
,
i•

PRESSURE TRANSIENT ANALYSIS FOR

MULTILA YERED GAS RESERVOIRS UNDER VARIOUS

RESERVOIR CONDITIONS

ZULFIQUAR ALI REZA

DEPARTMENT O}"PETROLEUM & MI'IIERAL RESOURCES E'IIGINEERll\'G

BUET, DHAKA

BANGLADESH

1IIIIIIIIIIIIIIIIIIIilllllllllili
#91279'"



PRESSURE TRANSIENT ANALYSIS FOR

MULTILAYERED GAS RESERVOIRS UNDER VARIOUS

RESERVOIR CONDITIONS

A Thesis

Suhmitted (0 the Department of Petroleum & Mineml Resources

Engineering

in partial fulfillment of the requirements for the degree of Master of

Science in Engineering (petroleum).

By

ZUI.FIQUARALI REZA

DEPARTMENT OF PETROLEUM & MINERAL RESOURCES ENGII'I"F;ERING

BA..••GLADESH illIIIVERSITY OF ENGINEERTh'C & TECHNOLOGY,

DHAKA
BANGLADESH

JUNE,1997.



RECOMMENDATION OF TIlE BOARD 0:1<' EXAMINERS

The underslgned certifYthat they have read and rccommend to the Department of Petroleum

and Mmeral Resources Engmeermg, for acceptance, a thesis entitled PRESSURE

TRANSIENT ANALYSIS FOR MULTlLAYEREO GAS RESERV01RS UNOER

VARIOUS RESERVOIR CONDITIONS submitted hy ZUU'JQUAR ALI REZA in parnal

fulfillment of the reqUlrements for the degree of MASTER OF SCIENCE TNENGINEERING

in PETROLEUM ENOlli"EERING.

Chall1nan (Supervlsor) :
Dr. EdmondGomes
Assistant Pmfc,,,or
Dept. of Petroleum & Mmeral Resources Eng.
BUET

Member (Ex-Officio)

Memher

Member (External)

Date June 5,1997.

Dr. Mohammad Tamim
Head
Dept, ofPelroleum &Mineral Resources Eng
BUTT

~~

Or, IJa~Hossain
A"ociate Professor
Dept. of Chemical Eng.
IJUET

Mr Ka:7,iShahidur Rahman
General Manag~T
Reservoir Study Cell
Petro lJangla, Dhaka



..•.•. .....~.~
ABSTRACT

Most reservous are heterogeneous in nature, Reservoir heterogeneity can be in the

vertical direction (layered reservoirs) as well as in the radial direction (composite

reselyoirs). Fluid flow is oomphealed for the gas reservoirs because of the inertial and

turbulence effects and the pressure dependence of gas properties, Tills study develops a

semi-analytical model for pressure transient analysis of heterogeneons gas reservoirs.

Reservoir heterogeneity has been considered by drawmg upon the layered and composite

nature of the reservoirs. The diffusivity equation has been solved as a generalized

eigenvalue problem utilizing the pscudopressure and pseudotime schemes. The model

takes into account the high velocity effects, wellbore storage and skin, and different

possible inner and outer bOlUldary conditions. Finite formation damage can also be

modeled.

The model has been validated by comparing the results with those of some analytical

models and simulation results published in the literature. Different schemes for

calculating high velocity effects have been studied and evaluated. For the same amount of

skin, both thin and !inite damaged zone responses have been compared. Both these

responses have been fOlmd to be quite different for certain cases. AU possible outer

boundary conditions, partial penetration and bottom water cond,tions may be studied. Its

application is enormous in the field of pressure transient analysis of gas reservoirs. This

versatile model, to my knowledge, includes more features for gas reservoirs than any

other previously published pressure transient models.
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1.0 INTRODUCTION

all the more for newer alternatives fo, energy generation to curb the present crisis. Even a

few decades back, in the developed nations, the notion of using natural gas as an energy

,ource seemed to have ridiculed many. The scenario has now changed completely; thc

reason being not only the increasing demand for energy but also Ule increased awareness

of the people and the govemmenls for an cnvironment friendly fueL These factors have

enhanced the use of natural gas, and not surprisingly have escalated its price as well, The

scenario in Bangladesh is quite different as natural gas is the most important natural

resource of the country. Sound reservoir engineering judgment and techniques in

identifying the reservoir characteristics and controlling the production playa significant

role to meet the present demand and maximize the recovery of the gas ill pla~e. Pressure

transient analysis is an important tool for such reservoir ehwacleJization.

Pressure transient analysis deals with generating and measuring pressure variations with

time in wells. These pressure proftles are subsequently used for the eslimation of rock,

nuid and reservoir properties. Informationlikc reservoir pressure, penne~bility, porosity,

reserves, reservoir heterogencities, wel1bore volume, damage, ~nd improvement and other

relevant dat~ may be obtained from pressure transient analyses, All Ulis information Can

be used to assist in analyzing. improving and foreca,ling resen-oir perfOimanee, Pressure

transient testing techniques, such as huildup, drawdovv1l, injectivity, fallofT, and



interfcrence, are important part of prcssure transient analyses for reservoIr

charactcrization.

The focus of this study is thc pressure transient analysIs of heterogeneous ga8 reservoirs,

A semi-analytical model has becn developed In the present study to investigate the

reservOIr heterogeneity and also some other SIgnificant smgle phase fluid flow

phenomena like inertial or turbulence efTect and variation of fluid properties. "Ihis model

has the potential to study uumerous reservolf conditions - partial penetration of the

well~, the effcct of water coning, edge- and bollom water drives, pseudoskins, etc. This

model can also be used for automatic typc-curve matching.

A number of arcas have been investigated with this model. The effect of di l"ferent

parameters (wellbore storage coefficient, skin, velocity coefficient, flow rate, initial

pressurc, permeabl1ity and ouler boundary conditions) on the pressure transient responses

of homogencous reservoirs are investigated. Pressure transient responscs for finitc

formation damage have been examined. Layering effccts have been studied for both the

commingled and non-commingled reservoirs. Effect of layer ordering is also ~ludied for

multilayered reservoirs. Some composite reservoir pressure transIent respOll8e8 have been

analyz,e(l.

,



2.0 LITERATURE REVIEW

Pressure transient analysis of gas reser,oin; is complex as compared to that for oil

reservoirs; lhe reason being thc variations of viscosity, super-eompre8sibility factor or

gas deviatIon factor, and fluid compressibility with pressure and tcmperature. These

variations make the governing parli,u differential equation nonhnear for gas. Further

complications arise due to different /low regmles. For the /low of real gases through

porous media, the inertial and tmbulellce effccts are very important when flow rates

become high.

Evidently the pressure lransient analysis 0 r a homogeneous gas reservoir is a difficult la:;k

in hand; reservoir heterogeneity makes the task even more intricate, Since re<;ervoir

deposition occurs over a geologic period or lime, most of the reservoirs are heterogeneous

in nature. Rese,voir heterogeneity may occur in the vertical diTeetion with the presence or

layers and m lhe lateral direction having different zones of fluids and/or Iithofaeie., III

the reservoir. Figures 2, I and 2.2 show a layered reservoiT and a composite layered

reservoir respectively. A eomposlle layered rcservoir siluatlon occurs when all or somc of

(he layers have two or more regions of different rock and/or fluid properties. 'lhc

horizontal lines show the layering while the arrows indicate tho presence of crossno\'\'.

The layers may be communicating or non-communicating. Whcn the layers arc

communicating, fOIDlalion crossflow is present. When the non-com.municating layers

have communication only lhrough the wellbore, lhe reservOIr is called 'commingled

reservoir'. Apart from the natural causes (change in the depositional environments,

I,
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Figure 2.1 : Layered reservoir wi~h interlayer crossflow

Well

Figure 2.2: Radial, layered composite reservoir
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tectonic activities, [aulling, folding, etc.), composite layered reservoir may result from

difTcrcnt field operations. For an oil reservoir, secondmy and tertiary oil recovery

methods create composite zoncs. A gas reservoir may be of compositc nature because

of tectonic activities, fonnation damage, aeidizing, etc.

Stlldy of pre~sure transient mlalysis of heterogeneous gas reserVOlf systems is scarce in

literature, although nllmerous studIes have been reported for oil reSerVOIrS.Formation

crossflow is a key aspect of the oil reservoir models. FOlmation erossnow (Gal), 1984)

has been modeled mainly by two methods: pseudo-steady state erossflow and transient

crossnow. The pseudo-steady state crossflow assumes the resistance to crossflow is

confined to the inter-layer boundary and the flow is horizontal within each layer. This

essentially reduces the two-dimensional problem to an one-dimcn~ional one. The,

transient crossflow method utilizes a two-dimensional diffllsivity cqllation for each layer.

For real gas flow throllgh porou, media, a large number of s1udies have heen reported

deahng with different a~pects of modeling like development of pseudo-,'ariablcs, high

velocity effect (i.e. inertial effect or lLlrblilence effect), etc. Variations in [he viscosity and

the super-compressibility factor were first incorporated via KirchofT (IS94)

transrorrnatiOll which, ill the parlance of petroleum engineering, i~ knl)",n as real gas

pseudopressure. This approach was first concelved by Al-Hnssainy et al (l96G). The

eoncep! of psendo-time came in to allow the variation of eompre~sibility of real gases.

Agarwal e[ al. (1970) first introduced this eoncep!. The high effects are modeled by a

quadratIc equation which was first suggested by FOl'ehheimer (1901). Vanou5 studies

,,
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have been focused on the high velocily effects or real gas now through porous media,

inertial and turbulence effect. Smith (1961) obtai oed an empirical correlation to allow the

high velocity phenomena, Swill and Kid (1962) corroborated Smith's notions. Geerlsrna

(1974) and Firoozabadi and Kal¥, (1979) presented the correlations Lorthe coefficient of

the veloelly squared term in the Forchheimer equ<ltion fot dry gas reservoirs. Lee et at.

(1987) attempted to quantify the "turbulence intensity" by introducmg a new

dimensionless number called the "Forchheimer number", Oren ('I al. (1988) quantified

the effects ofweUbore storage along with those of skin and turbulence intensity.

For multilayered reservoirs, the pressure tranSient analysis with a constant surface flow

rate introduces variation in the contribution of each laycr. This variation renects the la}er

proper1ies. Hence, any analysi~ ba5ed on a constant surface now rate will no! be proper.

In such cases, a superposition scheme on the changmg fractional flow rate is required.

The use of a convolution scheme ba8ed Oil Duhamel's (1833) integral fonnula is a

ra!ional approach ror the superposition. Chu and Raghavan (1981) have applied !he

method while studymg the effect of conumngled l:iyers on mterference tests. Whitson

and Sognesand (1990) studied methods for incorporating high velocity effect in the

convolution scheme.

,
Osman and Mohammed (1993) attempted to incorporate most of these features (high

velocity effect, wellbore storage and formation damage) for a multilayered gas reservoir.

Their model could handle only commingled infinite houndary gas reservoirs. They did

"
•



not consider crossflow bem:een layers or the possibility of the composite nalure of the

reservoir:s. Detail discussion of this paper is given in Section 6,7.



3.0 STATF:M}:NT OF TilE. PROBLEM

The limited literatme on the pressure transient analysis of heterogeneous gas reservoirs

corroborates the need to take up studies on this topic to have a helle< unuen;!anding of (he

suhject. Prom the perspective of Bangladesh, which has a number of multilayered and

heterogeneous gas reservo]n;, this work i., cert~inly a cognate one.

Primarily the objectives of this work arc

• to develop a semi-analytical model for a multilayered composite reservoir to

generate pressme transient responses

• to identify the parameters affecting the pressure transient responses

• to investigate finite formation damage re8ponses

• to analyze the multilayer reservoir responses hy layering heterogeneity

• to explore composite reserVOlr response,

]n this study, it will be allempted 10mtegrate 'all the aforementioned phenomena for real

gas flow and incorporate the effect of reservoir heterogeneity in temlS of the layered and

composite nature of the formation. This study should be able to develop a versatile semi-

analytical model to examine these effects, This model should bc able to investigate the

effects of dinercnt parameters like finite fomlation damage or skin effect, composite

natme of reservoir, layering effccts in a multilayer reservoir, parti al penetration of wells,

ho[[om- and edge- water drives, etc.
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4.0 MODEL m:VELOPMF:NT

4.1 Model Formulation

ThiR study is an extension of the work done by Gomes (1994) which was based on the

pressure (musicn! analysis of composite layered oil reservoirs. TIle present study is a,
similar kind of work for gas reservoirs. From the discussion in the preceding chapters, it

is quite apparent that the property variotion of the gas, high velocity elIeets and the

variation in the layer contribution over time are the key aspects of this prescnt work.

Undertaking the pseudo-pressure and pseudo-tm1e approach, the property variation of gas

is handled and the laminar solution is ohtained in a similar manner, the oil solution is

obtained by Gomes (1994).

To account for the high velocity effeel, this study assumes superposition of the high

velocity effect on the laminar pressure responses. This method is nol uncommon.

VariollS other imestigators undertook similar approach (Raghavan, 1993, Lee et

al.,1987). A radial composite layered reservoir, with a symmetrically located well

penetrating the reservoir, as shown in Figure 4.1, is considered in this work. The well is

assumed to be producing at a eonslant surface flow rate.

The crossflow has been considered by the pseudosteady-state formation crossno,," model

(Gao, 1984). Anbarci el al. (1989) approach has been taken as the initial step 10solve the

problem. The discontinuity boundaries in each layer have been vertically extended

across all the layers. This results in zoning each layer of an n-layer reservoir into m
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Figure 4.1 : Schematic of an n-Iayer composite reservoir in a radial geometry
with two different rock and/or fluid types in each layer



regions depending on the number and location of the discontinuity boundaries. So the

reservoir is divided into n '" m blocks "i!h each of them idcntiried by (ij), where i

represents region and j layer. Different zones may have different rock and/or fluid

properties. If the locations of the discontinuity boundaries arc distinct, (here will be

m=n+ I regions in each of the layers. Layers are assumed to have cunstant thickness

throughuut the reservoir,

Pseudosteady-state crossnow model, proposed' by Gao (1984), is used to model the

crossflow between the layers in the reservoir, The crossflow resistance is assumed to be

eontined to the interlayer boundary. The uppermost amJ the bottommost boundaries are

considered to he closed.

The pseudopressure, first introduced by Al-Hussainy el al. (1966), and pseudo(ime,

introduced by Aganval et al. (1970) concepts have been adapted. Other assumptions for

the development of the mathematical model are as fo!lows:

I. G,<lVltyeffects and capillary forces are considered to be negligible.

2. Tile laminar solution bas been obtained by considering Darcy's law.

3. Pressure and flow continllity across the zone interfaces.

The derivation of the flow equation is as follows,

The continUIty equation is

". [4.11

•



Swift and Kie1 (1962) formulatlOll of the forehheimer equation is ,

- _J,kip"---per' .. , [4,2J

where ... [4.3.1

and the gas law,

pMp--.
,RT ... [4.41

Comhining these equations leads (0 Ule pressure differential form, the diffusivity

equation,

c "[,.1'.-6.k ':P)_ '!.(, p)
rerzprJ-az

Now introducing the pseudoprcssure, Al-Hussainy el "I. (1966),

and diOerenlialing Equation [4.8 J, it is obtained,

rJ,\l') = 2p
ip ZjJ

"

.__[4.5)

___[4,6]

. [4 7]

... [4 8]

,.. [4.9]



Now chain mJe is applied to ohtain,

iF zp an~-.--.a 2p ry

Similarly,

a, all ip
• --a q, "

q, zp rJn
•a 2p rJ

Introducing equation [4, 11J and Equation [4. 13] into Equation [4.7],

The definition of the fluid compressibility is,

1 op zRT J (PM) ,ii (pJ
c= pdp = I'Mi}.> zRT = pi}.>--;

Combining Eqllation [4.14] and Equation [4.15J, it is obtained,

1 8 ( ""J cp ip 21' ip all-- r<~,k---;:;- =l,p--=c,p--=c,pp-.ra {y zo pzo a

Introducing thc pseudotime, Agarwal el al. (1970),, '

, 1
, • !-dl' .

p 0 cp

." [4.10]

... [4,11J

". [4.12]

.,,[4,13]

". [4.14]

." [4.15]

... [4.16]

". [4.17]



where XA",and XB'j arc defined as follows;

2

x""O["J [h"Jk; I,j + k; I,j_'

X,. ° 0 [0' '01, ...m,
"

X, 00 fm '01, .,' m,

_, [4,24]

.. , [4,25J

... [4,26]

, [4,27J

The laminar flow Equation [4.23) is first solved with the appropriate condili,lllS which are

in the prcssure formulation as follows:

Initi31 Condition (IC) is given by,

p,)r,O) = p",_

!tUlcr Boundary Cond,tions (!BC) for constant flow ratc arc givcn by,

, 14.28.1

lorj=!,.,n, ... [4,29]

_ CJP" 2 ""[k"J [,p, ,1'1-- --+ ~""- --Id ",~l11 1, d-),.,. ,

_[00]

The Outcr Boundary Conditions (aBC) ean be these three following conditions,

InfiDite DEC

j=l, ...n, __[431]



CODslant Pressure OBC

{,;losed OIlC

Interface Conditions

r=r ,

r = r,
"

J=1, .• D,:

j=l, .. ,n.

,r432]

.,. [4.33]

At the mterfaces, pressure and pressure derivative arc same for all zones. So,

r=r
"

j=!, .. m j=l, ... n, , [4.34]

r = r
"

i=1, .. m.l j=l, ... n, ".r4,351

Derining (he following dimensionless variables,

,
Ij)=-,

""

, :,'

" ,,',

[4.36]

... [4.37]

... [4.38]

... [4,39]



the following is obtmne{),

,>
-"'r&" w'

all.} _ Q IP. ( 1 )-------- ~an" 2tr T kh
'" "

[440J

, .. r4.41J

". [4.42J

[4.43J

, .. r4.44J

lntmdueing these dimensionless eq",ations, the diffusivity equaholl [4.23 J becomes,

~ (<ph) -.JL Tp" _1_ On"", _ X Q Tp" (m )
i,j2m: T" (wh) rJ

p
" "", 2tr(kh) T" 0" -mo,!.,

[',; mo~ ,,- ','
i,J a-'

"
... [4.45J

where, K

" ... [4.46]



.. , [4.47)

.. , [4.48J

, .. [4.49J

The Initial and boundary ~onditions in the dimensionless pseudo units will be as follows:

Initial condition, Equation 14,28J,

fflv,} (r",O) = 0

JB..C,Equation [4,29],

H, .. m j~L.,.n. . [4 50]

Equation [4.30],

j=l, .. n ... [4.51J

+2~t[k"J [a"""J[_Q_TP,,][.!!'..) (~J
~ r-I f--i- '" itD 2n:(kh) T" 2p ',I r~

o , "'-""", '" '."'n"1= CIJ--- L.K'I-'-"
it.D )=, ' CY"

__. [4.52]

smce ... [4.53J



where ... [4.54]

The OBCs are given by ,

Infinite nBC

Cnnstant Pressure aBC

Closed BOlmdary aBC

rJnJ)

--'-" = 0

"'"
r" = '".Of

j=I, ... n.

j=l, ... n.

j=I, ... n.

. [4.55J

.[4.56]

... [4.57J

Interface conditions, Equations [4.341 and [4.35J ,hecome

where,

/in" Bro..,.,-_._' =M,.
(1;, '.'

