HEURISTIC OPTIMIZATION ALGORITHM BASED

LINE BALANCING IN A FUZZY ENVIRONMENT

BY

FERDOUS SARWAR

DEPARTMENT OF INDUSTRIAL AND PRODUCTION FNGINEERING BANGIADESII UNIVERSITY OF ENGINEERING AND TECHNOLOGY DHAKA, BANGLADESII

CERTIFICATE OF APPROVAL

The thesis titled "Heuristic Optimization Algosithm Based Linte Batancing in a Fuzzy Environment" submitted by Ferdous Sarwar, Roll No: 040508004 P, Session: April, 2005 has been accepted as satisfactory in partial fulfillment of the requirement for the degrec of Haster of Scitace in Industrial and Production Enginecring on Aprit 11, 2007.

Board of Examiners

Honcror	
Dr. M. Alssan Akhtar Hasin	Chaiman (Supervisor)
Professor	
Department of Industrial and Production Engineering	
BUET', Dhaka.	
Dr. A. K. M. Masud	Member
Associate Professor	
Department of Industrial and Production Engineering	
BUET, Dhaka.	
A/urew	
Dr. Abdullahil Azeem	Member
Assistant Professor	
Department of Industrial and Production Engineering	
BUET, Dhaka.	
Dr. Nikhil Ranjan Dhar	Member (Ex-officio)
Professor and Head	
Department of Industrial and lroduction Engineering BUET, Elaka	
Qugnvanm	
Dt-Md. Mostora Akbar	Menber (External)
Associate Professor	
Department of Computer Sclence and Engineering BUET, Dhaka.	

Department of Industrial and Production Enginecring Bangladesh University of Engineering and T'echnology

April, 2007

CANDIDATE'S DECLARATION

It is hereby declared that this thesis or any part of thas not been submited elscwhere for the award of any degree or diploma.

Ferdous Sarwat

To the Alnighty
To my family

ACKNOWLEDGEMENT

All praises to Allah, the most bencvoient and the Almighty, for His boundless grace in successful completion of this thesis.

I would like to express my sincere respect and gratitude to my thesis supervisor, Dr. M. Ahsan Akhtar Hasin, Professor of the Department of Industrial and Production Engineering (IPE), Bangladesh University of Engineering and Technology (BUET), Dhaka, for his thoughtful suggestions, constant guidance and encouragement throughout the progress of this rescarch work.

1 also express my profound thanks and gratitude to Dr. Nikhit Ranjan Dhar, Professor and Hcad, Department of IPE, BUET, Dr. A. K. M. Masud, Associate Professor, Depatment of IPE, BUET, Dr. Abdullahil Azecm, Assistant Professor, Department of IPE, BUET and Dr. Md. Mostofa Akbar, Associatc Professor, Dcpartment of CSE, BUET for therr support and kind interest in this research.

I am grateful to my younger brother Mr. Shahriar Rouf, undergraduate student, CSE, BUET for helping me out with computer coding.

I an very much thankful to Engr. Faruque-ul-lslam, Executive, laming \& Co-ordination, RahimAfrooz Batteries Limited (RBL) and Ms Alina Mozumder, St. Officer, Planting \& Coordination, RBL, for their cordial encouragenent and sincere help during the data collection phase in case study.

I am grateful to all of my colleagues of the Dcpartment of Industrial and Production Enginecring (IPE), Bangladesh University of Enginecring and Technology (BUET), Dhaka for their cooperation and motivation during the study.

Finally, I would like to extend my sincere thanks to my parents and beloved wife whose continuous inspiration, sacrifice and support encouraged me to complete the thesis successfully.

ABSTRACT

Assembly Line Balancing (ALB) is onc of the important problems of production management. As small improvements in the performance of the system can lead to significant monctary consequences, it is of utmost importance to develop practical solution procedures that yield high-quality design decisions with minmal computational requirements. Due to the NP-hard nature of the ALB problem, heuristics are gencrally used to solve real life problems. The constraints and parameters of fuzsy nature exist in tune balancing probtem. Fuzzy oplimization can be implenented effectively in solving ASLBP. Fu can appropriatcly represent imprecisc parameters, and can be manupulated through different operations on fuzzy sets or fuzzy numbers. Since imprecisc parameters are trcaled as imprecise values instead of precise ones, the process will be more powerful and its results more credible. An cflicient heuristic to solve the fizzy single-model ALB problem has been presented in this research work. The proposed heuristic is a Genetic Alyorithm (GA) with a special chromosome structure that is efficient to handle furzy job time through the evolution process. Elitism is also implemented in the model by using filness function value. In this context, the proposed approach can be viewed as a unified framework which combines several new concepts of GA in the algorithmic design.

TABLE OF CONTENTS

Acknowledgement vi
Abstract vil
Table of Contents viii
List of Tables xiii
List of Figures xiv
List of Abbreviations xy
List of Symbols xvi
CHAPTER 1 INTRODUCTION 1-2
1.1Gencral Introduction1
1.2 Rationale of the Study 1Objective of the Study2
1.4 Mcthodology 2
CHAPTER 2 LITERATURE REVIEW 3-17
2.1Introduction3
2.2
2.3
Simple Assembly Line Balancing Problem 3 (SALBP)
Heuristic Methods in Line Balancing 4
2.3.1 Constructive Procedures 4
2.3.1.1 Priority Rule Based Procedure for SALBP-1 5
2.3.1.2 Single Pass Decision Rules 7
2.3.1.3 Arcus' Biased Sampling Procedure (Arcus) 8
2.3.2 Backtracking Decision Rules 8
2.3.2.1 Hoffman's Enumeration Procedurc 9
2.3.2.2 Hoffman's Modificd Enumeration Procedure 9
2.3.2.3 Dar-El's Line Balancing Heuristic 10
2.3 .3 Optimal Decision Secking Rules 10
2.3.3.1 Branch and Bound Methods 10
2.3.3.2 Integer Programming 10
2.3.3.3 Dynamic Programming 11
2.3.3.4 Multiple Solutions Technique (MUS'5) 11
2.3 .4
Local Search and Mctastrategies 11
2.3.4.1 Tabu Search for SALBP-1 12
2.3.4.2 Simulated Anncaling (SA) Procedures 12
2.3.4.3 Ant-Colony Algorithnn Approach 13
2.3.4.4 Genctic Algorithm 13
2.3.5 Fuzzy Models 15
2.3 .6 Cost and Profit-Oriented Objectives 14
2.3.6.1 Cost-Oriented Models 16
2.3.6.2 Profit-Oriented Models 17
CIIAPTER 3 FUZZY LOGIC 18.38
3.1Introduction18
3.2 Crisp Sets and Characteristic Functions 193.2 .1
Characteristic liunctions 20
3.3Fuzzy Set Theory20
3.3.1 Definition 20
3.3.2 Fuzzy Subsets 21
3.3 .3 Fuzzy Scts Vs. Crisp Sets 23
3.3.4 Fuzzy Sets and Membership Functions 24
3.3 .5 Characteristic Functions and Membership 25Function: A ComparisonThe Notation of Fuzzy Sets26
3.4 Fuzzy Sets: Basic Concepts 283.5
3.3.6
Fundamental Operations of Fuzzy Sets 28
3.5.1 Union of Fuzsy set A and B 29
3.5.2 Intersection of Fuzcy set A and B 29
3.5.3 Complement of Flwey set A and B 29
3.5 .4 The Law of Excluded Middle 29
3.5 .5 The Law of Contradiction 29
3.5 .6 Equality and Inclusion of Fuzzy scl 30

Decomposition Principle 31
3.10
3.11
3.12
3.13
3.14
3.14 .1

CHAPTER 4
4.1
4.2
4.3
4.4
4.5
4.6
4.6 .1
4.6 .2
4.6 .3
4.6 .4
4.7
4.7 .1
4.7.1

Crossover Tcchuiques
4.7.1.1 One Point Crossover: 44
4.7.1.2 Two Point Crossover 44
4.7.1.3 Cut and Splice 45
4.7.1.4 Uniform Crossover and Half Uniform Crossover 45
4.7.2 Crossover for Ordered Chromosomes 45
4.7.3 Crossover Biases . 46
4.7.3.1 Partially Matching Crossover (PMX) 46
4.7.3.2 Order Crossover (OX) 47
4.7.3.3 Cycle Crossover (CX) 48
4.8 Fítness Function 49
4.8.1 Fitness Scaling 49
4.9 Selection 50
4.10 Reproduction 50
4.11. Termination 51
4.12 Variant 52
CHAPTER 5 PROBLEM FORMULATION 53-61
5.1 Introduction 53
5.2 Mathematical Model 55
5.3 Genetic Atgorithm Searching Method 57
5.4 Standard Encoding 58
5.5 Initial Population 59
5.6
Crossover Opcrator 595.7Mutation Operator60
5.8 Selcetion Method 60
5.9 Finness Functions 61
5.10
CHAPTER 6Stopping Condition61
6.1RESULT ANALYSIS62.71
Computational Result 62
6.2Benchmarking with EUREKA64
6.3Benchmarking with SALOME65
6.46.5Benchmarking with 1-Iybred GA66
6.6Fuzzy ALBP67
6.7Comparison of Eight Mcthods68Convergence Analysis69
CHAPTER 7 CASE S'UDDY 72-77
7.1 Introduction 72
7.2 Overvicw of Problem Area 73
7.3
7.4Some Important Delinitions74Specific Problem Area: Assembly Ine in RBL-275
7.4.1 Assembly Operations 75
7.5 Result 77
CONCLUSION AND RECOMMENDATION 78
8.1 Conclusion 78
8.2 Recommendation 78
References 79
Appendices
Appendix A: Benchmark data with EUREKA 88
Appendix B: Benclmark data with SALOME 90
Appendix C: Benchmark data with Hybrid GA 99
Algorithm
Appendix D: Program Code 101

LIST OF TABLES

Table NoTitle
2.1 Types of SALBP
Page No4
2.2 Prionity Rules 5
3.1 Degree of OVERWEIGHT and MODERATE 24
Height
3.2 The value of characterstic functions in crisp sets 25
3.3 Value of membership functions in fuzzy sets 25
6.1 Problem Characteristics 63
6.2 Benchmarking with EUREKA 64
6.3 Benchmarking with SALOME 65
6.4 Benchnarking with Hybrid GA 66
6.5 Fuzzy Task Time 67
6.6 Compatison of Eight Methods on the 70 Task 68
Problems
Problems
7.1 Precedence Graph 76
7.2 Production Quantity of Battery 76
7.3 Fuzzy Task Time 77
Figure No Title Page No
2.1 Difference between Crisp and Fuzzy Scts 21
2.2 Degree of Tallness 22
3.2 Crisp Sets or Height 25
3.3 Fuzzy Sets of Height 26
$3.4 \alpha \quad \alpha$-cut and Decomposition Principle 31
3.5 Example of Extension Principic 32
3.6 Level λ Fuzzy Sct 37
4.1 One Point Crossover 44
4.2 Two Point Crossover 44
4.3 Cut and Splice 45

Biased Probabilıstic Choice (BPC)
Branch and Bound (B \& B)
Fitness Function Valuc (FFV)
Genctic Algorithm (GA)
Most Immediate First (MIF)
Mcmbership Function (MF)
Nondeterministic Polynomial-time Hard (NP-Hard)
Order Strength (OS)
Random Choice (RC)
Simplc Assembly Line Balancing Problem (SALBP)
Sinulated Anncaling (SA)
Time Variation (TV)
Triangular Fuzzy Number (TFN)
Traveling Salesman Problem (TSP)

LIST OF SYMBOLS

Membership Grade of $X \operatorname{In}$ Fuzzy Set A	$\mu_{A}(\alpha)$
Universal Quantifier	(\forall)
Alpha Cut of Fuzzy Sct A	$\left({ }^{\alpha} A\right)$
Supremum	$(s u p)$
Sct of all Nonnegative Real Numbers	$\left(\mathrm{R}^{+}\right)$
Charactcristic Functions of Crisp Set A	$\left(\chi_{A}\right)$
Strong Alpha Cut	$\left(^{\alpha+} A\right)$
Level Set of Fuzzy Set A	$\wedge(A)$

1.1 General Introduction

An assembly line is a flow-oriented production system where the productive units performing the operations, referred to as stations, are aligned in a serial manner. Line balancing problem deals with the assigument of tasks to workstations. The assembly line includes a scries of workstations, wherc product itcons are processed. To produce a product, it $1 s$ required to process a set of tasks (jobs). These tasks nust follow a given processing order called precedence relationship. The assembly line could be dedicated to produce for a single product model or multiple product models. The most common line balancing problem is Single-model assembly line balancing problem with deterministic/stochastic/fuzzy processing time (SALBP).

1.2 Rationale of the Study

In a typical line balancing problems, the requirement is often to distribute the tasks 10 workstations such that a certan objective (number of workstations, watal cost, production ratc, etc.) is oplumized and precedence relationship is not violated. The workstation time, which is the sum of times of all tasks assigned to that workstation, must not exceed the given cycle time. The processing time of tasks are also given. In gencral, the line balancing problem has scveral variances. The varicty could come from the requircrient, objective, or the form of processing time or the structure of the lines. The requrement of the problem is not only to altocate tasks to workstations but also to sequence product models to be assembled in the designing batcl/mixed-model lines or detcrmme optimal batch sizes for batch-model configuration. The objective could be other criteria deferent than number of workstations such as minimization of cycle time for a given number of workstations, minımization of balance delay time, etc. A deference between the cyele time and workstation time is called idle time The sum of fide time for all workstations is
called balance delay time. These objectives could also be taken into account simultaneously in the form of multi-criteria optimization problem. The processing time could be given in deterministic terms or from the stochastic processes or in the form of vagucness of fuzzy sets.

1.3 Objectives of the Study

The objectives of this research can be outlined as follows -

1. Analyze the existing assembly line balancing process (ASLBP-1)
2. Address uncertainty by incorporaling fuzzy task times and fuzzy constraints
3. Develop a heuristic optimization algotithm for ASLBP-1 for single linc.
4. Benchmark the proposed algorithm with an existing algorthm

1.4 Outline of Methodology

In order to carry out this study, steps that have been adopted are mentioned below:-
i. Analyzc the exısting assembly linc balancing process (ASLBP-1)
ii. Develop a heuristic optimization algorithm for ASLBP-1 for single line
iii. Benchmark the proposed algorithm with three existing algorithon
iv. Data collection:

To implement the dcveloped algorithm, data was collected from RalhimAfrooz Batteries Ltd at Ziranibazar, Gazijur. The required data type includes-

- Number of work stations that all battery variants under consideration pass.
- Number of identical machines avaitable in cach stage.
- Approximate fuzzy processing time required for each variant of batteries at cach stage.
- Approximate fuzzy cycle thme for each type of battery.
v. Finally, a nalyzing the performance of the developed a lgorithm by runing the computer program for different parameters.

CHAPTER 2

LJTERATURE REVIEW

2.1 Introduction

The line balancing problem is onc of the most traditional problens which has cvolved from the concept of division of labor, and became popular because of Henry Ford's famous "T-model". Despite its long history of development, line batancing study is still an attractive researeh topic today due to its relevancy to the everyday manufacturing and the diversity of system configurations. According to different system configurations, assembly linc can be classifice as single-model line, minedmodel line, and mult-model line. Single-model line only assentbles one product, while multiple products are assembled in cither mixed or multi-model line, but intermediate set-up is required in the latter case. In addition to serial line assembly, flexibility can be improved by the introduction of parallelism, ineluding parallel lines, parallel stations, and parallel tasks.

2.2 Simple Assembly Line Balancing Problem (SAIBP)

Most of the research in assembly line balancing has been devoted to modeling and solving the simple assembly line balancing problem (SALBP). This classical singlemodel problem contains the following main characteristics [1, 2]:

* mass-production of one homogeneous product;
- given production process;
- paced line with fixed cycle time c;
- detcrministic (and integral) operation times tj;
- no assignment restrictions besides the precedenee constraints,
- serial line layout with m stations;
- all stations are equally equipped with respect to machines and workers;
- maximize the line efficiency $E=t_{4 \mu m} /\left(\mathrm{m}^{\mathrm{c}}\right)$ with total job time $\mathrm{l}_{\text {surn }}$

Table 2.1: Types of SALBP

No. of stations (m)	Cycle Time, c	
	Given	Minimize
Given	SALBP-F	SALBP-2
Minimize	SALBP-I	SALBP-E

Several problem versions arise from varying the objective as shown in Table 2.1. SALBP-F is a feasibility problem which is to establish whether or not a feasible line balance exists for a given combination of m and c. SALBP-I and SALBPP-2 have a dual relationship, because the first minimizes in given a lixed c , while the second minimizes e (maximizes the production rate) given m. SALBP-E is the most general problen version maximizing the line efficiency thereby simultancously minimizing c and m considering their interrelationship.

2.3 Heuristic Methods in Line Balancing

A large varicty of heuristic approachcs to different versions of SALBP have been proposed in the last decadcs. While constructuve procedures constructing one or more feasible solution(s) were developed until the mid nmeties, improvement procedures using metastrategics like tabu scarch and genetic algorithms have been in the focus of researchers in the last decade.

2.3.1 Constructive Procedures

The majority of constructive procedures has been proposed for SALBP-1 and is based on priority rules, others are restricted enumerative procedures. The most recent comprehensive surveys of those approaches are given by Talbot el al. [3] and Scholl [2]. Furthemore, Boctor [4] and Ponnambalan el al. [5] also presented a detail survey on the constructive procedures.

2.3.1.1 Priority Rule Based Procedure for SALBP-1

Those procedures use priority values computed for the different tasks based on the task times and the precedence relations given. Some of the most effective ones are given in Table 2.1 [$3,6,7]$. in any casc, the tasks are sorted according to monincreasing priority values to get a prionity list.

Table 2.2: Prionity Rules

Name	Priority values
MaxT	Tasktime t_{f}
MaxPW	Positional weight
MaxF	Number of followers J
MaxTL	Tasktime over slack
MaxTS	Cunnulated positional weight
MaxCPW	Tasktime over latest station

By analogy with exact solution procedures, two construction schemes are relcvant for priority rule based approaches. They differ with respect to the manner in which the tasks to be assigned are selected out of the set of available tasks [7].

- Station-Oriented Procedures: They starl with the first station $(\mathrm{k}=1)$. The following stations arc considered successively. In each itcration, a task with highest priority which is assignable to the current station k is selected and assigned. When station k is loaded maximally, it is closed, and the next station $k+1$ is opened. For the rule MaxPW, this procedure is called ranked positional weight techniçuc by Helgcson and Butnic [8].
- Task-Oriented Procedures: Among all ayailable tasks, one will highest priority is chosen and assigned to the earlicst station to which it is
assignable. Depending on whether the set of available tasks is updated inunediately after assigning a task or after assignng all currently available tasks, task-oriented methods can be sabdivided into immediate-update-first and general-first-fit methods $[6,9]$.

Theoretical analyses show that both schemes obtain the same solution when the used priority rule is strongly monotonous, i.e., the priority value of any task j is smaller than that of cach predecessor $h \in \mathrm{Pj}^{\mathrm{j}}$. This is, e.g., true for MaxPW, Maxl ${ }^{7}$, and MaxCPW [2]. Computational experiments indicate that, in gerteral, station-oriented procedurcs get better results than task-oriented ons though no theoretical dominance exists [7]. These classical priority rules based procedures work unidirectionally in forward direction and construct a single fcasible solution. Improvements arc obtained by following approaches:

- Flexible Bidirectional Construction

The stations to be loaded are considered in forward and backward dircetion, simultaneously [7]. That is, a station-oriented procedure considers the carliest and the latest unloaded station at a time. Besides selceting a (forward or backward assignable) task by some priotity rule the (carliest or latcst) station to be considered next is chosen. Task-oriented procedures simultancously consider forward and backward available tasks and always choose the one with highest priority. Both approaches require defining reversed priority rules [2]. Dynamic prionity rules fteratively adapt the prioritics depending on the current partial solutions [4, 7] For example, MaxTS can be applied dynamically (in a uni/bidircctonal procedure) by modifying the earliest and latest stations according to the assignments made. Multipass heuristics repcatedly apply different or stochastic priority rulcs in order to find several solutions the best of which is taken $[3,10,1 t, 12]$.

Such procedures try to identify priority rules best suited to solving a certain problem instance. This is done randomly, on the basis of experiences with former rule applications and by exploiting problem structures [13, 14, 15].
a Reduction Tcchniques

Baybars [16] proposes a priority based procedure which involves heuristically reducing the problem size by some logical tests. Furthermore, Tonge [17], Frecman and Swain [18], and Fleszar and Hindi [19] proposed some alternative reduction techniques.

Combined Solutions

SATBP-1 can be interpreted as a shortest path problem wilh exponential numbers of nodes and ares. Each feasible solution can be represented by a path in such a graph. Thercforc, Pinto et al. [20] describe a two-stage solution approach. In the first step, a number of feasible solutions are determmed by a mulli-pass heuristic. These solutions are used to construct a subgraph of the complete graph in the second step of the procedure. For this subgraph, a shortest path problem is solved. That is, the outlined approach trics to combine parts or several feasible solutions in order to obtain an improved complete solution.

2.3.1.2 Single Pass Decision Rules

In this category, 13 single pass, single attribute, priority dispatch scheduling rules such as maximum tanked positional weight technique [8], maximum number of mmediate followers [21], maximum task time first [22] elc. are included. Each of the decision rules consists of a simple, computationally efficient, list-processing procedure that assigns tasks to work stations according to a task's computed prionity.

Operationally, in the implementation of cach of these procedure, a task is lirst assigned a n umerical priority specifies by the logic of the heuristic decision rulc. Then tasks that arc both precedence and cyele time feasible are placed on an available list. The task on the avalable !nst with the highest priority is assigned first. The available list is updated to rellect the possible addition of task that are now precedence feasible, and the amount of time available to be assigned to tasks in the work station is reduced by the task time of the assigned task. This process continucs for a station untll no more tasks can be assigned to 1 . The assignment process then continues to the next station, and so on, until all tasks have been assigned to some work station. When the Cinal task has been assigned, a complete balance has been obtained.

