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A plane graph is a planar graph with a fixed planar embedding. In this paper we define

a special spanning tree of a plane graph which we call a good spanning tree. Not every

plane graph has a good spanning tree. We show that every connected planar graph has a

planar embedding with a good spanning tree. Using a good spanning tree, we show that

every connected planar graph G of n vertices has a straight-line monotone grid drawing

on an O (n) × O (n2) grid, and such a drawing can be found in O (n) time. Our results solve

two open problems on monotone drawings of planar graphs posed by Angelini et al. Using

good spanning trees, we also give simple linear-time algorithms for finding a 2-visibility

representation of a connected planar graph G of n vertices on a (2n − 1) × (2n − 1) grid

and for finding a spike-VPG representation of G on a (2n − 1) × n grid.

 2015 Published by Elsevier B.V.

1. Introduction

The field of graph drawing has been flourishing very much in the last two decades. Recent progress in computational

geometry, topological graph theory, and order theory has considerably affected the evolution of this field, and has widened

the range of issues being investigated. Drawing of planar graphs with various constraints imposed by application has been

studied in recent years. Many algorithmic tools such as canonical ordering [1], regular edge labeling [2], Schnyder real-

izer [3], orderly spanning trees [4,5] have been developed to solve various types of graph drawing problems. In this paper

we introduce a special spanning tree in a plane graph which we call a good spanning tree. A good spanning tree is an or-

dered rooted spanning tree of a plane graph where the tree edges and the non-tree edges incident to a vertex obey some

properties. Fig. 1 illustrates a good spanning tree T where the tree edges are drawn as thick lines. Observe the ordering of

the tree edges and non-tree edges incident to vertex v in T where the two sets of consecutive non-tree edges are separated

by a set of consecutive tree edges and the tree edge (v,u). Also no non-tree edge incident to v has the other end on the

path from r to v in T . A good spanning tree of a plane graph can be considered as a generalization of a Schnyder realizer

of a triangulated plane graph. We give a formal definition of a good spanning tree in Section 2. Not every plane graph has

a good spanning tree: for example, the plane graphs in Fig. 2 do not have good spanning trees. However, we show that

every planar graph has a planar embedding with a good spanning tree. Furthermore, we show that a good spanning tree

has useful applications in the field of graph drawing, namely, in monotone drawings, in 2-visibility representations and in

VPG representations. We next discuss each of the representations briefly and present our result for each case.

* Corresponding author.

E-mail addresses: mdiqbalhossain@cse.buet.ac.bd (M.I. Hossain), saidurrahman@cse.buet.ac.bd (M.S. Rahman).
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Fig. 1. Example of a good spanning tree T .

Fig. 2. Some examples of plane graphs that have no good spanning trees: (a) a connected plane graph, (b) a biconnected plane graph and (c) a plane graph

with many vertices that has no good spanning tree.

Fig. 3. The path between vertices s and t (as shown as a thick line) is monotone with respect to the direction d.

1.1. Monotone drawings

A straight-line drawing of a planar graph G is a drawing of G in which each vertex is drawn as a point and each edge

is drawn as a straight-line segment without any edge crossing. A path P in a straight-line drawing of a planar graph is

monotone if there exists a line l such that the orthogonal projections of the vertices of P on l appear along l in the order

induced by P . A straight-line drawing Ŵ of a planar graph G is a monotone drawing of G if Ŵ contains at least one monotone

path between every pair of vertices [6–8]. In the drawing of a graph in Fig. 3, the path between the vertices s and t drawn

as a thick line is a monotone path with respect to the direction d, whereas no monotone path exists with respect to any

direction between the vertices s′ and t′ . We call a monotone drawing of a planar graph a monotone grid drawing if every

vertex is drawn on a grid point.

Monotone drawings of graphs are well motivated by human subject experiments by Huang et al. [9], who showed that

the “geodesic tendency” (paths following a given direction) is important in comprehending the underlying graph. Upward

drawings [10–13] are related to monotone drawings where every directed path is monotone with respect to the vertical line,

while in a monotone drawing each monotone path, in general, is allowed to be monotone with respect to a different line.
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Fig. 4. (a) A planar graph G and (b) a 2-visibility representation of G .

Arkin et al. [14] showed that any strictly convex drawing1 of a planar graph is monotone and they gave an O (n logn) time

algorithm for finding such a path between a pair of vertices in a strictly convex drawing of a planar graph of n vertices.

Angelini et al. [6] showed that every biconnected planar graph of n vertices has a monotone drawing in real coordinate

space. They also showed that every tree of n vertices admits a monotone grid drawing on a grid of size O (n) × O (n2), and

posed an open problem “Is it possible to construct monotone grid drawings of biconnected planar graphs in polynomial

area?” Addressing the problem, Hossain and Rahman [7] showed that every series-parallel graph of n vertices admits a

monotone grid drawing on an O (n)× O (n2) grid, and such a drawing can be found in O (n logn) time. However, the problem

mentioned above remains open.

It is known that not every plane graph (with a fixed embedding) admits a monotone drawing [6]. However, every out-

erplane graph of n vertices admits a monotone grid drawing on a grid of area O (n) × O (n2) [8]. Angelini et al. showed

that every connected plane graph admits a “polyline” monotone grid drawing on an O (n) × O (n2) grid using at most two

bends per edge [8], and posed an open problem “Given a planar graph G and an integer k ∈ {0,1}, what is the complex-

ity of deciding whether there exists a planar embedding Gφ such that Gφ admits a monotone drawing with the curve

complexity k?”

We show that every connected planar graph of n vertices has a monotone grid drawing on an O (n) × O (n2) grid, and

such a drawing can be computed in O (n) time. We thus solve the pair of open problems mentioned above by showing that

every planar graph has a planar embedding Gφ such that Gφ admits a monotone grid drawing with curve complexity 0 on

an O (n) × O (n2) grid, and such a planar embedding and also a monotone drawing can be found in linear time.

1.2. 2-Visibility representations

A visibility representation or a 1-visibility representation (VR for short) of a planar graph G is a planar drawing of G on a

two-dimensional grid such that the vertices of G are represented by non-overlapping horizontal line segments (called vertex

segments) and each edge of G is represented by a vertical line segment touching the vertex segments of its end vertices (see

Fig. 4). The problem of computing a compact VR has practical applications in VLSI layout [15,16]. Several research works

have been done on 1-visibility representations [17–20].

A 2-visibility representation (2-VR) of a planar graph G is a planar drawing of G on a two dimensional grid such that each

vertex is drawn as a rectangle (rather than a small point) and each edge is drawn as either a horizontal or a vertical line

segment that lies on a grid line. A 2-visibility representation is a straightforward generalization of a 1-visibility represen-

tation where both vertical and horizontal edges are allowed. The drawing model of a 2-visibility representation is directly

associated with VLSI layout diagrams, database schema diagrams and entity-relationship diagrams. A very similar drawing

is found in literature that is called a box-rectangular drawing where each vertex is drawn as a rectangle, called a box, each

edge is drawn as either a horizontal line segment or a vertical line segment, and the contour of each face is drawn as a

rectangle. Not every planar graph admits a box-rectangular drawing [21–23].

Every tree admits a 2-visibility representation [24]. Fößmeier and Kaufmann showed that every planar graph has a

2-visibility representation using rectangles of equal width with at most two bends per edge [25]. Later Fößmeier et al.

improved the result and they showed that every planar graph has a 2-visibility drawing with at most 1 bend per edge [26].

