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ABSTRACT

..Keeping the deflection within acceptable limit and making a structure

serviceable is the most important design criteria after meeting the

strength requirement. Code equation (B.N.B.C 1993, ACI 1997) enables

one to estimate deflections of structural components like beams, under

service load condition using semi-empirical equations. These equations

usually produce too conservative results, which sometimes, results in

un-economical design. In this project, a computational investigation

based on finite element analysis has been undertaken to study the

deflection characteristics of cantilever and continuous RC beams. The

investigation includes determination of the optimum type of FE modeling,

vanous geometric and material parameters influencing the deflection,
etc.

A detail sensitivity analysis has been performed to identify the most

important parameters controlling the deflection. The study also reveals

that the deflection given by FE method is highly dependent on the FE

modeling. The results of FE analysis are compared with the va-lues given

by code equations, which establish the relative accuracy of the FE

analysis. In most cases it has been found that FE analysis produces

deflection smaller than that estimated by code equations. The findings of

the present study will draw attention of the researchers and will help to

incorporate necessary modifications in future.
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1.1 GENERAL

In the past, deflection control was achieved indirectly, by limiting service load

stresses in concrete and steel to conservatively low values, resulting members

of larger dimensions and consequently stiffer. But now stronger materials are

in general use and this tends to produce members of smaller cross-section that

are less stiff than before. Because of these changes in condition of practice,

control of deflection is becoming important. Increased used of high-strength

concrete with. reinforcing bars and pre-stressed reinforcement, coupled with

more precise computer-aided limit-state designs, has resulted in lighter and
,

more material-efficient structural elements and systems. Nowadays,
,

sophisticated computers and computer programs are available for measuring

the deflection of beam more rigorously. However, calculations can, at best,

provide a guide to probable actual deflections. This is so because of

uncertainties regarding material properties, effects of cracking and load history

for the member under consideration, etc. Extreme precision in calculation,

therefore, is never justified, because highly accurate results are unlikely. This

thesis is furnished with consolidated treatment of initial deflection of

reinforced concrete elements, such as a cantilever beam and a two-span

continuous beam, under concentrated loading condition. It presents the

current engineering practice in design for control of deformation and deflection

of concrete elements and includes methods presented in Building Code

Requirements for Reinforced Concrete (ACI318) plus selected other published
approaches for computer use in deflection computation.
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1.2 SCOPE ANDOBJECTIVES

The deflection of concrete is generally those that occur during the normal

service life of the member. In service, a'member sustains the fuli dead load in

addition to some fraction or all of the specified service live load. Safety

provisions of the ACIcode and similar design specifications ensure that, under

loads up to the full service loads, stresses in both steel and concrete remain

within the elastic ranges. Consequently, deflection that occurs at once, upon

application of load, can be calculated based on the properties either of the un-

cracked elastic member, or the cracked elastic member or some combination of

these. The principal causes of deflections are those due to elastic deformation,

flexural cracking, creep, shrinkage, temperature and their long-term effects.

Again, the nature of deflection is not the same for all types of structures like

simply supported beams, cantilever beams, plane frames, etc. So calculation of
deflection is very important.

In this report, a cantilever beam and a two-span continuous beam are chosen,

because calculations of deflection of these two types of beam", are explained in

the ACI code elaborately so that a comparative study can be made with finite
element analysis.

The objectives of the present study are as follows.

1. To develop rigorous FE models of the beams using 2D plane stress

elements incorporating the reinforcement using truss elements and

bond-slip mechanism using dimensionless link elements.

2. Incorporate cracks in the FE model to simulate the cracked section

and investigate the effect of number of cracks on the deflection.

3. Measure the deflection caused by concentrated load and compare it

with the deflection predicted by code formulas for various conditions.

4. Attempt to propose some guidelines on deflection estimation, if
possible.
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1.3 ASSUMPTIONS AND CONTENTS

The investigation described in this project assumes a linear behavior of all the

material properties. The finite element modeling was limited to two-
dimensional approach.

\

The whole report is organized into five chapters; Chapter I is the current

chapter, which introduces the work presented in the report. Chapter 2 deals

with existing state of art reports with emphasis on the analysis technique

presented by ACI code. The purpose of Chapter 3 is to discuss the essential

details of modeling using finite element technique. Chapter 4 is aimed at the

sensitivity analysis of various parameters of beams and comparison with ACI

and finally, Chapter 5 draws a conclusion by summarizing the outcome of the

thesis and proposes new directions for further research and development.



Chapter-2

LITERATURE REVIEW

2.1 INTRODUCTION

Excessive deflection is not acceptable in building construction. It is usually

necessary to impose certain controls on deflections of beam in order to ensure

serviceability. Excessive deflections can lead to cracking of supported walls

and partitions, ill-fitting doors and windows, poor roof drainage, misalignment

of sensitive machinery and equipment, or aesthetically offensive sag. It is

important, therefore, to maintain control of deflections, in one way or another,

so that members designed mainly for strength at prescribed overloads will also

perform well in normal service.

Wide availability of personal computers and design software, plus the use of

higher strength concrete with steel reinforcement has permitted more material

efficient reinforced concrete designs producing shallower sections. The use of

high-strength concrete results in smaller sections, having less stiffness that

can .result in larger deflections. Deflection computations determine the

proportioning of many of the structural system elements. Member stiffness is

also a function of short-term and long-term behavior of the concrete. Hence

expressions defining the modulus of rupture, modulus of elasticity, creep, and

shrinkage and temperature effects are prime parameters in predicting the

deflection of reinforced concrete members.

In this report, a finite element technique is adopted for calculation of deflection

of a cantilever beam and a two-span continuous rectangular beam under both

concentrated and uniformly distributed loading condition. Later, the outcomes

are compared with the similar outcome under identical conditions calculated



5
by the ACI method. There are also several other methods: British Standard

(B.S), Building Code ofAustralia (B.C.AlUniform Building Code (U.B.C), Indian

Code of Practice (LS), Bangladesh National Building Codes (BNBC), etc. But

ACImethod is chosen particularly for two reasons.

1. ACImethod is probably the most widely accepted method in the
world.

2. BNBC is mainly based on the ACImethod. So the results can be

easily obtained in the context of our Bangladesh by performing
some minor changes.

The change in BNBC is probably due to change in units of measurement. ACI

uses imperial/US unit while BNBCuses Sl unit.

2.2 DEFLECTION CALULATIONOF RC BEAM

In the ACI 318 (1997) report "Control of Deflection in Concrete Structures",
presents current engineering practice in design for control of deflection and

deformations of concrete elements and includes methods presented in Building

Code requirements for reinforced concrete (ACI 318). The report replaces

several reports of this committee in order to reflect more recent state of the art

in design. The principal causes of deflection taken into account are those due

to elastic deformation, flexural cracking, creep, shrinkage, temperature and

their long-term effect. To be within the scope of this work the short-term

elastic deflection of R.C.C flexural members have been discussed. While

several methods are available in the literature for evaluation of defection, the

chapter concentrates on the effective moment of inertia Ie method in Building

Code requirements for Reinforced Concrete (ACI 318) and the modification
introduced by the ACICommittee 435.



2.3 MATERIALPROPERTIES

2.3.1 Concrete Modulus Of Rupture:

(2.1)

(2.2)

6
The principal material parameters that influence concrete elastic short-term

deflection are modulus of elasticity Ec and modulus of rupture I,. For

convenience, only modulus of rupture and modulus of elasticity are taken into

account in this report. The following is a presentation of the expression used to

define these parameters as recommended by ACI 318 and its Commentary

(1989) and ACICommittees 435 (1978), 363 (1984) and 209 (1982).

