEDNODES IN RANGE I TO 42 IN STEPS OF I
GEOMETRY INCREMENTS ARE 5.0000 .OOOOOE+OO.OOOOOE+OOSPACING= 1.0000

REALCONSTANT NUMIlER= 2

ELEMENT 7 0

GENERATE 6 TOTAL SETS OF ELEMENTS WIDI NODE INCREMENT OF
SET IS SELECTED ELEMENTS IN RANGE I TO I IN STEPS OF I
MAXIMUM ELEMENT NUMBER= 6

REALCONSTANf NUMBER=

ELEMENT 7 7 8 0
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GENERATE 5 TOTAL SETS OF ELEMEN!S Willi NODE INCREMEN! OF
SET IS SELEC"ffiDELEMEN!S IN RANGE 7 TO 7 IN STEPS OF I
MAXIMUM ELEMEN! NUMDER= II

GENERAlE 6 TOTAL SETS OF ELEMEN!S WITHNODE INCREMEN! OF 6
SET IS SELECTED ELEMEN!S INRANGE I TO I I IN STEPS OF I
MAXIMUM ELEMEN! NUMDER= 66

REAL CONSTANTNUMDER= 2

ELEMEN! 67 43 49 0

GENERATE 6 TOTAL SETS OF ELEMEN!S WITHNODE INCREMEN! OF
SET IS SELECTED ELEMENrS IN RANGE 67 TO 67 IN STEPS OF I
MAXIMUM ELEMENT NUMDER= 72

REALCONSTAN! NUMBER';

ELEMEN! 73 49 50 0

GENERATE 5 TOTAL SETS OF ELEMEN!S WITHNODE INCREMEN! OF
SET IS SELECTED ELEMEN!S IN RANGE 73 TO 73 IN STEPS OF I
MAXIMUM ELEMEN! NUMDER= 77

GENERATE 6 TOTAL SETS OF ELEMEN!S WillI NODE INCREMEN! OF 6
SET IS SELECTED ELEMEN!S IN RANGE 67 TO 77 IN STEPS OF I
MAXIMUM ELEMEN! NUMDER= 132

REAL CONSTANTNUMBER= 2

ELEMEN! 133 85 91 0

GENERATE 6 TOTAL SETS OF ELEMEN!S WITHNODE INCREMEN! OF
SET IS SELECTED ELEMEN!S IN RANGE 133TO 133 IN STEPS OF I
MAXIMUM ELEMEN! NUMBER= 138

REALCONSTANT NUMBER=

ELEMEN! 139 91 92 0

GENERATE 5 TOTAL SETS OF ELEMEN!S Wflll NODE INCREMEN! OF
SET IS SELECTED ELEMEN!S IN RANGE 139TO 139 IN STEPS OF I
MAXIMUM ELEMEN! NUMBER= 143

GENERAffi (, TOTAL SETS OF ELEMEN!S Wflll NODE INCREMEN! OF (,
SET IS SELECTED ELEMEN!S IN RANGE 133TO 143 IN STEPS OF I
MAXIMUM ELEMENT NUMDER= 198

REAL CONSTAN! NUMBER= 2

ELEMEN! 199 127 133 0

GENERATE 6 TOTAL SETS OF ELEMEN!S Will I NODE INCREMENT OF
SET IS SELECTIm ELEMENTS IN RANGE 199 TO 199 IN STEPS OF I
MAXIMUM ELEMEN! NUMBER= 204

REAL CONSTAN! NUMBER=

ELEMEN! 205 133 134 0

GENERATE 5 TOTAL SETS OF ELEMEN!S Willi NODE INCREMENr OF
SET IS SELEClED ELEMEN!S IN RANGE 205 TO 205 IN STEPS OF I
MAXIMUM ELEMEN! NUMBER= 209
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MAXIMUMELEMb'NTNUMBER= 456

ELEMENT 457 9 51 0

GENERATE 5 TOTAL SETS OF ELEMENTSWIDI NODE INCREMENT OF 42
SET IS SELECTED ELEMENTS IN RANGE 457 TO 457 IN STEPS OF I
MAXIMUMELEMENTNUMBER= 461

