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ABSTRACT

Assembly Line Balancing {ALB} is onc of the important  problems of production
management. As small improvements in the perfomance of the system can lead o sipnificant
monctary consequences, it is of utmost importance to develop practical solution procedures
that yield high-quality design decisions with minmial computalional requircments. Due to the
NP-hard nature of the ALB problem, heuristics are gencrally used to solve real life problems.
The constraints and parameters of fuzzy nalure exist in line balancing problem. Fuzzy
oplimization can be implemented effectively in solving ASLBP. Tuzzy scts or fuzzy numbers
can appropriately represent imprecise parameters, and can he mampulated through diiterent
operations on fuzzy sets or fuzzy numbers. Since imprecisc paramelers are trealed as
imprecise values instead of precise ones, the process will be more powerlul and its results
more credible. An cificient heuristic 1o solve the fuzzy single-model ALR problem has been
presented in this research work, The proposed heunstic is a Genetic Algorithm {GA) with a
speeial chromosome structure that is efficicnt to handle fuzzy joby time through {he evolulion
process. Elitism is also i mplemented in the model by using [ilness function value. In this
context, the propesed approach can be viewed as a unified framework which combines

several new concepts of GA in the algorithmic desi un.
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T CHAPTER 1

INTRODUCTION
1.1 General Introduction

An assembly line is 2 flow-oriented production system where the productive units
performing the operations, reforred to as slations, are aligned in a serial manger.
ILine balancing problem deals wiih the assignment of tasks to warkstations. The
assembly line includes a scries of workstations, wherc product items are processed,
To produce a product, it 15 required to process a scl of tasks (jubs). These tasks niust
follow a given processing order called precedence relationship. The asscmbly linc
could be dedicated to produce for a single product model or multiple product
models. The most common line balancing problem is Single-model assembly line

balancing problem with dctelministicfstuchasticffuzzy processing time (SALBP),

1.2 Rationale of the Study

In a typcal ling balancing prablems, the requiremient is often to distribute the tasks

o workstalions such that a cerlam objective (number of workstalions, total cost,
production rate, etc.) is oplimized and precedence relationship is nol violated. The
workstalion time, which is the sum of times of ali tasks assigned to that workstation,
must not exceed (he given cycle time. The processing time of tasks are also given. In
gencral, the line balancing problem has scveral variances. The varicty could come
from the requircment, objcetive, or the form of processing ime or the structure of
the lines. The requirctent of the probiem is not only to allocatc tasks to
workstations but also to sequence product models to be assembled in the desi gning
batch/mixed-model lincs or determine optimal batch sizes for batch-model
confliguration. The abjeclive could b other critenna deferent than number of
workstations such as minimization of cycle time Tor a given number ol workstations,
minimizalion of balace delay time, ete. A deference between the ¢ yele time and

workstation time is called 1dle time Thesum ofidle time for an workstalions is



called balance delay lime. These objectives could alse be taken mio account

simultaneously in the form of multi-criteria optimization problem. The processing

time could be given in deterministic terms ot from the stochastic processes or in the

form of vagucness of fuzzy sets.

1.3 Objcctives of the Study

The objeclives of this research can be outlined as follows —

1.

2
3.
4

Analyze the existing assemnbly line balancing process (ASLBP-1)
Address uncertainty by incorporaling fuzzy task timces and fuzzy consiraints
Develop a heunstic optimization algorithm for ASLBP-1 for single line.

Benchmark the prn:::posed algorithm with an existing algorithm

1.4 Ouiline of Methodology

In order to carry out this study, steps that have been adopted are mentioned below:—

1.
ii.
11l

iv.

Y.

Analyzc the existing assembly linc balancing process (ASLBP-1)

Deveiop a heuristic optimization algerithm for ASLBP-1 for singlc line
Benchmark the proposed algorithm with three existing algorithm

Duata collection:

To implement the developed algorithm, dala was cellecied  from

RalmAfrooz Batteries Ltd at Ziranibazar, Gazipur. The required data type
includes-

* Number of work stations that all battery variants under consideration

pass.
Number of identical machincs available in cach siage.
Approximate fugzy processing lime required for cach vadant of
balleries at cach stage.
* Approximale fuzzy cycle time for cach type of battery.
Finally, analyzing the performance o f the d eveloped algorithm by running

the computer program for different paramelers.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

The linc balancing problem is one of the most traditional problems which has
cvolved from the concept of division of labor, and became popular because of Henry
Ford's famous "T-model”. Despite its long history of development, line batuncing
study is still an altractive research topic today due to its relevancy to the everyday
manufacturing and the diversity of system configurations. According lo different
system configurations, assembly linc can be classificd as single-mode! line, mixed-
model line, and muiti-model line, Single-niodel hine only asscmbles one product,
while multiple producis arc assembled in cither mixed or muiti-medel ling, but
intermediate set-up is required in the latter case. In addition 1o serial line assembly,

flexibility can be improved by the introduction of parallelism, including parallel

lines, parallel stations, and parallel tasks.

2.2 Simple Assembly Line Balancing Problem (SALRBP)Y

Most of the research in assembly line balancing has been devoted to modehng and
solving the simple assembly line balancing problem (SALBP). This classical single-

model problem contains the following main characteristics (1, 2]:

* mass-production of one homogeneous product;

* given production process;

* paced line with fixed cycle lime ¢

» deterministic (and integral) operation times B

* 110 assignment restrictions besides the precedence conslraints,

* geral line layout with m stations;

« all stations are squally equipped with respect to maclunes and workers:

* maximize the line elficiency E =t/ {m=c} wilh total job time 1y,



Table 2.1: Types of SALBP

Cyele Time, ¢
No. of stations {m) Given Mimimize
Given SALBP-F SALBP-2
Mimmize SALBP-1 SALBP-E

Several problem versions arise from varying the objective as shown in Table 2.1.
SALBP-F is a feasibilily problem which 1s to establish whether or not a feasible line
balance exists for 4 mven combination of m and ¢. SALBP-1 and SALBP-2 have a
duul relationship, because the first nunimizes m given a fixed ¢, while the second
minimizes ¢ {maximizes the production rate) given ni. SALBP-E is the most general
problem version maximizing the hine efficiency thereby simultancously minimizing

¢ and m considering their interrelationship.
2.3 Heuristic Methods in Line Balancing

A large varicty of heuristic approaches lo different versions of SALBP have been
proposed in the last decades. While construclive procedures constructing one or
mere feasible solution(s) were developed until the nud nineties, improvement

procedures using imetastrategics like tabu scarch and genetic algonithms have been in

the focus of rescarchers in the last decade.
2.3.1 Constructive Procedures

The majority of construchive procedures has been proposed for SALBP-1 and is
based on priority rules, others arc restricted cnumerative procedures. The most
rceent comprehensive surveys of those approaches are given by Talbol el al. [3] aud
Scholl [2].Furthermore, Boctor [4] and Ponnambalam et al. [5] also presented a

dctail survey on the constructive procedurcs.




2.3.1.1 Priority Rule Based Procedure for SALBI™]

Those procedurcs use priority values computed for the different lusks based on the

task times and the precedence rclations given. Some of the most effeclive oncs are

given in Table 2.1 [3, 6, 7]. In any casc, the tasks are sorted according o non-

increasing prierity values 1o get a prionity list.

Table 2.2: Pricnily Rulcs

MName

Priorily values

MaxT

MaxPW

MaxF

waxTL

MaxTS

MaxCPW

Taskhime 7

Positional weight

Wamber of followers j
Tasktime over slack
Cumulaled positional weight

Tasktime over latest station

By analogy with cxact solution procedures, two ¢onstruction schemes are relevant

for priority rule based approaches. They differ with respect to the manner 10 which

the tasks to be assigned are selected out of the set of avinlable tasks [7].

« Station-Oriented Procedurcs: They starl with the first station (k = 1). The

following stations arc considercd successively. In each ileration, a task with

highest priority which is assignable to the current station k 1s selected and

assigned. When statiop k is loaded maximally, it is closed, and the next

station k + 1 is opened. For (he rule MaxPW, this procedure is called ranked

positional weight technigue by Helgeson and Bairnic [8].

» Task-Oricated Procedures: Among all available tasks, one will highest

priority is chosen and assigned to the earlicst siation to which it 1s



assipnable. Depending on whether the set of available tasks is updated
inunediately afler assigning a task or after assi gmung all currently available

tasks, task-oriented methods can be subdivided into immediate-update-firsi
and general-first-fit methods {6, 97.

Theoretical analyscs show (hat both schemes obtain the same solution when the used
prionty rile is strongly monotonous, 1.e., the priority value of any task j is smaller
than that of cach predecessor h € Pi. This is, e.g., true for MaxPW, Maxl’, and
MaxCPW [2]. Computational experiments indicate that, in general, station- orienied
procedurcs get better results than task-oricnted oncs though no theorstical
dominance exists {7]. These clussical priority rules based procedures work
umdirectionally in fm:ward direction and construct a single feasible solution.

Improvements arc obtained by tollowing approaches:

B Flexible Bidirectional Construction

The stations to be ioaded are considered in forward and backward dircetion,
simultaneously [7]. That is, a station-oriented procedure considers the carliest and
the latest unloaded station at a time. Besides scleeting a (forward or backward
assignable) task by some priority rule the (carliest or latest) station to be considered
next is chosen. Task-oricnied procedures simuliancously consider forward and
backward available tasks and always choosc the onc with highest pricrily. Both
approaches require defining reversed priority rules [2]. Dynamic priofity rules
iteratively adapt the prioritics depending on the current pariial solutions [4, 7] For
example, MaxTS can be applicd dynamically (in a unibidirceuonal procedure) by
modifying the earliest and latest siations according to the assignments made. Multi-
pass heuristics repeatedly apply different or stochastic priority rulcs in order o find

several solutions the best of which is tuken [3,10, 11, 12].

6



W Flexible Rule Application

Such procedures try to identify priority rules best suited to solving a certain problem
instance. This is done randomly, on the basis of expericnees with former rule

applications and by exploiting problem structures [13, 14, 15].

B Reduction Techniques

Baybars [16] proposes a priority based procedure which involves heuristically
reducing the problem size by some logical tests. Furthenmore, Tonge [17], Freeman

and Swain [18], and Fleszar and Hindi [19] proposed some alternative reduction

techniques,

B Combined Solutions

SALBP-1 can be interpreted s a shortest path problem with exponential numbers of
nodes and arcs. Each feasible solution can be represented by a path in such a2 graph.
Thercfore, Tinio et al. [20] describe a two-stage solution approach. In the first step, a
number of feasible solulions are determined by a mulii-pass heuristic. These
solutions arc used to construct a subgraph of the complete araph in the sccond siep
of the progedure. For this subgraph, a shorlest path problem is solved. That is, the

outlined approach trics to combine parts of several feasible solutions in order to

obtain ant improved complete solution.

2.3.1.2 Singlc Pass Decision Rules

In this category, 13 single pass, single attribute |, priority dispaich scheduling rules
such as maximum ranked positional weight technigue [R], maximum number of
immediate followers [21], maximuom task time first [22] elc. are included. Each of
the decision rules consists of a simple, computationally efficient, list-processing

procedure that assigns tasks to work stations uccording to a task’s computed priority.



Operationally, in the implementation of cach of these procedure, a task is fivst
assigncd anumerical priority specifies by the logic o the h curisiic d ecision rule.
Then tasks that arc both precedence and cycle time feasible are placed on an
avarlable hst. The task on the available list with the highest priority is assigned first.
The available list is updated to reflect the passible addition of task that arc now
precedence feasible, and the amount of me available to be wssigned to 1asks in the
work station is reduced by the task time of the assigned task. This process continucs
for a station until no more tasks can be assigned to 1it. The assignment process then
continues to the next station, and so on, until all tasks have been assigncd to some

work station. When the Ninal task has becn assipned, a complete balance has been

oblained.
2.3.1.3 Arcus’ Biased Sampling Procedure (ARCUS)

The Arcus procedure uses a biased sampling approach lo generate feasible sequence
of tasks for assignment to a workstation [23]. A fit hst, consisting of those tasks can
be agsigned to a work station is construcled and weights arc assigned lo each task.
Tasks so assigned arc removed from the fil list, and a new {it list, consisting of the
tasks which can currenily be assigned te a work station is constructed, The process

continues until all tasks have been assigned to some work station,

2.3.2 Backtracking Dccision Rules

Most of the Simple Assembly Line Balancing (SALB) technigues, which consider
only cycle time and precedence constraints, arc modified o accommodate the
various practical constraints and converled 10 GALB techniques. The heuristic

decision rules arc list processing procedures that consider a single attribule of each

waork task for assignment to work slation.



2.3.2.1 Hoffinan’s Enumeration Procedyre

Hoffman [24] used a special zero-one matrix and index vector 1o implement ihe
enumeralion process, which results in a very stimple computer code. Starting with
station one, a precedent feusible lisi of lasks is mainlained from which the
corbination of tasks which will minimize station idle time is found via complete
cnumeration. T hese tasks are assigned to stalion one. The process continues with
station numiber two using an updated precedent feasible list. The procedure works
unidirectionally in a station-oriented manner. In each iteration, a load with minimal
idle time is gencrated for station &, That i5, a single branch of a station-oriented
B&B procedure is constructed, Nevertheless, it may require considerable

computation times, because it has to examine all passible station loads of a current

sub probiem.
2.3.2.2 Hoffman's Modified Enumeration Procedure

The original Hoffman appreach considers stations in numercal orders. It has a
tendency to concentrate idle time in the later stations. In order lo oy ercome the
difficulty, Gerhlin and Patterson [25] proposed a very slight modification to the
original Hoffman procedure: instead of determine the minimum 1dle {ime solution ai
cach work station, determine one that e ‘acceptably’ closc io nunimum, The
modification accepts a load for the currenily considered station il a certajn aniount
of idie time is not excceded. The accepled portion of dle time depends on the
balance delay umec {1otal available idle time} for the theoretical minimum number
LM1 of stations and can be controlled by a parameter. An extension of the
Hoffmann heuristic which waorks bidirectionally is proposed by Yleszar and Hindi
(19). This heuristic is combined with a number of bound arguments and reduction

techniques and, thus, has become one of the niosi effcctive of the available heunstics
for SALBP-1.



2,3.2.3 Dar-E)’s Line Balancing Ileuristic

Dar-EL developed MALB {26} as a heuristic variant of his earlier optimal sceking
iterative procedure [27]. His optimal secking procedure is based upon the Rank
Positional W cight H cunistic method o f Helgeson and Bunie [ 8], cnhanced with a

backtracking algorithm that generates all Teasiblc sequences of task assignments.

2.3.3 Optimal - Secking Decision Rules
Optunal seeking decision rules dominate the heurisiic ones 1f they are given enough
computation time. But in case of 4 computational time conslraint, Optimal- sceking

decision rules do not perform as well as more sophisticated heunstic procedures.,

2,.3.3.1 Branch and Bound Methods

Magazinc and Wee [28] produced excellent results for the type 1 line balancing
problem with their branch and bound procedure. With their method, each nodc in the
solution trec corresponds 10 a feasibic set of tasks assignment to @ particular worlk
station, where all nodes at the same depth 1 the tree refor to the same slation
number. Starting with node zero, descendent nodes [fom a node of depth {d) are

generated, which are maximal feasible assigninents of tasks to station {d+1).