First of all the basic parameters like beam depth, length, cross-section Ac

effective depth d, yield strength of steel Iy, specified compressive strength of

concrete I;, modulus of elasticity of steel Es, reinforcement area As are

calculated or known. Later modulus of rupture of concrete J" modulus of

elasticity of concrete Ec, and effective moment of inertia Ie of the section is

measured. Finally, the deflection can be calculated easily.

Ir = 7.5Afl psi

According to ACI318(1997) the modulus of rupture of concrete.

Ir = 7.5fl psi

Where,

A. = 1.0 for normal density concrete (145 pcf to 150 pcl).

80, for normal density concrete
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2.3.2 Concrete Modulus Of Elasticity:

2.3

2.4

E, = 33w~5Ii psi

The modulus of elasticity is strongly influenced by the concrete material and

proportion used. An increase in the modulus of elasticity is expected with an

increase in compressive strength since the slope of the ascending part of the

stress strain diagram becomes steeper for the high-strength concrete but at a

lower rate than the compressive strength. ACI 435(1963) recommended the

following expression for computing the modulus of elasticity of concrete with
densities in the range of 90 pcf to ISS pcf.

E, = 57000Ii psi

approximated as:

Where,

w, Is the unit weight of the hardened concrete in pcf and l is the ultimate

strength of concrete. This equation is reasonably applicable for concrete in the

strength range of up to 6000 psi. As the strength of concrete increases, the

value of E, could increase at a faster rate than that generated by Eq. 2.3, For,
normal weight concrete with w, = 145 pcf; this expression IS often

2.3.3 Steel Reinforcement Elasticity:

For non-prestressed reinforcing steel ACI318 specifies the value E
s
= 2.9 X 107

psi. (Approximately)
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2.4 SHORT -TERM DEFLECTION

The deflection computation is based on two major conditions:

a) Cracked section.

b) Un-cracked section

2.4.1 Un-cracked Members:

Gross moment of inertia Ig : When the maximum flexural moment at service'

load in a beam cause a tensile stress less than the modulus of rupture, ft. no

flexural tension cracks develop at the tension side of the concrete element, if

the member is not restrained or the shrinkage and temperature tensile

stresses are negligible. In such a case, the effective moment of inertia of the

un-cracked transformed section, Ie is applicable for deflection computations.

However, for design purposes, the gross moment of inertia, Ig, neglecting the

reinforcement contribution, can be used as recommended by ACI.The elastic

deflection for un-cracked members can thus be expressed in the following,
general form

2.5

Where,

K is a factor that depends on support fIxity and loading conditions. M is the

maximum flexural moment along the span. The modulus of elasticity Eccan be

obtained from Eq. 2.3,

Ig = Gross moment of inertia, L = Span length.



2.6

(n-l)A,

b{(----~~'~---it
,
I'

Cracked Transformed Section

A.,
A,.

Cross Section

Effective moment of inertia Ie' Ten,ion cracks occur when the imposed loads

cause bending moments in excess of the cracking moment, thus resulting in

tensile stresses in the concrete that are higher than its modulus of rupture.

The cracking moment, Moe may be computed as follows:

9
2.4.2 Cracked Members:

Where,

Y, is the distance from the neutral axis to the tension face of the beam, and foe

is the modulus of rupture of the concrete.

The location of the neutral axis (Fig.2.1) is determined by equilibrium of

moment of area of the transform section about neutral axis.

Fig. 2.1 Actual cross-section and cracked transformed section of beam
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2.8

2.9

- (nA~ - A~ + nAs):!: J(nA~ - A~ + nAs)2 -2b(-nA~d'+Asd'-nAsd)
b

:. a =

ba
3

( 'rIe, =-+nAs(d-aY +(n-1)A~\a-d
3

Ie, = Moment of inertia of cracked transformed section

Where,

a is the distance of the neutral axis from the outer face of the compression

a x b x a + {en - l)A~ Xa - d') = nAs(d - a)
2

Ezone and n = _s .Ee

ACT318-89 reqUIres using the effective moment of inertia Ie proposed by

Branson. This approach was selected as being sufficiently accurate to control

deflections in reinforced and pre-stressed concrete structural elements.

Branson's equation for the effective moment of inertia Ie. for short-term

deflections is as follows:

Where,

Me, = Cracking moment

Ma = Maximum service load moment (un-factored) at the stage for which

deflections are being considered

I9 = Gross moment of inertia.
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2.10

2,11

Load = Pkip ,.

J
A,

""

A,.

L -t h
~'-7f t-

Pl3
6 = --- For cracked section

3EJ.

Fig, 2.2 Deflection of a reinforced concrete cantilever beam,

For a cantilever beam (Fig. 2.2) the maximum deflection is at free end is:

Or

Pl3
6 = --- For un-cracked section

3EJg

Where,

o = Maximum deflection

P = Concentrated load at the free end.
L = Span length

The modulus of elasticity Ec can be obtained from Eq. 2.4, the effective moment

of inertia 1" for short-term deflections can be obtained from Eq 2.9. The

moment of inertia used for deflection calculation is the effective moment of

inertia 1,.for cracked section and 1g for un-cracked section.
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(From Eq. 2.6)

Fig. 2.3 Deflection of a reinforced concrete two-span beam.

Moment Diagram

For a two-span continuous beam Fig.2.3 the maximum deflection is:

At first support

Ie] = The effectivemoment of inertia at first support.

Where
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(From Eq. 2.8)

(From Eq. 2.9)

ba
3

I 'fI" = - + nAs(d - aj> + (n -1)A~\a - d3

M - 5PL
a2 - 32

(From Eq. 2.7)

ba
3

. I 'f1,,2 = - + nAs(d - a)2 + (n -1)A~\a - d
3

.Atmiddle of the first span

80,

span.

Ie =(::r 19 +[1-( :: r}c, s 19

:.Ie2 = (:::J\ +[1-(::r}"2 SI9

1,,2 = Moment of inertia of cracked transformed section at middle of the first

Where,

Ie2 = the effective moment of inertia at middle of the first span.

Where

Ma2 = Maximum service load moment (un-factored) at the stage for which

deflections are being considered at middle of the first span.

19 = Gross moment of inertia.



2.12

2.13

(From Eq. 2.8)

(From Eq. 2.9)

1,,3 ; Moment of inertia of cracked transformed at middle support

14
At middle support

M - 6PL
02 - 32

Where,

M03 ; Maximum service load moment (un-factored) at the stage for which

deflections are being considered at middle support.

Ig ; Gross moment of inertia

Ie3; the effective moment of inertia at middle support.

80,

Ie ; 0.5Ie(2) + 0.25(1e(1) + Ie(3))

Ie ; the average effective moment of inertia.

7 PL36;----
768 EJe

Where,

o ; Maximum deflection
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The modulus of elasticity E, can be obtained from Eq. 2.3. The average

effective moment of inertia Ie, for short-term deflections can be obtained from
Eq.2.12

(From Eq. 2.6)

(From Eq. 2.4)

lb - inM = 474.34X4860 = 256144
" 9

P = Concentrated load at middle of the span.
L = Span length

Examples:

E, = 57000fl psi

E, = 57000flpsi = 3604996.5 psi'

DEFLECTIONOF A CANTILEVERR.C.C BEAM.

A reinforced concrete cantilever beam as shown in Fig. 2.2 is subjected to a

concentrated load P = 4 kip. The beam has the dimensions b = 10 inch, T= 18

inch, L =10 ft, I> 4000psi, n =10, the beam is reinforced with three NO.6 at

the top fiber and three NO.6 bars at the bottom. The maximum deflection of

the beam using the ACI 318 (1997) method is as follows:

According to ACI 318( 1997) the modulus of rupture of concrete.

Ir = 7.5flpsi = 474.34 psi for to = 4000 psi.

