

A DISSERTATION SUBMITTED TO THE PARTIAL FULFILMENT OF THE REQUIREMENT FOR DEGREE OF MASTER OF PHILOSOPHY (M.PHIL) IN CHEMISTRY

SUBMITTED


BY

MOHAMMAD MIZANUR RAHMAN

STUDENT NO. 040503103 F

REGISTRATION NO. 0405028

SESSION: APRIL,200S

ORGANIC RESEARCH LABORATORY DEPARTMENT OF CHEMISTRY BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY (BUET), DHAKA-1000, BANGLADESH

September, 2009

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY (BUET), DHAKA-1000, BANGLADESH. DEPARTMENT OF CHEMISTRY

THESIS ACCEPTANCE LETTER

The thesis entitled "Synthesis of substituted 2-iodoaniline and 2-iodoacctanilide" submitted by Mohammad Mizanur Rahman, Roll No. 040503103F, Registration No. 0405028, Session April, 2005 has been accepted as satisfactory in partial fulfilment of the requirement for the degree of Master of Philosophy (M.Phil) in chemistry on September 14, 2009.

Board of examiners

tileal 14.09.09

 Dr.¹Md. Wahab Khan Professor. Department of Chemistry, BUET, Dhaka

Arthal 14.09.09

 Dr. Md. Wahab Khan Head Department of Chemistry, BUET, Dhaka

ABC 0

Dr. Nazrul Islam 14.9.09
 Professor,
 Department of Chemistry, BUE1, Dhaka

alma HA 109

 Dr. Shakila Rahman Professor Department of Chemistry, BUET, Dhaka

5 Dr. U. K. Rowzatur Romman 14/09/09

5 Dr. U. K. Rowzatur Romman 77/04/07 Professor Department of Chemistry, University of Dhaka Member (External)

Chairman (Supervisor)

Member (Ex-officio)

Member

Member

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY (BUET), DHAKA-1000, BANGLADESH.

DEPARTMENT OF CHEMISTRY

STUDENT'S DECLARATION

It is hereby declared that this thesis or any part of it has not been submitted elsewhere for the award of any degree or diploma.

Signature of the candidate

4.09.202

Date: 14th September, 2009

(Mohammad Mizanur Rahman)

ACKNOWLEDGMENT

All praise and admiration for almighty Allah, the most kind and merciful who enable me in carrying out the research work presented in this dissertation.

I am extremely delighted to express my deepest gratitude to my advisor and supervisor, Prof. Dr. Md. Wahab Khan, for his helpful advice and encouragement offered throughout this thesis. He has given me the chance to participate in several interesting research projects.

1 am highly grateful to all my respected teachers of this department, particularly Dr. Enamul Huq, Dr. A. K. M. Matior Rahman, Dr. Md. Abdur Rashid, Dr. Monimul Huque, Dr. Manwarul Islam, Dr. Nazrul Islam, Dr.A)-Nakib Chowdhury, Dr. Shakila Rahman and Mrs. Tahcra Saad for their helpful suggestions at different stages of studies in Chemistry.

I desire to offer my pleasant thanks to Dr. M.A. Rashid, Dean of Pharmacy, University of Dhaka for his kind help to carry out biological test of various synthesized compounds.

I would like to thanks Md. Kamruzzaman, Md. Abdul Bari, Md. Enamul Haque, Laila Arifun Nahar, Md. Ismail Hossain, Md. Faiaz Ahmed and Md. Mazaharul Islam for their help and co-operation in the laboratory.

I acknowledge to the University of Engineering and Technology (BUET), Dhaka and Ministry of National Science Information and Communication Technology (NSICT), Bangladesh for giving me the financial support to carry out my research work and I am also grateful to the Department of Chemistry to give me opportunity to do M.Phil program.

l convey thanks to all staffs in the Department of Chemistry, BUET for their kind co-operations. In fine, I am highly thankful to all of my well-wishers, in home and abroad.

I am also grateful to my younger sisters Rumana Binte Habib, Sumona Binte Habib, Jhumona Binte Habib and Jannatul Ferdoush Binte Habib for their constant inspiration and help during the period of my study.

There are two people to whom I owe more than I can possibly repay in lifetime, I would like to express my deepest gratitude for constant support, understanding and love that I received from them. They are my father Mohammad Habibur Rahman and my mother Farida Begum. They are my greatest advisors, confidants and supporters. In times of uncertainty, their love and guidance always steered me in the right direction.

Author (Mohammad Mizanur Rahman)

Contents	Page No.
List of abbreviations	v vii
Abstract	viii
Summary	*111
Chapter I	·
INTRODUCTION	1-23
1.1. Aromatic iodide	1
(a) Iodide	
(b) Iodide as an antioxidant	1
(c) Antioxidant biochemical mechanism of iodides	2
1.2. Some Aromatic iodide compound and their importance	3
(a) The Halogenated hydroxyquinolines	3
(i) Chemistry	3
(ii) Antiamebic Effects	4
(iii) Clinical Uses	4
(b) 123I-labeled bicyclic nucleoside analogue (BCNA)	4
(c) Thyroid hormones	5
(1) Thyroxinc	
(2) Triiodothyronine (T ₃)	6
(i) Circulation	8
(ii) Function	8
(iii) Related diseases	9
(iv) Medical use of thyroid hormones	9
(v) Production of the thyroid hormones	10
(vi) Effect of iodine deficiency on thyroid hormone synthesis	11
(vii) Effects of thyroxine	11
(3) 3-Iodothyronamine (T ₁ MA)	11
(4) Monoiodotyrosine	12
(5) Dijodotyrosine	13
(6) 3,3'-Diiodothyronine	13
(7) 2-[4-(4-hydroxy-3-iodophenoxy)-3,5-diiodophenyl]acetic acid	. 14

Contents

1.3	Synthesis of organic iodo-compound and their derivatives by	
	various methods	15
1.3a.	lodination of Methoxybenzenes with N-Iodosuccinimide	
	in Acetonitrile	15
1.3b	. A Novel Iodination of Aromatic Rings Using Iodine/Metallic Nitrate	18
1.3c.	Oxidative Iodination of Aromatic Amides Using Sodium Perborate	
	or Hydrogen Peroxide with Sodium Tungstate	19
1.3d	. Oxidative Iodination of Aromatic Amines and Other Arenes, with	
	Sodium Percarbonate as the Oxidant	20

Chapter II

PRESENT WORK, 24 - 40RESULTS AND DISCUSSION 24 2.1. Rationale 25 2.2. Synthesis of 2-substituted aniline from p-toluidine 2.2a. Characterization of 2, 6-diiodo-4-methylaniline 3 26 26 2.2b. Characterization of 2-iodo-4-methylacetanilide 4 27 2.2c. Characterization of 4-methylacetanilide 5 28 2.3. Synthesis of 2-iodo-5-methylacetanilide from *m*-toluidine 29 2.3a. Characterization of 2-iodo-5-methylacetanilide 6 2.4. Synthesis of 4-chloro-2, 6-diiodoaniline and 4-chloro-2-iodoaniline from 30 4-chloroaniline 31 2.4a. Characterization of 4-chloro-2, 6-diiodoaniline 7 2.4b. Characterization of 4-chloro-2-iodoaniline 8 31 2.5. Synthesis of compound 9, 10, 11 from 4-nitroaniline 32 33 2.5a. Characterization of 2-jodo-4-nitroaniline 9 34 2.5b, Characterization of 2, 3-diiodo-4-nitroacetanilide 10 35 2.5c. Characterization of 2, 6-diiodo-4-nitroaniline 11 36 2.6. Synthesis of compound 12 from 3-Aminophenol 37 2.6a. Characterization of 3-amino-4-iodophenol 12 38 Discussions

Contents

-

,

•

Chapter 3

EXPERIMENTAL	41-115
3.1 Chemical reagents and experimental instruments	41
3.2. Iodination of <i>p</i> -toluidine	41
3.2.1. Study of 2, 6-dilodo-4-methylaniline 3	42
3.2.2. Study of 2-iodo-4-methylacetanilide 4	43
3.2.3. Study of 4-methylacetanilide 5	44
3.3. Synthesis of 2-iodo-5-methylacetanilide 6	45
3.3.1. Study of 2-iodo-5-methylacetanilide 6	46
3.4. Synthesis of 4-chloro-2, 6-diiodoaniline & 4-chloro-2-iodoaniline 7, 8	47
3.4.1. Study of 4-chloro -2, 6-diiodoaniline 7	48
3.4.2. Study of 4-chloro-2-iodoaniline 8	49
3.5. Synthesis of 2-iodo-4-nitroaniline &2, 3-diiodo-4-nitroacetanilide 9, 10, 1	1 50
3.5.1. Study of 2, 3-diiodo-4-nitroacetanilide 9	51
3.5.2. Study of 2, 3-dilodo-4-nitroacetanilide 10	52
3.5.3, Study of 2, 6-diiodo-4-nitroacetanilide 11	53
3.6. Synthesis of 3-amino-4-iodophenol 12	54
3.6.1. Study of 3-amino-4-iodophenol 12	55
Reference	56
Spectra	61

Chapter 4

ANTIMICROBIAL SCREENING	116-131
Introduction	116
4.1. Materials and methods	117
4.2. Principle of disc diffusion method	117
4.3. Experimental	118
4.3a. Apparatus and reagents	118

Contents

Page No.

4.3b. Test materials	119
4.3c. Test organisms	120
4.3d. Composition of culture medium	120
4.4. Preparation of medium	122
4.5. Sterilization procedure	122
4.6. Preparation of subculture	122
4.7. Preparation of the test plates	122
4.8. Preparation of discs	123
4.9. Diffusion and incubation	123
4.10. Determination of the zone of inhibition	124
4.11. Results and discussion	125
4.12. Conclusion	129
4.13. References	130

CONCLUSIONS

-

132

LIST OF ABBREVIATIONS

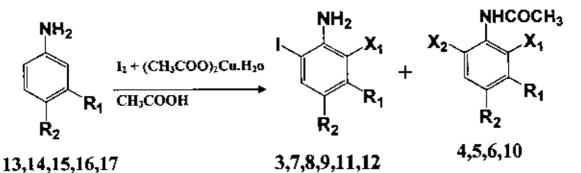
NMR	nuclear magnetic resonance
IR	infrared (spectrum)
mp.	melting point
TLC	thin layer chromatography
⁰ C	degree celsius
hr	hour
mmol	millimole
UV	ultra violet
J	coupling constant
Hz	heriz
\$	singlet
d	doublet
dd	double doublet
t	triplet
M.F.	molecular formula
Т	temperature
μg	microgram
Δ	heat at reflux
δ	chemical shift
λ _{max}	ultraviolet absorption in nm
Vmax	infrared absorption in per centimeter
KAN	kanamycin
тт	millimeter
cm	centimeter
mg	milligram
mL	milliliter
sq	square
lbs.	pounds
тн	thyroid hormone
T ₃	triiodothyronine

-

T4	thyroxine
$T_1 a$	iodothyronamine
T ₀ a	thyronamine
NIS	N-iodosuccinimide
NCS	N-chlorosuccinimide
NBS	N-bromosuccinimide
GC	Gas chromatography

-

.


•

.

Title: "Synthesis of substituted 2-iodoaniline and 2-iodoacetanilide"

Abstract

In view of the extensive natural occurrence and biological importance of the 2-iodoaniline and 2-iodoacetanilide compound a general and facile method for the synthesis of aryl-iodide derivatives through iodine-cupper(II) acetate in acetic acid, afforded the corresponding iodo compound in the better yield. In this purpose different 2-iodoaniline or acetanilide compounds were synthesized from p or *m*-substituted aryl amines by iodination reaction (Scheme 1).

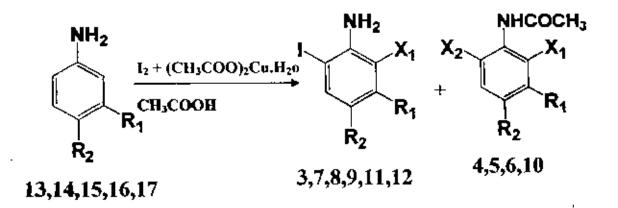
• •	-
Scheme	
OCHEINE.	•

Where,	Substrates		Product
13	$\mathbf{R}_2 = \mathbf{C}\mathbf{H}_3, \mathbf{R}_1 = \mathbf{H}$	3 4 5	$X_1 = I, R_1 = H, R_2 = CH_3$ $X_1 = H, X_2 = I, R_1 = H, R_2 = CH_3$ $X_1 = H, X_2 = H, R_1 = H, R_2 = CH_3$
14	$\mathbf{R}_1 = \mathbf{C}\mathbf{H}_3, \mathbf{R}_2 = \mathbf{H}$	6	$X_1 = H, X_2 = I, R_1 = CH_3, R_2 = H$
15	$R_2 = CI, R_1 = H$	7 8	$X_1 = I, R_1 = H, R_2 = CI$ $X_1 = H, R_3 = H, R_2 = CI$
16	$R_2 = NO_2, R_i = H$	9 10 11	$X_1 = I, R_1 = H, R_2 = NO_2$ $X_1 = I, X_2 = H, R_1 = I, R_2 = NO_2$ $X_1 = I, R_1 = H, R_2 = NO_2$
17	$R_1 = OH, R_2 = H$	12	$\mathbf{X}_{t} = \mathbf{H}, \mathbf{R}_{1} = \mathbf{OH}, \mathbf{R}_{2} = \mathbf{H}$

All the synthesized compounds were characterized by using analytical data obtained from M.P., UV, IR, ¹H NMR and ¹³C NMR.

vii

SUMMARY


Investigation incorporated in this dissertation titled "Synthesis of substituted 2iodoaniline and 2-iodoacetanilide" have been presented in four chapters. The first is the introductory section, in which the background, biological action and the important synthesis are presented. Chapter two deals with results and discussion of the synthesis of substituted aryl iodide. Chapter three was deals with the detailed methodologies and experimental procedures for the synthesis of 2-substituted aniline or acetanilide derivatives, spectra and references. Chapter four also deals with the biological test of the synthesized products.

Chapter I

It represents the importance and synthesis of aryl iodide derivatives. Aryl iodide is the first door of synthesis to biological and pharmaceutical active compound. So it was important in synthetic and pharmaceutical chemistry. Aryl iodide presence in nature, its derivative has proved considerable interest due to their pharmacelogical activities. Various methods are known for the synthesis of aryl iodide derivatives but iodine-copper (II) acetate in acetic acid procedures for the synthesis of 2-iodoaniline of acetanilide derivatives are limited in number.

Chapter II

In Chapter II, result and discussion of the synthesis of 2,6-diiodo-4-methylaniline, 2-iodo-4-methylacetanilide, 4-methylacetanilide **3**, **4**, **5** and 2-iodo-5methylacetanilide, 4-chloro-2,6-ditodoaniline, 4-chloro-2-iodoaniline **6**, **7**, **8** and also 2-iodo-4-mitroaniline, 2,3-diiodo-4-nitroacetanilide, 2,6-diiodo-4nitroaniline, 3-amino-4-iodophenol **9**, **10**, **11**, **12** were described as shown in the **scheme 1**.Reactions were carried out through iodine-copper (II) acetate in acetic acid at 120°C-130°C for 6-11hs. Structure of all of these synthesized 2-iodoaniline and 2iodoacetanilide derivatives have been established on the basis of their UV, IR and NMR spectral evidences.

Scheme 1

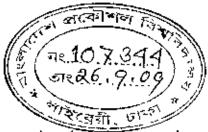
Where,	Substrates		Product
13	$R_2 = CH_3, R_1 = H$	3 4 5	$X_1 = I, R_1 = H, R_2 = CH_3$ $X_1 = H, X_2 = I, R_1 = H, R_2 = CH_3$ $X_1 = H, X_2 = H, R_1 = H, R_2 = CH_3$
. 14	$R_1 = CH_3, R_2 = H$	6	$X_1 = H, X_2 = I, R_1 = CH_3, R_2 = H$
15	$R_2 = CL R_1 = H$	7 8	$X_1 = I, R_1 = H, R_2 = CI$ $X_1 = H, R_1 = H, R_2 = CI$
16	$R_2 = NO_2, R_1 = H$		$X_1 = I, R_1 = H, R_2 = NO_2$ $X_1 = I, X_2 = H, R_1 = I, R_2 = NO_2$ $X_1 = I, R_1 = H, R_2 = NO_2$
17	$R_1 = OH, R_2 = H$	12	$X_1 = H, R_1 = OH, R_2 = H$

Chapter III

In chapter III, all the experimental procedure and analytical data are reported. This chapter also contains references and spectra of the synthesized compounds.

Chapter IV

In Chapter IV, introduction, methodology, results and discussion, references and conclusion of the biological test of the synthesized compounds are presented. Nine synthesized 2-iodoaniline and 2-iodoacetanilide derivatives compounds have been tested for antimicrobial activity against five gram-positive and eight gram-negative bacteria as well as three human fungal pathogens. Among tested compound 8,9,10 exhibited relatively greater or moderate (8-25mm) inhibition of growth of the microorganism.


CHAPTER-1

INTRODUCTION

INTRODUCTION

1.1. Aromatic iodide

Aromatic iodides, known for ca.150 year, are generally more reactive than the respective bromides and chlorides. There are a considerable number of different methods, direct or indirect, for their synthesis, and they are widely used in chemical laboratories and sometimes, also in chemical industry and medicine¹. Moreover, they are able to form a large variety of stable, aromatic polyvalent iodine compounds, which have found increasing applications in modern organic synthesis².

Aromatic iodo compounds are an important class of compounds in synthetic organic chemistry. They are useful for the preparation of organometallic reagents and some are potential intermediates for the synthesis of pharmaceutical and bioactive materials. They are useful in metal catalyzed coupling reactions which are widely applied in the preparation of complex molecules.

(a) Iodide

An iodide ion is an iodine atom with a -1 charge³. Compounds with iodine in formal oxidation state—i are called iodides. This can include ionic compounds such as caesium iodide or covalent compounds such as phosphorus triiodide. This is the same naming scheme as is seen with chloride sand bromides. The chemical test for an iodide compound is to acidify the aqueous compound by adding some drops of acid, to dispel any carbonate ions present, then adding lead(II) nitrate, yielding a bright yellow precipitate of lead iodide. Most ionic iodides are soluble, with the exception of yellow silver iodide and yellow lead iodide. Aqueous solutions of iodide dissolve iodine better than pure water due to the formation of complex ions: $I^{-}(aq) + l_2(s) \neq l_3^{-}(aq)$

The color of new triiodide ions formed is brown.

(b) Iodide as an antioxidant

Iodide can function as an antioxidant as it is a reducing species that can detoxify reactive oxygen species such as hydrogen peroxide. Over three billion years ago, blue-green algae were the most primitive oxygenic photosyntheticorganisms and are the ancestors of multicellular

٩

eukaryoticalgae. Algae that contain the highest amount of iodine (1-3 % of dry weight) and peroxidase enzymes, were the first living cells to produce poisonous oxygen in the atmosphere^{4,5}. Therefore algal cells required a protective antioxidant action of their molecular components, in which iodides, through peroxidase enzymes, seem to have had this specific role^{6,7,8}. In fact, iodides are greatly present and available in the sea, where algal phytoplankton, the basis of marine food-chain, acts as a biological accumulator of iodides, selenium and n-3 fatty acids^{9, 10, 11}.

(c) Antioxidant biochemical mechanism of iodides¹²

2 I" \rightarrow I₂+ 2 e⁻(electrons) = -0.54 Volt ; 2 I⁻+ Peroxidase + H₂O₂+ 2 Tyrosine \rightarrow 2 Iodo-Tyrosine + H₂O + 2 e⁻(antioxidants); 2 e⁻ + H₂O₂ + 2 H+(of intracellular water-solution) \rightarrow 2 H₂O

Antioxidant biochemical mechanism of iodides, probably one of the most ancient mechanisms of defense from poisonous reactive oxygen species:

2 I⁺ Peroxidase + H_2O_2 + Tyrosine, Histidine, Lipids, Carbons \rightarrow Iodo-Compounds + H_2O + 2 e⁻ (antioxidants)

Clinical Use

Iodide (>6mg/day) can be need to treat patients with hyperthyroidism due to its ability to block the release of thyroid hormone(TH), known as the Wolff-Chaikoff Effect, from the thyroid gland. In fact, prior to 1940, iodides were the predominant antithyroid agents. In large doses, iodides inhibit proteolysis of thyroglobulin. This permits TH to be synthesized and stored in colloid, but not released into the bloodstream.

Of note, this treatment is seldom used today as a stand-alone therapy despite the rapid improvement of patients immediately following administration. The major disadvantage of iodide treatment lies in the fact that excessive stores of TH accumulate, slowing the onset of action of thioamides (TH synthesis blockers). Additionally, the functionality of iodides fade after the initial treatment period. An "escape from block" is also a concern, as extra stored TH may spike following discontinuation of treatment ¹³.

2

1.2. Some Aromatic iodide compound and their importance.

(a) The Halogenated hydroxyquinolines¹⁴

Diiodohydroxyquin (Iodoquinol), Iodochlorhydroxyquin (Clioquinol). The halogenated hydroxyquinolines were among the first synthetic drugs active in amebiasis. Iodochlorhydroxyquin (introduced in 193 1) and diiodohydroxyquin (introduced in 1936) are effective against organisms in the bowel lumen but not against trophozoites in the intestinal wall or extraintestinal tissues.

Iodoquinol, also known generically as Diiodohydroxyquinon. Iodine is the active ingredient, used for generations as a treatment for amoebic infections and similar large cell organisms, fungi, algae and protozoa."

(i) Chemistry

Halogen-substituted 8-hydroxyquinolines have had extensive clinical use, chiniofon (8-hydroxy-7-iodoquinoline-5-sulfoniace id), iodachlorhydroxyquin (elioquinol) (5-chloro-8-hydroxy-7-iodoquinoline) and diiodohydroryquin (iodoquinol) (8-hydroxy-5,7-diiodoquinoline). Iodochlorhydroxyquin contains approximately 408 iodine and 12% chlorine, and diiodohydroxyquin contains approximately 64% iodine (Fig. 1).

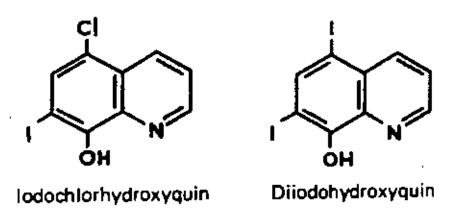


Figure 1: Structure of Jodochlorhydroxyquin and Diiodohydroxyquin

Absorption, Metabolism & Excretion knowledge is incomplete on the pharmacokinetics of the hydroxyquinolines. Iodochlorhydroxyquin is more readily absorbed than diiodohydroxyquin. Metabolic studies in humans using 14C iodochlorhydroxyquin indicated that maximal plasma

concentrations were reached at 4 hr after administration of a single dose and then decreased, with an apparent half-life of between 11 and 14 hr. Approximately 25% of a single 750-mg oral dose was excreted in the urine over 72 hr. Use of radioactive iodochlorhydroxyquin in animals showed high uptake of the drug in visceral tissues. The drugs may interfere with certain thyroid function tests by increasing protein-bound serum iodine levels, leading to a decrease in "I uptake.

(ii) Antiamebic Effects

The mechanism of action of diiodohydroxyquin and iodochlorhydroxyquin against amebas is not known. Opinions vary on whether the drugs act only against trophozoites or against cysts as well.

(iii) Clinical Uses

A. Intestinal Amebiasis: Diiodohydroxyquin and iodochlorhydroxyquin are alternative drugs for the treatment of asymptomatic or mild to inoderate intestinal amebiasis. However, until the question of the association of iodochlorhydroxyquin with the SMON syndrome is resolved, only diiodohydroxyquin should be used in therapy. The drugs are not effective in the initial treatment of severe intestinal disease but are nsed in the subsequent 2radication of the infection. They are not effective against amebomas or extraintestinal forms of the disease, including hepatic amebiasis.

(b) 1231-labeled bicyclic nucleoside analogue (BCNA)¹⁵

An iodine-123 labeled bicyclic nucleoside analogue ([1231]-4) (Fig. 2) has been synthesized and evaluated as a potential single photon emission tomography (SPECT) reporter probe for the non-invasive imaging of expression of the varicella zoster virus thymidine kinase (VZV-tk) reporter gene. In vitro enzymatic assays revealed that the non-radioactive mono-iodo derivative 4 has good affinity for VZV-TK (IC50: 4.2 μ M). Biodistribution of [1231]-4 was examined in normal mice. Evaluation of [1231]-4 in HEK-293T cells showed 1.74-fold higher accumulation in VZV-TK-expressing cells compared to control cells.

Introduction

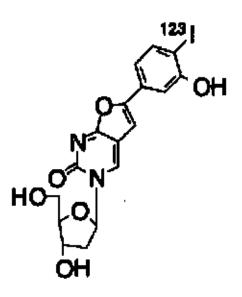


Figure 2: 123I-labeled bicyclic nucleoside analogue (BCNA)

(c) Thyroid hormones^{16,17,18}

(i) Thyroxine

Thyroxine (Fig. 3,4), or 3, 5, 3', 5'-tetraiodothyronine (often abbreviated as T_4), a form of thyroid hormones is the major hormone secreted by the follicular cells of the thyroid gland.

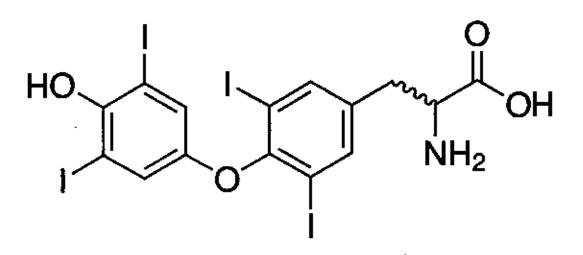


Figure 3: Structure of Thyroxine (3, 5, 3', 5'-tetraiodothyronine)

Introduction

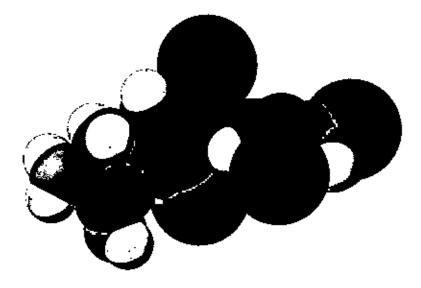


Figure 4: Structure of 3D- vdW model of Thyroxine, T_{4.}

 T_4 is transported in blood, with 99.95% of the secreted T_4 being protein bound, principally to thyroxine-binding globulin (TBG), and, to a lesser extent, to transiburetin and serum albumin. T_4 is involved in controlling the rate of metabolic processes in the body and influencing physical development. Administration of thyroxine has been shown to significantly increase the concentration of nerve growth factor in the brains of adult mice.

Thyroxine is a prohormone and a reservoir for the active thyroid hormone triiodothyronine (T_3) which is about four times more potent. T₄ is converted in the tissues by deiodinases to T₃. The half-life of thyroxine once released into the blood circulatory system is about 1 week.

(2) Triiodothyronine (T₃)

Triiodothyronine (T₃) (Fig. 5, 6, 7), are tyrosine-based hormones produced by the thyroid gland. An important component in the synthesis of thyroid hormones is iodine. The major form of thyroid hormone in the blood is thyroxine (T₄), which bas a longer half life than T₃. The ratio of T₄ to T₃ released in the blood is roughly 20 to 1. Thyroxine is converted to the active T₃ (three to four times more potent than T₄) within cells by deiodinases (5'-iodinase). These are further processed by decarboxylation and deiodination to produce iodothyronamine (T₁a) and thyronamine (T₀a).

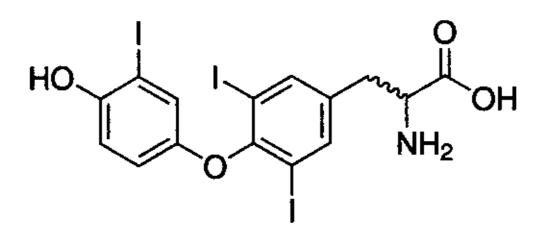


Figure 5: Structure of Triiodothyronine (T₃).

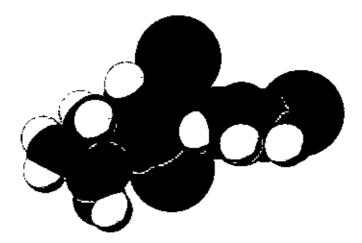


Figure 6: 3D structure of Triiodothyronine, T₃ (3, 3', 5-triiodo-L-thyronine).

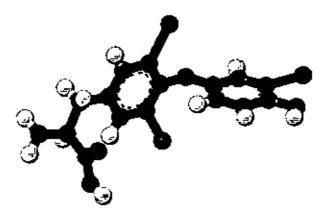


Figure 7: 3D-balls structure of Triiodothyronine, T₃ (3, 3', 5-triiodo-L-thyronine).