In this paper using a good spanning tree we give a simple linear-time algorithm to find a 2-visibility representation of a

planar graph on a grid of size (2n − 1) × (2n − 1), where each edge is drawn as a straight-line segment of length at least

one unit.

1 A strictly convex drawing of a planar graph is a straight-line drawing in which all faces, including the outer face, are strictly convex polygons.
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Fig. 5. (a) A planar graph G , (b) a B1-VPG representation of G and (c) a spike-VPG representation of G .

1.3. VPG representations

Let P be a set of simple paths. The vertex intersection graph VPG(P ) of P has the vertex set V , where every vertex v ∈ V

corresponds to a path P v ∈ P , and the edge set E , where an edge (u, v) ∈ E if and only if the corresponding paths Pu

and P v intersect, i.e., E = {(u, v)|u, v ∈ V ,u 6= v, Pu ∩ P v 6= ∅}. We call a graph G a VPG graph if G = VPG(P), for some P .

If P is a set of simple paths on a grid, where each path has at most k bends, then the graph G is called a Bk-VPG. Fig. 5(b)

illustrates a B1-VPG representation of the planar graph in Fig. 5(a).

Interval graphs, trees, bipartite graphs are B0-VPG graphs [27]. Every circle graph is a B1-VPG. Asinowski et al. [28]

showed that all planar graphs are B3-VPGs [28]. Recently, Chaplick and Ueckerdt [29] improved the result of Asinowski et

al. and showed that a B2-VPG of a planar graph can be constructed by using two types of paths (Z -shape and C-shape) in

O (n3/2) time, where n is the number of vertices. For both the B3-VPG and B2-VPG cases the drawing sizes are not known.

In this paper we consider a variation of a B2-VPG representation, where each path is a spike shaped curve. A spike

shaped curve consists of three straight-line segments, two of them lie on grid lines, as illustrated in Fig. 5(c). Since each

path has two bends but one line segment of a spike shaped curve does not lie on a grid line, we call this representation a

spike-VPG representation. A spike-VPG can be considered as a weak B2-VPG representation of a graph. Fig. 5(c) illustrates a

spike-VPG representation of the planar graph in Fig. 5(a). In this paper we show that every planar graph has a spike-VPG

representation on a (2n − 1) × n grid and such a representation can be found in O (n) time.

The rest of the paper is organized as follows. In Section 2, we define a good spanning tree and give an algorithm to

compute a planar embedding of a planar graph having a good spanning tree. As applications of a good spanning tree we

deal with monotone drawings, 2-visibility representations and VPG representations in Sections 3, 4 and 5, respectively.

Finally, Section 6 concludes the paper with discussions. An early version containing some results on monotone drawings has

been presented as [30].

2. Good spanning trees

In this section we give some graph theoretic terminologies, define a good spanning tree of a plane graph and show

that every planar graph has a planar embedding containing a good spanning tree. For the graph theoretic terminologies not

defined in this paper, we refer to [12].

Let G = (V , E) be a graph with vertex set V and edge set E such that |V | = n and |E| =m. The degree of a vertex v in G

is denoted by d(v). We denote an edge joining vertices u and v of G by (u, v). A subgraph of G is a graph G ′ = (V ′, E ′) such

that V ′ ⊆ V and E ′ ⊆ E . Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. The union of G1 and G2 , denoted by G1 ∪ G2 ,

is the graph G3 = (V3, E3) such that V3 = V1 ∪ V2 and E3 = E1 ∪ E2 . If v is a vertex in G , then G − v is the subgraph of G

obtained by deleting the vertex v and all the edges incident to v . Similarly, if e is an edge of G , then G − e is a subgraph

of G obtained by deleting the edge e. A vertex v of a connected graph G is a cut vertex of G if G − v is disconnected.

Let G = (V , E) be a connected graph and T = (V , E ′) be a spanning tree of G . An edge e ∈ E is called a tree edge of G

for T if e ∈ E ′ otherwise e is said to be a non-tree edge of G for T . Let e be a non-tree edge of G for T . Then by T ∪ e we

denote the subgraph G ′ of G obtained by adding edge e to T . The graph G ′ = T ∪ e has exactly one cycle C and we call C

the cycle induced by the non-tree edge e. If X is a set of edges of G and T is a spanning tree of G then T ∪ X denotes the

graph obtained by adding the edges in X to T and removing multiple edges. Let T be a rooted tree and let u be a vertex

of T . Then by Tu we denote the subtree of T rooted at u. By T − Tu we denote the tree obtained from T by deleting the

subtree Tu .

A graph is planar if it can be embedded in the plane without edge intersections except at endpoints. A plane graph

is a planar graph with a fixed planar embedding. A plane graph divides the plane into some connected regions called

faces. The unbounded region is called the outer face and each of the other faces is called an inner face. Let G be a plane

graph. The contour of the outer face of G is called the outer boundary of G . For the plane graph in Fig. 6, the contour

a,b, c, e, f ,k, j, i,h, f , g, f , e,a is the outer boundary. We call a vertex v of G an outer vertex of G if v is on the outer

boundary of G , otherwise v is an inner vertex of G . We call a simple cycle induced by the outer boundary of G an outer cycle

of G . Note that if G is not biconnected, G may have more than one outer cycles. The plane graph in Fig. 6 has two outer
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Fig. 6. Two outer cycles in the graph are shown as dark edges.

Fig. 7. (a) An illustration for P (r, v), L and R groups, (b) an illustration for Xv , Y v and Zv sets of edges.

cycles C1 = a,b, c, e,a and C2 = f ,k, j, i,h, f . For a cycle C in a plane graph G , we denote by G(C) the plane subgraph of G

inside C (including C ). Let T be a rooted tree. We call T an ordered rooted tree if the children of each vertex v in T are

ordered in a fixed ordering, say, in a counterclockwise ordering around v .

Let G be a connected planar graph and let Gφ be a planar embedding of G . Let T be an ordered rooted spanning tree

of Gφ such that the root r of T is an outer vertex of Gφ , and the ordering of the children of each vertex v in T is consistent

with the ordering of the neighbors of v in Gφ . Let P (r, v) = u1(= r),u2, . . . ,uk(= v) be the path in T from the root r to a

vertex v 6= r. The path P (r, v) divides the children of ui (1 ≤ i < k), except ui+1 , into two groups; the left group L and the

right group R . A child x of ui is in the group L and denoted by uL
i
if the edge (ui, x) appears before the edge (ui,ui+1) in

clockwise ordering of the edges incident to ui when the ordering is started from the edge (ui,ui−1), as illustrated in the

Fig. 7(a). Similarly, a child x of ui is in the group R and denoted by uR
i
if the edge (ui, x) appears after the edge (ui,ui+1) in

clockwise order of the edges incident to ui when the ordering is started from the edge (ui,ui−1). We call T a good spanning

tree of Gφ if every vertex v (v 6= r) of G satisfies the following two conditions with respect to P (r, v).

(Cond1) G does not have a non-tree edge (v,ui), i < k; and

(Cond2) the edges of G incident to the vertex v excluding (uk−1, v) can be partitioned into three disjoint (possibly empty)

sets Xv , Y v and Z v satisfying the following conditions (a)–(c) (see Fig. 7(b)):

(a) Each of Xv and Z v is a set of consecutive non-tree edges and Y v is a set of consecutive tree edges.