The cracking moment, M", computed as follows:

M = I,'!g
cr Y

t
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(From Eq. 2.8)

As ; 1.32 in2, b; 10 inch,

inch4
bh3 lOX183I ;-;--- ;4860

9 12 12

Where,

(From Eq. 2.7)

Y, ; T ; 18 ; 9 inch and 1'_ is the modulus of rupture of the concrete,2 2 Ju

:.a; 4.7824 inch

as expressed by Eq. 2.1

The location of the neutral axis is determined by equilibrium of moment of

area of the transformed section about neutral axis.

Ia ; 1942.731 inch4

ba
3

( 'jIa ;3+nAs(d-a)2 +(n-1)A~\a-d

:.a; 4.7824 inch, n ; 10, A~; 1.32 in2,

d ; 2.5 inch, d;15.5 inch.

Where,

a is the distance of the neutral axis from the outer face of the compression

zone. n; 10, A~; 1.32 in2, As; 1.32 in2, b; 10 inch, d-; 2.5 inch,

Where,

Ie, ; Moment of inertia of cracked transformed section.



Effectivemoment of inertia Ie
17

, (From Eq. 2.10)

inch

lb - inch = Cracking moment

= PxL=4xl0=40 kip-jt=480000 lb-inch

Ie = 2386.04 ~ Ig = 4860 inch4

Ie = 2386.04 inch4

6 = 4000 X 120
3

= 0.26785
3 x 3604996.5 x 2386.04

Ie = (:: rIg + [1- (:: J}e, ~Ig (From Eq. 2.9)

I =(256144)34860+[1~(256144)3]1942.731~I =4860 inch4

e 480000 480000 9

Where,

Mcr =256144

Ig = Gross moment of inertia = 4860 inch4

Pl36=--
3EeIe

Ma = Maximum service load moment (un-factored) at the stage for which
deflections are being considered

DEFLECTIONOF ATWOSPANR.C.C BEAM.

A reinforced concrete two span beam shown in Fig. 2.3, is subjected to a

concentrated load P = 13 kip at mid of the span. The beam has the dimensions

b = 10 inch, T = 15 inch. The beam is reinforced with three NO.6 bars at the

top and three NO.6 bars at the bottom. The maximum deflection of the beam

using the ACI318 (1989) method are as follows:
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(From Eq. 2.6)

lb - inchM ~ 474.34 x 2812.5 ~177877.5
" 7.5

(From Eq. 2.7 )

The cracking moment, M", computed as follows:

P" = 5270 Ibs

80,

At section 1

bT3 10 x 153
I ~ -- ~ --- ~ 2812 inch 4

9 12 12

M ~ 5PL ~ 5 x 13 x 1000 x 15 x 12 _ 365625 lb _ inch
a2 32 32

Where,

Ma, ~ 0

...a~4.2173 inch

. - (nA'~- A~ + nAs}:!: ~(nA~ - A~ + nAs;> -2b( -nA~d'+A~d'-nAsd).. a = --------- _
b

Ie1 ~ Ig~2812.5 inch4

Where,

Ie1 = the effective moment of inertia at section 1

At section 2



10 inch,

\

(From Eq. 2.8)

(From Eq. 2.9)

As = 1.32 in', b

lb - inch = Cracking moment

inch 4

. h4mcIer = 1190.621

:. a = 4.2173 inch, n = 10, A~= 1.32 in',

d' = 2.5 inch, d= 12.5 inch.

Where,

I" = Moment of inertia of cracked transformed section

Where,

a is the distance of the neutral axis from the outer face of the compression

zone. n = 10, A~ ~ 1.32 in2, As = 1.32 in2, b = 10 inch, d' = 2.5 inch,

d=12.5 inch.

19

Effective moment of inertia I, at section -2

1,2 = 1377.3786 :0: I. = 2812.5 inch 4

1'2 = 1377.3786

Where,

Me, =177878.1184

Ma2 = Maximum service load moment (un-factored) at the stage for which
deflections are being considered = 365625 Ib-inch

19 = Gross moment of inertia = 2812.5 inch4
Where,

Ie2= the effective moment of inertia at middle of the first span



Where,

(From Eq.2.9)

(From Eq. 2.12)

(From Eq. 2.13)

I =(17.7878.118)32812.5 +[1_(177878.118)3]1190.62L; I = 2812.5 inch 4
e3 438750 438750 9

Ie3 '" 1298.698" 19 = 2812.5 inch 4

Ie3 = 1298.698 inch4

Effective moment of inertia 1,

20

M = 6PL = 6x13x1000x15x12 =438750 lb-inch
03 32 32

At middle support

7 PL36=---
768 Ele

Ie = the average effective moment of inertia.

Where,

Ie3= the effective moment of inertia at middle support.
So,

Ie = 0.5Ie(2) + 0.25(1e(1) + Ie(3))

Ie = 0.5 X 1377.3786 + .25(2812.5 +1298.698) inch4

Ie=1716.488 inch4

Me, = 177878.11 8 lb.-inch = Cracking moment

Ma3 = Maximum service load moment (un-factored) at the stage for which

deflections are being considered = 438750 Ib-inch

19 =Gross moment of inertia = 2812.5 inch4



In this chapter of the report, it is shown, how ACI method of deflection

calculation can be used for determining the deflection of a typical reinforced

concrete beam. The use of semi-empirical formula has been shown in detail.

Although ACI method gives reasonable values of defection one approximation

is inherent in the defection calculation due to the approximate nature of Ie.

{j=_~PL3 =_ 7 13x1000x(15x12)3 =-0.111673938
768 E1e 7683604996.53 x1716.488

2.5 REMARKS

inch

21



Chapter 3
FINITE ELEMENT MODELING OF RC BEAM

3.1 GENERAL

The actual work regarding the finite element modeling of reinforced concrete

beam has been described in detail in this chapter. Representation of various

physical elements by the FEM (finite element modeling) elements, properties

assigned to them, representation of various physical phenomenon such as

bond slip, reinforcement behavior etc. have also been discussed. Information

has been provided on typical RC beams. The various obstacles faced during

modeling, material behavior used and details of finite element meshing were
. also discussed keenly.

3.2 FINITE ELEMENTPACKAGES

A good number of computer packages for finite element analysis are available

in the market. They vary in degree of complexity, usability and versatility. The
names of such packages are:

• Micro FEAP • ABAQUS

• SAP90 • MARC

• FEMSKI • ADINA

• ANSYS • DIANA

• STRAND • STAAD
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Of these in this study package ANSYShas been used for its relative ease of

use, detailed documentation, flexibility and vastness of its capabilities. The

version ofANSYS5.4 used was the special Students Edition Version.

A powerful finite element (FE) analysis software - ANSYSenables engineers to
perform the followingtasks:

• Build computer models or CAD models of structures, products,
components and systems.

• Apply operating loads and other design performance conditions.

• Study the physical responses such as, stress levels, temperature

distributions or the impact of electromagnetic fields.

• Optimize a design early in the development process to reduce
production costs.

• Do prototype testing In environments where it otherwise would be

undesirable or impossible (for.example, biomedical application).

3.3 FINITE ELEMENT MODELING OF RC BEAM

Reinforced cement concrete, speaking in a very common sense, is a mass of

hardened concrete with steel reinforcement embedded in it. This arrangement

when in use acts as a single material with the steel providing adequate tensile

capacity to the otherwise highly compressive material concrete. However the

interaction between the concrete mass and the steel reinforcement is not a

very simple one when subjected to various loading conditions. Complicated

physical phenomenon such as bond slip, anchorage etc. comes into play in

this condition. Hence the whole of reinforced concrete cannot be treated as a

single material during FEM analysis and cannot be modeled as a unique
composite material.