GENERATE 6 TOTAL SETS OF ELEMENTS WITIf NODE INCREMENT OF 6
SET IS SELECTED ELEMENTS IN RANGE 457 TO 461 IN SIEPS OF I
MAXIMUM ELEMENT NUMBER= 486

ELEMENT 487 10 52 0

GENERATE 5 TOTAL SETS OF ELEMENTS WID! NODE INCREMENT OF 42
SET IS SELECIED ELEMENTS IN RANGE 487 TO 487 IN STEPS OF I
MAXIMUMELEMENT NUMBER= 491

GENERATE 6 TOTAL SETS OF ELEMENTS WIDi NODE INCREMENTOF 6
SET IS SELECTED ELEMENTS IN RANGE 487 TO 491 IN STEPS OF I
MAXIMUM ELEMENT NUMBER= 516

ELEMENT 517 II 53 0

GENERA'IE 5 TOTAL SETS OF ELEMENfS WITIf NODE INCREMENT OF 42
SETIS SELECTED ELEMENTS IN RANGE 517 TO 5I7 IN STEPS OF I
MAXIMUM ELEMENT NUMBER= 52I

GENERATE 6 TOTAL SETS OF ELEMENTS WITIf NODE INCREMENT OF 6
SETIS SELECTED ELEMENTS IN RANGE 517 TO 52I IN STEPS OF I
MAXIMUMELEMENT NUMBER= 546

ELEMENT 547 12 54 0

GENERATE 5 TOTAL SETS OF ELEMENfS Wmi NODE INCREMENT OF 42
SET IS SELECTED ELEMENTS IN RANGE 547 TO 547 IN STEPS OF I
MAXIMUM ELEMENT NUMBER= 551

GENERAlE 6 TOTAL SETS OF ELEMENTSWITIf NODE INCREMENT OF 6
SET IS SELECTED ELEMENTS IN RANGE. 547 TO 551 IN STEPS OF I
MAXIMUM ELEMENT NUMBER= 576

view point for \\indow I 1.0000 1.0000 1.0000

EDGE KEY FOR WINDOW I IS I wrm TOLERANCEANGLE OF 45.0 DEGREES.

ELEMENT DISPLAYS USINGREALCONSTANT DATAWID! FACTOR 1.00

ELEMENT NUMBER KEY= I

NODE NUMBER KEY= 1

••••• ROUTINE COMPLETED ••••• CP = 2.710

••••• ANSYS SOLtJI10N ROUTINE •••••

SPECIFIEDCONSTIV\INT UX FOR SELECTEDNODES
REAL=O.OOOOOOOOOE+{)O!MAG=O.OOOOOOOOOE+{)O
ADDmONAL DOFS= UY UZ RO'lX ROTY ROTZ
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SPECIFIED CONSTRAINT UX FOR SELECIED NODES 43 TO 48 BY
REAL= O.OOOOOOOOOE+{)O!MAG= O.OOOOOOOOOE+{)O
ADDrrIONAL DOFS= UY UZ ROTX ROTY ROTZ

SPECIFIED CONSTRAINT UX FOR SELECTED NODES 85 TO 90 BY
REAL= O.OOOOOOOOOE+OO!MAG= O.OOOOOOOOOE+OO
ADDrrIONAL DOFS= UY UZ ROTX ROTY ROTZ

SPECIFIED CONS'IRAINT UX FOR SELECTED NODES 127 TO 132 BY
REAL= O.OOOOOOOOOE+{)O!MAG= O.OOOOOOOOOE+{)O
ADDrrIONAL DOFS= UY UZ ROTX ROTY ROTZ

SPECIFIED CONSTRAINT UX FOR SELECTED NODES 169 TO 174 BY
REAL= O.OOOOOOOOOE+{)O!MAG= O.OOOOOOOOOE+oo
ADDrrIONAL DOFS= UY UZ ROTX ROTY ROTZ

SPECIFIED CONSTRAINT UX FOR SELECTED NODES 211 TO 216 BY
REAL= OOOOOOOOOOE+{)O!MAG= O.OOOOOOOOOE+{)O
ADDITIONAL DOFS= UY UZ ROTX ROTY ROTZ