(i) Circulation

Most of the thyroid hormone circulating in the blood is bound to transport proteins. Only a very small fraction of the circulating hormone is free (unbound) and biologically active, hence measuring concentrations of free thyroid hormones is of great diagnostic value.

When thyroid hormone is bound, it is not active, so the amount of free T_y/T_4 is what is important. For this reason, measuring total thyroxine in the blood can be misleading (Table 1).

Table 1: Measuring total thyroxine in the blood.

Туре	Percent
bound to thyroxine-binding globulin (TBG)	70%
bound to transthyretin or "thyroxine-binding prealburnin" (TTR or TBPA)	10-15%
paraalbumin	15-20%
unbound T_4 (fT_4)	0.03%
unbound T_3 (fT_3)	0.3%

 T_3 and T_4 cross the cell membrane, probably via amino acid importins, and function via a wellstudied set of nuclear receptors in the nucleus of the cell, the thyroid hormone receptors.

 T_1a and T_0a are positively charged and do not cross the membrane; they are believed to function via the trace amine-associated receptor TAAR1 (TAR1, TA1), a G-protein-coupled receptor located in the cell membrane.

Another critical diagnostic tool is measurement of the amount of thyroid-stimulating hormone (TSH) that is present.

(ii) Function

The thyronines act on nearly every cell in the body. They act to increase the basal metabolic rate, affect protein synthesis, help regulate long bone growth (synergy with growth hormone), neuronal maturation and increase the body's sensitivity to catecholamines (such as adrenaline) by permissiveness. The thyroid hormones are essential to proper development and differentiation of all cells of the human body. These hormones also regulate protein, fat, and carbohydrate metabolism, affecting how human cells use energetic compounds. They also

stimulate vitamin metabolism. Numerous physiological and pathological stimuli influence thyroid hormone synthesis.

Thyroid hormone leads to heat generation in humans. However, the thyronamines function via some unknown mechanism to inhibit neuronal activity; this plays an important role in the hibernation cycles of mammals and the moulting behaviour of birds. One effect of administering the thyronamines is a severe drop in body temperature.

(iii) Related diseases

Both excess and deficiency of thyroxine can cause disorders.

- Thyrotoxicosis or hyperthyroidism (an example is Graves Disease) is the clinical syndrome caused by an excess of circulating free thyroxine, free triiodothyronine, or both. It is a common disorder that affects approximately 2% of women and 0.2% of men.
- Hypothyroidism (an example is Hashimoto's thyroiditis) is the case where there is a deficiency of thyroxine, triiodiothyronine, or both.
- Clinical depression can sometimes be caused by hypothyroidism. Some research has shown that T₃ is found in the junctions of synapses, and regulates the amounts and activity of serotonin, norepinephrine, and Gamma-aminobutyric acid (GABA) in the brain.

(iv) Medical use of thyroid hormones

Both T_3 and T_4 are used to treat thyroid hormone deficiency (hypothyroidism). They are both absorbed well by the gut, so can be given orally. Levothyroxine, the most commonly used synthetic thyroxine form, is a stereoisomer of physiological thyroxine, which is metabolised more slowly and hence usually only needs once-daily administration. Natural desiccated thyroid hormones, also under the commercial name Armour Thyroid, is derived from pig thyroid glands, it is a "natural" hypothyroid treatment containing 20% T₃ and traces of T₂, T₁ and calcitonin. Also available are synthetic combinations of T3/T4 in different ratios (such as Thyrolar) and pure-T3 medications (Cytomel).

Thyronamines have no medical usages yet, though their use has been proposed for controlled induction of hypothermia which causes the brain to enter a protective cycle, useful in preventing damage during ischemic shock.

Synthetic thyroxine was first successfully produced by Charles Robert Harington and George Barger in 1926.

(v) Production of the thyroid hormones

Thyroid hormones (T_4 and T_3) are produced by the follicular cells of the thyroid gland and are regulated by TSH made by the thyrotrophs of the anterior pituitary gland. Because the effects of T_4 in vivo are mediated via T_3 (T_4 is converted to T_3 in target tissues; T_3 is 3- to 5- fold more active than T_4).

Thyroxine (3,5,3',5'-tetraiodothyronine) is produced by follicular cells of the thyroid gland. It is produced as the precursor thyroglobulin (this is *not* the same as TBG), which is cleaved by enzymes to produce active T₄.

Thyroxine is produced by attaching iodine atoms to the ring structures of tyrosine molecules. Thyroxine (T₄) contains four iodine atoms. Triiodothyronine (T₃) is identical to T₄, but it has one less iodine atom per molecule.

Iodide is actively absorbed from the bloodstream by a process called iodide trapping. In this process, sodium is cotransported with iodide from the apical side of the membrane into the cell and then concentrated in the thyroid follicles to about thirty times its concentration in the blood. Via a reaction with the enzyme thyroperoxidase, iodine is bound to tyrosine residues in the thyroglobulin molecules, forming inonoiodotyrosine (MIT) and diiodotyrosine (DIT). Linking two molecules of DIT produces thyroxine. Combining one particle of MIT and one particle of DIT produces triiodothyronine.

- DIT + MIT \rightarrow r-T₃ (biologically inactive)
- MIT + DIT \rightarrow triiodothyronine (usually referred to as T₃)
- DIT + DIT \rightarrow thyroxine (referred to as T₄)

Introduction

Proteases digest iodinated thyroglobulin, releasing the hormones T_4 and T_3 , the biologically active agents central to metabolic regulation. Thyroxine is supposedly a prohormone and a reservoir for the most active and main thyroid hormone T_3 . T_4 is converted as required in the tissues by deiodinases. Deficiency of deiodinase can mimic an iodine deficiency. T_3 is more active than T_4 and is the final form of the hormone, though it is present in less quantity than T_4 .

(vi) Effect of iodine deficiency on thyroid hormone synthesis

If there is a deficiency of dietary iodine, the thyroid will not be able to make thyroid hormone. The lack of thyroid hormone will lead to decreased negative feedback on the pituitary, leading to increased production of thyroid stimulating hormone, which causes the thyroid to enlarge (goiter). This has the effect of increasing the thyroid's ability to trap more iodide, compensating for the iodine deficiency and allowing it to produce adequate amounts of thyroid hormone.

(vii) Effects of thyroxine

- Increases cardiac output
- Increases heart rate
- Increases ventilation rate
- Increases basal metabolic rate
- Potentiates the effects of catecholamines (i.e increases sympathetic activity)
- Potentiates brain development
- Thickens endometrium in females

(3) 3-Iodothyronamine (T1MA)

3-iodothyronamine (T_1AM) is an endogenous thyronamine (Fig. 8). T_1AM is a high-affinity ligand for the trace amine-associated receptor TAAR1 (TAR1, TA1), a G protein-coupled receptor^{19,20}. When injected into rodents, T_1AM causes a rapid drop in body temperature and alterations in blood pressure and heart rate²¹.

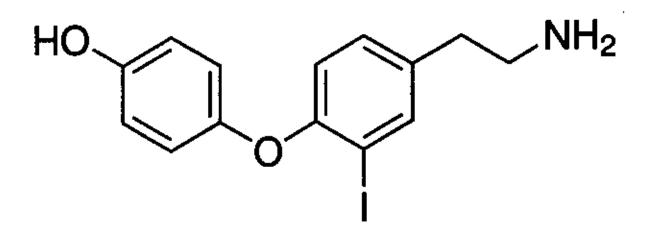


Figure 8: Structure of 3-iodothyronamine (T1AM)

 T_1AM may be part of a signaling pathway to modulate cardiac function as the compound can induce negative inotropic effects and decrease cardiac output²².

(4) Monoiodotyrosine

Monoiodotyrosine (Fig. 9) an iodinated amino acid and a precursor of thyroid hormone. Two units can combine to form 3, 3'-diiodothyronine. It is abbreviated "MIT"²³.

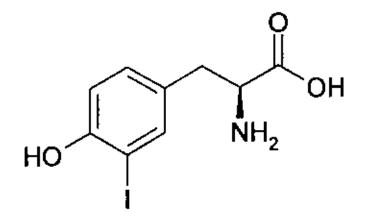


Figure 9: Structure of Monoiodotyrosine

(5) Diiodotyrosine

Diiodotyrosine (Fig. 10) is a modulator of thyroid peroxidase²⁴.

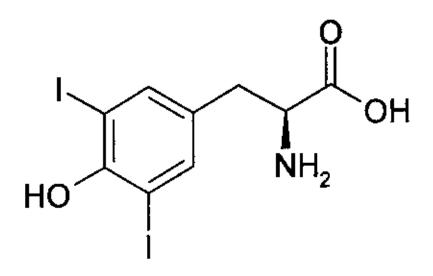


Figure 10: Structure of Diiodotyrosine.

(6) 3,3'-Diiodothyronine

3, 3'-Diiodothyronine (Fig. 11) is a metabolite of thyroid hormone. It is formed from the breakdown of tri-iodothyronine (T₃) (Scheme 2). Levels can be affected in certain disease states²⁵.

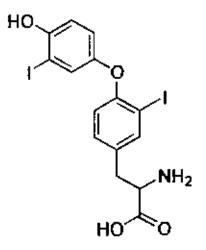
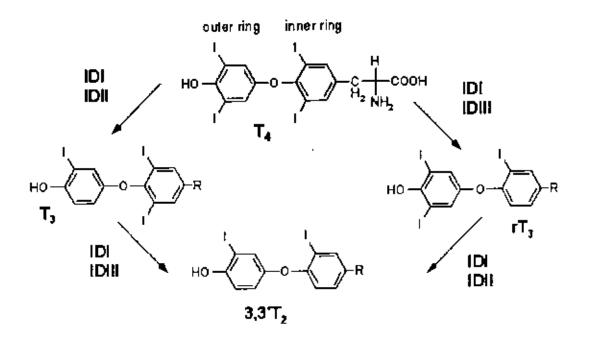



Figure 11: Structure of 3,3'-Dilodothyronine.

Scheme 2: 3, 3'-Diiodothyronine made from T4 (Thyroxine).

(7) 2-[4-(4-hydroxy-3-iodophenoxy)-3, 5-diiodophenyl]acetic acid²⁶

2-[4-(4-hydroxy-3-iodophenoxy)-3, 5-diiodophenyl]acetic acid (Fig. 12) was use as a Thyroid hormone receptor beta-1.

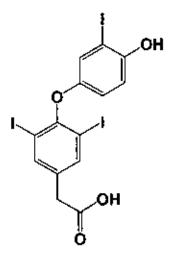


Figure 12: Structure of [4-(4-Hydroxy-3-Jodo-Phenoxy)-3, 5-Diiodo-Phenyl]-Acetic Acid.

Function of this compounds:

- Thyroid hormone receptor activity
 Signal transducer activity
 Receptor activity
 Ligand-dependent nuclear receptor activity
 Steroid hormone receptor activity
 Binding
 Nucleic acid binding
 DNA binding
- 9. Transcription factor activity

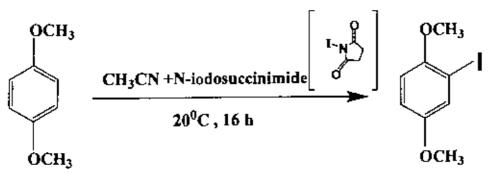
1.3. Synthesis of organic iodo-compound and their derivatives by various methods:

Iodination of aromatic compounds has been the subject of numerous studies due to the interest of iodo derivatives as substrates for reactions involving C-C bond formation mainly mediated by transition metals. These derivatives have been used in the synthesis of many interesting natural products and bioactive compounds. Concerning iodination procedures, the moderate reactivity of iodine with aromatic substrates determined the use of different activating agents to effectively succeed in the goal. Iodonium donating reagents and other more sophisticated procedures have also been employed. The wide range of methods described so far revealed the lack of an efficient and general enough procedure.

1.3a. Iodination of Methoxybenzenes with N-Iodosuccinimide in Acetonitrile

In 1996, M. C. Carreno *et al.*²⁷ reported that N-iodosuccinimide (NIS) as iodination agent. The ability of NIS to achieve nuclear iodination of activated aromatic compounds under very mild conditions and in good to excellent yields. Whereas NCS (N-chlorosuccinimide) and NBS (N-bromosuccinimide) have been extensively used for many years as halogenating agents for aromatic substrates under different conditions, aromatic iodinations using N-iodoamides have been used in a lesser extent.

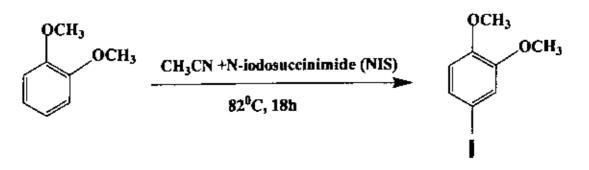
Ł


Methoxy aromatic derivatives used in this study were commercially available. These compounds were submitted to reaction with NIS in CH_3CN at different temperatures. The results are collected in the **Table 2**.

Representative procedure

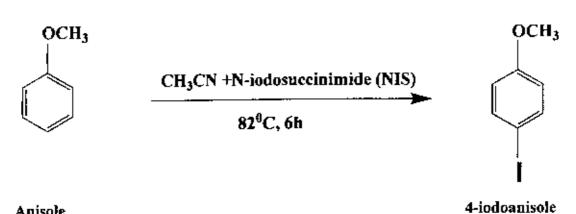
To a solution of 1 mmol of the aromatic compound in 4 ml of CH_3CN , 1.5 mmol NIS was added and the reaction was stirred at the desired reaction temperature. After the time required in each case, the solvent was evaporated and ether added. The etheral phase was washed with aqueous NaHSO₃ solution followed by water. The ether layer was dried over MgSO₄ and evaporated to give the crude compound.

Table 2: Iodination of Aromatic ring with CH3CN/ N-iodosuccinimide (NIS)

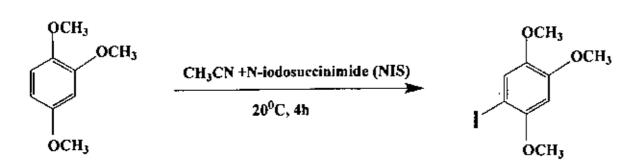

Substrate	Temp.	1 ime	Yiel (%)	Producte	Scheme No
1,4-MeO-benzene	20°C	16h	95%	2-iodo-1,4-McO-benzene	3
1,2-MeO-benzenc	82°C	18h	85%	4-iodo-1,2- MeO-benzene	4
Anisole	82°C	6h	95%	4-iodoanisolc	5
1,2,4-McO-benzene	20°C	4h	95%	5-iodo-1,2,4-MeO-benzene	6

1, 4-MeO-benzene

2-iodo-1, 4-MeO-benzene



1, 2-MeO-benzene


4-iodo-1, 2- MeO-benzene

Scheme 4

Anisole

Scheme 5

1, 2, 4-MeO-benzene

5-iodo-1, 2, 4-MeO-benzene

Introduction

1.3b. A Novel Iodination of Aromatic Rings Using Iodine/Metallic Nitrate

In 1998, Mehnan S. *et. al.*²⁸ reported a new and convenient synthetic method for the iodination of an aromatic ring using I₂ and nitrate. To a solution of anisole (3 mmol) and I₂ (1.7 mmol) in acetic acid (10 mL) was added sodium nitrate (0.3 mmol) at room temperature. The reaction mixture in a condenser-attached flask was heated at 85^oC for 6 hrs under a deoxygenated argon atmosphere. During the reaction, three additional portions of sodium nitrate (3x 0.3 mmol) were added respectively at the first every hour. The resulting mixture was treated with 10% aqueous NaHSO₃ solution (20 mL) and extracted with ether (3x 30 mL). The organic extracts were washed with brine (20 mL) and dried with Na₂SO₄. Evaporation of solvents in vacuo gave the crude iodination product. The crude product was purified by flash chromatography (hexaneibenzene) with silica gel to afford 4-iodoanisole in 92% yield.

The new method, various aromatic rings with an electron-donating group, they (Mehnan S. *et. al.*) can be successfully iodinated in good yield in the absence of strong acid (**Table 3**). It is quite peculiar that neither a strong acid nor acetic anhydride is necessary for the iodination. And the reaction needs only cheap and readily available chemicals. Moreover, the directional selectivity of iodination is excellent to produce para-iodoaromatic ring except for toluene.

A change of the counter-cations of nitrate (NaN0₃, KN0₃ or Ca(NO₃)₂) makes little effect on the result of iodination. Thus, it is apparent that l_2 is activated by the action of NO₃⁻ not by any metallic cations.

Substrate	Nitrate	mmol of Nitman	Temp. (°C)	Time (br)	Yield (%)	Product	
uritole		12	85	6	92	4-jodoenisole	
antsole	NaNO,	0.6	85	4	92	4-iodomianie	
anizola	KNO.	12	85	6	90	4-indomisole	
misole	C.(NO,), 4H,O	0.6	85	· 6	92	4-iodomisola	
misole		0	85	6	0	4-iodomisole	
diphenylether	NaNO,	2.4	85	21	70"	4,4°-dilodo-diphenylether	
9-methylcastuzole	NaNO	0.6	30	21	87	3,6-diiodo-9-methylembazole	
9-henrylcarbazole	NaNO,	0.6	30	10	88,	9-benzyl-3,6-diiodocarbazole	
caline	Cr(NO ₃), 4H,O	0.6	65	30	37	4-iodoacetanilide	
acetanilide	Ca(NO ₁), 4H ₂ O	0.6	105	24	47	4-iodoacetanilide	
durene	NaNO,	1.2	116	6	65	1-iodo-2,3,5,6-tetramethylbenzene	
mesitylene	NaNO,	1.2	116	4	81	1-iodo-2,4,6-trimethylbenzene	
m-ryime	Ca(NO ₂), 4H,O	1.2	116	2	90	1-iodo-2,4-dimethylbenzene	
tohiene	Ca(NO ₁), 4H ₂ O	3.0	116	25	61	iodotoluenes	
chlorobenzene	Ca(NO ₁), 4H ₂ O	3.0	116	13	0	1-chloro-4-jodobenzene	

Table 3. Iodination of Aromatic Rings with I2/NO3"

*3.0 mmol of substrate, 1.7 mmol of I,, nitrate and 10 mL of acetic acid were used under an argon atmosphere unless otherwise specified. ^byields of pure and isolated products. 'All the structures were identified by IR, NMR data and melting points. ⁴Oxygewn as bubbled through the reaction mixture.'3.3 mmol of I, were used. 'GC yield. ⁵para: ortho=61: 39.⁴ mp 174-175 ^oC (heptane /benzene); IR (KBr) 554 cm⁻¹;¹H NMR (100 MHz, CDCl₃ /TMS)∂ 5.36 (s, 2H), 7.00-7.22 (m, 7H). 7.62 (d, 2H), 8.28 (s, 2H); C 44.82%, H 2.57%, N 2.75% for C₁₉H₁₃NI₂ found C 44.68%, H 2.63%, N 2.46%.

1.3c. Oxidative Iodination of Aromatic Amides Using Sodium Perborate or Hydrogen Peroxide with Sodium Tungstate

Philipp Beinker et al ²⁹in 1998, had reported the *Iodination using Sodium Perborate*.- Sodium perborate (3 g) was dissolved in a mixture of glacial acetic acid (15 cm³) and acetic anhydride (10 cm³). A solution of potassium iodide (1.4 g) and sodium tungstate (300 mg) in water (10 cm³) was added together with conc. sulfuric acid (5 cm³). The substrate (7.5 mmol) in glacial acetic acid (10 cm³) was added and the solution was warmed to 50° C over 1 h. The mixture was poured into water (100 cm³) and the excess iodine was destroyed with sodium thiosulfate and the solution was neutralized with sodium hydroxide. The product was filtered and recrystallized from ethanol. The products (**Table 4**) were identified by their ¹H NMR spectra and melting point data. Occasionally it was necessary to extract the product with chloroform in this last step. The extract was then washed with water, dried over sodium sulfate and the solvent evaporated to give the product.

Introduction

Also reported the Iodination Using Hydrogen Peroxide. - Hydrogen peroxide $(30\%, 3 \text{ cm}^3)$ was dissolved in glacial acetic acid (20 cm^3) , cooled in ice and treated with conc. sulfuric acid (1 cm^3) . A solution of potassium iodide (1.6 g) and sodium tungstate (300 mg) in water (10 cm^3) was added. After 15 min a solution of the substrate (10 mmol) in glacial acetic acid (10 cm^3) was added and the mixture was warmed to 50° C for 1 h. The mixture was poured into water (100 cm^3) and the excess iodine was destroyed with sodium sulfite. The solution was neutralized with sodium hydroxide and the iodo derivative filtered and recrystallized. The products (Table 4) were identified by their ¹H NMR spectra and mp data.

		Sodiu1 perborate		HydrogeP		Lit.
Substrate	Product	Yield (%)	Mp/ ^a c	Yield (%)	Mp/ ⁰ C	mp
Acetanilide	4-lodoacetanilide	83	180	96	175	180
2-Methylacetanilide	4-lodo-2-methylacetanilide	51	165	87	165	162
3-Melhylacetanılıde	4-loco-3-methylacetanilide	71	138	87	135	134
4-Methylacetanilide	2-lodo-4-methylacetanilide	35 .	130	40	125	131
2,3-Dimethylacetanilide	2,3-Dimethyl-4-iodoacetanilide	43	155	69	158	
-	2,4-Dimethyl-6-iodoacetanilide	30	86	56	85	85
2,4-Dimethylacetanilide	2,6-Dimethyl-3-iodoacetanilide	51	190	72	190	
2,6-Dimethylacetanilide 2-Nitroacetanilide	4-jodo-2-nitroaniline	45	121	-	-	123
4-Nitroacetanilide	2-lodo-4-nitroaniline	38	114	-	-	115
4-lzth gaoerai illiad	2-todo-4-ntroacetanilide			77	200	202
MethyD N- acetylanthranilate	MethyD 2-acetylamino-5- iodobenzoate	31	110	37	110	

Table 4. Iodination of aromatic amides

*Dictionary of Organic Compounds, ed J. Buckingha1 and F. Macdonald, Chapman and Hall, London. 6th edn., 1996.

1.3d. Oxidative Iodination of Aromatic Amines and Other Arenes, with Sodium Percarbonate as the Oxidant

Agnieszka Zielinska and Lech Skulski³⁰ reported that Four easy eco-friendly laboratory procedures are presented for the oxidative iodination of various arenes with molecular iodine, in the presence of sodium percarbonate as the oxidant. The purified mono- or diiodinated products were obtained in 60-92% yields. The four general procedures given below:

Introduction

General Procedure 1, applicable for some arylamines (Table 5). Powdered diiodine (0.51 g, 2.0 mmol; 0% excess) was suspended in a mixture made of ethyl acetate (8 mL) and glacial acetic acid (10 mL), then sodium percarbonate (0.31 g, 3.0 mmol; 50% excess) was slowly added portionwise, with stirring, within 20-30 min., next followed by an *aromatic amine* (4.4 mmol; 10% excess)[when *aniline* was diiodinated, only 2.2 mmol of aniline was added]. The stirring was continued for 30 min at r.t., next the temperature was raised to 45-50 °C, and the stirring was continued for a further 3.5 h. After cooling, the reaction mixture was slowly added to an aq. Na₂SO₃ solution (1 g Na₂SO₃ dissolved in 70 mL cold water), with stirring. The precipitated crude products were collected by filtration, washed well with cold water until the filtrates were neutral, dried preliminarily by the suction, an next air-dried in the dark; they were recrystallized from either hexane or anhydr. ethanol. If the semisolid crude products could not be efficiently isolated, they were extracted with CHCl₃ (3 x 10 mL), the combined extracts were dried over anhydr. MgSO₄, filtered, the solvent was distilled off, and the solidified residues were recrystallized from hexane or anhydr. EtOH.

General Procedure 2, applicable for easily oxidizable arylamines (Table 5). Powdered diiodine (0.51 g, 2.0 minol; 0% excess) was suspended in a mixture made of ethyl acetate (20 mL) and glacial acetic acid (0.11 mL), and sodinm percarbonate (0.31 g, 3.0 mmol; 50% excess) was slowly added portionwise, with stirring, within 20-30 min., next followed by an *aromatic amine* (4.4 mmol; 10% excess). The reaction mixture was stirred at 45-50 $^{\circ}$ C for 4 h. After cooling, it was slowly added, with stirring, to an aq. Na₂SO₃ solution (1 g Na₂SO₃ dissolved in 70 mL cold water). The following workups were the same as above. The crude solid products were recrystallized from anhydr. ethanol or hexane.

General Procedure 3, applicable for benzene and some weakly activated arenes (Table 5). Powdered diiodine (0.51 g, 2.0 mmol; 0% excess) was suspended in a mixture made of glacial acetic acid (6 mL) and acetic anhydride (3 mL), and sodium percarbonate (0.42 g, 4 mmol; 100% excess) was slowly added portionwise, with stirring, within 20-30 min. The stirred reaction mixture was slowly warmed up to 30-35 °C, and an *activated arene* (4.2 mmol; 5% excess) or *benzene* (2.1 mmol; 5% excess – for the diiodination of benzene) were added. After cooling the reaction mixtures to 5-10 °C, the *varied amounts* of concd. (95%) H₂SO₄ were slowly added dropwise with stirring and keeping the given temperature:

21

Introduction

- 5.27 mL H₂SO₄ (9.68 g; 98 mmol) for the iodination of 4-MeC₆H₄COOH and 4-MeC₆H₄COOMe;
- 5.30 mL H₂SO₄ (9.74 g ; 99 mmol) for the iodination of 4-O₂NC₆H₄OMe;
- 5.50 mL H₂SO₄ (10.11 g ; 102 mmol) for the iodination of $4-O_2NC_6H_4Me$;
- 7.50 mL H₂SO₄ (13.8 g; 140 mmol) for the diiodination of PhH.

The reaction mixture was stirred at 45-50 °C for 2 h. After cooling, it was slowly added, with stirring, to an aq. Na₂SO₃ solution (1g Na₂SO₃ dissolved in 50 mL cold water). The precipitates were collected by filtration, washed well with cold water until the filtrates were neutral, air-dried in the dark, and recrystallized from appropriate organic solvents to give the purified solid iodinated products.

General Procedure 4, applicable for benzene and some deactivated arenes (Table 5). Powdered dilodine (0.56 g, 2.2 mmol; 10% excess) was suspended in a mixture made of glacial acetic acid (8 mL) and acetic anhydride (5 mL), and sodium percarbonate (1.25 g, 12 mmol; 100% excess) was slowly added portionwise, with stirring, within 20-30 min. The reaction mixture was slowly warmed up to 30-35 °C, and a deactivated arene (4.0 mmol; 0% excess) or benzene (2.0 mmol; 0% excess – for the dilodination of benzene) were added. After cooling the reaction mixtures to 5-10 °C, the varied amounts of concd (95%) H₂SO₄ were slowly added drop wise with stirring and keeping the given temperature:

- + 3.60 mL H_2SO_4 (6.60 g; 67.5 mmol) for the iodination of PhCOOH;
- 4.67 mL H₂SO₄ (8.58 g ; 87.6 mmol) for the iodination of PhI, PhCOOMe, and 4-MeC₆H₄COOH;
- 4.93 mL H₂SO₄ (9.06 g ; 92 mmol) for the iodination of PhH and 4-O₂NC₆H₄Me.

Next, the reaction mixtures were stirred at 35-40 $^{\circ}$ C for a further 2 h. After cooling, they were slowly added to stirred aq. Na₂SO₃ solutions (2 g Na₂SO₃ dissolved in 50 mL cold water). The precipitates were collected by filtration, washed well with cold water until the filtrates were neutral, dried preliminarily by the suction, air-dried in the dark, and recrystallized from appropriate organic solvents to give the purified solid iodinated products.

Introduction

The final yields given in the **Table 5** for the purified iodinated products were calculated from the amounts of those reactants (arene or diiodine) which were used in the oxidative iodination reactions in strictly stoichiometric quantities (0% excess).