•. ,I _.
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3.1And 0 <0<00

o Local bond slip

In this project during the FE modeling of the reinforced concrete for cantilever

beam and two-span beam, separate materials and elements have been used

for representing the concrete and steel reinforcement. A special composite

concrete element having provisions for reinforcement can be used, but the

facility is not taken. As the separate treatment in the element level ensures

better approximation of the actual condition. Also to simulate the bond slip

phenomenon to its full extent a special combination element is provided at the

iriterface between the concrete and steel reinforcement.

Bond behavior is a combination of adhesion, bearing of lugs and friction.

Adhesion is related to the shear strength of the steel - concrete interface that

is basically a result of the chemical bonding. Bearing forces perpendicular to

the lug faces arise as the bar is loaded and tries to slide. In this phase, micro

cracking of concrete at the front of the lugs is produced. Friction is produced

by the bearing force on the inter-action surface and th~ shearing of the

concrete, between the lugs on the cylindrical concrete surface at the tip of the

lugs. It has been well established that bond stress is a basic function of the

slip. This relationship is called bond stress-slip relationship.

3.3.1 Bond Stress-Slip Relationship.

For analytical applications, several linear and non-linear approximations of the,
bond stress-slip relationship are available. Dorr (1980) proposed a non-linear

function relating the bond stress with the tensile strength and relative slip as
follows:
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Amount of slip at which perfect slip occurs usually taken as 0.6 mm

Tensile strength of concrete

Nominal bond strength

Fig. 3.1 Simplified Bond Stress-Slip Relation of Amanat (1997)

1.9ji

~=1.060

Ib = 1,[5 - 4.5 + 1.4] = 1.91,

In this report however, a simplified linear form of the formula proposed by

Amanat (1997) has been used. This is .shown in the Fig. 3.1. For the modeling

the value of fb has been taken as constant at 1.9ji . This is a simple

approximation of Dorr formula mentioned previously having an assumption of

The bond stress-slip relationship is simulated by the use of COMBIN 14

elements. These elements are dimensionless bond link elements, connecting a

single concrete node to a corresponding reinforcement node.
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3.3.2 Modeling of Bond Slip

D= Bar Diameter

L = Effective Length of the Bar

n = Number of bars

= 252.69nDLft

Where,

1. 9 TiDLnft
=------
2.3622 x 10-2

Stiffness k = ~
60

Total Surface Area = trDLn

Total force = trDLn x 1.9It
Amount of slip for occurrence of perfect slip 00 = 0.6mm = 2.3622 x 10-2 in

Hence,

This bond element is basically a simple spring, in the present case a COMBlN

14 element in between two co-incident nodes of LlNKl and PLANE42 or those

of LlNKl and PLANE82. This spring is in the direction of the reinforcement,

i.e. parallel to the reinforcement and hence simulate the bond stress-slip

relationship. The spring constant be evaluated as follows:

One of the most remarkable features of this finite element modeling is

simulation of bond slip that actually exists between the concrete and steel in

For a cantilever beam the contributory area of an edge spring is half of that of

a middle spring. Hence, the force resisted by each edge spring is also half as

much as that of other spring. If each corner spring resists a force F. then each

middle spring will resist a force of 2F, At the free end the reinforcement is

anchored to avoid excessive slip, the anchored length as suggested by ACTcode

is l2db. Where db is the diameter of bar. Due to the anchorage the rightmost

spring Fig_3.7 can resist a higher force than that of the leftmost spring. To

simulate this phenomenon the stiffness of this spring is approximated as 2.5

times of that of the left edge spring.
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any reinforced concrete system. The estimation of this property is discussed a

little later. But first the liberty to describe the element that simulates the bond

slip characteristics in the Finite Element Model is taken.

COMBIN 14: Two-dimensional spring element of ANSYS. COMBIN 14 has

longitudinal and torsional rigidity in one, two or three-dimensional

applications. The longitudinal spring-damper option is a uniaxial tension

compression element with up to three degrees of freedom at each node:

rotations about the nodal x, y and z-axes. No bending or axial loads are

considered. The spring-damper element has no mass.

Two nodes, a spring constant k and damping co-efficients cvl and cv2, define

the element. The damping capability is not used for static or un-damped model

analysis. The longitudinal spring constant should have units of Force/ Length

and the damping co-efficient units are Force x Time/ Length. The torsional

spring constant and damping co-efficient have units of Force x Length / radian

and Force x Length x Time / Radian respectively.

The solution output associated with the element is m the form of nodal

displacements included in the overall nodal solution.

The longitudinal spring element stiffness acts only along its length. The torsion

spring element stiffness acts only about its length, as in a torsion bar. The

element allows only a uniform stress in the spring. The spring or damping

capability may be deleted from the element by setting k or Cv equal to zero.

, I
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Fig. 3.2 COMBIN14 Spring Damper.

3.3.3 Modeling of Concrete

Since the whole modeling was confined to two-dimensional analysis all the

elements used were 2-D in nature. For representing the concrete two types of

2-D quadrilateral elements have been used. Owing to simplicity and due to the

inherent physical characteristics of the model, all the elements produced with

these two base elements were assumed as rectangular planes. Here, the two

base elements of ANSYSpackage are discussed in more detail:

PLANE 42 :The four-noded plane stress element of ANSYS. PLANE42 is a 2-D

Structural solid. It is mainly used for modeling of 2-D solid structures. The
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Element co-ordinate System
(Shown for KEYOPT{l)=l)

/
I

Fig. 3.3 PLANE42 Structural solid

The input data for PLANE42 element includes four nodes, a thickness (for the

plane stress option only) and the orthographic material properties. Direction of

orthographic material corresponds to element co-ordinate directions.

Concentrated loads are put on the nodes and pressure may be input as

surface loads on the element faces. Positive pressure acts towards the element.

Temperature may be input as element body load at the nodes.

elements can be used either as a plane or as an axisymmetric element. Four

nodes having two degrees of freedom at each node translations in the nodal x

and y directions define the element. The element has plasticity, creep and

swelling, stress stiffening, large deflection and large strain capabilities.

29
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The solution output associated with the element is in two forms:

1 Nodal displacement included in the overall nodal solution

2 Additional element output.

The element stress directions are parallel to the element co-ordinate system.

Surface stresses are available on any face.

The area of the element must be nonzero~ The element must lie in a global X-V

plane and the Y-axis must be axis of symmetry for ax symmetric analyses. An

ax symmetric structure must be modeled in the +Xquadrants.

PLANE 82: The eight-noded plane stress element ofANSYS, PLANE82 is a

high order version of the two-dimensional, four-noded element PLANE42. It

provides more accurate results for mixed (quadrilateral-triangular) automatic

meshes and can tolerate irregular shapes without much loss of accuracy. The

8-node element has compatible displacement shapes and is well suited to,
model curved boundaries. Eight nodes having two degrees of freedom at each

node-translations in the nodal X and Y directions define the element. The

elements can be used either as a plane or as an axisymmetric element. The

element has plasticity, creep and swelling, stress stiffening, large deflection

and large strain capabilities.

The input data for PLANE82 element includes eight nodes with location, a

thickness (for the plane stress option only) and the orthographic material

properties. Direction of orthographic material corresponds to element co-

ordinate directions. The secondary external nodes (mid-nodes) may be removed

(with a zero node number) to form a pattern compatible with other element

types. The geometric locations of mid-nodes are calculated automatically, if not

specified. Concentrated loads are put on the nodes and pressure may be input
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The element must lie in a global X-Y plane and the Y-axis must be axis of

symmetry for axis metric analyses. An axisymmetric structure. must be

31

1 Nodal displacement included in the overall nodal solution

2 Additional element output.

Fig. 3.4 Structural Solid. PLANE82 2-D 8-Node

The element stress directions are parallel to the element co-ordinate system.