(b) Edges of set Xv , Y v and Z v appear clockwise in this order from the edge (uk−1, v).

(c) For each edge (v, v ′) ∈ Xv , v
′ is contained in TuL

i
, i < k, and for each edge (v, v ′) ∈ Z v , v

′ is contained in TuR
i
,

i < k.

Fig. 1 illustrates a good spanning tree T in a plane graph. In the rest of the section we prove that every connected planar

graph G has a planar embedding Gφ such that Gφ contains a good spanning tree T , as in the following theorem.

Theorem 1. Let G be a connected planar graph of n vertices. Then G has a planar embedding Gφ that contains a good spanning tree.

Furthermore, Gφ and a good spanning tree T of Gφ can be found in O (n) time.

To prove Theorem 1, we need a few definitions. Let v be a cut-vertex in a connected graph G . We call a subgraph H

of G a v-component of G if H consists of a maximal connected subgraph H ′ of G − v and all edges joining v to the vertices

of H ′ . A pair {u, v} of vertices in G is a split pair if there exist two subgraphs G1 = (V1, E1) and G2 = (V2, E2) satisfying the

following two conditions: 1. V = V1 ∪ V2, V1 ∩ V2 = {u, v}; and 2. E = E1 ∪ E2, E1 ∩ E2 = ∅, |E1| ≥ 1, |E2| ≥ 1. Thus every

pair of adjacent vertices is a split pair. A {u, v}-split component of a split pair {u, v} in G is a maximal connected subgraph H

of G such that {u, v} is not a split pair of H .
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Fig. 8. Illustration for an outline of construction of a good spanning tree T . White vertices are visited vertices. Black vertices are not visited. Solid edges are

tree edges. Dashed edges are non-tree edges. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)

We give a constructive proof of Theorem 1. Before giving our formal proof we give an outline of our construction using

an illustrative example in Fig. 8. We take an arbitrary planar embedding Gγ of G and start a breath-first-search (BFS) from

an arbitrary outer vertex r of Gγ and regard r as the root of our desired spanning tree. In Fig. 8(a) the BFS is started from

vertex a, and vertex b, c and d are visited from a in this order, as illustrated in Fig. 8(b). We next visit e from b, as illustrated

in Fig. 8(c). When we visit a new vertex u, we check whether there is an edge (u, v) such that v is already visited and there

is a (u, v)-split component or a u-component or a v-component inside the cycle induced by the edge (u, v) which does not

contain the root r. The {e,d}-split component H1 induced by the vertices {d,h, i, j, e} is such a split component in Fig. 8(c)

and the subgraph H2 induced by vertices d,m,n is such a u-component for u = d which are inside the cycle induced by

the edge (e,d). We move the subgraphs H1 and H2 out of the cycle induced by the non-tree edge (e,d), as illustrated in

Fig. 8(d). Since (b, e) is a tree edge and (e,d) is a non-tree edge, according to the definition of a good spanning tree, the

edges (e, f ) and (e,k) must be non-tree edges. Similarly, since (a,d) is a tree edge and (e,d) a non-tree edge, the edge (d, l)

must be a non-tree edge. We mark (e, f ), (e,k) and (d, l) as non-tree edges as shown in the Fig. 8(e). We then visit vertices

f , l,m,n, g,h and j, as illustrated in Fig. 8(f). When we visit k, we find a k-component H induced by vertices {k, p,o} and

we move H out of the cycle induced by (e,k) as shown in Fig. 8(g). The BFS continues visit the remaining vertices i,k, p

and o. At the end of the BFS, we find a planar embedding Gφ of G and a good spanning tree T as illustrated in Fig. 8(h),

where the edges of the good spanning tree T are drawn as solid lines, and non-tree edges are drawn as dashed lines.

We now formally prove Theorem 1.

Proof of Theorem 1. Let Gγ be any arbitrary planar embedding of G . We first mark an arbitrary outer vertex r of Gγ visited,

and start counterclockwise BFS from r. The vertex r will be the root of the BFS tree T .

Note that after visiting each vertex by BFS, the embedding of G may be changed by our algorithm. Let G i
γ be the planar

embedding of G after visiting the ith vertex by BFS. Then G1
γ = Gγ since we do not change the embedding after visiting r.

Let T i be the BFS tree after visiting the ith vertex. Then T 1 contains the single vertex r. In the counterclockwise BFS, we

first visit a neighbor s of r such that s is an outer vertex of Gγ and if s is on an outer cycle C of Gγ then s is the neighbor

of r which is next to r in the counterclockwise ordering of the vertices on C . We call the edge (r, s) the BFS-Start edge.

We now assume that vertices w1(= r), w2, . . . , w j−1 ( j − 1 < n) are visited by BFS and we are visiting w j from w ′ , that

is, w ′ is the parent of w j in T j . We mark w j as visited and mark (w ′, w j) as a tree edge. If there is no edge e = (w j,q)

such that q ∈ V (T j−1) and q 6= w ′ , then we proceed for the next vertex w j+1 . Otherwise, an edge e = (w j,q) exists such

that q ∈ V (T j−1) and q 6= w ′ . In such a case we mark e as a non-tree edge, and change the embedding of G
j−1
γ to get G

j
γ ,

if necessary, as follows.

We set u = w j and v = q if q comes earlier in the counterclockwise postorder traversal of T j started from the BFS-Start

edge; otherwise, we set u = q and v = w j . Let C be the cycle induced by the non-tree edge e = (u, v). We check whether

there is a (u, v)-split component or a u-component or a v-component in G
j−1
γ (C). If there is a (u, v)-split component or a

u-component or a v-component H in G
j−1
γ (C) such that r /∈ V (H), we move all such components out of the cycle C and

obtain the embedding G
j
γ . In Fig. 9(a) I1, . . . , Ik are (u, v)-split components, J1, . . . , J l are u-components and K1, . . . , Km

are v-components, those are moved out of C in Fig. 9(b).
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Fig. 9. Illustration for (u, v)-split components, u-components and v-components.

Fig. 10. Marking non-tree edges from u and v .

One can observe that unvisited vertices inside cycle C can be accessed from a visited vertex other than u and v in a

later BFS step. We thus mark some edges incident to u and v as non-tree edges for maintaining the properties of a good

spanning tree for T j , as follows. Let u′ and v ′ be the parent of u and v in T j , respectively. Let Eu = {e1, e2, . . . , ek} be the

set of edges which are incident to the vertex u, and between the edges (u,u′) and (u, v) in counterclockwise order starting

from the edge (u,u′) in G
j
γ , as shown in Fig. 10. We mark the edges in Eu as non-tree edges. Note that the edge-set

Eu ∪ {(u, v)} will be the set Zu with respect to the vertex u in the final good spanning tree. Let E v = {e1, e2, . . . , el} be the

edges which are incident to the vertex v between the edges (v, v ′) and (v, w) in clockwise order started from the edge

(v, v ′) in G
j
γ as shown in Fig. 10. We also mark the edges in E v as non-tree edges. The edge set E v ∪ {(v,u)} will be the

set Xv with respect to the vertex v in the final spanning tree.

Finally we get Gn
γ and T n after visiting the nth vertex of G . We now show that T n is a good spanning tree in Gn

γ .

Clearly T n is a spanning tree in Gn
γ , since T n consists of tree edges identified by BFS in the connected graph Gn

γ .