2.3.3.2 Integer Programming

Talbot and Patterson [29] presented mteger programming approach, The basic
algorithm is 3 depth first, implicit cnurmeration, backiracking procedure to which
various s earch, (athoming and b ackiracking d ecision rules are applied. They used
two variatious. The first variation included contains network cuts, where scarch and
backtracking are controlled with the heuristic decigion rule. The second vartulion

dos not use any cut associated fathoming rules.

10



2.3.3.3 Dynamic Programming

Schrage and Baker [30] have proposed an efficicnt melhod for implementing the
dynamic programming approach of Held ei al. [31} through improved procedure for
generating feasible subsels, and for labeling, Magazine and Wee [78] programmed
and tested the Schrage and Baker approach for solving the Type 1 line balancing
problem. Magazine and Wee concluded that their branch and bound selution
procedure is prelerred 1o dynamic programming [for solving these types of line

balancing problems, both with regard to computation time and computer slorage

required.

2.3.3.4 Multiple Solutions Technique (MUST)

Dar-El and Rubinovitch [32] proposed MUST, a multiple solution technique, which
craploys exhaustive enumeration to gencrate all solutions, or some subsct of them,
for solving the type 2 lne balancing problem. As a result of experiments by Dar-cl

and Rubinoviteh [32], it was demonstrated that MUST dominates MALRB,
2.3.4 Local Search and Metas(ratcgies

Local search {or improvement) procedures try to improve a piven [casible solution
by iteratively transforming il into other [casible solutions. Sucl transformations are
referred 10 as moves. Solutions which may be obtained from a given solution S by
means of a single move arc called neighboring solutions or neighborhood of S.
Traditionally, local scarch heuristics try to find a sequence ol moves which produces
a trajectory of successively improved solutions and terminate in a focal optimum
which might be far from optimahty. This difficully is overcome by modern

metastrategics like tabu search [33] and simulated anncaling [34],

11



2.3.4.1 Tabu Search for SALRBP-1

Developing a TS procedure for SALBP-1 is not very straightforward. This 15 duc 1o
the faci that only three situations can occur after a move: (1} the number m of
stations is unchanged (swapping two real tasks), (2) an addilional station m is
requircd (shifting a task in an empty station), (3) onc station is emply (shifting {he
only task in this station (o another one). No problem arises in case {3). However, in
most itcrations a large nummber of (1) ar (2) moves have to be evaluated which have
| only two different objective function values m and m + 1. Tn this situation finding a
promising scarch direction 1s rather complicated. Seholl and Vol [7} concluded that
applying their TS procedure for SALBP-2 within a lower bound scarch {called dual
strategy) is the best way out of this dilemma. Chiang [35] proposes a TS procedurc
similar to the SALBP-2 approach of Scholl and Vol [7] but uses a surrogale
objective function that maxinuzes the sum over the squared station times. While
minimizing the number of stations, it additionally lavors solutions containin g SONIC
heavily loaded stations to those solutions having more smoothly loaded ones. This
effect successively dircets the search 1o solutions where saving a station in a single
move is probable. Computational experiments indicate that both approaches are
successful on principle. However, Chiang [35] reporls only limited results for the
simplest data sct on hand which are not very meaningful. Scholl and VoB find out
that their dual strategy is competitive 10 exact procedures (applied as a restricted
enumcration) i casc of short computation times but is not superior to SALOME-]
m finding good feasible solutions quickly. In opposite to SALBP-2, the guality of
the initial solulion scems to be importani for the quality of the besl solution found. A
further TS procedure for SALBP-1 1s proposed by Lapicrre el al. [36] and tested on

an arbilrary subsct of the test problems availuble. For these instances it compares

favorably with Chiang’s approach.
2,3.4.2 Simulated annealing {SA) procedures

Heinrici [37] proposes an SA procedure for SALBP-2 which is based on shifts and
swaps. An SA approach for a stochastic variant of SALBP-1 is proposcd by Suresh
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and Sahu [38]. McMullen and Framier [39] propose a SA procedure for a

peneralization of SALBP-1 with respect to parallel stations, stochastic task limes

and alternative objectives,
2.3.4.3 Ant-Colony Algorithm Approach

Baulisla and Pereira [40] present an ant algorithm for SALBP-1 which is based on
priority rule based procedures. MeMullen and Tarasewich [41] propose an anl

, algorithmn [or a generalizahion of SALBP with respect to parallel stations, siochastic

task times, multiple ebjectives and mixed-maodel production.

2.3.4.4 Genetic Algorithm

GAs arc adaptive methods which can be used to solve optimization problems. They
are based on genetic processes of biclogical organisms. Over many generations,
natural populations cvelve according lo ihe poncipies of natural sclection and
survival of the fitlest. In nature, individuals with the highest survival rate have
relatively a large number of oflsprings; that 15, the genes from the highly adapted or
fit individuals spread to an increasing number of individuals in cach successive
gencration. The strong characteristics from different anceslors can sometimes
preduce super-fit offspring, whose {itness is greater than that of cither parent. In this
way, species evelve to become more adapled to their environmcent. Holland [42]
showed that a computer simulation o fthis process o [nalural a daptation could be
cmployed for solving oplinnzation problems. Goldberg [43] presented a number of

applications of GAs to search, optimiization and machine learning problems,

In gencral, the power of GA comes from the fact that the technique i3 robust, and
can deal with a wide range of problem areas. Although GA is not guaranteed to find
the optimal solution, it gencrally finds good solutions with reasonable computational
requirernents. To the best of our knowledge, there are cnly three published papers in
literature which selve ALB problem using GA, two of them work on the

deterministic (SMD) problem and the other works on the stochastic problem (SMS).
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The first attempt was made by Leu el al. [44]. In this study, the authors use solutions
of heuristic procedures in the initial populaton. They also demonsirate he
possibility of balancing asscmbly lings wilh multiple criteria and side constrainls
such us, allocaling a task in a station by itself. According to the authors, the GA
approach has two advantages: (i) GAs search a population rather than a smgle pont
and 1his increases the odds that the algerithm will not be trapped in a local oplimum
since many solutions are considered concurrenily, and (11) GA fitness functions may
take any form {i.e., unlike gradient methods that have differcntiable evaluation

functions) and scveral fitness functions can be utihzed simultaneously.

In the sccond study, Anderson and Ferris [43] showed the cffectve use of GAs in
the solution of combinatorial optimization problems, working specifically on the
ALB problem. The authors first describe a [airly standard implementation [or the
ALB problem. Then an alternative parallel version of the algorithm for use on a
message passing system is introduced. Their awm is mol to demonstrate Lhe
superiority of a GA over (he traditional methods, but rather to give some indications

for the potential use of this technique in combimatorial oplimization problems.

Thus, the authors do not compare the GA with will known heuristics, but only with
a newghborhood search scheme with multiple restarts in which the GA 15 found Lo be
hetter than (his method, Suresh et al. [46] used a GA 10 solve the SMS version of the
ALB problem. The ability of GAs to consider a varicty of objcctive functions 1$
regarded as the maor feature of GAs. A modificd GA working with two
populations, one of which allows infeasible solutions, and exchange of specimens at
regular intervals is proposcd for handling 1rrcgular scarch spaccs, 1e., the
infeasibility problem due to precedence relatons. The authors claim that a
population of feasible solutions would lead 1o a fragmentcd search space, thus
increasing probability of getting trapped in local minina, They also siatc that
infeasible solutions can be allowed in (he population only if genetic operators can
lead to feasible solutions from an infeasible p opulation. Since a purely i nfeamble
papulation may not lead to a feasible solution in this particular problem, two

alternative populations, one purely feasible and one allowing a fixed percentage of
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infcasible chromosomes, arc combined in a controlled pool to facilitate the
advantages of both of them. Certain chromosomes are exchanged at regular intervals
between the two populations; the exchanged chromosomes have the same rank of
filness value in their own populations. The results of the experiments indhcate that

the GA working with two populations gives better results than the GA wilh one

feasible population.
2.3.5 Fuzzy Models

In the classical mathematical formulation of SALBP, the relevanl data are
considercd deterministic. But, the data of the rcal world problems are imprecise,
vague or uncertain, and then the npul dala can be only estimated as wilhn
uncertainty and this uncertainiy wmay be represented by a fuzzy number. So the
problem can be solved by Fuzzy logic. The Fuzzy logic, which was miroduced by
Zadch [47], has been applied (o various industrial problems including produclion
systems. The concept of fuzzy numbers is introduced 1o treal imprecise data, such as
the processing time of each task. As long as the studies have been made in line
balancing, in most cases the processing time was considered deterministic. But
objective and constraints are known imprecisely m much of the real world linc

balancing problems and in such a situation fuzzy sct theory becomes effectively

functional.

Fuzzy optimization can be implemented cffectively in solving ASLBT. Fuzzy scis or
fuzzy numbers can appropriatcly represent imprecise parameters, and can be
manipulated through dillerent operations on fuzzy sets or fuszy numbers. Since
imprecise pavameters are treated as umpreeise values instead of precise oncs, the

- process will be more powerful and its results more credible, Hence, SALBP-2 with

fuzzy task times is considered by Tsujimura et al. [48].
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2.3.6 Cost- and profit-oriented objectives

The nstallation of an assembly line requires large (long-term) capital investments,
Furthermore, operating the line causes shor-lerm operating costs such as wages,
matenal, set-up, nventory and incompletion costs [2]. In case of a non-fixcd
production rate and different levels of production quality, these costs have to b

contrasted with the profit attained by the line.

- The mstallation and operating costs as well as the profits mainly depend on the cycle
time and the number of stations {49] such that cost-oriented models arc strongly
related to SALBP-EC. The latter problen is usually solved by iterating on SALBP-1
or SALBP-2 instances, respectively [50]. Thus, the same procedures can likewise be
used for cosl or profit oriented objectives on principle. However, in some situations
1t 15 necessary to consider models which incorporate costs and/or profits expiicitly.
This is especially true when the balancing problem is connceted with the decisioit

problem ol selecting processing or equipnicnt alternatives.

2.3.,6.1 Cost-oriented models

Rosenberg and Ziegler [51] assume (hat the operation of a siation k causcs a wage
rule wiper time unit that is equal to the maximum wage rate of all tasks that arc
assigned to that station, The objective is to minimize the aggropale wags rale over
all stations, while the number of stations is a variable. Produciion costs per product
umit are obtamed by multiplying that rate with the given cycle time. The considered
objective is equivalent {0 minimiving the number of stations, if all tasks have the
same wage rate. Hence, the problem is a dircct generalization of SALBP-1.
Rosenberg and Zicgler d escribe and e valuate priority rule based b euristics, where

some of the rules available for SALBP-1 arc cxtended to allow for smoothing the

wage ratcs within each siation [50].

Amen [52] extends the problem by additionally considering stalion rclated costs of

capital, i.e., each station is assumed to require a constant pre-specified investment.
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Amen presents an exact branch-and-bound procedure which extends respective
procedurcs for SALBP-1 [S0] for (s problem which uscs a station-oricnied
consiruction scheme and a lascr search sirategy based on a lopelogical task labeling,
The enumeration is restricted by means of (global and local) lower bounds exlending
such for SALBP-1 and dominance rules, where the maximal load rule which 15
essential for solving SALBP-1 is shown to he inappropriate for the cost-oriented

problem. Therefore, only weaker versions of this rule and some other SALBP-1
based rules are applied (53].

For the same problem, Amcn [54] develops station-oricnied priotily rule based
procedures wilh cost-oriented dynamic priority rules and comparces theni to casting
ones using a large sct of randomly generuted problem instances. The new rule which
conirols the 1dlc time and the difference of wage rates in a station {("'best change of
idle cost”} performs best. Further imiprovements are obtained by approaches which
use scveral priorily rules. The best results are reporied for a restricted version of the
branch-and-bound procedurs outlined above which is based on successively solving
smail problems cach representing a feasible subset of remaining tasks. Malakooti
[55] and Malakooti and Kumar [56] consider a nulti-objective ALBP with capacily-
and cost-orienied objectives and propose difierent solution approaches including

generation of efficicnt alternatives, interactive approaches and goal programming.

2.3.6.2 Profit-oricnted models

The cost-orienled models may be extended by additionally considering profits. The
model of Rosenblatt and Carlson [57} includes fixed selling prices, material costs as
well as wages and cquipment costs. This model is extended by Mariin [58] for the

case of unpaced lines with buffers, where inventory related cosl components are

relevant.
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CHAPTER 3

FUZZY LOGIC

3.1 Introduction

The thought of fuzzy logic declared in 1965 by Lotfi Zadch [47]. He claimed that
human reasoning is approximale rather than precisc in nature. In 1974, Ebraham
- Mamdani used fuzzy logic to control a simple stream engine for the firsl time [59].
F. Smidth of Denmark applicd fuzzy logic to tbe control of a cement kiln in 1980,
Tlus is the lirst industrial application of fuzzy logic. In the garly 1980s, fuzzy lc;gic
was applicd to home electronics products and the nontechnical people became aware
of fuzzy syslems. Lifc 15 full of uncertainties. For instance, if the weather is
deccribed in terms of the exact percentage of cloud cover, it will be oo complex.

Therclore, people say that it is sunny which is morc uncertain and less precise but

more useful.

Fuzzyness is particularly vagucness related to human linguistics and thinking. Such
words as ‘pretty’ or ‘ young® are quite subjeetive and d epend on situations. T hus,
fuzzy logic can manage such vagucncss mathematically. The apphcations of fuzzy
logic expand rapidly from control to k nowledge p mc?ssing. In recent years, non-
engmneenng applications such as social and environmenial systems have been tested.

Fuzzy logic enables us to make applications effective.

Many decision-making and problem-solving tasks arc too complex to be understood
quantiiatively, however, people succeed by using knowledge that is nprecisc raiher
than preeise. Fuzzy sct theory, originally introduced by Lot Zadeh in the 1960,
reseinbles human reasoning in its usc of upproximate information and uncerlainty to
generate decisions, 1t was specifically designed to mathematically ropresent
uncertainly and vagueness and provide formmalized tools for dealing with the
imprecision intrinsic to many problems. By contrast, traditional compuling demands
precision down lo each bit. Since knowledge can be expressed in a more natural by

using fuzzy sets, many engincering and decision problems can be greally simplilied,
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Fuzzy logic emerged into the mainstream of information technology in the late
1930 and early 1990's. Fuzzy logic is a departure (rom classical Boolean logic in
that it implements soft linguistic variables on a conuinuous range of truth valucs
which allows Intermediale values to be defined belween conventional binary, It can
oflen be considered a supersct of Boolean or "crisp logic” in the way [uzzy set
theory is a supersct of convenlional set theory. Since fuzzy logic can handle
approximate information in a s ystematic w ay, it1s ideal for controlling nonlinear
systems and for modeling complex systems wherc an inexact modcl exists or
- systems where ambiguity or vaguencss is common. A typical fuzzy systerm consisis
of a rule base, membership functions, and an inference procedure. Teday, fuzzy
logic is found in a variety of control appheations including chemical process control,

manufacturing, and in such constmer products as washing muchines, video cameras,

and aulomobiles,

3.2 Crisp Sets and Characteristic Functions

Here is an example to explain crisp scts and characteristic functions. Let’s assume 4

tenms club and its members are defined ad follows:

X=membcrs= {P, G R8T, U}
A=female members {Q, R, T}
B=student members § R, &

Union, mtersection and compliement of A and B arc as follows:

AUB={(Q,R,S, T}

AMB = {Q, R}
A ={pP,S,U}
B ={P,T,U}
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3.2.1 Characteristic Functions

A represent a crisp sct on the universe X. Its characteristic fanction %A can be

defined by mapping.