2.3.1.3 Arcus' Biased Sampling Procedure (ARCUS)

The Arcus procedure uses a biased sampling approach to generate feasiblo sequence of tasks for assignment to a workstation [23]. A fit fist, consisting of those tasks can be assigned to a work station is constructed and weights are assigned to each task. Tasks so assigned are removed from the fit list, and a new fit list, consisting of the tasks which can currently be assigned to a work station is constructed. The process continues until all tasks have been assigned to some work station.

2.3.2 Backtracking Dceision Rules

Most of the Simple Assembly Line Balancing (SALB) techniques, which consider only cycle time and precedence constraints, are modificd to accommodate the varnous practical constraints and converled to GALB techniques. The hemistic decision rules arc list processing procedures that consider a single attribute of each work task for assignment to work station.

2.3.2.1 Hoffinan's Enumeration Procedure

Hoffman [24] used a special zero-one matrix and index vector to implement the enumeration process, which results in a very simple computer codc. Starting with station one, a precedent feasible list of lasks is mainlained from which the combination of tasks which will minimize station idle time is found via complete cnumeration. These tasks are assigned to station one. The p rocess continues w ith station number two using an updated precedent feasible list. The procedure works unidirectionally in a station-oriented manner. In each itcration, a load with minimal idte time is gencrated for station k. That is, a suggle branch of a station-oriented $\mathrm{B} \& \mathrm{~B}$ procedure is constructed. Nevertheless, it may require considerable computation times, because it has to examine all possible station loads of a current sub probicm.

2.3.2.2 Hoffman's Modified Enuntaration Procedure

The original Hoffman approach considers stations in numerical orders. It has a tendency to concentrate idle time in the later stations. In order to osercome the difficulty, Gerhlin and Patterson [25] proposed a very slight modification to the original Hoffman procedure: instead of determine the minimum ide time solution at each work station, detemmine one that is 'accoptably' close to munimum. The moditication accepts a load for the currently considered station if a certain amount of idie time is not excceded. The accopted portion of adle time depends on the balance delay ume (total avaitable idle time) for the theorctical minimum number LM1 of stations and can be controlled by a parameter. An extension of the Hoffmann heuristic which works bidirectionally is proposed by lileszar and Hindi [19]. This heuristic is combined with a number of bound arguments and reduction techniques and, thus, has become one of the most effective of the available heuristics for SALBP-I,

2,3.2.3 Dar-El's Line Balaneing Jlearistic

Dar-EL developed MALB [26] as a heuristic variant of his earlier optimal sceking 1terative procedure [27]. His optimal seeking procedure is based upon the Rank Positional W cight H curnstic method of Helgeson and Burnie [8], cnlanced with a backtracking algorithm that generates all feasible sequences of task assignments.

2.3.3 Optimal - Seeking Decision Rules

Optimal seeking decision rules dominate the heuristic ones if they are given enough computation time. But in case of a computational time constraint, Optimal- sceking decision rules do not perform as well as more sophisticaled hournstic procedures.

2.3.3.1 Branch and Bound Methods

Magazinc and Wee [28] produced excellent results for the type 1 line balancing problem with their branch and bound procedure. With their method, each node in the solution tree comesponds to a feasibic set of tasks assignment to a particular work station, where all nodes at the same depth in the trec refor to the same station number. Starting with node zero, descendent nodes from a node of depth (d) ate generated, which are maximal feasible assignments of tasks to station ($\mathrm{d}+\mathrm{l}$).

2.3.3.2 Integer Programming

Talbot and Patterson [29] presented integer programming approach. The basic algorithm is a depth first, implicit enumeration, backiracking procedure to which various s earch, fathoming and backtracking decision rulcs are applicd. They used two variations. The first variation included contains network cuts, where scarch and backtracking are controlled with the heuristic decision rule. The second variation dos not use any cut associated fathoming rules.

2.3.3.3 Dynamic Programming

Schrage and Baker [30] have proposed an efficient method for implementing the dynamic programming approach of Held et al. [31] through improved procedure for generating feasible subsels, and for labeling. Magazine and Wec [78] programmed and tested the Schrage and Baker approach for solving the Type 1 line balancing problem. Magazine and Wee concluded that their branch and bound solution procedure is preferred to dynamic programming for solving these lypes of line balancing problems, both with regard to computation time and computer storage required.

2.3.3.4 Multiple Solutions Technique (MUST)

Dar-El and Rubinovitch [32] proposed MUST, a nultiple solution technique, which employs exhaustive enumeration to gencrate all solutions, or some subset of them, for solving the type 2 lue balancing problem. As a result of experiments by Dar-cl and Rubinovitch [32], it was demonstrated that MUST dominates MALB.

2.3.4 Local Search and Metastrategies

Local search (or improvement) procedures try to improve a given 「easible solution by iteratively transforming it into other feasible solutions. Such transformations are refered to as moves. Solutions which may be obtained from a given solution S by means of a single move are called neighboring solutions or neighborhood of S . Traditionally, local scarch heuristics try to find a sequence of moves which produces a trajectory of successively improved solutions and terminate in a local optimum which might be far from optimathty. This diflicully is overcome by modern metastrategics like tabu search [33] and simulated annealing [34].

2.3.4.1 Tabu Search for SALBP-1

Devcloping a IS procedure for SALBP-1 is not very straightforward. This is duc to the fact that only three situations can occur after a move: (1) the number mof stations is unchanged (swapping two real tasks), (2) an additional station m is required (shifting a task in an cmply station), (3) one station is emply (shifting the only task in this station to another one). No problen arises in case (3). However, in most itcrations a large number of (1) or (2) moves have to be evaluated which have only two different objective function valucs m and $m+1$. In this situation finding a promising search direction 15 rather complicated. Selwoll and Vols [7] concluded that applying therr TS procedure for SALBP-2 within a lower bound search (called dual strategy) is the best way out of this ditemma. Chiang [35] proposes a TS procedure similar to the SALBP-2 approach of Scholl and Vol3 [7] but uses a surrogate objective function that maximuzes the sum over the squared station times. While minimizing the number of stations, it addtionally favors solutions containing some heavily loaded stations to those solutions laving more smoothly loaded ones. This effect successively dircets the search to solutions where saving a station in a single nove is probable. Computational experiments indicate that both approaches are successful on principle. However, Cliang [35] reports only limited results for the simplest data sct on hand which are not very meaninglul. Scholl and Voß find out that their dual strategy is competitive to exact procedures (applied as a restricted enumeration) in case of short computathon times but is not superior to SALOME-1 in finding good feasible solutions quickly. In opposite to SALBP-2, the quality of the initial solution seems to be important for the quality of the best solution found. A further TS procedure for SALBP-1 is proposed by Lapierte et al. [36] and lested on an arbitrary subset of the test problems available. For these instances it compares favorably with Chiang's approach.

2.3.4.2 Simulated annealing (SA) procedures

Heinrici [37] proposes an SA procedure for SALBP-2 which is based on shifts and swaps. An SA approach for a stochastic variant of SALBP-1 is proposed by Suresh
and Sahu [38]. McMullen and Frawler [39] propose a SA procedure for a generalization of SALBP-1 with respect to parallel stations, stochastic task times and altemative objectives.

2.3.4.3 Ant-Colony Algorithm Approach

Baulista and Pereira [40] present an ant algorithm for SAL,BP-1 which is based on priority rulc based procedures. McMullen and Tarasewich [41] propose an ant algorithm for a generalizalion of SALBP with respect to parallel stations, stochastic task times, multiple objectives and mixed-model production.

2.3.4.4 Genetic Algorithm

GAs are adaptive methods which can be used to solve optimization problems. They ate based on genetic processes of biological organisms. Over many generations, natural populations cvolve according to the princeples of natural selection and survival of the fittest. In nature, individuals with the highest survival rate have relatively a large number of offsprings; that is, the genes from the highly adapted or fit individuals spread to an increasing number of individuals in cach successive gencration. The strong characteristics from different ancestors can sometimes produce super-fit offspring, whose fitness is greater than that of cither parent. In this way, species evolve to become more adapted to their environment. Holland [42] showed that a computer simulation of his p rocess o Γn alural adaptation could be employed for solving optimization problems. Goldberg [43] presented a number of applications of GAs to search, optimization and machine learning problems.

In gencral, the power of GA comes from the fact that the technique is robust, and can deal with a wide range of problem areas. Although $G \Lambda$ is not guaranteed to find the optimal solution, it gencrally finds good solutions with reasonable computational requirements. To the best of our knowledge, there are only three published papers in literature which solve ALB problem using GA; two of them work on the deterministic (SMD) problem and the other works on the stochastic problem (SMS).

The first attenpt was nade by Leu et al. [44]. In this study, the authors use solutions of heuristic procedures in the initial population. They also demonstrate the possibility of balancing assembly litcs with multiple criteria and side constrants such as, a llocating a task in a station by uself. A ccording to the authors, the GA approach has two advantages: (i) GAs search a population rather than a single pomt and this increases the odds that the algorithm will not be trapped in a local optimum since many solutions are considered concurrently, and (n) GA fitness functions may take any form (i.e., unlike gradient methods that have differentiable evaluation functions) and scveral fitness functions can be utilized simultaneously.

In the sccond study, Anderson and Ferris [45] showed the effective use of GAs in the solution of combinatorial optimization problems, working specifically on the ALB problen. The authors first describe a fairly standard implementation for the ALB problem. Then an alternative parallel version of the algorithan for use on a message passing system is introduced. Their aim is not to demonstrate the superionity of a GA over the traditional methods, but rather to give some indications for the potential use of this technique in combinatorial optimization problems.

Thus, the authors do not compare the GA with well known heuristics, but only with a neighborhood search scheme with multiple restarts in whel the GA is found to be better than this method. Suresh et al. [46] used a GA to solve the SMS version of the ALB problem. The ability of GAs to consider a varicty of objective functions is regarded as the major feature of GAs. A modificd GA working with two populations, one of which allows infeasible solutions, and exchange of specimens at regular intervals is proposed for handing irregular scarch spaccs, i.e., the infeasibility problen due to precedence relations. The authors claim that a population of feasible solutions would lead to a fragmented search space, thus increasing probability of gettmy trapped in local minima. They also state that infeasible solutions can be allowed in the population only if genetic operators can lead to feasible solutions from an infeasible population. Since a purely infeasible population may not lead to a feasible solution in this particular problem, two alternative populations, one purely feasible and one allowing a fixed percentage of
infcasible chromosomes, arc combined in a controlled pool to facilitate the advantages of both of them. Certain chromosones are exchanged at regular intervals between the two populations; the exchanged chromosomes have the same rank or fitness value in their own populations. The results of the experiments moncale that the GA working with two populations gives better results than the GA wilh one fcasible population.

2.3.5 Fuzzy Models

In the classical mathematical formulation of SALBP, the relevant data are considered deterministic. But, the data of the real world problems are imprecise, vaguc or uncertain, and then the inpul data can be only estimated as withur uncertainty and this uncertainty may be represented by a fuzzy number. So the problem can be solved by Fuzzy logic. The Fuzzy logic, which was introduced by Zadch [47], has been applied to various industrial problems including production systems. The concept of fuzzy numbers is introduced to treat imprecise data, such as the processing time of each task. As long as the studies have been made in line balancing, in most cases the processing time was considered detcrministic. But objective and constraints are known imprecisely in much of the real world line balancing problems and in such a situation fuzzy sct theory becomes effectively functional.

Fuzzy optimization can be implemented effectively in solving ASLBP. Fuzzy scts or fuzzy numbers can appropriatcly represent imprecise parameters, and can be manipulated through different operations on fuzzy sets or fumy numbers. Since imprecise parameters are treated as imprecise valucs instead of precise ones, the process will be more powerful and its results more credible. Hence, SALBP-2 with [uzzy task times is considered by Tsujumura et al. [48].

2.3.6 Cost- and profit-oriented objectives

The installation of an assembly line requres targe (long-tem) capital investments. Furthermore, operating the line causes short-term operating costs such as wages, matenal, set-up, nenentory and incompletion costs [2]. In case of a non-fixed production rate and different levels of production quality, these costs have to bo contrasted with the profit attained by the line.

The installation and operating costs as well as the profits mainly depend on the cycle time and the number of stations [49] such that cost-onented models are strongly related to SALBP-E. The latter problem is usually solved by itcrating on SAI_BP-1 or SALBP-2 instances, respectively [50]. Thus, the same procedures can likewise be used for cost or profit oriented objectives on principle. However, in some situations it is necessary to consider models which incorporate costs and/or profits explicitly. This is especially true when the balancing problem is connceted with the decision problem of selecting processing or equipment alternatives.

2.3.6.1 Cost-oriented models

Rosenberg and Ziegler [51] assume that the operation of a station k causes a wage rute w_{h} per time unit that is equal to the maximum wage rate of all tasks that are assigned to that station. The objective is to minimize the aggregate wage rate over all stations, while the number of stations is a variable. Production costs per product und are obtained by multiplying that rate with the given cycie time. The considered objective is equivalent to minimizing the number of stations, if all tasks have the same wage rate. Hence, the problem is a direct generalization of SALBP-1. Rosenberg and Z icgler describc and e valuate priority rule based heuristics, where some of the rules available for SALBP-1 are cxtended to allow for smoothing the wage rates within each station [50].

Amen [52] extends the problem by additionally considering station related costs of capital, i.e., each station is assumed to require a constant pre-specified investment.

Amen presents an cxact branch-and-bound procedure which extends respective procedures for SALBP-1 [50] for this problem which uses a station-oriented construction scheme and a lascr search strategy based on a topological task labeling. The enumeration is restricted by means of (global and local) lower bounds extending such for SALBP-1 and dominance rules, where the maximal load rule which 15 essential for solving SALBP-1 is shown to be inappropriate for the cost-oriented problem. Therefore, only weaker versions of this rule and some other SALBP-I based rules are applied [53].

For the same problem, Amen [54] develops station-oricnted prionty rule based procedures with cost-oriented dynamic priority rules and compares them to cxasting ones using a large sct of randomly generated problem instances. The new rule which controls the idle time and the difference of wage rates in a station ("best change of ide cost") performs best. Further improvements arc obtained by approaches which use several priority rules. The best results are reported for a restricted version of the branch-and-bound procedure outlined above which is based on successively solving small problems each representing a feasible subset of remaining tasks. Malakooti [55] and Malakooti and Kumar [56] consider a multi-objective ALBP with capacityand cost-oriented objectives and propose different solution approaches including generation of efficient alternatives, interactive approaches and goal programming.

2.3.6.2 Profit-oricnted models

The cost-oriented models may be extended by additionally considering profits. The model of Rosenblatt and Carlson [57] includes fixed selling prices, material cost5 as well as wages and cquipment costs. This model is extended by Martin [58] for the case of unpaced lines with buffers, where inventory related cost components are relevant.

mbr
 CHAPTER 3

FUZZY LOGIC

3.1 Introduction

The thought of luzzy logic declared in 1965 by Lotri Zadch [47]. Fle clamed that luman reasoning is approximate rather than precise in nature. In 1974, Ebraham Mamdani used fuzzy logic to control a simple strean engine for the first time [59]. F. Smidth of Denmark applicd fuzey logic to the control of a coment kiln in 1980. This is the first industrial application of fuzzy logic. In the early 1980s, fuzzy logic was applied to home electronics products and the nontechnical people became aware of fuzzy systems. Lific is full of uncertainties. For instance, if the weather is deccribed in tems of the exact percentage of cloud cover, it will be too complex. Therclore, people say that it is sunny which is more uncertain and less precise but more useful.

Fuzzyness is particularly vaguencss related to human linguistics and thinking. Such words as 'pretty' or ' young' are q uite s ubjective and depend on situations. Thus, fuzzy logic can manage such vaguencss mathematically. The applications of fuzzy logic expand rapidly from control to k nowledge p rocessing. In r ecent years, nonengineering applications such as social and environmental systems have been tested. Fuzzy logic cnables us to make applications effective.

Many decision-making and problem-solving tasks are too complex to be understood quantitatively, however, people succecd by using knowledge that is imprecise rather than precise. Fuzzy sct theory, originally introduced by Lotri Zadeli in the 1960's, resembles human reasoning in its use of approximate information and uncertainty to generate decisions. it was specifically designed to mathematically represent uncertainty and vagueness and provide formalized tools for dealing with the imprecision intrinsic to many problems. By contrast, traditional compuling demands precisın down to each bit. Since knowledge can be cxpressed in a more natural by using fuzzy sets, many engincering and decision problems can be greatly simplilied.

Fuzzy logic emerged into the mainstream of infomation technology in the late 1980's and early 1990's. Fuzzy logic is a departure from classical Boolean logic in that it implements sort linguistic variables on a continuous range of truth values which allows intermediate values to be defined between conventional binary. It can oflen be consudered a superset of Boolean or "crisp logic" in the way fuzzy set theory is a superset of conventional set theory. Since fuzzy logic can handle approximate information in a systcmatic way, it is ideal for controlling monlinear systems and for modeling complex systems where an inexact model exists or systems where ambiguity or vaguencss is common. A typical fuzzy system consists of a rule base, membership functions, and an inference procedure. Today, fuzzy logic is found in a variety of control applications including chemical process control, manufacturing, and in such consumer products as washing muchines, video cameras, and automobiles.

3.2 Crisp Sets and Characteristic Functions

Here is an example to explain crisp sets and characteristic functions. Let's assume a tennis club and its mombers are defined ad follows:
$X=$ members $=\{P, Q, R, S, T, U\}$
$A=f e n n a l e$ members $\{Q, R, T\}$
$\mathrm{B}=$ student members $\{\mathrm{Q}, \mathrm{R}, \mathrm{S}\}$

Union, intersection and complement of A and B are as follows:

$$
\begin{aligned}
A \cup B & =\{Q, R, S, T\} \\
A \cap B & =\{Q, R\} \\
\bar{A} & =\{P, S, U\} \\
\bar{B} & =\{P, T, U\}
\end{aligned}
$$

3.2.1 Characteristic Functions

A represent a crisp set on the universe X. Its characteristic function χ_{A} can be defined by mapping.

$$
\begin{aligned}
& \chi_{A}: X \rightarrow\{0,1\} \text { as } \\
& \chi_{A}(X)=\left\{\begin{array}{ll}
1 & x \in X \\
0 & x \in X
\end{array}\right\}
\end{aligned}
$$

It shows that if the element x belongs to A, then χ_{A} is 1 and if it doesn't belong to A, χ_{A} is 0 (zero). This concept is very important in fuzzy sets.

3.3 Fuzzy Set Theory

Fuzzy sets are an extension of classical set theory and are used in fuzzy Iogic. In classical set theory the membership of elements in relation to a set is assessed in binary terms according to a crisp condition - an clement either belongs or does not belong to the set. By contrast, fuzzy set theory permits the gradual assessment of the membership of elements in relation to a set; this is described with the aid of a membership function $\mu \rightarrow[0,1]$. Fuzzy sets are an extension of classical set theory since, for a cettain universc, a membership function may act as an indicator function, mapping all elements to cither 1 or 0 , as in the classical notion.

3.3.1 Definition

Specifically, a fuzzy set \bar{A} on a classical set X is defined as follows:

$$
\tilde{A}=\left\{\left(x, \mu_{A}(x)\right) \mid x \in X\right\}
$$

The membership function $\mu_{A}(x)$ quantifies the grade of membership of the elements x to the fundamental sct X. An clement mapping to the valuc 0 means that the member is not neluded in the given set, 1 describes a fully included member. Values striclly between 0 and 1 characterize the fuzzy members.

Figure 2.1: Difference between crisp and fuzry sets
The following holds for the functional values of the mombership function $\mu_{A}(x)$

$$
\begin{aligned}
& \mu_{A}(x) \geq 0 \quad \forall x \in X \\
& \sup _{x \subset X}\left[\mu_{A}(x)\right]=1
\end{aligned}
$$

Fuzzy set brings a clear solution to deal with vague expression such as " a set of tall pcople" and " the people living close to Dhaka" which are not able to be denoted by convctional set theory. The expression such as "the set of people more than 1.90 in lieight" or "the people living in Dhaka" can be derined exactly by conventional sets. lhese arc called "crisp sets" in fuzzy sct theory.

3.3.2 Fuzzy Subsets

There is a strong relationship between Boolcan logic and the concept of a subsel. There is a similar strong relationship between fuzzy logic and fuzzy subset theory. A subset U of a set S can be defined as a set of ordered pairs, each with a first element that is an element of the sct S, and a second clement that is an element of the set $\{0$, 1 , with exactly one ordered pair present for cach clement of S . This defincs a mapping between elements of S and elensents of the set $\{0,1\}$. The value cero is used to represent non-membership, and the valuc one is used to represent membership. The truth or falsity of the statement

$$
x \text { is in } U
$$

is determined by finding the ordered pair whose first element is x. The statement is true if the second element of the ordered pair is 1 , and the statement is false of it is 0 .

A furzy subsel F of a sed S can be defined as a set of ordered pairs, each with a first element that is an elemont of the set S , and a second element that is a value in the interval [0,1], with exactly one ordered pair present for each clement of S. This defites a mapping between clements of the sct S and values in the interval $[0,1]$. The value zero is used to represent complete non-mombership, the value one is used to represent complete membership, and values in between are used to represent intermediate degrees of membership.

The set \mathbf{S} is referred to as the universe of discourse for the fustay subset F. Frequently, the mapping is described as a function, the (menabership function) of F. The degree to which the statement x is in F is true is determined by finding the ordered pair whose first element is x. The degree of truth of the statement is the second clement of the ordered pair. That's a lot of mathematical complexity, so here's an cxample. Lel's talk about people and "tallness". In this case the set S (the universe of discourse) is the set of pcople. Let's definc a fuzzy subset TALL, which will answer the question "to what degree is person x tall?" To each person in the universe of discourse, one has to assign a degrec of membership in the fuzzy subset TALL. The easiest way to do this is with a membership function based on the person's height. A graph of this looks like:

Figure 2.2: Degree of Tallness

The function will be:

$$
\operatorname{tal}(x)=\left\{\begin{array}{c}
0 \\
(h e i g h t(x)-5 f t) / 2 f t \\
1
\end{array}\right.
$$

$$
\left.\begin{array}{l}
\text { if height }(x)<5 j t . \\
\text { if } 5 f t<h e x g h(x)<7 f t \\
\text { if } h e \lg h t(x)>7 j t .
\end{array}\right\}
$$

3.3.3 Fuzzy Scts vs. Crisp Sets

Crisp sets are the sets that are used most in our life. In a crisp set, an clenent is either a member of the set or not. It is defined in such a away as to dichotomize the individuals in some given universe of discourse into two groups: members and nonmombers. A sharp, unambiguous distinction exists between the members and nonmembers of the sct.