MASTER DOl' UX FOR SELEC'IED NODES IN RANGE 7 TO 42 IN STEPS OF I
ADDITIONAL DOFS=
NUMBER OF MAS'IER DOF= 36

MAS'IER DOl' UX FOR SELECTED NODES IN RANGE 49 TO 84 IN STEPS OF I
A))DrnONAL DOFS=
NUMJJER OF MASTER DOF= 72

MAsmR DOl' UX FOR SELECmD NODES IN RANGE 91 TO 126 IN STEPS OF I
ADDITIONAL DOFS=
NUMBER OF MASTER DOF= 108

MASTER DOl' UX FOR SELEC'IED NODES IN RANGE 133 TO 168 IN smps OF I
ADDITIONAL DOFS=
NUMBER OF MASTER DOF= 144

MASTER DOl' UX FOR SELECmD NODES IN RANGE 175 TO 210 IN STEPS OF 1
ADDrrIONAL DOFS=
NUMBER OF MASTER DOF= 180

MAS'IER DOl' UX FOR SELECmD NODES IN RANGE 217 TO 252 IN STEPS OF I
ADDITIONAL DOFS=
NUMBER OF MASmR DOF= 216

TOTAL MASTER D.O.F.= 10

USE LUMPED MASS MATRIX APPROX!MA TION

ALL CURRENT ANSYS DATA WRnlEN TO FILE NAME= file.db
FOR POSSIBLE RESUME FROM TIns POINI'

••••• ANSYS SOLVE COMMAND •••••
1

••••• ANSYS - ENGINEERING ANALYSIS SYSmM REVISION 5.2 •••••
00nll-52 VERSION=RS6000 14:37:26 OCT 13, 1996 CP= 4.370
FOR SUPPORT CALL SUPPORT PERSON PHONE SUPPORT PHONE FAX SUPPORT FAX

1'666

•• ANSYS VERSION FOR UNrVERSrry TEACHING PURPOSES ONLY"

SOLUTION OPTIONS
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PROBLEM DIMENSIONALITY 3-D
DEGREES OF FREEDOM. OX UY Ul ROTX ROTY ROTl
ANALYSIS TYPE MODAL
EXTRACTION METIlOD REDUCED

LUMPED MASS MATRICES ON
NUMBER OF MODES TO EXTRACT ALL M.DOF
NUMBER OF REDUCED MODES TO PRINT. . . . . . . . 0
NUMIJER OF MASTER DOF. . . . . '. 216
NUMBER OF MODES TO EXPAND. . . . . 5
ELEMENT RESULTS CALCULATION OFF

LOAD STEP OPTIONS

LOAD STEP NUMBER. . . . . . . . . . . . . . . . I
PRINf OUTPUT CONTROLS NO PRINTOUT
DATAIJASE OUTPUT CONTROLS ALLDATA WRlTIEN

••••• CENTIWID, MASS, AND MASS MOMENTS OF INERTIA •••••

CALCULA llONS ASSUME ELEMENT MASS AT ELEMENT CENTROID

TOTAL MASS = I 171.7

MOM. OF INERTIA MOM. OF INERTIA
CENTROID ABOUT ORIGIN ABOUT CENTROID

XC = 12.500 !XX = .4280E+06 !XX = .1I25E+06
YC = 10.633 IVY = .5 I 97£+06 IVY = .I 535E+06
lC = 12.500 III = .4280E+06 III = .1I25E+06

!XY = -. I 557£+06 !XY = -.9030E-09
IYl = -.1557£+06 IYl = -.9502E-09
lZX = -.183IE+06 IlX = -.2752E-08

••• MASS SUMMARY BY ELEMENT" TYPE •••

TYPE MASS
I 1171.74

Range of element maximwn matrix coefficients in global coordinates
Maximwn= 1617187.5 at clement 34.
Minimwn= 724500 at clement 397 .

••• ELEMENT MA1RIX FORMULATION TIMES
TYPE NUMBER ENAME T01AL CP AVE CP

I 576 IlEAM4 3.210 .006
Time at end of element matrix [onnulation CP= 9.9.

Estimated nwnbcr of active DOF= 1296.
Maximwn wavefront= 327.
Number of Master DOF= 216.

Time at end of matrix triangularization CP= 23.
Equation solver maximwn pivot= 1752818.38 at node 136 UY.
Equation solver minimwn pivot= 83677.94 I aluode 37 ROTY .