Substrate	Procedure	Product	Yield (%)	MP/(S)" (°C)	Lit, mp ³¹ (°C)
PhNH ₂	1	4-IC6HINH2	68	63-65/(H)	62-63
PhNH ₂	1	2,4-I2C6H3NH2	85	93-94/(H)	95-96
4-ìC ₆ H ₄ NH ₂	1	2,4-I ₂ C ₆ H ₃ NH ₂	78	96-97/(H)	95-96 ³¹
2-BrC6HINH2	1	4-I-2-BrC₅H₃NH₂	67	71-74/(G)	71-72
2-MeC ₆ H ₄ NH ₂	1	4-I-2-MeC ₆ H ₃ NH ₂	86	86-87/(H)	86-88
PhNMe ₂	2	4-IC6HINMe2	60	81-83/(E)	81-82
2-CIC ₆ H ₄ NH ₂	2	4-1-2-CIC ₆ H ₃ NH ₂	73	60-61/(H)	62-63
2-CK 6144 4112 PhH	3	1,4-l ₂ C ₆ H ₄	83	128-130/(L)	129
PhH	4	1,4-1 ₂ C6H4	83	128-130/(L)	129
PhI	4	1,4-I ₂ C ₆ H ₄	94	128-129/(L)	129
PhCOOH	4	3-IC6H₄COOH	93	185-187/(C)	187-188 ³²
	4	3-I-4-MeC ₆ H ₃ COOH	79	208 -2 09/(C) 208-210 ³²
4-MeC6H₄COOH PhCOOMe	4	3-IC6H4COOMe	60	52-53/(L)	50-52
	3	2-I-4-NO ₂ C ₆ H ₃ Me	75	51-52/(N)	54-55
4-NO₂C6H₄Me	4	2-1-4-NO ₂ C ₆ H ₃ Me	87	51-53/(N)	53-54
4-NO ₂ C ₆ H₄Me	3	- · ·	92	95-96/(L)	96-97
4-NO2C6H4OMe 4-MeOC6H4COOMe		2-I-4-NO ₂ C ₆ H ₃ OMe 3-I-4-MeOC ₆ H ₄ COOMe	85	93-95/(N)	94-96

Table 5: Pure Iodinated Products Prepared

*Solvent used for recrystallization: C: CC14; E: EtOH; G: heptane; H: hexane; L: EtOH-H₂O (4:1); N: EtOH-H₂O (3:2).

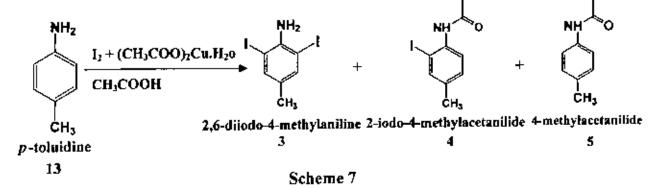
CHAPTER-2

PRESENT WORK RESULTS AND DISCUSSION

Present work: Synthesis of substituted 2-iodoaniline and 2-iodoacetanilide

2.1. Rationale

Aromatic iodides are a considerable number of different methods, direct or indirect, for their synthesis and they are widely used in chemical laboratories and sometimes, also in chemical industry and medicine¹. Moreover, they are able to form a large variety of stable, aromatic polyvalent iodine compounds, which have found increasing applications in modern organic synthesis².


Much work has been reported on the bromination and chlorination of aromatic compounds. However, since it is known that iodination is usually difficult accomplish due to the reducing effect of the hydrogen iodide produced, the iodination of aromatic compounds has been carried out in the presence of an oxidizing reagent such as nitric acid, iodic acid, sulfur trioxide or hydrogen peroxide³³. Many procedures are available for the iodination of activated aryl compounds by iodine-thallium(I) acetate³⁴, iodine-mercury(II) acetate³⁵, iodine-silver(I) acetate³⁶, iodineammonium hexanitratocerate(IV)³⁷ and alkali metal iodide-ammonium hexanitratocerate(IV)³⁷. Moreover, Bird and Surridge recently reported³⁸ that the iodination of aromatic compound with iodine and copper(II) halide gave the aryl iodides. Still more recently, it was reported the iodination of the less reactive substrates with iodine-aluminum(III) and copper(II) chloride³⁹ gave the corresponding aryl halide.

Due to the natural occurrence and biological importance of the aromatic iodide derivatives and lack of convenient aromatic iodination precursors, we were interested in developing a general and facile method for the synthesis of aromatic iodide derivatives. We became interested in the synthesis of substituted 2-iodoaniline and 2-iodoacetanilide derivatives through iodine and copper(II) acetate in acetic acid reactions.

RESULTS AND DISCUSSION

2.2. Synthesis of substituted 2-iodoaniline, 2-iodoacetanilide and acetanilide from *p*-toluidine

Compound 3, 4, 5 were prepared by refluxing the solution mixture of p-toluidine 13, iodine, copper (II) acetate and acetic acid in oil bath with stirring 9 hr at 120° C as shown in the Scheme 7.

After usual workup and purification by column chromatography on silica gel, iodo-p-toluidine derivatives 3, 4, 5 were obtained (Table 6).

Entry	Substrate	Product	Yield (%)
			35
1	NH ₂ CH ₃		26
	13		22

Table 6: Preparation of disubstituted or monosubstituted aniline or acetanilide.

2.2a. Characterization of 2, 6-diiodo-4-methylaniline 3

A light yellowish crystal was obtained (yield 35%), mp. 110° C, which was not moisture sensitive. The structure of compound 3 was established by spectral data. In UV (Fig. 13a) spectrum, the value was found in the range of λ_{max} 400.35, 202.00 nm indicated amino group.

The IR spectrum (KBr) (Fig.13b) of this compound exhibited absorption bands at $v_{max}3406.1$ and 3317.3 cm⁻¹ for Stretching of amine proton (-NH₂), 3037.7 and 2898.8 cm⁻¹ for stretching of methyl and aromatic (methyne) protons (-CH₃, -CH), 1608.5,1460 and 1566.1 cm⁻¹ for stretching and bending of aromatic ring and primary aromatic amine respectively (C-C and N-H), 700.1 and 846.7 cm⁻¹ for waging of primary aromatic amine (N-H).

The 'H NMR spectrum (Fig. 13c) (400 MHz, CDCl₃) of the compound 3 explained the chemical shift position $\delta_{\rm H}$ 7.45 (s, 2H, C-3 & C-5) two methyne group in aromatic ring (-CH) which are chemically equivalent, δ 4.19 (s, 2H) for the presence of primary amine (-NH₂) group, δ 2.15 (s, 3H) for presence of methyl group (Ar-CH₃) that is assured structure of the compound 3.

The structure of the compound 3 was further confirmed by its ¹³C NMR data (Fig. 13d) (100 MHz, CDCl₃) at the chemical shift position of δ 143.83 due to the presence of (C-NH₂) carbon, at δ 139.77 designed for C-3 & C-5 was similar chemical environment, δ 130.97 and 19.22 due to the presence of (C-CH₃) and (Ar-CH₃) carbon respectively and δ 81.45 also indicated that similar chemical environment (C-2 & C-6) of Ar-I carbon.

2.2b. Characterization of 2-iodo-4-methylacetanilide 4

A brownish colored crystal was obtained (yield 26%) and mp. 125-130^oC. The structure of compound 4 was recognized from its spectral data. In UV spectrum (Fig.14a) the value was found in the range of 401.85 & 199.99 nm.

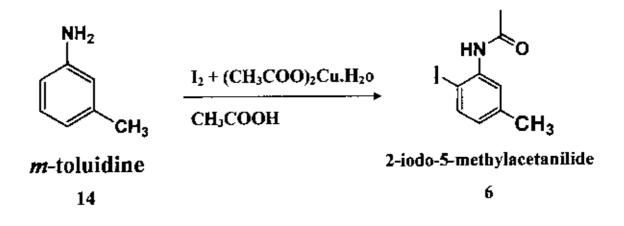
The IR spectrum (KBr) (Fig. 14b) demonstrated following characteristic peaks: v_{max} 3265.3cm⁻¹ (Stretching secondary amine, -NH-), 1654.8 cm⁻¹ for (stretching C=O), 1523.7 cm⁻¹ for stretching of (-C=C-, aromatic ring) and 1290.3 cm⁻¹ for stretching of aromatic amine (C-N).

In the ¹H NMR spectrum (Fig. 14c) (400 MHz, CDCl₃) of this compound 4 the chemical shift was observed at δ 7.99 (d, 1H, *J*=7.96 Hz) and 7.12 (d, 1H, *J*=8.09Hz) for one proton doublet (-CH-) of C-6 & C-5 respectively, 7.59 (s, 1H) for secondary amine group of (-NH-), 7.32 (s, 1H) for -CH- of (C-3), 2.26 (s, 3H) for three proton of methyl (Ar-CH₃) group in aromatic ring and 2.20 (s, 3H) for three proton of -CO-CH₃ group.

The compound was further established from its ¹³C NMR spectrum (Fig. 14d) (100 MHz, CDCl₃). The chemical shifts of this compound were showed following characteristic peak: $\delta_{\rm C}$ 168.15 (-C=O), 145.98 (C-NH), 138.96 (C-6), 135.79 (C-CH₃, C-4), 129.92 (C-3), 122.12 (C-5), 90.29 (Ar-I, C-2), 24.67 (-CO-CH₃) and 20.30 (Ar-CH₃). The ¹³C NMR spectrum indicated the presence of nine carbons in the molecule corresponding to the molecular formula C₉H₁₀IN0, thereby suggesting the formation of the compound **4**.

On the basis of complete analysis of the UV, IR, ¹H NMR and ¹³C NMR spectra, the structure of this compound was accorded as 2-iodo-4-methylacetanilide 4.

2.2c. Characterization of 4-methylacetanilide 5


The product 5 was a brownish crystal (yield 22%), mp. 148-151°C. The structure of compound 5 was assigned by spectral data. In the UV spectrum (Fig. 15a) the absorption was found in the range of λ_{max} 201.04 nm.

The IR spectrum (KBr) (Fig. 15b) showed 3292.3 cm⁻¹ (-NH-) of the acetanilide group, and 1662.5 cm⁻¹ due to the presence of (-C=O) group in the acetanilide.

The ¹H NMR spectrum (Fig. 15c) (400 MHz, CDCl₃) of this compound 5 showed the chemical shift at $\delta_{\rm H}$ 7.52 (s, 1H) for secondary amine group (-NH-), δ 7.35 (d, 2H, J=8.23 Hz) for -CH- of C-2 & C-6 proton, δ 7.08 (d, 2H, J = 8.07 Hz) for C-3 & C-5 proton and δ 2.28 (s, 3H) & δ 2.21 (s, 3H) displayed methyl groups (Ar-CH₃ and -COCH₃) respectively, which confirmed the structure of compound 5. The presence of eleven hydrogen atoms was in good agreement with the molecular formula of C₉H₁₁N0.

2.3. Synthesis of 2-jodo-5-methylacetanilide from m-toluidine

Compound 6 were prepared by refluxing the solution mixture of *m*-toluidine 14, iodine, copper(II) acetate and acetic acid in oil bath with stirring 10 hr at 130° C as shown in the Scheme 8.

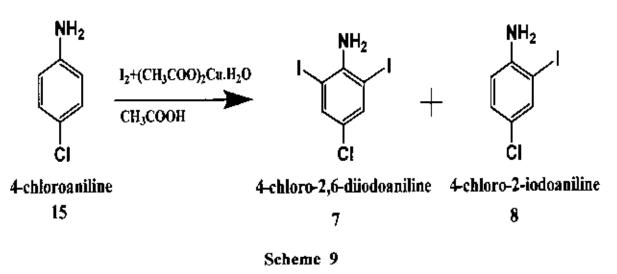
After usual workup and purification by column chromatography on silica gel, iodo-m-toluidine derivative 6 (55%, yield) was obtained.

1

2.3a. Characterization of 2-iodo-5-methylacetanilide 6

A brownish crystalline product was obtained (yield 55%). The structure of compound 6 was confirmed by UV, IR, and NMR data. In UV spectrum (Fig. 16a) the λ_{max} value was found in the range of 400.99 & 201.08 nm.

The IR spectrum (**Fig. 16b**) of the compound **6** showed the following absorption bands: v_{max} 3315.4 (-NH) cm⁻¹ due to the v_{NH} of the acetanilide group, and a band at 1668.3 cm⁻¹ due to the presence of (-C=O) group in the acetanilide.


The ¹H NMR spectrums (Fig. 16c) (400 MHz, CDCl₃) of the compound 6 revealed that one proton doublet at δ 7.67 (d, 1H, J = 8.5 Hz, C-3) and δ 7.42 (d, 1H, J = 1.94, C-6) respectively due to aromatic proton. δ 7.46 (s, 1H) indicted the secondary amine –NH-, δ 7.03 (dd, 1H, J = 2.1 Hz, 8.3 Hz,) for one proton double doublet (-CH-) of C-4, δ 2.36 (s, 3H, Ar-CH₃) and δ 2.13 (s, 3H, COCH₃) indicated the presence of three protons singlet of terminal (-CH₃) methyl groups which confirmed the structure of product 6.

The structure of the compound further confirmed by its ¹³C NMR spectrum (Fig. 16d) (100 MHz, CDCl₃). It was observed that the chemical shift at δ_C 168.52 (C=O), 142.03 (C-NH), 139.11 (C-3), 138.11 (C-CH₃), 21.11 (C-6), 119.02 (C-4), 94.43 (Ar-I), 28.13 (COCH₃) and 24.58 (Ar-CH₃). So the ¹³C NMR spectrum indicated the presence of nine carbon atoms in the molecule corresponding to the molecular formula C₉H₁₀IN0, thereby suggesting the formation of compound 6.

29

2.4. Synthesis of 4-chloro-2,6-diiodoaniline and 4-chloro-2-iodoaniline from 4-chloroaniline

Compound 7, 8 were prepared by refluxing the solution mixture of 4-chloroaniline 15, iodine, copper(II) acetate and acetic acid in oil bath with stirring 11 hr at 130° C as shown in the Scheme 9.

After usual workup and purification by column chromatography on silica gel, iodo-4-chloroaniline derivative 7, 8 was obtained (Table 7).

Table 7: Preparation of iodo-4-chloroaniline derivatives 7, 8.

Entry	Substrate	Product	Yield (%)	
1	NH ₂		30	
	CI 15		45	

2,4a. Characterization of 4-chloro-2, 6-diiodoaniline 7

Yellowish amorphous powder was obtained (yield 30%), mp. 127-129^oC. The structure of compound 7 was interpreted by spectral data. In UV spectrum (Fig. 17a) the λ_{max} value was found in the range of 400.89 & 199.92 nm.

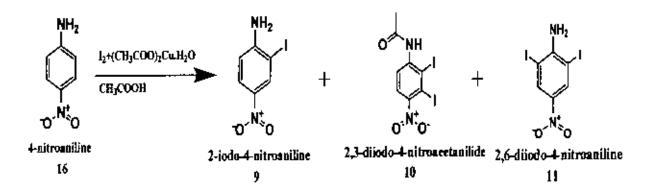
The IR spectrum (KBr) (Fig. 17b) of this compound assigned the following characteristic absorption peaks: v_{max} 3408.0 and 3317.3 cm⁻¹ for stretching of primary amine (-NH₂) group. A strong band at 860.2 cm⁻¹ represents the chlorine-carbon stretching.

The ¹H NMR spectrum (Fig. 17c) (400 MHz, CDCl₃) of this compound expressed following chemical shift at $\delta_{\rm H}$ 7.60 (s, 2H) indicated that two proton of similar chemical environment of C-3 & C-5 carbon in the benzene ring and δ 4.59 (s, 2H) also expressed primary amine (-NH₂) group with benzene ring as a terminal amine.

The compound 7 also established by following characteristic ¹³C NMR spectrum (Fig. 17d) (100 MHz, CDCl₃): $\delta_{\rm C}$ 145.16 (C-NH₂), 138.33 (C-3 & C-5), 123.25 (C-Cl) and 80.25 (C-I). So the ¹³C NMR spectrum indicated the presence of nine carbons in the molecule corresponding to the molecular formula C₉H₄ClI₂N, thereby suggesting the formation of compound 7.

2.4b. Characterization of 4-chloro-2-iodoaniline 8

The brownish crystalline product was obtained (yield, 45%), mp. 40-42^oC. The structure of compound 8 was interpreted by spectral data. In UV spectrum (Fig. 18a) the λ_{max} value was found in the range of 240.65 & 200.51 nm.


The IR spectrum (KBr) (Fig.18b) of the compound 8 exhibited the absorption at $v_{max}3408.0$ and 3317.3 cm⁻¹ for stretching of primary amine (-NH₂) group. A strong band at 868.0 cm⁻¹ represents the chlorine-carbon stretching.

The ¹H NMR spectrum (**Fig. 18c**) (400 MHz, CDCl₃) of this product 8 showed that a one proton doublet at $\delta_{\rm H}$ 7.58 (d, 1H, J = 2.3Hz, C-3) & 6.64 (d, 1H, J= 7.1Hz, C-6) respectively and one proton double doublet at 7.08 (dd, 1H, J= 2.3Hz, 8.5Hz, C-5), which attached in benzene ring. δ 4.07 (s, 2H) also indicated primary amine (-NH₂), attached with benzene ring as a terminal. The spectra displayed the presence of five hydrogen corresponding to be confirmed the structure of product 8.

Further analysis the structure of 8 confirmed by its ¹³C NMR spectrum (Fig.18d) (100 MHz, CDCl₃). It was observed that the chemical shift at $\delta_{\rm C}$ 145.57 (C-NH₂), 137.78 (C-3), 129.26 (C-5), 123.18 (Ar-Cl, C-4), 114.99 (C-6) and 83.46 (Ar-I, C-2). So the ¹³C NMR spectrum indicated the presence of nine carbon atoms in the molecule corresponding to the molecular formula C₉H₅ClIN, thereby suggesting the formation of compound 8.

2.5. Synthesis of compound 9, 10, 11 from 4-nitroaniline

Compound 9, 10, 11 were prepared by refluxing the solution mixture of 4-nitroaniline 16, iodine, copper(II) acetate and acetic acid in oil bath with stirring 10 hr at 130° C as shown in the Scheme 10.

Scheme 10

After usual workup and purification by column chromatography on silica gel, iodo-4-nitroaniline derivative 9, 10, 11 was obtained (Table 8).

Entry	Substrate	Product	Yield (%)
	ŅH2		30
1			26
	16		38

Table 8: Preparation of iodo-4-nitroaniline derivatives 9, 10, 11.

2.5a. Characterization of 2-iodo-4-nitroaniline 9

A yellowish crystaline product was obtained (yield 30%), mp. 105-109⁰C. The structure of compound 9 was interpreted by spectral data. In UV spectrum (Fig.19a) the λ_{max} value was found in the range of 240.00 & 200.00 nm.

The IR spectrum (KBr) (Fig. 19b) of this compound assigned the following characteristic absorption peaks: v_{max} 3477.4 and 3371.3 cm⁻¹ (str. Ar-NH₂), 1608.5 and 1488.9 cm⁻¹ (str. Ar-NO₂).

The ¹H NMR spectrum (Fig. 19c) (400 MHz, CDCl₃) of this compound expressed following chemical shift at δ 6.68 (d, 1H, Ar-H, J=8.932 Hz), δ 8.70 (d, 1H, Ar-H, J=2.36 Hz) and δ 8.64 (dd, 1H, Ar-H, J=2.37Hz, 8.91Hz,) indicated the presence of one protons doublet and double doublet of C-6, C-3 and C-5 respectively. Two hydrogen singlet at the position of $\delta_{\rm H}$ 4.83 (s, 2H) showed of primary amine (-NH₂) group as a terminal in benzene ring.

The compound was further established from its ¹³C NMR spectrum (**Fig. 19d**) (100 MHz, CDCl₃). The chemical shifts of this compound were showed following characteristic peak: $\delta_{\rm C}$ 152.33 (C-NH₂), 139.33 (C-NO₂), 80.53 (Ar-I, C-2), 135.51 (C-3), 125.72 (C-5) and 112.27 (C-6) for remaining carbon atoms. The ¹³C NMR spectrum indicated the presence of six carbons in the molecule was corresponding the molecular formula C₆H₃IN₂O₂, thereby suggesting the formation of the compound 9.

2.5b. Characterization of 2, 3-dilodo-4-nitroacetanilide 10

A yellowish crystaline compound 10 was obtained (yield, 26%). It was recognized from its spectral data. In UV spectrum (Fig. 20a) the value λ_{max} was found in the range of 320.00, 241.08 & 202.14 nm.

The IR spectrum (KBr) (Fig.20b) of this compound illustrated following characteristic absorption bands: v_{max} 3276.8 cm⁻¹ stretching for aromatic secondary amine (-NH-) group in acetanilide, 1346.2 and 1506.3 cm⁻¹ stretching for aryl-nitro (-NO₂) group, where as a band at 1683.7 cm⁻¹ due to the presence of keto (-C=O) group in the acetanilide.

The 'H NMR spectrum (Fig. 20c) (400 MHz, CDCl₃) assigned the chemical shift for the determination of molecular structure of compound 10. It is observed that a three protons singlet at $\delta_{\rm H}$ 2.23 (s, 3H) for methyl group of (CH₃), a one proton singlet at δ 7.47 (s, 1H) for secondary amine group of (-NH-), a one proton doublet at δ 7.68 (d, 1H, Ar-H, J=8.9Hz,) showed Ar-H of C-6 and also one proton doublet at δ 8.19 (d, 1H, J=9.01 Hz) for Ar-H of C-5.

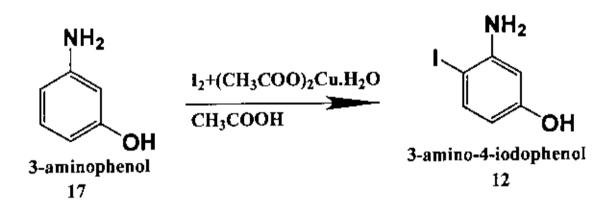
-

The compound was further established from its ¹³C NMR spectrum (Fig. 20d) (100 MHz, CDCl₃). The chemical shifts of this compound showed following characteristic peak: $\delta_{\rm C}$ 168.528 (C=O), 143.631 (C-NH), 142.039 (C-NO₂), 125.138 (C-S), 118.988 (C-6), 94.431 (Ar-I, C-2), 90.291 (Ar-I, C-3), and 24.837 (COCH₃) for remaining carbon atoms. The ¹³C NMR spectrum indicated the presence of eight carbons in the molecule was corresponding the molecular formula $C_8H_6I_2N_2O_3$, thereby suggesting the formation of the compound 10.

On the basis of analysis of the UV, IR, ¹H NMR, ¹³C NMR spectra, the structure of compound 10 was accorded as 2, 3-diiodo-4-nitroacetanilide.

2.5c. Characterization of 2, 6-diiodo-4-nitroaniline 11

A light yellow crystalline product was obtained (yield 38%), mp. 249-250°C. The structure of compound 11 was interpreted by spectral data. In UV spectrum (Fig.21a) the λ_{max} value was found in the range of 243.05 & 204.09 nm.


The IR spectrum (KBr) (Fig. 21b) of this compound assigned the following characteristic absorption peaks: v_{max} 3479.5 and 3373.1 cm⁻¹ (str. Ar-NH₂), 1609.6, 1489.5 cm⁻¹ (str. Ar-NO₂).

The ¹H NMR spectrum (Fig. 21c) (400 MHz, CDCl₃) of this compound expressed following chemical shift at δ 5.33 (s, 2H) indicated two hydrogen singlet of primary amine (-NH₂) group as a terminal in benzene ring. δ 8.54 (s, 2H) showed same chemical environment at C-3 and C-5 in benzene ring. Its peaks confirmed the structure of product 11.

The compound was further established from its ¹³C NMR spectrum (Fig. 21d) (100 MHz, CDCl₃). The chemical shifts of this compound were showed following characteristic peak: $\delta_{\rm C}$ 152.338 (C-NH₂), 143.832 (C-NO₂), 135.315 (C-3 & C-5) and 94.431 (Ar-I, C-2 & C-6) for remaining carbon atoms. The ¹³C NMR spectrum indicated the presence of six carbons in the molecule was corresponding the molecular formula C₆H₄I₂N₂O₂, thereby suggesting the formation of the compound 11.

2.6. Synthesis of 3-amino-4-iodophenol 12 from 3-Aminophenol

Compound 12 were prepared by refluxing the solution mixture of 3-aminophenol 17, iodine, copper(II) acetate and acetic acid in oil bath with stirring 6 hr at 120°C as shown in the Scheme 11.

Scheme 11

After usual workup and purification by column chromatography on silica gel, iodo-3-aminophenol derivative 12 (yield, 60%) was obtained.

2.6a. Characterization of 3-amino-4-iodophenol 12

A bright yellow crystalline compound was obtained, yield % 60. The structure of compound 12 was recognized by spectral data. The UV spectrum (Fig. 22a) of the compound showed at absorption bands at 239.99 & 202.55 nm.

The IR spectrum (KBr)(Fig. 22b) of this compound expressed following absorption band at $v_{max}3477.4$ and 3371.3 cm⁻¹ indicted stretching of aromatic primary amine (-NH₂) group, 3198.2 cm⁻¹ for phenolic OH group and 1606.6 for C=C.

The ¹H NMR spectrum (Fig. 22c) (400 MHz, CDCl₃) of this compound revealed an one proton singlet at $\delta_{\rm H}$ 1.57 (s, 1H, Ar-OH), two proton singlet at δ 4.84 (s, 2H, NH₂), an one proton doublet at δ 6.68 (d, 1H, J=8.94Hz, C-5) & δ 8.54 (d, 1H, J=2.38, C-2) respectively, and δ 8.03 (dd, 1H, J= 2.39Hz, 8.9Hz) indicated the presence of one proton double doublet for Ar-H of C-6. The presence of six hydrogen atoms was in good agreement with the compound 12.

The compound 12 was further analysis by ¹³C NMR spectrum (Fig. 22d) (100 MHz, CDCl₃). It was observed that the chemical shift at $\delta_{\rm C}$ 152.36 (Ar-OH, C-1), 139.27 (Ar-NH₂, C-3), 135.50 (C-5), 125.71 (C-6), 112.26 (C-2) and 80.52 (Ar-I, C-4). So the ¹³C NMR spectrum indicated the presence of six carbon atoms in the molecule corresponding to the molecular formula C_6H_6INO , thereby suggesting the formation of compeund 12.

Dept (Fig. 22d) spectrum showed that there were three tertiary carbons present at δ 135.50, 125.71 and 112.26 in the ring.

DISCUSSION

Table 9: Distinction among some spectral data of 2, 6-Diiodo-4-methylanlline; 2-iodo-4-methylacetanilide; 4-methylacetanilide; 2-iodo-5-methylacetanilide 3, 4, 5, 6.

Comp. No.	Structure	UV (nm) A _{mat}	IR spectrum in V _{max} cm ⁻¹	^ι Η NMR (δ _H)	¹³ C NMR (δ _c)
3		202.00	3406.1, 3317.3 (-NH ₂), 3037.7, 2898.8 (-CH ₃ , -CH), 1608.5, 1460, 1566.1,700.1 and 846.7	7.45 (s, 2H, C-3 & C-5), 4.19 (s, 2H, NH ₂), 2.15 (s, 3H, Ar-CH3).	143.83 (C-NH ₂), 139.77 (C-H, C-3 & C-5), 130.97 (C-CH ₃), 81.45 (Аг-Ц C-2 & C-6), 19.22 (Аг-CH ₃).
4		425.32, 240.05 & 199 99	3265.3, 1654.8, 1523.7 and 1290.3	7.99 (d, 1H, $J=7.96$ Hz, C-6), 7.59 (s, 1H, NH), 7.32 (s, 1H, C-3), 7.12 (d, 1H, $J = 8.09$ Hz, C-5), 2.26 (s, 3H, Ar-CH ₃), 2.20 (s, 3H, -CO-CH ₃).	(C-6), 135.79 (C-CH ₃ , C-4), 129.92 (C-3),
5		241.36 & 201.04	3292.3 (-NH-), 3255.6, 1662.5 (-C=O)1602.7, 1550.7, 1510.2, 1454.2, 1402.2, 1365.5, 1321.1, 819.7	J=8.23 Hz, C-2 & C-6), 7.08 (d, 2H, CH, $J = 8.07$ Hz, C-3 & C-5), 2.28 (s, 3H, Ar-CH ₃), 2.21 (s, 3H, -COCH ₃)	
6	ны о	240.67 & 201.08	3315.4 (-NH-), 1668.3 (-C=O),1606.6, 1581.5, 1533.3, 1471.6, 1396.4, 1311.5, 819.7.	(s, 1H, NH), 7.42 (d, 1H, $J = 1.94$,	168.52 (C=O), 142.03 (C-NH), 139.11 (C-3), 138.11 (C-CH ₃),121.11 (C-6), 119.02 (C-4), 94.43 (Ar-I), 28.13 (COCH ₃), 24.58 (Ar-CH ₃).

Comp. No.	Structure	UV (nm) λ _{max}	IR spectrum in v_{max} cm ⁻¹	¹ H NMR (δ _H)	¹³ C NMR (õ _C)
7		199.92	3408.0 & 3317.3(-NH ₂), 1604.7, 1442.7, 860.2 (Ar-Cl).	-	145.16 (C-NH ₂), 138.33 (C-3 & C-5), 123.25 (Ar-Cl, C-4), 80.25 (Ar-I, C-2 & C-6).
8		200.51	3408.1 &3317.3 (-NH ₂), 1603.7, 1443.6, 868.0 (Ar-Cl).	7.58 (d, 1H, $J = 2.3$ Hz, C-3), 7.08 (dd, 1H, $J= 2.3$ Hz, 8.5Hz, C-5), 6.64 (d, 1H, $J= 7.1$ Hz, C-6), 4.07 (s, 2H, NH ₂).	(C-5), 123.18 (Ar-Cl, C-4), 114.99

Table 10: Distinction among some spectral data of 4-chloro-2, 6-diiodoaniline & 4-chloro-2-iodoaniline 7, 8.