Surface stresses are available on any face. Surface stresses are defined parallel

and perpendicular to the IJ face (and the KI) and along Z-axis for a plane

analysis or in the hoop direction for an axisymmetric analysis.

The area of the element must be non-zero.

The solution output associated with the element is in two forms:

as surface loads on the element faces. Positive pressure acts towards the

element. Temperature may be input as element body load at the nodes.
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modeled in the +Xquadrants. A face, with removed mid-nodes implies that the

displacements vary linearly rather than a parabolic shape, along the face.

3.3.4 Modeling of Reinforcement

To simulate the reinforcement, link elements are used. Only one type of link

ele~ent was used, the details ofwhich is described below:

LINKl 2D SPAR: One-dimensional link element of ANSYS. LINKI can be

used in a variety of engineering applications. Depending upon the type of

application, it can be thought as truss, a link, a spring, etc. The two-

dimensional spar element is a uniaxial tension-compression element with two

degrees of freedom at each node-translation in the nodal x and y directions.

The element is coupled in y direction with PLANEelement at each of its node

to simulate the deflection characteristics of beam.

Two nodes, the cross-sectional area, an initial strain and the material

properties define the element. The element X-axis is oriented along the length

of the element from node I towards node J. The initial strain in the element is

given by 8/ L, where, 8 is the difference between the element length L and the

zero strain length.

The. solution output associated with the element is in the form of nodal

displacements included in the overall nodal solution.

The spar element assumes a straight bar axially loaded at its ends and is of

uniform properties from end to end. The length of the spar must be greater

than zero, so nodes J and I must not coincide. The spar must lie in an X-Y

plane.
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Fig. 3.5 LINKl 2D Spar:

The spar element assumes a straight bar axially loaded at its ends and is of

uniform properties from end to end. The length of the spar must be greater

than zero, so needs J and I must not coincide. The spar must lie in an X-V

plane and must have an area greater than zero. The temperature is assumed

to vary linearly along the length of the spar. The displacement function implies

a uniform stress in the spar. The initial strain is also used in calculating the

stress stiffness matrix, if any, for the first cumulative iteration.

3.3.5 Modeling of Cracks

Cracks are assuming in modeling, the nodes are coincident to each other in

the cracks zone. The coincident nodes are coupling, these are both in x and y

directions for the compression zone and only in y direction for the tension
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zone. For un-cracked condition, the coincident nodes in tension zone are

couple in x direction. The middle nodes of the crack point also couple in the

All the material properties of both concrete and reinforcement used in the

analysis have been taken within the elastic range. An analysis of the

idealization using the properties within the inelastic region is out of the scope

ident node

teel element

tee! element

Coincident node

Coincident node

t
Crack zone

Coincident node

t
Crack zone

Fig. 3.6 Nodes are in cracks zones
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same-way.

In Fig.3.6 node (26-30) are in same crack zone, nodes (15,22), are in same

point, similar things are for (16,23,29), (17,24), (18,25), (19,26), (20,27,30),

(21,25). Nodes (36,51) are in another crack wne, nodes (36,43) are also in

same point.

3.4 MATERIAL PROPERTIES
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of this thesis and open fdr future endeavour.

The following material properties were used:

Table 3.1 Various Material Properties.

Material Element Type Modulus of Elasticity

Concrete PLANE42 E, = 57000Jl psi
PLANE82

Reinforcement LINKI Es = 29 X 106 psi
COMBINEl4

3.5 LOADS

As stated earlier, the analysis is performed for concentrated ,loading condition.

The starting load is less and final load is greater than cracking load. The load

is applied at the node.

3.6 BOUNDARY CONDITION

It has been stated earlier that, the scope of this project is analysis of deflection

of a cantilever and a two-span RC beam under concentrated loading condition.

For the cantilever, at one end there is a fixed support and the other end.is free

and for two-span beam one support is a hinge and other two supports are

roller. In the finite element modeling, the conformity of these conditions are

achieved by suitably restraining displacements in X and Y direction.
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In the finite element modeling the coincident nodes for reinforcement and

concrete element are restrained in the vertical Y direction at support. More

over, it is assumed that, crack has taken place at the support and for two-span

beam at the middle also. Here, the coincident nodes are restrained against

both vertical and horizontal displacement. It is illustrated in Fig.3.7 for a

cantilever beam.



\ Y Couplingx, YCoupling~

~
x, Y Support restrained

Fig.3.7 Simplified Coupling and support Condition of a Cantilever R.C.C beam
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(From Eq.2.4)
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Examples:

DEFLECTIONOF A CANTILEVERR.C.C BEAM.

Reinforced concrete cantilever beam as shown in Fig.2.2 is subjected to a

concentrated load P = 4 kip at the free end. The beam has the dimension b =

10 inch, T = 18 inch, L =10 ft, Fe = 4000psi, n =10. The beam is reinforced

with three No. 6 bars at the top and three No. 6 bars at the bottom. The

maximum deflection of the beam using the FEM is as follows:

Ee = 57000fl psi

Es = 29 x 106 psi.

kedge=539306.22 Ibjin

km;ddle=1078612.44Ibjin

kend=1348265.53Ibjin

Allowable cracks=2 nos.

Location of first crack 5.7142 inches from left.

Location of the second crack 11.42857 inch from left.

Total number of 4 noded solid element (Plane-42) below bottom layer steel
element (linkl) = 42 nos.

Total number of 4 noded solid element (Plane-42) above top layer steel element
(linkl) = 42 nos.

Total number of 8 noded solid element (Plane-82) = 42 nos.

Total number of steel element (Iinkl) = 42 nos.

Total number of Combinl4 element = 44 nos.

Total number of nodes = 331 nos.

0= 0.1945 inch.
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Crack opening

/'

/'

/

/'

/'

/' -
/'

/'

/'

/'

/'

/'

/'

Fig. 3.9 (bl The crack opening in deflected shape in close-up view.
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DEFLECTIONOF ATWO- SPANR.C.C BEAM.

Reinforced concrete two span beam as shown in Fig. 2.3 is subjected to a

concentrated load P = 13 kip at mid of the span. The beam has the

dimensions b = 10 inch, T = 15 inch. The beam is reinforced with three NO.6

bars at the top and three NO.6 bars at the bottom. The maximum deflection of

the beam using the Finite Element method is as follows:

E, = 57000[l psi

Es =29xl0
6 Psi.

Allowable cracks=3x3=9 nos.

Middle of the first span is the location of first 3 cracks.

Middle support is the location of second 3 cracks.

Middle of the second span is the location of third 3 cracks.

Total number of 4 noded solid element (Plane-42) below bottom layer steel

element (linkl) = 84 nos.

Total number of 4 noded solid element (Plane-42) above top layer steel element

(linkl) = 84 nos.

Total number of 8 noded solid element (Plane-82) = 84 nos.

Total number of steel element (linkl) = 84 nos.

Total number of Combin 14 element = 86 nos.

Total number of nodes = 660 nos.

o = -0.15772 inch
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Crack opening

1'-1 ! Crack opening
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Fig. 3.10 (bl The crack opening in deflected shape in close-up view.
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Chapter 4

SENSITIVITY ANALYSIS

4.1 INTRODUCTION

The essential details of the modeling and the analysis of the proposed RC.C

beam have been discussed in Chapter 2 and in Chapter 3. This Chapter aims

at studying the deflection behavior of the modeled beam under different

parametric conditions. The objective of this study, as described in Chapter-I,

is to investigate analytical relationship between different geometric and

material parameters and the deflection characteristics of a cantilever and a

two-span RC.C beam. Towards its achievement, a sensitivity analysis is

performed to establish the relative importance of these parameters on such

behavior of RC.C beam. Once this has been done qualitatively, a quantitative
interpretation is relatively a simple task.