Iuzzy sets, on the other hand, allow elements to be partially in a set. Each element is given a degree of membership in a sct. This membership value can range from 0 (not an element of the set) to 1 (a member of the scl). It is clear that if one only allowed the extrene membership values of 0 and 1 , that this would actually be equivalent to crisp scts. A mombership function is the relationship between the values of an element and its degree of membership in a set. An cxample of membership functions are shown in Figure 1. In this example, the sets are numbers that are negative large, negative medium, negative small, near zero, positive small, positive medium, and positive large. The value, $\mu[0,1]$, is the amount of membershup in the set. Each membership function maps clements of a fuzzy set A is denoted by $\mu_{A_{1}}$ that is,

$$
\mu_{A}: X \rightarrow[0,1]
$$

Each fuzzy set is completely and uniquely defined by one pathcular nembership function.

3.3.4 Fuzzy Sets and Memberslip Functions

In the given example:
$A=$ The set of overweight people
$B=$ The sct of people of moderate height
Using Venn diagram to express thesc fuzzy s cts is inconvenient w ay because the concepts of overweight and moderate height are different from person to person and depend on the situation. The degree of overweight can vary from a little heavy to extremely heavy. In this example, a real number between 0 and 1 is used to a degrec .The degree 1 means the person completely belongs to the set of A and 0 degree denotes the person doesn't belong to the set of A.

Table 3.1: Degrce of OVERWEIGHT and MODERATE Helght

SET	\mathbf{A}	\mathbf{B}	\mathbf{C}	$\overline{\mathbf{D}}$	\mathbf{E}	$\overline{\text { F }}$
OVERWEIGHT	0.5	0.9	0.3	0.4	0.7	0.6
MOD. HEIGHT	0.4	0.1	0.5	0.7	0.9	0.8

Fuzzy sets can be assumed to be an extension of crisp scts. Thercfore, membership functions are the extension of characteristic functions.
A fuzzy set A on the universe X_{15} a set defined by a membership function μ_{A} representing a mapping

$$
\mu_{A}: X \rightarrow[0,1]
$$

The closer the value of $\mu_{A}(X)$ to 1 , the highor the grade of membership of the element x in fuzzy set A. If $\mu_{A}(X)=1$, the element X completely belongs to the fuzzy set \boldsymbol{A}. If $\mu_{A}(X)=0, X$ does not belong to A at all.

3.3.5 Claracteristic Functions and Membership Function: A Comparison

Table 3.2: The Value of Characteristic Functions in Crisp Sets

	Height(em)	Low	Middle	High
\mathbf{A}	179	0	1	0
\mathbf{B}	171	0	1	0
\mathbf{C}	168	1	0	0

Figure 3.2: Crisp Sets of Height

From the table, A and B belong to the "middle" height set and C belongs to the " low" set although the difference in height of B and C w only 3 cm white the difference between A and B is 8 cm .

Table 3.3: Value of Menbership Functions in Fuzzy Scts

	Height (cm)	Low	Middlie	High
\mathbf{A}	179	0	0.4	0.6
\mathbf{B}	$17!$	0.4	0.6	0
\mathbf{C}	168	0.7	0.3	0

Figure 3.3: Fuzzy Scts of Height

This table indicates that A belongs to the "middle" set in the grade of 04 and to the "high" set in the grade of 0.6 whereas A does not belong to low set.

A: higher middle
B: fower middle
C: relatively low

3.3.6 The Notation of Fuzzy Sets

There are three types of fuzzy sets. They are:

1. Fuzzy sets with a discrete monordered universe
2. Fu\%/y sets with a discretc ordered universe
3. Fuzzy sets with a continuous universe

- Fuzzy sets with a discrete nonordered universe

Let $X=\{\mathrm{M}, \mathrm{N}, \mathrm{O}\}$ be the set of cities one may choose to live in. The fuzzy set $\boldsymbol{C}=$ "desirable cities to live in" may be described as follows:
$C=\{(\mathrm{M}, 0.9),(\mathrm{N}, 0.8),(0,0.6)\}$

Figure 3.3: Fuzzy Sets of Height

This table indicates that A belongs to the "middle" set in the grade of 0.4 and to the "high" set in the grade of 0.6 whereas A does not belong to low set.

A: higher middle
B : lower middle
C: relatively low

3.3.6 The Notation of Fuzzy Sets

There are three types of fuzzy sets. They are:

1. Fuzzy sets with a discrete nonordered universe
2. Fuzzy sets with a discrete ordered universe
3. Fuzzy sets with a continuous universe

- Fuzzy sets with a discrete nonordered universe

Let $X=\{\mathrm{M}, \mathrm{N}, \mathrm{O}\}$ be the set of citics one may choose to live in. The fuzzy set $C=$ "desirable cities to live in" may be described as follows:
$C=\{(\mathrm{M}, 0.9),(\mathrm{N}, 0.8),(0,0.6)\}$

Apparently the universe of discoursc X is discrete and it contains nothordered objects- in this case, threc cities. As one call sec, the foregoing membership grades listed above are quite subjective; anyone can come up with three different but legitimate values to reflect his or her preference.

- Fuzey sets with a discrete ordered universe

Let $X=\{0,1,2,3,4,5,6\}$ be the set of members of children a family may choose to have. Then the fuzzy set $A=$ "sensible number of children in a family" may be described as follows:
$\left.A=\left\{(0.0 .1),(1,0.3)^{\prime}(2,0.7),(3,1), 4,0.7\right),(5,0.3),(0,0.1)\right\}$

Here X is a discrete ordered universe; the MF for the fuzzy set A is shown in the figurc. Again, the mombership grades of this fuf/ry set are obviously subjective measures.

- Fuzzy sets with a continuous universe

Let $\boldsymbol{X}=\boldsymbol{R}^{+}$be the set of possible ages for human beings. Then the fuzzy set $B=$ "about 50 years old" may be cxpressed as
$B=\left\{\left(x, \mu_{B}(x) \mid x \in X\right\}\right.$
Where, $\quad \mu_{B}=\frac{1}{1+\left(\frac{\mathrm{r}-\mathrm{Gg}}{10}\right)^{4}}$
For simplicity of notalion, an alternative way or denoting a fizzy set is introduced.
A fuzzy set \boldsymbol{A} can be denoted as follows.

$$
A=\left\{\begin{array}{l}
\sum_{x, 2 X} \mu_{A}\left(x_{1}\right) / x_{1}, \text { if } X \text { is a collectoon of discrete object } \\
\int_{X} \mu_{A}(x) / x, \quad \text { if } X \text { is a continuous space }
\end{array}\right.
$$

In the continuous expression the syonbol f is used an extension of \sum to the continfous world and it is not integral sign. On the lower right of \int sign the name of universe is writen.

3.4 Fuzzy Sets: Basic Concepts

α - cut: The α-cut of a fuzzy set \boldsymbol{A} is the crisp set \boldsymbol{A} that contains all the elements of the universal set X whose membership grades in A are greater than of equal to the specified value of α. Given a fuzzy set A defincd on X and any number $\alpha \in[0, \mathrm{i}]$, the α-cut, ${ }^{\alpha} A$, is the crisp sct ${ }^{\alpha} A=\{x / A(x) \geq \alpha)$

Strong α - cut: The strong α - cut of a fuzzy sel A is the crisp set A that contains all the elements of the universal set X whose membership grades in A are greater than of egral to the specificd value of α. Given a fuzzy set A defined on X and any number $\alpha \in[0,1]$, the strong α-cut, ${ }^{\alpha+} A$, is the crisp set ${ }^{(r+} A=(x / A(x) \geq \alpha\}$

Level set: the set of all levels $\alpha \in[0,1]$ that represent distinct α-cuts of a given fuzey set A is called a level set of A. formally, $\wedge(A)=\{\alpha / A(x)=\alpha$ for sone $x \in X\}$ Where \wedge denoles the level set of fuzzy sel a defined on X.

Support: The support of a fuzzy set A is the set of all point x in X such that $\mu_{,}(x)>0$:

$$
\text { Support }(A)=\left\{x \mid \mu_{f}(x)>0\right\}
$$

Core: The core of a fuzzy sct A is the set of all points x in X such that $\mu_{\mathrm{A}}(\mathrm{x})=1$;

$$
\operatorname{Core}(A)=\left\{x \mid \mu_{A}(x)=1\right\}
$$

3.5 Fundamental Operations of Fuzzy Sets

Fuzzy union, intersection and complements are called 'the standard fuzzy operations*. The standard fuzzy operations are gencralizations of the corresponding classical set operations.

3.5.1 Union of Fuzzy set A and B

The union of two fuzzy sets A and B is a fuzzy set C, written as $C=A \cup B$ or $C=A$ OR B, whose MF is relatcd to those of A and B by

$$
\mu_{O}(x)=\max \left(\mu_{A}(x), \mu_{B}(x)\right)=\mu_{A}(x) \vee \mu_{B}(x)
$$

3.5.2 Intersection of Fuzzy set A and B

The intersection of two fuzzy sets A and B is a fuzzy sct C, written as $C=A W B$ or $\mathrm{C}=\mathrm{A}$ AND B, whose MF 15 related to those of A and B by

$$
\mu_{C}(\mathrm{x})=\min \left(\mu_{A}(\mathrm{x}), \mu_{B}(\mathrm{x})\right)=\mu_{A}(\mathrm{x}) \wedge \mu_{B}(\mathrm{x})
$$

3.5.3 Complement of Fuzzy set A and B

The complement of fuzzy set \boldsymbol{A}, denoted by $\boldsymbol{A}(\neg \boldsymbol{A}$, NOT $\boldsymbol{A})$, is defined as

$$
\mu_{d}(x)=1-\mu_{f}(x)
$$

Fuzzy sets have properties which are valid for crisp sets. And yet, there are some propertics which are not valid for fuzzy sets.

3.5.4 The Law of Excluded Middle

$$
A \cup \bar{A}=x \text { for crisp sct but }
$$ $A \cup \bar{A} \neq x$ for fuzzy set

3.5.5 The Law of Contradiction

$$
A \cap \bar{A}=\phi \quad \text { for crisp set but }
$$

$$
A \cap \bar{A} \neq \emptyset \text { for fuz } z y \text { set }
$$

3.5.6 Equality and Inclusion of Fuzzy set

Equality of fuzzy scts is defined as

$$
A=B \leftrightarrow \quad \mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{B}}(\mathrm{x}) ; \forall \nVdash \mathrm{A}^{\prime} \in X
$$

Inclusion of fuzzy scts or \boldsymbol{A} bemg a subset of \boldsymbol{B} is defined as

$$
A \subset B \quad \leftrightarrow \quad \mu_{A}(x) \leq \mu_{B}(x)
$$

Example

Age	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	70	$\mathbf{8 0}$
Young	$\mathbf{1}$	1	0.8	0.5	0.2	0.1	0	0	0
Old	0	0	0.1	0.2	0.4	0.6	0.8	$\mathbf{1}$	1

	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	$\mathbf{6 0}$	$\mathbf{7 0}$	$\mathbf{8 0}$
Young \cup Old	1	$\mathbf{1}$	0.8	0.5	0.2	0.1	0	0	0
Young^Old	0	0	0.1	0.2	0.4	0.6	0.8	1	1
$\overline{\text { Old }}$	$\mathbf{1}$	1	0.9	0.8	0.6	0.4	0.2	0	0

Example

	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{4 0}$	$\mathbf{5 0}$	60	70	80
Old $\cup \overline{\mathbf{O l d}}$	1	1	0.9	0.8	0.6	0.6	0.8	1	1
Old $\cap \overline{\mathrm{Old}}$	0	0	0.1	0.2	0.4	0.4	0.2	0	0

3.8 Decomposition Principle

Using a-cuts a membership function $\mu_{A}(x)$ can be decomposed into an inlinite number of rectangular membership functions. When these rectangular menbership functions and max-operation are aggregated, the original tuzry set A can be oblained

$$
H_{A}(x)=\max \left[\alpha \wedge X A_{\alpha}(\mathrm{x})\right]
$$

Here $X A_{C O}(\mathrm{x})$ is a characteristic cquation of the set \boldsymbol{A}_{α}

The difference between strong and weak α-cuts centers on whether they include cquality. Here are the illustrations of both o-cut and decomposition sets.

Figure 3.4: α-cut and Decomposition Principle

In this figure, A is an example of an α-cut. The idea of the decomposition principle is also illustrated in the figure. Let the characteristic function of a weak α cut $\mathrm{XA}_{\alpha}(\mathrm{X})$ for an $\alpha(\alpha \in(0,1])$. Define a rectangular membersifip function that satisfics $\alpha \wedge \mathrm{XA}_{\alpha}(\mathrm{X})$. Changing the value of α in the interval of $\alpha \in(0,1]$ the similar operation is repeated and an infinte number of rectangular membership
functions is found. The decomposition principle tells us that the membership function of the original fuzzy set A can be expressed by the max operation of the previously obtained rectangular membership functions.
This is defined by $\mu_{A}(X)=\operatorname{Max}\left[\alpha \wedge \mathrm{XA}_{\alpha}(\mathrm{X})\right](\alpha \in(0,1])$

3.9 Fuzzy Numbers and Extension Principle

When there is a relation $y=3 x+2$ between x and y, the value of y for $x=4$ can be calculated by $(3 \times 4)+2=I 4$. Then, how the value of y can be calculated by a fuzzy set such as $x=$ "about y "? The extension principle gives a method for this.

Figure 3.5: Example of extension principle

The process of calculation can be interpreted as $3 x$ "ahout $4 "+2=$ "about $12 *+3=$ "about 14"

Let A be the fücy set that gives "about 4" such as $A=0.5 / 3+1.0 / 4+0.5 / 5$ Also define $x_{i}=3, x_{2}=4, x_{3}=5$ so that $y_{i}=3 x_{i}+2, i=1,2,3$

$$
\begin{aligned}
f(A) & =\sum_{i=1}^{7} \mu_{A}\left(y_{t}\right) / y_{r} \\
& =\sum_{r=1}^{3} \mu_{A}\left(y_{i}\right) /\left(3 x_{i}+2\right) \\
& =0.5 /(3 \times 3+2)+1.0 /(3 \times 4+2)+0.5(3 \times 5+2) \\
& =0.5 / 11+1.0 / 14+0.5 / 17 \\
& =\text { "about } 14 \text { " }
\end{aligned}
$$

3.10 Fuzzy Numbers

A fuzzy number is a convex, normakized fuzzy sct $\widetilde{A} \subseteq \mathfrak{R}$ whose membership function is at least segmentally continuous and has the functional value $\mu_{A}(x)=1$ at precisely one element.

If a fuzzy set \boldsymbol{A} on the universe R of real numbers satisfies the following conditions, it is caled a fuzzy number.
i. \boldsymbol{A} is a convex fuzzy sct;
ii. There is only one x_{0} that satis $\int i e s \mu_{A}\left(x_{0}\right)=1$;
iii. μ_{t} is continuous in an interval.

If a fuzzy number A satisfies the following condition, it is called a flat furzy number.

$$
\begin{aligned}
& \left(m_{1}, m_{2}\right) \in \mathrm{R} ; \mathrm{m}_{1}<\mathrm{m}_{2} \\
& \mu_{\mathrm{A}}(x)=1 \forall \mathrm{x} \in\left[\mathrm{~m}_{1}, \mathrm{~m}_{2}\right]
\end{aligned}
$$

3.11 Fuzzy Interval

A fuzzy interyal is an uncetain set $\tilde{A} \subseteq \mathfrak{M}$ with a mean interval whose ofements possess the membership function value $\mu_{A}(x)=1$. As in fuzzy numbers, the membership function must be convex, nomatized, and at least continuous in scgments.

3.12 Aritlametic Operatious of Fuzzy Numbers

Fuzzy arithmetic is based on two properties of fuzzy numbers

1. each fuzzy sets, and thus also cach fuzzy number, can fully and uniquely be reprosented buy it's α-cuts
2. a-cuts of each fuzzy number are closed intervals of real numbers for all $\alpha \in(0,1]$

Let * denotes any of the lour arithmetic operations on closed intervals: addition ; , subtraction -, multiplication \cdot, and division /,

Then, $[a, b]^{*}[d, e]=\left\{f^{*} g \mid a \leqslant f \leqslant b, d \leqslant g \leqslant e\right\}$

As results, the four arithmetic opcrations on closed intervals are
$[a, b]+[d, c]=[a+d, b+c]$
$[a, b]-[d, c]=[a-e, b-d]$
$\left.[a, b] \cdot \int d, c\right]=[\min (a d, a c, b d, b e), \max (a d, a c, b d, b e)$
$[a, b] /[d, e]=[\min (a / d, a / e, b / d, b / e), \max (a / d, a / e, b / d, b / c)$, provide that $0 \neq \pm[d, e]$

Let $\hat{A}=(a, b, c, \lambda), \tilde{A}=(d, e, f, \lambda) \in F_{N} \in(\lambda), k \in R$ and assume that $C=(p, c \mid, r, \lambda) \in \mathrm{F}_{\mathrm{N}}(\lambda)$, then
(a) $\widetilde{C}=\widetilde{A}+\widetilde{B}=(a+d, b+c, c+f ; \lambda)$
(b) $\tilde{C}=\tilde{A}-\tilde{B}=(a-f, b-e, c-d ; 2)$
(c) $\widetilde{C}=\widetilde{A} \times \widetilde{B}=(\min (a d, a f, c d, c f), b c, \max (a d, c f, c d, c f) ; \hat{\lambda})$
(d) $\tilde{C}=\tilde{A} \div \widetilde{B}=(\min (a / d, a / f, c / d, c / f), b / c, \max (a / d, a / f, c / d, c / f) ; \hat{i}) \hat{0}$ $=(0,0,0) \notin \tilde{\mathrm{B}}$
(e) If $\mathrm{k}>0, \widetilde{\mathrm{C}}=\widetilde{\mathrm{k}}_{1}(\mathrm{O}) \vec{A}=(k a, k b, k c ; \lambda)$
(f) If $\mathrm{k}<0, \widetilde{\mathrm{C}}=\widetilde{\mathrm{k}}_{1}() \widetilde{A}=(k c, k b, k a ; \tilde{\lambda})$
(g) If $k=0, \widetilde{\mathrm{C}}=\widetilde{\mathrm{k}}_{1}() \widetilde{A}=(0,0,0 ; \lambda)$

3.13 Application of Fuzzy Logic

Fuzzy Set Theory defines Fuzzy Operators on Fuzzy Sets. The problem in applying this is that the appropriate Fuzzy Operator may not be known. For this reason, Fuzzy logic usually uses IF/THEN rules, or constructs that are equivalent, such as fuzzy dssociative matrices.

Rules are usually expressed in the form lF variable IS set THEN action. For example, an extremely simple temperature regulator that uses a fau might look like this IF temperature IS very cold THEN stop fan IF temperature IS cold THEN tum
down fan IF temperature IS nomal THEN maintan Icvel IF temperature IS hot THEN speed up fan.

Notice there 15 no "ELSE". All of the rules are evaluated, because the temperature might be "cold" and "nomal" at the same time to differing degrecs. The $A N D, O R$, and NOT operators of boolean logic exist in luzzy logic, usually defined as the minimum, maximum, and complement; when they are delined this way, they are called the Zadch operators, because they were first defined as such in Zadeh's original papers. So for the fuzzy variables x and y :

NOT $x=(1-\operatorname{truth}(x))$
x AND $y=$ minimum $($ iruth $(x), \operatorname{truth}(y))$
x OR $y=$ maximum $(\operatorname{truth}(x)$, truth $(y))$

There are also other operators, more linglistic in nature, called hedges that can be applied. These are gencrally adverbs such as "very", or "somewhat", which modify the meaning of a set using a mathematical fonnula.

In application, the progtamming language Prolog is well geared to implementing fuzizy logic with its facilities to set up a databasc or "rulcs" which are quericd to deduct logic. This sort of programming is known as logic programming.

3.14 Fuzzy Ranking Methods

To handle the fuzzy characteristic of the FMABL problem, the fuzzy processing time is needed to be ordcred and compared with fuzzy cycle time of each product model. The requirement of this ranking operator is not only simple in computation but a lso flexible enough to a dapt with different sources of data fron the real-life because the processing time and maximum cycle lime could be cstinated by linguistic terms (short, medium, long, etc.) or just an intcryal of dala, ln literature,
scveral fitzzy comparison methods have been proposed such as pscudo order fazzy preference model [60]. new fuzzy-weighted average [61], and signed distance method [62]. Among these methods the signed distance method is suitable for luzzy time comparison because it is simple in computation and flexible to convert from the interval data. Furthermore, fuzzy arithnetic needs to be performed to calculate furzzy limes in our heuristic Ilowever, there are many fundamental problens with fuzey arithmetic. Its operation is principally based on the extension principle and/or interval arithmetic. The problem of extension principle is that it is computationally too complex. Another fundamental problem with fuzry arithmetic is the existence and uniqueness problem of the fuzzy mumbers. For example, cyen for the simple operation of fuzzy subtraction of two fuzzy numbers, the results may not exist. At this point, one may believe that fuzzy arithmetic based on interval operations could be better because it is easy to calculate. However, a difficulty with luzzy arithmetic using interval principles is the non-linear representation of results. Thus it could lead to increase the computational complexity. There is one solution to overcome this difficulty by approximating the operation's results in a linear form.