(kh)'+LjM .=
'" (kh)',j

i=l, ... 111-1

i=I, ... m-I

j=l, ... n, . [4.58]

... [4.59j

... [4.601

The SoIllt;on scheme of the diffusivity equation [445] along with the boundary

conditions have heen sOllghl ill the hplace space whieh is a convenienl appro~ch. Thc

Laplace transrormations of EqlJ"llOIlS [4.45], [4.511, [4.52J and [4 55J through [4.591

are as follows (Laplace varisblc I):



... [4.61]

1 - I 2:" rJ",,,.-=Cmn - K --
,0""eL

j~1 u"

!nfim!e ODC

j=1, .., n, ". [4.62J

. [4.63J

"'''" I = 0 j=I, ... n .. , [4.64]

Constant PreSSllIe DBC

'i,=t;.n.. j=I ...n. . [4,65J

Closed BOlllldaO' OBe

interface Condjljons

o j-I, ..n. , .. [4.66]

mD,,. = 1Il0, ••,j 'i, = I~", i=I,." Ill-I j=I,." n, , [4.67]

i' =,.
D ,D, ]=1, ... m-l j=l, ". n, ". [4.68J



fhis diffusivity equation, Equation [4.61], has the fonn of modified Bessel's equation,

thus has a solution ofthe following form:

... [4.69]

Introducing this solution, the left hand side of the Equation [4.61 J becomes

,., [4,70]

Thus the diffusivity equation, Equation [4.61J, now becomes

... [4.71J

This equation having the foml of the gener,lli/,ed eigenvalue system. has a non-trivial

solution if and only if its coefficient matrix is singular (Ehlig-Economidcs and Joseph,

1987), The coefficient matrix is an n x m by n x m trid13gonal matrix, As pointcd out by

Gomes and Ambastha (1992), tilis matrix can be divided into m smallcr rcal-symmctric,

posItive definite tridiagonal matrices, where the (J' acts as the eigenvalucs that arc

always positive. The determinant of each of these matnces is an nth ordcr polynomial in

cr' from which n eigcnvallles can be obtained. Bence the general solution for each zolle

can be wntten as :

,14.721

Constants A,~! and B,~!can be split into the following equations (Gomcs and Ambaslha,

1992),



A',,,,E'A'
',j ',)' .. , [4,73]

[4.74]

where E,~! is the eigenvector for region i , and this eigenvector can be calculated from

Equallon [4.71]. The above constants arc detennined from thc boundary conditions, Thc

general solution for rcgion i ami laycr j bccomes :

.. [4.75]

Thc 2n >< m constants can bc determined from the boundary equations.

The solution is first computed without considering thc wellbore storage whi~h is latcr

accounted for, The inner boundary condition, without wellbore storage, becomes:

j=l, ...n.

Infinite OBC now becomes,

j=I, ... Il,

.. [4,76J

__. [4.77]

For the prcssurc to be bounded for infinite OBC. Equation l4 78] , mathematically leads

to the following equation:



j=l, ..,n. . .. [4.79]

Constant pressure aBC hecomes,

t[A;E~.j K,(U>D,)+B;E~.J Iu( u:r"<I)j = 0
hi

j=l, ... n .... [4,801

Closed OBC is,

t[A;E;.j K,(u:rD,) +B";E~.!1,(u;,r"o)] = 0
'" ,

j=I, ... n, ... [4,81]

The interface conditions yield:

i=l, ... mol j=I, ... n, ... [4.821

i=l, ... m-I j=l, ... n, .. [4.83J

The 3bove boundary eondilions give a total of 2n x m simultancous equatIOns. solution

of which gives the 2n x m unknown constants ( A'", , B'", ),

The preceding solution model givcs thc laminar Dow solution in dimcnsionless

ror any dimensionless ~seildotimc. This scheme is a very efficicnl onc
• i'"

pseudopressure
" ' ",

inasmuch as for a reservoir with 5 layers 6 zones, this model requires the solution of only



60 (= 2x5x6) simultaneous equations. Assigning a constant boundary at the bottommosl

layer, this model can handle bottom-water drive also. Thi8 model can treat any irregular

shaped boundary by dividing the reservoir into a number of mathematical layers,

4.3 Incorporation of, the High Vdocity Effrct:

Various lllvestigators (Forchheimel', 1901, Smith, 1961, SWIft and Kid, 1962,

Waltenhal'ger and Ramey. 1968, Geerlsma, 1974. Firoozabadi and Katz, 1979, Ding

1986, Lee el al.,1987, Oren el al.,1988, Whitson and Sognesand, 1990, Civan and Evans,

1991, Osman and Mohammed, 1993, Raghavan, 1993) have studied extensively the high

velocity effect. Raghavan (1993) has ronnulated high "docily pseudo-dimensionless

pressure drop as follows:

where the extra suhscript 'N' implies non-Darcy or high velocity responses. r" 18 the

radius of the small region in which the high vc10city now exists and

... [4,85J

Tn this approach, it is assumed that stabjli~ed steady flow eXIsts in the region 1'.< r < r"

that is the mass or nllid MOfe(!in tbis region IS constant over time, rhe author also

commented that the integral in Equation [4.89J may be approximated with



.. , [4,861

A number of optlOns for computing ji studied by Ding (1986) areas fo110W8:

jl = f-/."

- p",+,~
J.1=j~=

2

- J~+~'f.l=jl,= 2 .

... [4,87]

Lee el al (1987) suggested that the above approach violates the matcrial balance

principle. Their extensive research modified the high velocity pressure responses with a

correlating factor C, . Their proposed solution is of lhe fom) :

[4.88J

The correlating parameter, C" depends on tbe product of dimcnsionless now rate, q"u,

and turbulence intensity, NT> for each flow regime, specifically as follows,

Laminar:

Transition:

Turbulent:

C, = 1 , ... [4.89]

, [4.90]

,[491]



where ". [4.92]

".[4.93]

_[4.94J

They delined the product of dimension1css flow rate and turhulenee intensity as the

Forehheimer number, N,.o.

" [4.95]

The definition of turbulence factor, D{ft) is as follows,

... [4.96J

In this study, both of these methods have been investigated along with their

modifications. Lee er at. (1987) approach is found to be more dependable. In their

approach, the rigorous integration of Equation [4.96J 1S not undertaken. instead the

integration is simplified by D(fl;); the result i~ fOlmd to he almost similar to that obtained

by their finite difference simulator. So their procedure is adapted. The equatIons are

modified to incorporate the reservoir heterogeneity,

In the computation of high velocity solution with _either of the above methods, the

velocity coefficient, ~, has to be applied. Geertsma (1974), Firoozahadi and Katz (1979)

and few other investigators (eivan ami Evans, 1991, Frederick and Graves, 1994) have



studied this factor. From some experimental stuuies, Geertsma (1974) found that this

coefficient is a function of the rese['coir perme3bility and porosity for 3 dry gas reservoir.

Firoozabadi 1lI1dK3tz (1979) have gl\'en a number of options to measure ~; among which

one, nsed in the present study, is quite frequently used. Other investigators have only

slightly modified these correlations depending on their experiment31 findings and the

presence of multiphase. One point to note is th3t"Gcertsma (1974) corrcl3tion is suitable

mainly for unconsolidated sands which may have porosity vm-iation, while Firoozabadi

and Katz (1979) correlation is suitable only f(lr compacted sandstoncs.

Geertsma's (1974) relation is :

""j3 = rp" ,/'k

Firoozabadi 3ud Katz (1979) relation IS:

... [4,<)7]

__. [4.9,1;J

4.4 Convolution Scheme for Layer Flow Rate 3nd Ineorpor3tion of \Vellbore

Storage:

For a multilayered reservoir, the laminar solution and high velocity solution have bccn

delcrmined for a constant surfacc flow rate. But for the surface flow rate to be constant,

individual now rate from the layers will change with the time and pressure because of

wellbore storage effect and layer property variation. To take into account thIS variation in

the layer fractional flow rates a superposition, scheme is required. The use of a



convolution scheme based on Duhamel's (1833) integral formula is a rational approach,

Some of the investigators (Raghavan, 1993, Whitson and Sognesand, 1990) have used

this scheme. This scheme also satisfies the itlller boundary condition with wc!lborc

storage.

Literally, eon\'olution scheme is a mathenlatieal tool to find the vallie of some dependent

variable while some other dependent variable is changing simultaneously with the

independent variables. This tool can be used when some means are available to compnte

the values of the desired dependent variable with the changes lJl Ule independent

variables when the other dependent variable is kept constant.

Denoting mo,(ro,to) as the pseudo-dimensionless pressure distribution as a result of the

well producing at a conslant rale, the variable flow rate may be incorporated using the

general convolution properly (Churchill, 1972). The pselldo-dimcnsionlcss pressure

distributioo with this flow rate '"ariation will be given by (subscript p has been omitted in

the following equation for tn)

•

Equation [4,99] may be wrillen in vicw of the initial condition as

'" .
m"(rL,,tD) = fqAID - :r)iII~"(r,,,r)JT,

o
'.

=> m/)(r[l,t [I) = fqD(r )m~"(rD,t I! ,- r)dT,• •

,.. [4,99]

... [4,100]



where

... [4.101J

Intcgrating by parts, Equation [4,100] may bc writtcn as for flowing well pseudo-

dimensionless prcssure

"nlD. (I,,) = q,,(O+ )m[lo.(t ,,) + fq~(t" - .)mD",(.)d., .., [4.102]

Partitioning (Churchill, 1972) the total time interval under considenltion mto

subintervals, such that O=t.,<t] ...<tj<tj•J ••• 1,,+,=t , the Equation [4.102J becomes

• 'I,,,
m".(I,,)= L: fq,,(r)m;,., (/" -r)dr

j=O I~

___[4103]

Now, there shou-!d be some mean~ to compute qD(1)_ A~suming qD(1) to be approximated

by a linear combination of the rates at t" and t"", a time ~Ji(Churchill, 1972) may he

chosen, such that

where

__, [4.104]

Tgn01;ng the truncation crrors, Equation [4.103] may again bc approximated by

... [4,105J

which is equivalent to



.,. [4.106J

For the case of multilayered reservoir, this general convolution scheme 8ho111dbe hlt1e

modified to accommodate the fractional flow rate of each layer, the high velocity efTcct

and the wellbore storage. Taking the suggestions by Whitson and Sognesand (1990) and

using erO in Equation [4,104], the convolution scheme is formulated as following

j=I,2, ... 1, . [4.107J

where j denotes the layer and the suhseripts 'L' and 'N' in pseudo-dimensionless

pressure denote laminar solution and high velocity solution respectively. Rearranging

Equati(m [4.107 J, it heeomes

,[4.108]

Now Equation [4.IORJ should be sohed satisrying the other inncr boundary constraint

which inc1ll<lesalso the wellhore storage:

an i' :", '
1= cD-t +LfJ(i~j !:,'

(. D, J" : "'I'", ' ,
... [4.109.1



Using the following approximation in the above. equation,

dm/)_ mD,(t/:»-m".(lo.)--,
dl" II) -IJ)"

Equation [4.109J becomes

So the system ofEqllations [4.108] ami [4.111] may he written in the fonn

Ax~h

where the coefficient matrix may be written as

d, 0 0 1
0 d, 0 1
0 0 1

A,

d, 1
1 1 f

~(ID) "
/,(I/:» "

" b,

f,(',,) "
mf). (I,,) 'J

. [4,1l0]

.[4,111J

[4 1121

... [4113J

... [4114'1

'.•

where , [4.115]



,-,
L[fj( 1''''+1) - I, (I", ))" D.l; (ID -I",)

+ '=1
K",

g=l+ l'm"JI".).

... [4.1161

__[4.117]

.[4,118]

To solve this set of simultaneous equotlOJlS [4.112], as the initial fractional flow rale,,>

and pressure drops are zero, the following is u~ed

1,,,,= O. __[4,1]9]

The numerical procedure yields accurate answers if 22 points per log cycle arc used

(Onur 1'1 al., 1986). For any cycle the points arc

t;l~= I, ( I + O.2K) ,

for K = 1.2, .., , to,

1,+WK = t,( 8-+ K),

for K = 12.

4.5 Solution Methodology

__[4.120J

, [4.121]

_[4.122]

The press"re responses for a composite multilayered reservoir arc obtained from the

precedin.g discussion, To arrive at the final response, the following sequences of sleps are



followed, Figure 4.2 illustrates a flow diagram showing all the sequences and inter-

connections between the steps of arriving at the final solution,

4.5.1 Solution Methodology for Laminar Solution

Steps involved to solve the laminar flow Equation [4.72] arc:

• From Equation [4.71] eigenvalues and eigenvectors are calculated using appropriale

subroutine from the IMSL Math Library (User's Manual, 1994).
,

• From the bOlmdary conditions, 2nxm simultaneous equations are set up and solved

using Gauss' elimination routine from the lMSL Math Library (User's Manual, 1994)

for the constants Ai and B;' .

• Dimensionlcss pressure in Laplace space is calculated using Equation [4.72] and then

numerically inverted into real space using Stehfast (1970) algorithm.

The computation process involves iterated calculation of Bessel's functions. Very small

and large arguments of Bessel's functions might cause overflow problem, To avoid this, a

dimension1css radius, rD, is used based on the minimum front radius, R" instead of
,

nondimensionalizing them based on the wel1bore radius. Also the exponentiated form of

Bessel's function is used for the overflow problem.

4.5.2 Computation !If real yariables:

In the next step the real variables are obtained b): the roliowillg procedures:

33
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Figure 4.2 Flow Diagram showing the sequences and the interconnections
between the various schemes of the model.



First, the pseudopressures and pseudotimes are obtained by algebraic manipulation of

Equatlon [4.38J and Equation r4.39 J '

with

2ff(kh) T
1/1 = ----"-(m -m )ff"Q:n"'"f' p"

. [4.38]

... [4.39]

... [4.123J

... ]4,1241

Now from the definition of pseudopre8sure,'EqualIon [4.8J, the pseudopressLlre i,

obtained for any correspondmg' pressure. For which, some correhitions for

compresslhility li1ctor and viscosity ofrcal gases are used.I'or compressibliity factor, the

options are the two correlations' Dranchuk and Abo\l-Kasscm (1975) correlation, and

Hall and Yarborough (1973) correlation, For viscosity, thc options uscd arc thc two

correlations: l£c, Gonzales and Eakin (l9G6) correl~tion, and Carr, Kobayashi and

BUlTOWS (1954) correlation, Then al~ interpolation scheme i~ llsed to have the value of

pres~urc for any corresponding pscndopressure,

Nov.-by algehraic manipulation of the definition] of pseudotime, Equation [4.17], thc rcal

time i, ohtained,

... c.



•

The ahove equation is transformed into

"'e Hp,jp(p,)d';,
o

, .. [4.17]

_[4.125J

For this scheme 3 correlation is used for i~othennal compressibility of the gas \vith

pressure and the corresponding pressure values arc used for any incrementa! pseudotime

values obtained from the laminar solutions. Mattur, Brar and Aziz (1975) correlation IS

used for the compressibility computation, So all the real van abies are obtained. For any

dimensionless pseudohme, the cOTTesponding,laminar prcssllI'c drop and real time arc

determmed.

As the real time is known, conventional dimensionless real time can be computed using

the fol1(1wingdefinition of dimensional time,

kh,
/" = ( ) ,(ph pc ,r.

The radius of investigation is also computed usmg the definition'

, ~
-'- = l.5.PI!

"

4.5.3 Solution Methodology for High Velocity Solution

.. , [4.126J

.. , [4.127]

After calculation of real variables, the high velocity errcct is incorporated undergoing

the rollowing steps:



• For any dimensionless pseudotime, the corresponding laminar solution is taken as the

initial guess in the iteration process to evallmte high velocity responses.

• For this initial guess, the real variables (pressure, time) arc measured and the radius of

investigation is determined.

• Equivalent permeahility and porosity along the radial direction arc evaluated to

incorporate reservoir heterogeneity in the computation of the velOClty coefficient ~.

For calculating 13,thc options are either of Geertsma (1974) or Firoozabadi and Katz

(1979) relation.

• With the computed ~, the turbulence intensity, N" is measured from Equation [4,93].

• For the constant flow rate the dimenslonless flow rate, '1."" is determined, and from

the product of this and the turbulence intensity, the Forchheimer number, Nco' is

obtained.

• For thIS value of Forchheimer number the flow regime is determined according to the

Equations [4.89J, [4.90J and [4,91J. Detennining the flow regime, the correlating

parameter, C, is Viscosity ratio, F", is ealclllated from Equation [4,94] using the

present wellbore pressure and corresponding fluid properties.

• Having measured the above quantities, D(I-lJ is measured from Equation [4,96]. The

integration is performed for each zone separately as the variables of integration

remain constant in any zone or region.



m = zone up to "hich radius of investigation reaches .. ,14.128]

• Now the pseuuopressnre drop due to inertia) anu turbulence effect is measnrcd rrom

Equahon [4,88] and the total pseudopressnre drop is computed from the Equalioll

[4.129]'

Am(p)OToJal = 6.m(p)'!1 + !.Im{P)D,"

.,. [4.88J

". [4.129J

This total pscudopressllTe drop is now taken as the next approximation and the whole

exercise is repeated until the pscudopressure drop converges

4.5.4 Solution Methodology to Incorporate the Convolution Scheme with Wellhorc

Storage:

The steps involved in the laminar solution (Section 4.5,1), real variable deternlination

(Soetion 4.5.2) and high velocity responses (Section 4.5.3) are undertaken for each I;lyer

for a multilayered reservoir. For each layer, ~he elements of the matrices defined in

Equation' [4, 113] and [4.114] are detennined al:>dstored sequentially, The simultaneous

equations in Equation [4,112] arc set up and'solved using Gauss' elimination Hllltine
<

rrom the IMSL Math Library (User's Manual, 1994) for the final weJlborc dimensionless



. -
pscudoprcssurc and also the fractional flow ralc from each layer. This scheme has been

adapted in such a manner so that it takes into account the wellbore storage clled.