We now show that the embedded tree T n is a good spanning tree in the embedded graph Gn
γ . We first show that each

vertex v of T n satisfies the condition (Cond1) in the definition of a good spanning tree. The tree edges are marked in BFS

steps. For any edge e = (u, v), if u lies on the path P (r, v) in T n then u is the parent of v . In this case e must be a tree

edge. Similarly, v does not lie on the path P (r,u) in T n when e = (u, v) is a non-tree edge. Hence, (Cond1) holds.

We next show that T n satisfies the condition (Cond2). Consider the situation when we have dealt with the edge (u, v)

while constructing G
j
γ and T j . For the non-tree edge (u, v), the non-tree edges in Zu are consecutive non-tree edges with

respect to u in Gn
γ . Let Z be the set of vertices that contain other end vertices of the edges in Zu edges. Clearly each vertex

in Z must be inside the cycle induced by (u, v) in T n . One can easily observe that if we traverse T n as counterclockwise

postorder traversal starting form the BFS-Start edge, the vertex u will be visited after visiting all vertices in Z . Thus each

vertex in Z is contained in TuR
i
where ui is a vertex that lies on the path P (r,u) and u 6= ui in T n . Similarly for the vertex v ,

it can be shown that the other end vertices of the edges in Xv are contained in TuL
i
. Thus one can easily observe that all

edges incident to a vertex v in T n can be partitioned into three consecutive edge sets Xv , Y v and Z v . Hence, (Cond2) holds.

Hence T n is a good spanning tree T in Gφ = Gn
γ .

We now prove the time complexity of finding Gφ and T . A v-component is introduced by a cut vertex. All cut vertices in

a graph of n vertices and m edges can be found in O (n+m) time using DFS. v-Components and {u, v}-split components can

also be found in linear time [31]. We maintain a data structure to store each cut vertex or every pair of vertices with split

components. We then use this record in the intermediate steps for finding Gφ . Let us assume we are traversing the non-tree

edge (u, v) in an intermediate step j of our algorithm. We can check whether any u-components, v-components and

{u, v}-split components of G exist in G j(C) by checking each edges incident to u and v . This checking takes O (d(u) + d(v))

time. Throughout the algorithm it needs O (m) time. For moving a component outside of cycle C we need to change at most

four pointers in the adjacency list of u and v , which takes O (1) time. Hence the required time is O (m). Since G is a planar

graph, Gφ and its good spanning tree T can be found in O (n) time. ✷
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Fig. 11. A slope-disjoint drawing of a tree.

Let G be a 3-connected plane graph. Then G has neither a cut vertex nor a {u, v}-split component, and hence to find

a good spanning tree from a 3-connected plane graph we do not need to change the embedding. Therefore, the following

corollary holds.

Corollary 1. Let G be a 3-connected plane graph. Then G contains a good spanning tree.

3. Monotone grid drawings

In this section we show that every connected planar graph of n vertices has a monotone grid drawing on an O (n)×O (n2)

grid. In Section 3.1 we give some definitions and some known results on monotone drawings. We give our algorithm for

finding a monotone drawing of a planar graph in Section 3.2.

3.1. Monotone drawings preliminaries

Let p be a point in the plane and l be a half-line with an end at p. The slope of l, denoted by slope(l), is the tangent

of the angle spanned by a counterclockwise rotation that brings a horizontal half-line started at p and directed towards

increasing x-coordinates to coincide with l. Let Ŵ be a straight-line drawing of a graph G and let (u, v) be an edge of G . We

denote the direction of a half-line which starts at u and goes through v by d(u, v). The direction of a drawing of an edge e

is denoted by d(e) and the slope of the drawing of e is denoted by slope(e).

Let T be a tree rooted at a vertex r. A slope-disjoint drawing of T satisfies the following conditions [6] (see Fig. 11):

• for every vertex u ∈ T , there exist two angles α1(u) and α2(u), with 0 < α1(u) < α2(u) < π , such that α1(u) <

slope(e) < α2(u) for every edge e that is either in Tu or that connects u with its parent;

• for every two vertices u, v ∈ T where v is a child of u, it holds that α1(u) < α1(v) < α2(v) < α2(u); and

• for every two vertices v1 , v2 with the same parent, it holds that either α1(v1) < α2(v1) < α1(v2) < α2(v2) or α1(v2) <

α2(v2) < α1(v1) < α2(v1).

Let G be a planar graph and Ŵ be a straight-line drawing of G . A path u1(= u), . . . ,uk(= v) between vertices u and v

in G is denoted by P (u, v). The drawing of the path P (u, v) in Ŵ is monotone with respect to a direction d if the orthogonal

projections of vertices u1, . . . ,uk on d appear in the same order as the vertices appear on the path. The drawing Ŵ is a

monotone drawing of G if there exists a direction d for every pair of vertices u and v such that at least a path P (u, v) is

monotone with respect to d. A monotone drawing is a monotone grid drawing if every vertex is drawn on a grid point. The

following lemma is known from [6].

Lemma 1. Let T be a rooted tree of n vertices. Then T admits a monotone grid drawing on a grid of area O (n) × O (n2), and such a

drawing can be found in O (n) time.

In this paper we use a modified version of the algorithm for monotone grid drawing of a tree in [6], which we call

Algorithm Draw-Monotone-Tree throughout this paper. Algorithm Draw-Monotone-Tree first assigns a slope to each vertex

of a planar embedded rooted tree then obtains a slope-disjoint drawing of the tree which is monotone. The algorithm draws

each edge (u,u′) as a straight-line segment by using the assigned slope to u where u′ is the parent of u. A brief description

of the algorithm is given below. Let T be an embedded rooted tree of n vertices. (Note that in [6] T is not embedded, but

here we use T as an embedded tree for the sake of our algorithm.) Let S = {s1, s2, . . . , sn−1} = {1/1,2/1,3/1, . . . , (n− 1)/1}

be the ordered set of n − 1 slopes in increasing order, where each slope is represented by the ratio y/1. Let v1, v2, . . . , vn
be an ordering of the vertices in T in a counterclockwise postorder traversal. (In a counterclockwise postorder traversal of a

rooted ordered tree, subtrees rooted at the children of the root are recursively traversed in counterclockwise order and then

the root is visited.) Then we assign the slope si to vertex v i (i 6= n). Let u1,u2, . . . ,uk be the children of v in T . Then the

subtree Tui
gets |Tui

| consecutive elements of S from the (1 +
∑i−1

j=1 |Tu j
|)-th to the (

∑i
j=1 |Tu j

|)-th. Let v ′ be the parent

of v . If v is not the root of T then the drawing of the edge e = (v ′, v) will be a straight-line with slope si .
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Fig. 12. (a) A tree T with assigned slope to each vertex, (b) a monotone drawing Ŵ of T and (c) a monotone drawing Ŵ′ of T with elongation of the edge

( j, g).

We now describe how to find a monotone grid drawing of T using the slope assigned to each vertex of T . We first

draw the root vertex r at (0,0), and then use a counterclockwise preorder traversal for drawing each vertex of T . (In a

counterclockwise preorder traversal of a rooted ordered tree, first the root is visited and then the subtrees rooted at the

children of the root are visited recursively in counterclockwise order.) We fix the position of a vertex u when we traverse u.