.

Table 11: Distinction among some spectral data of 2-iodo-4-nitroaniline; 2, 3-diiodo-4-nitroacetanilide; 2, 6-diiodo-4-nitroaniline;

3-amino-4-iodophenol 9, 10, 11 & 12.

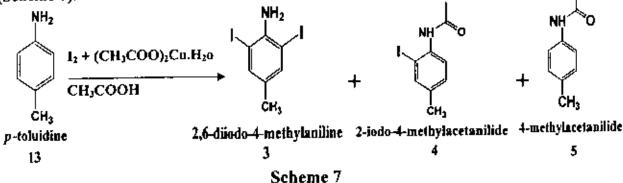
A

۰.

Comp. No.	Structure	UV (nm) λ _{mex}	IR spectrum in v _{max} cm ⁻¹	'Η NMR (δ _H)	¹³ C NMR (δ _C)
9	NH ₂	240.00 & 200.00	3477.4 & 3371.3 (-NH ₂), 1608.5, 1488.9 (-NO ₂), 1301.9, 1257.5, 1114.8.	4.83 (s, 2H, NH ₂), 6.68 (d, 1H, Ar- H, $J=8.932$ Hz, C-6), 8.64 (dd, 1H, Ar-H, $J=2.37$ Hz, 8.91Hz, C-5), 8.70 (d, 1H, Ar-H, $J=2.36$, C-3).	152.33 (Ar-NH ₂ , C-1), 139.33 (Ar-NO ₂ , C-4), 135.51 (C-3), 125.72 (C-5), 112.27 (C-6). 80.53 (Ar-I, C-2).
10		320.00, 241 08 & 202.14	3276(-NH-), 1683.7 (-C=O), 1618.2, 1596.9, 1566.1, 1506.3 (-NO ₂), 1346.2, 1332.7, 1301.9, 1267.1, 1112.9, 848.6, 750.3.	2.23 (s, 3H, -CH ₃), 7.47 (s, 1H, -NH), 7.68 (d, 1H, Ar-H, J=8.9Hz, C-6), 8.19 (d, 1H, Ar-H, J=9.01, C-5)	168.528 (C=O), 143.631 (Ar-NH, C-1), 142.039 (Ar-NO ₂ , C-4), 125.138 (C-5), 118.988 (C-6), 94.431 (Ar-L C-2), 90.291 (Ar-I, C-3), 24.837 (COCH ₃).
11		322.01 & 204.09	3479.5 & 3373.1 (-NH ₂), 1609.6, 1489.5 (-NO ₂), 1302.7, 1257.5, 1118.5.	5.336 (s, 2H, -NH ₂), δ 8.545 (s, 2H, C-3 & C-5).	(Ar-NO ₂ , C-4), 135.315 (C-3 &C-5), 94.431 (Ar-I, C-2 & C-6).
12	NH ₂	239.99 & 202.55	3477.4&3371.3 (-NH ₂), 3198.2 (Ar-OH), 3107.0, 1606.6, 1488.9, 1301.9, 1257.5, 1114.8.	NH ₂), 6 68 (d, 1H, J=8.94Hz, C-5),	C-3), 135.50 (C-5), 125.71 (C-6),

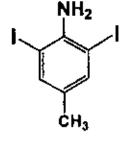
CHAPTER-3 EXPERIMENTAL

EXPERIMENTAL


3.1 Chemical reagents and experimental instruments

All commercial reagents were purchased from E. Merck (Germany) and were used without further purification. Thin layer Chromatography (TLC) plate made by Merck silica gel coated was used and visualized by UV lamp (254-365nm). Column chromatography was used for the separation by Merck silica gel (60-120) mesh. All evaporations were carried out with the help of rotary vacuum evaporator (Buchii, Switzerland) at bath temperature 40^o-55^oC. Melting points were determined on Gallenkamp (England) melting point apparatus. Infrared (IR) spectra were obtained in cm⁻¹ and recorded by SHIMADZU FTIR Spectrometer using KBr pellet. UV spectra were recorded in dry CHCl₃ with Shimatzu visible spectrophotometer and ¹H NMR spectra and ¹³C NMR spectra were recorded by Bruker Model DPX 400 MHz spectrometer in CDCl₃ using as the solvent.

3.2. Iodination of *p*-toluidine


A mixture of *p*-toluidine 13 (5.014g, 0.0468 mol), iodine (12.424g, 0.0489 mol), cupper(II) acetate (9.339g, 0.0468 mol) and acetic acid 220 ml was taken in 500 ml one-neck round-bottom flask and put on the oil-bath and was stirred and refluxed for 9 hr at 120° C. The completion of the reaction was monitored by TLC. After completion of the reaction, acetic acid was evaporated to dryness and residue was extracted with chloroform (50x3). The product was neutralized by saturated solution of sodium hydrogen carbonate (NaHCO₃), free iodine was removed by using sodium thiosulfate (Na₂S₂O₃) solution, dried with anhydrous Na₂SO₄ and concentrated under reduced pressure.

The crude product was purified by column chromatography on silica gel with hexane: chloroform in different ratio. Three compounds (3, 4, 5) were isolated in different ratio (Scheme 7).

41

3.2.1. Study of 2, 6-dilodo-4-methylaniline 3

Structure:

3

Compound name: 2, 6-diiodo-4-methylaniline

Synonym: 2,6-dijodo-p-toluidine

Chemical Formula: C₂H₂I₂N

Molecular Weight: 358.946

Yield (%): 35

Physical stage: Yellowish amorphous powder.

mp. 110[°]C

R_fvalue: 0.94 n-hexane:chloroform (2:1)

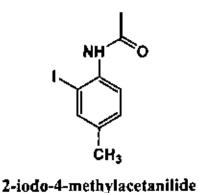
UV(CHCl₃): λ_{max} 400.35, 202 nm

IR (KBr): v_{max} 3406.1, 3317.3 (-NH₂), 3037.7, 2898.8 (-CH₃, -CH), 1608.5, 1460, 1566.1,

7001.1 and 846.7 cm⁻¹.

¹H NMR (400 MH₂, CDCl₃): δ_H 7.45 (s, 2H, C-3 & C-5), δ 4.19 (s, 2H, NH₂),

δ 2.15 (s, 3H, Ar-CH₃).


¹³C NMR (100 MHz, CDCl₃): δ 143.83 (Ar-NH₂), 139.77 (C-H, C-3 & C-5), 130.97 (C-CH₃,

C-4), 81.45 (Ar-J, C-2 & C-6), 19.22 (Ar-CH₃).

Dept-135: 139.77 (C-H, C-3 & C-5), 19.22 (Ar-CH₃).

Experimental

3.2.2. Study of 2-iodo-4-methylacetanilide 4

Structure:

2-1040-4-11-01113/14-01111144

4

Compound name: 2-iodo-4-methylacetanilide Synonym: N-(2-iodo-4-methylphenyl)acetamide Chemical Formula: C₉H₁₀IN0 Molecular Weight: 275.086 Yield (%): 26 Physical stage: Brownish crystal mp. 125-130⁰C R_f value: 0.77 n-hexane:chloroform (2:1)

UV(CHCl₃): λ_{max} 401.85 & 199.99 nm

IR: v_{max}3265.3 (-NH-), 1654.8 (C=O), 1523.7 (-C=C-) and 1290.3 (C-N) cm⁻¹.

¹H NMR (400 MHz, CDCI₃): $\delta_{\rm H}$ 7.99 (d, 1H, J=7.96 Hz, C-6), δ 7.59(s, 1H, NH), δ 7.32 (s, 1H, C-3), δ 7.12(d, 1H, J = 8.09Hz, C-5), δ 2.26(s, 3H, Ar-CH₃), δ 2.20 (s, 3H, -CO-CH₃).

¹³C NMR (100 MHz, CDCl₃): δ_C 168.15 (C=O), 145.98 (C-NH), 138.96 (C-3), 135.79 (C-CH₃, C-4),129.92 (C-5), 122.12 (C-6), 90.29 (Ar-I, C-2), 24.67 (-CO-CH₃), 20.30 (Ar-CH₃).

. Dept-135: 129.92 (C-3), 122.12 (C-5), 138.96 (C-6), 24.67(-CO-CH₃), 20.30 (Ar-CH₃).

3.2.3. Study of 4-methylacetanilide 5

NH O CH₃ 4-methylacetanilide

Structure:

Compound name: 4-methylacetanilide.

Synonyms: p-acetotoluidide; N-(4-methylphenyl)acetamide; N-p-tolylacetamide.

Chemical Formula: C₉H₁₁N0

Molecular Weight: 149.190

Yield (%): 22

Physical state: Brownish crystal

mp. : 148-151°C

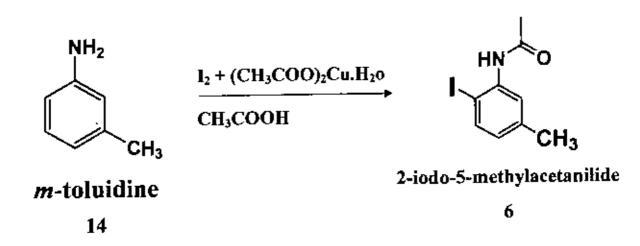
R₁ value: 0.30 n-hexane:chloroform (2:1)

UV(CHCl₃): λ_{max} 201.04 nm

IR (KBr): v_{max} 3292.3 (-NH-), 3255.6, 1662.5 (-C=O), 1602.7, 1550.7, 1510.2, 1454.2,

1402.2, 1365.5, 1321.1 and 819.7 cm⁻¹.

'H NMR (400 MHz, CDCl₃): δ_H 7.52 (s, 1H, NH), δ 7.35 (d, 2H, CH, *J*=8.23 Hz, C-2 & C-6),

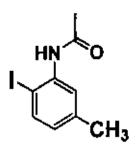

 δ 7.08 (d, 2H, CH, J = 8.07 Hz, C-3 & C-5), δ 2.28 (s, 3H,

AT-CH₃), δ 2.21 (s, 3H, -COCH₃).

3.3. Synthesis of 2-iodo-5-methylacetanilide 6

A mixture of *m*-toluidine 14 (5.418g, 0.0506 mol), iodine (12.934g, 0.0509 mol), cupper(II) acetate (10.468g, 0.0524 mol) and acetic acid 230 ml was taken in 500 ml one-neck round-bottom flask and put on the oil-bath and was stirred with refluxed for 10 hr at 130° C. The completion of the reaction was monitored by TLC and completion of the reaction, acetic acid was evaporated to dryness and was extracted with chloroform. The product was neutralized by a saturated solution of sodium hydrogen carbonate (NaHCO₃), free iodine was removed by using sodium thiosulfate solution, dried with anhydrous Na₂SO₄ and concentrated under reduced pressure.

The crude product was purified by column chromatography on silica gel with hexane: chloroform in different ratio. One compound 6 was isolated (Scheme 8).



ł

Experimental

3.3.1. Study of 2-iodo-5-methylacetanilide 6

Structure:

2-iodo-5-methylacetanilide

6

Compound name: 2-iodo-5-methylacctanilide.

Synonyms: N-(2-iodo-5-methylpheny)acetamide.

Chemical Formula: C₉H₁₀IN0

Molecular Weight: 275.086

Yield (%): 55

Physical state: Brownish crystal

R_f value: 0.73 n-hexane:chloroform (2:1)

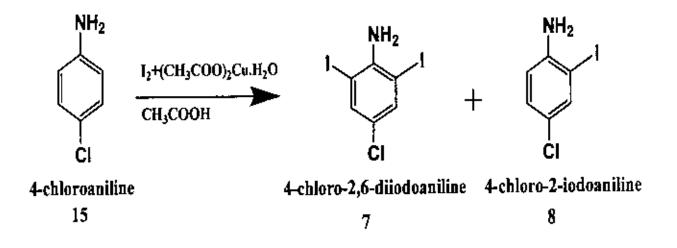
UV(CHCl₃): λ_{max} 400.99 & 201.08 nm

IR (KBr): v_{mex}3315.4 (-NH-), 1668.3 (-C=O),1606.6, 1581.5, 1533.3, 1471.6, 1396.4, 1311.5, 819.7.

¹H NMR (400 MHz, CDCl₃): δ_{11} 7.67 (d, 1H, J = 8.5 Hz, C-3), δ 7.46 (s, 1H, NH), δ 7.42 (d, 1H, J = 1.94 Hz, C-6), δ 7.03 (dd, 1H, J = 2.1 Hz, 8.3 Hz, C-4), δ 2.36 (s, 3H, Ar-CH₃), δ 2.13 (s, 3H, COCH₃).

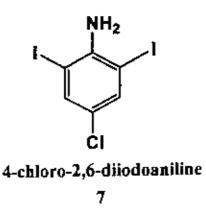
¹³C NMR (100 MHz, CDCl₃): δ_C 168.52 (C=O), 142.03 (C-NH). 139.11 (C-3), 138.11 (C-CH₃),121.11 (C-6), 119.02 (C-4), 94.43 (Ar-l), 28.13 (COCH₃), 24.58 (Ar-CH₃).

Dept-135: 139.11 (C-3), 121.11 (C-6), 119.02 (C-4), 28.13 (COCH₃), 24.58 (Ar-CH₃).


Experimental

¢'

3.4. Synthesis of 4-chloro-2, 6-diiodoaniline & 4-chloro-2-iodoaniline 7,8


A mixture of 4-chloroaniline 15 (10.152g, 0.0796 mol), iodine (20.256g, 0.0797 mol), cupper(II) acetate (16.896g, 0.0846 mol) and acetic acid 170 ml were taken in 500 ml one-neck round-bottom flask and put on the oil-bath and was stirred with reflux for11 hr at 130° C. The progress of the reaction was monitored by TLC (n-hexane/chloroform 3:1). After completion of the reaction, the mixture was then evaporated to dryness under reduced pressure and the residue was then evaporated to dryness under reduced pressure and the residue was extracted with chloroform (3x50 mL). The chloroform extract was neutralized by a saturated solution of sodium hydrogen carbonate (NaHCO₃), free iodine was removed by using sodium thiosulfate solution, dried with anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain brownish black semisolid.

The latter was purified by chromatography on a column of silica gel with n-hexane, n-hexane /chloroform 2:1 and two compounds (7, 8) were isolated (Scheme 9).

3.4.1. Study of 4-chloro -2, 6-diiodoaniline 7

Structure:

Compound name:. 4-chloro-2, 6-diiodoaniline

Chemical Formula: C9H4Cll2N

Molecular Weight: 379.365

Yield (%): 30

mp. : 127-129 °C

Physical state: yellowish amorphous powder

R_f value: 0.98 n-hexane:chloroform (3:1)

UV(CHCl₃): λ_{max} 400.89 and 199.92 nm

IR (KBr): v_{max}3408.0 & 3317.3 (-NH₂), 1604.7, 1442.7, 860.2 (Ar-Cl).

¹H NMR (400 MHz, CDCl_b): δ_H 7.60 (s, 2H, C-3 & C-5), δ 4.59 (s, 2H, NH₂).


¹³C NMR (100 MHz, CDCl₃): δ_C 145.16 (C-NH₂), 138.33 (C-3 & C-5), 123.25 (C-Cl),

80.25 (C-l).

Dept-135: 138.33 (C-3 & C-5).

٢.

3.4.2. Study of 4-chloro-2-iodoaniline 8

Structure:

Compound name:.4-chloro-2-iodoaniline

Chemical Formula: C9H3ClIN

Molecular Weight: 253.468

Yield (%): 45

mp. : 40-42 ⁰C

Physical state: Light brownish white ash crystal

Revalue: 0.87 n-hexane:chloroform (3:1)

UV(CHCl₃): λ_{max} 400.75 and 200.51 nm

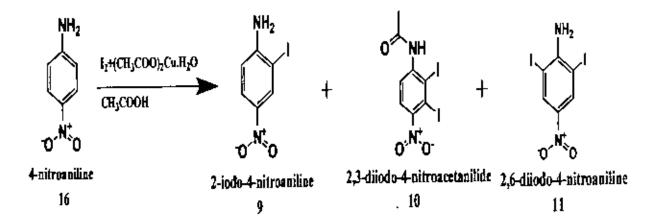
IR (KBr): v_{max}3408.1 &3317.3 (-NH₂), 1603.7, 1443.6, 868.0 (Ar-Cl).

¹H NMR (400 MHz, CDCb): $\delta_{\rm H}$ 7.58 (d, 1H, J = 2.3Hz, C-3), 7.08 (dd, 1H, J = 2.3Hz,

8.5Hz, C-5), 6.64 (d, 1H, J= 7.1Hz, C-6), 4.07 (s, 2H, NH₂).

¹³C NMR (100 MHz, CDCl₃): δ_C 145.57 (C-NH₂), 137.78 (C-3), 129.26 (C-5), 123.18

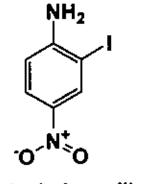
(C-Cl), 114.99 (C-6), 83.46 (C-I).


Dept-135: 137.78 (C-3), 129.26 (C-5), 114.99 (C-6).

Experimental

3.5. Synthesis of 2-iodo-4-nitroaniline &2, 3-diiodo-4-nitroacetanilide 9, 10, 11

A mixture of 4-nitroaniline 16 (7.865g, 0.0569 mol), iodine (20.078 g, 0.0790 mol), cupper(II) acetate (12.052g, 0.0604 mol) and acetic acid 300 ml was taken in 500 ml one-neck round-bottom flask and put on the oil-bath and was stirred with reflux for 10hr at 130^{9} C. The progress of the reaction was monitored by TLC (n-bexane/chloroform 1:2). After completion of the reaction, the mixture was then evaporated to dryness under reduced pressure and the residue was extracted with chloroform (3x50 mL). The chloroform extract was neutralized by a saturated solution of sodium hydrogen carbonate (NaHCO₃), free iodine was removed by using sodium thiosulfate solution, dried with anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain brownish black semisolid.


The latter was purified by chromatography on a column of silica gel with n-hexane, n-hexane /chloroform 2:1, chloroform, acetone and two compound (9, 10, 11) were isolated (Scheme 10).

Scheme 10

3.5.1. Study of 2, 3-diiodo-4-nitroacetanilide 9

Structure:

2-iodo-4-nitroaniline 9

Compound nume: 2-iodo-4-nitroaniline

Synonyms: 2-iodo-4-nitrobenzenamine

Chemical Formula: C₆H₅IN₂O₂

Molecular Weight: 264.021

Yield (%): 30

mp.: 105-109⁰C

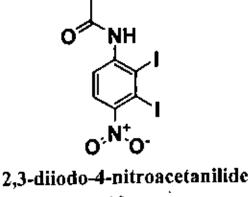
Physical state: Yellowish crystal

R_f value: 0.83 n-hexane : chloroform (1:2)

UV(CHCl₃): λ_{max} 240.00 & 200.00 nm

IR (KBr): v_{max} 3477.4 & 3371.3 (-NH₂), 1608.5,1488.9 (-NO₂), 1301.9, 1257.5, 1114.8.

¹H NMR (400 MHz, CDCl₃): δ_H 8.70 (d, 1H, Ar-H, *J*=2.36Hz, C-3), δ 8.64 (dd, 1H, Ar-H, *J*=2.37 Hz, 8.91 Hz, C-5), δ 6.68 (d, 1H, Ar-H, *J*=8.932 Hz, C-6), δ 4.83 (s, 2H, NH₂).


¹³C NMR (100 MHz, CDCl₃): δ_C 152.33 (C-NH₂), 139.33 (C-NO₂), 80.53 (C-l), 135.51 (C-3), 125.72 (C-5), 112.27 (C-6).

Dept-135: 135.51 (C-3), 125.72 (C-5), 112.27 (C-6).

3.5.2. Study of 2, 3-diiodo-4-nitroacetanilide 10

Structure:

.

10

Compound name:. 2, 3-diiodo-4-nitroacetanilide

Synonyms: N-(2, 3-diiodo-4-nitrophenyl)acetamide

Chemical Formula: C₈H₆J₂N₂O₃

Molecular Weight: 431.954

Yield (%): 26

Physical state: Yellowish crystal

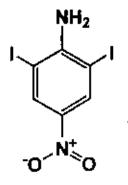
R_f value: 0.47 n-hexane : chloroform (1:2)

UV(CHCl₃): λ_{max} 320.00 & 202.14 nm

IR (KBr): v_{max}3276(-NH-), 1683.7 (-C=O), 1618.2, 1596.9, 1566.1, 1506.3 (-NO₂), 1346.2,

1332.7, 1301.9, 1267.1, 1112.9, 848.6, 750.3.

'H NMR (400 MHz, CDCl₃): δ_H δ 8.19 (d, 1H, Ar-H, J=9.01Hz, C-5), δ 7.68 (d, 1H, Ar-H,


J=8.9Hz, C-6), δ 7.47 (s, 1H, -NH), 2.23 (s, 3H, -CH₃).

¹³C NMR (100 MHz, CDCl₃): ô_C 168.528 (-C=O), 143.631 (C-NH), 142.039 (C-NO₂), 125.138 (C-5), 118.988 (C-6), 94.431 (C-1, C-2), 90.291 (C-I, C-3), 24.837 (COCH₃)

Dept-135: 125.138 (C-5), 118.988 (C-6), 24.837 (COCH₃).

* 🔿

3.5.3. Study of 2, 6-diiodo-4-nitroacetanilide 11

Structure:

2,6-diiodo-4-nitroaniline

11

Compound name:. 2, 6-diiodo-4-nitroaniline

Chemical Formula: C6H4I2N2O2

Molecular Weight: 389.917

Yield (%): 38

Physical state: Yellow crystal

тр.: 249-250⁹С

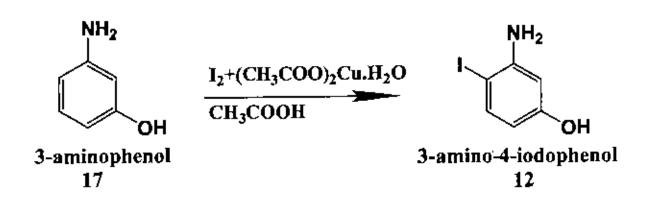
R_f value: 0.38 n-hexane : chloroform (1:2)

UV(CHCl₃): λ_{max} 322.01 & 204.09 nm

IR (KBr): v_{max} 3479.5 & 3373.1 (-NH₂), 1609.6, 1489.5 (-NO₂), 1302.7, 1257.5, 1118.5.

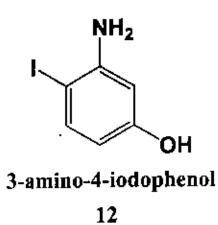
'H NMR (400 MHz, CDCl₃): δ_H 5.336 (s, 2H, -NH₂), δ 8.545 (s, 2H, C-3 &C-5).

¹³C NMR (100 MHz, CDCl₃): δ_C 152,338 (C-NH₂), 143.832 (C-NO₂), 135.315 (C-3 &C-5) 94.431 (Ar-1, C-2 & C-6)


Dept-135: 135.315 (C-3 &C-5)

Experimental

3.6. Synthesis of 3-amino-4-iodophenol 12


A mixture of 3-aminophenoi 17 (8.908g, 0.0816 mol), iodine (23.366g, 0.0920 mol), cupper(II) acetate (18.438g, 0.0924 mol) and acetic acid 120 ml was taken in 500 ml one-neck ronnd-bottom flask and put on the oil-bath and was stirred with refluxed for 6 hr at 120° C. The progress of the reaction was monitored by TLC (n-hexane/chloroform 1:3). After completion of the reaction, the mixture was then evaporated to dryness under reduced pressure and the residue was extracted with chloroform (3x50 mL). The chloroform extract was neutralized by a saturated solution of sodium hydrogen carbonate (NaHCO₃), free iodine was removed by using sodium thiosulfate solution, dried with anhydrous Na₂SO₄ and concentrated under reduced pressure to obtain brownish black semisolid.

The latter was purified by chromatography on a column of silica gel with n-hexane, chloroform and one compound (12) was isolated (Scheme 11).

3.6.1. Study of 3-amino-4-iodophenol 12

Structure:

Compound name: 3-amino-4-iodophenol

Chemical Formula: C₆H₆INO

Molecular Weight: 235.022

Yield (%): 60

Physical state: Bright yellow crystal

R_t value: 0.68 n-hexane : chloroform (1:2)

UV(CHCl₃): λ_{max} 401.87 & 202.55 nm

IR (KBr): vmax 3477.4&3371.3 (-NH2), 3198.2 (Ar-OH), 3107.0, 1606.6, 1488.9, 1301.9,

1257.5, 1114.8.

¹H NMR (400 MHz, CDCl₃): 1.57 (s, 1H, Ar-OH), 4.84 (s, 2H, NH₂), 6.68 (d, 1H, J=8.94 Hz,

C-5), 8.03 (dd, 1H, J=2.39Hz, 8.9Hz, C-6), 8.54 (d, 1H, J=2.38 Hz, C-2).

¹³C NMR (100 MHz, CDCl₃): δ_c 152.36 (C-OH), 139.27 (C-NH₂), 135.50 (C-5), 125.71

(C-6), 112.26 (C-2), 80.52 (C-J).

Dept-135: 135.50 (C-5), 125.71 (C-6), 112.26 (C-2).

REFERENCES

- 1. Reviews on Aromatic Iodination:
 - (a) Roedig, A.in: Houben-weyl,4th ed., Vol. V/4a;ed. By e. Mueller, Stuttgart 1960, pp. 517-678.
 - (b) Merkushev, E.B. Synthesis 1988, 923.
 - (c) March, J.; Advanced Organic Chemistry, 4th ed., New York 1992., pp. 531-534.
 - (d) Grimmet, M.R. Adv. Heterocyclic Chem. 1993, 57,291; ibid., 58, 271; ibid., 59,245.
 - (e) Steel, P.G. Halobenzenes, in: Rodd's chem. Carbon Compounds, 2nd ed., ed. by M. Sainsburry, Amsterdam 1996., Vol. 3, Part 1, pp. 178-224.
 - (f) The Merck Index, 12th ed. on CD-ROM, Merck Co. 1998.
- 2. (a) Varvoglis, A. The Organic Chemistry of Polycoordinated Iodine, Weinheim 1992.
 - (b) Varvoglis, A. Hypervalent Iodine in Organic Synthesis, San Diego 1997.
 - (c) Chemistry of Hypervalent Compounds, ed. by K. Akiba, New York 1999., Chap. 11 and 12.
- 3. Greenwood, Norman N.; Earnshaw, A., Chemistry of the Elements (2nd ed.), Oxford: Butterworth-Heinemann, 1997, ISBN 0-7506-3365-4
- Küpper FC, Feiters MC, Meyer-Klaucke W, Kroneck PMH, Butler, A. Iodine Accumulation in Laminaria (Phacophyceae): an Inorganic Antioxidant in a Living System, Proceedings of the 13th Congress of the Federation of European Societies of Plant Physiology, Heraklion, Greece, 2002, September 2-6, p. 571
- Küpper FC, Schweigert N, Ar Gall E, Legendre J-M, Vilter H, Kloareg B lodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide, *Planta* 1998, 207:163-171
- Ar Gall, E., Küpper, F.C. & Kloareg, B. A survey of iodine content in Laminaria digitata. *Botanica Marina* 2004, 47: 30-37.

References

- Küpper FC et al. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry, Proc Natl Acad Sci. 2008, U S A. May 5.
- 8. Venturi S, Donati FM, Venturi A, Venturi M. Environmental iodine deficiency: A challenge to the evolution of terrestrial life,. *Thyroid.* 2000 Aug; 10(8):727-9.
- Venturi S. and Venturi M. "Iodine and Evolution", DIMI-MARCHE NEWS, Dipartimento Interaziendale di Medicina Interna della Regione Marche (Italy), published on-line, Feb. 8, 2004; http://web.tiscali.it/iodio/
- Venturi S, Donati FM, Venturi A, Venturi M, Grossi L, Guidi A. Role of iodine in evolution and carcinogenesis of thyroid, breast and stomach. Adv Clin Path. 2000 Jan;4(1):11-7.
- 11. Venturi S, Venturi M. Evolution of Dietary Antioxidant Defences. European EPI-Marker.2007, 11, 3 :1-12
- 12. Venturi S, Venturi M. Iodide, thyroid and stomach carcinogenesis: evolutionary story of a primitive antioxidant,. *Eur J Endocrinol.* **1999** Apr;140(4):371-2. N PMID: 10097259.
- 13. http://en.wikipedia.org/wiki/Iodide.
- 14. "Treatment of rheumatoid arthritis with yodoxin. A preliminary report from the desert arthritis medical clinic". By Rrobert Bingham, M, D. 1984 July 14.
- 15. Satish K. Chitnenia, Christophe M. Derooseb, Humphrey Fongea, Rik Gijsberse, Natalia Dyubankovad, Jan Balzarinid, Zeger Debysere, Luc Mortelmansb, Alfons M. Verbruggenaand Guy M. Bormansa, Synthesis and biological evaluation of an 123Ilabeled bicyclic nucleoside analogue (BCNA) as potential SPECT tracer for VZV-tk reporter gene imaging. *Bioorganic & Medicinal Chemistry Letters*, 2007 June15, Volume 17, Issue 12, Pages 3458-3462.
- Walker et al. Thyroxine increases nerve growth factor concentration in adult mouse brain. Science. 1979 April 27, Vol. 204, No. 4391. pp. 427 - 429.