Ka-X = {01} as
A=l 1 xe¥
0 xgX

Tt shows that if the element x belongs to A, then 34 is | and if it doesn’t belong 1o A,

%4 18 0 {zero). This concept is very important in fuzzy sets.

3.3 Fuzzy Set Theory

Fuzzy sels are an extension of classical set theory and are used in Tuzzy lopic. [n
classtcal set theory the membership of clements in relation to a set is assessed in
binary terms according 10 a crisp condition — an clement either belongs or does not
belong to the set. By contrast, fuzzy set theory permits the gradual assessment of the
membership of elements in relation to a set; this is deseribed with the aid of a
membership function p —[0, 1]. Fuzzy sets arc an extension of classical set theory
since, for a certain universe, a membership function may acl as an indicator

function, mapping all elements to cither 1 or 0, as in (he classical notion.

3.3.1 Definition

Speeifically, a fuzzy set A on a classical set X is defined as {ollows:

A= {(x,p,(0))x € X}

The membership function uafx) quantifies the grade of membership of the elements

x to the Tundamental sct X, An clement mapping to the valuc ¢ means that the
rmember is not included in the piven set, | deseribes a fully included momber.

Yalues stricily between 0 and 1 characterize the fuzzy members,
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Figure 2.1: Difference between crisp and fuzry sets

The following holds for the functional values of the membership function py(x)

H(x)z20 ¥xe X
Sup, oy L1ty (5)] =1

Fuzzy sct brings a clear solution to deal with vague expression such as * a sel of tall
peopie” and * the people living close to Dhaka™ which are not ablc to be denoted by
convetional set theory. The expression such as  the set of people more than 1,90 in

heaght™ or * the people hving in Dhaka” can be defined exactly by conventional sets,

These arc called “crisp scts™ in fuzzy sct theory,

3.3.2 Fuzzy Subsets

There is a strong relationship between Boolcan logic and the concept of a subset,
There is a similar sirong relationship between fuzzy logic and fuzzy subset theory. A
subset U of a set S can be defined as a set of ordered pairs, each with a first element
that is an clement of the sct S, and a second clement that is an element of the scl 10,
1}, with cxactly one ordered pair present for cach clement of $. This defines a
mapping between clements of S and clements of the set {0, 1}, The vatue scro is
used to represcnt non-membership, and the value one is uscd 1o represent
membership. The truth or falsity of the statement

Xxisinl
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is determined by finding the ordered pair whose first clement is x, The statement i3

true 1f the second clement of the ordered pair is 1, and the statement is false 1 itis 0.

A fuszy subsel F oof a set § can be defined as a set of ordered pairs, each with a first
element that is an element of the set 8, and a second element that s a value in the
mnferval [ 0, 1 ], with exactly one ordercd pair present for each clement of §. This
defines a mapping between clements of the set S and values in the mterval [0, 1]
The value zero is used to represent complete aon-membership, the value one is used

- 10 represent complete membership, and values in between are used to represent

intermediate degrees of membership.,

The set § is referred to as the universe of discourse lor the furey subsct F.
Frequently, the mapping is described as a function, the {mcmbership (unction) of F.
The degree to which the statement x isin F istrue is dctermined b ¥ finding the
ordered pait w hosc first e lement is x. The d cgree o ftruth o fthe statement is the
second clement of the ordeved pair. That's a lot of muthematical complexity, so
here's an cxample. Lel's talk about people and "tallness”. Tn this case the st S (the
unnverse of discourse] is the set of people. Let's defing a fuzzy subset TALL, which
will answer the guestion "to what degree is person x tall?” To each person in the
universe of discourse, one has 1o assign a degree of membership in the fuzzy subsct
TALL. The easiest way to do this is with a membership function based on the

person’s height. A graph of this looks hke:

Cegree of Tallness

0¥ A
05 1

0254, . |- _ '

Figure 2.2: Degree of Tallncss
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The function will be:

0 if height(x) <5/
tali(x) =< (height(x)~ 578)1 2 fe if 3ft <=herght(x} <=7
1 i Berghi(x) > 71

3.3.3 Fuzzy Scts vs. Crisp Sets

Crisp sets are the sets that are used most in our life. In crisp set, an clement is
either 4 member of the set or not. Tt is defined in such a away as to dichotomize the
individuals in some given universe of discourse into two groups: members and

nonmembers. A sharp, unambiguous distinction exists between the members and

nonmembers of the sct.

I'uzzy sets, on the other hand, allow elements to be partially in a set. Euch element is
given a degree of membership in a sct. This membership value can range from 0 {not
an element of the set) to 1 (a member of the set}. It is clear that if onc only allowed
the extreme membership values of 0 and 1, that this would actually be equivalent to
ensp scts, A membership function 1s the relationship between the values of an
element and its degree of membership in a set. An cxample of membership functions
are shown in Figure 1. In this example, the seis are numbers that are negative large,
negative medium, negative small, near zero, positive small, posilive medium, and
positive large. The value, x [0, 1], is the amount of membership in the set. Each

membership function maps clements of a fuzzy set A is denoted by w4 that {g,

Ha X— [0, 1]

Each fuzzy sctis complelely and umquely defined b ¥ one p aticular membership
function, '
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3.3.4 Fuzzy Sets and Membership Functions

Ini the given example:
A = The set of overweight people

B = The sct of people of modcrate height

Using V enn diagram te express these [ Uzzy 5cts is inconvenient w ay b ecausc the
concepts of overweightl and moderate height are difierent from person Lo person and
“depend on the situation. The degree of overweight can vary from a little heavy to
cxtremely heavy. In this example, a real number between 0 and 1 is used to a degree

-The degree 1 means the person completely belongs to the set of 4 and 0 degree
denotes the person doesn’t belong to the set of A.

Tablc 3.1: Degree of OVERWEIGHT and MODERATE Height

SET A B C D E F
OVERWEIGHT (.5 0.9 0.3 (%4 0,7 0.6
MOD. HEIGHT 0.4 0.1 0.5 .7 0.9 0.8

Fuzzy sets can be assumed to be an extension of cnsp scts. Therciore, membership

functions are (he extension of characteristic functions.
A fuzzy sct 4 on the universe X 1s a set defined by a membership function g p

representing a mapping
ez K= [U: 1]

The closer the value of p , (A) to 1, the higher the grade of membership of the

element x in fuzzy set A. If u , (X)=1, the element X completely belongs to the fuzzy

set A. If u, (X) =0, X does not belong to 4 at all.

24



3.3.5 Characteristic Functions and Mcembership Funetion: A Comparison

Table 3.2: The Value of Characteristic
Functiong in Crisp Sels

Heighi{em) | Eow | Middle | Hizh
A 1749 0 1 0
B 171 { 1 0
C 168 1 0 0
Levw feblchel ey High
E
170 180 >

Figure 3.2: Crisp Sets of Height

From the lable, A apd B belong o the “middle™ height set and C belongs to the

low™ sct although the difference in heicht of B and C s only 3 cm while the

difference between A and B is 8 cm.

Table 3.3; Value of Membership Functions in
Fuzzy Scts

Height | Low Midsdle | High
(em}
A 179 0 0.4 0.6
B 171 0.4 0.6 {
C 168 0.7 0.3 0




Low Middle High

¥-Lxis

174 180

l"igﬁrc 3.3 Fuzzy Sets of Heighi

This table indicates that A belongs to the *“middle” set in the prade of 0 4 and (o the
“high” set in the grade of 0.6 whereas A does not belony to low set.

Ac higher middle

B: lower middle

C: relatively low

3.3.6 The Notation of Fuzzy Sets

There are three types of fuzzy sets. They are:

1. Tuzzy scts with a discrete nonordered universe
2. Fuxrzy sets with a discrete ordered universe
3. Fuzry sets with a continuous universe

» Fuzzy sets with a discrete nonordercd universe
Let X= {M, N, O} be the sct of cities one may choose 1o live in. The fuzzy scl

C="desirable cities to live in” may be described as follows:
C= {(M. 0.9), (N, 0.8), (O, 0.0)}
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Lo Middle High
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170 180

Figurc 3.3: Fuzzy Sets of Height

This table indicates that A belongs to the “middle” set in the grade of 0.4 and 1o the
“high” set in the grade of (.6 whereas A docs not belong to low set.

A: higher middle

B lower middie

C: relatively low

3.3.6 The Notation of Fuzzy Sets

There are three types of {uzzy sets. They are:
1. Tuzzy scts with a discrete nonordered universe

2. Fuzzy sets with a discrete ordered universe

3. Fuzzy sets with a continuous universe

s Fuzzy sets with a discrete nonerdercd universe

Let X= {M, N, O} be the set of citics one may choose to live in. The fuzzy set
C="desirable cities to live in” may be described as follows:
C‘: {(M!l ﬂ*g)! (N! ﬂg)! {D! ﬂﬁ}}
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Apparently the universe of discourse X is discrete and it conlains nonordered
abjects- in this case, three cities. As one can sec, the foregoing membership grades

listed above are quitc subjective; anyone can come up wilh three different but

legitimate valucs to reflect his or her prelerence.

* Fuzey scts with a discrete ordered universe

Let X= {0, 1,2, 3, 4, 5, 6} be the sel of members of chuldren a family may cheosc to

have. Then the fuzzy sel A="scnsible nunber of children in a fanmily” may be

described as follpws:
A= {{L‘J.D.1},{1,D,B]‘{E,U.?],(S,l),4,&.?),(5,(!.3},(6,[1.I)}

Here X is a discrete ordered universe; the MF for the fuzzy scl A 15 shown 1 the

figure. Agaii, the membership grades of this lusry set arc obviously subjective

MEL3Ures.

* Fuzzy sets with a continuous universe

Let X=R" be the set of possible ages for human beings. Then the furzy set B="about

30 years old” may be cxpressed as

B={(x, us(x}| xe X

Where, Hy 1

- Y
1+ (5

For simplicity of notalion, an alternative way of dencting a fuv.sy set is introduced.

A fuzzy sct 4 can be denoted as follows.

Zm LA x i X s @ collection of discrete obiect

L,u){{x] { x, if X is a continuous space
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In the continuous expression the symbol | is used an extension of ¥ to the

conlinuous world and it is not integral sign. On the lower right of | sign the name of

universe 13 writlen,

3.4 Fuzzy Sets: Basic Concepts

o~ eut: The - cut of a fuzzy sct A is the crisp sel A that contains all the elements of
the universal set X’ whose membership grades in 4 are greater than or equal (o the
~ specified valuc of o. Given a fuzzy set 4 defined on X and any number ce [(,1], the

o-cut, “ 4 15 the crisp set “ 4 ={x}’A(x)£ ¢}

Strong o~ cut: The strong o- cut of a fuzzy scl A is the crisp set A that contains atl
the elements of the universal sel X whose membership grades m 4 are greater than
of egfal 16 the speeificd value of a. Given a fuzzy sct A defined on X and any

number e [0, 1], the sirong a-cut, ™ 4 | is the crisp set “* 4 ={x/A(x)> o}

Level set: the sct of all levels e [0, 1] that represent distinel o -cuts of a given

fuzzy set A 1s called a level sct of 4, formally, Afd) = {w'rA(J.;J = o for some XX}

Where ~ denoles the level set of fuzzy sci a defined on X,

Support: The support of a fuzzy set A is the sct of all point x in X such that g, (x}=0:

Support (A) = {x| s {x}=0}

Core: The core of a fuzzy sct A is the sel of all points x 1n X such that pain)=];

Core (4) = {x!| patxy =11

3.5 Fundamental Operations of Fuzzy Sets

Fuzzy union, interscction and complements arc called ‘the slandard fuzzy
opcrations’. The standard fuzzy operations arc gencralizations of the corresponding

classical sel operatious.
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3.5.1 Union of Fuzzy set A and B

The union of iwo fuzzy scts 4 and B is a fuzzy set €, written as C=AUE or C=4 OR
B, whose MF is related to those of 4 and B by

e = max (ualw), ma()) =iea(6) v pux)
3.5.2 Intersection of Fuzzy sct A and B

The ntersection of two fuzzy sets A and B is a fuzzy sct C, wrilten as C=AWB or

C=A AND B, whose MF 15 related to those of A and B by
() = mm (ua(X), a0} =palx) A )
3.5.3 Complement of Fnzzy set A and B
The complement of fuzzy set A, denoted by 4 (—4, NOT A), is defined as
HAXY = 1- p14(x)
Fuzzy sets have properties which are valid for crisp sets. And vel, lhere arc some
propertics which are nol valid for fuzzy sets.

3.5.4 The Law of Excluded Middie:

Av A=x for crisp sct but

Au A#x Tor fuzzy set
3.5.5 The Law of Contradiction

A A= for crisp set but

An A & for [uzsy set

29



3.5.6 Equality and Inclusion of Fuzzy set

Eqguality of fuzzy scts is defined as

A=B > palx) = pelx); VX eX

Inclusion of fuzzy scts or 4 bewng a subsct of B is defined as

AcB o pa(x) £ pex)
Example
Age 5 10 20 30 40 30 60 70 80
Young | 1 1 0.8 0.5 0.2 .1 0 0 0
Old 0 0 0.1 0.2 0.4 0.6 0.8 1 1
5 10 [ 20 | 30 40 | s0 | 60 70 | 80
YoungOld | 4 1 0.8 |05 102 |01 |o 0 )
YoungOld | g 0 01 |02 |04 loe |08 |1 1
oid 1 1 09 |03 |06 |04 |02 |0 0
LExample
5 10 20 30 40 50 60 70) 80
OldwOld | 1 05 | 08 | os | 06 | 08 1 1
OdnOld | g 0 0.1 02 | 04 | 04 ! 02 0 0

30




3.8 Decomposition Prineiple

Using o-cuts @ membership function 4(x) can be decomposed 1nto an infinite

number of rectangular membership functions. When these rectangular membership

functions and max-operation are aggregated, ihe original luszy set A can be oblained
A4 = max [o A XA (x)]

Here X4 fX) is a characteristic cquation of the set A,

The difference between strong and weak a-culs centers on whether they include

cquality. Here are the illustrations of both o-cut and decomposition sets.

Afx)

AN

0 X

44
ﬂflA

Figure 3.4: a-cul and Decomposition Principle

in this figure,” 4 1s an example of an ci-cut. The idea of the decomposition principle

is also 1llustrated in the figure. Let the characteristic function of a weak o cut

XAg(X) for an o (o € (0,i]). Define a rectangular membership function that
satisfics & A XAg(X). Changing the value of @ in the interval of & & (0,1] the

similar operation is repeated and an infinite number of rectangular membership
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functions is found. The decomposition principle tells us that (he membership

function of the original fuzzy set A can be cxpressed by the max operation of the

previously ebtained rectangular membcership funclions.

This is defined by pa(X) =Max [ & A XA4(X)] (o e (0,11}
3.9 Fuzzy Numbers and Extension Principle

When there is a relation y=3x+2 between x and ¥, the value of ¥ for x=4 can be
calculated by (3 x 4) +2 = [4.Then, how (he value of y can be calculated by a fuzzy

set such as x = “about y”? The exlension principle pives a method for this.