••••• EIGENVALUE (NATURAL FREQUENCY) SOLUTION •••••
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MODE FREQUENCY (CYCLESfllME)

1 1.89085822
2 2.19200504
3 3.69862780
4 4.84532886
5 5.88161417
6. 6.29448826
7 6.65807752
8 7.01577388
9 7.75472347
10 7.92774534
11 8.97149070
12 9.81841653
13 10.4450425
14 10.8949625
15 11.5574802
16 12.2705526
17 12.8981308
18 13.3295935
19 15.5761046
20 16.0023790
21 16.6367197
22 17.3313403
23 17.9674056
24 18.0489677
25 20.7805292
26 21.1301417
27 21.6461572
28 22.1801971
29 23.4024682
30 23.4081209
31 24.8380416
32 25.1045471
33 25.4989224
34 25.8937560
35 27.7167408
36 27.7178246
37 30.2424717
38 30.3597303
39 30.7341580
40 31.0451580
41 31.0884229
42 31.2488289
43 31.4236270
44 31.6307351
45 32.0124321
46 32.6503298
47 32.8779742
48 33.2307299
49 33.6116758
50 33.7918057
51 34.4921729
52 34.5107956
53 34.7741622
54 34.7926911
55 35.1562024
56 35.5443768
57 36.4578653
58 36.6942458
59 36.8390243
60 37.0849484
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61 37.4407743
62 37.7860914
63 38.8282432
64 39.0575574
65 39.3098725
66 39.5003032
67 39.7797456
68 40.0513559
69. 41.3317445
70 41.4234427
71 43.8964752
72 43.9054417
73 57.4977494
74 57.5291428
75 57.7613061
76 57.9234491
77 57.9832916
78 58.0910017
79 58.2884185
80 58.4859961
81 59.0257408
82 59.1561117
83 59.3682902
84 59.5709327
85 60.693130I
86 60.8185650
87 61.0279798
88 61.2063119
89 61.4144087
90 62.4811409
91 62.5998982
92 62.7716466
93 62.9427763
94 63.9234410
95 63.9869459
96 64.1103681
97 64.2197629
98 64.3901763
99 64.4897137
100 64.6372300
101 65.5537155
102 65.6724172
103 67.4766998
104 67.5529898
105 69.4980453
106 69.5461626
107 72.0398253
108 72.8611952
109 80.1083251
110 80.1407225
1J I 80.2923195
112 80.4158061
113 80.4373272
114 80.5150352
115 80.6559055
116 80.8001269
117 81.1667609
118 81.2668145
119 81.4216461
120 81.5729633
121 82.3977687
122 82.4997858
123 82.6501118
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124 82.7938859
125 83.7354997
126 83.8212374
127 83.9488052
128 84.0721274
129 87.3230144
130 88.1937886
131 88.3155126
132 88.4953289
133 88.6769838
134 88.7898132
135 88.943996.1
136 89.1687508
137 89.92.11748
138 89.9951278
139 91..1382886
140 91..1697318
141 92.8350852
142 92.8462506
14.1 96.5721427
144 96.6117173
145 96.716545.1
146 96.8204994
147 96.8277448
148 96.8851432
149 96.9974601
150 97.1180478
151 97.3978915
152 97.4814480
153 97.6081967
154 97.7342643
155 98..199960I
156 98.4857307
157 98.6104828
158 98.7.104402
159 99.4936948
160 99.5072075
161 99.5781114
162 99.68.11142
163 99.7851634
164 100.170451
165 105.864600
166 105.9.14377
167 106.093566
168 106.1654.14
169 106.257465
170 106.333418
171 106.374681
172 106.458336
17.1 106.54.107.1
174 106.562853
175 106.601388
176 106.651284
177 106.699161
178 106.807602
179 106.837138
180 106.9.17656
181 107.050647
182 107.124848
183 107.236540
184 107.348888
185 107.558240
186 107.589972
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187 107.936301
188 108.012757
189 108.123614
190 108.2.10588
191 108.692905
192 108.70447.1
193 108.922.125
194 108.985143
195. 109.078229
196 109.168944
197 109.920265
198 109.923853
199 116.203768
200 116.272221
201 116.386317
202 116.510613
203 116.949729
204 117.029565
205 117.251899
206 117.271388
207 117.835455
208 117.841903
209 118.818602
210 118.820682
211 119..172198
212 119.620490
213 119.898022
214 119.898637
215 130.542021
216 130.578608