References

- Kirkegaard C, Faber J. "The role of thyroid hormones in depression". Eur J Endocrinol 1998, 138 (1): 1-9.
- Dratman M, Gordon J. "Thyroid hormones as neurotransmitters". Thyroid 1996, 6 (6): 639-47.
- Scanlan T, Suchland K, Hart M, Chiellini G, Huang Y, Kruzich P, Frascarelli S, Crossley D, Bunzow J,Ronca-Testoni S, Lin E, Hatton D, Zucchi R, Grandy D. "3 lodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone". Nat. Med. 2904, 10(6):638-42.
- 20. Hart M, Suchland K, Miyakawa M, Bunzow J, Grandy D, Scanlan T. "Trace amineassociated receptor agonists: synthesis and evaluation of thyronamines and related analogues". J. Med. Chem. 2006, 49 (3): 1101-12.
- "New compound may act to keep thyroid activity in check". http://www.curekalert.org/pub_releases/2004-05/ohs-ncm051404.php. Retrieved on 2008-05-30.
- Chiellini G, Frascarelli S, Ghelardoni S, Carnicelli V, Tobias SC, Debarber A, Brogioni S, Ronca-Testoni S, Cerbai E, Grandy DK, Scanlan TS, Zucchi R. "Cardiac effects of 3iodothyronamine: a new aminergic system modulating cardiac function." 2007, PMID 17284482.
- 23. Tietze F, Kohn LD, Kohn AD, et al. "Carrier-mediated transport of monoiodotyrosine out of thyroid cell lysosomes". J. Biol. Chem. March 1989, 264 (9): 4762-5.
- Dème D, Fimiani E, Pommier J, Nunez J. "Free diiodotyrosine effects on protein iodination and thyroid hormone synthesis catalyzed by thyroid peroxidase". Eur. J.Biochem. February 1989, 51 (2): 329-36.
- Pinna G, Hiedra L, Meinhold H, et al. "3,3'-Diiodothyronine concentrations in the sera of patients with nonthyroidal illnesses and brain tumors and of healthy subjects during acute stress". J. Clin. Endocrinol. Metab. September 1998, 83 (9): 3071-7.

¢ Q

References

- 26. Drug bank., http://www.drugbank.ca/drugs/DB03604.
- M.C. Carreno, J.L.G. Ruano, G. Sanz, M.A. Toledo and A. Urbano . "Iodination of Methoxybenzenes with N-lodosuccinimide in Acetonitrile" *Tetrahedron Letters* 1996, 37, 4081-4084.
- Mehman S. Yusubovn, Victor D. Filim~nov~H,o -Whan Jim, and Ki-Whan Chi "A Novel Idination of Aromatic Rings Using Idine/Metallic Nitrate" Bull. Korean Chem. Soc., 1998, Vol. 19, No. 4, pp 400-401.
- 29. Philipp Beinker, James R. Hanson, Nadja Meindl and Inmaculada C. Oxidative Iodination of Aromatic Amides Using Sodium Perborate or Hydrogen Peroxide with Sodium Tungstate. J. Chem. Research (S), 1998, 204-205.
- 30. Agnieszka Zielinska and Lech Skulski ,"Oxidative Iodination of Aromatic Amines and Other Arenes, withSodium Percarbonate as the Oxidant" 8th International Electronic Conference on Synthetic Organic Chemistry. ECSOC-8, 1-30 November 2004.
- Lulinski, P.: Kryska, A.; Sosnowski, M.; Skulski, L. Eco-friendly Oxidative Iodination of Various Arenes with a Urea-Hydrogen Peroxide Adduct (UHP) as the Oxidant. Synthesis 2004, 441-445.
- 32. Dictionary of Organic Compounds, 6th ed.; Chapman & Hall: London, 1996.
- Suzuki, H. "Shinjikken-kagaku kohza," ed by T. Tachibana, Maruzen & Co., Tokyo 1977, Vol. 14, Part 1, pp. 418-425.
- 34. Cambie, R. G, Rutledge, P. S., Palmer, T. S, and Woodgate, P. D, J. Chem. Soc., Perkin Trans. 1, 1976, 1161.
- 35. Stefanovic, M., Krstic, Lj., and Mladnovic, S., Tetrahedron Lett., 1971, 3311.
- Dauben, W.G. and Tilles, H., J. Am. Chem. Soc., 72, 3185 (1950); Popa, D., Schwenk,
 E. and Klinsberg, E., ibid., 72, 2623 (1950).

ŧ

ŝ

- 37. Sugiyama, T., Bull. Chem. Soc. Jpm. 1981, 54, 2847.
- 38. Baird, Jr. C. W., Surrindge, J. H., J.Org. Chem., 1970, 35, 3436.
- 39. Sugita, T., Idei, M., Ishibashi, Y. and Takegami, Y., Chem. Lett., 1982,1481.

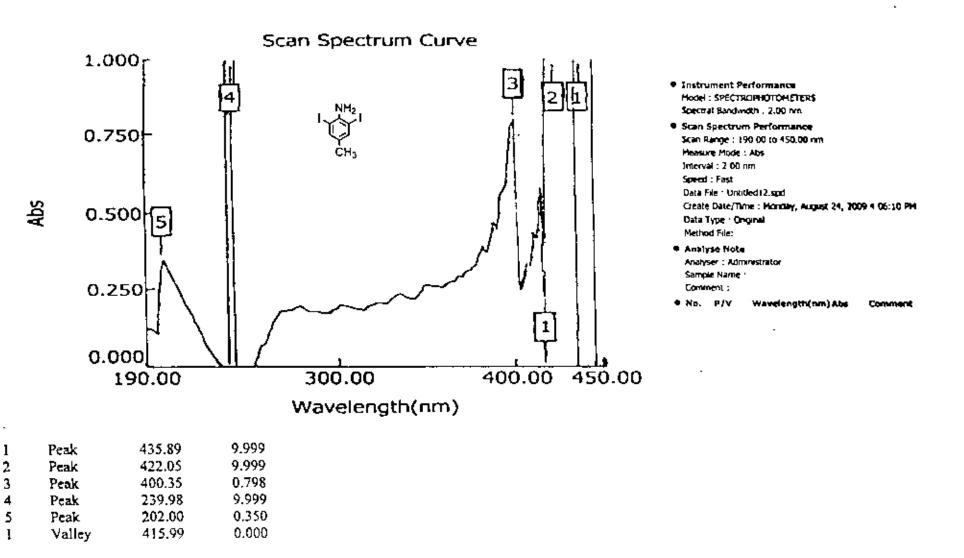
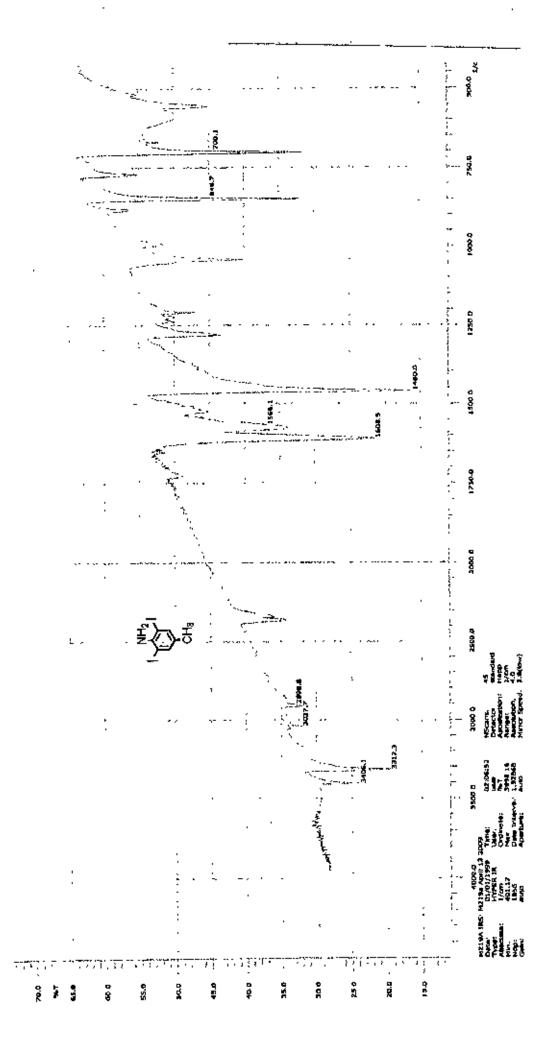
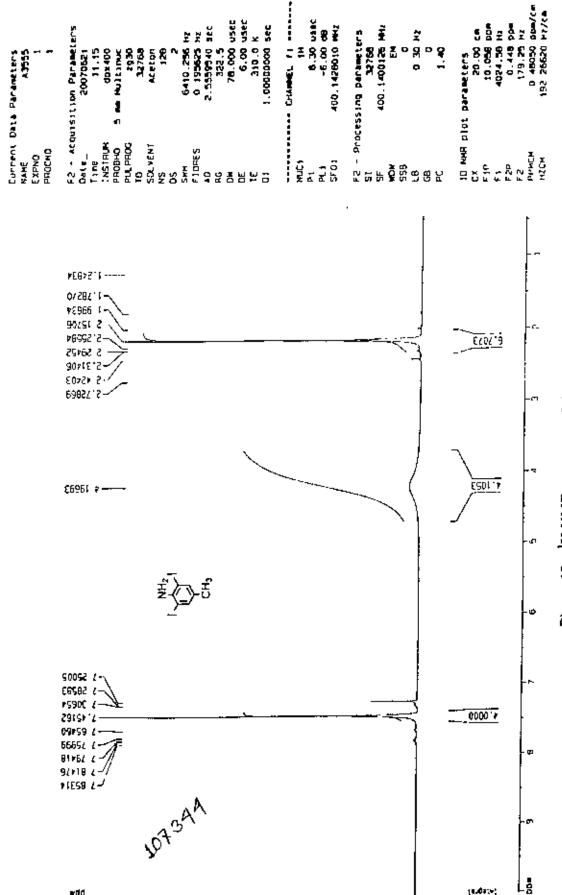
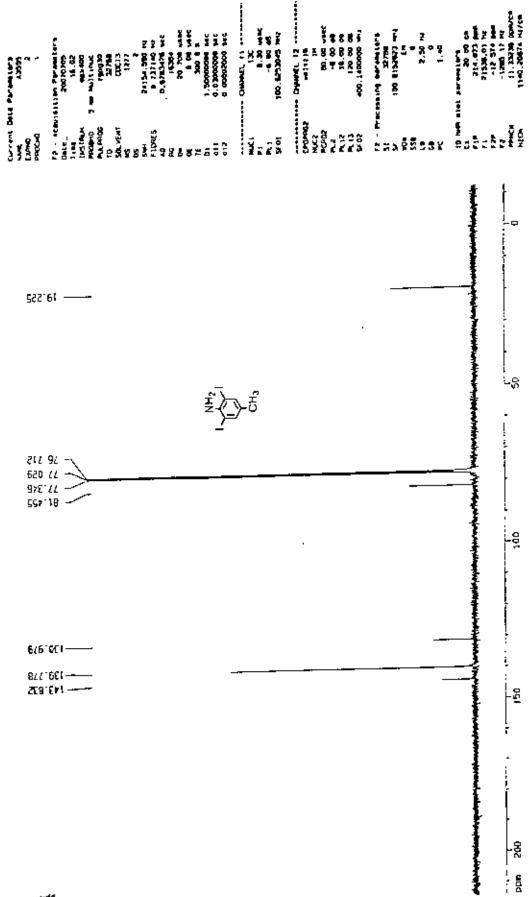



Figure 13a: UV spectrum of the compound 3

Ş




Figure 13c: ¹H NMR spectrum of the compound 3

10.0000

3

Spectra

eØd

Figure 13d: ¹³C NMR spectrum of the compound 3

.

64

Spectra

e dd

	F2 • A KUMITILION PARAMETER ALEA 20010/001 There 01121/000 There 20010/001 There 01121/000 There 001000000 There 0000000000 There 0000000000 There 0000000000 There 0000000000 There 0000000000 There 0000000000 There 00000000000 There <	- District, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	Envert. 12	Pressent 1742 References 1272 Ref 1242 - Batalana 22 20 1.00 Hu 1.00 Hu	10 meV glot permeters 13 20.00 cs 14 21 23 0cs 15 2123 men 15 2123 men 15 2123 men 15 212 men 1
CUTTENL DALA Peramatera MANE A5000 E XING 30 E XING 30 FROCED 1	F ACTURINA Data Trans Francisco F	MC1	400.000 400.000 400.000 400.000 400.000 400.000		10 men (101 2 % 7 % 7 % 7 % 7 % 7 % 7 %
					: -
	18 555				
					29
	Ĕ→→Ĕ				
	<u></u>				-9
	-				
	9// '561				
	DCJ				

Figure 13d: Dept-135 NMR spectrum of the compound 3

Spectra

¢** -

65

-

-

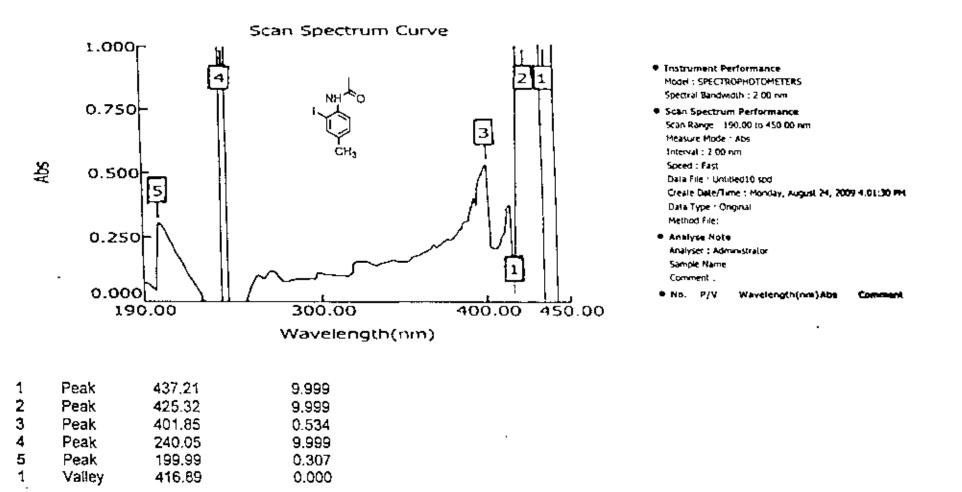
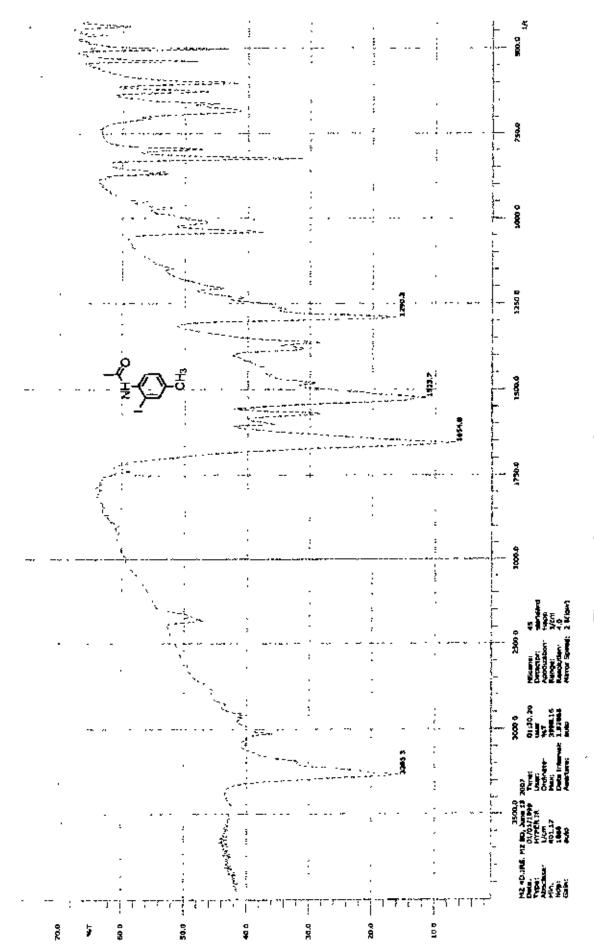
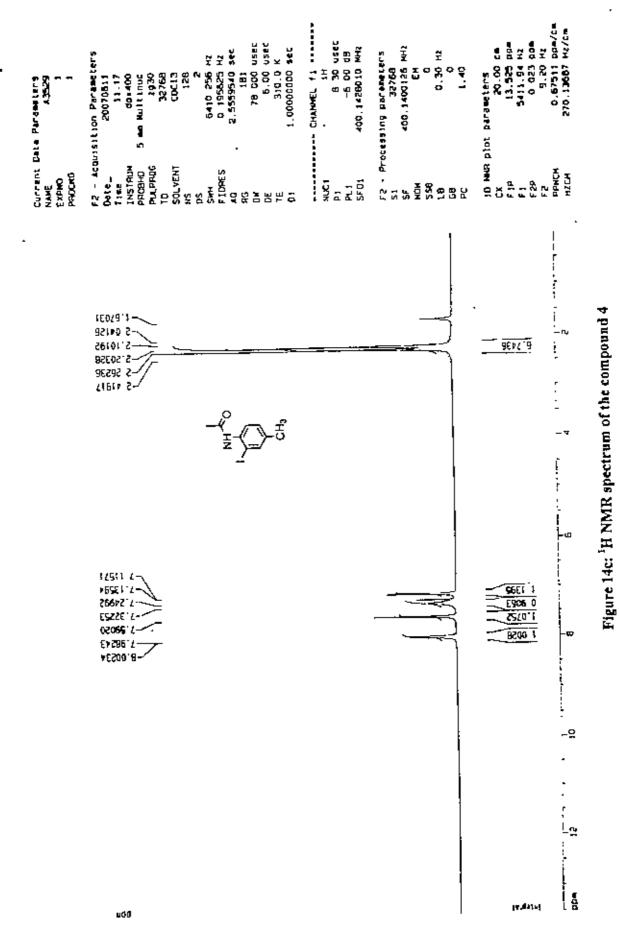



Figure 14a: UV spectrum of the compound 4


۰.

66

5

Spectra

Cate Parameters Aj529 1 1	11511190 Parameters 20070611 11.17 302400 32768 32768 32768 00013 128 28 6410.256 M2	.19562540 540 55555540 540 181 781 060 us 6.00 us 310.0 X 310.0 X 0000000 54	8.30 USEC -5.00 d5 400.1428010 XV2 32765 400.1400125 MV2 6 0 0.30 M2 1.40	alot parameters 20.00 cm 8.312 ppm 3325.06 Nz 5.23 ppm 2693.48 H7 2693.48 H7 10.07905 ppm/cm 31.62995 H2/cm
CULTENT (NAME EXPND PROCHO	F2 - Acq Date_ Line ProBHO PULPHOC FULPHOC FULENT MS MS SM	FIDRES AD AD AD AD AD AD AD AD AD AD AD AD AD	1985 2982 200 	10 MAR

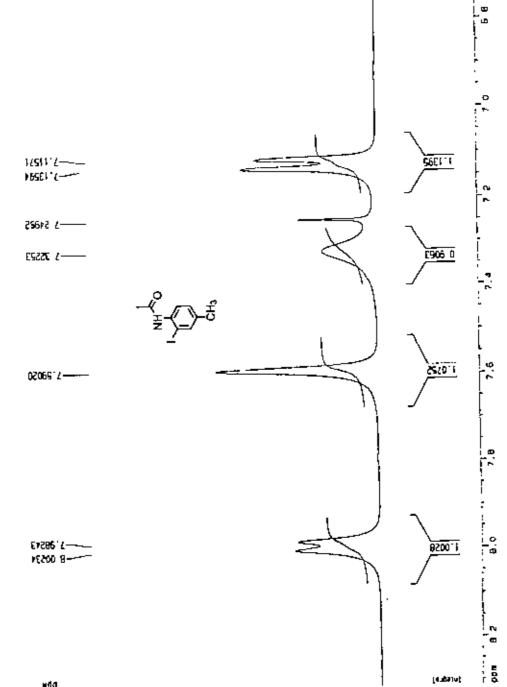


Figure 14c: ¹H NMR spectrum of the compound 4 (Expansion)

69

ł

.

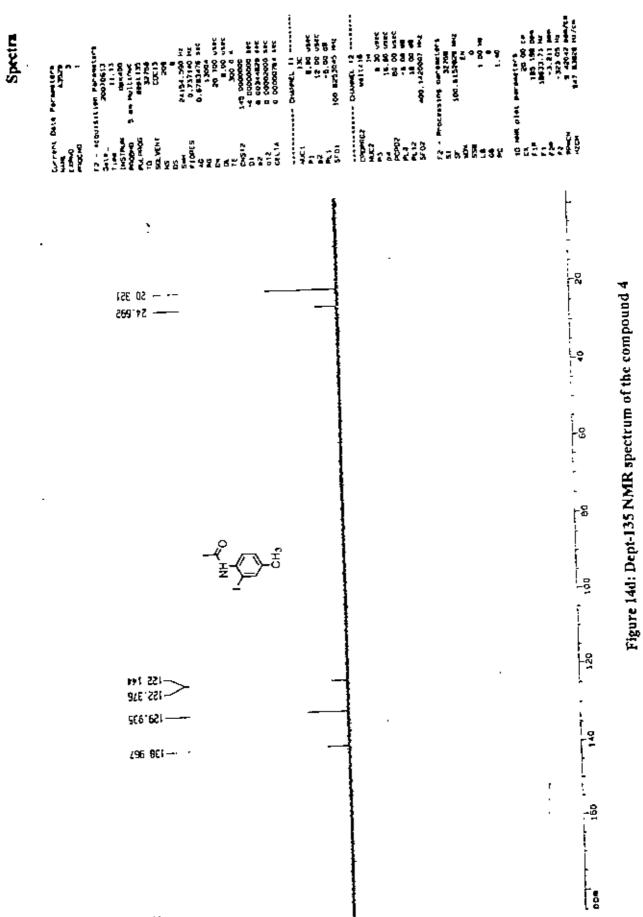
-

.

uda

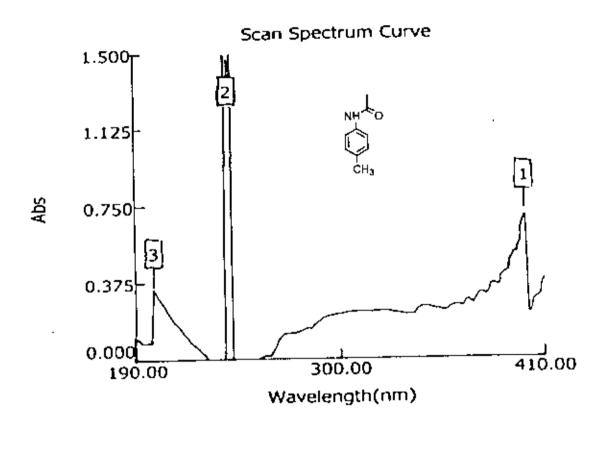
Speetra

.



uad

å


Figure 14d: ¹³C NMR spectrum of the compound 4

١.

F

-

0.695 9.999 0.337

Figure 15a: UV spectrum of the compound 5

- Instrument Performance Model: SPECTROPHOTOMETERS Spectral Bandwidth 2 00 nm
- Scan Spectrum Performance
 Scan Range : 190 D6 to 410 00 nm
 Measure Mode : Abs
 Interval : 2 00 nm
 Speed : Fast
 Data File : Untitled4 apd
 Create Date/Time : Monday, August 24, 2009 3:48:48 PH
 Data Type : Original
 Method File.
- Analyse Note
 Analyser : Administrator
 Sample Name Comment -
- No. P/V Wavelength(nm)Abs Comment

ł

.