3.14.1 Signed Distance Ranking of the Level λ Fuzzy Numbers

Yao and Wu presented signed distance method of ranking triangular fuzzy numbers [62]. They presented the following definilions:

Definition 1. If the memberships function of the fuzzy set A on R is

$$
\mu_{A}(x)=\left\{\begin{array}{l}
\lambda(x-p) /(q-p), p \leqslant x \leqslant q, \\
\lambda(r-x) /(r-q), q \leqslant x \leqslant r \\
0, \text { otherwise }
\end{array}\right.
$$

$p<q<r$, then A is called a level λ fuzzy number, $0 \leqslant \lambda \leqslant 1$
$A=(p, q, r, \lambda)$, let, $F_{N}(\lambda)$ be the family of all level λ fuzzy numbers
$F_{\mathrm{N}}(\lambda)=\left\{\left.(p, q, r, \lambda)\right|_{p<1}<r ; p, q, r \in R\right\}, 0<\lambda \leqslant 1$

Definition 2. Signed Distance

For each a, $0 \in R$, the definition of signed distance d_{0} from a to 0 is expressed by $d_{l}(\mathbf{a},(0)=a$
If $a>0, d_{0}(a, 0)$ implies that a is on the right liand side of 0 with distance $d_{0}(a, 0)=a$

If $\mathrm{a}<0, \mathrm{~d}_{0}(\mathrm{a}, 0)$ implies that a is on the lefl hand side of 0 with distance $-\mathrm{d}_{0}(\mathrm{a}, \mathrm{0})=-\mathrm{a}$

Which is called the signed clistance of ' a ' wheh is mensurt from 0 .

Definition 3. The signed distance of TFN' $\vec{A}=(p, q, r)$ is defined as

$$
d(\tilde{A}, 0)=\frac{1}{2} \int_{0}^{1}[p+(q-p) \alpha+r-(r-q) \alpha] d \alpha=\frac{1}{4}(2 q+p+r)
$$

Fig 3.6: Level λ Fu $12 y$ Set

Let $\tilde{A}=(p, q, r, \lambda) \in F_{\mathrm{N}}(\lambda)$ the signed distance of \tilde{A} from $0_{1}(\mathrm{y}$ axis) is

$$
\begin{aligned}
d\left(\tilde{A}, \tilde{0}_{1}\right) & =\frac{1}{\lambda} \int_{2}^{\mu} \frac{l}{2}\left[p+r+(2 q-p-r) \frac{\alpha}{\lambda}\right] d \alpha \\
& =\frac{1}{4}(2 q+p+r)
\end{aligned}
$$

Definition 4. For cacle $\lambda \in(0,1]$, the ranking of the level λ fuzzy numbers in $F_{N}(\lambda)$ is defined as

$$
\begin{aligned}
& \tilde{B} \prec \tilde{A} \text { iff } d\left(\tilde{B}_{0}, \tilde{0}_{1}\right)<d\left(\tilde{A}, \tilde{0}_{1}\right) \\
& \tilde{B} \approx \tilde{A} \text { iff } d\left(\tilde{B}, \tilde{0}_{1}\right)=d\left(\tilde{A}, \tilde{0}_{1}\right) \\
& \tilde{B} \succ \tilde{A} \text { iff } d\left(\tilde{B}, \tilde{0}_{1}\right)<d\left(\tilde{A}, \tilde{0}_{1}\right)
\end{aligned}
$$

Proposition I. For $\tilde{A}, \widetilde{B}, \tilde{C} \in F_{N}(\hat{\lambda})$
a. If $\tilde{A} \prec \approx \tilde{B}$ and $\tilde{B} \prec \approx \tilde{A}$ then $\tilde{A} \approx \tilde{B}$
b. If $\vec{A} \prec \tilde{B}$ and $\tilde{B} \prec \tilde{C}$ then $\vec{A} \prec \vec{C}$
c. In $F_{N}(\lambda)$, there is only one $\tilde{A} \prec \tilde{B}$ and $\tilde{B} \approx \bar{A}, \tilde{A} \prec \bar{B}$ holds

The signed distance method can be casily implemented to rank diferent types of furzy numbers. In this casc, the ranking method of TFN is used.

CHAPTER 4

GENETIC ADGORITHM

4.1 Introduction

A genetic algorithm (or short $G A$) is a search technique used in conoputing to find true or approximate solutions to optimization and scarch problems. Genctic algorithms are catcgorized as global scarch heuristics. Genctic algorithms are a particuiar class of cvolutionary algorithms that use tcchniques inspired by evolutionary biology such as inheritance, mutation, selection, and crossover (also called recombination).

Genctic algorithms are implemented as a computer simulation in which a population of abstract represcntations (called chromosomes or the genotype or the genome) of candidate solutions (ealled individuals, creatures, or phenolypes) to ant optimization problem evolves toward better solutions. Traditionally, solutions are represented in binary as strings of Os and 1 s , but other encodings are also possible. The evolution usually starts from a population of randomly generated individuals and happens in gencrations. In each generation, the fitness of every individual in the population is cvaluated, multiple individuals are stochastically selected from the curtent population (based on their fitness), and modified (recombined and possibly mutated) to form a new population. The new population is then used in the next iteration of the algorithm.

4.2 History

Computer simulations of evolution started with Nils Aall Barricelli [63]. Barricelli was simulating the evolution of automata that played a simple card ganc. Starting in 1957, the Australian quantitative gencticist Alex Frascr published a paper on simulation of artificial selection of organisms with multiple loci controlling a measurable trait [64]. From these beginnngs, computer simulation of cvolution by
biologists became more common in the early 1960s, and the methods wore described in books by Fraser and Bumell [65] and Crosby [66].

Although Barricelli had also used evolutionary simulation as a gencral optimization method, genetic aigonithms became a widely recognized optimization method as a result of the work of John Holland in the early 1970s [42]. His work originated with studies of cellular automata, conducted by Holland and hus colleagues at the University of Michigan. Research in GAs remained largely theoretical until the mid1980s, when The First International Confcrence on Genetic Algorithms was held at The University of illinois. As acadenic interest grew, the dramatic increase in desktop computational power allowed for practical application of the new technique. In 1989, The New York Times writer John Markofl wrote about Evolver, the first commercially awalable desktop genetic algorithm. Custom computer applications began to emerge in a wide varicty of fields, and these algorithms are now used by a majority of Fortune 500 comparics to solve difficult scheduling, data fitting, 1rend spotting and budgeting problems, and virtually any other type of combinatorial optimization problem.

4.3 GA procedure

A typical genetic algotithm requircs two things to be defined.

1. A genetic representation of the solution doman,
2. A fitness function to cvaluate the solution domain

A standard representation of the solution is as an array of bits. Arrays of other lypes and structures can be used in cssentially the same way. The main property that makes these genctic representations convenient is that their parts are eassly aligned due to their fixed size that faciluates simple crossover operation. Variable length representations ware also used, but crossover implementation 1 smore complex in this case. Tree-like representations are explored in Genctic programming and frecform representations are explored in Human Based Genetic Algorithm (HBGA).

The fitness function is defined over the genetic representation and measures the quality of the represented solution. The filness function is always problem dependent. A representation of a solution might be an artay of bits, wherc cach bit represents a different object, and the value of the bit (0 or 1) represents whether or not the object is in the knapsack. Not every such representation is valid, as the size of objects may cxcecd the capacity of the knapsack. The fitness of the solution is the sum of values of all objects in the knapsack if the representation is valid or 0 otherwise. In some problems, it 15 hard or even impossible to define the fitness expression; in these cases, interactive genetic algonithms are used.

Once the genctic representation and the fithess function are defined, GA proceeds to initialize a population of solutions randomly, and then improve it trough repetitive application of mutation, crossover, and selection operators.

4.4 Pseudo-code Algorithm

1. Choose initial population
2. Evaluate the fitness of each individual in the population
a. Repeat
b. Select best-ranking individuals to reproduce
c. Breed new gencration through crossover and mutation (genetic operations) and give bith to offspring
d. Evaluate the individual fitness of the offspring
3. Replace worst rarked part of population with offspring
4. Until terminating condition is met

4.5 Initialization

Initially many moividual solutions are randornly generated to form an intitial population. The population size depends on the nature of the problem, but typically contains several hundreds or thousands of possible solutions. Traditionally, the
population is gencrated randonvly, covering the entire range of possible solutions (the search space). Occasionally, the solutions may be "sceded" in areas where optimal solutions are likely to be found.

4.6 Encoding a Chromosome

The chromosome should contain information about the solution it represents.

4.6.1 Binary Encoding

One way of encoding is a binary string. The chtomosome could look like this:

Chromosome 1	1101100100110110
Chromosome 2	1101011000011110

Each bit in the string can represent some characteristic of the solution or it could represent whether or not some particular characteristic was present. Another possibility is that the chromosome could contain just 4 numbers where cach number is represented by 4 bits (the bighest nunder therefore beng 15.)

4.6.2 Permutation Encoding

Permutation encoding can be used in ordering problems, such as the traveling salesman problem or a task ordering problem. Every chromosome is a string of numbers, which represents number in a sequence. In the TSP each number would represent a city to be visited.

Chromosome 1	1479635028
Chromosome 2	9325816047

4.6.3 Value Encoding

Direct value encoding can bc uscd in problems where some complicated values, such as real numbers, are uscd and where binary encoding would not suffice. While value encoding is very good for some problems, it is often necessary to deveiop some specific crossover and mutation techniques for these chromosomes.

Chromosomc 1	ABEDBCAEDD
Chromosome 2	NWWNESSW N N

In chromosome 1 above, A could represent a particular task, B another, etc. For chromosome 2 N could be north, S south, and thus could be the path through a maze.

4,6.4 Tree Encoding

Trec cncoding is used to actually have progtams or expressions evolve. In tree encoding cvery chromosome is a tree of some objects, such as functions or commands in the programming language. LISP is often used for this because programs in LISP can be represented in this form and then be easily parsed as a tree.

4.7 Crossover

Crossover is a genetic operator used to vary the programming of a chromosome or chromosomes from one generation to the next. It is an analogy to reproduction and biological crossover, upon which genetic algorithms are based.

4.7.1 Crossoyer Techniques

Many crossover techniques exist for organisms which use different data structures to store themselves.

4.7.1.1 Onc Point Crossoyer

Figure 4.1: One Poinl Crossover

A crossover point on the parent organimn string is selected. All data beyond that point in the organism string is swapped between the two parent organisms. The resulting organisms are the children.

4.7.1.2 Two Puint Crossover

Parents

Children:

Figure 4.2: Two Pomt Crossover
Two point crossover calls for two points to be selected on the parent orgarism strings. Everything between the two points is swapped between the parent organisms, rendering two child organisms. Two point crossover shows betcer result in elitist process. The variety of gencs is greater in two point crossover than single point crossover.

4.7.1.3 Cut and Splice Crossover

Figure 4.3: Cut and Splice Crossover

Another crossover variant, the "cut and splice" approach, results in a change in length of the children strings. The reason for this difference is that each parent string has a separate choice of crossover point.

4.7.1.4 Uniform Crossover and Half Uniform Crossover

In both these schemes: the two parents are combined to produce two new offspring. In the uniform crossover s cheme (UX) individual buts in the string are compared between two parents. The bits are swapped with a fixed probability, typically 0.5.In the half uniform crossover schome (HUX); exactly half of the mismatehing bits are swapped. Thus first the Hamming distance (the number of differing bits) is calculated. This number is divided by two. The resulting number is how many of the bils that do not match between the two parents will be swapped.

4.7.2 Crossover for Ordered Chromosomes

Depending on how the chronosome represents the solution, a direct swap may not be possible. One such case is when the chromosome is an ordered list, such as an ordered list the cities to be traveled for the traveling salesman problem. A crossover point is selected on the parents. Since the chromosome is an ordered Ist, a direct swap would introluce duplicates and remove necessary candidates from the list. Instead, the chromosome up to the crossover point is retained for each parent. The information after the crossover point is ordered as it is ordered in the olher parent. For example, if our two parents are ABCDEFGHI and IGAHFDBFC and our crossover point is after the fourth character, then the resulting c hildren would be

ABCDIGHFE and IGAHBCDLEF. Other possible methods inclucle the edge recombination operator and partially mapped crossover.

4.7.3 Crossoyer biascs

For crossover operators which exchange contiguous sections of the chromosomes (c.g. k-point) the ordering of the variables may become important. This is particularly true when good solutions contain building blocks which might bo disrupted by a non-respectful crossover operator.

Partially matching crossover (PMX)

PMX may be vicwed by a crossover of permutations that guarantees that all positions are lound exactly once in cach offspring 1.e. cach offspring teceives a full set of gencs followed by the comesponding filling in of alleles from their parents. PMX proceeds as follows 1) the two chromosomes are aligned 2) two crossing sites are selected uniformiy at random along the strings, defining a matching section.3) The matching section is used to affect a cross through position-by-position exchange operation4) Allclos are moved to their new positions in the offspring

Thc following illustrates how PMX works:

Let us consider a traveling salesman problem. There are cight cilies where the salesman has to travel. This is a problem in diserete or combinatorial optimization.

Under PMX, two strings (permutations and their associated alleles) are aligned, and two crossing sites are picked uniformly at random along the strings. These two points define a matehing section that is used to affect a cross through position-byposition exchange operation:

There are two strings:
$\mathrm{A}=984|567| 13210 \quad \mathrm{~B}=871|2310| 9546$

PMX proceeds by position wise exchange. First, mapping string B to string A, the 5 and the 2 , the 3 and the 6 , and the 10 and 7 exchange places. Similarly mapping string A to string B, the 5 and the 2 , the 6 and the 3 , and the 7 and the 10 exchange places. Following PMX two offspring are left, A^{\prime} and B^{\prime} :
$\mathrm{A}^{\prime}=984|2310| 1657$
$B^{\prime}=8101|567| 9247$
where each string contains ordering information partally detemnned by cach of its parents.

Order Crossover (OX)

The order crossover operator starts off in a manner similar to PMX. Let the example strings A and B consider again. First a matching section is sclected (for comparison, the matching section of PMX example is chosen):
$A=984|567| 13210$
$B=8711231019546$

Like PMX, each string maps to constituents of the matching section of its mate. Instead of using point-by-point exchanges to effect the mapping as PMX does, order crossover uses a sliding motion to fill the holes left by transferting the mapped positions. For example, when string B maps to string A, the cities 5,6 , and 7 will leave holes (marked by an H) in the string:
$\mathrm{A}=984|567| 1 \mathrm{HHH}$
$\mathrm{B}=8 \mathrm{HI}|2310| 9 \mathrm{H} 4 \mathrm{H}$

These holes are filled with the matching section city mames taken from the mate. Performing this operation and completing the complementary cross the offspring A^{\prime} and B^{\prime} are obtaned as follows:
$\mathrm{A}^{\prime}=567 \mid 23101984$
$B^{\prime}=2310|567| 9481$

Although PMX and OX arc similar, they process different kinds of similarities.

Cyele Crossuver (CX) .

The cycle crossover operator is a cross of a different color. Cycle crossovet performs recombination under the constraint that each gene comes from the one parent or the other. To sce how this is done example tours C and D are started with below:
$C=98217451063$
$\mathrm{D}=12345678910$

Instead of ehoosing e rossover sites, the p rocess is started at he left and a city is choscn from the first parent:
$\mathrm{C}^{\prime}=9$

Since every city is to be taken from one of the two parents, city 1 will be taken from string C because of the 1 in position of string D.
$C^{\prime}=9$ \qquad

This selection requires that city 4 will be selected from string C. the process continues until the following pattem is left:
$C^{\prime}=92315478610 \quad D^{\prime}=18247651093$

4.8 Fitness Function

A fitness function is a particular type of objective function that quantifies the optimality of a solution (that is, a chromosome) in a genctic algorithm so that that particular chromosome may be ranked against all the other chromosomes. Optimal chromosomes, or at least chromosomes which are more optimal, are allowed to breed and mix their dalasets by any of scveral techniques, producing a new generation that will (hopefully) be even better. A nothor way of looking at fitness functions is in terms of a fitness landscape, which shows the fitness for cach possible chromosome.

Aut ideal fitness function correlates closely with the algorithm's goal, and yet may be computed quickly. Speed of execution is very important, as a typical genetic algorithm must be iterated many, many times in order to produce a usable result for a non-trivial problem.

Definition of the fitness function is not straightforwand in many cases and often is performed itcratively of the fittest solutions produced by GA are not what is desired. In some cascs, it is very hard or impossible to come up even with a guess of what fitness function definition might be. Intcractive genetic algorithms address this difficulty by outsourcing evaluation to external agents (normally humans)

4.8.1 Fitness Scaling

Recall that the two undesirable characteristics of FPS are:

- Prentalure convergence: Early on, a few super-individuals come to dominate selection
- Stagnation: Later on, selective pressure "disappears"

Fitness scaling offers a way to alleviate both of these problems. There are 3 gencral scaling methods:
a) Linear scaling
b) Sigma truncation
c) Power law scaling

4.9 Selection

During each successive generation, a proportion of the cxisting population is selected to breed a new gencration. Individual solutions are selected through a fitness-based process, where fitter solutions (as measured by a fitness function) are typically more likely to be selected. Certain scicction methods rate the fitness of each solution and preferentially select the best solutions. Other methods rate only a random sample of the population, as this process may be very time-consuming.

Most functions are stochastic and designed so that a small proportion of less fit solutions are selected. This helps keep the djversity of the population large, preventing premature convergence on poor solutions. Popular and well-studied selection methods include roulctte wheel selection and toumament selection.

4.10 Reproduction

The next slep is to generate a second gencration population of solutions from those selected through genetic operators: crossover (also called recombination), and/or mutation. In genetic algorithms, mutation is a genetic operator used to maintain genetic diversity from one generation of a population of chromosomes to the next. It is analogous to biological mutation.

The classic example of a mutation operator involves a probability that an arbitrary bit in a genetic sequence will be changed from its original state. A common method of implementing the mutation operator involves gencrating a tandom variable for each bit in a scquence. This random variable tells whether or not a particular bit will be modified.

The purpose of mutation in GAs is to allow the algorithm to avoid local minma by preventing the population of chromosomes from becoming too similar to each other, thus slowing or even stopping evolution. This reasoning also explains the fact that most GA systems avoid only taking the fittest of the population in generating the next but rather a random (or semi-random) selection with a weighting toward those that are fitter.

For each now solution to be produced, a pair of "parent" solutions is sclected for breeding from the pool sclected previously. By producing a "child" solution using the above methods of crossover and mutation, a new solution is created which typically shares many or the characteristics of its "parents". New parents are selected for each child, and the process continues until a new population of solutions of appropriate size is generaled.

These processes ultimately result in the next gencration population of chromosomes that is different from the initial gencration. Generally the average fitress whll have increased by this procedure for the population, since only the best organisms from the first gencration ate selected for brecding, along with a small proportion of less fit solutions, for reasons already mentioned above.

4.11 Termination

This generational process is repeated until a termination condition has been reached. Common terminating conditions are

- A solution is found that salisfies minmum criteria
- Fixed number of generations reached
- Allocated budget (computation time/money) reached
- The highest ranking solution's fitness is reaching or has reached a plateau
| such that successive itcrations no longer produce better results
- Manual inspection
- Combinations of the above.

4.12 Variants of GA

The simplest algorithm represents each chromosome as a bit string. Typically, numeric parametcrs can be represented by intcgers, though it is possible to use floating point representations. The basic algorithm perfoms crossover and mutation at the bit level. Other variants treat the chromosome as a list of numbers which are indexes into an instruction table, nodes in a linked list, hashes, objects, or any other imaginable data structure. C rossover and mutation are performed so as to respect data element boundarics. For most data types, specific variation operators can bc designed. Different chromosomal data types seen to work better or worse for different specific problem domains.

Other approaches involve using arrays of real-valued numbers instead of bit strings to represent chromosomes. Theoretically, the sntaller the alphabet, the better the performance, but paradoxically, good tesults have been o btained from u sing realvalued cluromosomes.

A slight, but very successful variant of the general process of constructing a new population is to allow some of the better organisms from the current generation to carry over to the next, unaltered. This strategy is known as elitist selection.

It can be quite effective to combine GA with other ophmization methods. GA tends to be quite good at finding generally good global solutions, but quite inefficient at finding the last few mutations to lind the absolute optimum. Other techniques (such as simple hill climbing, are quite efficient at finding absolute optimum in a hamited region. Alternating GA and hill climbing can improve the efficiency of GA while overcoming the lack of robustness of hill climbing.

CHAP'TER 5

PROBLEM FORMULATION

5.1 Introduction

An assembly line consists of (work) stations $k=1, \ldots, m$ arranged along a conveyor belt or a similar mechanical matcrial handling equipment. The workpieces (jobs) are consecutively launched down the line and are noved from station to station. At each station, certain operations are repeatedly performed regarding the cycfe time e (maximum or average time available for each work cyclc). The cycle time c determines the production rate which is $1 / \mathrm{c}$.The decision problem of optimally partitionitg (balancing) the assembly work among the stations with respect to sonse objective is known as the Assenbly Lime Balancing Problem (ALBP).

Manufacturing a product on an assembly line requires partitioning the total anount of work into a set of clementary operations named tasks $V=\{1, \ldots, n\}$. Performing a task j takes a task time t_{y} and requires certain equpment of machincs and/or skills of workers. Due to technological and organizational conditions precedence constraints between the lasks have to be observed. These elements can be summarized and sisualized by a precedence grapli. It contains a node for each task, node welghts for the task times and arcs for the precedence constraints.

Any type of ALBP consists in finding a feasible line balancc, i.e., an assignment of cach task to a station sueh that the precodence constraints and further restrictions are fulfilled The sel Sk of tasks assigned to a station $\mathrm{k}(=1, \ldots, \mathrm{~m})$ constitutes its station Ioad, the cumulated task tinc is called station time. When a fixed common cycle time c is given, a line balance is feasible only if the station time of neither station excecds c . In case of $\mathrm{t}(\mathrm{Sk})<\mathrm{c}$, the station k las an idle time of $\mathrm{c}-\mathrm{t}(\mathrm{Sk})$ time units in each cycle. A simple lower bound on the minimal number of stations is $\mathrm{LBl}=\left\lceil\mathrm{t}_{\text {sun }} / \mathrm{c}\right\rceil$ ($\Gamma \mathrm{x}$ denotes the smallest integer not being smaller than x)

The installation of an assembly line is a long-term decision and usuatly requires large capital investments. Therefore, it is important that such a system is designed and balanced so that it works as efliciently as possible. Besides balancing a new system, a ruming one has to be re-balanced periodically or after changes in the production process or the production program have taken place. Because of the long-term effect of balancing decisions, the used objectives have to be carcfully chosen considering the strategic goals of the enterpise. From an cconomic point of view cost and profit related objectives should be considered. However, measuring and predicting the cost of running a line over months or ycars and the profits achieved by selling the products assembled is rather complicated and error-prone. A usual aftemative objective consists in maximizing the line utilization which is measured by the line efficiency as the productive fraction of the line's total operating time and directly depends on the cycle time c and the number of stations m .