—
Warka 2
<0
Abaun
14 / 14
&
2 4 &
1
a\“\
U

14

Figure 3.5: Example of extension principle

The process of calculation can be interpreted as 3 x “ahout 47 + 2 = “about 127+ 3 =
“abeut 14"

Let A be the fuzcy set that gives “about 4” suchas A=0.5/3+ 1.0/4 + 0575
Also define x; =3, x,=4, x7=3 so thal =342, | =1,2,3

S =2 1,50y,

=1

=" 1,(9) 0%, +2)

rck

={].Sf{3><3+2}+1.Df{3x4+2]+!}.5{3x5+2}
=05/1141.0/1440.5/17
="aghout 14"
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3.10 Fuzzy Numbers

A fuzzy number is a convex, normalized fuzzy sct 4 = R whosc membership

function is at least segmentally continuous and has the functional value Max) =1 at

precisely one element.

If a fuzzy sct 4 on the universe R of real numbers satisfics the following conditions,

it is caled & fuzzy number.
.. Aisaconvex fuzzy sct;
ii. There is only one xg that satis/ies z,(xe} = 1:

i, g4 is continuous in an interval,

If a fuzzy number A satisfies the following condition, it is called a fat fAwmy

number.
fy, mzle R m, <m;

Halx) =19y € [my, my]

3.11 Fuzzy interval

A fuzzy interval is an uncertain set 4 <% with a mean interval whose clements
possess the membership function value ws(x} = 1. As in fuzzy numbers, the

membership function must be convex, nomalized, and at least continuous 1n

ECEIMENLS,
3.12 Arithmetic Operations of Fuzsy Numbers

Fuzzy arithmetic is based on two properties of fuzzy numbers
1. each fuzzy sets, and thus alse cach fuzzy number, can fully and umquely be
represented buy it's o-culs
2. o-cuts of each fuzzy number are closed intervals of real numbers for all

ae{l,1]
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Let * denstes any of the four arithmetic operations on closed intervals: addition I,

subtraction -, multiplication =, and division /,

Then, [a,b]*[d,e]={f*g| asf<h, dsg<e)

As results, the four arithmetic operations on closed intervals are

[4,b]+[d.c]= [a+d, b+e]

[a,b]-[d,c]= [a-g, b-d]

[a,b] « [d,c]=[min(ad, ac, bd, be), max{ad, ac, bd, be}

{2,b)/[d,eJ=[min{a/d, a/e, b/d, bre), max(a/d, a‘e, bid, b/c}, provide that Og[d.e]

Let A=(ab,c,h), A=(d,e,fh)eFee( ), keR and assume that C=(p,a.r, A)e Fy (A,
then

—a

(@C=A+B=(a+d.bte,c+ f1.)

BYC=A-B=(a—f,h-c,c-d;2)

(e)C = Ax B = (min{ad, af ,od, of Y, be.max(ad , af ,ed ,f ¥; A}

(HC=A=+F= (min{atd,al f.cid,c! ) blemax(ald,al feld,c! £,4)0

=(0,0,0)¢ B
() If k> 0,C = k()4 = (ka, kb, ke A)
(I k<0, C=K ()4 = (dec, &b, ka; 1)
(g)Tfk=0,C=k,()4d=(0,00;1)

3.13 Application of Fuzzy Logic

Fuzzy Set Theory defines Fuzzy Operators on Fuzzy Sets. The problem in applying
this s that the appropriate Fuzzy Operator may not be known. For this rcason, Fuzzy
logie usually uses IF/THEN rules, or constructs ihat arc equivalent, such as fuzzy

associative matrices.
Rules are usually expressed in the form IF variable IS sct THEN action. For

example, an cxtremely simple lemperature regulator that uses a fan might look hke

this TF temperaturc 1S very cold THEN stop fan IF temperature IS cold THEN tum
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down fan IF temperature 1S normal THEN maintamn leve] I temperature IS hot
THEN speed up fun.

Nolice there 15 no "ELSE". All of the rules arc evaluated, becausc the temperature
might be “cold" and "normal” a1 the same tme to differing degrecs. The AND, OR,
and NOT operators of boolcan logic exist in luzzy logie, usually defined as the
mlinimnunl, maximum, and complemeit: when they are delined this way, they arc
called the Zadch operators, because they were first defined as such in Zadeh's

" original papets. So for the fuzzy variables x and y:
NOT x =(1 - truth{x)}

X AND y = minimum{{ruth{x), truth(y))

x OR y = maximum{truth{x}, trath(y})

There arc also other operators, more linguistic in nature, called hedges that can be
applied. These are generally adverbs such as "very", or "somewhat”, which modify

the meaning of a set using a mathematical formula.

In application, the programming language Prolog is well geared to implementing
fuzzy logic with its facilities to set up a databasc of "rules” which are quericd to

deduct logie. This sort of programming is known as logic progranuming,

3.14 Fuzzy Ranking Mcthods

To handle the fuzzy characieristic of the FMABL preblem, the fuzzy processing
time i needed to be ordered and compared with fuzzy cycle time of each product
model. The requirement of this ranking operator 15 not only simple 1 compulation
but also flexible enough to adapt with different sources o fdata from the real-life
becausc the processing time and maximum cycle time could be cstimated by

linguistic terms (short, mediun, long, elc.) or Just an interval of data, 1n literature,
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scveral furzy comparison methods have been proposed such as pscudo arder fuzry
preference model [60], new i uzzy-weighted average [61], and signed dislance
method [62]. Amonyg these methods the signed distance method is suitable for luzzy
lime comparison beeause it is simple in computation and flexible to convert from ihe
terval data. Furthermore, fuzzy arithmetic needs to be performed to caleulale fuzey
umes in our heuristic Ilowever, there are many tundamental problems with fiuz.y
arithmetic, Its operation is pancipally based on the cxtension principle and/or
terval arithmetic. The problem of extension principle is that it is compuiationaity
too complex. Another fundamental problent with fuery ariihmetic 15 the existence
and uniqueness problem of the fuzzy numbers, For example, cven for the simple
operation of fuzzy subtraction of two fuzzy numbcrs, the results may nol exisi, At
this point, one may believe that fuzzy arithmetic based on interval operations could
be better becausc i is easy to calculate. However, a difficulty with fuzzy arithmetic
using interval principles is the non-linear representation of results. Thus it could Jead
to increasc the computational complexity. There is one solution to overcome this

difficulty by approximating the operation®s results in a linear form.
3.14.1 Signed Distance Ranking of the Level b, Fuzzy Numbhers

Yao and Wu presented signed distance method of ranking triangular fuzzy numbers
[62]. They presented the following definitions:

Definition 1. If the memberships function of the fuzzy set A on R is

Malx)= AX-p){g-p), p€x=q,
Mr=x)/r-q), q=x=r,

0, otherwise

P<q<r, then A is called a level A fuzzy number, 0= A =1
A=(p, 4,1, A}, let, Fy(h) be the family of all level 3 fuzzy nunibers
Fu(hy={(p.q, 1, %) |p-=iL1-=:r; Py TeR}, O<h=]



Lefinition 2, Signed Distance

For each a, 0¢R, the definition of signed distance dy from a to 0 is capressed by
dy(a,0)=a

If a=0, dq (a,00) implies that a is on the right hand side of  with distance dofa,0)=2a

If a<, dy {2,0) implics that a is on the ledl hand side of 0 with distance -dp{a,=-a

Which is called the signed distance of *a* which 1s measute from 0.

Definition 3. The signed distance of TEN 4= (p, ¢, 1) is defined as

~ 1 ]
d(A,0) =E J:[p+{q—p:lof-f-r—{r—q}a]dcx = E{l;j+p+r}.

Figp 3.6: Level A Tuzey Sat

Let 4= (p, q.1, 1) & Py (1) the signed distance of 4 from 0(y axis) 1s
o 1 1 4
d(A0) =E fg[p+r+{2q—p—rjz]ﬁ’a

!
=—{2g+p+
4(1 ptr
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Definition 4. For cach & (0, 1], the ranking of the level & fuzzy numbers in Fuia) is

dehned as
B= 4 Mf d(B8)<d(A,0)
B A iff d(B0)=d(4,0)
B4 it d(B0)<d(4,0)

Proposition L. Lor 4, F Ce Fold)
A lfA=~Band B ==~ Athen A= 5
b.If A4~ 5and B ~Cthen A1 <C
¢. InF, (4), thercisonlyonc 4 < Band B =~ A, A < B holds

The signed distance method can be casily implemcented (o rank different types of

fuzzy numbers. In this case, the ranking method of TFN is used.
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CHAPTER 4

GENETIC ALGORITHM

4.1 Llntroduction

A genetic algorithm (or short GA) is & search technigue used in computing to find
true or approximate solutions to optimization and scarch problems. Genetic
algorithms are catcgorized as global scarch heunistics. Genetic algonthms arc a
particular class of cvelutionary algorithms that use tcchniques inspired by

cvolutionary biology such as inhcritance, mutation, selection, and crossover (also

called recombination).

Genctic algorithms are implemented as a computer simulation in which a population
of abstract represcntations (called chromosomes or the genotype or the genome) of
candidate solutions (called individuals, creatures, or phenotypes) lo an optinuzation
problem evolves toward better solutions. Traditionally, sc:luti;ms arc represenled in
binary as strings of Os and 1s, but other encodings arc also possible, The cvolution
usually starts from a population of rundomly generated individuals and happens in
gencrations. In each generation, the fitness of every individual in the populalion is
cvaluated, malliple individuals are siochastically selected from the curtent
population (hased on ther filness), and modified (recombined and possibly mutated)

10 form a new population. The new population is then used n the next iteration of

ihe algorithni.

4.2 History

Computer simulations of evolution started with Nils Aall Barricclli [63]. Barricclli
wis simulating the evolution of automata that played a simple card game. Starting in
1957, the Ausiralian quantitative genclicist Alex Fraser publislicd a paper on
simulation of arlificial sclection of organisms with multiple loci controlling a

nieasurable trait [64]. From thesc beginmngs, computer simulation of evolution by



biologists became more common in the early 196(s, and the methods were described

in books by Fraser and Bumell [65] and Crosby [66].

Although Barricelli had also used evolutionary simulaiion as a gencral optimization
method, genetic algonihins became a widely recognized optimization method as a
result of the work of John Holland 1o the early 1970s [42]. His work originated with
studies of cellular automata, conducted by Holland and Ius colleagues al the
University of Michigan. Research in GAs remained largely theoretical until the mid-
iQE‘Ds, when The First International Conference on Genetic Algonthms was held at
The University of illinois. As academic intergst grew, the dramatic increase in
desktop computational power allowed for practical application of the new techmque.
Tt 1989, The New York Tumes wriler John Markof! wrote about Evolver, the first
commercially available desktop genctic algorithm. Custom compuler applications
began to emerge in a wide varicty of fields, and these algorithms arc now used by a
majority of Fortune 500 compames 1o solve difficult scheduling, data fithng, trend

spotting and budgeting problems, and virtually any other type of combinatorial

optimization problem.
4.3 GA procedare

A typical genetic alporithm requircs two things to be defined.

1. A genelic represcntation of the selution domain,

2. A fitness function lo cvaluate the solution domain

A standard representation of the soluhion 1s as an array of bits. Arrays of other ypcs
and structures can be used in c¢ssentially the same way. The main property that
makcs these genctic representalions convenicnt is that their parts are easily aligned
due to their {ixed sizc that facilitates symple crossover operation. Varlable Jenglh
representations wcre also used, bui crossover implementation 15 niore complex in
this case. Tree-like representalions are explored in Genetic progromming and frec-

form representations are explored in Human Based Genetic Algonihm {HBGA).
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The fitness function 15 dehned over the genelic representation and measures the
quality of the represented solution. The fiiness funchion 1s always problecm
dependent. A represeniation of a solution might be an array of bits, where cach bit
represents a different objeet, and the value of the hit (¢ or 1} represents whether or
not the object iz in the knapsack. Not every such representation is valid, as the size
ol objects may cxceed the capacity of the knapsack. The {itness of the solution is the
sum of values of all objects w the knapsack il the representation is valid or 0
otherwise. In some problems, il 15 hard or even impossible o define the Niness

expression; 1n these cases, interactive genetic algenihms are used.

Once the genetic representation and the {fitness function arc defined, GA proceeds to
initialize a population ol solutions randomly, and then improve it throuph repetitive

application of mutation, crossover, and sclection operators.

4.4 Pseudo-code Algorithm

1. Choose mitial population

2. Evaluate the fitness of sach individual in the population

Repeat
b. Select best-ranking individuals to reproduce
¢. Breed new gencralion through crossover and mutation (genctic
opcrations)  and give birth to offspring
d. Ewvaluate the individual filness of the offspring
3. Replace worst ranked part of population with offspring

4, Until terminating condition is met

4.5 Initialization

Initially many mdividual solutions are randomly generaled 1o form an initial
population. The population size depends on the nature of the problem, but typically

contains several hundreds or thousands of possible solulions. Traditionally, the



population is gencrated randomly, covering the entire range of possible solulions
{the search space). Occasionally, the solutions may be "sceded" in arcas where

optimal soluticns are likely te be found.
4.6 Epcoding a Chromosoms:
The chromosome should contain information about the selution it represents.

4.6.1 Binary Encoding

One way of encoding is a binary string.  The chromosome could look like this:

Chromosome 1 I101 10100110110
Chromaosome 2 110101100001 1110

Each bit in the string can represent some characteristic of the solution or it couid
represent whether or not some particular characteristic was present. Another
possibility is that the chromosome could contain just 4 numbers where cach number

15 represenied by 4 bits (the nghest number therefore being 15.)

4.6.2 Permutation Encoding

Permwtation encoding can be used in ordenng problems, such as the traveling
salesman problem or a task erderdng problem. Every chiremosome is a string of

numbers, which represents number in a sequence. In the TSP each number would

represent a city to be visiled,

Chromosome | 1479635028
Chromosome 2 93258316047
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4.6.3 Value Encoding

Direct valuc enceding can be used n problems where some complicated values,
such as rcal numbers, are used and where binary encoding would not suffice. While
value encoding is very good for some problems, 11 is ofien necessary to develop

some specific crossover and mutation techniques for these chromosomes.

Chromosome 1 ABEDBCAEDD
Chromaosome 2 NWWNLESSEWNNY

In chromosoime 1 above, A could represcnt a particitlar task, B another, ete. For

chromoscine 2 N could be north, $ south, and thus could be the palh through a

niaze.
4,6.,4 Tree Encoding

Trec encoding is used 1o actually huve progrwns or expressions evolve. In tree
encoding every chromosome is a (ree of some objects, such as functions or
commands in the programmmyg language. LISP 15 ofien used for this hecausc

progranis in LISP can be represented in this form and then be easily parsed as a tree.

4.7 Crossaver

Crossover 15 a genetic operator used to vary the programnung of a chroimesonie or
chromosomes from one generation to the next. [t is an analogy to reproduction and

biologcal crossover, upon which genetic algorithnis are based.

4,7.1 Crossover Technigues

Many crossover teehmques exist for orgamsms which use different data stractures to

store thermselves.
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4.7.1.1 One Point Crossover

Farenis: - e
e ety
Chuldren,

Figure 4.1: One Point Crossover

A crossover point on the parent o reanism string is selected. All data beyend that
point in the organism string is swapped between the two parent organisms. The

resulting organisms arc the children.