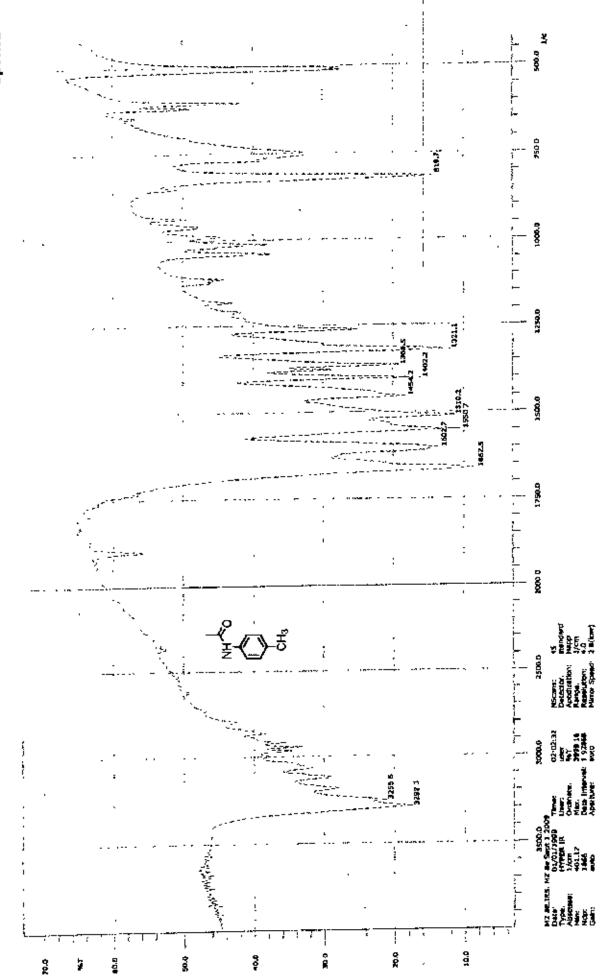


Figure 15b: IR spectrum of the compound 5

Spectra

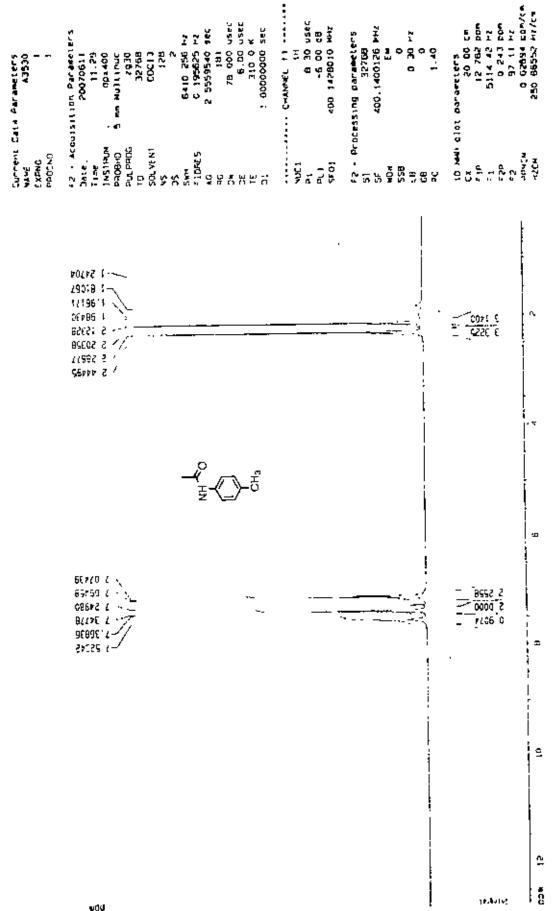


Figure 15c: ¹H NMR spectrum of the compound 5

7

Spectra

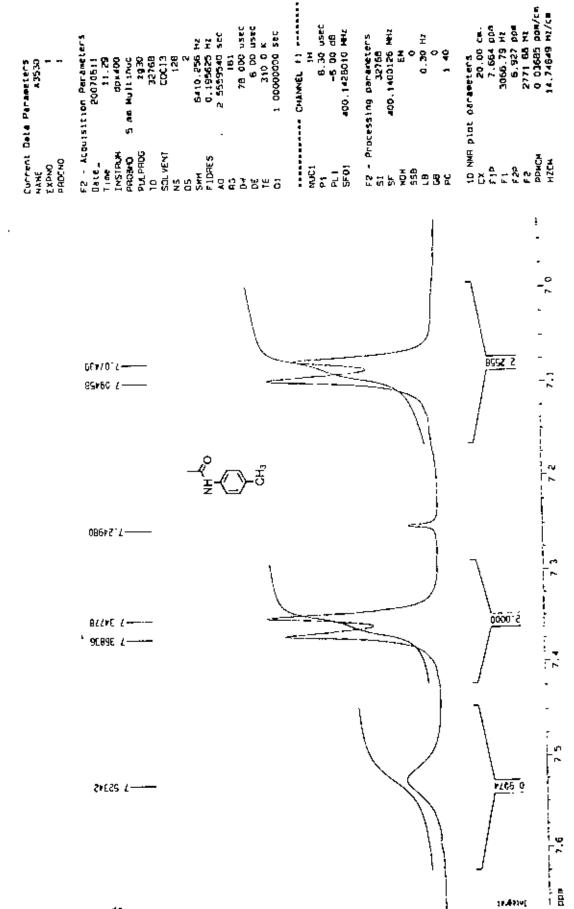
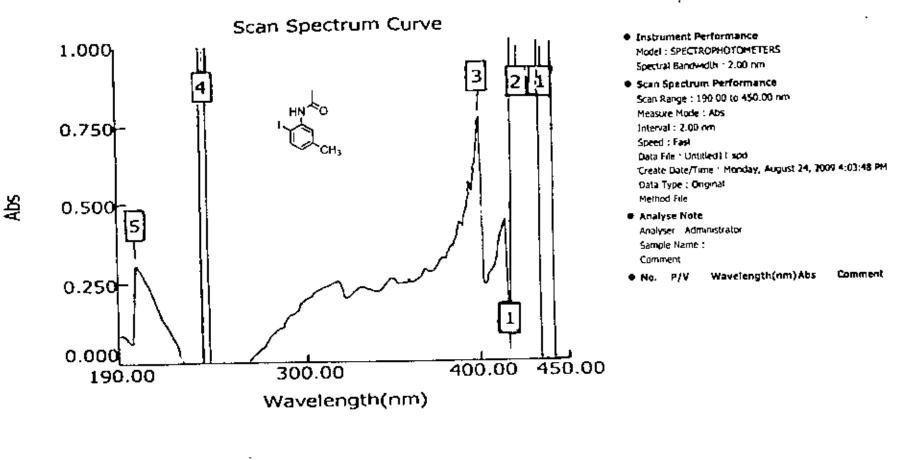
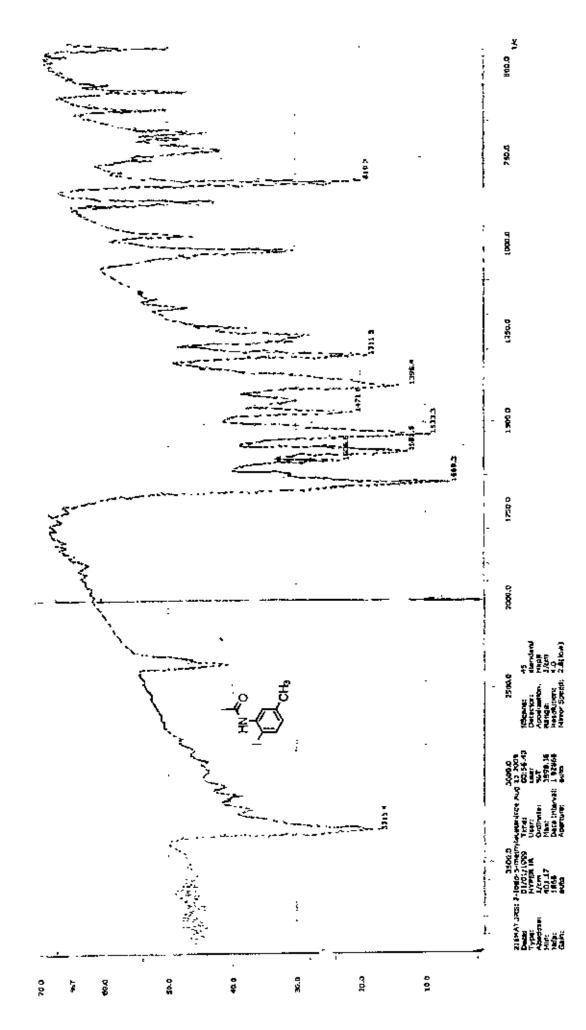



Figure 15c: ¹H NMR spectrum of the compound 5 (Expansion)

Spectra


•do

1	Peak	436.58	9.999
2	Peak	422.35	9.999
3	Peak	400.99	0.770
4	Peak	240.67	9,999
5	Peak	201.08	0.313
1	Vailey	416.20	0.000

Figure 16a: UV spectrum of the compound 6

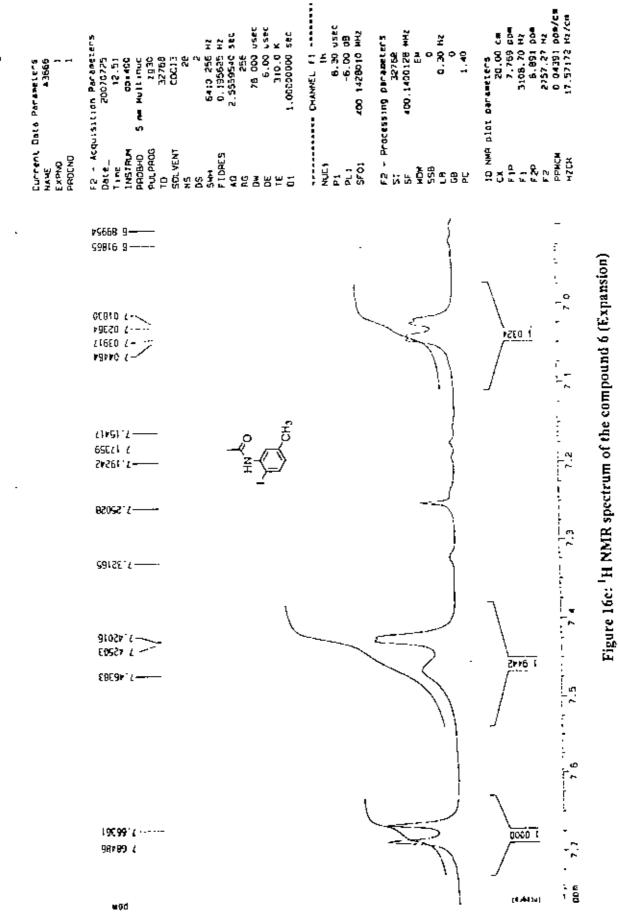
.

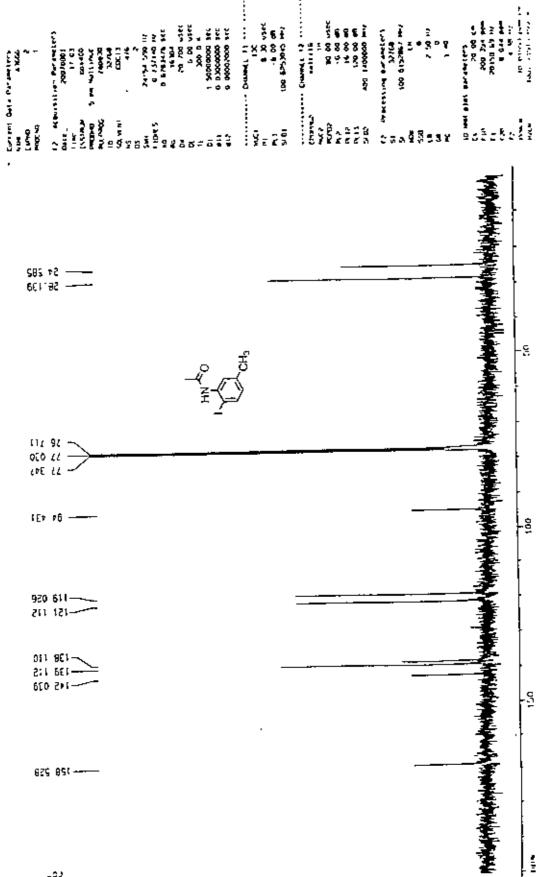
Current Data Parameters Name ExPMG 1 PAGCNG 1	CUISILION Parametri 20070725 12 51 0 00 400 2 930 2 930 2 235 5 410 255 2 8 5 410 255	F10465 0,1440620 44 AQ 2.555540 sec AG 2.555540 sec AG 78 000 use; OF 5,00 use; TE 1,00000000 sec	С. С	F2 - Processing parameters 51 32769 55 400,1400129 MHZ NDM EM 558 0,1400129 MHZ 58 0,140 L8 0,30 Hz 68 1,40	10 NVR 010t Daremeters CX 20.00 Cm F1P 11.970 000 F1 4789.55 N2 F2P 0.242 000 F2P 0.242 000 F2P 0.59633 000/cm H2CM 234.63702 H2C0
	890+2 1 9+992 1 56+135 1 9507 1 93052 1 6+326 1 6+326 1 1 90051 2 9007 2 11020 2 12125 2 12125 2				<u>9601 0</u> <u>9523 0</u> <u>9601 6</u>
	092E9 9 F5663 9	HN O			-10 -10 -10 -10 -10 -10 -10 -10 -10 -10

Figure 16c: ¹H NMR spectrum of the compound 6

.

100


•


1**6.03**14]

78

Spectra

udd

...,

80

Figure 16d: ¹³C NMR speetrum of the compound 6

ć

.

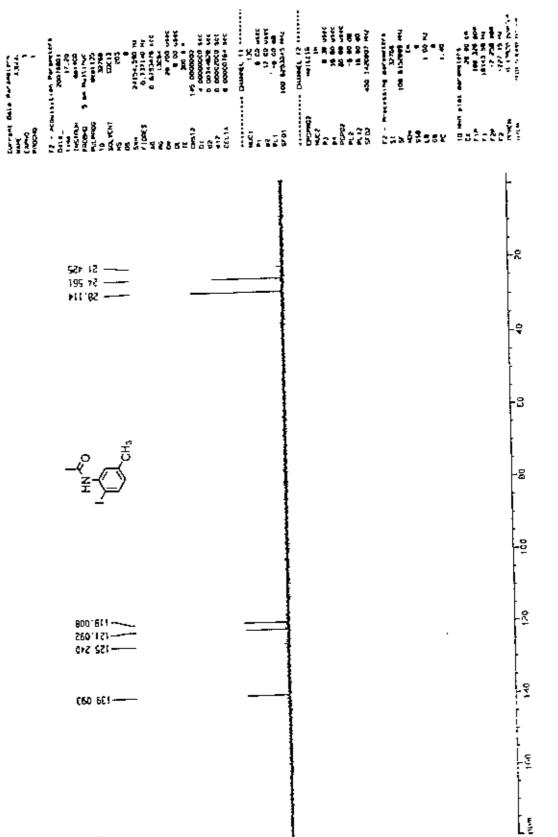
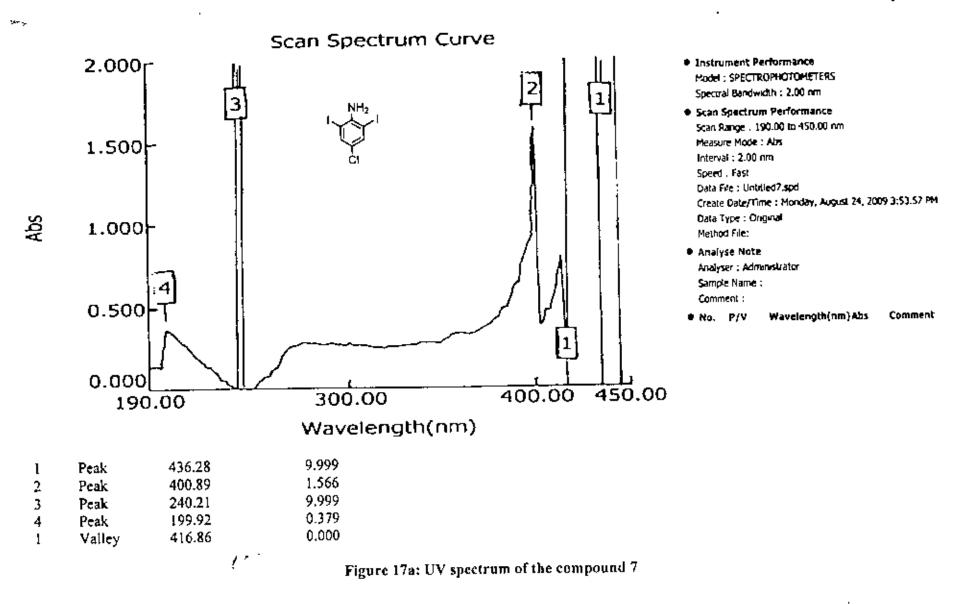
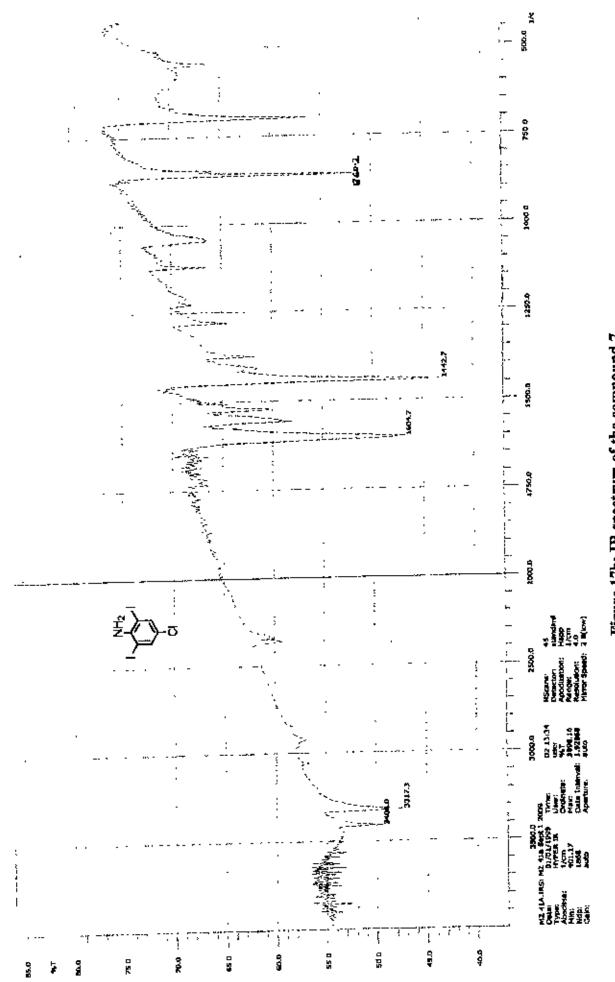




Figure 16d: Detp-135 NMR spectrum of the compound 6

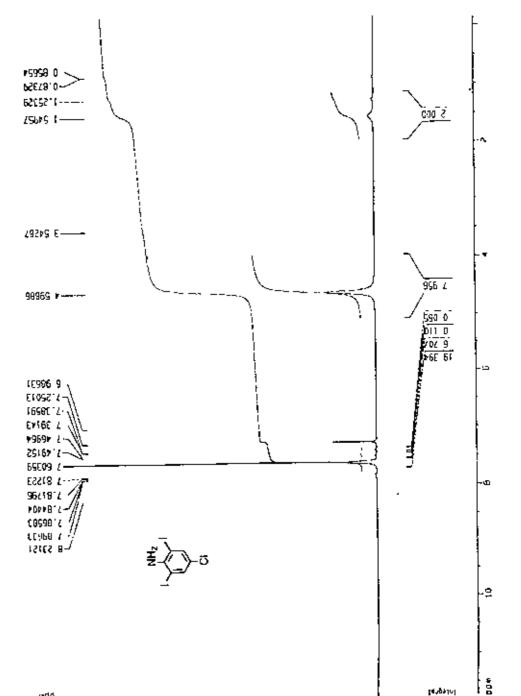


Figure 17b: IR spectrum of the compound 7

83

Spectra

	5	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4427 4427 113 1442 1442 1442	С. 472 472 472 474 474 747 747 747 747 747
araacters A366 1 1	200,0725 200,0725 13 03 50,400 50,400 200,13 200,13 22768 22768	55559540 0,1556255 2,5559540 7,5559540 7,9560 310 0,0000000	CHANNEL 11 14 10 10 14 10 14 12 10 10 10 10 10 10 10 10 10 10 10 10 10	230 59415
Current Oata P NAVE Expud PAOCNO	E2 - Acquisit) Date Tine HINSFAM FRQBAD FRQBAD FRQBAD FOU FRQBAD FOU FRQBAD FOU FRQBAD FOU FRQBAD FOU FRQBAD FRCAD FRQBAD FRQBAD FRQBAD FRQBAD FRQBAD FRQBAD FRQBAD FRCAD FRCAD F	ເມື່ ທີ່ ເຊິ່ງ ດີ 6 4 11 11 -	2222 2222 2222 2222 2222 2222 2222 2222 2222	C New Plot 9 C 19 C 19 C 19 C 19 C 19 C 19 C C 19 C

-

Figure 17c: ¹H NMR spectrum of the compound 7

7

Spectra

.

.

1 Decision and the second seco	1		L. Dé utec Xcologo arc 1 Xcologo arc 0 0.0002000 arc 0 0.0002000 arc 1 Xcologooo arc 1 Xcologoooo arc 1	F2 - Precession Extrements 12 - Precession Extrements 12 - 100 512200 ever 10 - 100 512200 ever 10 - 100 512200 ever 10 - 100 512 10 - 1	10 molt biot generations C. 20 20 cm ris 200 20 mon ris 20162/20 Mu ris 20162/20 Mu ri
		55 55 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	R4866	5229 <u>5</u> 8585 5	1
					and the state of t
			-		Hard States
			Ĕō		
520 <i>11</i> -	2				-
9¥E 77 925,08	>-	·			-
					and the second
(52,65)				-	
200 001 591 571		_		 	ANTICAL TURING
					יירי בישא אינון לאוי
500					

-

-

.

Spectra

8

Ľ,

Current Data Varancirta Made Canaça Canaça Dendçad	F2 - Activititien Presenters 10012 1001000 11000 1001000 11000 1001000 11000 1001000 11000 1001000 11000 1001000 11000 100100 11000 100100 11000 100100 11000 100100 11000 0.111100 11000 0.111100 11000 0.111100 11000 0.111100 11000 0.111100 11000 0.111100 11000 0.111100 11000 0.111100 11000 0.111100 11000 0.111100 11000 0.111100 11000 0.11100 11000 0.11100 11000 0.11100 11000 0.11100 11000 0.11100 11000 0.11100 11000 0.11100 11000 0.11100		
			0
			ę
			29
	-		- 62 -
	Ĩ. Ţ		1001
	EEE 19EI		

ł

Figure 17d: Dept-135 NMR spectrum of the compound 7

с 1

-

86

•.

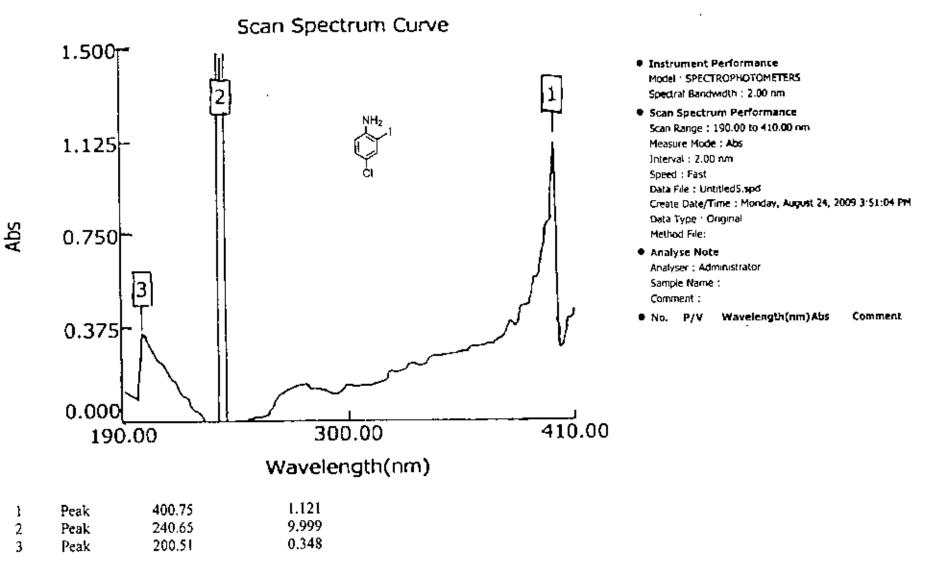


Figure 18a: UV spectrum of the compound 8

87

•

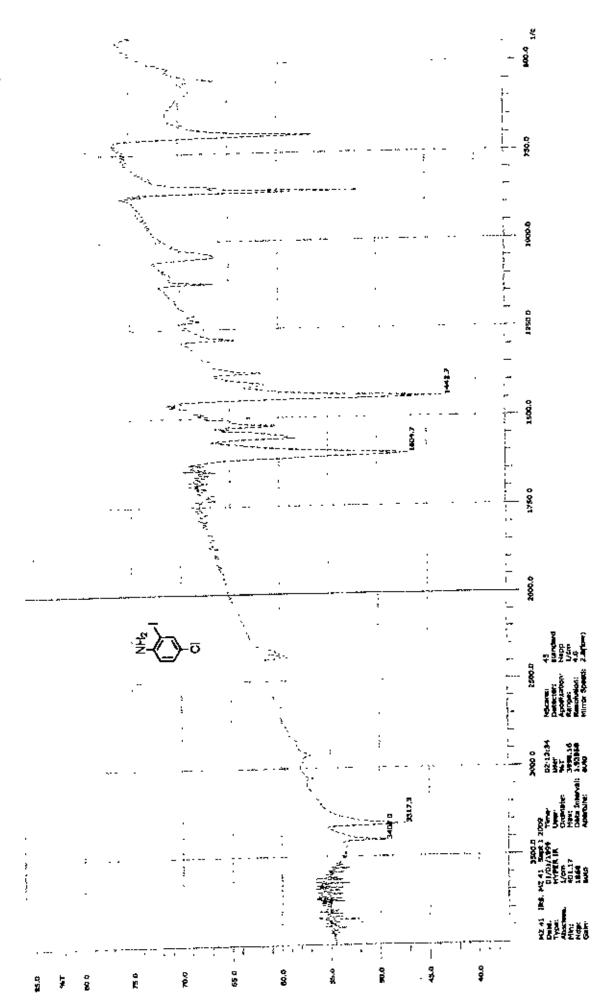


Figure 18b: IR spectrum of the compound 8

Current Date Parameters Vaxi Z X940 1 E 1 E 1 E 1	- Accupatition Parameters e 20070730 e 18 26 18 40 18 26 18 26 18 26 18 26 18 26 18 26 18 26 18 26 18 26 18 26 28 56 28 56 28 56 28 56 28 50 28	1, 900000000 SEC 1 94 1 84.30 4560 -6 00 08 - Frocessing parameters 22768 400.1428010 MWz 22768 400.1400136 MWz 0 0 0	PC 1.40 10 NMR plot parameters 20.00 cm 510 12.500 cm 511 2005.20 pcm 512 2005.20 pcm 51 5005.40 pcm 52 0.055.4 pcm 52 21.75 hz 50 0.62272 pcm/cm 92CM 249.17506 hz/cm
CVENER VANC EXPVO SPDCNO			10 - 10 - 10 - 10
	\$(290.0		
	09592 (592/5 (00:91 2 Ē		-
	95220 P S6229 P 22565 '9 C6229 9 1 69563 '91		18C6 ;
	6969'9- 20259'9- 2250 2 87520 2 87520 2 87520 2 87520 2 8209 2 2900 2 2900 2 2900 2 2900 2 2900 2 2900 2 2900 2 2900 2 2000 2		
	∎dd		

Figure 18c: ¹H NMR spectrum of the compound 8

.

.

\$

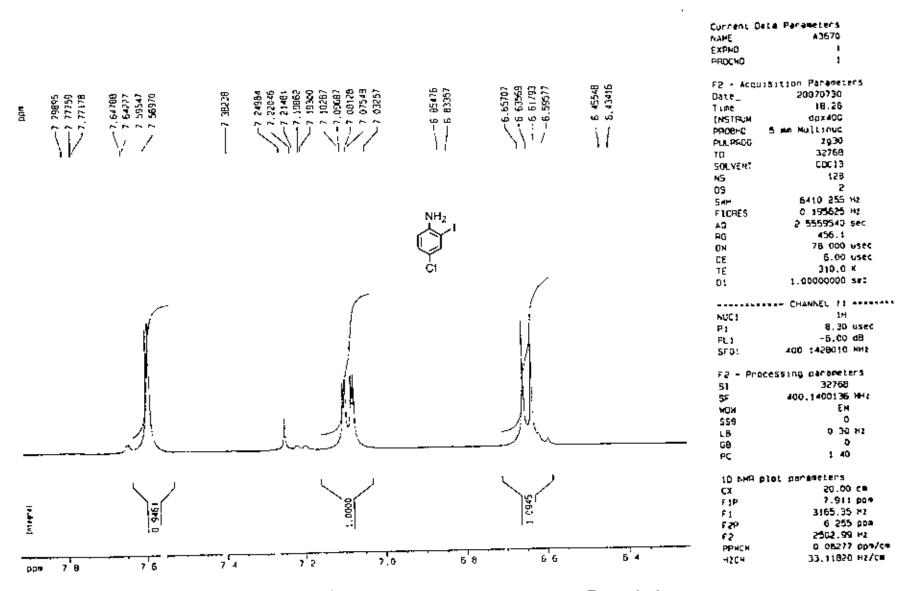


Figure 18c: ¹H NMR spectrum of the compound 8 (Expension)

.

	Sali Z-134.500 (V F (10715) 0.731.42.500 (V C 0.731.42.500 (V C 0.734.500 (V C 0.734.500 (V C 0.734.500 (V C 0.734.500 (V C 0.700 usets D 0.000 usets D 1.50000000 sets D 0.00000000 sets d1 0.00000000 sets d1 0.00000000 sets	MCI 50 MCI 50	FR - Freecessing extractors Sr (construction extractors Sr (construction extractors SSO (construction extractors SSO (construction extractors Construction extruction
	Ĩ Jō		
112'92 620 22 976'22 797'69			
528-111 166-111 292-621 292			
uCd			Are a des rational part of the second se

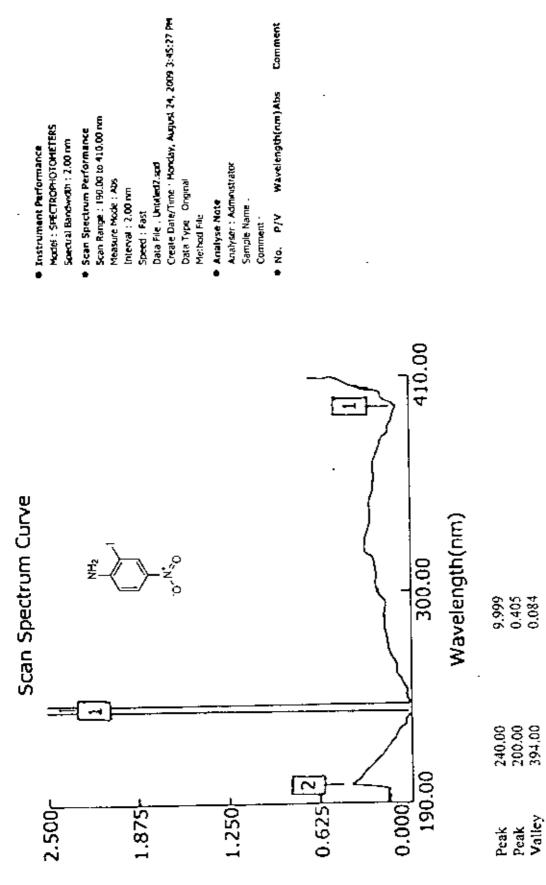
.