4.2 SCOPE OF THE SENSITIVITY ANALYSIS

Deflection behavior depends on a numerous number of variables. However, all

these variables do not equally contribute to the deflection. Sensitivity analysis

described in this chapter, hence includes a selected number of parameters

that have been considered to have major effect on the deflection characteristic.

of a cantilever and a two-span RC.C beam. It is to be mentioned here that, the

selection of parameters may be far from being exhaustive and there is a good

possibility of the existence of such parameters that may have pronounced

effects and are not included in the study.
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Also, the results of the present analyses are subjected to the limitations

inherent in the scope of range of parameters considered. The parameters

examined and the limits of present study are discussed in the following

sections.

4.2.1 Total numbers of cracks

Assumption concerning the number of cracks has a significant effect over

deflection. It has been observed that if number of cracks increases the

deflection also increases for finite element analysis.

4.2.2 Geometric Parameters

The only geometric dimension of the modeled arrangement that has been

studied in the sensitivity analysis is the effective depth of the beam. This has

been taken that the deflection of a beam decreases with an increase in the
c

effective depth and usually cracks are prominent within the effective depth of

the beam and hence, this parameter has significant effect on the deflection

characteristics.

4.2.3 Material Parameters

Various material parameters that have been subjected to parametric study are:

• Percentage of reinforcement or Steel ratio, p

• Specified compressive strength of concrete, !.'.

• Specified tensile strength of concrete, /,.
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4.3 BASIC APPROACH TO SENSITIVITY ANALYSIS

The general idea of paranletric study or a number of independent paranleters

embodies the fact that, at a single instance only one variable should be allowed

to vary while all other paranleters are fIxed at some initial value. If two or more

paranleters are allowed to vary it may create confusion in the results of the

sensitivity analysis and their interpretation. Following this ideology initial

values for all the paranleters in the study were fIxed at the very onset of the

sensitivity analysis. As the paranleters are varied one at a time it is expected

that they remain within certain bounds. Hence, the investigation specifIed a

fIxed range for all variables within which the actual work of sensitivity analysis

is carried out.

4.4 PARAMETERS AND THEIR RANGES

The following table summarIzes the scope and initial values of the different

variables used in the paranletric study. The beanl width remains constant at,
10 inch throughout the whole investigation.

Table 4.1 PARAMETERS AND THEIR RANGES

Paranleter Reference Range

Value

Beanl Size 1O"x18" 10"x12", 10"x15", 10"x18", 10"x21", and

lO"x24",

Steel Ratio 1.056% 0.48%, 0.744%, 1.056%, 1.44% and

1.896%

SpecifIed Compressive 4000 psi 3000 psi, 3500 psi, 4000 psi, 4500 psi,
Strength of Concrete and 5000 psi.

Bond stress 252.98 psi 189.73psi, 252.98 psi and 316.23 psi.
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4.5 RESULTS AND DISCUSSION OF SENSITIVITY ANALYSIS AND
COMPARISON WITHACI.

I
In the following sub-sections the findings of the sensitivity analysis are

discussed by referring to appropriate Figs. and plots. Eventually, this

parametric study will lead to formulate an analytical relationship, for deflection

of a cantilever and a two-span beam due to concentrated loading and various

geometric and material parameters

4.5.1 Total numbers of cracks

In finite element modeling and investigation of beam deflection, it is essential

that the model be a proper representative of the actual beam. Otherwise

spurious results may be obtained, since pre-defined cracks are incorporating

here, it is necessary that the cracks be properly modeled to reflect a beam with

cracked section.

An investigation is carried out with different number of cracks under same

loading and other conditions to study the defection characteristics of beams.

FigA.l.a through FigA.l.d represents the variation of deflection of the free end

of the reference cantilever beam (Table 4.1). For this beam the minimum load

to produce flexural cracks is Pc, = 2.134 kip, therefore at 2 kip (Fig. 4.1a)

applied load, section will be un-cracked all through. the beam. Hence, any

crack introduced in the finite element model will make the beam more flexible

and shall results in higher deflection than expected. This phenomena is

revealed in fig 4.1.a. In this figure it has been observed that the deflection

values given by ACI method is close to the same given by finite element

analysis for no crack condition, for one or more number of cracks, finite

element analysis gives higher values of deflection than ACImethod. When the

applied load is increased to 4 kip, it is higher than the cracking load. Finite
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element method gives lower values of deflection (Fig. 4.1b, Fig. 4.1c, Fig. 4.1d)

than ACImethod when the applied load is increased to 8 kip, it is also higher

than the cracking load P" = 2134 lbs, as a result cracked sections are

developed in the beam. Instead of gross moment of inertia J" effective moment

of inertia I,now comes into play making the beam flexible. This I,is effective

allover the beam, whereas in actual situation cracked section will be

developed only near the support of the Cantilever beam, where bending

moments Ma are greater than the cracking moment M",

Thus ACI formula considers the beam more flexible than actual. Fig 4.1b

shows that deflection predicted by ACI method is higher than finite element

analysis, in finite element analysis cracks are introduced only near the support

making the beam less flexible. This resulted in lower deflection produced by

finite element analysis.

When the number of cracks is increased, the beam gradually becomes more

flexible which results in higher deflection as seen from fig: 4.lb. The similar

phenomena are also observed in fig 4.1c and 4.Id for load 6Kip and 8Kip

respectively. Fig. 4.2a through 4.2d shows the deflection characteristics of the

two-span continuous beam, for this beam the minimum load to produce

cracks is 5270 lbs, for any load below this value, the whole beam shall remain

un-cracked, In such cases it is observed from Fig 4.2a, 4.2b, and also from

4.2c that the deflection given by ACI formula are close to these given by FE

analysis for no crack conditions, introduction of cracks in the FE model for

such ranges of load shall make the model more flexible resulting in higher

deflection than ACI as seen in these figures. At load at 8kip crack section are

developed in the beam, causing ACI formula to predict higher deflection than

FE analysis for no crack condition. However for 3 cracks and 9 cracks in FE

model deflection are higher than those predicted by ACI.



Span length = 10 ft; j, = 4...J};:
Load, P 2000 Ibs<Pa; Depth, T = 18 inch;

Steel area, A, = 1.32 inch2; };: = 4,000 psi;

~T
= 2134.531bs No of cracks = Variable (for FEM)

Beam Width = 10 inch; = Full (forACI);
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Data for Fig. 4.1a

Fig.4.1a Influence of no. of cracks
at load = 2kip for a cantilever beam
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Fig.4.1 b Influence of no. of cracks
at load = 4kip for a cantilever beam

Data for Fig. 4.1b

Span length = 10ft; It = 4--1l
Load, P = 40001bs>Pa; Depth, T = 18 inch;

Steel area, As = 1.32 inch'; l = 4,000 psi;

Pc:/'
= 2134.53 Ibs No of cracks = Variable (for FEM)

Beam Width = 10 inch; . = Full (for ACI);
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Span length = 10ft; It = 4'1/l
Load, P = 6000 lbs>Pc,; Depth, T = 18 inch;

Steel area, As = 1.32 inch2; l = 4,000 psi;

Pcr = 2134.531bs No of cracks = Variable (for FEM)

Beam Width = 10 inch; = Full (for ACI);
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Fig.4.1c Influence of no. of cracks
at load = 6kip for a cantilever beapl

1

0.500

0.450

0.400

gO.350
.~
cO.300.~
@0.250

'.0
&l0.200
c;::
80.150
0.100

0.050

0.000
o



Span length lOft; It = 4..J.<

Load, P = 8000 Ibs>Pc,; Depth, T = 18 inch;