4.5.5 Derivative Determination:

Having obtained the final wel1bore pseudo-dimensionless pressure using the preceding

scheme" the derivative of the pseudo-dimensionless pressure is determined. A simple

scheme is used for the computation. The algorithm uses one point before and one point

alter the point of interest, takes the difference of these two values, and divides the

diflerence by the interval. This value is updated by taking a narrower inlerval within a

(olerance value. Iior every log cycle the interval is modified hy an amplification factor,



5.0 MODEL VALIDATION

The present study develops a scmi-analytical model for composite multilayered gas

re~erv",rs. Not much work has been done on gas well testing of heterogcncous re,ervoirs,

The validation of this semi-analytical model IS done by generating some homogeneous

reservoir responses and eomparing them with familiar pressure tranSient responses for the

corresponding homogeneous cases, Homogeneous rescrvoir ~itu<l\ion,whIch is a subset of

the general rescrvoir model, is simulated by assigning same pcnneahl1ity, porosity and, .

thickness valucs for each of the regions and layers,,

AI-Hussainy el at. (1966) cone1ated the solutions for 110wof ideal g,lSes in homogeneoll<;

reservoirs with hquid flow solutions by computmg the viseosity tenn in the

dimensionless time at the initial pressure, High velocity effect is not considcred in their

work. Figure 5.! shows a comparison of Jamin~r responses (i.e. without ~ny high..
velocity effed) of the present study __ith AJ-Hus<;ainy 1'1 al. (J966) solutiolls. 'The

tnangles and the dots show Al-Hnssainy el aI, (l9GG) responses and the solid hnes show

responses from this study. The figure suggests that the lamin~r solutions are not

functions of the flow ratc inasmuch as the change in thc flow rate does not change the

(hmen~ionless laminar pressure responses. In fact, the laminar re~ponses arc exactly e'-jllal

to the liquid ~olu[ion, This figure also shows tho effect of the closed boundar)' reservoir

on the laminar solution. Value of the dimensionless outer boundary radius used here is

4800, Bounded reservoir responses are the same a~ that of the infinite reservoir until the



This study for corresponding flow rates
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Figure 5.1 : Comparison of this study with AI-Hussainy et al.
(1966) solution for a homogeneous reservoir.
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pressure responses reach the outcr boundary when it deviates from the infinite.aeting

solution, Wattenbarger and Ramey (1968) used a numerical model to generate solulions

for real gas flow problems in homogeneous reservoir conditions. Their model ine1Llded

fonnation damage, ,we!lbore storage and high velodty eflcet. Figure 5.2 shows the

intluenee of inertial effects on the responses of . .infinite acting homogeneous gas

reserVoirs. The triangles and the dots shm'i Wattenbarger and Ramcy (1968) results and

Ihe solid lines show responses from this sludy. Figure 5,2 sho\~s th~t the resuUs from this
'-

study ex~etly match wilh those of Wattenbarger and Ramey (1968) for different now

rates. This figure also reveals that wilh the increasing now rate the pressure drop

increases, whereas for the laminar responses, dimensionless pseudopressure drop is nol a

fUllction of flow rale as shown in. the figure., The solution has been generated for a

constant 13factor (I 0" ft., ) and homogeneous reservoir permeability of 100 mD.

,
Simulating a large of real gas flow situalions, Lee et al (1987) suggested a new approach

to modify the turbulence factor, D(J.l), in the existing literature of hIgh velocily efl'ect, by

a eorrclating parameler, C" They valillaled Iheir new approach by the responses

generated WiUl a finile'differenee simulalor, Figure 5.3 compares Ule responses of Ihis

model with the solntions generated by Lee el ill: (1987). The triangles and the dols show

their generated results and the solid lines show responses from this study, This figure also

shows the erfed of turbulcnee intensity, NT , on the wellbore pressure responses. The

responses have been generated for a constant dimensionless flow rate of 0.01. It is worth
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mentioning here that in this study responses have been generated for different sels of

Illltial preSSLIrelevel and penneability, but the responses are found to be same for a

particular turbuJence intensity level. The reason for this is that the responses depend on

the turbulent intensity, which depends on)3, velocity coefficient. The velocity coefficient,,

in tum, is a function of permeability and porosity (Geertsma, 1974, Firoozabadi and Katz,

1979). Thus, if the turbulence intensity is changed by arbitrarily changing j3 irrespedive

of the reservoir properties, the responses would not reflect Ule actual reservoir
I

charactcristics. Hcnce, it is nol sensible to arbitrarily tix 3 constant fI (or the turbulcnce

intcnsity level) and change the permeability and porosity.

Lce el al. (1987) could not handle wellbore storagc in their model. Their model was

extended by Oren el al. (1988) to inclClde effed of wellborc storage. Oren et al. (1988)

uscd an cxponential decay factor multiplied to the solution ohtained by Lee eI al. (1987).

Figure 5.4 includcs the comhined effect of wellbore storagc and skin. The responses of

the present work are compared with those obtained by Oren el al. (1988). The dots sho\v

thelr reSIJ](Swhile Ule solid lines show responses from Ulis stlJdy.

Osman and Mohammed (1993) have studied mu][ilayered commingled reservoir and have

generated a number of figures for ccrtain layer heterogeneities. Some discrcpancles are

there in their generated responses. Their reasoning docs not seen, to he plausible. This is

discussed later (Section 6.7) when !he effects ofl~yering arc disclL,>sedin detail.,



6.0 RESULTS AND DISCUSSIONS

The present study develops a semi-analytical model for the pressure transient analysis of

heterogeneous gas reservoirs. Effects of various reservoir situations can he studied with

[his model. This model has the potential of .. perfolming many in-depth ~llLdies DC

composite layered gas reservoirs. In this study, only a few important sensitivity studics

have been done, First, different parameters are studied to observe their effect on the

pressure transient responses for homogeneous reservoir situations. The parameters,

studied, are effects of skin and wellhorc storage, velocity coefficIent, flow rale, init)ol

pressure, permeability and fim[e [Qnnation damage. Layering effect, closed boundary

effect and some composite reservoir responses are studied subsequently.

6.1 Effect of Wellborc Stonlge and Skin

Initially, the gas produced at the surface comes from the wellbore For the~e very early

times, the plot of dimensionless pseudopressure and psclldotime has ~ unit slope.

Duration of this wellbore storage dominaled p'eriod depends on the wellbore storage

coefficienl, which is a Junclion of the we11borc storage volume and the compressibilily of

the ga<;On the other hand, skin effect is the effect Oll the pTes~ure lran~ient responses due

to the altered permeability region sllITounding the wellbore. A high value of skin implie~

adyerse pemlcability condition in the wellbore vicinity. Thus, the pressure drop "ill be

higher for higher skin val lIes. The effect of skin is aecollunodaled here by (he Ihin ~kin

appro~eh (Craft and Hawkms, 1991).

•



,
Aganval type-cunes show the variation of wel1bore storage and skin for an infinite-

acting homogeneous reSel"VOlTwith lhe wclllocatcd in the center. Similar figure (Figure

6.1) is generated illustrating these effects using the present model. This figure has been

generated for a dimensionless flow rate of 0,025, initial pressure of 3000 psia, reservoir

pcnneabilily or 250 mD and the Geertsma (1974) correlation as the velocity coeffiCIent.

Ag3l"\val type-curve, arc not dependent on these parameters as they depict the liquid

solution, On the contrary, the gas responses are affected by these paramelers. FigllTf 6,1

shows the same trend of pseudo-dimensionless press lire with pseudo-dimensionless time

as in the i\ganval type-curves of dimensi{}nle~s pressure with dimensionless time. The

figure sho"'s that higher the value of the skin, higher is the pressure drop. The effect of

v,ellborc storage is also shown in the figure. It is evident from the figure that early time

pressure drop decreases with the mcrea-se in the wcllborc storage coefficient. This IS

because increase in wellbore stQrage eoerrieient implies increase in the wellbore SlOrilge

I'Olume for which the sand face pressure depletion is retarded.

6.2 Effect of Vt'locity or Turbulence Coefficient (~)

Variolls investigators have given thelT views on high velocity effect on the fluid flow

through porous media. Geerlsma (1974) and Firoozabadi and Katz (l'J79) were among

the first to develop some correlation of the velocity coefficient "lth the reservoir

pcnlleability and porosity. Later, investigators Civan and 'Evans (1991), Frederick and

Graves (1994) and others have fOlUld the dependence of this coefficienl on the nlLid
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saluration loo, They have come up with different empirical relations. III many pressure

transient analyses, the studies were taken up with arbitrarily fixing the velocity

coefficient, p, irrespective to the reservoir pClmcabilily. p"roSl!Y and saturation Tn this

study smOG only gas reservoirs are analyzed, the question of flUId saturation is not

considered. Hence the Gccrtsma (1974) and Firoozabadi and Kall (1979) correlation are

used. The effect of assuming constant p is also iiwestigated.

Figures 6.2, 6.3 and 6.4 show the erreel of the velocity coeITicient on dimensionless

pseLldopressure and derivative responses for a homogencous, infinite-acting rcsenOlf

with skin value of 0,2 and 5 respectIvely. These responses have been generated for a

constant dimension le8s flow rate of (j,O1, with reservoir porosity (j,25, perme~bjlity 250

mD, initial pressure of 3000 psia and wellbore storage coefficient 1000, From the

re~ponses, it i8 apparent that the Fiw()zabadl and Katz (1979) correlatiotl gives a higher

pressure drop than the Gcert~ma's (1974) one, for the resen'oir situation depided here.lt

is also evident from the figures that constant P approach does not reflect the adual

resen'oir condition. These re~ponses may be qllite dilTerent from the actual Te8ervoir

responses (Gecrtsma, 1974, or Firooz3b3di and Katz, 1979, responses). These figllrcS

indicate that a value of 10' (I."'for P might be reasonahle for the above stated resen'oir

condition. For these vailles of pemleability, porosity of the reservoir the JI coefficient

from Geertsma (l974) correlation is abOlI! 6283479.1 ft.t whereas from Firoozabadi and

Katz (1979) correlation it is about'3.d47xib'; (r', From the corresponding semi-Jog plots
, . , ."

" ' .,,
of tbe pressure and the derivative, for skin 0 and 5 (Figures 6 5, 6.6, 6,7 and 6,8 ), the
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dilTerences in Ihe responses arc amplifieJ. The beginning orthe semi-log straight line or

the tran,ien! state is a function of ~, For semi-log stralght line to hegm, pseudo-

dimensionless t1mes are : for Geerlsma (1974) eorrC!ation - O,<)x10' , for constant ~ value

of 10' ft' - l.GxlO', for Firoozabadi and Kat?, (1979) correlation - 2,OxI0', and for

constanl ~ value of 10' 11:"'- 3.5xIO' . It is also evident from these figmes that Ihe

separations in the responses arc mueh more prominent in the early time der;vollve plots

(Figures 6.5 ami 6.6 for pseudopres;me responses and 6.7 and 6.8 for pseu<iopleSSlIte

derivative responses). Hence at the early time the derivative responses arc mOre i]](hcative

of the reservoir characteristics. Figure 6,9 illustrates the responses with different ,kin

values (0, 2, 5 and 10) for the same reservOIr condition with the Geert<,ma (1974)

correlation for ~. From the figure, it is observed that for higher skm, the reser\'oir attains

the tran,ienl state at a later time.

From these responses it can be concluded that respon<;es with arbitrary vailies or f1are

not representative of the aclual reservoi r condition; hence the conslant ~ optio]]s will not

he used for further sludies. Also it is expected to get higher responses with the

Firoozabadi and Kal1 (1979) correlation than "\'ith thc Geertsma (1974) correlation for

most or the re8ervoir situations. ThIS is bceause' Firoozabadi and Kat?, (1979) correlation

gives a higher valuc or J1 than that given hy lhe laUer, Higher the value or fl, higher

would he the pressure responses ..
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•6.3 ElTect of Velocity or Flow Rate

For gas reservoir, velocity or the flow rate has a significant effect on the pressure

transient responses because of the inertial or the turbulence effect. This effect has been

studied by generating a number of responses WiUl different dimensionless flow rates for a

homogeneous reservoir. Since the reservoir is homogeneous, the dimensionles~ flow ratc

is proportional to the actual now rate for the same reservoir condition (refer to Equation

4,92). First responses are generated with Geerlsnla (\974) eorrc1ation, then for the Same

reservoir conditions the corresponding set of figures are generated with Firoozabadi and

Katz (1979) correlation.'

j.. ~

Figures 6.10, 6.11 show the pseudopressure and derivative responses for skin valUes of 0

and 5 respectively. Figures 6.12, 6,13, 6.14 and 6.15 show the corresponding semi-log

.plots for the same skin vaiucs, The responses are gencrated for penlleability- 100 mlJ,

porosity- 0.2, wellbore storage coefficient- 100 and initial'pseCldoreduced pressure- 6

(about 4000 psia). The dimensionless flow rates used are 0.001, 0.005, 0.01, 0.02, 0.03

and 0.05. All these responses are obtained with Geertsma (1974) correlation, Some

responses for the same reservoir condition and skin equal to 5 arc generated and shown in

Figure 6.16 using Firoozabadi and Katz (1979) correlation for j3 factor, From Ule

re~pouses it is clear that the when the flow rate is higher, the pres~ure drop is higher. For

a very high rale (QD > 0.03, about liB MMSCFD for this specific reservoir condition) the

pressure responses are very high, The semi-Iog'plols of pseudopressures (Figures u,12

and 6.13) 3mplify the differences in the dimensionless responses. It is also evident from
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the Figures 6.14 and 6.15 that the beginning of !ransient period is delayed for the hIgher

flow rates. The semi-log slope attains a higher v~lue than 0.5 for Q" > 0.03; for a QD of

0,02 the semi-log slope is 0.51, for OD of 0.03 it is 0,52 while for QD of 0,05 the slope

docs not altain a constant value. ThIs happens because the pressure declines at a greater

rate for higher flow rates. From these two figures it is also apparent that the time between

end of wel1bore storage dominated statc and the transicll! state increases with thc flow

rate Comparing Figure 6.11 with Figure 6.16, both for skin equal to 5, it may be noticed

that the pseudopressllre drop is e~en higher in ease of Firoozabadl and Katz (1979)

correlation than that ",ith Gcertsma (1974) correlation becallse of the higher ~ valLIe.

With Firoozabadi and Katz (1979) correlation, the higb velocity effect is more prominent

even at a lower flow rate (Qo > 0.005). As a consequence the semi-log straight line also

starts later for Qo > 0.005.

6.4 Effect of Initial Pressure

Taking a quick look on the definition of the turbulence intensity, one might suppose that

the initial pressure is one of the factors affecting the pressure responses. This is contrary

to what has been observed from the responses generated, This is becallse the high

velocity responses depend on the product of turbulence intenRity and dimenSIOnless f10w

rate, i.e. Forchheimer number. This number does not depend on the initial pressure

Figures 6.17 and 6,18 show that the initial pressure is not a factor, These ligures al'e

generated for no skin and skiu equal to 5 respectively for a reservoir permeability of 10
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,
mD, porosity 0.2, wc11horc storage coefficient.l 000 and QD = 0.01. The initial pressure

is varied from a pseudoreduced pressure of 2 (about 1340 psia) to 10 (around 6700 psia).

6.5 Effect of Permeability

Laminar responses, which arc exactly similar to the liquid solutions, do not depend on the. .

pcnncability of the reservoir. On the contrary, the high velocity effect strongly depends

on the permeability. Extensive study has been done to investigate the effect of the

reservoir permeability.

Firstly, responses arc generaled for a constant Q" , hopmg to see variation in the

responses with the difference in the permeability_ Figures 6.19 ,Uld 6.20 illustrate the

dimension1css pseudopressurc and the derivative responses for a homogeneous, inf1nite-

acting reservoi, ",ith Q" = 0.05 m'/s, porosity 0.2, initial pseudoreduced pressure of 6. ,
and wellhore slorage coefficient 1000 ",ith Fii-oo~ahadi and Kalz (1979) and Gecrtsma

(1974) correlation respectively, The permeability is varied from 0.1 mD to 500 mD.

The responses are exactly same for all the pemleahilities. The reason fOf thlS 15actually

very simple. The laminar solutions (similar to liquiJ solutions) ,l[e mdependent of thc

reservoir permeabilitY"whereas the high velocity effect is greatly dependcnt on Q" ' and

not on thc Qn . So when Q,o rcmains unchanged the high velocity effeel is almost the

same. So when the reservoir is homogeneous the responses should not change. Figures,
6.19 and 6,20 lead exactly to the same conclusio.n,
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•
Next, re8poll5es arc generated with the variation of the pemleability keeping Q" cOll~(ant.

This means that Q" is changing with the permeability, thus the re.<;pol1SCS abo "ar)' .

•
1'igures 6.21 and 6.22 arc those generated for reservOLr porosity of 0.2, wellbore storage

c()efficient of 1000, initial pscudoreduced pressure 6, and On = 0.01 for ~kin values

cqualto 5 and 0 respectively. The responses are'similar (0 the anticipated one, Jn~reasjllg

permeability increases the pseudo-dimensionless pressure drop. The reason for this 1, that

increasing the permeability means increasing Q,•• for a ~ollstant On (refer to EquatIOn

4.92), which leads to increase m the high velocity eIT",,\. Thus, the final pres.,me drop

increases. f'igurcs 6,23, 6.24, 6.25 and 6.26 are seml-Iog responses for both the skins (5

and 0) and pseudopressure and derivative responses, Figures 6.23 and 6.24 show how

significant the difference in the preS8ure responses can bc for the both skin cascs when

pelmcabilitie~ change, Pcrmeabl1itics of 0 I mIl to 10 lllD responses arc a1rno.,t similar,

but [he responses increase for k > 100 mO, For the case of ~kin equal to 5 the responses, ,
(l'igure 6,23) show the &imilar trend, So ski" factur and permeability do not have any

combincd ef1cet on the pressure transicnt responses. For [he ease of skin of 5 at a

pseudo-dimensionless time of 10', thc valucs of dimensionless pseudopressUJ'e I"r

permeabilities of 10 mD and 500 mD are 11.03 and 16,95 re~pectivcly; the difference
,

bcing 53.67%, whl1e at a later time (t"D = 10') they are 15.77 and 22,04, rcspectively; the,
,1Jfference 39.76%. The magnitwle of the difTerences in the responses emphasizes the

imporlance of eons idering high velocity effect for gas wells. FiguTes 6,25 and 6.26 sho\\

the corresponding der;vahve respon,es. These ligures reveal that the beginning of the

transient slate is delayed willi the reservoir permeability (for k > 100 OlD). Also the

62 :
•
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transition period between the end of weUbore storage dominated state and \be \r~nsierlt

state increases for bigher permeabilities esp~ially for k> 100 mD.

Figures 6.27 and 6.28 are the responses for skin 5 and 0, re.<p,,~lively for the same

reserV01r conditions with Firoozabadi and Katz (1979) conelation. These ligures

indieatc that the responses arc cvenmore dispersed for k> 10 mD. Olherwise they have,

lhe ~imilar trends as those generated with lhe Geertsma (\974) correlation.