4.7.1.2 Two Puint Crossover

Farents

Children;

Figure 4 2: Two Pomt Crossover

Two point crossaver calls for two powmnts to be selected on the parent organism
strings. Everything between the wo points is swapped between the parent
organisms, rendering two child organisms. Two point crossover shows betler result
in clitist process. The variety of genes is preater 10 two point crossover than single

point Cross0ver.
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4.7.1.3 Cut and Splice Crossover

] ]

Faranis
e e )
Children

Figure 4.3: Cut and Splice Crossover

Another crossover variant, the "out and splicc” approach, results in a change in

length of the children strings. The reason for this difference is that cach pavent string

his a separate choice of crossover point.
4.7.1.4 Uniform Crossover and Half Uniform Crossover

In both these schemes: the two parents are combined to produce two new offspring,
In the unmiform crossover s cheme (UX) individual bits in the string are compared
between two parents. The bits are swapped with a fixed probability, typically (.5.In
the half uniform crossover schome (HUX); exactly half of the m ismalching bits are
swapped. Thus first the Hamming distance (the number of differing bits) 1s
caleulated. This number is divided by nwo. The resulting number is how many of the

bats that do not match between the two parents will be swapped,
4.7.2 Crossover for Ordered Chromosomes

Depending on how the chromosome represents the solution, a direct swap may not
e possible. One such case is when the chromosome is an ordered list, such as an
ordered list the cities to be traveled for the travehng salesman problem. A crossover
point is selected on the parents, Since the chromosome is an ordered list, a direct
swap would introduce duplicates and romove necessary candidates from il list.
Instead, the chromosome up to the crossover point is retained Tor each parent. The
information after the crossover pomnt is ordered as it is ordered in the other parent.
For example, if our two parents arc ARCDEFGH! and IGAHFDBEC and our

crossover point is afier the fourth ¢ haracler, then the resulting ¢ hildren would be
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ABCDIGHFE and IGAHBCDLF. Other possible methods include the edge

recombination operator and partially mapped crossover.

4.7.3 Crossever biascs

For crossover o perators which e xchange ¢ onliguous sections o f the chromeosomes
(c.g. k-point) the ordermg of thc wvariables may become important. This is
particulurly true when good solotions contain building blocks which might be

distupicd by a non-respectful crossover operator,

Fartially matehing crossover (PMX)

PMX may bc viewed by a crossover of permufations thal puarantces that all
positions are lound exactly once in cach offspring 1.e. cach offspring receives a full
set of genes followed by the corresponding filling in of alleles from their parents.
PMX proceeds as follows 1) the two chromosomes are aligned 2) two crossing sites
are selected uniformly at random along the strings, defining a matching scotion.?)
The matching section 1s used to affect a cross through position-by-pasition exchange

operationd) Allcles are moved to their new positions in the offspring

The following 1llustrates how PMX works:

Lel us consider a traveling salesman problem. There are cight cities where the

salesman has lo travel. This is a problem in diserele or combinatorial optimization.

Under PMX, two strings {pemiutations and their associated alleles) are aligned, and
two crossing siles are picked uniformly at random along the strings. These two

points define 2 matching section that is used to alfect a cross through position-by-

position exchange operation:

There are two strings:

A=984 56713210 B=§7112310/9546
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PMX proceeds by position wise exchange. First, mapping siring B 10 string A, the 5
and the 2, the 3 and the 6, and the 10 and 7 exchange places, Sumilarly mapping
string A to string B, the 5 and the 2, the 6 and the 3, and the 7 and the 10 cxchange
places. Following PMX two offspring are left, A and B

A=9842310/1657

B=8101567|9247

where each string contains ordering information partially determined by cach of its

parents.

Order Crossover (OX)

The order crossover operator starts off in a manner similar to PMX. Let the cxample
sinngs A and B consider again. First a matching section is sclected (for comparison,

the matching section of PMX example is ¢hosen):
A=9841567]13210
B=87112310|9546

Like PMX, each string maps to consituents of the matching section of its mate,
Instead of using point-by-peint cxchanges to effect the mapping as PMX does, order
CTossover uscs a shding motion to fill the heles Jeft by transferring the mapped

positions. For example, when string B maps lo string A, the cities 5, 6, and 7 will
Icave holes (marked by an H) in the siring:

A=9841567/1HHH

B=SHI1|2310|9H4K
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These holes arc filled with the matching scetion city names aken from the mate,

Performing this operation and completing the complementary cross the offsprin oA

and B" are obtained as follows:
A=567]23160 1984
B=2310|567|9481

_ Although PMX and OX arc similar, they process difforent kinds of similarities.

Cycle Crossuver (CX)

™
The cycle crossover operator is a cross of a different color. Cycle crossover
performs recombination under the constraint that cach yene comes from (he onc

parcnt or the other. To sce how this is done example tours C and D are started with

below:
C=98217451083
D=12345678310

Instead o ['¢hoosing ¢ rossover sites, the process is started at the lefi and a cityis

chosca from the first parent:

o I

Since every city is to be taken from one of the two parents, city 1 will be taken from

string C because of the 1 in position of string D,

(e N -

This sclection requires that city 4 will be selected from string €. the process

continues uniil the following pattem is left:

C=22315478610 I'=18247651093
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4.8 Fitness Funection

A fitness function is a particular type of objective function that quantifies the
optimality of a solution (that is, a chromosome) in a genctic algorthm so that that
particular chromosome may be ranked against all the other chromosomes. Opiimal
chromosomes, or at leasi chromosomes which are more optimal, are allowed to
breed and mux their dalasets by any of scveral techmiques, producing a new
generation that will (hopefully) be even beller. Another way of locking at fitness

functions is in lerms of a fitness landscape, which shows the fitness for cach possible

chromosome.

An ideal fitness function correlates closcly with the algorithm's goal, and yet may be
computed quickly. Speed of execution is very importani, as a typical genetic

algorithm must be iterated many, many times in order to produce a usable resull for

anen-trivial problem.

Definition of the fitness function is not straightforward in many cases and often is
performed iteratively 1if the fittest solutions produced by GA are not what is desired,

In some cascs, 1t 1s very hard or impossibie lo come up even with a fuess of what
fitness function dofinition might be. Intcractive genetic algorithms address this

difficulty by oulsourcing evaluation to cxternal agents (normally humans)

4.8.1 Fitness Scaling

Reecall that the two undesirable characienstics of FPS are:

~ FPremalure convergence: Early on, a few super-individuals come (o

dominate selection

— Stagnation: Later on, selective pressure "disappears”
Fitness scaling offers 2 way to alloviate both of these problems. There are 3 general

scaling mcthaods:

a) Linear scaling
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b) Sigma trincation

¢) Power law scaling

4.% Selection

During each successive generation, a proportion of the cxisting population is
selected to breed a new gencration, Individual solutions are sclected through a
fitness-based process, where fitter solutions (as measured by a fitness function) arc
‘typically more likely to be selecled. Certain sclcclion methods rate the fitness of
cach solution and preferentially select the best solutions. Other methods rate only a

random sample of the population, as this process may be very lime-consuming,

Most functions are stochastic and designed so that a small proportion of less fit
solutions are selected. This helps keep the diversity of the population large,
preventing premature convergence on poor solutions. Popular and well-studied

seleciion methods inelude roulette wheel selection and touriament sclection.

4.10 Reproduction

The next slep 1s to generate a second generation population of solutions from those
selected through genetic operators: crossover (alse called recombination), andfor
mutation. In genetic algorithms, mutation is a genelic operator uscd 1o maintain

genelic diversity from one generation of a population of chromosomes to the next. It

is analogous to biological mutatign,

The classic example of a mutation operator involves a probability that an arbitrary
bit in a genetic scquence will be changed from its original state. A common method
of 1 mplementing the m utation o perator i nvolves gencrating a vandom v ariable for

each bit in a sequence. This random variable tells whether or not a particular bit will
be modified.
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The purposc of mutation 1n GAg s [o allow the algorithm to avoid local mnuma by
preventing the population of chromosomes from becoming too sinmilar to each other,
thus slowing or even stopping evoluiion. This reasoning also explaing the fact that
most GA systems avoid only laking the fittest of the populalion in generating the

next but rather a random {or semi-random} selection with 4 weighting toward those
that arc fitter.

For €ach new solution to be produccd, a pair of "parent” solutions is scleeted for
rhrceding from the pool scleeted previously. By producing a "¢hild" solution using
the above methods of crossover and mutation, a new solution is created which
typically shares many ol the characteristics of its "parenis”. New parcnts are selected

for each child, and the process continues until a new population of solutions of

appropriate size is generaled.

These processes nltimately result in the next generalion population of chromosomes
that ils different flrum the initial generation. Generally the average fitness will have
increased by this procedure for the population, since only the best organisms from
the first generation are selected for breeding, along with a small proportion of less fit

solutions, for rcasons already mentioncd above.

4.11 Termination

This generational process is repeated unti] & termination condition has been reached,

Common terminating condilions are

* A solution is found that satisfies miniman criteria

¢ ['ixed nomber of generations reached

» Ajlocated budget {eomputation time/money) reached

» The highest ranking solution's fitness is reaching ot has reached a p latean
| such that successive iterations neo Jonger produce better results

«  Mannal inspection

« Combinalions of the above.
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4.12 Yariants of GA

The simplest algorithm represents each chromosome as a bit string, Typically,
numeric paramcters can be represented by integers, though il is possible to usc
floating point representations, The basic algorithm performs crossover and mutation
al the bit level. Other variants treat the chromosome as a list of numbers which arc
jndexes into an instruction table, nodes in a linked list, hashes, objects, or any other
imaginable d ata s tructure. Crossover and mutation are performed so as to respect
data element boundarics. For mosi data types, specific variation operators can be

designed. Different chromosomal data types scem o work better or worse for

dilferent specific problem domains.

Other approaches involve using arrays of real-valued numbers insiead of bit strings
to represent chromosomes. Theoretically, the smaller the alphabet, {he belter the

performance, bul p aradoxically, good results have becn o btained from using rcal-

valued cluomosomes.

A slight, bul very successful variant of the general process of constructing a new
population is lo allow some of the betler organisms from the curtent generation to

carry over to the next, unaliered, This strategxy is known as elitist selection.

It can be quite effcctive to combine GA with other oplimization metheds. GA tends
to be quite good at finding generally good global solutions, but quite inefficient at
finding the last few mutations to [ind the absolute optimum. Qther lechniques (such
as simple hill climbing) are quite cfficient at finding absolute optimum in 1 lunited
region. Alternating GA and hill climbing can improve the efficicncy of GA while

overcoming the fack of robustness of hill climbing.
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CHAPTER 5

PROBLEM FORMULATION

5.1 Intreduction

An assembly linc consists of (work) stations k=1,..., m arranged along a convevor belt
or a similar mechanical material handling equipment. The workpieces (jobs) arc
consecutively launched down the line and arc moved rom station to siation. At cach
station, certain operations are repeatedly performed regarding the eyele time ¢ (maximum
or average time available for each work cyele). The cycle time e delermines the
production rate which is 1/¢. The decision problem of eptimally partitioning {balancing)
the assemnbly wortk among the stations with respect to some objective is known as ihe

Assembly Line Balancing Problem (ALBP).

Manufacturing a product on an assembly line requires partitioning the total amount of
work into a sct of clementary operations namced tasks ¥V = {1,...,n}. Performing a task j
takes a task time 4 and requires certain equipment of machines and/or skills of workers.
Due 10 technelogical and organizational conditions precedence constraints hetween the
lasks have to be observed. These efements can be swnmarized and visualized by a

precedence graph. It contains a node for each task, node weights for the task times and

arcs for the precedence constraints.

Any lype of ALBP consists in finding a feasible line balance, 1.e., an assignment of cach
task to a station such that the precedence constraints and further restrictions are fulfilled
The set 3k of tasks assigned to a stalion k (=1,...,m) constitutes ils station load, the
cumulated task time 1s called station time. When a fixed commen cycle time ¢ is given, a
line balance is feasible only if the station time of neither station cxcceds ¢ In case of
Sk} < ¢, the station k has an idle time of ¢ - {(Sk} time units in cach cyele. A simple
lower bound on the minimal number of stations is LB1 ty,./c | (I':ﬂdcnmes the smallest

integer net being smaller than x)
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The installation of an assembly line 15 a long-term decision and usually requires laree
capital mvesiments. Thercfore, it is important that such a system is designed and
balanced so that 1t works as efliciently as possible. Besides balancing a new system, a
running one has to be re-balunced periodically or after changes in the preduction process
or the production program have taken place. Because of the long-term effcct of balancing
decisions, the used objectives have to be carcfully chosen considering the strategic goals
of the enlerprise. From an cconomic peint of view cost and profit related objectives
shouid be considercd. However, measuring and predicting the cost of runming a linge over
menths or yoars and the profits achieved by selling the products asscmbled is rather
complicated and error-prone. A usual aitermative objeclive consists in maximizing the
line utilization which is measured by the line efficicney as the productive fraction of the

line’s total cperating time and dircctly depends on the cycle time ¢ and the number of

stations m.

Balance delay time is another important factor. 1t is the amount of idle time on production
assembly lines causced by the uneven division of work among operators or stations. It is
rclated to the extent and way the total task ts subdivided. In this mathemalical model the
problent of balance delay is treated cropirically and analytically. Empirical studies show

that high balance delay is associated with a wide range ol work-element times and a high

degree of line mechanization.
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5.2 Mathcmatical Model

The processing time and eycle time are of fuzzy nature. The objective 1s to distnbute #
lasks among m stations in the assembly line so that minimum number of station with
minimum idle time can be achicved and the outcome will be 1 highly balanced line i.c.

the smoothness index will be lowest. The iuputs are fuzzy cycle time and fuzzy task time.

Objective Function :miny 3 [x, +(F =5)p, +,/(¢ —s,)? ¥, ]

-l y=1
subject to, mo o
2 2 E Y, SEI=123 e m (1)
=l gaf
r
¥, =1 j=123... e (2)
h=E,
0 M L]
DRIt 035 TR 50 KT Y ¢
1=l ta] 1apt]
1=l ;=i
Efficiency, iy = r —
xbcs.' AL
Here, x, = Noof station

¢ =Fuzzy Cycle Time
A

8 = Fuzzy Station Time for Station i
¥, = Lif task jis assigned to station i

= 0; otherwise
= Work station index, =82 3....m
= Task index, =82 3....n

Task 7 is assigned to station i €[E,,L,Jifl P' <5 U....Us, and f(s)+i<F
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(1) can be written as {5, L, ryy, ={u,v)
if A=(s), I, iy and B={gy, 1y, 1)
A=Bff sy, 51-11<s2-17, sitp<sytrs

So, from (1), it can be expressed as

iisjyg e S

1=l jul

N L

s )y = e

i=1 =l

ii(ﬁ; 0TS ) FONI

=l

L,
Sy == 123 0
k=g,

il

inl 1=1 1a ]

£ - i i}:yu = N

1wl jml
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an{zm—zm
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5.3 Genctic Algorithm Searching Mcthod

Genetic algorithms (GA) are a pgeneral concept for solving complex oplimization
problems which is based on manipulating a population of solutiens by genetic operators

like selection, recombination and mutation [43]. In order to adapt the yencral approach to

SALBP (or a generalized ALBP), two main difficultics have to be resolyved:

* For manipulating solutions by means of genelic operators, they have to be encoded
form of ‘chromosomes® each of which consists of a sequence of yenes. Several cnooding
schemes are possible cach having pros and cons conceming the type of applicable genctic

operators. In particular, pertaining feasibility of manipiialed solutions is a critical isyue.

* The objective function of SALBP-1 is not operational {or guiding the search to
promnsing parts of the solution space, because 1t docs nat pive a strong distinction
between the solution's fimess: Usually therc are a fow optimal solutions which require
the minimal number m* of stations and many others **around them’” most of

which may

require m* + 1 (or some more) stations. That is, a population might consist of solulions
all having the same or a few differcnt objective values such that selecting the most

Promising ones 1s not obvious. So the fitness function value js modificd to search the

highly balanced line with mimmum le time. The sequential steps of the proposed

algorithm are as follows:

Step 1: Ranking the fuzsy task limes according to signed distance value.