-

•

Spectra

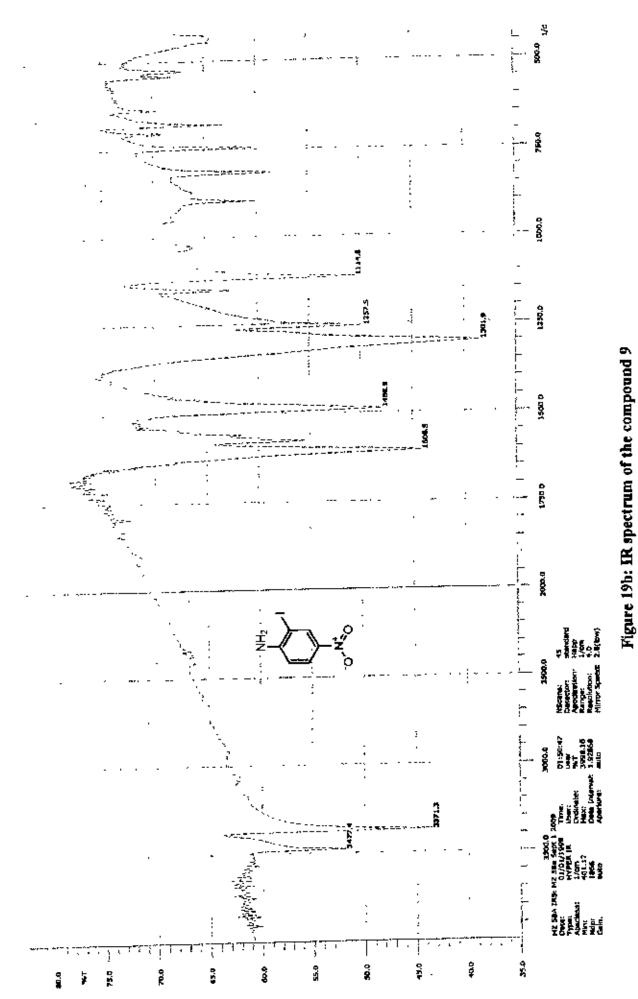
.


 2 4.45.1.1.4.4.4.4.4.4.4.4.4.4.4.4.4.4.	C D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>	CPODACZ MALL 17 CPODACZ MALL 17 MALZ MALL 18 MALZ MALL 18 MALZ MALL 19 MALZ MALL 19 MALZ MALL 18 MALZ MAL 18 MALZ MALL 18 MALZ MALL 18 MALZ MALL 1	ª I 	•
	1		-	
				£
				<u>C</u>
			+ 	0
Ĵ.			- - - -	Q
2~_/ 0			- - - -	top
255 FII			ן • • •	1,20
864-7E1				140
	ļ			160
u 00			• • • •	untid

Spectra

0}

•



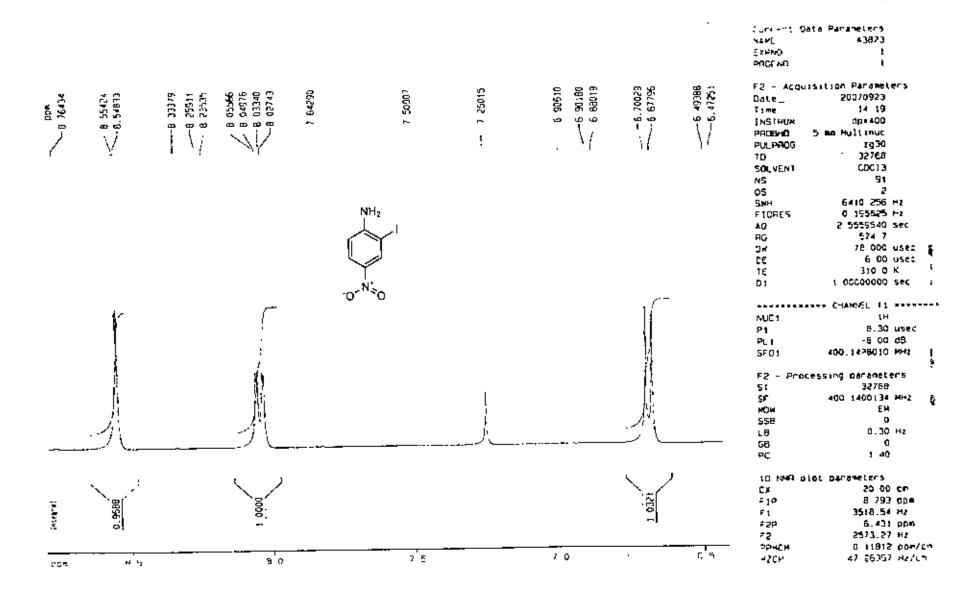
sdA

3

Figure 19a: UV speetrum of the compound 9

- 01 --

Spectra


GUTTATL Gala Parameters NAME Aleca Expno Proving 1 Proving 1	Acquisition Parameters 14.19	Process	1 D tot paramet 2 12 -0 -11	w 0.6543.957.05
Сит. 4.7 КАМР Бахрио Растио		5955858585 7985858585	1 504586 1 504586	NUT NUT
	\$2650°Q			e
	0 82958 D	}		[
	099755 L		(069 D	, pan
	Ex010 2			
	5+5L+ E			
	80296 E			7
	t21E6 ⊬) 	5 1007	
	0516× 5- 1522*19- 8806×19-\\			
	e-co2 e / 2	!		
	61099 9- / / C2106 9 0.985 9		i200 i	
	1'59012 1'20001	{		
	CALCO 8 1	لم <u>ج</u>	00001	د. ا
	926×0 8 -//ℓ- 93999018 -//↓		0	1
	46452 8-27月 11652 8-2月 62555 8-2月 62555 8-2月			1
	EF925 A			ke.
	76996 8 ' 92655 6-			
				<u>re</u>
	600		la sparo,	No.

.

95

Spectra

Spectra

ı.

Figure 19c: ¹H NMR spectrum of the compound 9 (Expansion)

L	T			FT - BEDAVSALIAN DATAVALATA	Det - 200 11000	5	2			NS 200		22.5	•					Ser	N. DW				00 00 V325		4-00 YOL 100000	€2 · Protesting betaMiters	10.71	21 100 6157403 M-J	-	55 S	~	5	-D and a at a state of	-01 214 75. =1:	-			
																																					F+	
																							•											A STATE AND A STAT				
											N.C.		-	-	_`	>	 - 14	>																			9	
		6 4 5 4	0. 70 29 29	9, 6, 6, 0,		 		-	_					 			 	 		 				-	 			_				••••	 _					
		P	15	.5	[]																							—		_				 			101	
		ē	:22	5	21																						-					-	 _					
			97 E																														_	 -			-	
																																					•	
				LŪ	đ																																	

Figure 19d: ¹³C NMR spectrum of the compound 9

.

.

97

٠.,

-

•

стана Тана Акалана Акал Сиска Састер	Ly	1 0	
DADER DARE Menu Dare	2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	iş ₋₁ 78 iğşezêrêk sardhesr setteri.	•
			-
			ž
	ž-~z,		
	832 211		1
	1:1 52: 505 5E:		
	ಲರರ		

Spectra

-

86

Figure 19d; Dept-135 NMR spectrum of the compound 9

-

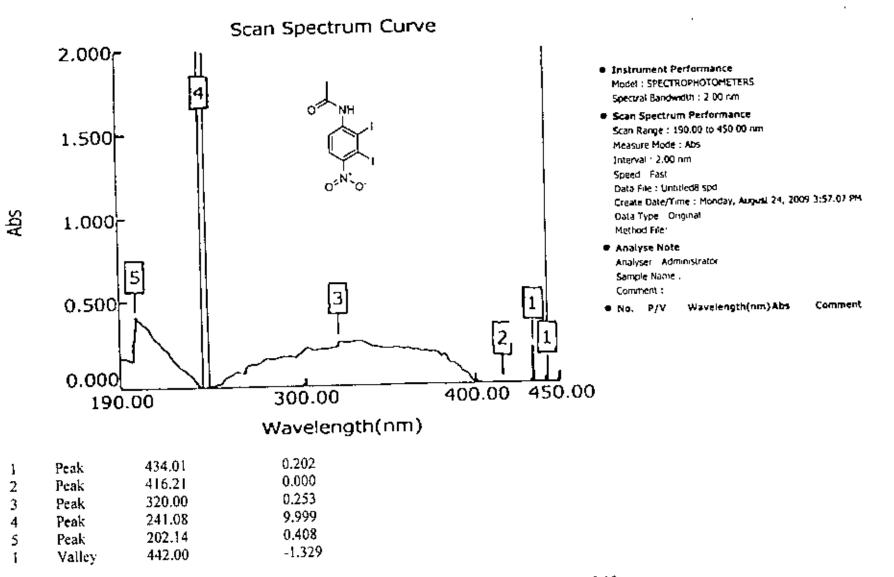
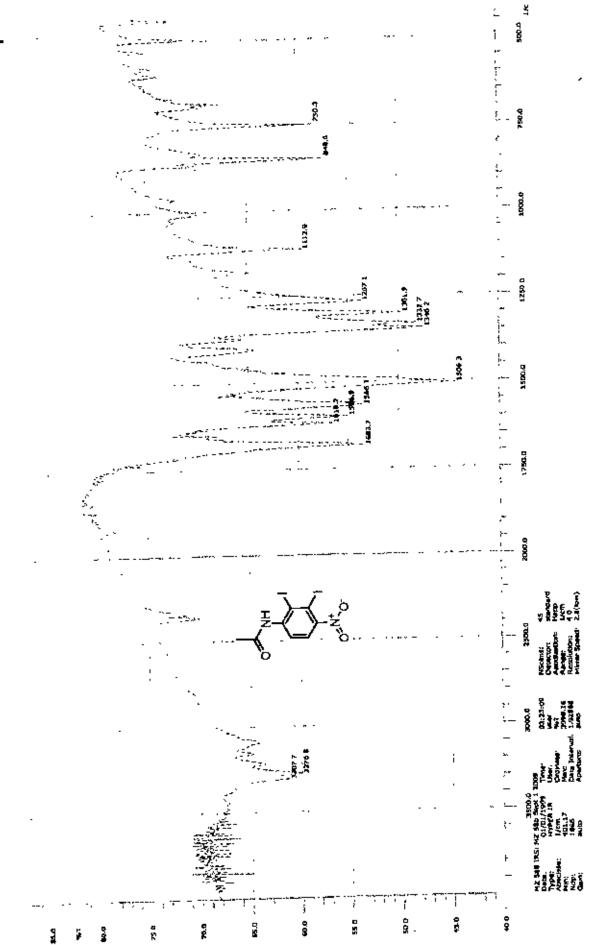
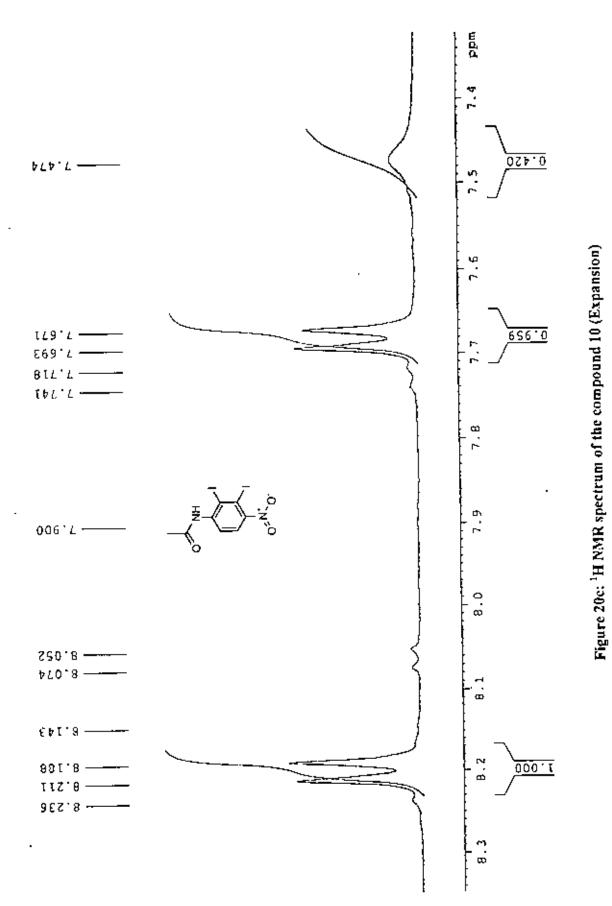



Figure 20a: UV spectrum of the compound 10

Figure 20b: IR spectrum of the compound 10

100

Spectra


Current Data Parameters NAME A5175 EXPNO 1 PRDCNO 1	F2 - Acquisition Paramaters DateZC090426 TimeZC090426 INSTRUM 000400 PRCBHQ 5 MM Multinuc PULPROG 5 MM Multinuc PULPROG 32768 SQLYENI COC13 SQLYENI COC13	4 6410 3 27555 2.55555 57 57 50 7 50 7 51 0 11 000000 11 000000	NUC1 CHANNEL (1) NUC1 14 P1 B 30 usec P1 B 30 usec P2 -6 00 08 5F01 400 1428010 HHz 5F01 400 1428010 HHz 5F01 400 1400124 HHz 6F2 - Processing persectors 5F01 32768 6F -000.1400124 HHz 6F -000.1400124 HHz	GB 1.40 PC 1.40 10 NHA PJOL Da-anelers CX 20 CD Cm F1 2013 ppm F1 013 ppm F20.125 pom F20.125 pom F20.05 H2 PPMCH 0 70669 ppm/Ce
	1010 D			
	14 C C] ((A.1.0) []

.

Figure 20c: ¹H NMR spectrum of the compound 10

۰.

Spectra

-

-1,002 000 107 39 44 10,59716 api/0 10,5015 10/07 CENTRAL 17 11111 CENTRAL7 ASIA16 MIC2 B0 00 VASS P0007 B0 00 VASS Cultured 11 11 20 700 user 1 20000000 140 0.00000000 140 0.00000000 140 1 Ì 24154,500 UN 24154,500 UN 241552 0 Z P. Acoustition Parameters Berewites 20.00 E 210 014 C. 11015 58 ŝ Ä 100 Currens Date Peraneters Actes 01 000000 001-100 19 **11** 11 117 3 ~~~~ ž ž

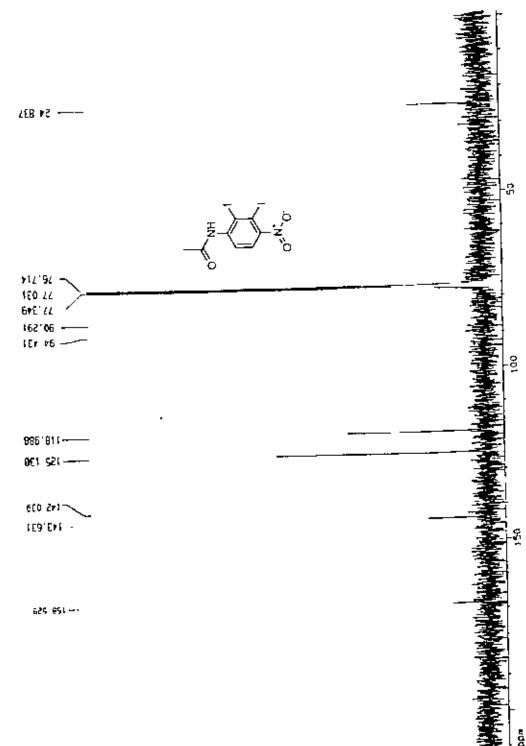
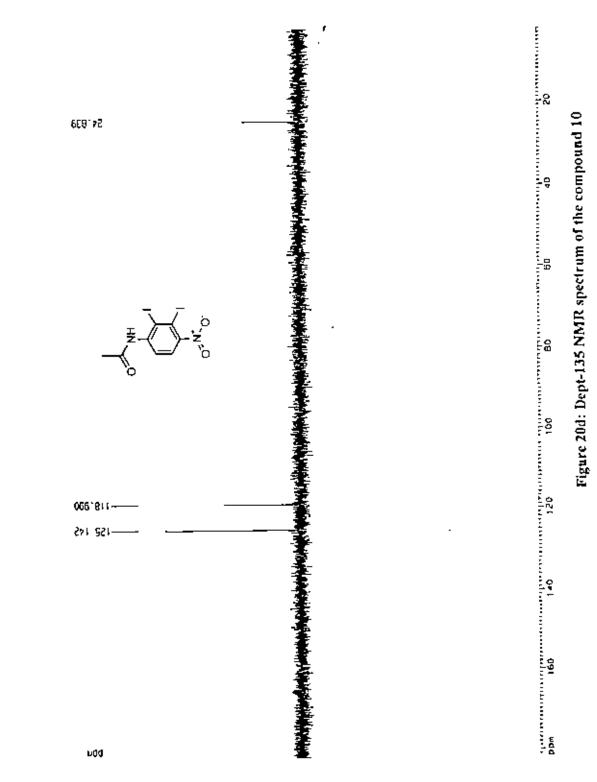
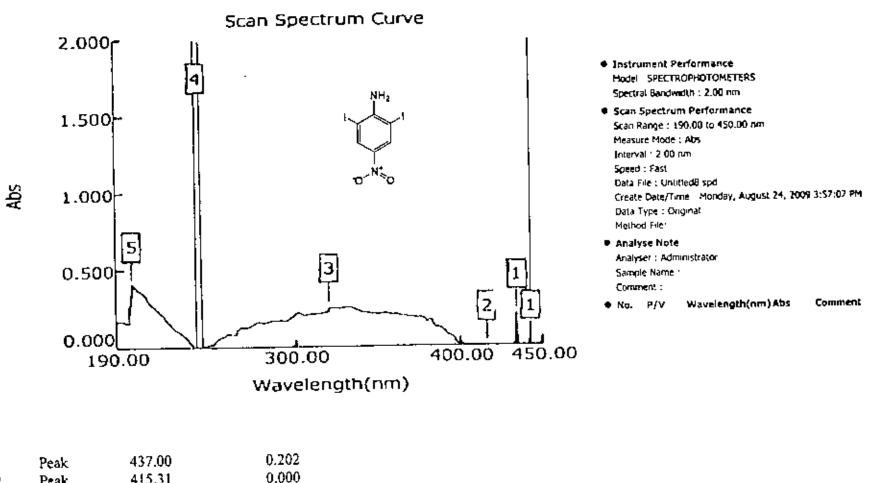



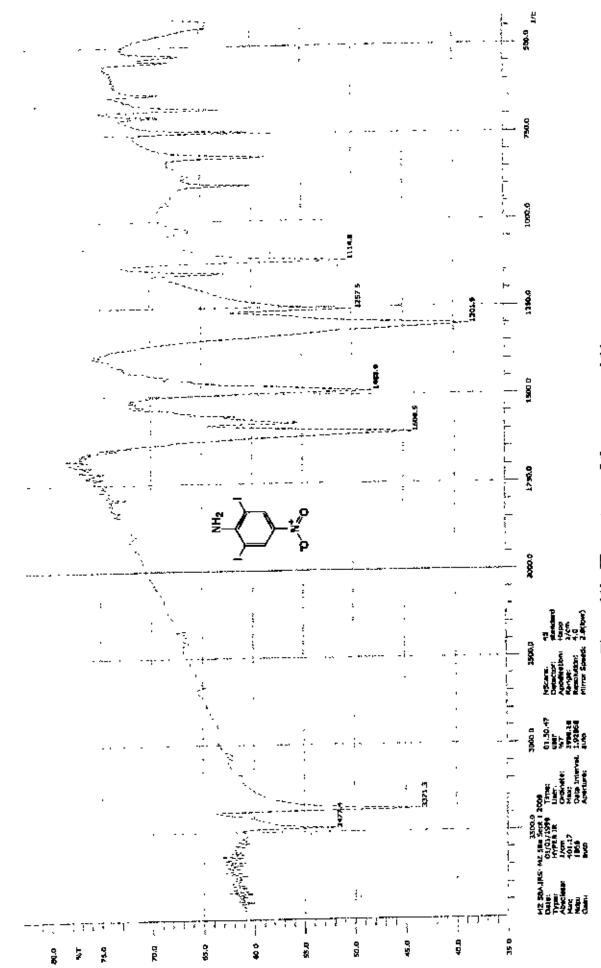
Figure 20d: ¹³C NMR spectrum of the compound 10


69

Spectra

4.101 mar 4	ç	4 11 200 Parameter 4 2002 11 200 2002 11 200 2012 12 000 2012 12 00 2012 12 00 2012 12 00 2012 12 0 2012 12 0 20	0 6/04/75 514 1000 27 145 0000245 145 0000245 145 00002442 145 0000024 145 0000000 145 0000000 146 000000 146 0000000 146 00000000 146 00000000 146 000000000 146 0000000000 146 000000000000000 146 000000000000000000000000000000000000	Cutwerk 11 111111111111111111111111111111111	100.151 100.15124001 Hv 100.15124001 Hv 100 1100 11 1100 12 1100 12 1101 24 1101 24
-D French		12 - Acqui Dete Dete Dete Provent NS SSA	9955×65555		2005282 PS2225282

Speetra


I CAR	71717	V.V++
Peak	322.01	0.253
Peak	243.05	9,999
Peak	204.09	0,408
Valley	444.10	-1,329
	Peak Peak Peak	Peak 322.01 Peak 243.05 Peak 204.09

.

1

n

Figure 21a: UV spectrum of the compound 11

Figure 21b: IR spectrum of the compound 11

30

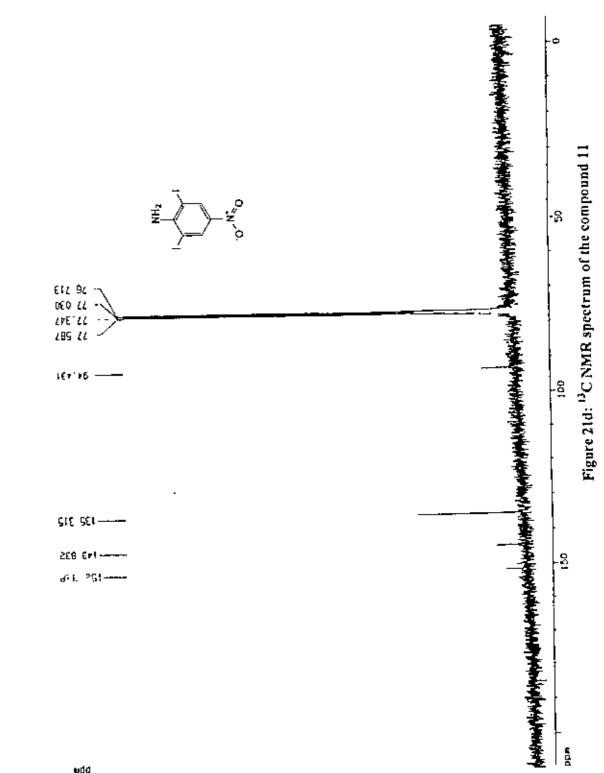
Spectra

LUTERL USES THE ASIS HANG EXPNC PROCNO	FZ - Arguisition Parameters Uate20090426 12.45		FR(BHO 5 # Multinuc Strong	FULTHUG 192769	VENT	5 32	ζ ι τ.	6410.256		5.55°.2			01 1.0000000 340				P.1 -5.00 4B	SFD1 400.1428010 KHr	f2 - Pracessing parameters	69 (2E	400.14001				P. 10	10 New plot parameters	20.05	14,007	1000	F2P -0.437 900 F3 -44 74 MT	CN 0.71219	284.97479
	0690 °	0			<u></u>	*5 *	23	ð.	IJ	21		98	ä		. 1	ă	æ	3	2	50	8	12	n :	ļ	a CC	-	U				-	1
	0905 1520 11280 11281 11281 15221	0 0 0 1		-																												-N
	ESES /LOC 1651 88/2	- 1 - 5 - 5 - 5 - 5										NH-	-	<u>}</u>	2	≻	ž	0,0														
	E209.	Е- С- Е-		r r									-	_										j				10		Ī		• •
	\$0942 \$3983 0127 0127 2929	- د - 2	1/																								!			5		- ю
	8834 2023 2221 5478 7578 7578	1 · 1 · 1 ·														-						-								-		-0
	\$495 0545		/	~															-							-		000	<u></u>	<u>.</u>		-2

Figure 21c: ¹H NMR spectrum of the compound 11

[=

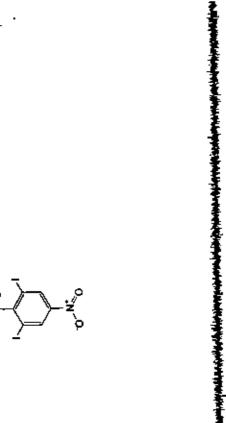
b

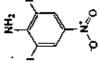

(******

-

udd

Spectra


10 well giot annangerra 11 20 20 cm 12 20 20 cm 13 20 20 2m 14 20 20 2m 15 20 20 2m 15 20 20 20 20 10 20 20 20 20 10 20 20 20 20 10 20 20 20 20 10 20 20 20 20 20 10 20 20 20 20 20 10 20 20 20 20 20 10 20 20 20 20 20 10 20 20 20 20 20 10 20 20 20 20 10 20 20 20 20 20 10 20 20 20 20 20 10 20 20 20 20 20 10 20 20 20 20 20 10 20 20 20 20 20 10 20 20 20 20 10 20 20 20 20 10 20 20 20 20 10 20 20 20 20 10 20 20 20 10 20 20 20 10 20 20 20 10 20 20 20 10 20 20 20 10 20 20 20 10 20 10 20 ······ 11 124000 ······ 2141 OK 1 10 00 1-2141 CeOULAN 001 F2 - Processing Baranulur's 31764 54 500 1002 538 500 1002 538 500 1002 538 500 1002 548 7 50 10 20 703 4100 1 00 4111 309 0 4 1 50003000 144 0 03003000 144 0 03003000 144 24154.550 HJ 6 75746 HJ 9 676345 140 FZ - ACOMINIATOR Parameters Deve_ CLUTCHE DALE PARAMELET I NAME 45171 EARNO 7 FAOCING 1 12 51 004400 004400 1204 X ä Dere, ý. -ŏ 58 99558¥8



Spectra

108

2009050/ 2009050/ 201400 2014100 2014100 2014111 2014112 20141	24154 550 W 8.737140 M 8.1797140 M 8.1797140 M 133014 Sec 13301 A 20.750 M 4. 10000000 4. 10000000 4. 10000000 4. 10000000 4. 10000000 4. 10000000 4. 10000000 4. 100000000 4. 1000000000 4. 100000000 4. 100000000 4. 10000000 4. 10000000 4. 10000000 4. 10000000 4. 10000000 4. 10000000 4. 10000000 4. 100000000 4. 100000000000 4. 100000000 4. 100000000 4. 100000000 4. 100000000 4. 100000000 4. 100000000 4. 100000000 4. 1000000000 4. 100000000 4. 100000000 4. 100000000 4. 100000000 4. 100000000 4. 100000000 4. 1000000000000 4. 1000000000 4. 100000000 4. 100000000 4. 10000000000000 4. 100000000 4. 100000000 4. 100000000 4. 100000000 4. 100000000 4. 10000000000000 4. 1000000000 4. 1000000000 4. 1000000000 4. 10000000000 4. 1000000000 4. 1000000000 4. 1000000000 4. 1000000000 4. 100000000000000 4. 100000000000000000 4. 1000000000000000000000000000000000000	Consect 11 1000	(10) 100 100 100 100 100 100 100 100 100
11.	F		

.... ·

Spectra

.

.

.

512.251 ---

.