Note that when we traverse u, the position of the parent u′ of u has already been fixed. Let (x(u′), y(u′)) be the position

of u′ . Then we place u at the grid point (x(u′)+1, y(u′)+ yb), where yb/1 is the slope of u. Fig. 12(b) illustrates a monotone

grid drawing of the tree as shown in the Fig. 12(a). Algorithm Draw-Monotone-Tree computes a slope-disjoint monotone

drawing of a tree on an O (n) × O (n2) grid in linear time [6]. The following lemma is from [6].

Lemma 2. Let Ŵ be a slope-disjoint monotone drawing of a rooted tree T . Let Ŵ′ be a straight-line drawing of T obtained from Ŵ by

elongation of the drawing of an edge e of T preserving the slope of e. Then Ŵ′ is also a slope-disjoint monotone drawing. (See Fig. 12(c),

where the edge ( j, g) is elongated.)

We now have the following lemma based on the properties of a good spanning tree and Lemma 2.

Lemma 3. Let T be a good spanning tree of Gφ . Let v be a vertex in G , and let u be the parent of v in T . Let X ⊆ Xv and Z ⊆ Z v .

Assume that Ŵ is the monotone drawing of T ∪ X ∪ Z where a monotone path exists between every pair of vertices in the drawing

of T in Ŵ. If a straight-line drawing Ŵ′ of T ∪ X ∪ Z is obtained from Ŵ by elongation of the drawing of the edge (u, v) preserving the

slope of (u, v) and by shifting the drawing of T v upward, then Ŵ′ is a monotone drawing of T ∪ X ∪ Z where a monotone path exists

between every pair of vertices in the drawing of T in Ŵ′ .

Proof. Let r be the root of T . Let m be the slope assigned to the vertex v in T .

Let MX and M Z be the sets of slopes assigned to TuL
i
and TuR

i
, respectively. According to the assignment of slopes, for

any mx ∈ MX and mz ∈ M Z the relation mx >m >mz holds.

Since each vertex in X and Z is visible from the vertex v in Ŵ and mx < m < mz , v must be visible from each vertex

in X and Z even after elongation of edge (u, v) without changing the slope of (u, v). Note that the elongation only changes

the slopes of the drawings of non-tree edges in X and Z . The drawing of T v is shifted outwards preserving the slopes of

the edges in T v and the drawing of T − T v remains the same. Let Ŵ′ be the new drawing of T ∪ X ∪ Z . Then obviously

the edges in X and in Z do not produce any edge crossing in Ŵ′ . By Lemma 2, the elongation of the edge (u, v) does not

break the monotone property in the drawing of T in Ŵ′ . Thus a monotone path exists between every pair of vertices in the

drawing of T in Ŵ′ . ✷

3.2. Monotone grid drawings of planar graphs

In this section we give our algorithm for monotone grid drawings of planar graphs. We first give an outline of our

algorithm. We first construct a good spanning tree T of G and find a monotone drawing of T by Algorithm Draw-Monotone-

Tree. We then draw each non-tree edge as a straight-line segment by shifting the drawing of some subtree of T , if necessary.

Fig. 13 illustrates the steps of our algorithm. The input planar graph G is shown in Fig. 13(a). We first find a planar embed-

ding of G containing a good spanning tree as illustrated in Fig. 13(b), where the edges of the spanning tree are drawn as
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Fig. 13. Illustration for an outline of our algorithm.

solid lines. We then find a monotone drawing of T on an O (n) × O (n2) grid using by Algorithm Draw-Monotone-Tree as

illustrated in Fig. 13(c). Finally we elongate the drawing of some edges and draw the non-tree edges of G using straight-line

segments as illustrated in Fig. 13(d).

We now have the following lemma.

Lemma 4. Let G be a connected planar graph of n vertices and let Gφ be a planar embedding of G . Assume that Gφ has a good spanning

tree T . Then Gφ admits a monotone grid drawing on an O (n) × O (n2) grid.

Proof. Let T be a good spanning tree of Gφ . We prove the claim by induction on the number k of non-tree edges of G

for T . Algorithm Draw-Monotone-Tree uses a counterclockwise postorder traversal for finding a vertex ordering in the tree

and assigns a slope to each vertex of the tree using that ordering. Note that the ordering of the vertices is fixed once the

child of r that has to be visited first is fixed. Let T be a good spanning tree of Gφ and let r be the root of T . We take a

child s of r as the first child to be visited in counterclockwise postorder traversal such that s is an outer vertex of Gφ and if

s is on an outer cycle C of Gφ then s is the neighbor of r which is next to r in the counterclockwise ordering of the vertices

on C . We call the edge (r, s) the reference edge of T . Such a reference edge always exists since the BFS-Start edge mentioned

in the proof of Theorem 1 while constructing T can serve as the reference edge. By induction on the number k of non-tree

edges of Gφ , we now prove the claim that Gφ admits a monotone grid drawing on an O (n) × O (n2) grid and a monotone

path exists between every pair of vertices of Gφ through the edges of T in the drawing.

We first assume that k = 0. In this case Gφ = T . We then find a monotone drawing Ŵ of T on an O (n) × O (n2) grid

using Algorithm Draw-Monotone-Tree taking the reference edge (r, s) as the starting edge in the traversal (counterclockwise

postorder traversal for slope assignment and counterclockwise preorder traversal for drawing vertices). Since Gφ = T , Ŵ is a

monotone drawing of Gφ . That is, a monotone path exists between every pair of vertices of T in Ŵ.

We thus assume that k > 0 and the claim holds for any plane graph Gφ with less than k non-tree edges.

Let Gφ have k non-tree edges for T and let e = (u, v) be a non-tree edge of the outer boundary of Gφ .

Let mu and mv be the slopes assigned to the vertices u and v , respectively in T by Algorithm Draw-Monotone-Tree.

Without loss of generality let us assume mu >mv . Let w be the lowest common ancestor of u and v in T and let u′ and v ′

be the parents of u an v in T , respectively. According to (Cond1) u does not lie on the path P (v, r) and v does not lie

on the path P (u, r). Let C = {P (u, w) ∪ P (v, w) ∪ (u, v)} and G ′
φ = P (r, w) ∪ Gφ(C). Clearly the number of non-tree edges

in Gφ − (u, v) is less than k. Hence by the induction hypothesis, Gφ − (u, v) has a straight-line monotone drawing on an



ARTICLE IN PRESS

U
N

C
O

R
R

E
C

T
E

D
P

R
O

O
F

Please cite this article in press as: M.I. Hossain, M.S. Rahman, Good spanning trees in graph drawing, Theoret. Comput. Sci. (2015),

http://dx.doi.org/10.1016/j.tcs.2015.09.004

JID:TCS AID:10428 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.159; Prn:12/09/2015; 15:54] P.11 (1-17)

M.I. Hossain, M.S. Rahman / Theoretical Computer Science ••• (••••) •••–••• 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

O (n) × O (n2) grid where the edges in T are drawn with the slope assigned to them and a monotone path exists between

every pair of vertices through the edges in T . Let Ŵ′ be the drawing of G ′
φ −(u, v) in Ŵ. Let xl(Ŵ

′) be the largest x-coordinate

used for the drawing of Ŵ′ . We now shift the drawing of Tu and T v such that u and v lie on the line x = xl(Ŵ
′) + 1 by

preserving the slopes of the drawings of the edges (u′,u) and (v ′, v). Since the slopes are integer numbers, it guarantees

that all vertices remain on grid points after the shifting operation. According to Lemma 3 elongations of (u,u′) and (v, v ′)

do not produce any edge crossing in the drawing. According to (Cond2), e belongs to the set Zu and the set Xv . Then

no tree edge incident to u exists between the edge (u,u′) and (u, v) in counterclockwise from the edge (u,u′), and no

tree edge incident to v exists between the edge (v, v ′) and (v,u) in clockwise from the edge (v, v ′). (Remember that

we have used counterclockwise postorder traversal starting from a reference edge for ordering the vertices in algorithm

Draw-Monotone-Tree.) Hence we can draw the edge e on the line x = xl(Ŵ
′) + 1 as a straight-line segment without any

edge crossings. We observe that at least one vertex lie on every x-coordinate which gives width of the drawing O (n). Since

slope of a tree edge can be at most n, height of the drawing O (n2). Hence in the worst case the drawing takes a grid of

size O (n) × O (n2). ✷

The following theorem is our main result on monotone drawings of planar graphs.

