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ABSTRACT

A,sembly Line Balancing (ALB) is one of the important problems of production

management. As small improvemcnts in the performance of the ,ystem can lead to significant

monetary consequences, it is of utmost importance to develop practical solutIon proccdures

that yield high-quality design decisions wlth milllmal computalional requirements. Due to the

NP-hard nature of the ALB problem, heuri5tlcs are gencrally used to solve rcallifc problems.

The constraints and paranleters of fuzlY natllre exist in lme balancing problem,. Fuay

optimization can be implemented effectively in solving ASLBP. Fuay sets or funy numbers

can appropriatcly reprc~ent imprecisc paramcters, and can be mampulatcd through dilTerent

operations on fuzzy ~etsor fuzzy numbers. Since imprecise parameters are trcaled as

imprecise valucs instead of precise ones, the proccss will be more powerful and its results

more credible. An cnieient heuristic to solve the tilzzy single-model ALB problem has been

presented in this research work. The propo5ed heunstie is a Genetic Algorithm (GAl with a

special chromosome structure that is efficient to handle fuz'l.yjob lime through the evolution

process. Elitism is also implemented in the moJel by usmg illness function value. In this

contcxt, the proposed approach can be viewed as a unified framework which combines
sevcral new concepts of GA in the algorithmic design.

, .'



Acknowledgement

Abstract

TableofContcnts

List ofTables

Listof Figl.lres

Listof Abbreviations

Listof Symbols

TABLE OF CONTENTS

-

vu

Vlll

Xill

CHAPTI'R 1 INTRODUCTION 1-2

1.1 Gcncrallntroduction 1

1.2 Rationaleof the Study I

1.3 Objectiveof the Study 2

1.4 Mcthodology 2

CHAPTER 2 LITERATURE RI'VmW 3-17

2,1 Introduction 3

2.2 SimpleAssemblyLineBalancing'Problem 3
(SALBP)

2,3 Heuri,tic Method; in Line Balancing 4

2.3.1 ConstructiveProcedures 4

2.3,1.1 Prionty Ru1cBasedProcedure for SALBp.) 5

2,3.1.2 SinglePassDecisionRules 7

2.3.1.3 Arcus' BiasedSamplingProccdure(Arcus) 8

2.3,2 BacktrackingDcclslonRules 8

2.3,2.1 Hoffman's EnumerationProcedurc 9

2.3.2.2 Hoffman's ModifiedEnumerationProcedurc 9

2.3.2,3 Dar-El's LineBalancingHcuristic 10

2.3.3 OptimalDecisionSeekingRules 10

2.3.3.1 BranchandBoundMethods 10

2,3.3.2 IntegerProgrammmg 10

2.3.3.3 DynamicProb'Tamming 11

Vill



2,3.3.4 Multiple Solutiolls Teclmique (MUST) II
2.3.4 Local Search and Metaslrategies 11

2.3.4,1 Tabu Search for SALBP_l 12
2.3.4.2 Simulated Anllcaling (SA) Procedures 12
2.3.4.3 Ant-Colony Algorilhm Approach 13
2.3.4.4 Genelie Algorilhm 13

2.3.5 Fuzzy Models 15
2,3.6 Cost and Profit-Oriented Objectives 14

2.3.6,1 Cost"Onented Models 16
2.3.6,2 Profit-Oriented MQdels 17

CHAPTER 3 FUZZY LOGIC 18.38
3.1 IntroductIOn IS
3.2 Crisp Sels and Characterisllc FunctIons 19

3.2, I Characteristic FUllcllons 20
3.3 Fuzzy Sel Theory 20

3.3.1 Definition 20
3.3.2 Fuzzy Subsets 21
3.3.3 Fuay Sets Vs, Cnsp Sets 23
3.3.4 Fuzzy Sets ant! Membership I'lillctlons 24
3.35 Characteristic Functlons and Membership 25

Funelion: A Comparison
3.3,6 The Nolalion of Fuzzy Sels 26

3.4 FlJlZYSets: Basic Concepts 28
]5 Pundamental Operations ofFllZZY Sets 28

3.5.1 Union ofFuuy set A and B 29
3.5.2 Intersection of FULLyset A and 13 29
3.5.3 Comp1cment ofFuz~y set A and B 29
3.5.4 The Law of Excluded Middle 29
3.5.5 The Law ofColltradiclion 29
3.5.6 Equality and Inclusion of Fuzzy set 30