601

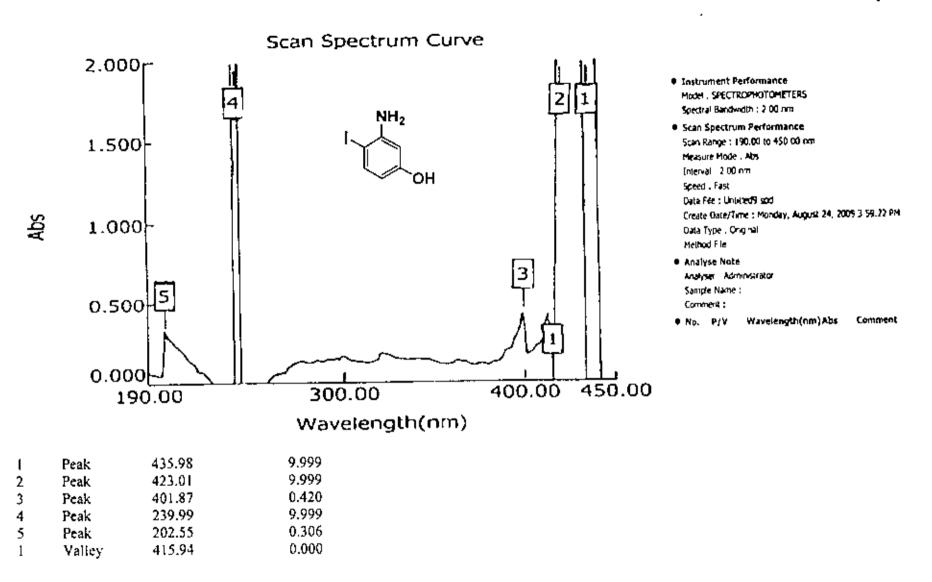
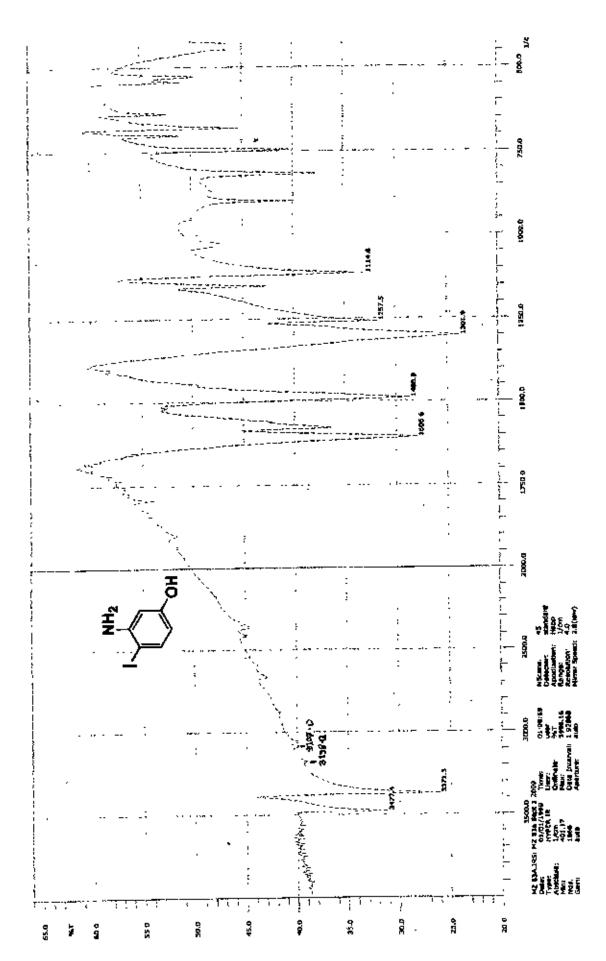
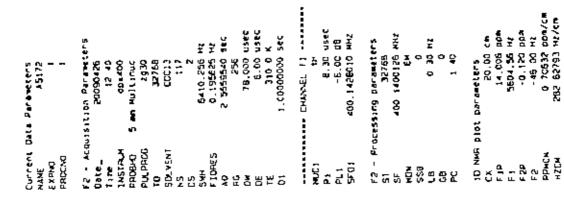
Figure 21d: Dept-135 NMR spectrum of the compound 11

.

-

udd

.

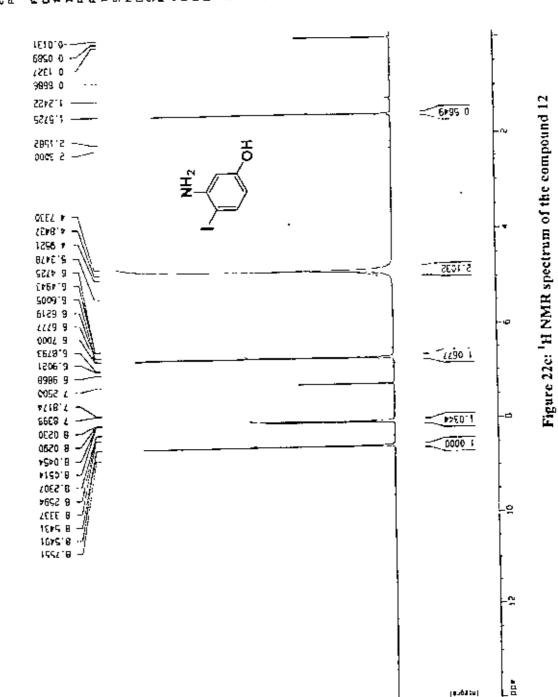
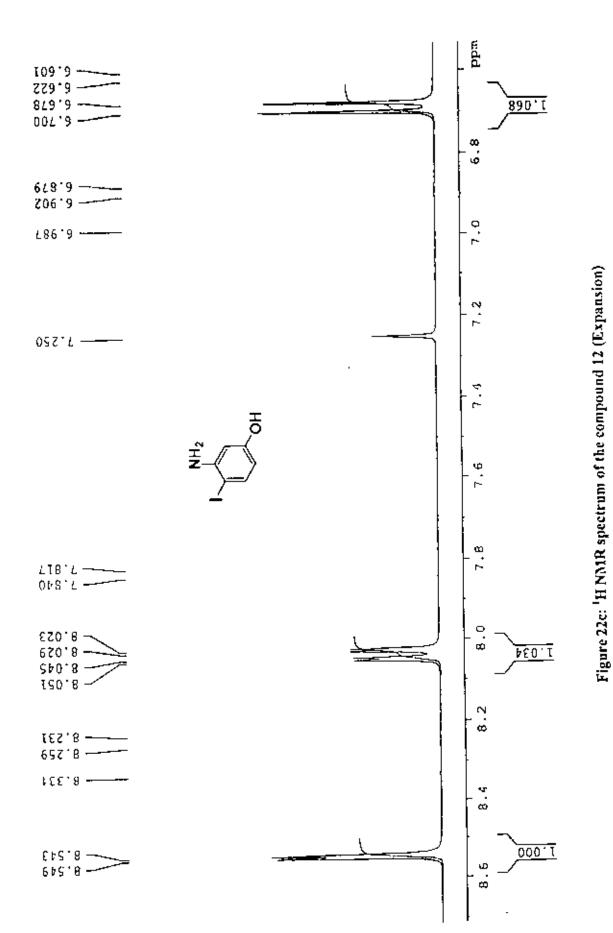

Figure 22a: UV spectrum of the compound 12

Figure 22b: LR spectrum of the compound 12


Spectra

.

12

(at Long

Spectra

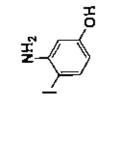
-**\$** -

-

Current Date Permeters AAME Mile Mile Mile Extend F? - Acoustiver Maraweters Date (2.1) Trate (2.1) Trate (2.1) Trate (2.2) Paced 5 en wultives Paced 5 en wultives Paced 5 en wultives Paced 5 en wultives Paced 5 en wultives	24(54-34) 24(54-34) 24(54-34) 24(34-34) 24(34-34) 24(34-34) 24(3		52 - Process into gue menters 51 Process into gue menters 51 Process into gue menters 61 0 0 0 0 0 0 0 0 55 0 0 10 0 0 0 61 0 0 0 0 0 61 0 0 0 0 0 61 0 0 0 0 0 0 61 0 0 0 0 0 0 61 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 Mont with the second
Current Autor Egyptic Proceed	1997.98994988 1998.9894988 1998.98		" แห่งอัฐธรรม ร	
111-91 B20 11	HO	-		
97E 22 225 DE				
692 211	-			
ELC'521 222'5EL				-
995 251			-	1150
ŁIJĊ				- Do

Figure 22d: ¹³C NMR spectrum of the compound 12

14


-

•

•

	67 67 1000002 1007102 1007102 1007102 1007102 1007102 1007102 1007102 1007102 1007102 1007102 1007102 100710 100700000000	Z4154 550 hr g 137140 hr b Lr1046 stc r0 150 uset 6 00 uset 8 00 uset 9 00 uset 9 00 00 184 stc 9 00 00 184 stc	 ANING BETHERICA 2014 100 553900 Period 14 14 14 14 14 14 14 14 14 14
Europei Car LLA TLENG MOCKE	ra - kewin Ture Ture Ture Ture Pageo To Sture Sture	200 200 200 200 200 200 200 200 200 200	5

-

.

···· 115 583

2051551 --- --

152115

e00

Figure 22d: Dept-135 NMR spectrum of the compound 12

CHAPTER-4 ANTIMICROBIAL SCREENING

.

•

INTRODUCTION

Bacteria and fungi are responsible for many infectious diseases. The increasing clinical implications of drug resistant fungal and bacterial pathogens have lent additional urgency to antimicrobial drug research. The deterioration of human population due to enhance of prevalence of infections diseases is becoming a global problem¹. It was found from the literature that nitrogen and sulfur containing compounds showed marked microbial activities²⁻⁶. When heterocyclic part of the compounds, such as; imidazole, nitroimidazole etc. become attached to carbohydrates⁷, their efficiency to inhibit bacteria of fungus sharply increased. It was also found that a large number of biologically active compounds possesses aromatic and heteroaromatic molecule may possess greater potential for biological activity⁸. In *vitro* antimicrobial activities of fused pyrimidines were successfully evaluated in our laboratory⁹.

M. shaheb¹⁰ a post graduate student carried out in *vitro* antimicrobial activates of fused pyrimidine derivatives. M. S. Rabman¹¹ showed that antimicrobial activities of alkaloids plants leaves. The alkaloids were screened against several pathogenic bacteria.

S. M. Shahed^{12, 13} a former research student of organic laboratory carries out antifungal activities of a series of acylated D-Mannose derivatives.

M. Fakruddin¹⁴ also a research student of organic laboratory carries out antifungal activities of a series of fused pyrimidine derivatives. He used five human pathogenic bacteria viz. *Bacillus cereus, Bacillus megaterium, Bacillus, Vibrio parahemolyticus, Aspergillus niger and panicillum sp.* S. M. Abe Kawsar^{15, 16} also a former research student of organic laboratory carried out in vitro antibacterial activities of a series of acylated uridine derivatives.

Recently, our groups synthesized 2-substituted banzofurans¹⁷, isoindonone and isoquinolinone¹⁸ and tested their antibacterial and antifungal activities. Plants are the natural reservoir of many antimicrobial agents. In recent times, traditional medicine as an alternative form of health care and to overcome microbial resistance has led the researchers to investigate the antimicrobial activity of medicinal plants.

The present work was under taken to select the chemicals (iodide derivatives) that have not been studied before pathogenic microorganisms of animals and plants.

4.1. Materials and methods

The anti bacterial activities of furan derivatives were studied against thirteen bacteria and the activities of the same compounds were also studied against three fungi. For the detection of antibacterial activities the disc diffusion method¹⁹ was followed.

The antimicrobial screening which is the first stage of antimicrobial drug research is performed to ascertain the susceptibility of various fungi and bacteria to any agent. This test measures the ability of each test sample to inhibit the *in vitro* fungal and bacterial growth. This ability may be estimated by any of the following three methods.

- a) Disc diffusion method
- b) Serial dilution method
- c) Bioautographic method

Among the above mentioned techniques the disc diffusion¹⁹ is a widely accepted in vitro investigation for preliminary screening of test agents which may possess antimicrobial activity. It is essentially a quantitative or qualitative test indicating the sensitivity or resistance of the microorganisms to the test materials. However, no distinction between bacteriostatic and bactericidal activity can be made by this method²⁰.

4.2. Principle of disc diffusion method

In this classical method, antibiotics diffuse from a confined source through the nutrient agar gel and create a concentration gradient. Dried and sterilized filter paper discs (6 mm diameter) containing the test samples of known amounts are placed on nutrient agar medium uniformly seeded with the test microorganisms. Standard antibiotic (Kanamycin) discs and blank discs are used as positive and negative control. These plates are kept at low temperature (4° C) for 24 hours to allow maximum diffusion of the test materials to the

surrounding media. The plates are then inverted and incubated at 37^oC for 24 hours for optimum growth of the organisms. The test materials having antimicrobial property inhibit microbial growth in the media surrounding the discs and thereby yield a clear, distinct area defined as zone of inhibition. The antimicrobial activity of the test agent is then determined by measuring the diameter of zone of inhibition expressed in millimetre.

In the present study the crude extracts, fractions as well as some pure compounds were tested for antimicrobial activity by disc diffusion method (Fig. 22). The experiment is carried out more than once and the mean of the readings is required¹⁹.

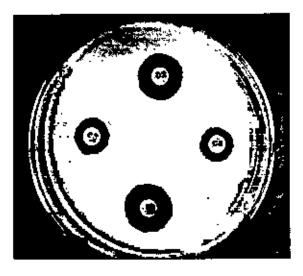


Figure 22: Disc diffusion method

4.3. Experimental

4.3a. Apparatus and reagents:

Filter paper discs	Petri dishes	Inoculating loop
Sterile cotton	Sterile forceps	Spirit burner
Micropipette	Screw cap test tubes	Nose mask and Hand gloves
Laminar air flow hood	Autoclave	Incubator
Refrigerator	Nutrient agar medium	Ethanol
Chloroform		

4.3b. Test materials

Comp. No.	Name of the test chemicals	Molecular structure
3	2,6-Dilodo-4-methylaniline	NH ₂ CH ₃
4	2-Iodo-4-methylacetanilide	
5	4-Methylacetanilide	
6	N-(2-iodo-5-methylpheny)acetamide	
7	4-chloro-2,6-dilodoaniline	
8	4-chloro-2-iodoaniline	
9	2-lodo-4-nitroaniline	
10	2,3-diiodo-4-nitroacetanilide	
12	3-amino-2,4-diiodophenol	NH ₂

Table 12: List of compounds used for antimicrobial activities

.

-

4.3c. Test organisms

The microbial strains used for the experiment were collected as pure cultures from the lustitute of Nutrition and Food Science (INFS), University of Dhaka. Both gram positive and gram-negative organisms were taken for the test and they are listed in the Table 13.

Table 13: List of test microorganisms

Gram positive Bacteria	Gram negative Bacteria	Fungi
Bacillus cereus	Esherichia coli	Candida albicans
Bacillus megaterium	Pseudomonas aeruginosa	Aspergillus niger
Bacillus subtilis	Salmonella paratyphi	Sacharomyces cerevaceae
Staphylococcus aureus	Salmonella typhi	
Sarcina lutea	Shigella boydii	
· · · · · · · · · · · · · · · · · · ·	Shigella dysenteriae	
	Vibrio mimicus	
	Vibrio parahemolyticus	

4.3d. Composition of culture medium

Nutrient agar medium (DIFCO) (Table 14) was used in the present study for testing the sensitivity of the organisms to the test materials and to prepare fresh cultures.

Table 14: Composition of nutrient agar medium.

a. Nutrient agar medium

Ingredients	Amounts		
Bacto peptone	0.5 gm/litter		
Sođium chloride	0.5 gm/litter		
Bacto yeast extract	1.0 gm/litter		
Bacto agar	2.0 gm/litter		
Distilled water q.s.	100 ml		
pH	7.2-7.6 at 25°C		

b. Nutrient both medium

Amounts
0.3 gm/litter
0.5 gm/litter
100 ml
7.2±0.1 at 25°C
-

c. Muller-Hunton medium

Ingredients	Amounts		
Beef infusion	30 gm/litter		
Casamino acid	1.75 gm/litter		
Starch	0.15 gm/litter		
Bacto agar	1.70 gm/litter		
Distilled water q.s.	100 ml		
рН	7.3±0.2 at 25°C		

d. Tryptic soya both medium

Ingredients	Amounts
Bacto tryptone	1.7 gm/litter
Bacto soytone	0.3 gm/litter
Bacto dextrose	0.25 gm/litter
Sodium chloride	0.5 gm/litter
Di potassium hydrogen phosphate	0.25 gm/litter
Distilled water q.s.	100 ml
рН	7.3±0.2 at 25°C

Nutrient agar medium (DIFCO) is the most frequently used and also used in the present study for testing the sensitivity of the organisms to the test materials and to prepare fresh cultures.

4.4. Preparation of medium

Amount of each of the constituents was taken in a conical flask and distilled water was added to it to make the required volume. The contents were heated in a water bath to make a clear solution. The pH (at 25°C) was adjusted at 7.2-7.6 using NaOH or HCl 10 ml and 5 ml of the medium was then transferred in screw cap test tubes to prepare plates and slants respectively. The test tubes were then capped and sterilized by autoclaving at 15-lbs pressure at 121°C for 20 minutes. The slants were used for making fresh culture of microorganisms that were in turn used for sensitivity study.

4.5. Sterilization procedure

To avoid any type of contamination and cross contamination by the test organisms the antimicrobial screening was done in Laminar Hood and all types of precautions were strictly maintained. UV light was switched on an hour before working in the Laminar Hood. Petridishes and other glassware were sterilized by autoclaving at a temperature of 121°C and a pressure of 15-lbs./sq. inch for 20 minutes. Micropipette tips, cotton, forceps, blank discs etc. were also sterilized by UV light.

4.6. Preparation of subculture

In an aseptic condition under laminar air cabinet, the test organisms were transferred from the pure cultures to the agar slants with the help of a transfer loop to have fresh pure cultures. The inoculated strains were then incubated for 24 hours at 37° C-for their optimum growth. These fresh cultures were used for the sensitivity test.

4.7. Preparation of the test plates

The test organisms were transferred from the subculture to the test tubes containing about 10 ml of melted and sterilized agar medium with the help of a sterilized transfer loop in an aseptic area. The test tubes were shaken by rotation to get a uniform suspension of the organisms. The microbial suspension was immediately transferred to the sterilized petridishes. The petridishes were rotated several times clockwise and anticlockwise to assure homogenous distribution of the test organisms in the media.

4.8. Preparation of discs

Three types of discs were used of antibacterial screening. They were:

- (a) Standard Discs
- (b) Blank Discs and
- (c) Sample Discs

The descriptions of these discs were given below:

(a) Standard Discs

These were used as positive control to ensure the activity of activity of standard antibiotic against the test organisms as well as for comparison of the response produced by the know antibacterial agent with that of produced by the test sample. In this investigation, Kanamycin, (30 μ g/ disc) standard disc was used as the reference.

(b) Blank Discs

These were used as negative control which ensures that the residual solvents (left over the discs even after air-drying) and the filter paper were not active themselves.

(c) Preparation of Sample Discs with Test Sample

Measured amount of each test sample was dissolved in specific volume of solvent to obtain the desired concentrations in an aseptic condition. Then discs were soaked with solution of test samples and dried.

4.9. Diffusion and incubation

The sample discs, the standard antibiotic discs and the control discs were placed gently on the previously marked zones in the agar plates pre-inoculated with test microorganisms. The plates were then kept in a refrigerator at 4° C for about 24 hours upside down to allow sufficient diffusion of the materials from the discs to the surrounding agar medium. The plates were then inverted and kept in an incubator at 37° C for 24 hours.

4.10. Determination of the zone of inhibition

The antimicrobial potency of the test agents are measured by their activity to prevent the growth of the microorganisms surrounding the discs which gives clear zone of inhibition.

After incubation, the antimicrobial activity of the test materials was determined by measuring the diameter of the zones of inhibition in millimeter with transparent scale.

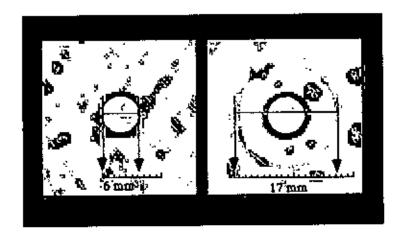


Figure 23: Determination of the zone of inhibition

4.11. RESULTS AND DISCUSSION

The antimicrobial activities of new aryl iodo derivatives were examined in the present study. The antibacterial activities of 2-iodoanilin or acetanilide derivatives were studied against thirteen bacteria such as *Bacillus cereus, Bacillus megaterium, Bacillus subtilis, Staphylococcus aureus, Sarcina lutea, Escherichia coli, Pseudomonas aeruginosa, Salmonella paratyphi, Salmonella typhi, Shigella boydii, Shigella dysenteriae, Vibrio mimicus, Vibrio parahemolyticus* and the activities of the same compounds were also studied against three fungi such as *Candida albicans, Aspergillus niger, Sacharomyces cerevaceae.*

All compounds were soluble in chloroform and some compounds were showed mild to sensitive inhibitory activity against microbial growth & the average zone of inhibition produced by them 8-25 mm. The result of the diameter of inhibition zone and percentage of inhibition of microbial growth due to the effect of chemicals, are presented in table 15 to table 16.

The antibacterial activities were measured in terms of diameters of zone of inhibition in (mm). All experiments were performed thrice to minimize the experimental plus individual errors. The mean value of the diameters of zone inhibition (M.DIZ) was taken as in disc for determining antimicrobial spectra. Sensitivity test results are in **table 15** to 16 and were compared with a standard antibiotic kanamycin (30-40 µg/disc).

The gram positive and gram negative as well as pathogenic fungi used in the present investigation, three synthesized compounds (8, 9 and 10) were found comparatively good inhabitant activity against most of the tested organisms, at a dose of 400 μ g/disc shown in tables 15 and 16. There were completely no activities of the synthesized compounds 3, 4, 5, 6, 7 and 12 (Table 15 & Table 16).

Two compounds 2-iodo-4-nitroaniline and 2,3-diiodo-4-nitroacetanilide (9, 10) showed mild (M.DIZ 8-10 mm) and sensitive (M.DIZ 17-25 mm, but the fungi *Aspergillus niger* showed mild activities, M.DIZ 13 mm) activities all tested organisms respectively (Table 16). One the other hand, 4-chloro-2-iodoaniline, 8 showed sensitive activities (M.DIZ 16-19 mm) all the tested organisms except the fungi *Aspergillus niger* (M.DIZ 13 mm). But the compound 4-chloro-2,6-diiodoaniline, 7 was showed full resistance against all the tested organisms. Therefore, it is not possible to determine the essential structure feature for antimicrobial action of this series of compound properly.

÷,

×.

Test microorganisms	Diameter of zone of inhibition(mm)					
				₹ 2 6		KAN
Gram positive bacteria		<u> </u>	<u> </u>			
Bacillus cereus	-	-	-		-	30
Bacillus megaterium		-	-	-	-	31
Bacillus subtilis	-		-	-	-	31
Staphylococcus aureus	-		-	-	-	32
Sarcina lutea	-		-	-	-	32
Gram negative bacteria			·	·		
Escherichia coli	-	-	-	i _	-	31
Pseudomonas aeruginosa	-		-	-	-	32
Salmonella paratyphi	-		-	-	-	32
Salmonella typhi	-	-		-	-	32
Shigella boydii	-				-	32
Shigella dysenteriae	~	-	-	-	-	31
Vibrio mimicus		-	-	-	-	32
Vibrio parahemolyticus	-	_	-	_		32
Fungi						
Candida albicans	-	-	-	-	-	32
Aspergillus niger	<u> </u>	-	-	-	-	32
Sacharomyces cerevacae		-		-		32

Table 15: Antimicrobial activities of test samples 3-7

*potency per disc 400 µg

Interpretation of sensitivity test results:

Gram (+) Bacteria:

Gram (-) bacteria

18 mm (M.DIZ)= Sensitive>16 mm (M.DIZ)= Sensitive14-18 mm (M.DIZ)= Intermediate13-16 mm (M.DIZ)= Intermediate>14 mm (M DIZ)= resistant>13 mm (M.DIZ)= resistant

KAN: Standard kanamycin dise

"-" indicated no sensitivity or zone of inhibition lower than 6 mm.

Test microorganisms	Diameter of zone of inhibition(mm)					
<u> </u>		NH ₂		HT OH	KAN	
	8	9	10	12		
Gram positive bact.	J	. <u> </u>	·	•		
Bacillus cereus	16	8	17	-	30	
Bacillus megaterium	17	8	18	-	31	
Bacillus subtilis	16	12	25	-	31	
Staphylococcus aureus	17	10	22	-	32	
Sarcina lutea	17	10	19	-	32	
Gram negative bact.			t_,			
Escherichia coli	17	10	21		31	
Pseudomonas aeruginosa	17	10	17		32	
Salmonella paratyphi	16	10	20	-	32	
Salmonella typhi	17	9	20		32	
Shigella boydii	19	10	19	-	32	
Shigella dysenteriae	17	- 9	18	-	31	
Vibrio mimicus	16	10	20	-	32	
Vibrio parahemolyticus	16	10	16	-	32	
Fungi	J	<u> </u>				
Candida albicans	17	10	20	-	32	
Aspergillus niger	13	8	13	-	. 32	
Sacharomyces cerevacae	17	10	20	-	32	

Table 16: Antimicrobial activities of test samples 8, 9, 10 & 12

*potency per disc 400 µg

Interpretation of sensitivity test results;

Gram (+) Bacteria:

Gram (-) bacteria

18mm (M.DIZ)= Sensitive>16mm (M.DIZ)= Sensitive14-18 mm (M.DIZ)= Intermediate13-16 mm (M.DIZ)= Intermediate>14 mm (M.DIZ)= resistant>13 mm (M.DIZ)= resistant

KAN: Standard kanamyein dise

"-" indicated no sensitivity or zone of inhibition lower than 6 mm.

4.12. Conclusion

Nine synthesized iodo compounds have been tested for in antimicrobial activity against five gram-positive and eight gram-negative bacteria as well as three human fungal pathogens. Some of this compound demonstrated mild to sensitive antimicrobial activity against most of the test organism. Form these structures we found that the aryl-nitro group causes relatively microbial growth inhibition.

Two compounds 8, and 9 were showed intermediate and mild activity, could probably bed due to their chlorine, iodine and nitro and acetanilide group of C-4, C-2 and C-4, C-1 position of Benzene ring respectively. The higher activity of the compound 10 could probably bed due to their nitro and acetanilide group of C-4 & C-1 position of benzene ring. Which subsequently facilitated the diffusion of the chemical entities through the microbial cell wall? Among the tested compound 3, 4, 5, 6, 7, 12 were showed resistant the entire tested microorganism.

4.13. REFERENCES

- Chem Bhare, Khadse, R.V.; Bobde, B. G.; Bahekar, A.S. and Eur, R. H Med. Chem., 2003, 38, 89.
- Singh, H.; Shukia, K. N.; Dwivedi, R.; and Singh, Y. L. D. J. Agric. Food Chem., 2990, 38(7), 1483.
- 3. Gawande, N. G.; and Shingare, M. S. Indian J. Chem., 1987, 26(B), 387.
- Chaurisia, M. R.; Shama, A. K. M.; and Shukia, K. R. Indian Phys. Nat. Sci., 1987, 7(A), 18.
- Mitsuhiro, I.; Nakayama, K. and Hayase, Y. Heterocycles (Tokyo)., 1988, 27(11), 2635.
- Chowdhury, A. Z. M. S.; Rahman, M. S. and Anwar, M. N. Bangladesh J. Microbial, 1999, 16(2), 101-105.
- 7. Krzysztof walczak, 5th Blue Danube symphosium of heterocyclic chemistry (proceedings), **1994**, 154.
- Gupta, R.; Paul, S.; Gupta, A. K.; Kachroo, P.k and Bani, S. Indian j.b Chem., 1997, 36(B), 707.
- Chowdhury, A. Z. M. S.; Matin, M. M. and Anwar, N. M. Chittagong University Studies, Part-II (Science), 1997, 21(2), 79.
- Shaheb, M. MSc. Thesis, Department of chemisty, University of Chittagong, Bangladesh, 1998.
- Rahman, S. M.; Anwar, M. N.; Begum and Chowdhury, J. Bang. J. Bot. 1997, 26(1).
 79-81, J. U. 1997.
- Shaheb, S. M.; M.Sc Thesis, Department of chemisty, University of Chittagong, Bangladesh, 1997.

- Kabir, A. K. M. S.; matin, M. M.; Mridha, M. A. U. and Shahed S. M. Chittagong University J. Sci., 1998, 22(1), 41.
- Fakruddin, M. M.Sc Thesis, Department of chemisty, University of Chittagong, Bangladesh, 2000.
- Kabir, A. K. M. S.; matin, M. M. and Abe Kawsar, S. M. Chittagong University J. Sci., 1998, 22(1), 39.
- Kabir, A. K. M. S.; matin, M. M. and Abe Kawsar, S. M. Chittagong University J. Sci., 1998, 22(2), 41.
- 17. Khan, M. W.; Alam, M. J.and Rashid, M. A. J. Biorg. Med. Chem., 2005, 13, 4796.
- 18. Khan, M. W. and Reza, A. F. G. M. Tetrahedron Letter, 2005, 61, 11204.
- Bauer, A. W.; Kirby, W. M. M and Turk, M. American J.Clinic. Pathol., 1996, 46, 439.
- 20. Roland, R.; Hoffman, F.; La Roche and Basle, Co.; Antibiotics, An introduction, Swetzerland, 1982, p 70-71.

CONCLUSIONS

- In this thesis, we demonstrated a convenient and facile method for the synthesis of 2iodoaniline and 2-iodoacetanilide from o or p-substituted amine.
- The one pot iodination reaction of o or p-substituted amine by iodine, copper(II) acetate in acetic acid afforded 2,6-diiodo-4-methylaniline, 2-iodo-4-methylacetanilide, 4-methylacetanilide, 2-iodo-5-methylacetanilide, 4-chloro-2,6-diiodoaniline, 4-chloro-2-iodoaniline, 2-iodo-4-nitroaniline, 2,3-diiodo-4-nitroaniline, 2,3-diiodo-4-nitroaniline, and 3-amino-4-iodophenol is also establish successfully.
- Finally, all synthesized compounds (except the compound 11) were tested antibacterial and antifungal activity, some of them demonstrated mild to moderate antimicrobial activity against most of the test organism.
- Therefore this methodology could be utilized to synthesize the biologically important iodo-aniline and iodo-acetanilide derivatives. This method will be attractive to both organic and medicinal chemistry.