Balance delay time is another important factor. It is the amount of idle tinc on production assembly lines caused by the uneven division of work among operators or stations. It is related to the extent and way the total task is subdivided. In this mathematical model the problem of balance delay is treated cmpirically and analytically. Enppirical studies show that high balance delay is associated with a wide range of work-clement times and a high degree of line mechanization.

5.2 Mathematical Model

The processing time and cycle time are of fuzzy nature. The objective is to distribute n lasks a mong m stations in the assembly line so that minimum number of station with minimum idle time can be achicved and the outcome will be a highly balanced line i.c. the smoothness index will be lowest. The iuputs are fuzzy cycle time and fuzzy task time.

$$
\text { Objective Function : minn } \sum_{i=1}^{\operatorname{ta}} \sum_{j=1}^{n}\left[x_{r}+\left(\tilde{c}-\tilde{s}_{t}\right) y_{y}+\sqrt{\left(\tilde{c}-s_{j}\right)^{2} y_{y}}\right]
$$

subject to,

$$
\begin{align*}
& \sum_{i=1}^{m} \sum_{j=1}^{n} \tilde{t}, y_{j j} \leq \tilde{c} ; i=1,2,3 \ldots \ldots, n k . \tag{1}\\
& \sum_{h=\varepsilon_{1}}^{l} y_{y}=1 ; \quad \mathbf{j}=1,2,3 \ldots \ldots, \mathrm{n} \ldots . \tag{2}\\
& \sum_{j=1}^{m 1} y_{q} y_{j L}-\left(\sum_{i=1}^{i n} y_{y j}-\sum_{i=p+1}^{i m} y_{i k}\right)=0 . \tag{3}\\
& \bar{c}-\sum_{i=1}^{m} \sum_{j=1}^{n} \tilde{t}_{j} y_{j j} \geq 0 . \tag{4}\\
& \text { Erficiency, } \tilde{\eta}=\frac{\tilde{T}}{x_{\text {test }} \times \widetilde{c}}
\end{align*}
$$

Herc,

$$
\begin{aligned}
& x_{1}=\text { No of station } \\
& \widetilde{c}=\text { Fuzzy Cycle Time } \\
& \tilde{t_{i}}=\text { Fuzzy Task Time (TFN) } \\
& \widetilde{s}_{1}=\text { Fuzzy Station Time for Station } \mathrm{i} \\
& \mathrm{y}_{\mathrm{ij}}=1 ; \text { if task jis assigned to station } \mathrm{i} \\
&=0 \text {; otherwise } \\
& \\
& i=\text { Work station index, } \quad i=1,2,3 \ldots \ldots, m \\
& J=\text { Task index, } \quad j=1,2,3, \ldots, n
\end{aligned}
$$

Task ${ }_{j}$ is assigned to station $i \in\left[E_{j}, L_{j}\right]$ ifi $P_{j}^{*} \subseteq s_{1} \cup \ldots . \cup s_{1}$ and $\tilde{t}\left(s_{1}\right)+\tilde{t_{1}} \leq \tilde{c}$
(1) can be written as $\left\langle\mathrm{s}_{j}, \mathrm{l}_{\mathrm{j}}, \mathrm{r}_{\mathrm{j}}\right\rangle \mathrm{y}_{\mathrm{l}} \leqslant\langle\mathrm{t}, \mathrm{u}, \mathrm{v}\rangle$
if $A=\left\langle s_{1}, 1_{1}, r_{1}\right\rangle$ and $B=\left\langle s_{2}, l_{2}, t_{2}\right\rangle$
$\Lambda \leqslant B$ iff $s_{1}<s_{2}, s_{1}-l_{1}<s_{2}-l_{2}, s_{1}+I_{1}<s_{2}+r_{2}$
So, from (1), it can be expressed as

$$
\begin{align*}
& \sum_{i=1}^{m} \sum_{j=1}^{n} s_{j} y_{y} \leq t \tag{1}\\
& \sum_{i=1}^{i n} \sum_{j=1}^{n}\left(s_{j}-l_{j}\right) y_{j} \leq(t-w) \tag{2}\\
& \sum_{i=1}^{n+1} \sum_{j=1}^{n}\left(s_{j}+r_{j}\right) y_{i l} \leq(t+v) \text {. } \tag{3}\\
& \sum_{k=E_{1}}^{L_{1}} y_{s j}=1 ; \mathbf{j}=1,2,3, \ldots \ldots \ldots, n 11 . \tag{4}\\
& \sum_{i=1}^{m+} y_{y} y_{d k}-\left(\sum_{i=1}^{p} y_{i j}-\sum_{j a p+1}^{m i n} y_{i k}\right)=0 . \tag{5}\\
& \widetilde{c}-\sum_{1=1}^{m i n} \sum_{j=1}^{\pi} \tilde{l}_{j} y_{y} \geq 0 . \tag{6}
\end{align*}
$$

5.3 Genctic Algorithom Searching Method

Genetic algorithms (GA) are a general concept for solving complex optimization problems which is based on maripulating a population of solutions by genctic operators like selection, recombination and nutation [43]. In order to adapt the general approach to SALBP (or a generalized ALBP), two main difficulties have to be resolved:

- For manipulating solutions by means of genelic operators, they have to be encoded in form of "chromosomes' each of which consists of a sequence of gencs. Several cncoding schemes are possible cach having pros and cons concerning the type of applicable genctic operators. In particular, pertaining feasibility of manipulated solutions is a critical issue.
- The objective function of SALBP-1 is nol operational for guiding the search to pronising parts of the solution space, because it does not give a strong distinetion between the solution's fitness: Usually there are a few optimal solutions which require the minimal number m^{*} of stations and many others "around them' most of which may require $\mathrm{m}^{*}+1$ (or some more) stations. That is, a population might consist of solutions all having the same or a few different objective values such that selecting the most promising ones 15 not obvious. So the fitness function value is modified to search the highly balanced line with mimmum thle time. The sequential steps of the proposed algorithm are as follows:

Step 1: Ranking the fuzzy task limes according to signed distance value.
Step 2: Gencration of initıal parent strings.
Step 3: Genctation of offspring using crossover procedure.
Step 4: Generation of initial population pool of randomly constructed solutions (a solution is represented by a problem-specific structure of characters or bits) using scramble mutation.
Step 5: Selection of two solutions based on their fitness function value and gencration of new solutions using crossover procedures which are supposed to provide inheritance of some basic propertics of parent structures by the offsprings.

Step 6: Mutation of child structures with controlled mutation rate $\mathrm{M}_{\text {r }}$ which implies exchange of mumber of elements between two randomly selected positions in a structure. Step 7: Decoding/evaluation of the child stractures to obtain the objective function values.

Step 8: Selection procedure including comparison of child solutions with the worst solutions in the population and replacement of the worst solution by the new one if it is bettct.

Step 9: Termmation of the algorithn after repetution of step 5 to step 8 R times, where R is an initially specified parameter.

5.4 Standard Encoding

The first step in constructing a genetic algorithm is delining a genetic representation (encoding). Having a good representation that can well describe problem-specific characteristics is crucial since it significantly affects all the subsequcnt sieps of the GA . Thrce string representations applicable to ALB problcms are introduced [67].
(1) Workstation-oricnted represcntation: if task i is assigned to workstation j, the station number, j, is placed at the i-th position in the string.
(2) Sequence-oriented representation: all tasks are sequentially fisted in the order that the tasks are assigned to workstations.
(3) Partition-oriented representation: separators are introduced in the scquence-oriented representation to partition tasks into workstations.

Workstation-oriented representation can handie all types of ALBP. The other two representations are applicable only to the Type-2 and Type-E problems where the number of workstations is pre-specified. It provides considerabie nexibility in choosing genetic operators. Many genetic operators that have been developed for sequencing problems are avalable, and the representation makes it possible for them to be adapted to ALB
problems. The other two representations recfuice complicated additional operations, such as the use of penalty functions. In the proposed algorithon, the workstation-oriented encoding method has been used.

The chromosome is derined as a vector containing the labels of the stations to which the tasks 1, . ., 11 are assigned [67]. When standard crossovers or mutations are applied to such chromosomes, the resulting solutions are ofter infcasible. This aspect must be dealt with by penalizing infeasibilities or rearranging the solution by certain heuristic stratcgies. Kim et al. [68] achicve populations without infeasible solutions by decoding chronosomes using a procedure similar to that of Jelgeson and Bitnue [8]. In the proposed algorithm, only valid pools of chromosomes are considered.

5.5 Initial population

A genetic algorithm operales on a population of individual strings. Either heuristic procedures or random creations can be used to generate feasible strings that form the initial population. Anderson and Ferrss [45] have mentioned that the performance of the GA scheme is not as good from the pre-selceted starting population as it is from a random start. In this rescarch, individuals in an initial population are all randomly generated. As mentioned earlicr, the initial strings should maintain feasible sequences. So from the list generated on the basis of signed distance method an initial parent strings are formed. If it is infeasible then repair method is used to create a feasible string.

5.6 Crossover operator

Crossover or mutation depends on a certan probability, i e., if the probabilaty of recombining is 98% then the probability of mutating is 2% lin this case, the crossover (recombination) operator is a variant of Davis' [69] order c rossover operator. The two parents that are sclected for crossover a re cut at two random cutpoints. The oflispring takes the same genes outside the cut-points at the same location as its parent and the genes in between the cut-points are scrambled according to the order that they have in the
other parent. The major reason that makes this crossover operator very suitable for ALB is that it assures fcasibility of the offspring. Since both parents are fcasible, both children must also be feasible. Kecping a feasible population is a key to ALB problem since preserving feasibility drastically reduces computational effort. The genes can be swapped as a single bit or a cluster. The number of the genes to be swapped can be easily conlrolled by a user defined percentage of the length of the string.

5.7 Mutation operator

In the proposed algorithm, the scramble mutation operator is used. It was firsl proposed by Leu ct al, [44]. A random cut-point is selected and the genes after the cul-point are randomly replaced (scrambled), assuring feasibility. Elitism, i.e., replacing a parent with an offspring only if the offspring is better than the parent, is applied to both the crossover and the mutation procedurcs.

5.8 Selection Method

In this algorithm, chromosomes are selected using customized tournament selection method. Tournament selection is one of many methods of selection in gemetic algorithms which runs a "tournament" among a fcw individuals chosen at random from the population and selects the winner (the one with the best fitness) for crossover. Selection pressure can be easily adjusted by changing the toumament size. If the tournament size is larger, weak individuals have a smaller chance to be selected. In this case, the toumament size is equivalent to the total population including the parents. The best fit chromosomes are selected according to their fituess function value from a mutated pool. At first, chromosomes with minimum number of stations are selected. So the entire pool is curtailed to a pool with smaller population. Then the fitress function values of the valid chrompsomes are computed and the best two chromosomes are selected.

In De Jong's [70] study of genetic algonthms in function oplimization, a scries of parametric studics across a five-function sute of problenns suggested that good GA
perfoms requires the choice of a higl crossover probability, a low mutation probability (inverscly proportional to the population size), and a moderate population size.

5.9 Fitness functions

In GA the better fit solutions survive across generations. Hence the litness of a solution should reffect its quality with respect to the problem's objective. The selection policy should ensure survival of better fit solutions. In the proposed algorithm,

$$
\text { Fitmess Function }=\frac{\sum_{t-1}^{m}\left(\tilde{c}-s_{i}\right)}{m}+\sqrt{\sum_{j=1}^{m 1}\left(\tilde{c}-s_{1}\right)^{2}}
$$

The fitness function is modified to achieve the optimum number of stations which will be the minimum with the minimurn idle time and minimum snoothness index. However, given two different solutions with the same number of stations, one may be better balanced than the other. For example, a line with three stations may have stations times as 30-50-40 or 50-50-20. The 30-50-40 solution is considered to be superior (better balanced) to the 50-50-20 solution. Hence, a fitness function 15 used that consists of two objectives, i.e., minimizing the number of stations and obtaining balanced station. The first part of the fitness function aims to find the best balance while the second part minimizes the idie time among the solutions that have the same number of stations.

5.10 Stopping Condition

The algorithm terminates after a certain number of iterations. 50,500 and 1000 values haye been used as the number of itcrations parameter:

CHAP'TER 6

RESULTT ANALYSIS

6.1 Computational Result

The proposed fuzzy line balancing algorithm using genetic algorithm thas been coded in C and run on a Personal Computer having Intel Pentium- 4 core 2 duo/ 2.66 GHz and 512 Mb of RAM. The ninimum requirement of running the program: Operatıng Systen Windows XP or any other Windows Operating System of equivalent file structure and having Microsoft Visual C installed.

To demonstrate the effectiveness and robustncss of the approach computational results are presented that is obtained on a set of SALBP-1 problems found in literature. The progran was run for different iterations: 50,500 and 1000. For all iteration, the ALBP-1 datascts are used and have been compared with ELIREKA [71], SALOME [72] and Hybrid GA [73].

The algorithm has been cvalualed on three sets of instances: The Talbot-Set (64 instances) [29], the Hoffman-Sct (50 instances) [74] and the Scholl-Set (168 instances) [75]. The combined set consists of 269 instances (minus 13 instances whel are in the Talbot-Set as well as in the Hoffmann-Sct). The sources of the problems as well as a detaled description are given by Scholl [75]. The basic characteristics of the problems arc summarized in Thable 6.1. The first column displays the author of the instance. The second column shows the number of tasks. The third and fourth column shows the minimum and maximum cycle time. The fifth column gives the number of different cycle times out of the interval, which are used to define a problem in the Talbot-Set (T), in the Hoffmann-Sct (H), and in the Scholl-Set (S). The remaining columns contan the minmum processing time, the maximum processing time, the sum of processing times, the order strength in percent, and the time variability ratio $t_{\text {max }} / t_{\text {min }}$

Table 6.1: Problem Characteristics

Author	\cdots	$\overline{\mathrm{C}}_{\mathrm{mun}}$	$\mathrm{C}_{\text {max }}$.	$\mathrm{t}_{\text {m1212 }}$	$\mathrm{t}_{\text {mix }}$	$\mathrm{t}_{\text {sum }}$	OS (\%).	TV.
Arcus 1	83	3786	10816	233	3691	75707	59.1	15.8
Arcus 2	111	5755	17067	10	5689	$\overline{150399}$	40.4	568.9
Bartholdil	148	403	805	3	383	5634	25.8	127.7
Bartholdi2	148	84	170	1	83	4234	25.8	83
Bowman	8	20	20	3	17	75	75	5.7
Buxey	29	27	54	1	25	324	50.7	25
Gunther	35	41	81	1	40	483	595	40.0
Hahn	53	2004	4676	40	1775	14026	83.8	44.4
Heskiaoff	28	138	342	1	108	1024	22.5	108
Jackson	11	7	21	1	7	46	58.2	7
Jaeschike	9	6	18	1	6	37	83.3	6
Kilbridge	45	56	184	3	55	552	44.6	18.3
Lutzl	32	1414	2828	100	1400	$1 \overline{4140}$	83.5	14
Lut 22	89	11	21	1	10	485	77.6	10
Lutz3	89	75	150	1	74	1644	77.6	74
Mansoor	11	48	94	2	45	185	60.0	22.5
Mcrens	7	6	18	1	6	29	52.4	6.0
Mitchell	21	14	39	1	13	105	71.0	13.0
Mukherjue	94	176	351	8	171	4208	44.8	21.4
Roszieg	25	14	32	1	13	125	71.7	13.0
Sawyer	30	25	75	1	25	324	4.8	25.0
Scholl	297	1394	2787	5	1386	69655	58.2	277.2
Tonge	70	160	527	1	156	3510	59.4	156.0
Warnecke	58	54	11	7	53	1548	59.1	7.6
Wee-mag	75	28	56	2	27	1499	22.7	13.5

Table 6.2 Benchmarking with EUREKA

Author	No of Operations	Cycle Time	$\begin{aligned} & \text { Total } \\ & \text { Procossing } \\ & \text { Time } \end{aligned}$	Optimal No of Stations	Ideal Minimum tdle Time	EUREKA No Of Station	Proposed Algorithm No Of Station	Total Idle Time	$\begin{aligned} & \text { Idle } \\ & \text { Time } \\ & (\%) \end{aligned}$	Efficiency	$\begin{gathered} \text { Ret. Dev. } \\ \text { From } \\ \text { EUREKA[\%] } \end{gathered}$
Bowman	8	20	75	5	25	5	5	25	25	75.00	000
Merten	7	6	29	6	7	6	6	7	19.44	80.56	0.00
		7	29	5	6	5	6	13	3095	69.05	20.00°
		8	29	5	11	5	5	11	27.5	72.50	0.00
		10	29	3	1	3	4	11	27.5	7250	3333
		15	29	2	1	2	3	16	35.56	64.44	50.00
		18	29	2	7	2	2	7	19,44	80.56	0.00
Jaeschke	9	6	37	8	11	8.	8	11	22.92	77.08	0.00
		7	37	7	12	7	8	19	3393	6607	1429
		8	37	6	11.	6	7	19	33.93	66.07	16.67
		10	37	4	3	4	5	13	26	74.00	25.00
		18	37	3	17	3	3	17	31.48	68.52	0.00
Jackson	11	7	46	8	10	8	9	17	26.98	73.02	12.50
		9	46	6	8	6	7	17	26.98	7302	16.67
		10	46	5	4	5	6	14	23.33	76.67	20.00
		13	46	4	6	4	4	6	11.54	88.46	0.00
		14	46	4	10	4	4	10	17.86	82.14	0.00
		21	46	3	17	3	3	17	2698	7302	0.00
Mitchell	21	14	105	8	7	8	10	21	16.67	83.33	12.50
		15	105	8	15	8	9	15	12.5	87.50	0.00
		21	105	5	0	5	6	21	16.67	83.33	20.00
		26	105	5	25	5	5	25	1923	80.77	0.00
		35	105	3	0	3	4	35	25	75.00	3333
		39	105	3	12	3	3	12	10.26	89.74	0.00

[Rest of the table is given in Appendix A]

Table 6.3 Benchmarking with SAL.OME

Precedence Graph	No of Operations	Total Processing fime	Cycle Jime	Optimal No of Stations	SALOME No of Station	Proposed Algorithrn Optimum Station	Rel. Dev. From Salome [\%]	Total Idle Time	Idle Time (\%)	Eff.(\%)
Arcus 1	83	75707	3786	21	21	24	14.29	15157	16.68	83.32
Arcus 1		75707	3985	20	20	23	15.00	16948	17.4	82.60
Arcus 1		75707	4206	19	19	21	10.53	12619	14.29	85.71
Arcus1		75707	4454	18	18	20	11.11	13373	15.01	8499
Arcus1		75707	4732	17	17	18	5.88	9469	11.12	88.88
Arcus 1		75707	5048	16	16	16.	0.00	5061	6.27	93.73
Arcus1		75707	5408	15	15	16	6.67	10821	12.51	87.49
Arcus1		75707	5824	14	14	15	7.14	11653	1334	86.66
Arcus1		75707	5853	14	14	15	7.14	12088	13.77	86.23
Arcus 1		75707	6309	13	13	13	0.00	6310	769	92.31
Arcus 1		75707	6842	12	12	12	0.00	6397	7.79	92.21
Arcus1		75707	6883	12	12	12	000	6889	8.34	91.65
Arcusi		75707	7571.	11	11	11	0.00	7574	9.09	90.91
Arcus 1		75707	8412	10	10	10	000	8413	10	90.00
Arcus 1		75707	8898	9	9	9	0.00	4375	5.46	9454
Arcus 1		75707	10816	8	8	8	000	10821	12.51	87.49
Arcus2	111	150399	5755	27	27	32	18.52	33761	18.33	8167
Arcus2		150399	5785	27	27	33	22.22	40506	21.22	78.78
Arcus2		150399	6016	26	26	30	15.38	34581	19	8333
Arcus2		150399	6267	25	25	31	24.00	43878	22.59	77.41
Arcus 2		150399	6540	24	24	28	16.67	32721	17.87	82.13
Arcus2		150399	6837	23	23	26	13.04	27363	15.39	84.51
Arcus2		150399	7162	22	22	26	18.18	35813	19.23	80.77

[Rest of the table is given in Appendix B]

Table 6.4 Benchmarking with Hybrid GA

Author	No of Operations	Cycle Time	Total Processing Time	$\begin{aligned} & \text { Optimal } \\ & \text { No of } \\ & \text { Stations } \end{aligned}$	Hybrid GA No of Stations	Proposed Algorithm No Of Station	Total Idle Time	Idle Time (\%)	Efficiency	Rel. Dev, From Hybrid GA [\%]
Bowman	8	20	75	5	5	5	25	25	75.00	0.00
Merten	7	6	29	6	6	6	7	19.44	80.56	0.00
		7	29	5	5	6	13	30.95	69.05	20.00
		8	29	5	5	5	11	275	72.50	000
		10	29	3	3	4	11	27.5	7250	33.33
		15	29	2	2	3	16	35.56	64.44	50.00
		18	29	2	2	2	7	19.44	80.56	0.00
Jaeschke	9	6	37	8	8	8	11	22.92	77.08	0.00
		7	37	7	7	8	19	33.93	66.07	14.29
		8	37	6	6	7	19	33.93	66.07	1667
		10	37	4	4	5	13	26	74.00	25.00
		18	37	3	3	3	17	31.48	6852	0.00
Jackson	11	7	46	8	8	9	17	2698	73.02	12.50
		9	46	6	6	7	17	26.98	7302	16.67
		10	46	5	5	6	14	23.33	76.67	20.00
		13	46	4	4	4	6	11.54	88.46	0.00
		14	46	4	4	4	10	17.86	82.14	000
		21	46	3	3	3	17	26.98	7302	0.00
Mitchell	21	14	105	8	8	10	21	16.67	8333	12.50
		15	105	8	8	9	15	125	8750	0.00
		21	105	5	5	6	21	16.67	83.33	20.00
		26	105	5	5	5	25	19.23	80.77	0.00
		35	105	3	3	4	35	25	75.00	33.33
		39	105	3	3	3	12	10.26	89.74	000