3.8

39
3,10

3, 11

3,12

3.13

3.14

3.14.1

---.... ..... -;-
Decomposition Principle

Fuz7.YNumbers and Extension Principle

Fuzzy Numbers

Funy Interval

Arithmetic Operation, of Fuzzy Numbers

Application of Fuzzy Logic

Fuzzy Ranking Methods

Signed Distance Ranking of The Level 1..FuZl;y
Numbers

31

32

33

33

33

34

35

36

CHAPTER 4

4.1
42
43
4.4

45

4.6

4.6.1

4,6.2

4,6.3

4.6.4

4.7

4.7.1

4.7.2

4.7.3

4,7.1.1

4.7.1.2

4.7.1.3

4.7.1.4

GENETIC ALGORITHM

Introduction

History

GA Procedure

Pseudo-Code Algorithm

Initialization

Encoding a Cluomosome

Binary Encoding

Pcmlutation Encoding

Value Encoding

Tree Encoding

Crossover

Crossover Techniques

One Point Cm"sover:

Two Point Cro~sover

Cut and Splice

Uniform Crossover and HalfUnifonn Crossover

Crossover for Ordered Chromosomes

Crossover Bia,es

39-52

39
39
40

41

41

42

42

42
43
43

43

43

44

44

45

45

45

46



4.7.3.1 Partially Matching Crossover (PMX) 46
4.7.3.2 Ordcr Crossovcr (OX) 47
4.7.3.3 Cyclc Crossover (CX) 48

4.8 Fitncss Function 49
4.8.1 Fitness Scaling 49

4.9 Sclection 50
4.10 Rcproduction 50
4.1] Termination 51
4.12 Variant 52
CHAPTER 5 PROBLEM FORMULATION 53-61
51 introduction 53
5.2 Mathematical Model 55
5.3 Genetic Algonthm Searching Method 57
5.4 Standard Encoding 58
5.5 Initial Population 59
56 Crosso~er Opcrator 59
57 Mutation Opcrator 00
5.8 Selcction Method 00
5.9 Fitness Functions 61
5.10 Stopping Condition GI
CHAPTER 6 RESULT Al\"ALYSlS 62-71
6.1 Computational Rc~ult 62
6.2 Benchmarking with EUREKA 64
6.3 Benchmarking with SALOME 05
0.4 Benchmarking with Hybnd GA 06
6.5 Fuzzy ALBP 67
6.6 Comparison of Eight Methods 68
67 Convergcnce Analysis 69



CHAPTER 7 CASE STUDY 72-77

71 lnlrodllction 72

7.2 Overview of Problem Area 73

7.3 Some Important DeIinitiolls 74

7.4 SpeciJie Problem Area: Assembly hne in RBL-2 75

7.4.1 Assembly Operations 75

7.5 Result 77
CONCLUSION AND RECOMMENDATION 78

8.1 Conclusion 78

82 Recommendation 78

References

Appendices

79

Appendix A: Benchmark data with EUREKA 88

Appendix B: Benchmark data with SALOME 90

Appendix C: Benchmark data with Hybrid GA 99
Algorithm
Appendix 0: Program Code 101

'"



LIST OF TABLES

Table No Title Page No2.1 Types ofSALDP 4
22 Priority Rules 5
3.1 Degree ofOVERWEIGJ-IT amJMODERATE 24

Height
3.2 The value of charactcnstlc functions in crisp ~els 25
33 Value ofmcmbership functions in fuzzy sets 25
6.1 Problem Characteristics 63
6.2 Benchmarking with EUREKA 64
6.3 Benchmarking with SALOME 65
6.4 Benelunarking with Hybrid GA 66
6.5 Fuzzy Task Time 67
6.6 Comparison of Eight Methods on the 70 Task 68

Problems
7.1 Precedence Graph 76
7.2 Production Quantity ofBaltery 76
7.3 Fuzq Task Time 77

XllI



LIST OF FIGURES

Figure No Title Page 1"0

2.1 Difference between Crisp and Fuzzy Scts 21

2.2 Degree ofTallncss 22

3.2 Crisp Sets of Height 25

3.3 Fuzzy Sets ofHcight 26

3.4 a-cm and Decomposition Principlc 31

3.5 Example of Extension Principle 32

36 Level AFuzzy Sct 37

4.1 Onc Point Crossover 44

4.2 Two Point Crossover 44

4.3 Cut and Splice 45



LIST OF ABBREVIATION

Biased Probabihstie Choice (BPC)

Branch and Bound (B & B)

Fitness Function Value (FFV)

Genetic Algorithm (GA)

Most Immediate First (MIF)

Membership Function (MF)

Nondeterministic Polynomial-time Hard (NP-Hard)

Order Strength (OS)

Random Choice (RC)

Simple Assembly Line Balancing Problem (SALBP)

Smlulaled Annealing (SA)

Time Variation (TV)

Triangular Fuzzy Nllmber (TFN)

Traveling Salesman Problem (TSP)



LIST OF SYMBOLS

Membership Grade of Xin Fuzzy Set A !'A(X)

Dni versal Quantl fier 0/)

Alpha Cut ofFua;y Set A CAl

Supremum (sup)

Set of all Nomlegative Real Numbers (R~l

Characteristic Functions of Crisp Set A (l'Al

Strong Alpha Cut C' A)

Level Set ofFl.llzy Set A ",(AJ



-"'''' -,~~CHAPTER I

INTRODUCTION

1.1 Gener~llntroduetioll

An assembly line is a flow-oriented production system where the productive units

performing lhe operations, referred to as stations, are aligned in a serial manner.