6.6 Effect of Finite Formatioll Damage

The formation daJ)l~ge near wellbore region has' a significant effect on the productivity of

the welL Almost every operation in the wellbore is a potential source of fOmlation

damage iu the vicinity of the wellbore. The effeel of thlS reduccd permeability region

ncar the wellbore is usually accounted as thin skin and superimpo~ed on thc pressure

transient rcsponses with no skin (van Everdingen and Hurst, 1949) The skm value to be

superimposed is detennined by the following equation (Craft and Hawkins, 1991),

.lIi.l J

where k,= pemlcability of the damage zone,

r,= radius of the damage zone.,

•
Essentially, in almost all the wellhore operations, the pemlcability and the porOSlty of a

small finite region around the wellbore are aITcctcd.1n majorily of the cases, the reasons

for this damagc may be due to Duid invasion, mud particle il1\',LSionor dri1l cuttings,

perforation damage, etc. Tnmost of the pressure transient models, this effect is considered

,
<
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by superimposing the skin value in the homogeneous wellbote solution for matiJematical

simplicity, This approach of accommodating the effed nf formation dam~ge lS known as

thin skin concept

The present model has the capability of incorporating finite wellhore damage zone. With

this model, the responses of thc well for a certain skin are investigated. For a fixed skin,

some finite damage 7,one radii are fixed and thc corresponding k, is measured according

to the above equation, Responses are generated for the ditTcrcnt situations, Figures 6.29

,1I1d6.30 illustrate the tlnite skin respon<;es along with the thin skin responses for different

finite damage zone radii with Firoozabadi ~nd Katz (1979) ,1I1dGeertsma (1974)

corrdation respectively. The responses are generated for a constant Q" instead of

constant Q" and skin value of 2, The reason for this is that, for heterogeneous systems,

constant Q
D

implies different !low rates for dirlcrent reservOIr conditions (refer to

Equation 4.92), Comparing the responses for different !low rates would n()t make scnsc

for studying the effect of fonnation damage. The undamaged zone properties are assigned

penneability of 100 mD, porosity of 0,25, wel1bore storage of 1000, initial

pseudoreduced pressure of 5 (about 3360 p_-,ia),and Q" value is fixed at 1.0 m'!s, It is,

apparent. from these figures, that finite skin responses are very 111llehdi rferent from the

thlll skin responses. \¥hen the finite.damage radius decreases, the pressure drops become

significantly higher. This is because the smaller the damage ~one for some valuc of skin,,

the smaller will be the damagc zone pellneahi1ity; this in tum mcreases turbulence factor,

~, and hcnce the high velocity effed becomes more prominent. Both these con'elations
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.;,
show similar trend. Figures 6.3l and 6.32 are the semi-log plots of pscudo-di rncllsio(lless

pressure which reveal the extent of the discrepancies in the responses more clearly_ At a

pseudo-dimensionless time of 10' with Firooz~badi and Katz (1979) correlation for

dimensillnless finite Jamage radii of 1.25, 40 and (hin skin, the dunension1css

pseudopressures are 128.77, 19,93 and 11.91 respectively; the differences between the

skin responses and these two fimte skin cases are 897.4% and 54.4%. While, with

Geertsma (1974) corrc1ation, these differences for the corresponding finite ~kins are

896.1% and 54.1%, Figures 6.33 and 6.34 are the semi-log plots of the pseudo-

dimensionless pressure derivatives. It is evident from these ligLlTes,[hal the beginning of

the transient state is significantly delaved when the damage 70ne radius is smaller Semi-. .

log slope also attains a higher value for smaller [mite damage zone radii. This implies

that the pressure decline at a greater rate for a smaller damage zone. The duration

between the end of wellhore slorage dominatelt:state and the transient slate is higher for

the shorter damage zones, Figure 6.35 Illustrates the responses for a skm value of 5 with

Geert.sma correlation for other reservoir parameters unchanged, Companng this figure

with 6.30 for skin of 2 show that the responses are even more different for finite and tilln

skillS, as the amount of damage increases,
,

It is apparent, from the preceding sensitivity stud,ies, that for a gas well with high velocity

effccts, there may be significant discrcpancies in the responses if thin skin approach is

con8idered for pressure transi ent responses of ga~ reservoirs,
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6.7 Effect of Layering •

The preceding sensitivity stuuies, conducted, ~re for single layered reservoirs. In caSe of

n1l11lilayefl:'dreservoirs, t\vo-layer reservoirs ate investIgated for the sakc of simplicity.

However, thIS model can handle any number of layers. The study of Osman and

Mohammed (1993) is considered first in greater detail. They have developed a pressure

transient model for "- gas well located in a.n mfinite.acting eommingled reservoirs.

Wellbore storage, skin and turbulcnce intensity effects are accounted for, in their model.

Some of the responses they have found arc quite contrasting to what the present model

genemtes Figure 6.36 show8 comparison betw<;en these two model responses for a Q" 01'

50 MMSCFD. For a two layer reservoir, their tesponses show separation in the pseudo.

dimen8ionless pressure derivative prorilcs in the transient state when the flo,",' capacity.

(kh), or' the top layer is 10 times that of !l!e bottom layer. Whereas the responses,

generated with this model, show that the derivative profilcs would he same in the

transient state, with separation only in the transition period. The reason, they have given.

for this separation is not a justlfiahle one. They mentioned when flow capacity, (kh), of a,
layer increases, the turbulcnce intensity decreases and thns, decreases also Ihe reqUIred

pre~sure drawdown. From the formulating equations, it may be seen that, allhough wllh
\

the incfl:'ase in pemleability, velocity coefficient. IJ {EquatlOll 4.97 or 4.98J. decreases.

but turbnlcnee intensity, NT (Equation 4.93), increases anu thc turbulence factor, D(,l)

(Equation 4.90), mayor may not decrease depending on the effect of the product (Pk).



TItUS, their rationalization may not be justifiablc~ Moreover, they have not mentioncd any

schcme to satisfy the inner boundary conditions.

,
Some more responses arc generated for commingled reservoir, for which therc is no

cross flow between the layers. Layer charactcristics are changed by varying the top layer

now capacity. kh, with respect to that of the bottom layer, by the factors of 1,10, 100

and 1000, Figure 6.37 reveals the responses for'a commingled reservoir for the menti')lle<.l

conditions with Geertsma (1974) correlation. Flow rate, Q". has been kept constant for

the comparison, instead of keeping QD fixed, liecallse of the layering heterogeneity. This

figure has been generated for (kh\,,,,= = 200 mD.ft, no skin, wellbore storage coefficient-

1000, Q" = 22.88 MMSCFD (7.5 m'/s), (~h) ~,4 fl. The semi-log plots (figures (i.3S and

6.39) magnifY the differences because of the layering effect. These figures show

significant variation in the responses due to ~hanges in the now capacity, kh, of the

layers, At a pse\ldo-di~ensionless time of 10', thc pseudo-dimensionless pressures for the

top layer ha,.ing now capacity I, 10, 100 and 1000 times that of the bottom layer are :

9.77, 10.39. 12.00 and 16.39 respectively; the corresponding dIfferences heing &.4%,

22.8% and 67.8% The pseudo-dilIlensionless!pressure responses vary SIgnificantly bllt

arc parallel in the transient state region. These \'ariations arc fonnd to be depcndent oil the

now rate from the sensitivity ,tndies not included here.

The effect of ordering of the layers is invcstlgated. Jt is attempted (0 see whether there is

any variation when the bottom layer flow capacity, kh, is changed hy the same (as those

.,
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of the preceding study) multiples of that ofthe lop layer, Figure 6.40 reveal, that there is

practically no change in the resp()n~es when the layer ordering is changed.

Crossf1ow hetween the layers have been consl\lered next. This is studied only lor the case

of k, = O.1kh, where k. is the vertical permeability and k, is the horizontal permeability,

TIle flow capacity, kh, of the top layer is inere,ased by the same (as in the earlier study)

multiples of that of the bottom layer. Figure 6.41 shows the re8ponses for these

conditions with Geertsma (1974) correlation. Figure 6.42 and 6.43 are the semi-log plots

of the dimensionless pseudo-pressure and the delivati~e responses respectIvely. Though

it is not so apparent from Figure 6.42, it can he noted that the pseudo-dimensionless

pressure profiles converge at a late time with the homogeneous reservoir profile. The lime

for this convergence is actually a function of the 110"1 rate, Figure 6.44 shows the semi-

log plols of pseudo-dimensionless pressure responses for the same conditions but a low

!low rate of O,lm'/s (0.3 MMSCFD) In which the comergence is clearly shown. An

inlere8tillg phenomenon is found to he prevalent in the derivalive profiles, The derivative

semi.log profiles, in Figllre 6.43, show a dipjus( hefore attaining the transienl ,Iale, Thi,

implies that just after weltborc storage dominate<:1state, the reservoir productIVIty IS. .. '.

almost solely from the high permeability layer when the crossnow has not set in But as

the crossflo'~ sets in, the reservoir acts like a single layered one.,
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Figure 6.44 : Effect of Layering on Pseudopressure Responses
of a Reservoir with Interlayer Crossflow.
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6.8 Effect of Closed Outer Boundary

All the previous sensitivity studies are conducted for infinitc-acting reservoirs. "l11e

present model can handk other outer boundary conditions, like closed and conslant ouler

boundary conditions, A numher of responses are generaled for a homogeneous reservoir

wilh a closed outer boundary. This condition Implies that there is a no flow condition in

the external boundary of the reservoir.

Responses are generated for a closed reservoir varying the outer boundary radills, Figllfe

6.45 shows the pseudo-dimensionless pressure and derivative profiles with Geertsma

correlation. The responses are generated for dImensionless outer boundaries of 500,

1000, 2500, 5000 and 7500. The infinite acting response is also shown in the figure.

These responses show that the s~aller the ~imensionless OilIer boundary radius, the

earlier the responses deviate from the infinite ~ting behavior and attain the pseudosteady

states. Further stud,es need to be done to see whether high velocity effeet has any bearing

on the closed boundary reservoir responses.

6.9 Errect of Composite Nature of the Reservoir

The present model has the capability 10 aceorrimodate multilayer composite reservoir ~s

well, Some responses have been generated for composite reservoirs. First case, of the

composite reservoirs taken up, is with reservoirs having 2 layers and 3 zoues. Zone 1 has

a permeability of 20 mD, while the permeability of wne 2 and 3 (both of lhem having

same permeability) are varied to be 10, 20, 50"and 100 mO. The responses are generated

for a constant Q" = 0.1 m'/s, poro~ity of 0,2. wellbore storage coefficient- 1000, initi al
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,
pscudorcduccd prcssurc- 5, k) k, ~O.l and Geert5ma (1974) correlation for the ~ factor,

Flgure 6.46 illuslrates the responses for an il!finitc-acling reservoir condition. (Figure

6.47 shows the schematic diagram of 2-1ayer 3-mne composite layer reservoir.) For the

first zone boundary, the dimenS;{)l)!ess radius 15fixed at SOO,while thaI for the second

• •
zone boundary is fixed allOOO. PseudopressufS responses, orthe lour different reservoir

situations, become distinguishable at the latc time when the pressure transient move

across the zones having ddinct pelllleabilities. The derivative profiles are very plOmincnt

indicating the reservoir zones with distinct properties. When the pressure transient,

move through the first zone, transient state is attained for some time before moving ;0\0

the second zone. The responses, for all the different situatiol1~, Ulen have the same

tnm5;ent state derivative values of 0,5. As the preswre transIents reach the second :cone,

responses show 3 transition pen",!. After this transition period, a sc<:ood tranSIent state is

attained. "Ihe derivatives then attain values equ~l to half the ratios of flow capacity, kh

for zone 1, to that of zone 2 and 3, When the first zone has a peoneability of 20 mD ami

the outer zones have 10 mO, the layer thie~Jless being same, this ratio is two. The

transient 5tate derivative will then be half of this ratio (=1). From the responses in,
Figure 6.46, it IS app"rent that the logarithmic deri"<lh\'e of the psendo-dirnensionless

pressure attains the value of 1, for this case.

The same reservoir situations are investigated with a closed outer bound'll)' condition

The outer boundary is fixed at a dimensionless radius of5000. Figure 6.48 illustmtes the

p~eudo-dimen<;i{)nleS8pressure and the derivative profiles together. The pseudoprc5sllrc
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Figure 6.47 : Schematic of a 2-layer 3-zone composite reservoir in a radial
geometry with different rock and/or fluid properties in each iayer.
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profiles show the same trend until t~e pressure transients reach the closed outer boundary.

The pseudo-dimensionless pressure profiles are not much infoll11ative as it is. The

derivative profiles convey the same infotnJation as [hose for the infinite reservoir

condition but also indicates the time for the pseudo steady state. When the outer zones

have higher pemJeabilities, the time to attain the pseudosteady state ISe,l[lier.

It is attempted to study the variation in the responoe~ when the second and thin] zones

having different permeabilities are interchanged. The first 7.one has a permeability of 20

mD.ln one seeuario 7»ne 2 and 3 have permeabilities of 100 ~nd 10 mD respectively and

in another seen~rio zone 2 ~nd 3 pelmeabilities are swapped. Figure 6.49 illustrates the

responses for infmite-acting reservoir condition. The pseudoprcssure profiles do not carry

much information, althollgh thcrc is somc separation when the pressure transIents

move into the second zones. The dedvathe profiles are quite infonnativc. Thcsc

response. are same while moving through the first zone. When (he pressure transient

moves across the second zoue, the derivative profiles become distinct indicative of the

respective flow capacity, kh, differences of the first and second 7.one. Then, while

moving across the outer zones, the derivatives aHain the transient statc valucs cqual to thc

half of the now capacity, kh, ratios of zone 1 and zone 3.

The same reservoir situations arc investigated for the closed houndary reservoir

condition. Figure 6.50 shows the responses. The respoMes are vcry much expcctcd as thc

preceding sensitivity studies. The derivative,' prof1les arc found to bc much morc

informative of the reservoir conditions.
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The present model has the ability or providing more reservoir description than any other

model currently available in the liter~t\lre. Dnly few of the sensitivity studies are

conduded here, Numerous reservoir situations can be investigated with this model.



,
7.0'\ CONCLUSIONS

In this study, a composite muHilayered reservoir pressure transient model Jor ga,

reservOir IS developed. This model incorporates weHbar" storage, skin, high velocity

effects and inlerlayer crossflow. Due to its structure, the model has the polenlial of

depicting numerous heterogeneity III the reservoir system, Based on the sensitivity studies

conducted, some ofthc conclusions are Qutlined below.

• Velocity coefficient, p, has a significant effect on the pressure transient responses of

gas reservoirs. Analyses, with arbitrarily fixing p, arc not representative of the actual

reservoir conditions. Geertsma (1974) con-elation for p tends to give lower pressure

drop compared to the Firoozabadi and Katz (1979) correlation, for most of the

reservoir conditions found. For oil reservoirs, no high velocity phenomena exists.

• Flow rate has a strong effect on the pressure transient responses of the gas reservoirs.

Higher the flow rate, higher will be the pseudo-dimensionless pressure drop_ For a

very high flow rate, the logarithmic derivative of the pseudo-dimensionless pressure

attains a higher vallIe than 0 5 in tbe transient state. Whereas, flow rate does not have

any heating on the liquid pressure tranSlenl responses.

• Initial pressure does not have any effect on the pressure transient responses.

• The pseudo-dimensionless pressure drop increases with the increase in the reservOIr

penneability. This is because, as th~ permeability increases, the flow rate increases for

a constant dimensionless flow rate. Thus, the high velocity effect becomes much more



prominent. For a constant flow rate, the permeability docs not have much effect on

the responses, In the pressure transient responses of oil reservoirs, permeability docs

not have any effect.

• The thin skin concept may not be a proper approach to accommodate formation

damage in the pressure transient analysis of a gas reservoir becallse of the high

velocity effect. This is quite contrary to the liquid pressure transient analysis.

• The pseudo-dimensionless pressure drops arc higher when the top layer has higher

flow capacity thlUl the bottom layer, for a lwo layer commingled reservoir. The

amount of increase in the pseu.do-dimensionless pressure responses depends on the

flow rate. The position of the layer does not affect these responses. For multilayer

reservoir with crossno,," between the layers, the early time responses are almost

similar to the commingled system, but at the late time when the erossflo\' sets In the

responses converge to the homogeneous solution.

• Interesting responses have been found to be eXlsting in the pressure transient analyses

of the composite reservoirs heeause of the variation of the reservoir properties, The

transient state derivative profiles have been found to be very usefu.l and effective in

reservoir characterization,

, ,1...'.: ." .'
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8.0 RECOMMENDATIONS

In this silldy, a general semi-analytical mouel for an n-laycr, composite gas reservoir has

been developed StLldies described in the preceding ch"plers 8ho'" [he enQnnous

applicability of the developed mouel.

There is scope for detailed investigation of each of the areas discussed in the preceding

chapters. Reservoir heterogeneity is one aspect that might lead to a number of detailed
i

investigation. This model is adeqlmlely devised to handle most of the single ga, flow

phenomena.

PartIal penetration is one of the tOPICthaI can be studied in detail with this model. The

partial penetration scheme is already included in the program, but sensItivity studIes have

not been done.

Bottom water drive, edge water drive, water coning, etc. can also be studied with the

model making a few modifications.

,
This model has been designed to study single -Phase gas reservoirs. Liquid solutions are

already a snbset of the 501ution generated with this model. This present model can he

extended to develop a model for mlilti-phase system with all the reser-".oir heterogeneity,

The multi-phase model ean be very useful and effective for the pressure transiell! analysis,,
of any reservoirs,



NOI\fEJI'CLATURE

A Coefficient matrix in .Equation [4.112]

A," = Constant in Equation [4.73]

B = Formation volume factor, res m'IS nr'

Eo" = Constant in Equation [4.74]

b = Matrix in Equation [4,112]

C Wellborc storage coefficient, m'jPa

C, = Turbulence correlation

Co = Dimensionless wellbore sturage

e = Compressibility of gas, Pa"

c, = Elements orthe matrix b in Equation [4.114]

D(i-') Turbulence factor

d, Elements of the coefficient matrix A in Equation [4.113J

E\ = Eigenvector for the region i

Fp Viscosity ratio

f = (U) th element of the coefficient matrix A in Equation [4.113]

/j = Fractional flow rate of layer j

g = I-th elemeot of the b matrix in Equaliol1 [4,114]

h, hi = Formation thickness, ill

h,. = Thickness of the layer J

k Horizontal permeability, m'



k, ~Vertical penneability, m'

I ~Laplace vanable

M Molecular weight of the natural gas

M.. ~ (kh) ratio,
(kh)i",J

" (k1l)
"

m Number ofregions or mnes

m.. Real gas pseudo-pressure (with subscript,), Pals
'"

m" - Pseudo-dimen,ionlcss pressure

nl", - Initial pseudo-pressure, Pals

m, ~Wellborc pseudo-pressure, paJs

illwl) ~Pseudo-dimensionless wellborc pressure

Nfo Forchheirner number

N, Turbulence intensity

, Number of layers

p - Pressure, Pa

Po ~Dimensionless pressure

p" Initial pressure, Pa

p" - Smface Pressure, Fa

Pc' - Wellbore pressure, l'a

Q ~ Surface flow rate, S m'/s

Q" Dimen8ion1css flow rate



q Sandface flow rate, res m'/s

R Gas constant

= Radial distallee, m

'.