[Rest of the table is given in Appendix C]

Table 6.5: Fuzzy Task Time

Task	Task Time	Task	Task Tıme	Task	Task Time	Task	Task Time
J	0.430 .5058	J_{2}	1.751 .81 .89	$J_{d j}$	1.261 .31 .47	J_{61}	021030.35
J_{7}	0.650 .7076	J_{21}	0.160 .20 .24	J_{2}	0.780 .80 .98	J_{6}	0360.40 .47
s	0.720 .8084	J_{23}	0.260 .30 .36	J_{43}	0.760809	J_{65}	0280.30 .36
J_{6}	0.981 .1123	J_{3}	0170.20 .25	J_{24}	0.530 .60 .68	J_{68}	0.540 .60 .69
J_{5}	0.870 .9102	J_{3}	0.270 .30 .36	$J_{4,5}$	0.991 .11 .21	J_{65}	0.760.80.86
J_{6}	0.890 .91 .08	J_{20}	131.51 .9	$J_{* 6}$	0.170 .20 .25	$J_{\text {bn }}$	0.430 .5056
J	0260.30 .32	J_{n}	OB8 1.01.03	J_{47}	0.280 .30 .34	J_{6} :	0.470 .5059
J_{3}	0.120 .20 .23	J_{38}	121.31 .45	J_{48}	0.690 .70 .78	J_{60}	1.261 .3139
J_{9}	0520.60 .68	$J_{z \nu}$	0320.40 .46	J_{49}	0.460 .50 .57	J_{62}	0.171 .01 .05
$J_{\text {su }}$	0.260 .3033	J_{30}	0.430 .50 .57	J_{50}	1.12121 .25	\ldots	0.170 .20 .24
J_{1}	0.750 .80 .82	$J_{s \prime}$	1210.30 .36	J_{3}	0420.50 .56	J_{7}	0. 160.2023
J_{12}	0.650 .70 .8	J_{3}	1.11 .21 .26	s_{53}	0.3204046	J_{7}	0.38040 .43
J_{13}	0370.40 .42	J_{3}	1.12121 .25	.$_{s f}$	060.650 .75	J_{7}	0.420 .50 .56
J_{14}	0.190 .20 .22	$J_{s 4}$	0.320 .40 .49	$J_{s,}$	0.260 .3034	J_{74}	0.27030 .31
J_{13}	0570.60 .67	J_{s}	016020.21	$J_{s s}$	0870.90 .98	J_{7}	0.710 .80 .91
J^{6}	0.320 .40 .44	J_{36}	0750.60 .89	J_{56}	0330.40 .51	J_{76}	0.510 .55062
J_{17}	005010.14	J_{17}	0.6607085	${ }^{57}$	0.98101 .02	J_{7}	0.650 .70 .79
J^{3}	0.270 .30 .34	$J_{s 3}$	0971.01 .08	$J_{s y}$	1141.21 .23	$J_{7 \%}$	0.870 .9103
J_{19}	0.480 .50 .56	$J_{s g}$	0.921 .01 .06	$J_{s q}$	$0.790 .81 \mathrm{B2}$	J_{7}	0.740 .8095
J_{3}	0.890 .91 .09	$J_{s a}$	0.430 .50 .56	J_{60}	0.981 .0103	$J_{\text {an }}$	0.340 .4057

Parameters:

Population size: 20
Iteration: 30
Cycle time, $\mathrm{C}=\left(\begin{array}{llll}1 & 1 & 1 & 1\end{array} 1\right)$

Result:

Optimum Number of Station: 6
Total idle time: $\left(\begin{array}{ll}7.11 & 13.9 \\ 17.21\end{array}\right)$
\% of idle time: (10.7721.06 26.08)
Elliciency: (73.92 78.94 89.23)

Table 6.6 Comparison of Eight Methods on the 70 Task Problems

Cycle Time	Moodio and Young	Tonge MIF	Tonge RC	Tonge BPC	Nevins	Baybars	Sabuncuoglu	Proposed Algorithm
83	48	50	50	49	47	47	48	46
86	47	47	48	47	46	46	46	45
89	44	45	46	44	43	43	44	43
92	43	43	44	43	42	42	43	43
96	42	43	43	41	40	40	41	42
$\mathbf{1 7 0}$	24	24	24	23	23	23	23	25
$\mathbf{1 7 3}$	24	24	24	23	22	22	23	25
176	22	24	23	22	22	22	22	25
179	22	23	23	21	21	21	22	24
182	22	23	22	21	21	21	22	23
346	11	11	12	11	11	11	11	12
349	11	11	11	11	11	11	11	12
364	11	11	11	11	11	$\mathbf{1 1}$	11	11

The proposed algorithm has been compared with seven other algorithms $[16,21,22,76,77]$ in solving Tonge's 70 task problem [17] with 13 cycle times. From above computational results it is c lear in some c ases p roposed algorithon o utporfonms the other 5 cven methods, even the genetic algorithm based algonithm of Sabuncuoglu [77]. Though some results of other algorithms are better than the proposed algorithm, it must be mentioned here that the proposed algoithm holds an objective function with multiple objectives. So it trics to find out the number of the optimum stations having the minimumide time and minimum smoothness index. So in the other case, it is most likely that the oplinum solution of the proposed algonithm may give better result than other algorithms with respect to idle time and smoothness mextex that is achieved through a trade-off between minimum number of stations and minimum idle time.

6.7 Convergence Analysis

Genctic algorithens use a selection scheme to select mdividuals from the population to insert into a mating pool. Individuals from the mating pool are used by a recombination operator to generate new offspring, with the resulting offspring forming the basis of the next generation. As the individuals in the mating pool pass their gencs on to the next generation it is desirable that the mating pool be comprised of good individuals. A selection scheme in $G A s$ is smply a process that lavors the selection of better individuals in the population for the mating pool. The selection pressure is the degrec to which the better individuals are favored; the higher the selection pressure, the more the better individuals are favored. This sclection pressure drives the GA to improve the population fitness over succeeding gencrations. The convergence rate of a GA is largely determined by the magnitude of the sclection pressure with higher selection pressures resulting in higher convergence rates. Genctic algorithons are able to identify optimal or near-optimal solutions under a wide range of selection pressure.

If the selection pressure is too low, the convergence rate will be slow, and the GA will unnccessarity take longer time to find the optimal solution. If the selection pressure is too high, there is an increased chance of the GA prematurely converging to an incorrect (suboptimal) solution. In addition to providing selection pressure, selection sehemes should also preserve population diversity as this helps avoid premature convergence. The proposed algoithm has been run on two options of crossover operator. Onc erossover operator perfonms the o peration by s wapping only one gene. The o ther c rossover o perator swaps a cluster of genes. There is an option to control the number of genes to be crossed-over by an uscr delined rate. The convergence analysis was done on Arcus 83 dataset under scveral parancters. The results are depicted in the following section.

Parameters

Maximum population: 50
lieration: 30
Crossover methed: single gene two paint crossover

Graph 1: Convergence Analysis

Maximum population: 50
Ileration: 50

Crossover method: elustered gene two point crossover

Crossover ratc: 0.00 :

Maximum population: 50
Iteration: 50
Crossover method: clustered gene two point crossover
Crossover rate: 0.001

From the above results, it can be concluded that single gene crossover is better than clustered gene crossover as it converge in smaller number of iterations. The smaller the crossover rate, the lower the number of genes in a cluster and the smaller the number of iterations to converge.

CHAPTER 7

CASE STUDY

7.1 Introduction

SALBP is a classic optimization problem, having been tackled by researchers over several decades. Many algorithms have been proposed for the problem. Yet despite the practical importanec of the problem, and the various cfforts that have been made to tackle it, little commercially availabie software is available to help industy in optimizing their lines. It appears that the gap between the available results and their dissemination in today's industry is probably due to a misalignment between the academic LB problem addressed by most of the approaches, and the actual problem being faced by the industry. LB is a difficult optimization problem (even its simplest forms are NP-hard) [18]. So the approach taken by researchers has typically been to simplify it, in order to bring it to a level of complexity amenable to optimization tools. While this is a perfectly valid approach in general, in the particular case of LB it led to some definitions of the problem that iglore many aspects of the real-world problem.

To establish the robustness of the proposed algorithm, it has been implemented to solve a practical line balancing problem. In this casc study, the assembly line of the RahimAfrooz Batterics Limited has been studied and balanced applying the algoritlm. The data has been collected from a recently conducted time study and fuzzy jib tume has been constructed for cach specific job.

7.2 Overview of Problem Area

Rahimafrooz Batteries Limited (RBL) is the largest lead-acid battery manufacturcr in Bangladesh and offers an extensive range of automotive \& specialized industrial battery. It manufactures over 300 different types of autonotive and industrial baticries. Its plant is ISO 9001 \& ISO 14001 certhed. It is one of the key playcrs in South Asia in its field. RBL has also extended its product line to secure power solution with UPS, Rectifier and VRLA Batterics with collaboration of Enersys-USA, Eltck-Norway, AEES-France.

RBL has a successful story of installing solar power in the remote rural areas of Bangladesh. It has success[ully instalied more than 10,000 home solat systems in the remote rural areas of Bangladesh.

Rahimafrooz has state of the art manufacturing plant. It is equipped with all latest technologies wilh complete air treatment and lead-recycling management. RBL produces different types of battenes to meet the local and international market.

Its capacity in Automotive Battery is 660,000 (N50) units per annum and 15 million AH of Industrial Battery per annum. All the products are manufactured under striet quality control and ensured by intemational certifications. Its main product range includes:

Automotive batlery
Motorcycle battery
Applance batery
Deep cycle - Flat plate ballcry
Industrial tubular battery
VRLA battery
UPS
Solar system

It has different technical collaboration agrecments with Lucas Battery Company, U.K, Technical support Group (TSG), Hawker Batterics, UK, Invensys, UK, Hawker Batteries, UK, Eliek - Nonway, AEES - Ftance to ensure the quality of battery.

Unit-2 of R BL, in Panisail, Zirani bazaar, Savar, Gazipur, is quite huge and produces mainly automotive batteries. In this thesis data has been collected from unt 2 of RBL to implcment the TS-based algorithm.

7.3 Some Important Definitions

Before exploring the specific problem area the following definitions should be noted:

- Active Chemically active compounds in a cell or battery that convert from one Material: composition to another while producing curent (electrical energy) or accepting current from an external circuit.
- Battery A batery has two poles or posts. The positive battery post is usually Polarity: marked POS, P , or + and is larger than the negative post which is usually marked NEG, N, or ${ }^{2}$. The polarity of the charger and battery must match to avoid damage to the battery and charger.
- Cells: The basic electrochemical current producing unit in a battery consisting of a set of positive plates, negative plates, clectrolyte, separator and casing. There are six cells in a 12 -volt lead-acid batlery.
- Container: The polypropylene or hard rubber case that holds plates, electrolyte and separators.
- Electrolyte: A solution of sulfuric acid and water that conducts current through the movement of ions (charged particles in the electrolyte solution) between positive and negative plates. It supplies sulfate ions for reaction with the active matcrial of both positive and negative plates.
- Plates: Flat, typically rectangular components that contain the active material and
a mechanical support structure called a gricl, which also has an electrical function, carrying electrons to and from active material. Plates are either positive or negative, depending on the active material that it holds.

7.4 Specific Problem Area: Assembly line in RBL_-2

There are two assembly lines in Rahimafiooz bateries litd. (Unit-2). The configurations of the assembly lines are straight. The products are transferred from one workstation to another over roller conveyor. At each workstation different operations are performed. From a recently conducted time study, it is obscrved that the workstations cycle time are not equal for each workstations and the line is not balanced. So the proposed algorthm can be applied to the existing assembly line configuration and the new design can be proposed.

7.4.2 Assembly Operations

The assembly of the different types of batterics requires a total of 14 operations. The task required for the assembly operations are:

1. stacking or separating
2. group burning
3. attaching side pack and inserting in the container
4. short and polarity test
5. inter-cell welding
6. shear testing
7. scaling the container
8. burning the pole
9. brushing the pole and making it positive or negative
10. performing the Jeak test
11. attaching the pass tag and bar code
12. attaching the aluminum foil
13. wrapping the battery with required vent plug
14. packaging

Table 7.1: Precedence Graph

Job $\left(J_{i}\right)$	Inmediate Predccessor
1	--
2	1
3	2
4	3
5	4
6	5
7	6
8	7
9	8
10	9
11	10
13	11
14	12

Table 7.2: Production quantity of Battery

	Type of battery				Maximum
	VHD 1500	PCM 29	PCM 27	N 120	
Maximum quantity/slift	245	245	245	285	285

So in 8 hour shift or 480 minutes the workers produce 285 pieces of battery. So it needs $(480 / 285)=1.68 \mathrm{~min}$ or 101 second for producing one battery. So the fuzzy cycle time for the process is (101 113 117)

From the conducted time study, the fuzzy job time for each job as follows:

Table 7.3: Fuzzy Task Tinac

. $\operatorname{lob}\left(J_{i}\right)$	p	q	r
1	48.66	52.01	53.66
2	55.66	58.23	62
3	36.66	40.9	47.33
4	18.5	20	23
5	27	30.5	36
6	23	26.8	32
7	18	20	26
8	7	20	30
9	8	10	13
10	20	22.1	28
11	6	8	10
12	18	19.5	26
13	24.5	27	30
14	30	34	37

7.4.3 Result

Applying proposed line balancing algorithm the result is:
Optimum Number of Station: 6
Total idle time: (152.01288 .96361 .02)
$\%$ of ldle Time: (21.65 42.62 59.57)
Efficiency: (48.57 57.38 74.92)

CHAP'TER 8

CONCLUSION AND RECOMMENDATIONS

8.1 Cunclusion

This research work has customized a genetic algorithm lne balancing algorithm in a fuzzy environment. This algorithm can be employed to balance both the fuzzy and crisp cnvironment. The objective of the algorithm is not only confined to fint out the minimum number of station but also to minimize iclle lime and minmize smoothness index. So the outcone is a highly balanced line with minimum idle time and possible minimum number of statons. The algoithn has been benchnarked with two well known algorthms namely 'EUREKA' [71] and 'SALOMI' [72]. The result shows that the proposed algorithm shows a small amount of relative deviation. The algorithm has also been compared with cight different algorlhms for solving assembly hne balancing problem method.

It must be mentioned that all of the previous algorithm have the objective of finding out the minimum number of stations. The proposed algorithm has multi objective and it tries to find out the optimum combination of minimum number of stations with minimum idle time and smoothness index.

8. 2 Recommendations

The performance of the presented GA-based algorithon can be further analyzed in terms of CPU time by comparing it with other best known algorithms for assembly line balaneing problem In the crossover operator, order crossover method has been used. Other crossover operator can be used and compared with the propased algorithm to observe the result. If the some of the stations can be frocen after a specific number of terations then the computation time will be lower. In this case the fuzzy time is considered Triangular fuzzy number. It he algorithn can also be used to handle other type of fuzzy numbers.

REFERENCE

[1] Baybars, I, "A survey of exact algorithms for the simple assembly line balancing problem". Management Science, Vol. 32, pp. 909-932, 1986
[2] Scholl, A., "Balancing and sequencing assembly lines", 2nd ed. Physica, Heidelberg, 1999.
[3] TalboL F.B., Patterson, J.H., Gelulein, W.V., "A comparative cvaluation of heuristic linc balancing technigues". Management Science, Vol. 32, pp. 430-454, 1986.
[4] Boctor, F.F., "A multiple-rule heuristic for assembly line balancing". Joumal of the Operational Research Society, Vol. 46, pp. 62-69, 1995.
[5] Ponnambalam, S., Aravindan, G., Mogilecswar Naidu, G., "A multi-objective genetic algorithm for solving assembly linc balancing problem". Infernational Journal of Advanced Manufacturing Technolog', Vol. 16, pp. 341-352, 2000.
[6] Hackman, S.T., Magazine, M.I., Wce, T.S., "Fast, effectuve algorithms tor simple assembly line balancing problems". Oporations Rescarch, Vol. 37, pp.916924, 1989.
[7] Scholl, A., Vob, S., "Simple assembly line batancing-Heuristic approaches". Journal of Heurestics, Vol. 2, pp. 217-244, 1996.
[8] IIelgeson, W.I., Bitnic, D.P., "Assembly line balancing using the ranked positional weight technique", Journal of Industrith engineoring, Vol. 12, pp. 394-398, 1961.
[9] Wce, T.S., Magazine, M.J., "Assembly line balancing as gencralızed bin packing". Operations Research Letters, Vol. 1, No. 2, pp. 56-58. 1982.
[10] Arcus, A.L., "COMSOAL: A computer method of scguemeing operations for assembly lines". International .Journal of Production Rescarch, Vol.4, pp. 259-277, 1966.
[11] Bonney, M.C., Schofield, N.A., Green, A., "Assembly linc balancing and mixed model line sequencing". Proceedings of the Fffh INTERNET World Congrcss, Birminghant. pp.112-121, 1976.
[12] Schotield, N.A., "Assembly line balancing and the applicalion of computer techniques". Computers and Industrial Engineering, Vol. 3, pp. 53-69, 1979.
[13] Tonge, F.M., "Assembly line balancing using probabilistic combinations of heuristics". Management Science, Vol. 11, pp. 727-735, 1965.
[14] Bennct, G.B., Byrd, J., "A trainablc heuristic procedure for the assembly linc balancing problem". AIIE Transactons, Vol. 8, pp. 195-201, 1976.
[15] Ranuf, A., Tsul, C.L., El-Sayed, E.A., "A new heuristic approach to assombly line balancing". Computers and Industrial Engineering, Vol. 4, pp. 223-234, 1980.
[I6] Baybars, I., "An efficient heuristic mathod for the simple assembly line balancing problem", Intemational Journat of Production Research, Vol. 24, pp, 149166, 1986
[17] Tonge, F.M., "Sunmary of a heuristic fine balancing procedure" Managenemt Sctence, Vol. 7, pp. 21~39, 1960.
[18] Freeman, D.S., Swain, R.W., "A heuristic techtique for balancing automated assembly lines". Research Report No. 86-6, Industrial and Systens Engineering Department, University of Florida, Gaincsville, 1986.
[19] Fleszar, K., Hundi, K.S., "An enumerative heuristic and reductıon methods for the assembly line balancing problem". European Joumal of Operational Research, Vol. 145, pp. 606-620, 2003.
[20] Pinto, P.A., Dannenbring, D.G., Khumawala, B.M., "A heuristic network procedure for the assembly line balancing problen". Naval Research Logistics Quarterly, Vol. 25, pp. 299-307, 1978.
[21] Tonge, F.M., "A heuristic program of assembly line balancing", Englewood Clifts, NJ, 1961.
[22] Moodie, C.L., Young, H.H., A heurislic method of assembly line balancing for assumptions of constant or variable work clement times. Journal of Industrial Enginecring, Vol. 16, pp. 23-29, 1965.
[23] Arcus, A.L., "An analysis of a computer method of Sequencing Assembly Line Operations", Ph.D. dissertation, University of Cahforma, Berkeley, 1963.
[24] Hoffnann, T.R., "Assembly line balancing with a precedence matrix". Management Science, Vol. 9, pp. 551-562, 1963.
[25] Gehrlein, W.V., Patterson, J.H., "Scquencing for assembly lines with integer Lask times'. Management Science, Vol. 21, pp. 1064-1070, 1975.
[26] Dar-El, E.M.,"MALB- A heuristic technique for balancing large-scale singlemodel assembly lincs"., AIEE Transactions., Vol 5, No, 4, pp 343-356, 1973.
[27] Dar-EI. E.M., "Assembly line balancing - an improvement on the ranked positional weight tcehnique", Journal of huchstrial Engineering, Vol. 15, No. 2. pp. 73-77, 1964.
[28] Wee, T. S. and Magazinc, M., "An efficient branch and bound algorithnn for an asscmbly line balancing problem - part I: minimize the number of work stations", University of Waterloo, Ontario, Canada. 1981.
[29] Talbot, F.B., Patterson, J.H., "An integer programming algorithm with network cuts for solving the assembly line balancing problem". Management Science, Vol. 30, Tp. 85-99, 1984.
[30] Schrage, L., Baker, K.R., "Dymanic programming solution of sequencing problems with precedence constraints". Operations Research, Vol. 2G, pp. 444-449, 1978.
[31] Held, M., Karp, R.M., Sharcshian, R., "Assembly line balaricıng-Dynamic programmang with precedence constraints". Opcrations Rescarch, Vol. 11, pp. 442459, 1963.
[32] Dar-El, E.M., Rubinovitch, Y., "MUST-A multiple solutions teclunique for balancing single model assembly lines. Monagenent Scicnce, Vol. 25, pp. 11051114, 1979.
[33] Glover, F., Laguna, M., "Tabu scarch". Kluwer Academic Publishers, Boston, 1997.
[34] Aarts, E.H.L., Korst, J.H.M., "Simulated anncaling and Bolt/mann machines: A stochastre approach to combinatorial optirnization and neural computing". Wilcy, Chichester, 1989.
[35] Chiang, W.-C., "The application of a tabu search metahouristic to the assembly line balancing problem", Annals of Operations Research, Vol. 77, pp. 209-227, 1998.
[36] Lapicrre, S.D., Ruiz, A., Soriano, P., "Bulancing assembly Incs with tabu scarch". European Journal of Operational Research. Vol. 168, pp 666-693, 2006.
[37] Heintici, A., "A comparison between simulated annealing and tabu search wilh an example from the production planning". In: Dyckholf, H. ct al. (Eds.), Operations Research Proceedings, Springer, Bcrlin, pp. 498-503, 1994.
[38] Suresh, G., Salıu, S., "Stochastic assembly line balancing using simulated annealing". International Journal of Production Rescarch, Vol. 32, pp. 1801-1810, 1994.
[39] McMullen, P.R., Frazier, G.V., "Using simulated anncaling to solve a multiobjective assembly linc balancing problem with parallel workstations". Infemational Journal of Production Research, Vol. 36, pp. 2717-2741, 1998.
[40] Bautista, J., Pereira, J., Ant algorithns for asscmbly line balancing. Lecture Notes in Computer Science 2463, pp. 65-75, 2002.
[41] McMullen, P.R., Tarasewich, P., "Using ant techniques to solve the assembly line balancing problem'. ME Transactions, Vol. 35, pp. 605-617, 2003.
[42] Holland, J. H., "Adaptation in natural and artificial systems", The University of Michigan Press, Ann Arbor, MI, 1975.
[43] Goldberg. D.E., "Genetic algorithms in search, optinuzation and machine learning". Addison-Wesley, Reading, MA, 1989.
[44] Leu, Y.Y., Matheson, L.A., Recs, L.P., "Assembly linc balancing using genetic algorithms with heuristic-gencrated initial populations and multiple evaluation critcria". Dccision Sciences, Vol. 25, pp. 581-606, 1994
[45] Anderson, E.J., Ferris, M.C., "Genetic algorithuns for combinatorial optimization: The assembly line balancing problem". ORSA Journal on Computing, Vol. 6, pp. 161-173, 1994.
[46] Surcsh, G., Vinod, V.V., Sahu, S., "Genctic algorithm for assembly line balancing'. Production Planning and Control, Vol. 7, pp. 38-46, 1996.
[47] Zadeh, L.A., "Fuzzy Sets", Informathon and Control, Vol. 8, pp 338-353, 1965.
[48] Tsujímura, Y., Gen, M., Kubota, E., "Solving fuzzy asscmbly-line balancing problem with genctic algorithms". Computers and Industrial Enginecring, Vol. 29, pp. 543-547, 1995.
[49] Deckro, R.F, "Balancing cycle time and workstations", IIE Transactions, Vol. 21, pp. 106-111, 1989.
[50] Scholl, A., Becker, C., "State-of-the-art exact and heuristic solution procedurcs for simple assembly linc balancing", Jenter Schiften zur Wirtschaftswissenschaft. Vol. 20, University of Jena, Germany, 2003 .
[51] Rosenberg, O., Ziegler, H., A comparison of heuristic algoritimes for costoriented assembly line balancing", Operations Rescarch, Vol. 36, pp. 477-495, 1992.
[52] Amen, M., "An cxact method for cost-oriented assembly line balancing". International Journal of Production Economics, Vol. 64, pp. 187-195, 2000
[53] Scholl, A., Becker, C., "A note on "An exact method for cost-oricnted assembly line balancing". Jenaer Schriften zur Wirtschtffiswissenschaft, Vol. 22, L'niversity of Jena, Gcrmany, 2003
[54] Amen, M., "Heuristic methods for cost-oriented assembly line balaneng: A survey". International Journal of Production Economics. Vol.68, pp.1-14, 2000
[55] Malakooti, B., "Assembly line balancing with bufiers by multiple criteria optimization", International Journal of Production Rescarch, Vol. 32, pp. 2159-2178, 1994.
[56] Malakooti, B., Kamar, A., "Ar expert system for solving nulti-objective assembly line balancing problems", Internatonal Jonmal of Production Research, Vol. 34, pp. 2533-2552, 1996.
[57] Rosenblatt, M.J., Carlson, R.C., "Designing a production linc to maximize profit", ME Transactions, Vol. 17, pp. 117-121, 1985.
[58] Martin, G.E., "Optimal design of production Fines". Intemathonal Journat of Protuction Rescarch, Vol. 32, pp. 989-1000, 1994.
[59] E.H. Mamdani, S. Assilian,"An experiment in linglistic synthesis with a fuzzy logic controller". International Journal of Mon-Machine Studes, Vol. 7, No.1, pp. 1-• 13, 1975.
[60] Roy, B., Vincke, "Rehational systems of preference with one or more pscudocriteria: Some now concepts and results". Management Science, Vol. 30, pp. 13231335, 1984.
[61] Vanegas, L.V., Labib, A.W., "Application of now fuzzy weighted avcrage method to engineering design evaluation". International Journal of Production Research, Vol. 39, No. 6, pp. 1147-1162, 2001.
[62] Yao, J.S., Wu, K., "Ranking fuzzy numbers based on decomposition pnnciple and signed distance". Fuzzy' Sets and Systems, Vol. 116, pp. 275-288, 2000.
[63] Nils Aall Barricelli. "Symbiogenetic evolution processcs realized by artificial methods". Methodos, Vol. 9, pp. 35-36, 1957.
[64] Alex S. Fraser, "Simulation of Genelic Systems by Altomatic Digita] Computers. 1. Introduction." Australian Joumal of Biologicat Scionces, Vol. 10, pp. 484-491, 1957.
[65] Fraser, Alex and Donald Burnell, "Connputer Models in Genelics", McGrawHill, Now York, 1970.
[66] Crosby, Jack L., Computer Simulation in Genetics, John Wilcy \& Sons, Londor, 1973.
[67] Bautista, J., Suarez, R., Mateo, M., Companys, R, "Local scarch heuristics for the assembly line balancing problenn with incompatibilitios between tasks." Proceedings of the 2000 IEEE Internationtal Conference on Robotics and Automation, San Francisco, CA, pp. 2404-2409, 2000.
[68] Kim, Y.K., Kim, Y., Kim, Y.J., Two-sided assembly line balancing: A genetic alyorithm approach. Production Plamong and Control, Vol. I 1, pp. 44-53, 2000.
[69] Davis, L., "Applying algorithms to eppstatic domains". frocecditgs of International Join Conference on Artificial Intelligence, 1985.
[70] De long, K. A., "An analysis of the bchavior of a class of genetic adaptive systems". Doctoral Disscrtation, University of Michigin, 1975.
[71] Hoffnann, T.R., "EUREKA: A Hybrid System for Assembly Line Balancing." Management Science, Vol. 38, pp. 39-47, 1992
[72] Scholl, A., Klein, R., "SALOME: A bidurectional branch and bound procedure for assembly line balancing". INHORMS Journal on Compuing, Vol. 9, pp. 319-334, 1997.
[73] Goncalves, J. F., Almeida, J.R., "A hybried genctic algorithm for assembly hne balancing". Journat of Heuristics, Vol. 8, pp. 629-642, 2002.
[74] Hofinann, T.R., "Assembly Line Balancing: A Set of Challenging Problems." International Journal of Production Research, Vol. 28, pp. 1807-1815, 1990.
[75] Scholl, A., "Dala of Assenbly Line Balancing Problens", Working Paper, TH Damstadt, 1993.
[76] Nevins, A. J. "Assembly line balancing using best bud scarch". Managenent Science, Vol. 18, pp. 529-539, 1972.
[77] Sabuncuoglı, I., Ercl, E., Tanyer, M., "Assembly line balancing using genetic algoithms". Journal of Inteligent Manufacturng, Vol. 11, pp. 295-310, 2000.