Steel area, A 5 = 1.32 inch'; l = 4,000 psi;

Per = 2134.531bs No of cracks = Variable (for FEM)

Beam Width = 10 inch; = Full (for ACI);
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Fig.4.1d Influence of no. of cracks
at load= Skip for a cantilever beam
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Data for Fig. 4.2a

Span length = 15ft + 15ft; It = 4,)J:
Load, P = 2000 lbs< Pc,; Depth, T = 15 inch;

Steel area, As 1.32 inch2; J: = 4,000 psi;

PCI' 5270.461bs No of cracks = Variable (for FEM)

Beam Width = 10 inch; = Full (for ACI);
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Fig.4.2a Influence of no. of cracks
at load = 2kip for a twospan beam.
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Span length 15ft + 15ft; I, = 4..)!c'

Load, P = 4000 lbs< Pcr; Depth, T = 15 inch;

Steel area, As 1.32 inch'; l = 4,000 psi;

PCI' = 5270.461bs No of cracks = Variable (forFEM)

Beam Width 10 inch; = Full (forACI);

I"
J \
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Fig.4.2b Influence of no. of cracks
at load= 4kip for a twos pan beam
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Fig.4.2c Influence of no. of cracks
at p=6kip for a twospan beam

Data for Fig. 4.2c

0.08

0.07

0.06..c: --ACI()

c 0.05 --FEM.~
c.~
c 0.040.~.•..•
()
<l) 0.03

""<l)0
0.02

O.OI

0
0 3 6 9 12

No. of cracks

Span length 15ft + 15ft; It = 4..J[
Load, P 6000 Ibs> Pc'; Depth, T = 15 inch;

Steel area, As = 1.32 inch2; [ = 4,000 psi;

~.r 5270.461bs No of cracks = Variable (for FEM)

Beam Wirlth = 10 inch; = Full (for ACI);
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Data for Fig. 4.2d

Fig.4.2d Influence of no. of cracks
at p=8kip for a twos pan
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..<::u
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I':.~
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'.;:1
u
O.J 0.04

""O.J --ACTCl
0.02 --FEM

0
0 3 6 9 12

No. of cracks

Span length = 15ft + 15ft; It = 4...Jf

Load,P 8000 Ibs> Pc,; Depth, T = 15 inch;

Steel area, As 1.32 inch2; f = 4,000 psi;

PCI' 5270.461bs No of.cracks = Variable (for FEM)

Beam Width = 10 inch; = Full (forACT);
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Data for Fig. 4.2e

Fig.4.2e Influence of no. of cracks
at load = 13kip for a twospan beam.

Span length 15ft + 15ft; It = 4.Jt;
Load, P 13000 lbs> Pc,; Depth, T = 15 inch;

Steel area, A s = 1.32 inch'; 1;: = 4,000 psi;

P" = 5270.461bs No of cracks = Variable (for FEM)

Beam Width = 10 inch; = Full (for ACI);

0.18

0.15

..0:
0.12u

>::.~
>::.~
>:: 0.090.~...
u
"<;:l
" 0.06Cl

--ACI
0.03 --FEM

0
0 3 6 9 12
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Span length = 15ft + 15ft; ft = 4..Jl
Load, P = 15000 Ibs> Pa; Depth, T = 15 inch;

Steel area, As 1.32 inch'; l = 4,000 psi;

~'r
= 5270.461bs No of cracks = Variable (for FEM)

Beam Width = 10 inch; = Full (for ACI);
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Data for Fig. 4.2f

3

FIg. 4.2f Influence of no. of cracks
at p=15kip for a twospan beam
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4.5.2. Effect of Steel Ratio, p

Changing steel ratio causes a change in the moment of inertia of a cracked

section, but this change is not liner as may be seen from the complex Eq. 2.7

and 2.8. However it is certain that increasing steel ratio shall increase Ie,

thereby decreasing the deflection, this phenomenon is revealed from Fig. 4.3a.

It is also observed that AClmethod predicts higher deflection than FE analysis.

FigA.3b shows similar deflection characteristics for beam depth of 18", and

21", however, it has been observed that the deflection value predicted by ACl

and FE analysis agrees each other closely. For beam depth of 24" the situation

is reverse as seen from fig 4.3d ACl method gives lower value of FE analysis,

and the steel ratio is seen to have no effect on deflection.

For FE analysis, deflection decreases with increase in steel ratio and

approaches the AClvalue. It may be noted that the FE analysis represents in

Fig. 4.3.a through Fig. 4.3d corresponds to two numbers of cracks in the FE

model and applied load of p= 4000 Ibs, for the last case of fig. 4.3d with beam

depth of 24" this value of P is almost same with the crackingJoad Pc,.

Therefore, FE analysis with two cracks has probably made the model more

flexible than the un-cracked condition, resulting in higher deflection than ACI.

FigA.3e and FigA.3f show the deflection characteristics of two-span

continuous beam with variable steel ratio. The difference is very low for the

same load (13kip> P,,) with respect to 9 crack and 3 crack.

From FigA.la to FigA.ld, it is observed that the difference between no crack

and single crack is high, but the same for single crack, two crack and three

crack is low. So, for observation the effect of steel ratio, strength properties,

and effectivedepth, two numbers of pre-defined cracks are selected.

i



Span length = 10ft; It = 4";.t:'

Load,P = 4000Ibs>P",; Depth, T = 15 inch;
Steel area, As Variable; J;' = 4,000 psi;

~.r
= 1482.311bs No of cracks = 2 Nos ( for FEM)

Beam Width 10 inch; = Full (for ACI);
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Fig.4.3a Influence of steel ratio for
a cantilever beam of depth =15"
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Data for Fig. 4.3b
Span length = lOft; It = 4;/l

Load,P = 4000 lbs>Pc,; Depth, T = 18 inch;
Steel area, A s = Variable; l = 4,000 psi;

~.r = 2136.531bs No of cracks ,,; 2 Nos ( for FEM)

Beam Width = 10 inch; = Full (forACI);
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Fig.4.3b Influence of steel ratio for
a cantilever beam of depth =18"
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Steel ratio

0.005

Fig.4.3c Influence of steel ratio for
a cantilever beam of depth =21"

Data for Fig. 4.3c
Span length = 10ft; It = 4..J;;:

Load,P = 4000 Ibs>Pc,; Depth, T = 21 inch;
Steel area, As = Variable; l = 4,000 psi;

PCI' 2905.341bs No of cracks =2 Nos (for FEM)

Beam Width = 10 inch; = Full (forACI);
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Data for Fig. 4.3d
Span length = lOft; It = 4;/1.'

Load, P 4000 lbs>Pc'; Depth, T = 24 inch;
Steel area, As = Variable; l = 4,000 psi;

~.I' = 3794.731bs No of cracks = 2 Nos (for FEM)
Beam Width = 10 inch; = Full (forACI);
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Fig.4.3d Influence of steel ratio for
a cantilever beam of depth =24"
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Data for Fig. 4.3e
Span length = 15ft + 15ft; It = 4--J.l

Load, P = 13000 Depth, T = 15 inch;
Ibs>Pc,;

Steel area, As = Variable; l = 4,000 psi;

~'I'
= 5270lbs No of cracks = 9 Nos (for FEM)

Beam Width = 10 inch; = Full (for ACI);

{\. (
V
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Fig.4.3e Influence of steel ratio on deflection of
a two-span beam. (span=15'-O"+15'-O"=30'_O")
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Fig. 4.3f Influence of steel ratio on deflection of a two-
span beam 3xl =3 cracks
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Data for Fig. 4.3f
Span length = 15ft + 15ft; It = 4-1l

Load, P 13000 Depth, T = 15 inch;
Ibs>Pc,;

Steel area, As = Variable; l = 4,000 psi;

PCI' = 7589.461bs No of cracks = 3 Nos (for FEM)

Beam Width 10 inch; = Full (for ACI);
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4.5.3 Strength properties
In ACI method that may have any effect on deflection is the modulus of

elasticity Ec, which is directly depend on f~according to Eq. 2.4, therefore

increasing f~shall result in higher values of Ec, Which will make the structure

more stiff. Thus higher value of f~shall result in smaller deflection, for cross

section, dimension, steel ratio, etc. remain unchanged.