'.
"

T

T,

Radial front distance, m

= Dimension1css radial front distance

= Dimension1css radius

= Dimensionless outer boundary radius

= Outer bOUlldary distance, m

Radius of investigation, m ( 11:)

Wellborc radius, m

= Wel1bore skill of layer j

Temperature, Kelvin

= Reservoir temperature, Kelvin

TIme, sec

Pseudo-time

Dimensionless pseudo-time

= DimensionleSR time

Semi-permeability between layers j and j+ I=(t J "~(:, J
'J ,. "L

XA" -','

XB" -
Semi-permeability of the ZOIlC(iJ) bctwecn layers j andj+ 1

Semi-permeability of the zone (iJ) between layers j and j-I



Greek Symbols

a<) = Constant in Equation [4,92]

a,.,. Constant in Equation [4.93]

(to = Constant in Equation [4.90]

a~1 = Constant in Equation [4,97]

a~, = Constant in Equation [4,98]

P Turbulence coefficient

Ii, Modifier related to turbulence coefficient

~ = Porosity

y = Specific gravity

K Transmittivity ratio

K'J = DefinBd by Equation [4.46]

~, Crossflow parameter

AA;" = Defined by Equation [4.48]

A,,;; Defined by Equation [4.49]

I-l ~ Viscosity, Pa-s

I-l; = Initial viscosity, Pa"s,
p = Density,Kg/m'

a" Cf, = Eigenvalues

a.' = Eigenvalues for region i

1 = Variable ofiutegration



OJ = Storativity ratio

OJ;, = Defined by Equation [4.47]

8 = Parhal

V ~ Differential operator

Subscripts

A = Crossflow from or to lower layer

B Crossf1ow from or to llpper layer

D Dimensionless

D ~Turbulence factor in Equation [4.96]

Fo = Forchheimer

~Any region or zone

J ~Any layer

L Laminar reSP011Se

N High velocity response

p ~Pseudo-variable

Q Flow rate

eo ~ Standard condition

T ~Turlmlence

Vertical

w Wellbore



~1 Geert~ma's velocity coefficient

~2 Fjroozabadi and Katz velocity coefficient

•
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APPENDIX A : COMPUTIi.:R PROGRAM
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C Progrolll 10gene"le MW .nd DMW for ,',rious re,e[Voir e(Jndili"n, for
C compoSlte,.,ervo;"

INCLUDE ']\fATHD.Fl'

IMPI,tCIT REAL'8 (A-IT,M,O-Z)

PARAMETFR (L 1~2,L2~L 1+1,L3~L I+2.tTRING~O,SCJ eMP ~ 288.71DOO)
PARAMETER (SCPRESS ~ I On25D05, 1"1M ~ 0 3048lJOO,DAYS=8 64D(4)
PARAMETER (MDMTS ~ g,g6923D_t6,MMCFI'M'1 C ~ 2 831685D04)
PARAMETER (PSIP A9'i,894757D03,C1'P AS~ 1 OD_{)3,PSCPR={PSI l'A"2)iC1'PAS)
PARAMETER (NC ~ 9,"C1'OI ,~Nr:'22,NCPOL 1~l\C1'OL + I)
PARAMETER (IMAXPRFSS ~ IOOOO,t1'RI,E1';~ IMAX1'II.C:SS/50 + I)
PARAMETER (ICYC=22)

DIMENSION RK(L2,L I ),RKV(I ,2,1,1),PRI(t 2,1,1),R(I ,I ),HW(LI ),1'0(22)
DIMENSION 'j JMR(NCPOL),DMPSPR(NCPOL),DM1lPSPR(NCPOL),DMPSTJM(NCPOL)
DlMEl;'SJON PD"'[AT(NCPOL),TRD1(NCPOL},P8PRF8~fA T(NCPOI ,)
DtMFN810N EXTEM1'(1 OOO),PRNIA'I(NCPOLl ),D).1PSl'R1'(NCPOL)
DIMENSION PSPRCSMATF(NCPOL),PSTlMMA T(NCPOLI ),DMPDTPD(NCPOL}
DlMENSJON DDMDT(NCPOL,NCPOL),DMTIM(Lt ,NCPOL)
DtMFl\SION FTNDD(I, I},FtNCql, I},FRAXQ(t I,NCPOL}
DlMEKS10N WORA(L2,1 ,2),WORB(L2), WORX(L2)
DlMENStON DM1'RIM1'(LI ,NCPOL}

COMMONIGMlCD,INOIlC,NL.NZ,NRD,INfP,J\VELL,SK(LI ),NPL(LI ),RD(UJ,
+ ST(L2,L 1),TS(L2,LJ },RIV!(LJ,LJ ),XA(L2,Lt ),XIl(L2,LJ}
COMMOl;'IONT2!TEMPR,PRESSINI
COMMOl;'IClNTliZ 1,Z2,N,bR f;fPC I,TPG,PPl'l ,PPC2, WM,SG, YC02, \ IJ2S,
" YNl,DASE
COMMONICIN1'4IMtNI,Q8T,TMPR1,PJ,TTS,QD,HT
COMMONiFRACiX(ll)
COMMO~iCINT511IlET A,RW
COMMONi1'RPSiPSEUDOPR(JPRLI!N },Rl;ALPR(IPRLLZ\J)
COMMONiCIN6i PERM(L2,Ll },RDR(L3),PlJIR(Ll,Ll)

REAL'8 PSTtMM Al' AIALI .oCA TAm.El(' Pl'RMA 1'[AI ,LOCA l' ABLEJ( ,)

LOGICAL CHECK .
EXlERNAL DQDVAL

CHElK~,TRUE,

OPL'J(UNlT-13,FlLE~'8KN15.IN' ,81'11n TS~'OLD')
OPEN(Ul\1T~13,Ftl.E~'PERM2.IN',S1' ATtJS~'OLD'J
OPEt\'(lIl\1 r~33,FILb-'PERIV!K2,IN' ,STATUS='OLD')
OPEl;'(UNJT=43,F]LE~'P0R2,IN' ,S1'ATUS"'OLD')
OPE"(UNlT353,F]LE~H2,IN' ,81'Arus""'OW')
OPEK(UNlT9'i3,FILE""'RD2.1N',S1' AT1JS~'OLD')
OPFl';(UNlT~333,FILE='BAKJ DA'I",S J'ATUS~'OLD'}
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CALL UMACH (-2,3)

OPEN (U}1IT~1,f1LE~'FCDA11,OUn
OPEl\" (lNIT~2,FTLE~'FCDBlI 011'1")
OPEN (m,m~J,1'1LE~'FCDCll,OUT)
OPEN (UNIT=I,FJ[.E~'FCDDII.OUT')

ZI~OJDOO
n~10DOO
BASE ~ 14,7DOO
N ~ 10000
ERT ~ 1.0D_07

READ(J]]. ') (X(I),l~l, 12)

WRITE(',') 'ENTER THE CODE FOR mE GAS PROl'LRT1ES EVALUA'lION'
IVItlTE(', ') '1 - CO)l.fJ'osmON/I L /IN/l1 TSTS'
WRITE(',') '0 - GIVEN SPECIFIC GRA Vl'l Y'
READ(''') lFLAG

TF(TFI./lO EQ 0) rHEN
WRI rE(''') 'ENTER 'IHE SpEClHC (;RA VITY m THE GAS'
RE/lD(',')SG
\\IRITE(',') 'ENTLR JI2S & C02 MOLE 1,RACl'IO:-'S'
READ(") Y1l2S,YC02
WM ~ 28,964DOO'SO
El'SI ~ EPS(YIl2S,YC02)
WCI ~ '!'PC(SG,EPSI)
PPCI ~PPC(SG,TPCI,YH2S,EPSI)

ELSE
C/ILL GASGRA(SG, WM,l'pCI,1 PCI ,Ep$ I)
PPC2 ~ PPCI
'!'PC2 ~TPCl
YH2S~X(l)
YC02 ~X(2)
\']\'2. X(3)

ENDIF

NL~L1
NZ~NL+ I
NRD~NL'I'2

PI ~ DACOS(O,ODOO)'2,ODOO

PRl!'-T','EN11iR THE L/I YER NUMDER,]WFT.! ,FOR WHICH WELLBORE PRESSURE
+WILL BE C/lI,CUl.ATED'
RE/lD(''') JWELL

PRINP,'ENTER RESPO"SE FIJNCTION CODE'
PRIl>T' ,'l--DRA \VDOWN'
PRI!'-'P ,'2---BUILDUP'



IF (INRES,EQ,2) THEN
PRll\'T*,'FNTER DIMENSIONLESS PRODUCING TIMF,ll'D,(BASED 01\' MI1\' -

+FRONT RADIUS)'
READ(',') TPD

END 11'

PRThT';SELECT CODES FOR GAS CAP AND BOTTOM W,\ UR,INBT'
PRll\T*,'I---NO (lAS CAP OR BOTTOM WATER' .
I'Rll\T' ,'2 ..• GAS CAP'
PRINT' :3.--BOTTOM WATER'
PRIN'I ','4---B011l'
I<.EAD(', 'J l}ffiT

PRlNT','SELECT CODES FOR OlJTER BOUNDARY COl\'DlTIONS,INOBC
PRINT',' 1••. INFINiTE'
PRINT' ,'2---Cl.OSED'
PRINT' ,'3.--CONST ANT PRESSURE'
READ(*, 'J Th'OBC

INOBC~2

PRIN j",'ENTER WELWORE STORAGE C{lEFFICIEl\T,CIJ'
RFAD(*,')CD

PIillIT','ENTER RESERVOIR lEMPERATURE (KEL YIN)'
READ(',') TEMPR
TEMPR ~ 1 EM ER* LRDOO

PRlNT* ,'ENTER Th'lTIAL RESERVOIR PSLUDOREDUCED PRESSUR F'
READ(',') PPRl

PRESSlNI ~ PPCI'PPRI
WRlIE(3,*) 'I'RESSINI (PSI) ,',PRESS!:',I

IiliAD( 13,*) (SK(J),J~l ,N1.)
CLOSE(I3)

PRlNT*,'ENTER NUl"mm OF TERMS 1'0 BE USED IN STEIIFEST ALGORlTHM'
READ(',')NT

PRIN 1'*;ENTER DlMENSl{lNLESS mn ER RADIUS'
READ(',') ROTJTD

READ(23") RK
CALL DI'.'RRRl\"('R K [M2j',NZ,NL,RK,L2,n RING)
CLOSE (23)

READ("") RKV
CLOSE (33)

'00



•
READ(4J,')PHJ

C CALL mVRRRN('PHI' ,NZ,NL.PllI,L2,ITRING)
CLOSE (43)

READ(53,')11
C CALL DWRRRl\('H',NL,I,H,LI,lIRING)

RE/lD(S.1,*) HII'
ell 1.1,DWRRRN('IlW [M]',NL,l ,nW,L I,ITR I».1G)

RE/lD(53,')liT
CLOSE (53)

DOJ~l,i'JZ
READ(63,')RD(J)

END DO
RO(NRO) ~ ROUm"RD( I)

CAL! j)WRRRN('Rll [M]',NRD,l,RD,L3,ITRJ1\G)
CLO~E(63)

C DO J~J,NL
C SK(l} ~ {(RK(N7.,J)/RK(l ,J)).1.ODOO)'DLOG(RD(2)11Ul( 1))
C END DO

CALL DWRRRN('SKII\',l\'I" 1,SK,Ll ,ITRING)

WRlTE(',')R1l
RW~RD(1)IFTM

RDR(I) ~ RD(l)Wl'M
DOI~I,NZ
DOJ~l,NL
PER1vl(I,J) ~ RK(J,J)IMDMTS
PInR(l,J) ~ PHI(I,])

END DO
RDR(li.j );RD(J+ 1)/FThI

El\"'D DO

PRI!,-'I','LNTER INmlll, DTVlE}'[STONLESS TIME (MINIMU.\1 fRO}!T RADIUS)'
READ(',') TDl

PRIl\P,'ENTbI'- CODES FOR PRNETRATION CONDITION'
PRINP:O---FULL'
PRINT',' I PARTIAL'
READ(''') INFP

PRINP,'ENTF,R "O}lDARCY COEFFIClEi'JTDETA CODE'
PRINT",'! - GEERTSMA'
PRINT",'2 - FIROO7.ARADI'

w,



READ(,,.j mETA

PRlNT' ,'ENTER THE ABONDONMENT pRliSSliRE (PSI)'
READ(',')ABONDp
WRlTE(3,')"
\VRTTE(3,') 'ABONDONMEKf PRESSI1RF (PSI) ,',AnaNDI'

PIUNP:ENTER OP lION FOR DERTVATIVE CO.\IPU IAIIO,",
PRlNP:O --- NOT REQUIRED'
PRlNTO,'1 --- REQlIlRED'
RFAD(''') TDER

lIWI'~O_UDUU
DOJ~I,NL
IF (HW(J),liQ,O,ODOO) TIlEN
NPL(J)~O

ELSF
NPL(J)~1
HWT =lI\VT + llW(J)
nm IF

liND DO

BPEN ~ HWTIHT

WRITE(3,')"
WRfTE(3,*) 'WELL PENE'I'RA'I TO;\[RATIO :',BPEK

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• * •••••
C KUIIJimcn,j,mallZlng the md,; based un minimum trollt mnl'"

ARl~Rl)(l)
AR1~RD(2)
DOI~I,NZ+T
RD(I)=RD(l)/AR2

ENDDO
C CALL DWRRRN('RD',NRD,I,RD,U,I'1 RIN(i)

C Tran,mi,,,h,lity and stOI'''t;vilyc{)mputation

DO J~l.NL
DO 1=I,NZ
TS (I,J) =RK(l, W II(J)
ST(I,J)~PHT(T ,J)'H(J)

ENDDO
EN'D DO

C CALL J)WRRRN('lRANSMIS"IiJTLT'l Y',N7,NL.TS,UJTRlNG)
C CALL DWRRR:--l('STORATI\'ITY',NZ,NL.S'I,L2,l'J RT:--l(;)

C Crossflow parameter, XA(T,J), computatlon

DO 1~I,NZ
DOJ~l)~1.



IF(J.EQ.NL) THEN
IF(rNnT,EQ.2).OR.(INnT ,EQ.4)) THEI'

XA(I,J)~2,ODOO'RKV(I, I)m(J)
ELSE

XA(I,J)~O_ODOO
END If

El.SE
XA(J,J)~2_0lJOO'RK V(I,J)'RK V(I,J+ 1)I(lI(J)'RKV(I,J 1I) -I

+ Il(J+l)'RKV(I,J))
END IF

ENlJ lJO
DNDDO

C CALLDWRRRN('XA',NZ,NI.,XA.ILITRING)

C Cl'Ossfiow parameter, XB(I,J), oomputatloo

])0 I~I,NZ
DOJ~I,NL

IF (J EQ,I) TUEN
IF ((INBT ,EQ,3 ),0R.(INDT,EQ,4)) TIJEN

XB(I,J)=2, 0DOO'RK V(I J)i 1I(J)
ELSE

XB(I,J)~O OOUOO
END IF

El.SE
XB(I,J)~2_()lJIH)'RK V(I,J J'RK V(I,J. I)I(Jl(J J'RK V(l). I) +

+ 1l(J.1)'RKV{I,J))
END If

END DO
END DO

C CALL DIVRRRN('XB',NZ,NL.Xll,L2,11 RING)

C »"lobl1Jty ,.11OS,RM'(I,J), oaIculatlOll

DO I~l,NL
DO J~I,l'-'L

RM'(I,J} ~ TS(l'I,J}/TS(I,J}
END DO

END DO
C CALL DWRRR,'l{"RM',NZ,NL,RM,L2,lTRlNG)

C T01"1transnllsslbl!lty and ,torat;v;ty c.1cutatwn
C WRTTE(t,')
C WRlTE(l:)'TOTAL TRANSMISSIBTLlTY TOT"L STORATJVJTY'

TTS~O ODOO
'I ST~O0])00

DOJ~l,NL
TTS ~ TTS ~ J S{L2,J)
TST ~ TST+ ST(I,J}

END DO



C WRJTE(l,*)TIS,TST

C Nondimcn,ionalizing t~e stmallvitb and w\nsmi{(i\'itles,
DOJ~l,NZ
DOJ~l,NL
TS(!,J) ~ l S(l,J}n"TS
ST(I)} % ST(I,J}n"ST

END DO
END DO

C CALL DWRRRN('DIMI,FSS TS',t'-'Z,t'-'L,TS,L2,ITRING)
CALL DWRRRN('mvtLESS ST [RW BASIS1',NZ,KI,Sr.U,lI'RING)

C NondJmen,ionalizing ~le crossflow por.mo{ors

D01-I,N2
DOJ~!,NL
XA(I,J) ~ (ARI • '2)'XA(l,J}mS
XB(I,J) ~ (ARi "2)*XB(U)/TIS

IoNDDO
END DO
CALL DWRRRN('DL\1LESS XA [RW 13ASISI',NZ,NL,XA.L2,lTRING)
CALL DWRRRN('DJMLESS X13[RW IlASIS]',NZ,NL,XB,L2,I1RING)

C COllVeJ,ion of crossf1owV"l'Jlllete" on (~eha,i, of minimum frollt radiu,

DO 1~I,NZ
DOJ~l,NL
XA(!,J) ~ XA(!,J)/(lUl( 1)"2)
XB(l,J) ~ XD(!,J}'(RD( I}"2)

END DO
END DO

C CALL D\VRRRN('XA [MIN, FRONT RADIUS IJASIS]',}JZ,}JL,XA,L2,lTRINU}
C CALL DI"IRRRN('XD [MIN. FRO;..lT RADIUS BASIS]',NZ,NL.XB,1.2,ITRlN(i)

URIO ~TIJ;"'IPRm'Cl
PPRIO ~ PRESSlNl/PPCI
CAll 7.FACl (ZT ,Z2,N,ER T,TI'R1 O,PI'R 107M" WO.!)
VSCO ~ VISCOG2(pRESSlNI,TEMPR,ZNEWO, WM}
CALL CR(ZNEWO,TI'R W,I'PRl D,CR,]O}
GeTO ~ eRTO/PPCl

REAL1'R(I) ~t4.7DOO
PSEUDOI'R(I) ~ O.ODOO

DO KC ~ 2,lI'R!,FN
REALPR(KC) ~ REALPR(t ) + 50 O'REAL(KC - I)
RPRS ~ REALPR(KC)
CALL IKTEGP(RI'RS,I'SPRS)
PSEUDOPR(KC) ~ PSPRS

""



El\TI DO

CALL INTEGP(PRESS[}'l,MINl)
MINI ~ M[},'T'PSCPR

CALL INTEGP(A130NDP,ABOl\'DPS)
Al30:IDPS ~ ABONDPS'PSCPR

PRlNT','ENTER WHIcn FLOWRATE TO COMPARE WITH'
PRlNT':O __• QU'
PRINT','I _._Qsr
READ(''') INQU

IF(IN()U,IiQ,I) ll1EN
PIUi'TT','ENTER QST (MYSFC)'
READ(',') Qsr
QD ~ QSPSCPRESS'TEMPRI(TTS'SCTEMP'MIM'PI'I 8UOO)

ELSE
PRJ};P,'ENTER DlMENSIOl\'LESS FLOWRATE'
READ(',') QU ,
QST ~ QD'TIS'SCIEMP'MINl'PI'I,8DOOi(SCPRESS'TEIVU'R)

END IF

WRlTE(3,')' ,
WRl1E(3,') 'QST{M3ISEC)"",QST
WRIIE(3,")"
WRlTE(3,') 'QD~',QD

DO IU~I,IO
TD(IG) ~ (1.000 ,I O,2DO'REAL(lG))'TDl
TD(IG + 10) ~ (3.0no + 0,5DO'REAL(lG))'IDl

END DO
JD(21) = 9.0DO'lDi
TD(22) = 10.ODO"TDI

c <.AT.LDWRRRN('TD',T4,I,TD,T4,ITRING)

PRJI,1AT(l)~ PRFSSlNl
PSTIMMAT(I) - 0,0000

JMAT~O
IL~8573
11'(INRES,EQ,2) CALL INVERT(JLAY,TPD,NT,Il.,MDl ,MU"11,QFRA)

DOI~I,NC
DO )-1,22

'"



~PC~ TD(J)
IF (INII.ES,EQ,2) 11IEN

SPCl ~ SPC ." TPD
CALL INVERT(JLA Y.SPCl ,/,-'1,IL,MD2,MDM2,QI'RA)

[}lD If

CALL INVERT(JLA Y,SPC,NT,lt,~lD,MDM,QFRA)

If (lNRES.EQ, 1) MDC ~ MDM

IF(lNRES,EQ,2) THEN
MD~MD1'IMD-MD2
MDC. MDM - MDJl.l1
MDIl ~ (SPC1*SPCITI'D)*MDC

END IF •

MDM ~ SPC*MDC

IF(INRFS.FQ.2) SPCH ~ SPCl/SPC

I:vrAT~lMAT+ 1

TRDI(lMAT)~SPC

SPC ~ SPC*(AR2**2)/(AR1**2)

DMPSPR(IMAT) ~ MD
DMDPSPR(IMAT) ~ MD'4
\)MPS11M(JMA T) ~ SPC
FRAXQ(JLA Y,IMA'!) - QFRA

TMPRI ~ TEMPRiI,BDOO

CALL MIYJUMW(MIJ,I\IWF)