Theorem 2. Every connected planar graph of n vertices admits a monotone grid drawing on a grid of area O (n) × O (n2), and such a

drawing can be found in O (n) time.

Proof. Let G be a connected planar graph. By Theorem 1 G has a planar embedding Gφ such that Gφ contains a good

spanning tree T , and Gφ and T can be found in O (n) time.

After constructing Gφ and T we can construct a monotone drawing of Gφ using a recursive algorithm based on the

inductive proof of Lemma 4. We now describe a technique to implement the recursive algorithm in O (n) time. In the

inductive step the challenging tasks are to find the value of xl(Ŵ
′) and shift the drawing of Tu and T v upward. Since we

have assigned a slope to each vertex, fixing only the x-coordinates of the vertices is sufficient to get the drawing.

Let (u, v) be a non-tree edge in Gφ with respect to T . Let w be the lowest common ancestor of u and v in T . Let C =

{P (u, w)∪ P (v, w)∪ (u, v)}. We denote the number of vertices in G by n(G). One can easily observe that x(w)+n(Gφ(C)) ≥

xl(Ŵ
′), where x(w) is the x-coordinate of w . Hence x(w) + n(Gφ(C)) can be taken safely as xl(Ŵ

′) for the drawing Ŵ′ of

G ′
φ − (u, v) in the proof of Lemma 4.

It is known that the common ancestors for all pairs of vertices in T can be found in linear time [32]. The value of

n(Gφ(C)) for a non-tree edge (u, v) can be found in constant time using counterclockwise DFS labeling 1,2, . . .n of the

vertices as follows. Let L(u) and D(u) be the level of u in the rooted tree T and the DFS number of u in T , respectively.

Then one can observe that n(Gφ(C)) = L(u) − L(w) + 1 + D(v) − D(u) − n(Tu) + 1. The vertices of graphs in Fig. 14 are

labeled by counterclockwise DFS and the DFS labels are written inside the small circles corresponding to the vertices. For

the edge (7, 16) in the graph in Fig. 14(a), w = 4 and n(Gφ(C)) = 5− 3+ 1+ 16 − 7− 3+ 1 = 10.

To keep the running time O (n) for shifting in total, instead of calculating of exact x-coordinates we only calculate

the amount to be shifted for each vertex in the recursive steps which we call offset of that vertex for the non-tree edge

considered. In the final step we calculate the exact x-coordinates of the vertices from this offsets. The calculation of offsets

and x-coordinates are given bellow. We initialize the offset of each vertex by 1 (except the root), as illustrate in Fig. 14(a)

where offsets are written beside the vertices. In each recursive step we update the offsets of the two end vertices of the

non-tree edge (u, v) by the value of n(Gφ(C)), if previous offset is less than n(Gφ(C)), as shown in Fig. 14(b)-(d).

Finally we calculate the x-coordinates using a BFS starting from the root of T . If no non-tree edge is incident to a vertex

u then the x-coordinate of u is the x-coordinate of its parent plus the offset of u, otherwise a non-tree edge (u, v) is

incident to u, and we calculate x-coordinate of u as the x-coordinate of w plus the offset of u as illustrated in Fig. 14(e)

where x-coordinates are written beside the vertices. ✷

4. 2-Visibility representations

In this section we give a simple linear-time algorithm to find a straight-line 2-VR of a planar graph on a grid of size

(2n − 1) × (2n − 1). In our drawing model, we draw each corner of a rectangle corresponding to a vertex on an integer grid

point and each edge on a grid line.

Let G be a connected planar graph of n vertices and let T be a good spanning tree in a planar embedding Gφ of G . We

first construct a 2-visibility representation of T on a (2n − 1) × (2n − 1) grid and then obtain a 2-visibility representation

of G by modifying the 2-visibility representation of T and adding the drawings of all non-tree edges.

Let T be a good spanning tree of a connected plane graph G and let v be a vertex of T . We denote by C(v) the number

of vertices in the subtree of T rooted at v . Let ŴT be a 2-VR of T . We denote the rectangle in ŴT corresponding to a

vertex v of T by Rv . Let hv be the height of Rv and w v be the width of Rv in ŴT . We represent the position of a rectangle

in the drawing by the coordinates of its left-bottom corner.

We now give our algorithm for constructing a 2-VR ŴT of T . Let r be the root of T . We first place Rr at (0,0) point on

the grid such that wr = 2n − 1 and hr = 1. In our drawing Rv always has w v = 2C(v) − 1 and hv = 1. Let v be any vertex
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Fig. 14. (a) Initial offset for each vertex, (b)–(d) updating offset value as n(G(C)) for non-tree edges and (e) calculating the x-coordinate for each vertex by

a BFS.

of T and let u1,u2, . . . ,uk be the children of v . Assume that we have drawn the box corresponding to v on the grid at point

(x, y). We now draw Rui
(1 ≤ i ≤ k) on the grid by fixing the position of Rui

on (x′, y + 2) where x′ = x + 2
∑ j=i−1

j=1 C(u j).

We draw the edge (v,ui) by a vertical line segment between (x′, y + 2) and (x′, y + 1) so that it connects Rv and Rui
. (See

Fig. 15(d).) We call the algorithm above Algorithm Draw-2-visibility-Tree.

We now have the following lemma.

Lemma 5. Let T be a good spanning tree of a connected plane graph of n vertices. AlgorithmDraw-2-visibility-Tree gives a 2-visibility

representation ŴT of T on a (2n − 1) × 2H grid, where H is the depth of T . Furthermore, the algorithm computes ŴT in linear time.
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Fig. 15. (a) A planar graph G , (b) a planar embedding Gφ of G , red (thick) edges represent the tree edges of the good spanning tree T of Gφ , (c) vertex

count of each subtree rooted at each vextex of T , (d) a 2-VR of T and e) a 2-VR of Gφ . (For interpretation of the references to color in this figure legend,

the reader is referred to the web version of this article.)

Proof. We first need to show that the rectangles in ŴT do not overlap each other. Since x + 2
∑ j=i−1

j=1
C(u j) is smaller than

x + 2
∑ j=i

j=1
C(u j), Rui

does not overlap with Rui+1
and Rui

does not overlap with Rv because hv is 1. We now prove the

grid size of ŴT . The rectangle Rr corresponding to the root has the largest width which is 2C(r) − 1 = 2n − 1. Since hv = 1

for any vertex v of T and y-coordinate is increased by 2 for each unit depth, the height of the drawing is 2H . Note that H

is at most n − 1.