••• PROBLEM STATISTICS
AC.iUAL NO. OF ACTIVE DEGREES OF FREEDOM = 1080
R.M.S. WAVEFRONT SIZE = 260.3
NUMBER OF MASTER DEGREES OF FREEDOM = 216

••• ANSYS BINARY FILE STATISTICS
BUFFER SIZE USED= 16384

.625 Mil WRITTEN ON ELEMENT MATRIX FILE: file.ema!

.375 MB WRITTEN ON ELEMENT SAVED DATAFILE: file.esav
2.188 Mil WRITTENON TRIANGULARIZEDMATR1XFILE: file. tri
1.125Mil WRrrrEN ON MODALMATR1XFILE: file. mode
.250 Mil WRrrrEN ON RESULTS FllE file.rs!

FINISH SOLUlION PROCESSING

••••• ROUTINE COMPLETED ••••• ep = 37.8.10

••••• ANSYS - ENGINEERINGANALYSIS SYSTEM REVISION 5.2 •••••
00011-52 VERSION=RS6000 14:.18:13OCT 13, 1996CP= 37.850
FOR SUPPORT CALL Sill'PORT PERSON PHONE SUPPORT PHONE FAX SUPPORT FAX

F666

•• ANSYS VERSIONFOR UNIVERSITYTEACHINGPURPOSES ONLY ••

••••• ANSYS RESill,TS INTERPRETATION(POSTI) •••••

A-48



NUMBER KEY SET TO 1 -I=NONE O=BOTH l=COLOR 2=NUMBER

USE LOADSTEP 1 SUBSTEP 1 FOR LOADCASE 0

SET COMMAND GOT LOAD STEP= 1 SUBSTEP= I CUMUlATIVE ITERATION=
TIMEIFREQUENCY= 1.8909
TffLE= 1'666

TASK SUSPENDED FOR 10.000 SECONDS

USE LOAD STEP 1 StnlSTEP 2 FOR LOADCASE 0

SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 2 CUMUIA TIVE ITERATION= 2
TIMEIFREQUENCY= 2.1920
Tfl'LE= 1'666

TASK SUSPENDED FOR 10.000 SECONDS

USE LOAD STEP 1 SUllSTEP 3 FOR LOADCASE 0

SET COMMAND GOT LOAD STEP= I SUBSTEP= 3 CUMULATIVE ffERATION= 3
llMEIFREQUENCY= 3.6986
TITLE= 1'666

TASK SUSPENDED FOR 10.000 SECONDS

USE LOAD STEP 1 SUBSTEP 4 FOR LOAD CASE 0

SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 4 CUMUlATIVE ITERATION= 4
TIMElFREQUENCY= 4.8453
Tfl'LE= 1'666

TASK SUSPENDED FOR 10.000 SECONDS

USE LOAD STEP I SUllSTEP 5 FOR LOADCASE 0

SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 5 CUMULATIVE ITEM TION= 5
'flMEIFREQUENCY= 5.8816
TITI,E= 1'666

TASK SUSPENDED FOR 10.000 SECONDS

EXIT TIlE ANSYS POST! DATABASEPROCESSOR

••••• ROUTINE COMPLETED ••••• CP =

••••• END OF INPm' ENCOUNTERED •••••

PURGE ALL SOLlJIlON AND POST DATA
SAVEALLMODEL DATA

38.690

ALLCURRENT ANSYS DATAWRmEN TO FILENAME= file.db
FOR POSSlBLE RESUME FROM TIllS POINT
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NUMBER OF WARNINGMESSAGES ENCOUNTERED= . 0
NUMBER OF ERROR MESSAGES ENCOUNTERED= 0

._-------------_.
I I
I . ANSYS RUN COMPLETED
I I
I
I I
I REV. 5.2 RS6000
I I
I CP TIME (sec) = 39.520 TIME = 14:39:06 I
I ELAPSED TIME (sec) = 108.000 DATE = 10113/96
I I._-------------_.
o
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