Step 2: Generaiion of initial parent strings.
Step 3: Generation of offspring using crossover rrocedure.

Step 4: Generation of initial population pool of randomly constructed solutions (a

solution 15 represented by a problem-specific siructure of characters or bils) using
scramble mutation.

Step 51 Selection of two solutions based on their fitness function value and gencration of°
new solutions using crossover procedures which are supposced (o provide inheritanee of

some basic properties of parent structures by the of(springs.
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Step 6: Mutation of child Structures with controlled mutation rate M. which implies
cxchange of number of elements betwoen two randomly sclected positions i g structure,
Step 7: Decoding/evaluation of the child structuies to obtain the objective [unction
values.

Step 8: Selection procedure including comparison of child solutions with the worst
solutions in the population and replacement of the worst selution by the new one if it is

better,

Step 91 Termunation of the algorithn after repetition of siep 3 to step & R times, where R

15 an nitially speeificd parameier.

3.4 Standard Encodin o4

The first step in COnStructing a genetic algorithm is delining a genetie representation
{encoding). Having o good representation that can well describe  problem-specific
characteristics is crucial singe it significantly affects all the subscquent sieps of the GA.

Three string representations applicable to ALB problems are introduced [67].

(13 Workstation-oricnted representation: if task 7 is assigned to workstation J/, the station

number, #, is placed ai the 7-th position in the siring.

(2} Scquence-oriented representation: all tasks are sequentially listed in the order that the

tasks are assigned to workstationg,

(3} Partition-oriented representation: separators arc introduced in the sCyucnce-oriented

representation (o partition tasks into workstations.

Workstation-oriented representation can handle al] types of ALBP. The other two
represcnlations are applicable only to the Type-2 and Type-E problems where tho number
of workstations is pre-specificd. It provides consuleruble {lexibility in choosing genetic
operators. Many genetic operators that have been devcloped for sequencing problems are

avallable, and the representation makes it possible for them to be adapted to ALB
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problems. The other two representations require complicated additional opcrations, such

as the use of penally functions. Tn the proposed algorithm, the workstation-oricnted

encoding method has been used.

The chromosome is defined as a vecior containing the labels of the stations to which the
tasks 1, .. .n are assigned [67). When standard crossovers or mutations are applied to
such chremosomes, the resulting selutions are often infeasible. This aspect must be dealt
with by penalizing infeasibilities or rearranging the solution by corlain heurisme
strategies. Kim ct al, [68] achicve populations without infeasible solutions by decoding
chromosomes using a procedure similar to that el Helpeson and Birme [3]. 1o the

preposed algonithm, only vahd pools of chromosomes are considered.

3.5 Initial population

A genetic algorithm opcrales on 2 population of individual strings. Either heuristic
procedures or random creations can be used to generate feasible strings that form the
initial pepulation. Anderson and Ferns (45] have mentioned that the performance of the
GA scheme is not as good from the pre-sclected starting population as it is from 4 random
start. In this rescarch, individuals in an initial population are &l randomly pcnerated. As
mentioned earlicr, the initial sinings should rmaintain feasible sequences. So from the list
generated on the basis of signed distance method an initial parcnt strings are lormed. Tf it

is infeasible then repair method is used to create a feasible slring.
5.6 Crossover operator

Crossover or mulation depends on a certamn probability, ie., il the probability of
recombining is 98% then the probability of mutating is 2% In this case, the crossover
(recombination} o perator is a variant o £ D avis' [69] order crossaver o perator. The two
parenis that are sclected for crossover are cut at two random cutpomts. The offspring
takes the same genes outside the cut-points at the same location as its parent and the

genes in between the cul-points are scrambled according Lo ihe order that they have in the
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other parent. The major reason that makes this crossover operator very saitahle for ALB
is that it assures feasibility of the offspring. Sincc both parcnts are feasible, both cluldren
must also be feasible. Keeping a feasible population is a key to ALB problem since
prescrving feasibility drastically reduces conputational cfforl. The genes can be swapped
as a single bit or a cluster. The number of the genes to be swapped can be easily

conlrotled by a user defined percentage of the length of the string.

3.7 Mutatien operator

In the proposed algorithm, the scramble mutation operator is used. 1t was first proposed
by Leu ct al. [44]. A random cul-point is selected and the acnes alter the cul-point are
randomly replaced (scrambled), assuring feasibility. Elitisny, i.e., replacing a parcnt with
an offspring only if the offspring is better than the parent, is applicd to both the crossover

and the mutation procedurcs.
3.8 Selection Method

In this algorithm, chromosomes are selected using customized tournament sclection
method . Tournament scleetion is one of many methods of sclection in genelic algorithms
which runs a "tournament” among a foew individuals chosen at random from the
population aud sclects the winner (the one with the best fituess) for crossover. Selection
pressure can be easily adjusted by changing the toumament size, If the fournanient sive is
larger, weak individuals have a smaller chance to be seleeted. In this case, the toumament
size Is cquivalent to the total population including the parents. The best fit chromosonics
are sclecled according to their fitness function value from a mutated pool. At first,
chromosomes with minimum number of stations are sclecled. So the entire pool is
curtailed 1o a pool with smaller population. Then the fitness function valucs of the valid

chromosomes are computed and the best two chromosomes are sclected.

In De Jong’s [70] study of genetic algenthms in function optimuzation, a serics of

parameiric studics across a five-funetion sutle of problems suggested that good GA
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performus requires the choice of a high crossover probability, a low mutation probability

{inverscly proportional to the population size), and a moderate population size.

5.9 Fitness functions

In GA the better fit solutions survive across gencrations. Hence the [itness of a solution

should refiect its quality with respeet to the problem’s chjective. The selection policy

should ensure survival of better fit solutions. In the proposed algorithm,

L
. PMRCEEY Mo 2
Fitness Function=5m" 710 4 E (@ -5,
" 1=|

The fitness function is modified to achieve the optimum number of stations which will be
the minimum witlt the minitnum idle time and minimum smoothness index. However,
given two diffcrent solutions with the same number of stations, one may be betler
balanced than the other. For exaniple, a line with three stations may have stations tinmes
as 30-50-40 or 50-50-20. The 30-50-40 solution is considered to be superior (beiter
balanced) to the 50-50-20 solution. Henee, a fitness function 15 used that consists of two
objectives, 1.e., minimizing the number of stations and cbtaining balanced siation . The
first part of the fitness function aims to find the best balance while (he second part

minimizes the idle time among the solutiens that have the same number of stations.

5.10 Stopping Condition

The algonithm termainates after 4 certain number of iterations. 50, 500 and 1000 values

have been used as the number of itcralions parameter.
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CHAPTER 6

RESULT ANALYSIS

6.1 Computational Result

The proposed fuzzy linc balancing algorithm using genetic algorithm has been coded in C
and run on a Personal Computer having Intel Pentium- 4 core 2 duo/2.66 GHz and 512 Mhb of
RAM. The minimum requirement of running ihe program:; Operating System Windows XP or

any other Windows Operating System of equivalent file struclure and having Microsoft
~ Visual C installed.

To demonstrate (he effectiveness and robustncss of the approach compulational results arc
presented that 1s obtained on 4 set of SALBP-1 problems found in literature. The program
was Tun for different iterations: 50,500 and 1000. For al] lieration, the ALBP-1 datascts are

used and have been compared with EGVREKA [71], SALOME [72] and Hybrid GA [73].

The algerithm has been evalualed on three sets of instances: The Talboi-Set (64 inslances)
[29], the Hoffman-Set (50 instances) [74] and the Scholl-Set (168 instances) [75). The
combined set consists of 269 instances (minus 13 instances which arc in the Talbol-Set ag
well as in the Hoffmann-Set). The sources of the problems as well as a detailed description
are given by Scholl [75]. The basic characteristics of the problems arc summarized in Table
6.1. The first column displays the author of the instance, The sccond column shows {he
number of tasks. The third and fourth column shows the minimum and maximum cycle time.
The fifth column gives the number of differcnt cycle times out of the inlerval, which arc used
to define a problem n the Talbot-Set (T), in the Hoffmann-$ct (H), and in the Scholl-Set (8).
The remaining columns conlan the mimmum processing time, the maximum processing

time, the sum of processing times, the order strength in percent, and the time variability ralic

lrI'|"'3:5{."“"""‘I'|'III'.I
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Table 0.1: Problem Characterisiics

:1ﬁl.}thqlr Joon Coun 1 Cma | tm - tzum QS TV
. R (%6}
Areus 1 83- 3786 | L0816 | 233 6B | 7707 ‘59.1 15.8
Arcus 2 111 5735 | 17067 10 3689 | 150399 | 404 GRS
Bartholdil 14% 403 035 3 383 5634 238 1277
Bartholdi2 | 148 B4 170 1 83 4234 258 B3
Bawman B 20 20 3 17 5 75 57
Buxey 20 27 54 1 25 324 a7 25
Gunther 35 41 81 i A} 4583 505 A0.0
Hihn 53 2004 4676 4} 1775 14026 B3.8 44,4
Heskiaoff 28 138 347 1 108 1324 225 108
Jackson 11 7 21 1 7 44 58.2 7
Jaaschke 9 5 18 i G 37 Bi3 G
Kilbridge 43 56 184 3 55 552 44.6 183
Lutzl 32 1414 | 282% 104} 1400 | 14140 833 14
Lutz2 3N i1 21 1 10 485 7.6 1
Lurz3 B9 73 150 l 74 1644 7.6 74
| Mansoor 11 48 04 2 45 185 GO0 225
Mertens 7 G 18 | fi PAY 524 0.0
Mitchell N 14 39 l il 105 1.0 13.0
Mukherjre 04 176 ERY: 8 171 4208 44 8 214
Roszieg 25 14 32 l 13 125 1.7 130
Sawyer 340 25 75 1 25 324 4.8 250
Schall 297 1354 | 2787 5 1386 | 69653 58.2 2712
Tonge H) 1an 527 1 1536 3510 594 1560
Warnecke a8 4 1] ¥ 53 1548 591 7.0
| Wee-mag | 75 28 56 2 27 | 1499 | 227 | 135
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Table 6.2 Benchmarking with EUUREK A

§ Proposed Ral. Dev.
Tatal Optimal Idzal EUREKA . Idle
Authar opzl;:i.;ns ?.‘;"::f Pmcpssing Nnt of Minin-!um No ::.‘.lf Alﬂgrg?m TD,IE?I:,-E:IE Time Efficiency EUI:IE?(";[%]
Time Stations | Idle Time | Station Station (%)

Bowman il 20 75 5 25 5] 5 25 25 75.00 000

terten 7 B 29 [+ 7 G 5] 7 19.44 80.56 .00
7 290 5 H 5] 13 3095 69.05 20.00°
8 29 5 11 5 5 11 27.5 72,50 0.00
10 29 3 1 3 4 11 27.5 7280 3333
15 28 2 1 2 ] 16 35.56 64,44 50,00
18 29 2 7 2 2 7 15,44 80.56 .00

Jaeschke 2| & 37 8 11 B 8 11 22.92 77.08 0.00
7 37 ¥ 12 ¥ 8 10 3393 66 07 14 29
8 37 G 11 g 7 19 33.83 &6.07 165,67
10 v 4 3 4 5 13 2B 7400 25.00
18 37 3 17 3 3 17 31.48 §58.52 0.G0

Jacksaon 11 7 46 B 10 [F) a 17 26.93 73.02 12.50
a 465 7] 2 5 7 17 26.98 730z 16.67
10 46 5 4 5 3 14 23.33 7667 20.00
13 A5 4 6 4 4 6 11.54 88 45 0.00
14 4B 4 10 4 4 10 17 .80 gz2.14 0.00
21 46 3 17 3 3 17 26 98 7302 .00

Mitchell 21 14 105 i) 7 8 10 21 16.67 83,33 12.50
15 105 B 15 g g 15 12.5 87.50 000
21 105 5 0 5 & 21 16.67 83.33 20,00
20 105 5 25 5 5 25 19 23 BO.77 Q.00
33 105 3 0 3 4 35 25 75.00 33 33
29 105 3 12 3 3 12 10,26 8974 G.00

L ]

[Rest of the table is given in Appendix A]
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Table 6.3 Benchmarking with SALOME

Total Optimat saLome | Froposed | ooy pev. | Total | Idie
Precedence No of Processing {}?rr,le I'En of No of Algquthm From Idle Time Eff.{%)
Graph Operations Time Time Stations Station Dsp timum Salome [%) Time (%)
tation
Arcus B3 75707 3786 21 21 24 14.25 15157 16.68 53.32
Arcus 75707 3885 20 20 23 15.00 16948 17.4 82.60
Arcus 75707 4206 19 19 21 10.53 12613 14.29 85.71
Arcus 75707 4454 i8 18 20 11.11 13373 15.01 84 839
Arcus 75707 4732 17 17 18 5.88 8463 11.12 88.88
Arcus 75707 5048 16 16 16 0.00 5061 627 93.73
Arcus 75707 5408 15 15 16 6.67 10821 12.51 B87.43
Arcusi 75707 5824 14 14 15 7.14 11653 13 34 £6.66
Arcus 7a7ov 5853 14 14 15 7.14 12088 13.77 86.23 |
Arcus 75707 65309 33 13 13 0.00 6310 7 69 92.31
Arcusi 78707 6842 12 12 12 0.00 6387 778 92.21
Arcusd Forov G883 12 12 12 O oo 529 8.34 91.65
Arcusi 75707 7371 11 11 1 0.00 7574 9.08 20.91
Arcusi 7707 B412 10 10 10 000 8413 110 90.00
Arcusit 7o707 5898 9 g g Q.00 4375 5.46 84 54
Arcust 75707 10816 8 8 B 000 10821 12.51 87.49
Arcus2 111 150389 5755 27 27 32 18.52 33761 18.33 81867
Arcus? 150399 5785 27 27 33 22.22 40508 21.22 78.78
Arcus? 150398 6016 26 26 30 15.38 34581 19 2333
Areus2 150389 B267 25 25 <l 24.00 43878 22.59 T77.41
Arcus? 150399 §540 24 24 28 16.67 32T 17.87 8213
Arguse 150389 6837 23 23 26 13.04 27363 15.39 B4.61
Arcus? 150339 7162 22 22 26 18.18 35813 19.23 80.77

[Rest of the Lable is given in Appendix B]
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Table 6.4 Benchmarking with Hybrid GA

, Proposed fHeal. Dev,
Author No ':.’f C?rcle Prozgtsa;ing DIEE ':? ! Hy?ljlda?ﬂl Algsrimm Tnt.lal Ieite fdte Time Efficiency Fer
Operations Tima Time Stations | Stations No Of Time (%) Hybrid GA

Gtation [%]

Bowman 3 20 75 5 5 5 25 25 75.00 0.00
kMerten 7 G 29 5] G B 7 19.44 B0.56 0.00
7 28 5 ) & 13 30.95 £89.05 20,00