In FE modeling the relationship f~with deflection is similar, therefore the

nature ofvariation of deflection with changing f~is similar as in ACImethod.

This is depicted in Fig. 4.4, and has been observed that in both ACI method

and FE analysis; deflection is gradually reduced with increasing f~ for a

cantilever beam.

However it is also observed that FE analysis produces smaller deflection than

ACI method. The influence of concrete tensile strength Ii appears to have no

significant effect on deflection as can be seen from Fig. 4.5. In this figure both

the curves corresponding to ACI method and FE analy<lis are horizontal,

showing that concrete tensile strength does not influence the deflection.
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Fig 4.4 Influence of concrete compressive strenth
on deflection of a cantilever standard beam

Data for Fig 4.4
Span length ~ 10ft;

Load,P ~ 4000 Ibs<Pa; Depth, T ~ 18 inch;
Steel area, As ~ 1.32 inch'; J:: ~ Variable;

~'I'
~ 7589.461bs No of cracks 2 Nos (for FEM)

Beam Width 10 inch; ~ Full (for ACI);
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Fig. 4.5 Influence of concrete tensile capacity
on deflection of a standard cantilever beam,

Data for Fig. 4.5
Span length ~ 10ft; ft ~ Variable;

Load, P 4000 Ibs<Pa; Depth, T ~ 18 inch;
Steel area, As 1.32 inch2; fe' ~ 4,000 psi;

/>,..,. ~ 7589.461bs No of cracks ~ 2 Nos (for FEM)

Beam Width 10 inch; ~ Full (forACI);



Fig.4.6a Influence of depth on deflection
of a standard cantilever beam
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Data for Fig. 4.6a
Span length = lOft;
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"..,0:: 0.20..,
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Depthin inch

Load, P = 40001bs; Depth, T = Variable;
Top Steel area, As = 1.32 inch2; f. = 4,000 psi;

Batt. Steel area, As = 1.32 inch2; No of cracks = 2 Nos (for FEM)
Beam Width 10 inch; = Full (for ACI);
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Fig.4.6b Influence of depth on deflection of a
cantilever beam (load=8kip)
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Data for Fig. 4.6b
Span length = 10ft;
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4.5.4 Variation of Effective Depth, d

Depth of a beam has direct influence on deflection. A change in beam depth

causes change in 1" effecting the deflection significantly. In this study with

the cantilever beam, beam depths were varied from 15" to 24". The deflection

at free end obtained from the ACI formulae and FE analyses are plotted in Fig.
4.6.a and Fig. 4.6b against beam depth.

Load,P = 8000lbs; Depth, T = Variable;
Top Steel area, As = 1.32 inch2; ;;: = 4,000 psi;

Bott. Steel area, As = 1.32 inch2; No of cracks = 2 Nos (for FEM)
Beam Width = 10 inch; = Full (forACI);
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FigA.6c Influence of beam depth on deflection for
a two span beam. (span=lS'-O"+lS'-O"=30'_O")

Data for Fig. 4.6c
Span length ~ 15ft + 15ft;
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It is clearly observed that beam deflection decreases with increasing depth.

However, as observed before ACI method produces more deflection than FE

analysis. Fig. 4.6c and 4.6d show similar graphs for two-span beam, in this

graph it has been observed that FE analysis is producing deflection higher

than ACImethod by almost a constant amount for assuming 9 and 3 cracks,
the difference is smaller for 15" depth than 24" depth.

Load, P ~ 130001bs; Depth, T Variable;
Top Steel area, As ~ 1.32 inch'; t;' ~ 4,000 psi;
Bott. Steel area, As ~ 1.32 inch'; No of cracks ~ 9 Nos ( for FEM)

Beam Width ~ 10 inch; ~ FuJi (forACI);



Fig.4.6d Influence of beam depth on deflection for a
two span beam(Span=lS'-O"+lS'-O"=30'_O" and Total

no. of cracks=3xl=3)
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Data for Fig. 4.6d
Span length = 15ft + 15ft; I, = 4"1:

Load, P = 130001bs; Depth, T = Variable;
Top Steel area, As 1.32 inch2; J;: = 4,000 psi;

Batt. Steel area, As = 1.32 inch2; No of cracks = 3 Nos (for FEM)

Beam Width = 10 inch; = Full (for ACI);



Chapter 5

CONCLUSION

5.1 GENERAL

Conclusions are derived from the finite element analysis of the prototype and

from the sensitivity analysis of defection variables that are likely to have

noticeable effects. Unless otherwise specified, the conclusions listed in this

chapter are strictly applicable to deflection of beams with completely linear

behavior of material properties. Some aspects of relevant future research are

also identified here.

5.2 SUMMARYOF THE STUDY

The important conclusions derived from the parametric study of the deflection

characteristics of RCCbeams are as follows:

The deflection decreases with an increasing value of effective depth. Steel ratio

plays a significant role over deflection. Deflection has a non-linear variation

with steel ratio. It shows that, increasing the steel ratio. can decrease

deflection.

It is observed that the ACI method generally overestimates the deflection as

compared to FE analysis. This may due to the fact that in ACI method Ie
becomes effective allover the span making the beam more flexible. In FE

analysis, however, cracks are only at certain locations making only those
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locations flexible while the un-cracked zone remains stiffer. This makes the

overall stiffness of the beam higher than ACIresulting in smaller deflection.

Deflection of beam is influenced by number of pre-defined cracks, loads,

coupling in nodes, etc. For the same values of other parameters, it gives

different result for different number of pre-defined cracks, so number of pre-

defined cracks is very important thing. In finite element modeling and

investigation of any physical problem like beam deflection, it is essential that

the model be a proper representative of the actual beam. Otherwise spurious

results may be obtained, since pre-defined cracks are incorporated here, it is

necessary that the cracks be properly modeled to reflect a beam with cracked

section. If applied load is less than cracking load, then the pre-defined cracks

made the beam more flexible and gives conservative results in FE analysis.

The applied value of load has a significant role in deflection. For large amount

of loading, number of cracks must be large. Because number of cracks

increases with increasing load.

5.3 RECOMMENDATION FOR FUTURE INVESTIGATION

The objective of this study was to analyze the defection behaviors of RCCbeam

relating its flexibility characteristics with its geometric and materials variables.

However, a lot of research is needed in future to fully comprehend the

deflection behaviors of RCC beam. The recommendation for future
investigation is as follows:

From these investigations, it has been shown that, for concentrated loading

condition the deflection value obtained by ACImethod is more than that of FE

method. More investigation is required to clarify this phenomenon.
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Laboratory testing may corroborate the findings of this study. The parameters

to be considered must be the same as those used in the FE analysis.

Linear elastic analysis was made through out the present study. A finite

element analysis with non-linear material properties can be attempted in
future ..

Sensitivity analysis may be performed for other parameters that are not

included in the study. The effect of beam length can be analyzed.

Simplified design nomographs may be revised to aid design engineers in
incorporating deflection behaviors of RCCbeam.

Potentials of deflection behaviors in large RCC construction may be explored.
This will lead to the design of large RCCconstruction.
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