Line balancing problem deals with the assignment of tasks to workstations. The

assembly line includes ~ series of workstations, where product items are processed.

To produce a product, il ISrequired to proccss a set of tasks (jobs). Thcse tasks must

follow a glven proce~sing order called precedence relotionship_ The assembly line

could be dedicated to produce for a ,inglo product model or multiple product

models. The most common line balancing problem is Single-model assembly line

balancing problem with detemlinistie/stochastic/fuzzy processing time (SALBP).

1.2 Rationale of tile Study

ln a typical line balancing problems, the requirement is often to dIstribute tile tasks

to workstations such that a certam obJectivc (number of workstnlimlS, total cost,

production rate, etc.) is opllmized and prccedcnce rclationship is not violated. The

workstation time, which is the sum of times of all lasks assigned to thaI workstation,

must not exceed the given cycle time. TIle processing time of tasks arc aiso given. ln

gencral, the line balancing problem has several variances. The variety could come

from the requirement, objective, or the form of proee»ing hme Or the structure of

the lines. The requIrement of the problem is not only to allocate tasks to

workstations but also to sequence product models to be assembled ill the designing

batch/mixed-model lines or detennme optimal batch sizcs [or batch-model

configuratlOlL The objective could be other eritena deferent than number o[

Workstations such as minimization of cycle time for a given number of workstations,

mimmization of balance delay time, etc. A deference between the cycle time and

workstation time i s e ailed idIe time The s um 0 f idle time for a 11w orkstatiOlls is

I
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callcd balance delay time. Thcse objcctives could also bc taken mto aecounl

siml.lllaneously in the form of multi-criteria optimiJ;alion proh1em. "Ihc processing

lime could be given in deterministic tenns or from the stochastic processes or in the
fonn ofvagucness of fuzzy sets.

1.3 Objectives of the Study

The objectives of this re~earchcan be outlined as follows-

1. Analyze the existing assembly line balancing process (ASLBP-l)

2. Addre5s uncertainty by incorporating fuzzy task times and fuzzy constnlints

3. Develop a heuristic optimization algorithm for ASLBP-l for single line.

4, Benchmark the proposed algorithm with an existing algonthm

1.4 Outline of Method(ll(lgy

ln order to carry out this study, steps that have been adopted are mentioned below:-

t. Analyze the eXIstingassembly line balancing proeess (ASLEP-I)

11. Develop a heuristic optimization algorithm [or ASLBP-l [or single line

Ill, Benchmark the proposed algorithmwith three existing algorithm
IV, Data collection:

To implement the de~eloped algorithm, data was collcctc<J from

RahimAfrooz Batteries Ltd at Ziranibazar, Ga;,;ipur.The required data type
ineludes_

• Number of work stations that all battery variants under consideration
pass.

Number of identical machines available in eaeh stage.

Approximate fuay processing lime required for each variant of

batteries at eaeh stage,

Approximate fuzzy cycle llme for each lyPe of battery .

V. Finally, analyr.ing the p crforrnance 0 fthe developed algorithm by rUllning

the computer program for diITerentparameters.

2



CHAPTER 2

LITERATURE REVIEW

2.1 Introdnction

The line balancing problem is onc of thc most traditional problems which has

cvolved from lhe concepl of dhision of labor, and became popular because of Henry

Ford's famous "T-model". Despite its long history of developmcnt, linc balancing

study is still an attractive rescarch topic today due to its ,elevancy to thc evcl)'day

mannfacluring and the divcrsity of system configurations. According to different

system configurations, asscmbly line can bc classified as single-model line, mi"ed-

model line, and multi-model line. Singlc-model hnc only assembles one product,

while multiple producl.5 arc a,semble(! in either mixed or multi-model line, but

intermediate set-up I>; required ill thc lattcr case. 1n addItion to serial line assembly,

flexibility cal) be improved by the introduction of parallelism, including parallel

lines, parallel stations, and parallel tasks.