Appendices

Appendix A: Benchmark Data with EUREKA							Proposed Algorithm no of station	Total lde Time	\% of IdIe Time	Efliciency	$\begin{aligned} & \text { rel. dev. } \\ & \text { from } \\ & \text { EUREKA } \\ & \text { [\%] } \end{aligned}$
Author	No of operations	Cycle Time	Total Processing Time	Optimal No of Stations	Ideal Minimum Idle Time	EUREKA 110 of station					
Heskia	28	138	1024	8	80	8	9	218	17.55	82.45	1250
		205	1024	5	1	5	6	206	16.75	83.25	20.00
		216	1024	5	56	5	6	56	519	94.81	0.00
		256	1024	4	0	4	5	256	20	80.00	25.00
		324	1024	4	272	4	4	272	20.99	7901	0.00
		342	1024	3	2	3	4	344	25.15	74.85	3333
Sawyer	30	25	324	14	26	14	17	101	23.76	76.24	21.43
		27	324	13	27	13	16	108	25	75.00	23.08
		30	324	12	36	12	14	96	2286	77.14	16.67
		36	324	10	36	10	11	72	18.18	8182	10.00
		41	324	8	4	8	9	45	122	87.80	12.50
		54	324	7	54	7	7	54	14.29	85.71	0.00
		75	324	5	51	5	5	51	13.6	86.40	0.00
Kilbrid ge and Wester	45	57	552	10	18	10	11	75	11.96	8804	1000
		79	552	7	1	7	8	80	12.6	87.34	14.29
		92	552	6	0	6	7	92	14.29	85.71	16.67
		110	552	6	108	6	6	108	1636	83.64	0.00
		138	552	4	0	4	5	138	20	80.00	2500
		184	552	3	0	3	4	184	25	7500	33.33
Tonge	70	176	3510	$2]$	186	21	23	538	13.29	86.71	9.52
		364	3510	10	130	10	11	494	12.34	87.66	10.00
		410	3510	9	180	9	9	180	4.88	95.12	0.00
		468	3510	8	234	8	8	234	6.25	9375	0.00

Table 6.2 (contlined)

Author	Noot operations	Cycle Time	Total Processing Time	Optimal No of Stations	Idieal Minimamı Idle Time	EUREKA Ho of station	Proposed Algoritlan no of station	Total Idie Time	$\%$ of Idte Time	Efficiency	rel. dev. from EUREKA (\%)
		527	3510	7	179	7	7	706	16.75	95.15	0.00
Arcas	83	5048	75707	16	5061	17	17	10109	11.78	88.22	6.25
		5853	75707	14	6235	15	15	12088	13.77	8623	714
		6942	75707	12	6397	12	12	6397	7.79	9221	0.00
		7571	75707	11	7574	12	12	15145	16.67	83.33	9.09
		8414	75707	10	8433	10	10	8433	10.02	89.98	0.00
		8998	75707	9	5275	9	9	5275	6.51	9349	000
		10816	75707	8	10821	8	8	10821	12.51	87.49	0.00
Arcets	111	5755	150399	27	4986	33	33	39516	20.81	79.19	17.86
		8847	150399	18	8847	20	20	26541	15	85.00	11.11
		10027	150399	16	10033	18	17	20060	11.77	88.23	6.25
		10743	150399	15	10746	16	16	21489	12.5	8750	667
		11378	150399	14	8893	15	15	20271	11.88	88.12	7.14
		17067	150399	9	3204	10	10	20271	11.88	88.12	1111

$1 \varepsilon ¢ \% 8$	69＇91	8t8	0002	Z	$\varsigma ¢$	5ε	121	bqZ		C1O¢
ごず28	¢c＇91	0t8	ガぐ1	¢\％	9Σ	95	811	teてt		zloqueg
く8＇18	8181	［t6	\％9\％12	$s t$	6	15	SII	もとで		टloqueg
8178	782］	816	$50^{\circ} 12$	9 t	8£	8ε	ZII	tezt		C10queg
E6， 08	20.61	866	80.92	$8 \downarrow$	6ε	62	60 T	bict		7才，
68.62	1102	9901	90 sz	05	$0{ }^{6}$	（t）	901	tęt		z10ヶpueg
$6 C^{8} 8$	じして	$\checkmark L I 1$	5896	ZS	it	It	$\pm 0 \mathrm{I}$	ちᄃです		cioureg
016t	602	6 It	$6{ }^{\text {1＇92 }}$	¢¢	てt	7	101	t を詻		
6909	โ＇61	E101	¢50	ES	t	Et	66	ちをで		copueg
$95^{\prime} 62$	カ9＇0z	611	zでZZ	¢ 5	St	\ddagger	46	カ「で		210YIPR号
＋8＇0	$91 \varepsilon Z$	9 LZI	6092	85	97	50	56	ャをで		200｜［20］
$91 / 2$	¢8＇7\％	¢¢てI	$55.5 Z$	65	$\angle t$	$9 t$	16	t「で		Z10¢
S¢＇Lt	$\varsigma \checkmark^{\circ} \mathrm{C}$	$97 Z 1$	$00^{\circ} 52$	09	$8 t$	Lt	16	tizt		
62＇6t	160Z	901［	Stでて	09	$6{ }^{6}$	$8{ }^{\text {g }}$	68	だです		
¢でしL	$\subseteq S^{\prime} Z Z$	しって！	4582	$\varepsilon 9$	67	$6 t$	18	カご大		zloypeg
2062	5602	1711	¢c¢	$\varepsilon 9$	15	05	¢8	カโで		20ypleg
1008	$66^{\prime} 6 \mathrm{I}$	8501	¢S ¢	¢9	15	IS	t8	DEで	$8+1$	ट104Pए
2188	88＇11	$1 \angle \mathrm{COL}$	I I I	01	6	6	L90LI	665051		$2^{\text {SnJ3\％}}$
9998	$\downarrow \varepsilon^{\prime} \mathrm{E}$	1ร！をZ	8E＇SI	51	\＆！	$\xi \mathrm{I}$	02511	665051		$\chi^{\operatorname{sn31}}$
Z1 88	88.11	1 CzOZ	bI＇L	51	$\dagger 1$	＊1	8LEII	668051		$\chi^{\text {snouv }}$
OS＇28	$5 \% 1$	$68 t 12$	699	91	¢I	51	¢ t L0！	66 c 0 S ！		てSnuy
16＇8L	$90^{\circ} \mathrm{L}$	titot	5481	61	91	91	LZ00I	$66 ¢ 051$		
しでャ8	$6 t 51$	10282	$\left.9 L^{\circ}\right]$	61	41	41	$00 \% 6$	665051		$\bar{c}^{\text {¢TJIJV }}$
00.58	SI	1 ¢592	I＇ll	02	81	81	L588	660051		2sn3y
$18^{\prime} 18$	6181	を¢ち¢を	$6 L^{\prime} \mathrm{Sl}$	ZZ	61	61	9598	66 cos 1		$\chi^{\text {5n33V }}$
$19 \% 8$	81	699 ［反	0051	をz	02	$0 \mathcal{L}$	9162	665051		$\overline{\text { cnosy }}$
96.98	t0＇gI	195zz	756	$\varepsilon \tau$	12	IZ	0 CS 2	665051		2smasy
113	$\begin{gathered} \text { zu!l. } \\ \text { 길I } 90 \% \end{gathered}$	suld 			$\begin{gathered} \text { uvpels } \\ \text { jo00 } \\ \text { 3N07VS } \end{gathered}$	$\begin{gathered} \text { suoppejs } \\ \text { foou } \\ \text { [umpdo } \end{gathered}$	งunf ว＞is	งแ！ Su！ss3jord ［E］0］	$\begin{aligned} & \text { suoperado } \\ & \text { jo on } \end{aligned}$	

Table 6.3 (continued)										Eff.
Precedence graph	No of Operations	total processin g time	cycle time	optimal \#stations	SALOME no of station	Prop. Algorithm No of Station	rel. dev. from SALOME 1\%\|	Total Idile time	\% of IdIe Time	
Barthol2		4234	125	34	34	41	20.59	891	17.39	82.6 L
Barthol2		4234	129	33	33	40	21.21	926	17.95	82.05
Barthol2		4234	133	32	32	39	21.88	953	18.37	81.63
Barliol2		4234	137	31	31	38	22.58	972	1867	81.33
Barthol2		4234	142	30	30	36	20.00	878	17.18	8282
Barthol2		4234	146	29	29	34	17.24	730	1471	85.29
Barthol2		4234	152	28	28	32	14.29	630	1295	87.03
Barthoi2		4234	157	27	27	31	14.81	633	13.01	86.99
Bathol2		4234	16.	26	26	29	11.54	493	10.4 .7	89.57
Barthol2		4234	170	25	25	28	12.00	526	11.05	88.95
Barthold	148	5634	403	14	14	16	14.29	814	12.62	87.38
Barthold		5634	434	13	13	14	7.69	442	7.27	9273
Banthold		5634	470	12	12	13	833	476	7.79	92.21
Brarthold		5634	513	11	$1]$	12	909	522	8.48	91.52
Barthold		5634	564	10	10	11	1000	570	9.19	90.81
Bartiold		5634	626	9	9	10	11.11	626	10	90.00
Barthold		5634	705	8	8	9	12.50	711	11.21	88.79
Batthold		5634	805	7	7	8	14.29	806	12.32	87.48
Lowman	8	75	20	5	5	5	000	25	25	75.00
Buxcy	29	324	27	13	13	15	15.38	81	20	8000
Buxey		324	30	12	12	14	16.67	96	2286	77.14
Buxey		324	3.3	11	11	12	9.09	72	18.18	81.82
Buxey		324	36	10	10	10	0.00	36	10	90.00
3lley		324	41	8	8	9	1250	45	122	87.80
Buxey		324	47	7	7	8	14.29	52	13.83	86.17
Buxey		324	54	7	7	7	000	54	1429	85.71

Precedence grapl	No of Operations	$\begin{gathered} \text { total } \\ \text { processing } \\ \text { time } \end{gathered}$	cycle time	optimal \# stations	SALOME no of statian	Prop Algorithm No of Station	rel. dev. from SALOME 1%].	Total Idle Tinte	$\%$ of Idle Time	Eff.
				3	3	3	0.00	17	31.48	6852
Jaeschke	45	$\frac{37}{57}$	18	10	10	12	20.00	120	17.86	8.48
Kilbndge		57	56	10	10	11	10.00	75	1196	9.09
Kilbridge		57	57	10	9	11	22.22	130	19.96	8.36
Kilbridge		57	62	8	8	9	12.50	69	11.11	918
Kiibridge		57	79	8	,	8	14.29	80	12.66	9.02
Kilbridge		57	92	6	6	7	16.67	92	14.29	8.85
Killbride		57	92	6	6	6	0.00	108	1636	8.64
Kilbridge		57	110	5	5	6	20.00	114	1712	8.56
Kilbndge		57	111	4	$\frac{5}{4}$	5	2500	138.	20	8.26
Kılbridge		57	184	3	3	4	33.33	184	25	7.74
Kılbridgc		57	184	11	11	12	9.09	2828	16.67	83,33
Lutel	32	14140	14.4	10	10	11	10.00	3152	18.23	81.77
Lutc1		14140	1572	10	9	9	000	1772	11.14	88.86
L.utit		14140	1768	9	8	8	000	2020	125	87.50
1.uticl		14140	2020	7	7	7	0.00	2359	14.3	85.70
1,utz 1		14140	2357	7	6	6	0.00	2828	1667	8333
I,utz1		14140	2828	6	49	61	24.49	186	27.72	7228
Lut72	89	485	11	49	44	57	29.55	199	29.09	70.91
Lutz2		485	12	4	40	52	3000	191	28.25	71.75
J.utz2		485	13	40	37	49	32.43	201	293	70.70
Lutz2		485	14	37	34	46	35.29	205	29.71	70.29
Lutz2		485	15	34	31	42	35.48	187	27.83	72.17
Lutz2		435	16	31	29	40	37.93	195	28.68	7132
Lutz?		485	17	29	28	33	17.86	109	18.35	81.65
Lutz2		485	18	28	26	31	19.23	104	3166	82.34
Lutz2		485	19	26	25	29	1600	95	16.38	83.62
Lutz\%		485	20	25						

Precedence graplı	No of Operations	$\begin{aligned} & \text { total } \\ & \text { processing } \\ & \text { time } \end{aligned}$	$\begin{aligned} & \text { cycle } \\ & \text { time } \end{aligned}$	optimal \# stations	SALOME no of station	Prop. Algorithm No or Station	rel. dev. from SAI.OME [\%]	Total Idle Time	\% of IdIe Time	Eff.
Mitchel]		105	39	3	3	3	0.00	12	10.26	89.74
Muklegic	94	4208	176	25	25	29	16.00	896	17.55	82.45
Mukheje		4208	183	24	24	28	1667	916	17.88	82.12
Muxherje		4208	192	23	23	26	1304	784	15.71	84.29
Mukherie		4208	201	22	22	25	13.64	817	16.26	83.74
Mukherje		4208	211	21	21	24	14.29	856	16.9	83.10
Mukhere		4208	222	20	20	22	10.00	676	13.84	8616
Mukhenc		4208	234	19	19	22	15.79	940	18.26	8174
Mukheje		4208	248	18	18	20	11.11	752	15.16	8484
Mukherje		4208	263	17	17.	18	5.88	526	1111	88.89
Mukherje		4208	281	16	16	17	6.25	569	1121	88.09
Mukherje		4208	301	15	15	16	6.67	608	12.62	87,38
Mlukherje		4208	324	14	14	14	0.00	328	7.23	92.77
Mukherje		4208	351	13	13	13	0.00	355	7.78	92.22
Roszieg	25	125	14	10	10	12	2000	43	$\underline{2} 56$	74.40
Roszieg		125	16	8	8	10	25,00	35	21.88	78.13
Roszieg		125	18	8	8	9	12.50	37	22.84	77.16
Roszleg		125	21	6	6	8	33.33	43	25.6	7440
Roszieg		125	25	6	6	6	000	25	1667	8333
Roszieg		125	32	4	4	5	25.00	35	2188	78.13
Sawyct	30	324	25	14	14	17	21.43	101	23.76	7624
Sawyer		324	27	13	13	16	23.08	108	25	75.00
Sawyer		324	30	12	12	14	16.67	96	22.86	77.14
Sawryer		324	33	11	11	13	1818	105	24.48	75.52
Sawyer		324	36	10	10	12	20.00	108	25	75.00
Sawyer		324	41	8	8	10	25.00	86	20.98	79.02
Sawyer		324	47	7	7	8	14.29	52	$\begin{aligned} & 13.83 \\ & 1.420 \end{aligned}$	$\begin{aligned} & 86.17 \\ & 85.71 \end{aligned}$
Sawyer		324	54	7	7	7	0.00	54	14.29	85.71