IF(M\VF ,tT,MONDPS) GOTO 2000

PS1 IME ~ SPC*(ARI*'2)'TST.tITS

MWF ~ MWFIPSCPR

PSPRESMAT(IMA T)~ MWF
CALL P$EUDRPR(MWF,PWI)

PSTJMMA'I (IMAT+ I) ~ PSTlME
PRMAT(IMAT + I) - PWF

TD(J) ~ 11l(J)* I O,OD()

END DO
EI\D DO

'"



GOT03000

2000 IMA TMAX ~ IMAT - 1
G0r04000

3000 IMATMAX ~ T~lAT

4000 DIFE ~ TST"(GCTOIPSIP A)"(VSCO"CPP AS)mS

ITIMMAX ~ IMATMAX + 1

ALLOCATE (PS 1'1MMAT A(lTIMMAX),TPRMA T(lTIMMAX))

PSTlMMATA(I) ~ O.OD{)()
TP&\1AT(I) ~ PRESSINI

DO JK ~ 2, ITlM),lAX
PSTlMMA TA(.IK) ~ PS l'lMMA l'{JK)
TPRMIIT{JK) ~ PRl;lAT(JK)

END DO

ERTDIIR ~ 1.0)).04

DO J-l,!M,\ ThfIlX
PSRTIME~PSllM).1AT(J'1 1)
ViRI l'Ii(",") 'OK'
CALL INVPSTlME(J,lT!MMAX,PSTIMMII TA,TPRMAT'pSR'I IMB,lt1 I.\1E)
WltHE(",") J:RTTME~',RTIME
TIMR{J) ~ RTIME
DMTI1I-I(JLAY,l) ~ lIMR(J)/(DIFE' Alt!. '2)

PDMAT(J) - 2,ODOO'P]'TTS'(PRESSINI-TPRMA'1 (J + 1))'PSIPAi(OSP
+ VSCO"CPPIIS)
END DO

IF(JLA Y,LO,I) TIIEN
WRITE(3,*)' .
WRITE(3,*) 'TQD ~',QD
WRITE{3,*)' ,
WRITE(],') 'K ~',TTSi(HT'MDMTS)
END IF

EXTEMP{l) - 1.0D-OJ
TEMPID ~ DMTIM(JI.A Y,.I)
EXTEMP(2) ~ DMPSPR(J)
TPRmV ~ RADlNV(J'cMPID)
FO ~ FRAXQ(JLA Y,l)
K~2
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DO WHILE(DARS((FX"I FMP(K).IoX 1'l,,\1P(K.I ))/EX1EMP(K-I)) GE ERTDAR)

TEMPMD ~ EXIEMP(K)
CALL MDTOMW(TEMJ'1I.m,TEM1'MW)
Ir(TEMpMW.L T A80I\D1'S) (,01'0 5000
TEjI,I1'MW ~ TE.MPMWiPSCPR
CALL 1'SEUOR1'R(TEM1'MW,TEMpPW)

IF(T1'RJNV,GE.RIJR(NRD)) 1 HEN
RElt,V ~ RDR(NRD) - 0, ID{)O

CALL CORTURR(JI,A Y,FQ,TFMpPW,REINV,l 1'11.,rPHI,TflFl'A, I FNO,TRI\T,TCE I)
CAl.!. NDARCYD(JLA Y,REj~V,TlJMlJ)
ELSE

CALL CORTlIRB(JLA Y.J'Q, I'EM1'1''>I':1PRINV,'ll'R,TPlIl,TBETAll '~O,'I RN' l','l 'CE I)
CALL NDARCYD(JLA Y ,TPRINV,TDMU)
END If

EXThMP(K+I) ~ lCEI'TDMlJ'fQ'QST'DA YS/'vl]l,ICITMTC + DMPSPR(J)

K~K+l
END DO

DM1'SPRf(J) = EXTIMP(K)
0'-1 PRIM I'(JLA Y,J) ~ DMPSPRF(J)

C DMPSPRF(J) ~ DMPSPRF(J)'FRAXQ(JLA YJ),TS(I,J\VELL)

WRITE(' ,') J,' CI<TCEI,' lDMU~',IDMlJ,' RDINV~',TPRJNV
WRJTF(3, ') II,A Y,J,TpRINV ,TRNT,TFNO,TCE I ,TDMU

TMD ~ DMPSpRF(J)

CALL )'lDTOMW(TMO,TMWF)
II'(TMWF,LT ABONDPS) GOTO SOOO
TMWF ~ TMWF/1'SCpR

pSPRESMATF(J) ~TMWF

CALL PSHJDRPR(TMWf,TPWF)

TPRMA T(1 -+- 1) =TPWF
PRMAT(J'I I) ~ TPV,'F

END DO
WRITE(''') 'OK 999'
JTl'vlMAXI ~ ITIMIv£AX
00T06000

SOO{) IMATMAX = J-J
lTIMMAXJ = lMATMAX ,I

'"



DEAlJ.oCATE (PSTlMMATA.1l'RMAT)

ALLO(;A"1 'E (PSTIYIMATA(lTlMMAX 1),'fPR..\1AT(ITlMMAX1})

PSTIMMAI'A(1) ~ 0.0000
TPRMAT(l) ~ PRESS1Nl

DO JK ~ 2, lTL\1MAXI
PSTIMJI,1AT"(lK] ~ PSTI~1MAT(JK)
'I PRMAT(JK) ~ PRMAT(JK)

END DO

6000 DO J~l.IM,\ TMAX

PSR'lJME ~ I'ST1MMAT(J -I-I)
CALL INVJ'STlME(J.ITlMMAX 1YSTIM\-IA TA,TPRMA T,PSRTIME,RTIME)
WRIIE(*,*) 'OK ',J
TIlvffi(J} ~ RTlME
DMTlM(JLA Y ,J} ~ 11M R(l)/(OlFE' AR 1**2]

I'DMAT(J) ~ 2,ODOO*PI' lTS*(PRESS1Nl.']'PRMAT(J -I-1))*PS1PAF(QST*
-I- VSCO*CI'I'AS)

END DO

DEALLOCATE (pSTlMMAT A,TPRMA T)
END DO

IF(J,EQ.l) TIlEN
TMDN ~ DMPST1M(l)

ELSE
TMDN ~ DMPSTIM(l) - mlPST1M(J.1)

END IF

MDD", ~ DQDV Al(TMDN, lMATMAX,DMPS I'lM,DMI'SPR,CIIECK}

EF~ CDtfMDN
If(J.EQ,l) THEK'
GEE~OODO

ELSE
GEE. EP*DYIPSPRF(J-l)

END1F

OOJLAY~I,L1
CThl5 ~ (DMPR1MT(lLA Y,J}_DMPSPR(J))
PII\DD(JLA Y) ~. (MOON -I-CTM5}'TS(1 ,ILA y],

11'(J.EQ,l) THEN

11.\

,
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Cl'M2 ~ O.ODO
ELSE
crM2 ~ _FRAXQ(JLA Y.l-I)'MDDN

bNlJ IF

IF(J,EQ,I) THEN
CTMI ~O.ODO

ELSE
CTMI ~ FRAXQ{JLA Y,I)'DMPSPR(J)

END [I'

SUMC ~O,ODO

D0J1K~1,J-2
CIM4 ~ FRAXQ(JLA Y,JIK+l) _ FRAXQ{JLA Y.J1K)
TMDK ~ DMPSTIM(J) - D.\1PSlIM(JIK)
MDDK ~ DQDV AI .(TMDK,IMAl MAX,DMPSTIM,DMPSPR,CHECK)
CIM4 ~ CT"M4'MDDK
SUMC~SUMC+ClM4

END DO

CTM ~ (CTMI + CTM2 + SUMC)!TS(I,JLAY),
fINCC{JLA Y) ~ CTM

END DO

DO IR~I.Ll
DO IC-I,Ll
WORA(IR.Tr:j ~ O,ODO

END DO
WORA(IR,L2) ~ I.ODO

WORA(ffi,lR) ~ F1NDlJ([R)
n.-'D DO

DOIC~J,Ll
WORA(L2,1C) ~ I.ODO
WORIl{IC) ~ Fll\'CC(IC)

EKD DO

WORA(L2,L2) ~ EF
WORIl(L2) ~ I,ODO + GEE

CALL DLSASF (L2, WORA, L2, WOlill, WORX)
DMPSPRF{J) ~ WORX(L2) ,
FRAXQ(l,J) ~ WORX{I)
FRAXQ(2,J) ~ WOR.X(2)

END DO

'"
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IF (IDER EQ.I) THEN

TOL~OOOOOOlDO
BGSfEP ~ 0,05DO

DDMDI(l,I),O.ODO
X ~ D:vIPSTIM(I) + BGSTEP
y ~ DQDV /I L(X,lMA TMAX,DMPSTIM,D,\1PSPRl',CHECK)
DDMDT(I.2) ~ (V. D]I,1PSPRF(I))iBGS fEP

DO "'iHILE(DABS(DDMDT{l,K)-DDMI)"] (l,K -I j),GT.TOL)
BSTEP ~ BGSTEPiREAL(K)
X ~ D\1PS'lIM(I) ,I,DSTEP
Y ~ DQDV AL{X,lMA TM/lX,lJMPSTIM,DMPSJ'RF,CH ECK)
DDMDT(1.K+I) ~ (y. DMPSPRl'(I))/DSTEP
KmK+l

END DO

DMPD J'PD(I) ~ DDMDT( I ,K)*lJMPSTlM( 1)

DDMDT(IMA'IMAX,l) ~ O,ODO
X ~ DMPST1M(IMA 1 MAX) - l.ODO*BGSTEP
Y ~ DQDV AL(XJMATMAX,DMPSTlM,DMPSPRf,CHECK)
DDMDT(IMA TM/lX)) ~ (lJMPSPRl'(lMA TM/lX). Y)/(2,ODO*BGSTEP)

K~2

DO WJ-TILE(DABS(DDMDT(lMi\ TM/lX,K).DDMDT(lMA TM/I X,K IJ).ClT TOL)
BSTEP ~ HGSTEP/RE/lI{K)
X ~ DMPSTIM(lMA'IMAX) - HDO*BSTEP
Y ~ DQDV AL(X,IMA TM/I X,DMPS'I IM,DMPSPRF,CHECK)
blJlvlDT(IMA TM/I X,K + 1) ~ (IJMPSPRF(IMA TM/lX)- Y)/(2,ODO'IlSTEP)
K~KII

END DO
,

DMPD I'PD(IMA TMAX) ~ DDMIJ'I'(IMA TMAX,K )*DMPS rIM(lMA Th1AX)

DO 1~2,IMATMAX-1

HGSTEP ~ 0 05DO

KKC-I
425 \lCYC ~ KKC*ICYC

If(I.GT,IlCYC) THEN
KKC~KKC+l
GOT0425

END IF

STEP~ 1O.O*'(KKC-I)



BGSTEP M DGSTEP'STEP

DDMDT(T,l)~OODO
Xl ~ DMPSTlM(l) _ 2.0DO'B(]STEP
Xl ~DMPSTlM(l).;. 2,ODO'BGSIl!P
y 1 ~ DQDV AL(XT ,1M" TMAX,mlPS'l TM,lJMPSPRF,ClIECK)
Y2 ~ DQD\' AL(X2,lMA'1 MAX,DMPSTIM,DMPSPRF,CHECK)
DDMDT(I,2) ~ (Y2. Yl)/(4,ODO'DGSTEP)

DO WI~ILE(DABS(DD"!DT(I,K}-DDMnT(LK. 1)).GT 1\)L}
BSTEP ~ BGSTEPiREAL(K)
Xl ~ DMPSTlM(I) - 2,ODO'DSTEP
Xl ~ DMPSTlM(I} ,1,2,ODO'DSTEP
y I ~ DQDV AT,(Xl ,1MATMAX,DMPSllI\I,DMPSPRF,CHECK)
Y2 ~ DQDY AL(X2,IMA TMAX,DMPSTlM,DMPSPRF,CHECK)
DDMDT(I.K.;.T) - (Yl. YI)!(4 ODO'BSTE1')
K~K+I

E~DDO

DMI'DTPD(I) ~ DDMlJ 1'(I,K)'lJMPSl1M(I)
WRlTE(',*) 1,' OK'

E}lDDO

END IF

lJOI~I,IMATMAX
WRITE( 1,') DMPST!M(I),DMPSPRF(T).DMPSPR(T)
WRITE(2,') DMPSTlM(I),DMPDTPD(I),DjI,lDPSPR(I)
WRlTE( 4,') IJMPSTlM(T),FRAXQ( I ,1),FRAXQ(2,I)

FND DO

8 FORMAT(2X,F20,6,2XX20.R)

STOP
E1\'D

(: .
C Subroutine rm eigenvalue, elgenvcctm, and Be,_,el funclion fa1cu1ation
C fronllMSL IMA TH IT,lBRARY. It calculates all coefficients .no solves the
C systom of ,imultaneous equatJOns, WellbOle pressuro, It, dcnvativc .nd
C [,aclionai flow rate are .1,0 calculated '

SUllROlJ nNE LAP(S,JLMWDL,Jl,ffiMT ..QFR)

IMPLICiT REAL'S (A-H,M,o.Z)
PARAMETER (LL1~2,LL2~LL1+1,LLJ~LL1+2,LL4~2.J,1 l'),Ll,l ['[{lNG~O)
PARAMETlJR (IPATIl~ I,NCOD!l~ 1,Ll)A~LL1 ,LDB~LL1 ,I\'~LLl,LnFVEC~I,[,l)
PARAM IoTER (NEQ-LL4,LDA2~;.lRQ)



DlMENSION A(LL I,LL 1},EVAL(tL 1},EVEC(L1.1 ,LI.I ),AEI(LL2,LI.I ,1,1 I),
+ AA(LL4,LL4},B(LL4},X(LL4),SG),fA(LL2,LL 1),BB(LLl ,LLl)

COMMO~!GMiCD.INOBC,t\'L,N~,NRll,INFP,J WLLL,SK(LLl ),NPL(LL I),RD(LU),
+ ST(LU,LLl ),TS(L1,2.J,). 1},RM(U, 1.I,L 1).xA(11 ,2,L! 1),XTl(l .1.2,LL I)

C CALL lJWRRRN('TS IN LAP',NZ,NLTS,LL2)TRING}
C CAl.!. lJWRRRN('S'l' IN LAP',}.JL,NL,S'I,LL2 11RING}

ICOUh'T~O

DO 1~I,NZ

D01~1,NL
DOJ1~I,NL
I1I1(J.Jl) ~ O.onoo
A(J,J1)~0.ODOO

ENLJ DO
END DO

lJOJ~I,NL
lE(J EQ.I)"IHEN
A(J,J+ 1) ~ -XA(l,J}

ELSE IF (J.EQ,NL) THEN
A(J,J-)) ~ -XR(l,l}

ELSE
A(J,J+ I) ~ -XA(I,l}
A(J,I_1) ~ _XB(1))

END IF
A(l,l) ~ ST(U)'S + XA(1,J) + XIl(1,J)
BB(J) ~ TS(I,J) ,

END DO
C C/lLLlJWRRRN('/I',NI,NL,A,LLl,TTRIKG)
C CALL DWRRRN('BB'.NL,NL,BBP,1,J1R1NG)

C Eigenvalues (EVAL(J})& eigemectOl~ (LVl!C(I,J)) ca1ull.tlon

CALL DGVCSP(N,A.1.lJA,BB.1.DB,EV AI.,EVEC,I.DEVE(;)

C Staring eIgenvalue,& cigcn\'cctor,

DO J~l.NL
lJOJ1~l,NL
AEI(l,J,11) ~ EVE('(l,l1)

END DO
END DO

C CALL DV,'RRRN('EVEC',NI ,NI" FVEC,J J, l,fTRlNG)

DO J~I,NI
T ~ RV AL(J}

n,

•



SGMA(LJ) = DSQRT(1)
END DO

(' CALL DWRRRN('SGMA SQUARE',NL, 1,EVAL,LL! ,InuKG)

END DO

C Initiallzing tlle augmented matllx

DO It~),LL4
DO Il,LLL4
/I/I(] t .12)~ 0 0000
B(li)~O,OOOO

END DO
Rf',lJ 00

C Selling up ihe matrkes AA(I,J) & D(J) fi{JJlltlle boundary conditwns

C '\\'eIIbol'e condition
C For ful1l'enctratio"

IF(INFP,EQ,O) mEN
T~I
D()J~l,N.1
00 K~).N
AR(;6~SGMA(T,K)' RD(l)
AA(J,K)=AEI(I,J,K)'DBS.KOE(ARG6)

+ -I SK(J)'AEI(I,J,K)'ARGG'DllSK1E(ARGG)
I _ AFJ(U+),K)'ODSKOE(ARG(,)
+ - SK(J+ 1)' A\;](I,J~ 1.K)' ARGo' DB~K] E(ARG6)

f','lEN"2 1N"I'K

AA( J,N2)~"ET(),J,K)'DBSTOE(/lRG6)
_ SK(J)' AhJ(I,J,K)' ARG6'DBSII E(ARG6)
_ AH(I,J+ 1,K).DBSIOE(ARGG)
+ SK(J+ 1)' AEI(I,J+ 1,K)' ARG6'DBSI 1E(ARG6)

Ei'ID DO
END DO

DOK~I,N
SUM) ~O_ODOO
SUM2 = O,ODOO
DOJ~),N
AR06~SGM/I(],K)'RD())
S) ~TS(T,J)' AE1(I,J,K)" /lRG6'IJBSK) E(ARli6)
SUM1 ~ SUMl ,I Sl
S2~- TS(I,J)* AE](I,J.K)' ARGo'DIlS] t fi(ARGo)
SUMl = S(;1\I2 + S2
END DO

A/I(N,K) ~ SlIM1

""



N]~N"2+N+K
AA(N,N3) ~ SUM2

END DO

D(N) ~ I.ODOO/S

C For partial penet[atlon

•

LLSE,.,
DOJ~I,NL
DOK~I,N
IF (I\'PL(J) EQ 0) THEN
ARG6~SGMA(LK)'RD(I) (
AA(J,K)~-AEl(I,J,K)'DBSK IE(ARG6)*AR(;6

N2 - t\'''2 + t\' + K

AA(J,N2),AEl(I,J,K)"DDSIl E(ARG6)' ARG6
'ND IT

END DO
END DO

DO J~l,N_1
DO K~I,N
IF (NPL(J),EQ, I ,AND,;..JPL(J+ I),LO, I) l'lIEN
ARG6"SGMA(I,K)'RD(I)
AA(I>K)~ART(J,J,K)"DnSKOE(ARGG)

+ .•. SK(J)'AEl(I,J,K)'ARC,G'DBSKIE(ARG6)
+ _ ART(I,I+I,K)"DBSKOE(ARGG)

- SK(J<' I)' AEJ(I,J+ I ,K)' ARG6' DBSK IE(ARG6)

N2~N"2+N+K

AA(J.N2)~"'FT(J,J,K)'DllSIOE(ARG6 )
+ - SK(J)'AEI(I,J,K)*ARG(,'nnST1F(ARGG)
'. - AEI(I,J'1.K)'DBSWIo(ARG6)
+ + SK(J+I)'AEl(I,J,'I,K)"ARG6'DBSIlE(ARG6)