5] 28 5 5 5 71 27 5 72.50 0 00

10 29 3 3 4 11 27.5 7250 33.33

15 29 p i 3 16 35.56 64.44 50.00

18 29 2 2 2 ¥ 12.44 80.56 0.00

Jaeschke 2] (5] a7 8 B 8 11 2282 F7.08 0.00
7 37 7 7 (5] 19 33.583 BE.OF 14,29

8 37 B G 7 19 3393 66,07 16 67

10 37 4 4 5 i3 26 74.00 25.00

18 37 3 3 3 17 3148 £B 52 0.00

Jackson 11 7 46 i) 8 o 17 26 98 73.02 12.50
g 46 £ B 7 17 23,98 7302 1667

10 45 ) 5 6 14 23.33 TE.67 2000

13 45 4 4 4 5] 11.54 88.46 Q.00

14 46 4 4 4 10 17.85 82.14 000

21 46 3 3 3 17 26.93 7302 0.00

klitchell 2 14 105 2] 8 10 21 16.67 83 33 12.50
15 105 i) 8 g 15 124 &7 50 0.00

21 105 ] 5 5] 21 16.67 83.33 20.00

26 105 o 5 5 25 19.23 a0.yy .60

35 105 3 3 4 35 25 7500 33.33

38 05 3 3 3 12 10.26 89.74 0 a0

[Rest of the table is given in Appendix C]

66




Table 60.5; Fuzzy Task Time

Population size: 20
Heration: 30
Cycle time, C={11 11 11}

Result:

Optimum Number of Station: §
Tolalidle time: (7.11 13.9 17.21)
%o ofidle time: (10.77 21.06 26.08}
Elliciency: {73.92 78.94 §3.21)

67

Task

Task Time Task Task Time Task Task Time Task Task Time
i ¢430.50 58 J 17518188 S 1.26 1.3 1.47 Sa 02103055
Sz 06507076 Fa Q1602024 S 0,758 0.8 0.86 Soz 036 040,47
Sy 07208034 S Q.26 0.3 038 Jaz UFBO0BDG Sar 028 0.30.45
g4 05611123 Sy Q170.2025 Hue 0.53 0.6 068 Sus 0.54 0.6 0,68
J5 0ATDE102 S .27 0.3 036 s 05511129 Sag 0.75 0.8 0,68
s 0.85 0.9 1.08 Jay 131518 S 017 0.2 0.25 i £.43 05056
Jr 02603032 S O B& 1.0 4.03 Sz 0.28 0.3 0,34 Si: .47 .50 58
Sz  RAzo20.23 S 121.31.45 oz 0.69 0.7 0.78 Jox 12613128
A Q52 0.6 068 of 2y 03204045 Jaa 0.46 10,5 0,57 Sz A7 1.0 1.05
m 02603053 S .43 0.5 0.57 oo 11212125 S 017 0.2 .24
S 0.75 0.6 0.82 Jir 12103036 Y 042 0.5 0.56 Sz D6 02823

A 0.850.7 6.8 S 1.11.21.26 iz 03204046 i 0380 4 0.43
Jis @37 0.4 0,42 S 14212125 oy 06065071 Sy 0.42 0.5 0.56
J1a 01902022 1 .32 0.4 049 Fss 026050234 S 0.27 02 0.31
i 057 0.6 0.67 J1s G169 20.21 iy 0 B7 0.90.58 Iy 071 0.8 0
i $.32 0.4 D44 Sia 07506080 Sig 03304058 Fa 051 055082
S 40501014 Sz .66 3 7 085 Sz 08810102 Wiy 08307079
iz 0,29 0.30.34 1 087 1.0 1.08 Sy 1141,21.23 Fan D87 0.81 03
T .48 0.5 0.56 S .82 1.0 1.06 Ssa 0790.8182 J7 0.740.8G 95
S .89 0.9 1.03 Hea .43 0.5 0.56 Fen 0,65 1.0 103 i 03404057
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Table 6.6 Comparison of Eight Methods on the 70 Task Problems

Moadie
%’;I: ‘fand T:ﬂge T‘:‘"cge TBcgge Nevins Baybars Sabuncuoglu :fggﬁfherz

oung
g3 A8 a0 S0 44 47 47 48 46
£6 47 47 48 47 45 46 45 45
84 44 45 46 44 43 43 44 43
82 43 43 44 43 42 42 43 43
85 42 43 43 41 40 44 41 42
170 24 24 24 23 23 23 23 25
173 24 24 24 23 22 22 23 25
175 22 24 23 22 22 22 22 25
174 22 23 23 21 21 21 22 24
182 22 23 22 21 21 21 22 23
345 11 11 12 11 il 11 " 12
349 11 11 11 11 11 11 11 12
364 11 11 1 11 11 i1 11 11

The proposed algorithm has been compared with seven other algorithms [16, 21, 22, 76, 77]

in solving Tonge’s 70 task problem [17] with 13 cycle times. From above compulational

results itis ¢ lear in some c ases proposed algorithm o utperforms the o ther scven m ethods,

even the genetic algorithm based algorithm of Subuncuoglu [77].Though some results of

other algoriibmms arc belter than the proposcd algorithm, it must be mentioned here that the

proposcd algonthm holds an objcctive function with multiple objectives. Sa it trics to find out

the number of the optunum staiions having the minimum idle time and minimum smoothngss

index. So m the other case, it is most Hkely that the oplimum solutien of the proposed

algonthm may give better result than other algorithms with respeet to idle time and

smoothness index that is achieved through a trade-off between minimum number of stations

and minimum idle time.
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¢.7 Convergence Analysis

Genetic algorithms use a selection schome to seleet individuals from the population to inscrt
into a mating pool. Individuals from the mating pool are used by a rccombination operator to
generate new offspring, with the resulting offspring forming the basis of the nexi generation.
As the individuals in the mating pool pass their genes on to the next gencration it is desirable
that the mating pool be comprised of good individuals. A seleclion schemic in GAs is simply
a process that favors the selection of better individuals in the population for the mating poof.
The selection pressure is the degree to which the better individuals arc favored; the higher the
seleclion pressure, the more the betier individuals are favored. This sclection pressure drives

the GA to improve the population fitness over succeeding generations. The convergence rate
- of a OA is largely determined by the magnitude of the selection pressure with higher
selection pressures resulting in higher convergence rates. Genetic algorithms are able to

identify optimal or nea-optimal solutions under a wide range of selection pressure.

I the sclection pressure 1s too low, the convergence rale will be slow, and the GA will
unnceessarily take longer lime to find the optimal solution. If the selection pressure is too
high, there is an increascd chance of the GA prematurely converging 10 an incorrect (sub-
aptimal) selubion, In addition to providing selection pressure, selection schemes should also
preserve population diversity as this helps avoid promature convergence. The proposcd
algonthm has becen run on two options of crossover operator. Onc crossover operator
performs the o peration by s wapping only one gene. T he o ther c rossover o perator s waps a
cluster of gencs. There is an option to control the number of gencs to be erossed-over by an
user delined rate. The convergence analysis was done on Arcus83 dataset under scveral

paramcters, The results are depicted in the following section.
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Parameters
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Maximum population: 50

Iteration; 50

Crossover method: clustered gene lwo point crossover

Crossover rate: 0.001
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Graph 3: Convergence Analysis

From the above results, it cun be concluded that single gene crossover is better than
clustered gene crossover as it converge in smaller numiber of iterations. The smaller the

crossover rate, the lower the number of genes in a cluster and the smaller the mumber of

iteraticns to converge.
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CHAPTER 7

CASE STUDY
T.1 Intreduction

SALBP is a classic oplimization problem, having been tackled by researchers over
several decades. Many algorithms have been proposcd for the problem. Yet despitc the
practical importance of the problem, and the various cflorts that have been made 1o tackle
1t, little commercially availabic software is available to help industry in oplimizing their
lines. It appears thal the gap between the available results and their dissernination in
today’s industry 1s probably due to a misalignment between the academic LB problem
addressed by most of the approaches, and the actual problem being faced by the industry.
LB is a difficult optimization problem (even its sinplest forms are NP-hard) [18]. So the
approach taken by researchers has typically been to simplify it in order to bring 1t to a
level of complexity amenable to optimization twols. While this is 2 perfectly valid
approach in general, in the particular case of LR it led to some definitons of the problem

that 1gmore many aspects of the real-world problem.

To establish the robustness of the proposed algorithm, it has been implemented to solve a
practical line balancing problem. in this casc study, the asscmbiy line of (he
RahimAfrooz Batterics Limited has been studied and balanced applying the algorithm.

The data has been collected from a recently conducted time study and fuzzy jib tume has

been constructed for cach specific job,
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7.2 Overview of Problem Area

Rahimafreoz Batteries Limited {RBL) is the largesi lead-acid battery manufacturer in
Bangladesh and offers an extensive range of automotive & specialized industrial battery.
It manufactures over 300 different types of astomotive and industrial batleries. Its plant
15 ISO B001 & ISCr 14001 eertified. [1is one of the key players in South Asia in its ficld.

REBL has also extended its product Line lo secure power solution with UPS, Rectifier and

VRLA Batterics with collaboration of Enersys-USA, Eltck-Norway, AEES-France.

RBL has a successtul story of installing solar powcr in the romote rural areas of

Bangladesh. It has suecess(ully instalied more than 10,000 home solar systems in the

remote rural areas of Bangladesh.

Rahimafrooz has staie of the art manufacturing plant. Tt is equipped with all latest
technolegies wilh complete air treatment and lead-recycling management. RBL produces

diffcrent  types of battenies to meet the local and international market.

Its capacity in Automotive Battery is 660,600 (N5() units per annum and 15 million AH

of Industrial Battery per annum. All ihe products are manufactured under striet gquality

conlrel and ¢nsured by intermnational certificalions.

Its main product range includes:

Aulomotive batiery
Motorcyele battery

Apphance hattery

Deep cyele — Flat plate batlery
Industrial tubular battery
VYRLA battery

UPS

Solar system
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It has different technical ¢ ollaboration agreements with Lucas Battery C ompany, U K,
Techmical support Group (TSG), Hawker Batteries, UK, Invensys, UK, Hawker Batterjes,
UK, Ellek — Norway, AEES = France to ensure the quality of battery.

Unit-2 o' RBL, 10 Panisail, Zirani bazaar, Savar, G azipur, is quite huge and produccs

mainly autornolive batteries. In this thesis data has been cellected from umi-2 of RBL to

implement the TS-based algorithm.

7.3 Some Important Definitions

Before exploting the specific problem area the following definitions should be noted:

r Active

Matcrial:

* Battery

Polarity:

= Cclls:

» Container:

» Electrolyte:

® Plates:

Chemically active compounds in a cell or batlery that convert from one
composition (o another while produeing current {electrical cnergy) or

accepting current from an external circuit.

A batery has two poles or posts. The positive battery post is usually
marked POS, P, or + and is larger than the negative post which is usually
marked NEG, N, or -. The polanty of the charger and battery must maich
10 avoid damage to the battery and charger.

The basic electrochemical current producing unit in a battery consisting of

a set of positive plates, negative plates, clectrolyte, separator and casing.

There are six ¢cells in a 12-volt lcad-acid batlery.

The polypropylene or hard rubber casc that holds plates. electrolyte and

separators,

A solution of sulfuric acid and water that conducts current through the
mavement of ions (charped particles in the electrolyte solution) botween

positive and negative plates. [t supplies sulfate ions for reaction with the

active material of both positive and negalive plates.

Flat, typically reclangular componcnts that conlain the aclive material and
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a mechanical support structure called a prid, which alsoe has an clectoical
funclion, carrying electrons to and from active material. Plates are cither

positive or negalive, depending on the active matenal that it holds.
7.4 Specific Problem Area: Assembly line in RBI-2

‘There are two assembly lines in Rahimafiooz batlenes lid. {Uit-2). The configurations
of the assembly lines arc straight. The products arc transferred from onc workstation to
another over roller conveyor. At each workstation different operations are performed.
From a recently conducted time study, it is observed that the workstations eyele time are
not equal for each workstatlons and the line 15 not balanced. So the proposed algonthm

can be applied to the cxisting assembly line confipuration and the new design can be

proposed.
7.4.2 Assembly Operations

The assembly of the differcnt types of batterics requires a total of 14 operations. The task

required for the assembly operations are:

—

stacking or separating

group buming

attaching side pack and inserting in the container ’
short and polarity test

nter-gell welding

shear testing

scaling the container

burning the pole

s - R S

brushing the pole and making it positive or nepative
10, perforiming the leak test
11, attaching the pass tag and bar code

12. attaching the aluminum foil
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13, wrapping the battery with required vent plug

14, packaging

Table 7.1: Precedence Graph

Immrediate
Job {3
Predecessor

1 -

2 I

3 2

4 3

5 4

& 5

7 6

3 7

9 b

10 9

11 10

12 11

13 i2

14 13
Table 7.2: Production quantity of Battery

Type af battery
Meaximumn
VHD 1500 | PCM 29 PCM 27 N120
Maximum
245 245 245 285 283

quantity/shift
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Se 1n 8 hour shift or 480 minutes the workers produce 285 pieces of battery. 5o 1t needs
(480/285) =1.68 min ar 101 second for producing one battery. So the fuzzy cyele time for
the process is (101 113 §17)

From the conducted thme study, the fuzzy job time for each job as {ollows:

Table 7.3; Fuzzy Task Time

Job (J) P q ¥
i 48.66 52.01 53.66
2 55.66 58.23 62
3 3666 40.9 47.33
4 " 185 20 23
5 27 30.5 36
6 23 20.8 32
¥ 13 20 26
8 7 20 30
9 8 10 13
10 20 22.1 28
11 6 5 10
12 18 193 246
13 24.5 27 ELL
14 30 34 37

7.4.3 Result

Applying proposed line balancing algorithm the result is:
Optimum Number of Station: 6

Total idle time: (152.01 288.96 301.02)

%% of ldle Time: (21.65 42.62 39.57}

Efficiency; (48.57 57.38 74.92)
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CHAI'TER §
CONCLUSION AND RECOMMENDATIONS

5.1 Cunclusion

This reseatch work has customized a genetic algotithm hne balancing algorithm in a
fuzzy environment, This alpotithm can be emploved to balance both the fuzzy and
crisp cavironment. The objective of the algorithm is not only confined to find out the
minimum number of station but also to minimize idle time and minumize
smoothness mdex. So the oulcome is a highly balanced line with ninimum idle time
and possible mininmum number of stations. The alporithm has been benchmarked
with two well known algonthms namely ‘EUREKA® [71] and ‘SALOML [72]. The
result shows that the propesed algorithm shows a small amount of relative deviation,
The algorithm has also been compated with cight different algonthms for solving

asscmbly hine balancing problem method.

It must be mentioned that all of the previous algorithm have he objective of finding
out the minimum number of stations. The proposcd algorithm has mult objective

and it trics (0 {ind out the opumum combination o f minimum numbe: of stations

with minimum idle time and smoothness wdex.