The algorithm traverses T and updates some trivial data structures. Hence, it takes linear time. ✷

We now have the following observation.

Observation 1. Let T be a good spanning tree of a connected plane graph of n vertices. Let ŴT be a 2-visibility representation of T

produced by Algorithm Draw-2-visibility-Tree. Let v be a vertex of T . Let Ŵ′
T be a drawing obtained by increasing the height of Rv

and shifting the drawing of T v in ŴT upward to any extent. Then Ŵ′
T is also a 2-visibility representation of T .

We next obtain a 2-visibility representation of Gφ by drawing each non-tree edge as a horizontal line segment in the

2-visibility representation ŴT of T . Let (u, v) be a non-tree edge in Gφ with respect to T . Let (xu, yu) and (xv , yv) be the

coordinates of Ru and Rv , respectively. We have the following theorem.

Theorem 3. Let G be a connected planar graph of n vertices and let Gφ be a planar embedding of G such that Gφ has a good spanning

tree T . Then Gφ admits a 2-visibility representation on a (2n − 1) × (2n − 1) grid.

Proof. Let T be a good spanning tree of Gφ . We prove the claim by induction on the number k of non-tree edges of G

for T . Let r be the root of T . We first assume that k = 0. In this case Gφ = T . We then find a 2-visibility representation

2-VR(T ) of T on a (2n − 1) × (2n − 1) grid using Algorithm Draw-2-visibility-Tree. Since Gφ = T , 2-VR(T ) is a 2-visibility

representation of Gφ .

We thus assume that k > 0 and the claim holds for any plane graph Gφ with less than k non-tree edges.

Let Gφ have k non-tree edges for T and let e = (u, v) be a non-tree edge on the outer boundary of Gφ .

Let Ru and Rv be the rectangles of the vertices u and v , respectively in a 2-visibility drawing of T by Algorithm

Draw-2-visibility-Tree. Let w be the lowest common ancestor of u and v in T and let u′ and v ′ be the parents of u

and v in T , respectively. According to (Cond1) u does not lie on the path P (v, r) and v does not lie on the path P (u, r).

Let C = {P (u, w) ∪ P (v, w) ∪ (u, v)} and G ′
φ= P (r, w) ∪ Gφ(C). Clearly the number of non-tree edges in Gφ − (u, v) is less

than k. Hence by induction hypothesis, Gφ − (u, v) has a 2-visibility representation on a (2n − 1) × (2n − 1) grid. Let VR(G)

be the drawing of G ′
φ − (u, v) in VR(G). Let yl(Ŵ

′) be the largest y-coordinate used for the drawing of 2-VR(G ′
φ − (u, v)). We

now increase height of Ru and Rv up to yl(Ŵ
′) + 2. We then add a horizontal straight line on y = yl(Ŵ

′) + 2 to connect Ru

and Rv .

According to Observation 1 increasing the height of Ru and Rv does not produce any edge crossing or rectangle over-

lapping in the drawing. Since e is an outer edge, increasing the height of Ru and Rv does not create problem for other

non-tree edges that have already been drawn. (See Fig. 15(e).) According to (Cond2), e belongs to set Zu and set Xv . Then
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Fig. 16. Illustration for a spike shaped curve.

Fig. 17. (a) A spike-VPG representation of T in Fig. 15(b) and (b) a spike-VPG representation of G in Fig. 15(a).

no tree edge incident to u exists between the edge (u,u′) and (u, v) that is counterclockwise from the edge (u,u′), and

no tree edge incident to v exists between the edge (v, v ′) and (v,u) that is clockwise from the edge (v, v ′). Hence we

can draw the edge e on the line y = yl(Ŵ
′) + 2 by a straight-line segment without any edge crossing. This operation does

not change the width of the drawing, and the height can increase exactly one unit. Thus the 2-VR(G) takes a grid of size

(2n − 1) × (2n − 1). ✷

5. Spike-VPG representations of planar graphs

In this section we give an algorithm to find a spike-VPG representation of a planar graph G on a grid of size (2n−1)×n.

Let G be a connected planar graph of n vertices and let T be a good spanning tree in a planar embedding Gφ of G .

Let r be the root of T . We first construct a spike-VPG representation of T on a n × n grid and then obtain a spike-VPG

representation of G by modifying the spike-VPG representation of T .

In our drawing model we represent a path as a spike shaped curve, which is defined as follows. Let C(α, β,γ , δ) be a

curve where C starts from α and ends at δ, and β,γ are two adjusting points. A typical C is found by placing α, β,γ , and δ

on (x, y + 2), (x, y), (x+ 0.5, y + 1), (x+ 1, y + 1), respectively where (x, y) is any integer coordinate in the grid. Fig. 16(a)

illustrates an example of C . In our drawing model α, β, δ lie on integer points and γ lies on half integer point of the gird.

Let Cv denotes a curve corresponding to a vertex v . We denote α, β,γ , δ points of Cv by Cv(α), Cv(β), Cv (γ ), and Cv (δ),

respectively. Change of line segment l(Cv (β),Cv (γ )) is used for adjusting the height of Cv . The line segment l(Cv (α),Cv(β))

is used for receiving crossing from the vertices those are other end vertex of each of the edge in Zv . The line segment

l(Cv(γ ),Cv (δ)) is used for maintaining the connection of the children of v in T , and the connection for the vertices those

are other end vertex of each of the edge in Xv (see Fig. 16(b)). We denote a spike-VPG representation of G by spike-VPG(G).

We first show that how we obtain a spike-VPG representation of a tree as follows. In the spike-VPG representation of

tree l(Cv (α),Cv(β)) line segment of each Cv remains unused.

We first place Cr on the grid so that Cr(β) lies on (0,2), (0,0), (0.5,1), (1,2n − 1) points in the grid. Let v be any

vertex of T and let u1,u2, . . . ,uk are the children of v . Let (x, y) be the coordinate of Cv (β). We now show the placement

of each Cui
(1 ≤ i ≤ k). We place Cui

such that Cui
(α), Cui

(β), Cui
(γ ) and Cui

(δ) lie on (x′ + 1, y + 1 + 2), (x′ + 1, y + 1),

(x′ + 1+ 0.5, y + 1+ 1), (x′ + 1+ 2C(ui), y + 1+ 1), respectively where (x′ = x+ 2
∑ j=i−1

j=1 C(u j)).

Note that the curves Cv and Cui
cross at Cui

(β) which represents the edge (v,ui). Fig. 17(a) illustrates a spike-VPG repre-

sentation of the good spanning tree T in Fig. 15(b). We call the algorithm described above Algorithm Draw-spike-VPG-Tree.
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Lemma 6. Let T be a good spanning tree of a connected plane graph of n vertices. Algorithm Draw-spike-VPG-Tree gives a spike-VPG

representation of T on a (2n−1)×H grid, where H is the depth of T . Furthermore the algorithm computes a spike-VPG representation

of T in linear time.

Proof. We first need to show that the curve Cui
only crosses Cv . Clearly, Cui

(β) point lies on l(Cv (γ ),Cv (δ)). Let us analyze

the positions of Cui
and Cui+1

. If (x, y) is the coordinate of Cv(β) then Cui
(β) and Cui+1

(β) lie on (x + 2
∑ j=i

j=1
C(u j), y + 1)

and (x+2
∑ j=i+1

j=1
C(u j), y+1). This means length of l(Cui

(γ ),Cui
(δ)) is 2C(ui). Note that, in the drawing the y-coordinate is

increased by 1 for each unit depth, this implies that the height of the drawing can be at most H . The algorithm traverses T

and updates some trivial data structure. Hence, it takes linear time. ✷

We now have the following observation.