FND IF
END DO

END DO

DOK~l,;..J
SUMl ~ 0.0000
SUM2 ~ O.ODOO
DOJ~LN
IF(NPL(J),EQ.I) THEN
!COUNT~ ICOUNT' I
ARG6~SGMA(1,K)'RD(1 )
51~TS(l,J)' A!JI(I,J,K)" ARG6'DBSK IE(ARG6)
SUMI ~ SUMI.' SI

'"



S2~ TS(I,J)* AEI(I,J,K)* ARGu*DDSIl E(ARGu)
SUM2 ~ SUM2 + S2

END IF
END DO

AA(N,K) ~ SU]l.11
1'<3~N"2+N+K
AA(N,}l3) ~ SUM2

END DO

B(N) ~ UIDOO/S
END IF

C Sctlmg up cquation" from inlerface bounJ.ry condition'

DOJ~I,N
DO J~I,N
DOK~I,N

ARGI ~ SGMA(J,K)*RD(!+l)
ARG2 ~ S(,MA(I+ I,K)*RlJ(l+ J)
FACI'ORI ~ SGMA(I,K)*(RD(I).RD(I+I))
IF(FACmRI L1'._174 OlJOO)I'ACWR 1~ _170.0lJOO

C Equalion,' from pressure continuily condition
N3~I'N+J
N4mN*(I_I)" K

AA(N3,N4 )~AEI(U,K)*DBSKOE(ARG I)*DEXI'(F ACTOR I)
N5~N+W(I-I)" K
AA(N3,N5)~_AEl(l+ I,J,Kj' DBSKOE(ARG2)
NG~N"2+Nl-N*(I-I) >K,
AA(N3,"'6)~A(j(U,]()*DBSIOE(AR.G I)' 1l),XP( _I,ACI))R I)
N7~N+N6
AA(N3,N7)~-AEl(H 1,J,K)'DUSIOE(ARG2)

C Egnat10m from flo" wnlinuily condilion

N8~N"2~ N*I I J
AA(NB,N4 ).AEI(I,J.K)*SGIv[A(I,K)*DDSK lE(ARG 1)*

+ DEXP(FACIOR1)
AA(N8,N5)~-AE1(J+ l ,J,K)*SG\IA(I+ 1,K)*

+ DBSKIE(ARG2)*RM(I,J)
AA(;-,J8,!,-'6)~-AEI(l,J,K)'SGMA(I,K)*DBS11 E(ARG 1)*

DEXP(_FACTORI)
AA(N8,r,n)~AE1(I+ U,K)*SGMA(I+ 1,K)*

+ DDSllE(ARG2)*RM(I,J)

END IJO
END DO

END DO



C Outcr Huundary ConditIOns

C For infinite suing ,e,e[Voil

IF (TNOBC EQ.l) 'WEN

C For c1osod ,mItt bOlLndslY

ELSE IF (TNORC,EQ 2) THEN
DOJ~I,N
DOK~I,N
}l9 ~ 2*(N"2) + N + J
NI0~N**2+K
ARG3 ~ S(iMA(NZ K)*RlJ(t'-'RlJ)
fACTOR2 ~ SGMA(NZ,K)*(RD(!,-'Z)-RD(NRD»)
tF(FACIOIU,LT,-174,ODOO) FACTOR2 ~ _170 ()D()()
AA(N9,}l10)~AET(NZ,J,K)*S(iMA(NZ,K)*DBSKIE(ARG3)*

DFXP(FACTOR2)
NI I ~ 2*("**2) + N + K
AA(N9.Nll )~-AE1(NZ,J,K)*SGMA(NZ,K)*DHSI IE(ARG3)'

DEXP(-l'ACTOIU)
ENDDO

ENDDO

C For con,ts"t pl'essme outer boundsry

ELSE IF (INOBC-EQ.3) THEN

DOJ~l,N
DO K~I,N
N9~2*(N*'2)+~+J
NlO~N*'2+K
ARG3 ~ SGMA(NZ.K)*RD(NRD)
FACTOR2 - SGMA(NL,K)'(RD(NZ)-RJJ(NR D))
AA(N9,N 1O)~AE1(NZ,J.K)*DnSK()E(ARG3)*DEXP(F ACI 01U)
AA(N9,N 11)~AE1(NZ,J,K)*DnSlOE(ARG3 )'OEXP( _I'ACTOR2)

END DO •
END DO

E"ID If

C SolUlion of the system of equalion,

C CAL!, DWRRRN('AA',NEQ,NEQ,A,\,LL4,TTRING)
C CALL DWRRRN('B',KEQ,I,B,LL4,ITRING)

C,\ LL DLSARG(NEQ,AA,I ,DA2,B,IP ATH,X)

C CALI, DWRRRN('X',NEQ,1,X,LIA,ITR1N(i)

C Ca!cnlst1on of tbe wellb",e p •.•.ssure

123



F'\c:T1 ~ O.ODOD
SUM~O,ODOO
SUMI ~O.ODOO
J~JL
T~1
DOK~l."
N12~K"2+N+K
ARG4~SGMA(I>K)'RD(I)
MW~ AEI(LJ,K)'lJBSKO(ARG4)'X(K)' DEXP(A RG4) ,I

+ AEI(I,J,K)' DBSIO(ARG4 )'X(N12)'IJEXP{ -ARG4) +
" SK(J)' AEI(I,J,K)' ARG4'DBSK I(ARG4)'X(K)'DEXP(,\ RG4) _
• SK(J)' AEI(I,J,K)' ARG4 'DB~1 I (ARG4 )'X(N12)'DEXI'(_ARG4)
SU\l ~ SU!.1 + MW
QF=AE1(l,J,K)' ARG4 'DESKI (AR(J4)'X{K)'DEXP(ARG4) _

+ AEl{I,J,K)' ARG4'DBSll (ARG4)' X(N 12)'DEXP( -ARG4)
SUMI ~SlJMl"'QF

FNrJ DO

MWDL~SUI\1
C MWDT. ~ M\\'DU(I,ODOO + C]),«(S'RD(1))"2)'~lWDL)

MDYIL ~ S'MWDL

QI'R ~ SUMI'TS(I,JL)

RETURN
END•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
SUDROUl INE INVERT(JL,TD,N,IL,MD,MDM .QFR)

C Tn\'eJsion from Lopl.co 'paoe to real 'pace

TMPI.!Ct r REAL'8 (A_H,M,O_/.)

J)]MFNSION V{SO)

If(N.EQ.lL) (JOTO 85
IL~N
IJLOG1W - 0,6931471 &o55999DOO
N2 ~ Ni2

DO IN~I,N
KL~(IN'I 1).'2
KtJ ~ MINO(TN,N2)
V(IN) - 0,00])00
DOK~KL,KU
Tl =FACT(2'K)
T2~FACT(N2-K)
T3~FACT(K)
'14~FACT(K-l)
T5=FACT(TN-K)
T6 ~ FACT(2'K - IN)

'"



TJ' ~ (K"N2)' rJl(T2'T3'T4'Tj'TG)

V(lN)=V(lN)+'IT
END DO
V(IN) ~ V(lN)'«( -1)"(N2 + I!'))

END DO

85 MO m O.ODoo
MO).1 = 0,0000
QFR~O,ODOO
AT=DLOGTWITD

DOIN~I,N
ARG = REAL(INJ'AT

CALL LA P( IIRG,n .,MWDL,MDML,QffiL)

MD m MO., V(IN)'MWDL
MOM ~ MOM + V(IN)'MDML
QFR ~ QFR +V(It\)'QFRL

JoND DO

MO~MD'AT
MDM ~ MlJM'AT
QI'R~QFR'A"l

mm"",
END

C FUNCTION for FACTORIAL COMPU fAllON

FUNCTION FACT(NF)
IMPLICIT REAL '8 (A.lJ,O_Z)

IF(NF lJE 0) THEN
fCf= 1.00DOO
DO 1.2.NF
fCT = fCT-REAL(I)

EKD DO
FACT~FCT

ELSE
FACr~O_()ODOO

END If

RETURN
END

C~~===--------~~~~~~~~~~~~~~--------~~-~
FUNCTION EPS(Yl12S,YC02)

tMl'LlCI1' REAL'S (A.H,M,O_Z)

",



A ~ YH2S + YC02
B~ YH2S

liPS ~ 12G.onOO'(A "0,9) - (A' '1.6)) + 15.onOO'((U"0.5)-
+ (B"4,0))

Er-,T)
Co. ~~~=~

flTh"CTJON"[PC(SG,EP)

IMPLICIT REAL'S (A_H,M,O_Z)

1l'C ~ J69,2DOO" 349.5DOO'SG_74.0nOO'(Sa"2)
TPf': ~ TPC - EP

Er-,'D

•

FUJ\CIlON PPC(SG;IPC,YH2S,EP)

IMPLlcn REM.'S(A-H,M,O-Z)

PPC~ 7.Io.snoo _ 131,DDOO'Sa _-' 0))00'(SG"2)
PPC~ rpC'TPC/((TPC +H) + YH2S'(I,ODOO_'\'H2S)'EP)

END

SUBROU1'INE ZFAC1(Zl,Z2,N,ER'l 'I PR,PPR,ZNEW,I)

IMPLICIT REM,'8 (A-ll,M,O-Z)

DO 10 l~l,N

1'1~ F(Zl.TPR,PPR)
1'23 F(Z2, l'PR,PPR)

ZNEW M Z2 _F2'((L2 _Z I)I{F2 _ I' 1))
FZ ~ F{T.:'-lEW,1l'R,PPR)
JI'(DABS{FZ) LE ERT) TIlEN

RE,l URN
ENDJP
TZ~Zl
Zl~7.2
Z2 ~ Ze'JEW

10 CONTINUE

RETIiRN
ENDc------ ------- ---~_~ C.---------_M~==

fUl\'CIlON f(Z,'J'PR.PPR)

IMPLlCl'l REAL'S (I\-H,M,O-Z)

'"



COJl.lI\10N /GMM/ Al,A2,A3,A4,A5,M,A 7,A8,A9,AIO,A II,R l,eCI,D,C}

A I ~ 0 .1265DOO
A2~_L07DOO
A3 ~ -0.53.19DOO
A4 ~ 0.01569DOO
A5 ~ -O,05165DOO
AG ~ 0.5475DOO
A7~-0,7361D00
A8 ~ 0,1844000
A9~.1056DOO
AI0~0,6I34000
All ~O.72lDOO
Rl ~ RJIO(Z,TPR,PPR)
C~AII*{RI**2J
Cl ~ A 1+ (A2iTPR) + (A3I{TPR **3)) -I-(A4/(TPR **4)) -I-(ASi(TPR "5))
C2 ~ A6 + (A7iTPR) -I-(A8/(TPR**2)}
C3 ~ A9*((A7.'TPR) ,I.(A8/(TPR"2J))

C4 ~ A I 0*(1 ,0000 + C)*({R I **2).'(TPR**3))*EXP{-C)

F = Z - (LODOO+ n*R I -I-C2*(RI**2) - C3'(Rl**5) -I-(4)

EI\'l)
C~~~~~~~~~===~~~~~~~~~==~~~~~

HINCllON RHO(Z,TPR,PPR)

IMPLiCIT REAL *S (A.H)vl,O_Z)

RHO ~ 1J.27DOO*PPRJ(Z*TPR)

....~
FUNCTION OF(Z,TPR)

lMPL!CIT REAL*S (A.H,M,O_Z)
COM"lON /GMl\-lI Al,A2,A3,M,A5,AG,A7,A8,A9 AlO,AIl,R I ,C,Cl,C2,C3

C6 ~ (2.()[)()()*A IO*(RI **2)/((TPR" .1}*Z})
C7 = C6*(UllJOO -I-C. (C**2))*EXP(-C)

OF = 1,0000 4 Cl*R l/Z -I-2.0[)00'C2*(RI "2).'Z . 5.0IJO{)*C3*(RI** 5)/Z
-I- -I-C7

OI'=DFtlPR

EI\D

SUBROUTINE D7;DRJiO(TI'R,DZDR)

m



I),1PLICI'I' Rb-"L "8 (I\_H ,M,O-Z)
COMMON /GIVL\1lAl,A2,-"3,A4,1\5,1\6,1\ 7,A8,-"9,A1O,A 11,R I.C,Cl,C2,(']

C5 ~ (2 OOOO"A10'R IITPR"3)'(LODOO + C _ C**2 )*DEXP(-C)

OZDR ~ CI + 2.0DOO*C2*Rl _ 5.0DOO'C3*(RI**4)" C5

RETIJR!'>'
END
C~~~~~~~~~~~~~~~~~~.__~~~~~~~

SUBROUTINE CR(Z,ll'R,PPR,RC)

IMPLICIT REAL '8 (A-H,M,OoZ)

CI\LL DZDRHO(TPR,DZ1)
RI ~ RHO(Z,TPR,PPR)

RC ~ I.ODOO/PPR - (0.27DOO/((Z"2)'TPR})'(DZlI(1 ,01JOO+ R 1*f)Z liZ)}

RETURN
eND

(>- --- ~~~~~~~~ •.===~~~~
FUNCTlOI\' VISCOG(P,T,Z,v''M')

lMPU(:IT REAL *8 (A-!l,M,O_Z)

RR ~ 1 4935D-03*P'WM/(Z"I)
D ~ (9.4DOO + 0,02DOO'WM)'cr"l 5)
E ~ 209,ODUU + 19.UDOO*WM+ T
RK~ DiE
X ~ 3,5DOO ,I 986.0DOO!T'" O.OIDOWWM
Y ~ 2.4000.0 2000'X

VISCOG ~ RK "(l!XP(X'(RR **Y)))/(I 0,ODOO"4)

END

FJ INcnON VISCOG2(P,T,Z, W~l)

IMPLICIT REAL'S (A.I-I,M,O-Z)

RR - 1.4935D-03"P'WMi(Z'T)
D ~ (9.3 79DOO+ 0.01607D00"WM)'(T"I.5)
E ~ 209.2000 + 19.26000'WII-I" 1
RK ~ DiE
X ~ 3.448Doo + 986.4DOOlT + O.OIOI)9DI)I)'WM
y ~ 2.447DOO _ I) 2224DOO'X

VISCOG2 ~ RK'(bXP(X"(RR'*Y)})*I,OD_01

eND



(;~~~~~~~~~~~~~~===~~~~~~.~~~~~
FUNCTION PSEUPC(SG,YH2S,YC02.YN2)

IMPHClf RE"L '8 (A-H,M,O-Z)

PSEUPC ~ 678 0000 .')0,ODOO'(SG-0.5) .206 7D00'YN2 + 44IU)DOO'YC02
+ +60fj, 7DOO*YI12S

E",D
C~==-'.~-,.,.~.,_.,==~~~~~.=~~~~==~

Fill\'CI10N PSEUTQSG,YH2S,YC02, YN2)

IMPLICIT REAL"8 (A.H,M,O_Z)

rSFlrrc = 326,ODOO+315 7D00"(SG-0.5DDD) .240 ODOO'YN2-
+ 83.3000'YC02-+ 133.3DOO'YH2S

ENO
C=~,~~ =~~~~~~=== __••_._~_.._.,~_~

SUDROUl'lNIo ZFAC2(ERT,N,P, T. PSElil'<:,PSEUTC.Z,l YH)

IMPLICIT REAI,'S (A-H,M,O-Z)

PI{ ~ P/rSEUPC
RTR ~ pSEurcrr

A ~ 6. 125D_02 * Rill • DEXP( _1.2DOO'( (I ,ODOO_ j{'j R)"2) )
B ~ R'lR' ( 14 76DOO- 9.76DOO' RTR + 4,58DOO' (R'J"R"2))
C ~ RTR' (90,7[)00 - 242.2000' RTR + 42.4DOO" (RTR*'2))
n = 2,18DOO + 2,82000" RTR
Y~ I 00.03

DO100rvIl~l,N

F ~ _A"PR +(Y 4Y'Y +Y"3 _Y*'4)/((LOLJ()0 _Y)"])_ D'Y'Y + C'(Y"D)

IF(OABS(F) .LE ERT) 11IEN
Z~A'PR"y
RETURN

1;1SE
DFDY ~ (l.OOM ., 4,0000'Y"( 1.0DOO IY- 't • Y)+Y"4)/(( 1.0000-- Y)"4)

+ . l.ODOO'WY 4' D'C'(Y"(D _ 1,ODOO))
Y ~ Y .FiDFDY

END1F

100 CONTINUE

Z-A'PR/Y

RETUR.'J
END



c::=---- -----

c

fUNCTION V ISC(Sli,T,TR,PR, YC,YlLYN)

IMPIJOT RRAVB (A-1I,M,0-£:)

AA 1 ~ -2.4G21182D-00
AA2 ~ 2.970S4714D_00
AAJ ~.2 86264054D.OI
AA4 ~ 8.05420S22D_03
AAS ~ 2.ROB60949D-OO
AM ~"3 49803305D-00
AA7 ~ 3 6037302D-01
AAR ~ -1.04432413D-02
AM ~. 7.93385684D-OI
AA 10 ~ U9643306D-OO
AA 11 ~.I 4914492SD_O I
AA12 - 4.4 1015512D-03
AA 13 ~ 8.393B7178D-02
AA14 ~ .1.86408848D_01
AA15 ~ 2.03367881 D.m
AAI G•. -6,095792(3)).04

u ~ (1.709D-05. 2 062D.()6'SGj*(T _4GO.ODOO)
V •. (B.188D-03 _6 ISD.03'DLOG lO(SGl)
UV~U"V
CN ~ YN*(B.48D-OJ*DLOG10(SG)" 9.59D-(3)
cco ~ YC*(9,OBD-03'DLOGIO(SG) -'-6.24D-OJ)
CH ~ YH'(8.49D-03'DLOG10(SG) .• 3 73D_03)

UM~UV'I CN" CCO+ ell

XI ~AAI + AA2*PR.' AA3'(PR"2) -+ AA4'(PR"3)
X2. TR'(AA5 + AA6'PR" AA7'(PR"2) + AA8'(PR"3))
X3 ~ (TR"2)'(AA9 ,1,AA10'PR + AAI1*(PR"2) ,1,AA12'(PR"3))
X4 ~(TR"3)'(AA13" AAI4'PR + AA IS'(PR"2) ,I AAI6'(PR"3))
X~X1+X2+X3+X4

vIse - DEXP(X)*UM/rR

END

SUBROlTnNE lNTEGP(PRES,PSEULJOP)

lY1PUOT REAI,'S (A-H,M,o-Z)

COMMONiClNTlIZI ,Z2,N.ERT:1 PC 1,TPC2,PPCl ,PPC2,WJI,1,SG, YCOl, YH2S,
+ YN2,RASF

DlMENSIO}l 1'(100,100)

A •. BASE
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T(I,I) ~ (B - A)*(FNCP(A) + FNCP(B))/2 ODOO
T(l ,1) ~ T(l, I )12,ODOO" (D - A)'FNCP((A + B)/2,ODOO)i2,ODOO
T(2, I) ~ (4 ODOO*T(I,2) _T( l,l ))13 ODOO

DO WH ILE (DII f1S((T(J, 1) _T(J- \, 1))IT(J, 1)),GE,ERT)

DELX ~ (J3 - A)I(l.ODOO**(J-I»)
X~A-DELX
NJ ~ 2"(1-2)
SUM ~O,ODOO

DO1~I,NJ
X ~ X + l,ODOO*DELX
SUM ~ SlJ),1 + FNCP(X)

END DO

T(l,J) ~ T(\.J-l)/2.0DOO + DELX*SUM

DOL~2,J
K-J'I'I-L
T(L,K) ~ (T(L-1.KI l)*4,ODOO"(L-l) :1'(L_1 ,KJ)I(4 ODOO"(I,_I)