5.2 Recomimendations

The petformance of the presented GA-based algorithm can be further analyzed in
terms of CPU time by comparing it with other best known algonithms for asscmbly
line balancing problem In the crossover operator, order crossover meihod has been
used. Other crossover operator can be used and compared with the proposed
algorithm to obscrve the result. I the some of the stations can be frazen after a
specific number of iterations then the computation lime will be lower, In this case

the fuzzy time is considered Trangular fuzzy number. tThe algotithm can also be

used to handle other type of fuzzy numbers.
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Table 6.2 {continped)
_ Total Optimal Tdeal EUREKA | [reposed rel. dev.
Authoer ﬂp?r‘;;:;m Cycle Tiote Prn%icssing I'E;c‘ur Minln{um [:m _of Mizr::l!”" Tﬂ.]t,?::f{c %1?;;1:[“ Efficiency EJEE‘(A
ime Stations Idle Time statinn station [%a)
527 3510 i 174 7 7 706 16.75 2515 0.00
Artcus A2 3043 75707 16 06l 17 17 10109 11.78 £8.22 6.25
3853 75707 14 6235 15 15 120088 13.77 8623 714
G343 75707 i2 687 12 12 6337 1.79 9221 .00
1571 75707 1l 7574 12 12 15145 16.67 33.33 .09
8414 T 11} 8433 10 4] 8433 10.02 5995 .00
BO0R 75707 o 5275 b2 9 3275 (.51 93 49 00
10816 75707 8 10821 8 i 13821 12.51 §7.49 {.{H)
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10743 150354 15 10746 16 16 21459 12.5 &7 ) G 67
11378 13300 14 BE03 15 i5 22T PLEE £8.12 7.14
17067 150399 9 [ 3204 10 10 20271 11.88 8312 TRE
Average Relative Deviation (%) 11.50
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APPENDIX D. COMPUTER CODE (C LANGUAGE)

#include<time.h>
#include<math >
Hinclude<stdio.h>
Hinclude<stdlib h>
#include<string h>
thnclude<conio.h>
#include<algorithm=>
using namespace std,

#deline MAX 300
#delme For(i,a,b) for{i={a);i<{b);i++)
typedef  ini64 LL;

int fac[] = {1,1,2,6,24,120,720};
int lierationNumber:

nt MaximumPoolSize;
double CrossOverRate;

int n;
int pre[ MAX][MAX]; Hpre[i][(i} = 111 (¥} precedes (3}

struct Fuzeyd
double d,c.f Md<e<!l
}CycleTime, Zero, BestTotalldie Time, PercentldleTime, Ef ficiency, TotallebhTime;

int BestStationNumber , nJobStation[MAX];

inl npop;
stiuet Chromosome |
int mdex[MAX];
int StationNunsber;
Fuzzy FFV,
tpopulation[3*1000] , crossed[2];

struct Job{
Iuzzy tme;
double SD;
H[MAX];

,l"*
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Function Prototypes
¥

int sort_descend{const void *,const void *);
int sort_ascend{const void *,const void *

Fuzey sqr{Fuzsy;

Fuzzy sqrt(Fuszy),

Fuzzy operator/{lnzzy Fuzzy ;
Fuzzy operator/(Fuzzy ,double);
Fuzzy operator*(Fuzzy ,Fuzzy );
Fuzzy operator*(Fuzzy ,double);
Fuzzy operator*{double, Fuzzy ;
Fuzzy operator+{Fuzzy ,Fuzzy ),
Fuezy operator-(Fuzzy ,Fuzzy );
bool operator<(Fuzzy ,Fuzzy );
bool operator=(Fuzzy ,Fuzzy };

void PrintFuzzy(Fuzzy);
mt ScanFuzzy({Fuzzy *¥);

int ScanAndinil();
vold PrintBox{char *);

void PS{Chromosome &});
bool Valid{Cluomosome &);
bool operator—{Chromosome, Chromosome);

/fgetting the Station number and Fitness Function Value of a Chromoesome
void Process(Chromosome &P}

inti,ns;

Fuzzy RemainTime;

Fuzzy TotalldleTime , IdleTime[MAX];
Fuzzy sum,sum?;

RemainTime = CycleTime;
TotalldleTime = Zero;

ns =1;
For{1,0,n){

it{ J{ P.index[i] ).time < RemainTime )
RemainTime = RemainTime - J[ P.index[i] ].time;
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elsef
IdleTime[ns] = RemainTime:

TotalldleTime = TotalldleTime + IdleTime[ns);

RemamTime = CycleTime - J[ P.index[1] ].time;
ngt+;

}

IdleTime[ns] = RemainTime;
TotalldleTime = TotalldleTime + IdleTimefns);
nstt;
Sl = sum?2 = Zerq;
For(i,0, ns){
sum =sum + IdleTimel[i];
sum? =sum?2 + sqr{IdleTime i},

}

P.StationNumber = ns;
PFFY =sum /ns+ sqrifsum2);

i

votd CrossOver() {
int 1,k,pos;
int gene[4];
while(1){

K =rand(} % n;
if{ crossed{(}].index[k] 1= crossed(] Lindex[k] )
break;
b

gene[0] = crossed([0].index[k];
genef1] = crossed[1).index[k];

tor(i=(hi<n;i-+)
if crossed([0].index[i] = genell1])
break;
crossed[0].index[k] = genc[1]
pos =1;
for{i=pos;i<n-1 sitt)
crosscd[(].index(i] = crossed{0].index]i+1 I
crossed[0].index[n-1] = gene[0]

1

1013



for(1=0;i<n;i++)

1f{ crossedfl1].index[i) == gene[0] )

breal;

crossed[[].index[k] = gene[0];
pos=1i;
fot(i=pos;i<n-1;i+H)

crossedf11.index[i] = crossed[1}.index[i+] I
crossed([1).index[n-1] = genc[13;

Process{ crossed[0] ;
Process({ crossed[1] );

;

void Scramble(Chromosome C , int k}{
intnl, max_chrom , count:

int p;
nl =n-k;
{nl<7)
max_chrom = fac{n1];
if{MaximumPoo]Size < max_chrom)
max_chrom = MaximumPoolSize;
1
clze
max_chrom = MaximunPoolSize;
count = (;
p=10

while{count < max_chron && +p < 1000){
Y Inext_permutation{C.index + k, C.index + n} )
break;

i WVahid(C) 4
Process{ C );
population[npop++] = C;

b
count+;
1
}
voud Mutation(}
int k;
it Valid{ crossed[0] ) ) pepulation[npop++] = crossed[0];
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iff Valid{ crossed[1])) population[npop++] = crossed[1];

k =rand() % n;
Scramble( crossed[0], k k
scramble( crossed[1], k),

Fuzzy GetTotalldleTime(Chromosome P)4

inti,ns;
[Fuzzy RemainTime;
Fuzzy TotalldleTime, IdleTime] MAX];

RemainTime = CyeleTime;
TotalldleTime = Zero;

ns =0;
For(i,0,n){
if{ I[ P.index[i] ].time < RemainTime )
RemainTime = RemainTime - J[ Pandex(i] ].tume;
elscf
IdleTime[ns] = RemainTime;
TotalldleTime = TolalldleTime + IdleTime[ns];
RemainTime = CycleTime - J[ Pandex[i] ] dime;
nlobStation[ns] =i;
ns+
;
i

IdleTime[ns] = RemainTime;

ToalldleTime = TotalldleTime + IdleTinie[ns]:
nlobStation[ns] = n;

ns+;

El

return TotalldleTime;

1

vord i) {
Zerod=0;
Zeroc=1{
Zerof=10,

srand( time(NULL) )
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int main(}{
int i;
inl step, k;
Fuzey Min,Max, Avg , Total;

mit(};
while( ScanAndnit(} == 1 }{

fidctermining the MAX SD based sct
For(i,0,n)
population[0.index[i] = i;
ysort( population[0].index , n, sizcol{int}, sort_descend);
Process( population[0] );

Hdetermining the MIN 8D bascd set
Foni,0.n)
population[1].index[i] =1
qsorti population[1].index , n, sizeof{int) sort_ascend);
Process( population[1] };

For(step , 0, TterationNumber){

npop=12;
crossed[U] = population[0];
crossed[1] = population{i],

For(1,0,n * CrossQverRale}
CrassCven();

Mutation();
sort{(population , population + npop);

Min = populationf(].FFV;
Max = population[apop-1].FFV;
Avp = Yere:
Fer(i,0,npop)
Ave = Avg + population{i].FFV;
Avg = Avg/ ((double)(npop));

printl{"Iteration #%dwn", siep+1):

printf("Minumum FFV = "y; PrintFuzzy(Min);
printf{"Average FFV = "); PrintFuzzy(Avg);
prntf{"Maximum FFy ="); PrintFuzzy(Max);
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CycleTime);

For{1,1,npop)
if{ Y{poputation[0] = population{i]) )
break;

pepulation]1] = papulation(i];
1

/fbest is populatien[0];
BestStationNumber = population[0] StationNumb cr;
BestTotalldleTime = GetTotalldlcTime( population[0] );
PercentldleTime = 100 * BestTotalldleTirme /
{BestStationNumber *

1

PrintBox('"The Best Solution")
printf{™n™;

=10
for(k=0;k < BeatStationNumber; k++) {

Total = Zera;

printf{"Station %d:" k+1};

for{ ; i < nJobStation[k];i++}{
printf(" %d".population[0].index[i] + 1);
Total = Total + I[ population][0].index[i] ].time;

1

i
printf{™n");

printl{"Processing Time:, ");
PrintFuzzy(Total};
print['("'.lnn);

print{"Fuzzy Idle Time: ™);
Total = CycleTime - Tolal:

PrintFuzzy(Total);
printf("n\nin™;

}

printf{"n™;

printi{"Total Idle Time ="y,
PrintFuzzy( BestTotalldleTime %
printf{™in"y;
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}

I,l'*

*

printf{"Pereentage of 1dle Time = "

PrintFuzzy( PercentldleTime ),

printf{™n"y;

Efficiency = 100. * TotallobTime / (BestStationNumbe
printf{("Efficiency{%%) =)
PrintFuzzy( Efficicney };

printf{"\n"

printfainia\ninmin"y;

h

return 0

Other Functions

void PnntBox(char *Text) |

;

1t
int L = strlen(Text);

H1st line

printf{"%ec", 2 18);

for(i=0,1<L;i++)
print{"%c",196);

printf{"%c\n",191);

fi2nd line
printi{"%c", 176);
printi{"%s", Text);
printf{"%cin”,179);

f3rd line

printf{"%c", 192):

forr( 1=0;1<L;i++)
printf{"%c", 196},

prant("%cn",217y;

int ScanAndnit(}{

int i j.k;
int before,atior;

/fscanmng number of jobs

PrimBox{"Input number of Jobs (0 to break)");
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scanf("%d", &n};
H{In) return O;

printf{™n"y;
fnitialization of precedence table - Adjacency {ist
For{i,{,n)
For(3,0,m)
pre[1]fj] = 0;
Mscannimg TASK info

PrintBox("Input Fuzey-Time for each Tab"y,
TotallobTime = Zerg:

For(i,0,n}4

ScanFuzzy( &J[i).time );

Ji].8D = (J[3].time.d + 2*][i].time.c + J[i] time.£) / 4.

TotallobTime = TotallobTime + ] [i].time;

}
printf{™n"};

/{scarming CYCLE TIME
PrintBox("Imput Fuzzy-Cycle-Time");
ScanfFuzzy( &CycleTime );
printf{"™ao"};

/scarming Precedence relationship
PrintBox{"Input Preccdence Relationship (0 0 to cnd)”):

while{1}{
{M"before” should precede "alier™
seauf("%d%d" & before &aiter);

iff!before || lafter)
break;

before—-;
after--,

pref before ][ after ]=1;
}
printf{"n");

{/all pairs algorithm
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For{k,0n)
For(i,(,n)
Foi(j,0,n)
1{pre[1][k] && prefkIff])
prefil[j] = I;

PrintBox("Inpul Number of Iteration"};
scanf{"%d" &IterationNumber);

PrimBox{"Input Maxinum Number of Otfsprings in pool™y;
scanii"%ed", &MaxitmumPoolSize);

PrintBox("Input Rate of Crossover™):
scanf{ "I, & CrossOverRate),

return 1;

Sorting Job Initially

it sort_desccnd(eonst veid *p,canst void *qQ)

;

int a =*{{int *yp);
int b = *({int *)q);

iff pre{a][b] } return -1;
iff prefb][a] ) relum 1,
if{ J[a].SD > J{b].5D rctum -1;

returm 1;

mt soit_ascend(const void *p,const void *q)

int a = *{{int *)p);
int b = *((int *)q);

if{ pre[al[b]} return -1;
if{ pre[b}fa] } return 1;

it J[a].3D < J[b].5D jreturn -1:
relurm 1;
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}

I,n'#
Chromosome Functions
*
bool operalor<{Chromosome A,Chromesome B){

i{A.StationNumber < B.StationNumber}
relurm 1;

deuble s4,503;

sA = AFFV.d+ 2*AFFV. e+ AFFV.£:
sB =RB.FFV.d+ 2*B.FFV.e+ B.FFV.f:

if{sA < sB)
return 1,
returm O

I-

/ool Equal{Chromosome &C1,Chromosome &C2)
bool eperator=={Chromosome C1,.Chromosome C23f

nt i;
For(i,0,n}
{Cl.index[1] 1= C2.andex([i])
retum
relum 1;
}
boel Valid{Chromosome &C){
int i;
for(i=0;i<n-1;1++)
if{ pre[ C.index[i+1] ][ C.indexfi] ] =1}
Teturn O;
retumm 1;
;
J."*
[uzzy Structure Operator & Function Definitions
*f

it ScanFuzzy(Fuzzy *A) |

I scunf("WIRALRALY | &A->d, ZA->e | &A->I} == 3)

return 1;
returmn o,
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void PrintFuzzy(Fuzzy A)l
printf{"[%.2f, %.2If, %.210" , Ad, Ae, A,

}

Fuzzy opcrator{Fuzzy A Fuzzy B){

j

Fuzzy ;
double vi4];
v0]=Ad/B.d;
v[1]=Ad/B.f
v[2] = Af/Bd;
v[3]=Af/ B

sort(v,vt4);
C.d=v[0];
Ce=Ac/B.e;
C.r=v[3];

retumn ;

Fuzzy operator/{Fuzzy A double x}4

}

Fuzzy C;
return C;

Cd=Ad/x;

Fuzzy operator®(lFuzzy A Fuzzy B){

i

Fuzzy C;
double v[4];
v[0]=A.d* B.d;
v[1]=Ad*B.f;
v[2]=Af*B.Jd;
v[3]=Af*BIf
sori{v,vtd);
C.d = v[0l;
Ce=Ac*B.e
CA=+{3];

retarn C;

Fuzzy operator*(Fuz.y A double x)!

Fuzzy C; Cd=Ad*x;

freium C=A/B

fireturn C=A/fx
Ce=A.e/x;

fretu C=A+*B

fretim C=A*x
Co=Aeg¥*yx
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;

Fuzcy operator*(double x,Fuzzy A){
Fuzzy Cd=Ad*x;
return C;

}

Fuzzy operator+{Fuzzy A Fuzzy B)|

Fuzzy C; Cd=Ad+Bd;
rcturn C;

1

Fuzzy operalor-(Fuzzy A TFuzzy B){

- Fuzzy C; Cd=Ad-Bf

retum C;

b

Fuzzy sqr{Fuzzy A){
Fuzzy C; Cd=Ad*A d;

Af*ALT
retum C;

i

Fuszy sqri(Fuzzy A}
Fuzzy C;
retum C;

C.d = sqrt{A.d);
H

bool operator<{Fuzzy A Fuszzy B}

HAd<Bf&& Ac<Be && Af<B.d)

return 1;
reiurn (;

}

bool operator={Fuzzy A,Fuzzy B){

IflA.d>Bf&& Ae>Be && Af>B.d}

retum I;
return ¢

froturm C=x % A

Ce=Aec*x

CF=Af*x;

freun C=A+B

Coc=Ac+Beg;

Cif=A{+Bf

HretimC=A+B

Cc=Ae-Be

Ce=sgrifA.c);

Cf=A0-B.4d;

Hreturn square of A
Co=Ac*Ag; Cil=

/Hreturn square root of A
C.['= sqrifA.D);

freturn (A < B)

Arelum (A = B)
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