Observation 2. Let T be a good spanning tree of a connected plane graph of n vertices. Let ŴT be a spike-VPG representation of T

produced by Algorithm Draw-2-visibility-Tree. Let v be a vertex of T . Let Cv((x, y + 2), (x, y), (x + 0.5, y + 1), (x + k1, y + 1))

be the curve that represents v in ŴT . Let Ŵ′
T be a drawing obtained by changing of l(Cv (γ ),Cv (δ)) such that Cv(γ ) and Cv (δ) lie on

(x+0.5, y+1+k2) and (x+k1, y+1+k2), and shifting the drawing of T v in ŴT upward to any extent. Then Ŵ′
T is also a spike-VPG

representation of T .

We next obtain a spike-VPG drawing of Gφ by modifying the spike-VPG drawing of T . We have the following theorem.

Theorem 4. Let G be a connected planar graph of n vertices and let Gφ be a planar embedding of G such that Gφ has a good spanning

tree T . Then Gφ admits a spike-VPG representation on a (2n − 1) × n grid.

Proof. Let T be a good spanning tree of Gφ . We prove the claim by induction on the number k of non-tree edges of G for T .

Let r be the root of T . We first assume that z = 0. In this case Gφ = T . We then find spike-VPG(T ) of T on a (2n − 1) × n

grid using Algorithm Draw-spike-VPG-Tree. Since Gφ = T , spike-VPG(T ) is a visibility representation of Gφ .

We thus assume that k > 0 and the claim holds for any plane graph Gφ with less than k non-tree edges.

Let Gφ have k non-tree edges for T and let e = (u, v) be a non-tree edge of the outer boundary of Gφ .

Let Cu and Cv be the curves in a drawing obtained by Algorithm Draw-spike-VPG-Tree corresponding to the vertices u

and v in T , respectively in T by Algorithm Draw-spike-VPG-Tree. Let w be the lowest common ancestor of u and v in T

and let u′ and v ′ be the parents of u and v in T , respectively. According to (Cond1) u does not lie on the path P (v, r)

and v does not lie on the path P (u, r). Let C = {P (u, w) ∪ P (v, w) ∪ (u, v)} and G ′
φ = P (r, w) ∪ Gφ(C). Clearly the number

of non-tree edges in Gφ − (u, v) is less than k. Hence by induction hypothesis, Gφ − (u, v) has a spike-VPG representation

on a (2n− 1) ×n grid. Let VR(G) be the drawing of G ′
φ − (u, v) in spike-VPG(G). Let yl(Ŵ

′) be the largest y-coordinate used

for the drawing of spike-VPG(G ′
φ − (u, v)). To represent the edge u, v we shall change Cu and Cv so that they cross each

other. To do it we follow the following four steps.

• Modify Cu : We shift l(Cu(γ ),Cu(δ)) on line y = yl(Ŵ
′) + 1 by keeping x-coordinate of Cu(γ ) unchanged. Then shift the

drawing of Tu upward.

• Modify Cv : We enlarge l(Cv (α),Cv(β)) so that Cv(α) lies on y = yl(Ŵ
′) + 1.

• Extend l(Cu(γ ),Cu(δ)) so that it crosses l(Cv (α),Cv(β)) that represent e. Note that l(Cu(γ ),Cu(δ)) is a horizontal line

and l(Cv (α),Cv(β)) is a vertical line.

• Let S be the set of vertices that are neighbors of u in G ′
φ . For any vertex s ∈ U , the edge e′(u, s) there was a crossing

between Cu and Cs in induction step. We need to enlarge l(Cs(α),Cs(β)) so that Cs(α) lies on y = yl(Ŵ
′) + 1.

According to Observation 2, placing l(Cu(γ ),Cu(δ)) on line y = yl(Ŵ
′) + 1 does not produce any edge crossing in the

drawing. It is trivial to see that elongation of l(Cv (α),Cv(β)) do not produce any unwanted crossing. According to (Cond2), e

belongs to set Zu and set Xv . Then no tree edge incident to u exists between the edge (u,u′) and (u, v) in counterclockwise

from the edge (u,u′), and no tree edge incident to v exists between the edge (v, v ′) and (v,u) in clockwise from the edge

(v, v ′). Fig. 17(b) illustrates a spike-VPG representation of the planar graph G in Fig. 15(a). Hence we can draw the edge e

on the line y = yl(Ŵ
′) + 1 as a straight-line segment without any edge crossings. This operation does not change width of

the drawing and height can be increased exactly one unit. Thus spike-VPG(G) takes a grid of size (2n − 1) × n. ✷

Asinowski et al. [28] showed a technique where a T-shaped representation is converted into a B3-VPG representation.

A T-shaped representation have applications in floorplanning in VLSI chip design [33] where a vertex corresponds to a

2-bend module in a floorplanning. We show that our spike-VPG can be transformed into T-shaped (sometimes into L-shaped)

representation as follows. Let G be a planar graph of n vertices. Let Ŵ be a spike-VPG representation of G . Let Cv be the

curve corresponding to v in G . We analyze the α, β,γ and δ points of Cv . If the point β lies on (x, y) then α,γ and δ

lie on (x, y + k1), (x + 0.5, y + k2) and (x + 0.5, y + k2), respectively where k1 and k2 are integer. One can easily observe
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Fig. 18. T-shaped and L-shaped objects representation of G .

that there is an empty space in △(β,γ , (x, y + k2)) for each Cv . Hence we move the point γ to (x, y + k2) for each Cv . The

operation turns Cv into a T-shaped object. If k1 < k2 then Cv turns into an L-shaped object. Hence each object lies on grid

lines fully as illustrated in Fig. 18. Thus we have proved the following theorem.

Theorem 5. Every planar graph has a representation using T -shaped and L-shaped objects.

6. Conclusions

In this paper we have defined a special spanning tree of a plane graph and showed that it has many applications

in planar graph drawings. We have solved two open problems on monotone drawings by showing that every connected

planar graph of n vertices has a planar embedding that admits a straight-line monotone grid drawing on a grid of size

O (n) × O (n2). We have also showed that good spanning trees have applications in 2-visibility representations and in VPG

representations of planar graphs.

Starting from an outer vertex of an arbitrary planar embedding of a connected planar graph G , we can find a planar

embedding of G which has a good spanning tree. However, we have no algorithm to determine whether a given plane

graph has a good spanning tree or not. We thus have the following open problems on good spanning trees.

• Problem 1 Characterize plane graphs that contain good spanning trees and find an efficient algorithm to determine

whether a given plane graph has a good spanning tree or not.

• Problem 2 Compute a good spanning tree of a planar graph so that the depth of the tree becomes minimum. Note that

such a good spanning tree may find applications for reducing grid sizes of some drawings of planar graphs.
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Highlights

• Introduces a good spanning tree of a plane graph.

• Solves two open problems on monotone drawings using good spanning trees.

• Finds a 2-visibility drawing of a planar graph using a good spanning tree.

• Gives algorithms to find an spike-VPG and T-shaped drawings of a planar graph.