+ -1.0DOO)
END DO

END DO

PSFUDOP~T(J,l)

RETURN
END

C~~~~---------------- ---
FUl\'CTION fl\'CP(X)

IMPUCIT REAL*S (A-H,M,O-Z)

COMMONIC1:--.JT1IZ\ ,Z2,t',ERT,TPI: 1,TPI:2,PPl:l ,PPI:2,\VM,SG, YC02,Y112S,
+ Y1Q,IlASE
CO)"IMONI(]NT2ITEMPR,PRESSJl\'J

URI ~ TEMPR'TPCl
PPRI ~XIPPC\
CM.1, 7.FIIC\(Z 1,Z2,:--.J,FRT,1l'R I,PPR I,ZNEWI ,I}
VISU\ ~ Vl$CO(i2(X,TF.:\1PR,ZNEWl.\VM) , ~

FNCP ~ 2.0DOO*XI(ZNEWI'VISC,I)
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END
C=~~~~----~~~~~~~~~~~~~~~~~~-~~~~

SUBROUTINE GASGRA(G. WM,PSEUPC.PSEUTC,B)

IMPLICIT REAL"S (A.H,M,O.Z)

COMMON !FRAO X(12)
DIMENSION RMW( 12).PC( 12),TC(12)

DATA RMW /34.08DOO,44,O IIDOO,n,O 14DOO,16.043DOO,30,07D00,44.1 DOll,
+ 58.124DOO,58, 124000,72. I 5 I 000,72. I 5 I 000,86 178000, 128.020SDIlIl I

DATA PC,' 1306,0000, I070,6D00,493.IDOO,u6 7.8000, 707 .8DOO,616,3DOO,
+ 529. IDOO,550,7DOll,490.4DOO,488,6DOO,445, 7DOO,410,0000 /

DATA TC.' 67l.5DOO,547,6DOO,227 3D00,343 IDIlIl,549 WOO,605.7D00,
+ 734,7000, 765.3DOO.828,8DOO.845.5DOO.888.5DOO,958,3DOO I

G ~O,ODOO
TClvlA ~ O.ODOO
PCMA ~ O.ODOO
I'S),1W =<J.ODOO

DO 1-1,12
WM ~ ''''lvl + RMV,'(J)"X(I)
G ~ G + RMV,'(I)"X(l}'28.966DOO
rCMA = '1'CMA + TC(I)'X(I)
I'Q,1A ~ I'CMA + I'C(T)*X(T)

ENDlJO

A ~ X(l) -t X(2)
B ~ ]20 IlDOO*(A"O 9 _ A""] 6) + 15.0DOO*(X( I)~*O 5 _ X(] )"*4 0)

FSEU'IC =,],CMA - B
PSEUPC = PCMA *PSEUTO(TCMA + X(I)'O.ODOO" X(T))*B)

RETIJlTh
eND

SUBROUTINE INVI'SI'RES(I'SEUDO.PRES)
IMI'IJCIT RFAL"S ("_H,M,O_Z)

PARAMETER (N=I, NPARAM=50)
C SPEClflCATIO}lSfOR LOCALVARIABLFS

DIMENSION A(I,1), I'ARAM(NI'/lRAM). Y(K)
C SPECIFlCATlONS FOR SUBROUTINES

EXTERNAL DIVPAG, SSET
C SPECIFICATIONS fOR FUNCTIONS

EXTERNAL fCN, fCNJ
C InitIalize

,
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CALL SSET (NPARAM, 0 0, PARAM, I)
c

IDO~I
T ~ O.ODOO
Y(I)~ 14 7000
TOL =1.0D-06
TEND ~ PSEUDO

C lot.grate ODE
C 11,.army a(''') is not used.

CALL DIVPAG (IDO, N, fCN, fCNJ, A, T, TEND, 'I 01., I'ARAM, Y)
PRES ~ Y(I)
IDO~ 3
CALL DIVI'AG (!DO, N, FCN, FCNJ.A. T, TEND, TOL, PARAM. Y)

RETURN
~D
SUBROIJT1:--.lEFCN (N, X, Y, YPRlME)

C SPECIFICATIONS FOR ARGUMENTS
IMPLICIT REAL *8 (A-H.M,O-Z)
DlME:--.lSION Y(N), 'lPRlME(l\l

P~Y(J)
CALL CALPRES(P,Z,VS)
YI'RJME(I) ~ Z*VS.I(2,ODOO*P)

RETIJRN
FN[)

SUBROUTINE feNJ (N, X, Y, DYPDY)
C SPECII'lCA1IONS FOR ARGUMENTS

IMPLIOT REAL*8 (A-H,M,O-Z)
DIMENSION Y(N), DYPDY(N,*)

C ThissnblOu!;n.is nevercalled
RETIJRN
END
C~===~~~~~~~.~~~~.~~~_~======~~~

SUBROUTINE CALPRES(PR,ZNEW ,VSC)

lMPLIClT REAL'8 (A-ILM,O-Z)

COMMO:--liCINT liZ I ,7,2,N,ERT,TPCI ,TPC2,PPCl ,PPCl, WM,SG, yem ymS,
, YNl,BASE
COMMONICJl\'T1ITRMPR,PRESSINI

IPIU ~ 'lEMPRI'J'PCl
PPRI = PRlPPCI
CALL Zf ACl(ZI ,Zl,N,ERT,TPR 1,PPR i;ZNEW,I)
VSC = VISCOG2(PR,TEMPR,ZNEW,WM) -, .: I

RETURt"l



END
(:~~~==~~~~~~~~~~~~~~~~~

SUBROUTINE MDTOMW(MD,MW)

JMPI,JCIT REAL'S (A-ll,M,O-Z)

PARAMETER (SCIJ..!MP ~ 23S,71DOO,SCPRESS ~ 1,01325D05)

COMMONICrNT4Il'>fll\I,QST,TMPRI ,PI,n S,QD,HT

MW ~ MlNI • MD*QST'TMPRI *SCPRESSI(PJ*TTS'SCTEMP)

RETURN
END

C---~~ --------~----.•-~~~~~~~~~~~~~~~~~~~
SUBROU'I1NE lNVPSTlME(KCY,lM ".X.PSTIMA,PRTEMP,I'"I'lME;1'1'vl)

IMPLICIT REAL'g (A_H,M,O_Z)

COMMON/erN I'lIZl,Z2,N,ERT.TPC 1,TPC2,PPC1,PPC2, WM,SG,YC02,YH2S.
~ YN2,BASE

PARAMETER (ICYCLE~22)

,
DIM ENSION PS I'lMA(lMAX),PRTEMP(IMAX),T( 100)

KKC~1
225 IICYCLE ~ KKC*JCYCLE

IF(KCY,GT,JJCYCLb) mEN
KKC~KKC+l
(jOTO 225

END I!'

J~l
ERD ~ 1.00-05

C IF(KKC EQ 3) fllEN
N~]{H)

C E[~%
C N ~ 50'KKC
C ENDIF

250 A ~ O.ODOO
n ~PTJME

CALL FAND( A,IMAX,PS'[ IMA,PR'l bMP ,FA:-.JAj
CALL FAND(B,lMAX,PSI1MA,PRTEMP.F ANn)

DELX ~ (8_A)I(2 ODOO'N)

SliM ~FANA <.FANn



SUM] ~ 0 01)00

NI~2'N-1

X~A+!'DELX
CALL fAND(X,JMAX,PSTIM/I,PRTEMP,r ANX)
~UMI ~ SliMI + FANX

END DO

N2 •. 2'N-2

Sl;M2 ~ O,ODOO

DO T~2,N2,2

X~A +T'DELX
CAl .T,FAND(X,IMAX,PSTJMA,PRTEMP,F ANX)
SUM2 ~ SlJM2 ,1,FAI\X

END DO

'1'(J) ~ DELX'(SUM +'4.0DOO'SUMI + 2 ODOO'SlII\T2)-'3 ODOO

Jf(J.EQ,1) THEN
l~J+J
N~N+50
GOTO 250

ELSE TF(DA8$((T(J). T(J- J)).'1'(1-T)) GT ERD) TTlFN
J~JI-1
N~N+ 50
G(n02S0

END If

REThR.'\l
END
$lIRROUTINE FANO(X,IMAX,PST1MA'pRTEMP,F ANS)

IMPLICIT RbAL'8 (A_H,M,O_Z)

PARAMETER (PSIP A"6,894757D03,CPP AS"l.OD-OJ)

DlMENSION PSTIMA(IM/lX),PRIEMP(lM/lX) ,

CALL e/l LllM(X,IM/lX ,PS'IIMA,PRTFMP/;C J',VSC)



FAN~ ~ (GCTiPSIPA)'(VSC'CPPAS)

END
0='=--- ~~~~-~~~.~~=~--------

SLTUROUIINE CALTlM(X,IMAX,pSTIMA,PRTEMP ,G("T,VSC)

IMPUCIT REAI,'S (A_H.M.O_:C)
PARAMETER (PSII' A~ 894757D03,CI'P AS-l ,OD-D3,PSCPR -(PSII' A ,. 2)/CI'P AS),
DIMENSION PSTIMA(IMAX),pRTFMI'(lMAX)

COYlMONiCINTI /21 ,Z2,N,ER'1 ,TI'CI,TI'C2.PPCl.PPC2,WM,SG,YC02, YlJ2S,
+ YN2,BASE
COMMONiClN'I2'I'1,MpR,I'RESSINI

1l'R 1 ~ TFMPRfTl'C I
CALL INTRl'OL{X,JMAX,PSTIMA.PR TEMP,PW}
PPRl ~ PW/PPCI
CALL ZFAC!(ZI ,Z1,N,ERT,TPRI ,PI'R I ,I.NEIV,I)
VSC ~ V1SC0G2(PW,TEMPR,ZNEIV, WM}
CALL CR(ZNEW,TPR IYPR I,CRT)
G(:1' ~ CRT/PPCI

RJiTIiRN
E}'!!)(:~~~~~~~~~~~~~--~~~~~~--~~~~~~~
SlJBROliTINE llIRIlINT(JI~RINV,PERME,I'llIT,IlET A,Itl\'l)

IMPLICIT REAL'S (A.H,M,O_Z)

PARAMETER (PSII'A~6894757D03,CI'P AS~I.OTJ-03,PSCI'R~(PSII' A "Zjlepp AS)
PARAMETER (MDMTS"'9,S6923D.!6, CONNT~I 564D-IS)
PARAME rER (CONBFT AI~4.8511D04, CONBETA2=2.6DI0)
I'ARAME rER(LF~2,LF I~LF+ I ,LF2~LF+ 2)

COMMON'/CINTliZl ,Z2,N,ERT;l PCI,l PC2,PPC I,pPC2,WM,SG, YC02.Yl-I2S,
.• YN2,RASE
COMMON/CINT2n'EMPR,I'RESSll\!
COMM()N/CINT4iMINI,QST,TMI'RI,PI,TIS,QD,IIT
COMMONiCII\T5iIBET A,RW
COMMONiC1N6/ PERM{LF 1,LF},ROR(I.F2),I'HlR(LF l,LF)

-
TI'R ~ TEMPRlTPCI
PPR ~ PIlliSS1NlIPpCl

CA1.I. ZF AC I(:Cl.n,N, FRT,TPR,PPR,ZNEW.I)
VSC ~ VISCO(Jl{PRFSSINI,TEMPR,ZNf,W,WM)



1973 IF(RTNV.(iE.RDR(I) ANlJ.RINV.LT,RDR(I' 1)) THEN
JM~I
SUM),1A ~ O,ODO
SUII-1M:AI~O,ODO
DOJ~I,TM
II'(J.NEJM) THEN
SUMMA ~ SUMMA + (DLOG(RDR(J I 1)iRDR(J)))/PERM(J,ll.)
SUMMAI - SUJI,1:vJAI+ PHJR(J.JL)*(RDR(J+ I) _RDR(I))

ELSE
SUMMA ~ SUMMII + ([)LOG(R ICJV/R[)R(J)))/PhRM(J)L)
SUMMA I ~ SUMMIII + PHlR(J,lL)*(RINV _ RDR(J)l
END IF

END DO
ELSE

T~I+I
omo 1973

END IF

PElU>fE ~ DLOG(RJNVIRDR( I ))/SUMMII
, pmT~SUMMIII/(RTNV_RDR(I)),

VA ~ PERMr;"2
VB .TE:0PR'VSC'RW

IF(lIlETA.EQ.I) THE;>.I
RFT II ~ CONBETA 1I(DSQII:1'(PERlYIE)'(PIUP*S,5))

ELSE
BRIA ~ CONIlETA2/(VERME*'1 2)

FND1F

RNT ~ CONNT*V A' BETA 'SG'MINI/(VIl'PSCPR)

RETURK
END

C~~~~~~~~~~~~~~~~~~~~~~~~~~=-~
SUBROljTINE mRCHN(JL,QI',RINY,PERME,PlJIT,IlETA,RNT,FNO)

IMPLICIT REAL *8 (A-Il,M,O-Z)

COM MO~ICINT4IMINI,QST,TMPRI ,PI,TTS,QD,HT

CIILL T\JRBINT(JL.RlNV ,PERME,rnrl ,BETA,M'T]

FKO ~ QD'RNf'QF

RE'\'URN
EN[)

C -~- ~~~~~~=~~~-~~~=----,
SUBROU TINE (ORTURR(JL,QF,l'RFSS,RTNV,PFRMF,PHlT,BET II,FNO,RNTCEE I)

IMPLICIT REM,*S (II_H,M,O_Z)
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COMMONIClNTSIIBn A,RW

CALL FORCHN(JL,QF,RlNV ,PERME,PHIT,BET A,RNT,H,'Q)

IF(FNO,GT.O,ODOO ANO.FNO,LT.O, IDOQ)THEN'

CHI ~ 1 0000

ELSE IF(FNO.GE.O, !DOO,ANn, F:"O.LE 1.0000) TIIEN

CIILI. VSCRATlO(PRESS,FMU)
CEEI ~ (I 0000 _RWiRINV)'FMU

ELSE IF(FNO.GT.1.0DOO) TIfEN

CALL VSCRA TIO(PRESS,fMU)
CEEI ~ (I.ODOI) _RWiRTh'V)'FMUI(Fl\O"O 023000)

END IF

RETURN
eNDc---.-------------------- ~~~~~~------~~==-
SllBROUTINE VSCRA TIO(PRESS,fMU)

IMPUGlT REAL'~ (A.H,M,O-Z)

COM~IONICINTlIZI,Zl,N.ERI',T!'Cl 'IT'U PPCI Pl'Cl,WM,SG.YC02,YH2S,
+ YN2,BASE
COMMONIClN12rl'EMPR,PRESSTNI

TPR ~ TEMPR/TPCl
PPRU ~ PRESSrNlIPI'CI
PPRI ~ PREss/prCl
CALL Zl' ACI(ZI.Z2,N,ERT,TPR,PPRO,ZNEWO,I)
CALL Zl' ACI (ZI,Zl,N,ER 1',rPR'pPIU ,ZNEWI,I)

VSCO ~ VISCOG2(PRESSINI:I EMPR,ZNEWO,WM)
VSCI ~ VISCOG2(PRliSS.TEMPR,ZNEWl,WI\;I)

FMU ~ VSOJNSCl

RETURN
END

I'UNCTION RADI'NV(10)

IMPLICIT REAL' ~ (A -II.M,O-Z)

COMMON/UN l'SmlET A,RW

13~



RADINV ~ 1.5DOO'RW'DSQRT(ID)

FND

StIDROUTINF NDARCY1J(JL,IUNV ,1JMU)

IMPLICIT REAL' 8 (A-H,M,O-Z)

PARAMETER (PSIP A -6,894757D03 ,CPPAS~ I ,on-03,PSCPR~(PSIP A"2)/CPP AS)
PARAME'lloR (COI'DMU ~ 2.224D-12, MDMTS ~ 9.86923D-16)
PARAME"lER {FTJI,1~ O,3048DOO,lCYCLE~22, CONRFTA 1=l.R511 [)()4)
PARAMETER(LF~2,LF l-LF+ l,LF2~LF+ 2,COl\RET A2~2 6D IIl}

COMMON/Cll'. ,5I1RET A.RW
COMMON/CINTI/LI,Z2,N,EII.T.Tl'C 1,Tl'C2,PPCl ,PPC2, W~I,SG,YC02,YH2S>
+ YN2,BASE
COMMONICTNT2!TEMPR'pRESSlNI
COMMONIC1NT4II,UN1,QST,TMPR1,PI,TTS,QD,HT
COMMON/eTN61 PFRM(I ,FI ,LF),RDR(LF2},PHlR(LFI ,LF)

PPR I ~ I'RESmNlIPPCl
TPRI ~'IEMPH!lPCl

CALL ZFACl(Zl ,Z2,N,ERT,TPRI ,PPRI ,ZNEWl,l)
VSCl ~ V1SC0G2{PRESSIN1,TEMPR,ZNEW J .WM)

1997 IF(R IN\'.GF.RDR(I).AND.RINV.L r RDR(1+ I)} 1HEl'.'
1M~l
SUYIMA ~ 1l.0DOO
SUMMAl ~ O.ODOO
SUMMA2 ~ O.onoo
nOJ~I,lM
IF{J NE 1M}THEN

I:F(IBETA,EQ, l) TIlEN
VPR ~ DSQRT(PERM{J,JI.))'CO;.lIlET A l/(PH IR(J,JL)" 5 5)
ELSF
VPR ~ CONBETA21(PERM{J,JL)"() 2}
END IF

SlJ"MMA ~ SUMMA + VI'R'( I IlD()()IRDR(J) • 1.()[)()()IRDR(J+ I)}

ELSE

I:F(WETA,EQ,l) TIlEN
VPR ~ nSQRT(PERM{J .JL))'COl\IlETA l/(PIIJR(J,JL)" 5.5)
ELSE
VI'R ~ CmmE'lA2J(PER.\1(J,Jl)"O,2)
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Ei'ID IF

SIDvU\1A- SUMMA + YPR '(1.0DOOIRDR(J) _ 1.O[)OO/RINY)

END 11'
END DO

ELSE
1-1+1
GOTO 1997

END IF

YB ~ COl\'DMlJ'SGI(HTIFI M}

DMU ~ SUMMA'VBNsel

RETURN
>NOC~~~-~~~~---~~~~'-'----~--~--=~~~=-----
SlIBROUTThlJ PSEUDRI'R(X,QT}

IMPLICIT REAL'8 (A.H)'{,O-Z),
PARAMETER (IMAXPRESS ~ lOOOO,lPRLEN -IMAXPRE.'>S/50 + 1)

COMMONiPRPS/PSEUDOPR(IPRLEN},REAl J'R(II'RI,EN)

LOGlCAL CHECK
EXTERNAL DQDYAL

CHECK - .TRUE.

QT - DQDV AL(X,IPRLEN,I'SFUDOI'R,REALPR,ClllXK)

RE11JRK
E~

C--- -==-- ~=~~~~~~
SlJBROU I'lNE INTRPOL(X,IMAX,PSTlMA.PRIEMP ,on

IMPLICITRFAL'~ (A.H)4,O-Z)

DIMENSION 1'5 rlMA(IMAX),PRTEMP{JMAX)

LOGICAL CHECK
EXTERNAL DQD\' AI.

CHECK - .TRUE.

QI ~ DODV AL(X,IMAX,PSTIMA,PRTEMP,CHECK}

RETURN
END
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