Precedence Graph	No of Operations	Total Processing Time	Cycle Time	optimal \# stations	SALOME no of station	Prop. Algorithm No of Station	rel. dev. from SALOMF $[\%]$	Total Idle Time	\% of Idle Time	Eff.
Sawyer	297	324	75	5	5	5	0.00	51	13.6	86.40
Schall		69655	1394	50	51	59	1569	12591	15.31	84.69
Schol?	23	69655	1422	50	50	57	14.00	11399	14.06	85.94
Scholl		69655	1452	48	48	55	14.58	10205	12.78	87.22
Schol]		69655	1483	47	47	54	14.89	10427	1302	8698
Scholl		69655	1515	46	46	52	1304	9125	11.58	88.42
Scholl		69655	1548	46	46	52	13.04	10841	13.47	86.53
Schol]		69655	1584	44	44	51	15.91	11129	13.78	86.22
Scholl		69655	1620	44	44	50	13.64	11345	14.01	85.99
Scholl		69655	1659	42	42	48	14.29	9977	12.53	87.47
Schol]		69655	1699	42	42	46	9.52	8499	1087	89.13
Scholl		69655	1742	40	40	45	12.50	8735	11.14	88.86
Schol]		69655	1787	39	39	44	12.82	8973	11.41	88.59
Scholl		69655	1834	38	38	42	10.53	7373	9.57	90.43
Scholl		69655	1883	37	37	41	10.81	7548	9.78	90.22
Scholl		69655	1935	36	36	40	1111	7745	1001	89.99
Scholl		69655	1991	35	35	38	8.57	6003	7.93	92.07
Scholl		69655	2049	34	34	37	8.82	6158	8.12	91.88
Scloll		69655	2111	3.3	33	36	909	6341	8.34	91.66
Scholl		69655	2177	32	32	35	938	6540	3.58	91.42
Schold		69655	2247	31	31	34	9.68	6743	8.83	91.17
Scholl		69655	2322	30	30	33	1000	6971	9.].	9090
Schall		69655	2402	29	29	31	6.90	4807	6.46	93.54
Schold		69655	2488	28	28	31	10.71	7473	9.69	90.31
Scholl		69655	2580	27	27	29	741	5165	6.9	93.10
Schall		69655	2680	26	26	23	7.69	5385	7.13	92.82
Sawyer		324	75	5	5	5	0.00	51	13.6	86.40
Scholl		69655	2787	25	25	27	800	5594	7.43	9257

Precedence graph	No of Operations	total processing time	cycle time	aptimal \# stations	SALOAE no of station	Prop. Algorithm No of Station	rel. dev. SALOME [\%]	Total Idie Time	\% of Idie Time
Wamecke		1548	86	19	19	23	21.05	430	21,74
Wamecke		1548	92	17	17	21	2353	384	19.88
Wamecke		1548	97	17	17	19	11.76	295	16.01
Warnecke		1548	104	15	IS	18	20.00	324	17.31
Wamecke		1548	111	14	14	16	14.29	228	12.84
Wee-mag	75	1499	28	63	63	66	4.76	349	18.89
Wec-mag		1499	29	63	63	65	3.17	386	20.48
Wee-mas		1499	30	62	62	64	3.23	421	21.93
Wee-mag		1499	31	62	62	64	323	485	24.45
Wec-mag		1499	32	61	61	63	3.28	517.	25.64
Wee-mag		1499	33	61	$6]$	63	3,28	580	27.9
Wee-mag		1499	34	61.	6 l	63	3.28	643	30.02
Wee-mag		1499	35	60	60	63	5.00	706	32.02
Wee-mag		1499	36	60	60	63	5.00	769	33.91
Wce-mag		1499	37	60	60	62	3.33	795	3466
Wee-mag		1499	38	60	60	62	333	857	3638
Wee-mag		1499	39	60	61	62	333	919	38.01
Wec-mag		1499	40	60	60	62	3.33	981	3956
Wee-mag		1499	41	59	59	62	5.08	1043	4103
Wee-mas		1499	42	55	55	61	1091	1063	41.49
Wee-mas		1499	43	50	50	58	1600	995	39.9
Wiee-mag		1499	45	38	38	48	2632	661.	30.6
Wee-mag		1499	46	34	34	48	41.18	709	32.11
Wee-mag		1499	47	33	33	45	36.36	616	29.13
Weermag		1499	49	32	32	41	28.13	510	25.39
Wee-mag		1499	50	32	32	40	25.00	501	25.05
Wee-mag		1499	52	31	31	34	9.68	269	1521
Wee-mag		1499	54	31	31	33	645	283	15.88
Wee-mag		1499	56	30	30	32	6.67	293	16.35

Table 6.4 (continued)

Author	No of operations	Cycle Time	Total Processing Tyme	H.GA No of Stations	Proposed Algorithm No of Station	Total Ithe Time	$\%$ of [dic Time	Eflicienty	rel. dev. Froms Fybrid G: $\mathbf{a} \%$]
		7571	75707	11	12	15145	16.67	83.33	9.09
		8414	75707	10	10	8433	1002	89.98	000
		8998	75707	9	9	5275	6.51	93.49	0.00
		10816	75707	8	8	10821	12.51	87.49	0.00
Arcus	111	5755	150399	27	33	39516	20.81	79.19	21.43
Areus		8847	150399	18	20	26541	15	85.00	11.11
		10027	150399	16	17	20060	11.77	8823	6.25
		10743	150399	15	16	21489	12.5	87.50	667
		11378	150399	14	15	20271	I1.88	8812	7.14
		17067	150399	9	10	20271	11.88	88.12	[1.1]
						Average (\%)		81.20	11.50

APPENDIX D. COMPUTER CODE (C LANGUAGE)

```
#include<lime.h>
Finclude<math.l>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#melude<conio.h>
#nclude<algorithm>
using namespace std;
#deline MAX 500
#deline For(i,a,b) for(i=(a);i<(b);i++)
typedef __int64 LL;
int fac[] = {1,1,2,6,24,120,720};
int IterationNumber;
int MaximumPoolSize;
double CrossOverRatc;
int n;
int pre[MAX][MAX]; //pre[i][j]=11f(i) precedes (j)
struct Fuzey{
    double d,c,f; }\quad//f<\textrm{c}<\textrm{C
}CycleTime, Zcro, BcstTotalIdleTime, PercentIdleTimc, Efficiency, TotaiJobTimc;
int BestStationNumber, nJobStation[MAX];
int npop;
struct C'hromosome{
    int index[MAX];
    int StationNumber;
    Fuzzy FFV;
}population[3*1000], crossed[2];
struct Job{
    Fuzzy tirne;
    double SD;
}J[MAX];
/*
```

```
        Function Prototypes
*/
int sor_ descend(const vold *,const void *);
int sort_ascend(const void *,const void *);
Fuz%y sqr(Fuzry);
Fuzzy sqrt(Fuczy);
Fuzzy operator/(luzzy,Fuzzy );
Fuzzy operator/(FLuzy,double);
Fuzzy operator*(Fuzzy ,Fuzzy );
Fuzzy opcrator*(Fuzzy ,doublc);
Fuzzy operator*(double,Fuzzy );
Fuzzy operator+(Fuzzy ,Fuzzy);
Fuzzy opcrator-(Fuzzy ,Fuzzy);
bool operator<(Fuzzy,Fuzzy);
bool operator>(Fuzzy,Fuzzy);
void PrintFuzzy(Fuzzy);
int $canFuzzy(Fuczy*);
int ScanAndlnit();
void PrintBox(char *);
void PS(Clromosome &);
bool VaIid(Clumosome &);
bool operator=(Chromosome,Chromosome);
//getting the Station number and Fitness Function Value of a Cluomosome
void Process(Clromosome &P){
    inli,ns;
    Fuzzy RemainTime;
    Fuzzy TotalIdleTime, IdleTime[MAX];
    Fuzzy sum,sum2;
    RemainTime = CycleTıme;
    TotalIdleTime = Zcro;
    ns=0;
    For(i,0,n){
```

```
it( J[P.indcx[i] ].timc< RemainTinue)
```

it(J[P.indcx[i]].timc< RemainTinue)
RemainTime = RemainTime - J[P.index[i]].time;

```
    RemainTime = RemainTime - J[P.index[i] ].time;
```

```
            clse{
            IdleTime[ns] = RemainTime;
                    TotalIdleTime = TotalIdleTime + IdleTime[ns];
                    RemanTTime = CycleTime - I[ P.index[1] ].time;
                    ns++;
    }
    }
    IdleTime[ns] = RemainTime;
    TotalIdleTime = TotalldleTime + IdleTime[ns];
    ns++;
    sum = sum2 = Zero;
    For(i,0,ns){
        sum = sum + IdlcTime[i];
        sum2 =sum2 + sqr(IdleTime[i]);
    }
    P.StationNumber = ns;
    P.FFV = sum/ ns + sqrt(sum2);
}
void CrossOver(){
int i,k,pos;
int gene[4];
while(1){
    k = rand() % n;
    if( crossed[0].index[k]!= crossed[1].index[k])
        break;
}
    genc[0] = crosscd[0].index[k];
    gere[1] = crossed[1].index[k];
    for(i=0;i<n;j+H)
        if( crossed[0].index[i] = gcne[1])
            brcak;
    crossed[0].mdex[k] = genc[1];
    pos=i;
    for(i=pos;i<n-1;i++)
        crossed[0].index[i] = crossed[0].index[it1];
    crossed[0].indcx[n-1]= gene[0];
```

```
    for(1=0;i<n;i++)
        if( crossed[l].index[i] =" genc[0])
            brcak;
    crossed[I].index[k] = genc[0];
    pos=i;
    for(i=pos;i<n-1;i+])
        crossed[1].index[i] = crossed[1].index[i+1];
    crossed[1].index[n-1] = genc[I];
    12rocess(crosscd[0]);
    Process( crossed[1]);
}
void Scramble(Clirommsome C , int k) {
    int t1,max_clrom, count;
    int p;
    n1 = n-k;
    11( n1<7){
        max_chrom = fac[n1];
        if(MaximumPoolSize < max_chrom)
            nax_chrom = MaximumPoolSize;
    }
    clse
        max_clrom = MaximumPoolSize;
    count = 0;
    p=0;
    while(count < nax_clrom && + +p < 1000) {
        1f( !next_permutation(C.index }\div\textrm{k},\textrm{C}.\operatorname{index}+n)
            break;
        if( Valid(C) ){
            Process( C );
            population[npop++] = C;
        }
        count++;
    }
}
void MutationO
int k ;
if( Valid \((\operatorname{crossed}[0])) \quad\) population \([\) npop \(+\cdot]=\) crossed \([0]\);
```

```
    if( Valid(crossed[1])) population[npop++] = crossed[1];
    k = rand() % n;
    Scramble( crossed[0],k );
    Scramble( crossed[1], k );
}
Fuzzy GetTotalIcleTime(Chtomosome P):
    int i,ns;
    Fuzzy RemainTime;
    Fuzzy TotalIdléTime, IdleTimelMNX];
    RemainTime = CycleTime;
    TotalIdleTime= Zcro;
    ns=0;
    For(i,0,r){
        if(J[P.index[i] ].time < RemainTime)
            RemainTime = RemainTime - J[P.index[i] ].tnme;
        elsc{
            IdleTimc[ns] = RemainTime;
            TotalIdleTime = TotalIdleTimc \div IdleTimc[ns];
            RemainTime = CycleTime - J[ P.nndcx[i] ].lime;
            nJobStation[ns] = i;
            ns++;
        }
    }
    IdleTime[ns] = RemainTimc;
    TotalTdleTime = TotalldlcTime + IdleTime[ns];
    nJobStation[ns] = n;
    ns++;
    rcturn TotalIdleTimc;
}
vord initof
                            Zero.d = 0;
Zero.c=0;
Zero.f=0;
srand( time(NULL));
```

```
}
int main@{
    int i;
    inl step, k;
    Fuzzy Min,Max,Avg, Tolal;
    init();
    while(ScanAndInit() == 1)(
    //detcrmining the MAX SD based set
        For(i,0,n)
            population[0].index[i] = i;
    qsort(population[0].index , n, sizcol(mat) , sort_descend);
    Process( population[0]);
    //determining the MIN SD based set
    For(i,0,n)
        population[1].index[i] = ;;
qsort( population[1].index , n, sizeof(int), sort_ascend);
Process( population[1]);
For(step,0, IterationNumber){
прор = 2;
crossed[0] = population[0];
crossed[1] = population[1];
For(i,0,n * CrossOverRate)
            CrossOver();
Mutation();
sort(populatior, population + rрор);
Min = population[0].FFV;
Max = population[npop-l].FFV;
Avg = Zero;
For(i,0,npop)
            Avg = Avg + population[i].FFV;
Avg = Avg/((doublc)(npop));
print(\"Itcration fr%d\n", step+1);
printf("Minimum FFV = "); PrintFuzzy(Min); print(""\n");
printf("Average FFV = "); PrintFuzzy(Avg); print("(n");
printf("Maximum FFV = "); PrintFuzzy(Max); print(")(oun");
```

```
        For(1,1,1pop)
        if(!(population[0] = population[i]))
        brcak;
population[1] = population[i];
}
/hest is population[0];
BestStationNumber \(=\) population [0]. StationNumber; BestTotalidleTime \(=\) GetTotalldicTine ( population[0] ); PcreentIdleTime \(=100^{*}\) BestTotalJdleTime
```

CycleTime);

```
PrintBox("The Best Solution");
print5("m");
1=0;
for(k=0;k< BestStationNumber;k++){
    Total = Zero;
    printf("Station %d:",k+1);
    for(; ; < nJobStation[k];i++){
    printf(" %d",population[0].index[i] + 1);
    Total = Total + J[ population[0].index[i] ].time;
}
printf("\п");
    print1("Processing Timc:. ");
    PrintFuzzy(Total);
    print(f("n");
    print(["Fuzzy ldle Time:: ");
    Total = Cycle'Time - Total;
    PrintFuzzy(Total);
print(("Mn\\n");
}
printf(")n");
printf("Total Idle Time = ");
PrintFuzzy( BestTotalIdlcTme );
printf("\ת");
```

```
                print\("Pcrcentage of ldle Timc = ");
                PrintFuzzy(PerconildlcTime);
                print((")\1");
                    Efficiency = 100. * TotalJobTime / (BestStation:Number * Cycle'Time);
                printf("Efficlency(%%) = ");
                PrintFuzzy( Efficiency);
                printf("\n");
            print("Mn\munuln\");
    }
    return 0;
}
/*
        Other Functions
*/
void PnntBox(char *Text) {
    int i;
    1nt L = strlen(Text);
    //1st line
    pmutf("%c",218);
    for(i=0;1<L;;++)
        print("%c",196);
    prinf("%c\n",191);
    //2nd line
    printf("%c",179);
    print("%s",Text);
    printf("%c\n",179);
    //3rd line
    pmint("%c",192);
    for(i=0;i<L;i++)
        printf("%c",196);
    print("%cun",217);
}
int ScanAndInit(){
    int i,j,k;
    int before,atier;
    //scanning number of jobs
    PrintBox("Input number of Tobs (0 to break)");
```

```
scanf("%d",&n);
if(!n) return 0;
prin(f("'n");
/fuitialization of precedence table - Adjacency list
For(i,0,n)
For(j,0,n)
pre[]][j] = 0;
//scanning TASK info
PrintBox("Input Fuzzy-Time for each Jobl");
TotalJobTime = Zcro;
For(i,0,n){
    ScanFuzzy( &J[i].time);
    J[i].SD = (J[i].time, d + 2* [[i].time.e + ,[i].time.f)/4.;
    TotalLobTime = TolallobTime + J[i].time;
}
printf("'n");
//scanning CYCLE TIME
PrintBox("Input Fuzzy-Cycle-Time");
ScanFuzzy(&CycleTime);
printf("'m");
//scanning Precedence rclationship
PrintBox("Inpul Precedence Relationship (0 0 to cnd)");
while(1){
    //"before" should precede "aller"
    scanf("%d%d",&bcfore,&a1ter);
    if(!before || !after)
        break;
    bcfore--;
    after--;
    pre[before ][ after ] = 1;
}
printf("\n");
//all pairs algorithm
```

```
    For(k,0,n)
        Far(i,0,n)
            For(j,0,n)
                            if(prc[1][k] && prc[k][j])
                pre[i][j]=1;
            PrintBox("Inpur Number of Iteration");
            scan(("%d",&IterationNumber);
            PrimLBox("Input Maximum Number of Offsprings in jool");
            scanf("%d",&MaxitnumPooISize);
            PrintBox("Input Rate of Crossover");
            scauf("%15",&CtossOverRate);
            retum 1;
}
/*
            Sorting Job Initially
*/
int sort_descend(const void *p,const void *q);
    inta = *((int *)p);
    int b=*((int *)q);
    if(pre[a][b]) return-l;
    ir(prc[b][a]) retuml l;
    if( J[a].SD > J[b].SD ) retume -1;
    rctum 1;
}
int sort_ascend(const void *p,const void *q){
    int a = *((int *)p);
    int b = *((int *)q);
    if(pre[a][b]) return -1;
    if(pre[b][a]) return I;
    if( J[a].SD < J[b].SD )retum -1;
    rcturn l;
```

```
}
/*
    Chromosome Functions
*/
bool operator<(Chromosome A,Chromosome B){ //return (A<B)
    il(A.StationNumber< B.StationNumber)
        retum 1;
    double sA,sB;
    SA=A.FFV.d + 2*A.FFV.e + A.FFV.f;
    sB = B.FFV.d + 2*B.FFV.e + B.FFV.f;
    if(sA<sB)
        return 1;
    rcturn 0;
}
//bool Equal(Chromosome &C1,Cliromosome &C2){
bool opcrator=-(Chromosome C1,Chromosome C2){
    mt i;
    For(i,0,n)
        il(C1.index[i] != C2.nndex[i])
            retum 0;
    relum l;
}
bool Valid(Clromosome &C){
    int i;
    for(i=0;i<n-1;i++)
        if( pre[ C.index[i+1]][ C.index[i] ] = 1)
            return 0;
    rctum 1;
}
/*
    Fuzzy Structure Operator & Function Definitions
*/
mt ScanFwzzy(Fuzzy *A){
    if( scanf("%lf%1%%lf", &A->d, &&A->e, &A->1) == 3)
            return 1;
    return 0;
}
```

```
void PrıntFuzzy(Furzy A) {
    print(["[%.2f, %.2lf, %.2lf]", A.d, A.e, A.C),
}
```

```
Fuzzy opcrator/(Fuzzy A,Fuzzy B){
```

Fuzzy opcrator/(Fuzzy A,Fuzzy B){
Fuzzy C;
Fuzzy C;
double v[4];
double v[4];
v[0] = A.d / B.d;
v[0] = A.d / B.d;
v[1] = A.d/ B.f;
v[1] = A.d/ B.f;
v[2] = A.f/B.d;
v[2] = A.f/B.d;
v[3] = A.f/B.f;
v[3] = A.f/B.f;
sort(v,v+4);
sort(v,v+4);
C.d=v[0];
C.d=v[0];
C.e=A.c/B.e;
C.e=A.c/B.e;
C.f=v[3];
C.f=v[3];
retum C;
}
Fuzzy opcrator/(Fuzzy A,double x)
//return C = A/x
FuzzyC; C.d=A.d/x; C.e=A.e/x; C.f=A.f/x;
return C;
}
Fuzzy operator*(Fuzzy A, Fuzzy B)
//return C=A* B
Fuzzy C;
double v[4];
v[0] = A.d * B.d;
v[l] = A.d * B.f;
v[2] = A.f* B.d;
v[3] = A.f* B.f;
sort(v,v+4);
C.d = v[0];
C.e = A.c* B.e;
C.f=v[3];
return C;
}

Fuzzy operator*(Fuzzy A,double x$)\{$	/hreturn $\mathrm{C}=\mathrm{A}^{*} \mathrm{x}$	
Fuzzy C; \quad C.d $=$ A.d ${ }^{*} \mathrm{x} ;$	C.c $=$ A. $\mathrm{e}^{*} \mathrm{X} ;$	C. $\mathrm{r}=\mathrm{A} . \mathrm{f}^{*} \mathrm{x} ;$

```
\(\begin{aligned} \text { Fuzcy operator*(double x,Fuzzy A) }\{ & \text { //return } \mathrm{C}=\mathrm{x} * \mathrm{~A} \\ \text { Fuzzy C; } \quad \text { C.d }=\text { A. } \mathrm{d}^{*} \mathrm{x} ; & \text { C.e=A. } \mathrm{e}^{*} \mathrm{x} ; \quad \text { C. } \mathrm{F}=\mathrm{A} . \mathrm{f}^{*} \mathrm{x} ;\end{aligned}\)
    relum C ;
\}
Fuzzy operatort(Fuzzy A,Fuzzy B){ //return C = A + B
Fuzzy operatort(Fuzzy A,Fuzzy B){ //return C = A + B
    Fuzzy C; C.d = A.d + B.d; C.c=A.c+B.e;
    Fuzzy C; C.d = A.d + B.d; C.c=A.c+B.e;
    C.f=A.j+B.f;
    C.f=A.j+B.f;
    rcturn C;
    rcturn C;
}
}
Fuzzy operator-(Fuzzy A,Fuzzy B){ //retum C = A + B
Fuzzy operator-(Fuzzy A,Fuzzy B){ //retum C = A + B
    Fuzzy C; C.d=A.d-B.f; C.c=A.e-B.e;
    Fuzzy C; C.d=A.d-B.f; C.c=A.e-B.e;
    C.f=A.f-B.d;
    C.f=A.f-B.d;
    retum C;
    retum C;
}
}
Fuzzy sqr(Fuzzy A){
Fuzzy sqr(Fuzzy A){
                                    //return square of A
                                    //return square of A
    Fuzzy C; C.d=A.d*Ad;
    Fuzzy C; C.d=A.d*Ad;
C.c=A.c*A.e;
C.c=A.c*A.e;
C.1=
C.1=
A.f*A.f;
A.f*A.f;
    retum C;
    retum C;
}
}
Fuzzy sqrt(Fuzzy A) \{
                                    //return square root of A
    Fuzzy C; C.d \(=\operatorname{sqrt}(\mathrm{A} . \mathrm{d}) ; \quad\) C.e \(=\operatorname{sqıt}(\mathrm{A} . e) ; \quad\) C. \(\mathrm{r}=\operatorname{sqrt}(\mathrm{A} . \mathrm{f}) ;\)
    return \(C\);
\(\}\)
bool operatorc(Fuzzy A,Fuzzy B) \{ \(\quad /\) itcturt \((A<B)\)
    if(A.d \(<\) B.f \& \& A.c \(<\) B.c \&\& A. \(\mathrm{f}<\mathrm{B} . \mathrm{d})\)
        return 1;
    relurn 0 ;
\}
bool operator>(Fuzzy A,Fuzzy B) \{ \(\quad / /\) tetum \((A>B)\)
    if(A.d>B.f \& \& A.e>B.e \&\&A.f>B.d)
        return I;
    return 0;
;
```