2.2 Simple As~cmbly Line Balancing Problem (SALBJ')

Most of lhe research in assembly linc balancing has been devoted [0 modehng and

solving the simple assembly line balancing problem (SALBP). This classical ~ingJe-

model problcm contains the following lllJin characteristics [1, 2J:

• mass-production of one homogeneous product;

• given production process;

• paced line with fixed cycle time c;

• deterministic (and integral) operation times tj;

• no as~ignment restrictions beSIdes [hc preccJcncc cOllstrainb,

• senallinc layout with m stmions;

• all stations are equally equippcd v.-ithrespect to machines and worker~;

• maximize the line efficiency E = t'um/ (mxc) with total job time t"",

3



Table 2.1: Types ofSALBP

Cyele Time, e

No. of stations (m) Given Minimize

Given SALBP-F SALBP-2

Minimize SALBP-l SALBP E

Several problem versions arise from varying the objective as shown in Table 2.1.

SALBP-F i& a feasibility problem which is to establish whether or not a feasible line

balance eXIsts for a given combination of m and c. SALBP-l and SALBP-2 have a

dual relationship, because the first minimizes m given a lixcd e, while the seeond

minimizes e (maximizes the production rate) given m. SALBP-E is the most general

problem version maximizing the line efficiency thereby simultaneously minimizing

c and m con5iderlllg their interrelationship.

2.3 Heuristic Methods in Line Balancing

A large variety of hcuristic approaehc.> to different versions of SAL13P have been

proposed in the last decades. While eonstwctlVe procedures con:;tructing one or

more feasible solution(s) were developed until (he mid llllleties, improvement

procedures using metastralegies like tabu seareh and genetic algorithms have been in

the focus of researchers in thc last decade.

2.3.1 Constructive Procedures

The majority of constructive procedures has been prop05ed for SAL13P-1 and is

bascd on priority rules, others arc restricted enumcrative procedures. The most

reccnt comprehcnsive surveys of those approaches are given by Talbot el al. [3] and

Scholl [2J.Furthcnnore, Boctor [4] and Ponnambalam et al. [5] also presented a

detail survey on the constructive procedures.

4



2.3.1.1 Priority Rule Ba5cd Proecdure for SALBP-I

Those proeedllres use priority values computed for (hc different tasks ba5ed on thc

ta.>k timc5 and the precedence relations gwen. Some of the most effective oncs are

given in Table 2.1 [3, 6, 7]. In any easc, the t~ks arc sorted according to non-

increasing priority value5to get a priority list.

Table 2.2: Priority Rules

:~"~"~m~'~======KP~ns,,~,¥"~,~"~'";,",=======:MaxT Tasklimc Ij

MaxPW

MaxTL

MaxTS

MaxCPW

Positional weight

NLlmber offollowelli J

Tasktime over slack

Cumulated positional wcight

Tasktime over latest station

By analogy with exaet Sollition procedurcs, two construction 5chcmes are relevant

for priority rule based approaches. Thcy differ with respect to thc manner m which

the tasks to be assigned are selected out of the set of available ta.>ks [7].

• Station-Oriented Procednres: They start with the first station (k = I). The

following stations arc considered sliecesslvely. In each itcration, a lask with

highest priority which is assignable to thc current ~talion k i5 selected amI

assigned. When station k is loaded maximally, it is dosed, and the next

station k + 1 is opcned. For the rule MaxPW, tIllSprocedure is called ranked

positional weight techniqlle by Helgeson and B,mie [8}.

• Task-Oriented Procedures; Among all available tasks, one with highest

priority is chosen and assigned to the earliest station to which it is

5



assignable. Depending on whether the sct of ~vailable tasks is updated

inuncdiately afler as,igning a task or arter ~ssiglllng all currently available

tasks, task-oriented methods ean be subdiviJed into immediate-update_first

and gcneral-first_fit method~ [6, 9J.

TheoretlC~1 analyses show that both sehemes obtain the same solution when the used

priority mle is strongly monotonous, i.e., the priority value of any task j is smallcr

than that of eaeh predecessor hE Pj. This is, e.g., true for MaxPW, MaxI', and

MaxCPW [2]. Computational expcriments indicate that, in gcneral, station- oricnted

procednrcs get bettcr results than task-oricnted oncs though no theoretical

dominance exists [7]. These classical priority rules based procedures work

unidirectionally in forward direction and construct a single fcasible solutIOn.

Improvements arc obtained by following approachcs:

• Flexible Bidirectional Constructioll

The stations to be loaded arc considered in forward and backward direction,

simultaneously [7]. That is, a station-oriented procedure consldcrs the carliest and

the latest unloaded station at a time. Besides selecting a (forward or backward

as~igll3ble) task by some priority rule the (earlicst or latcst) station to be considered

next is ehoscn. Task-orientell procedures simultancously eonsidcr fOf\",ard and

backward available tasks and always choosc the onc with highest priority. Both

approaches require defining reversed priority rules [2]. Dynamic priority rules

iteratively adapt the priorities depcnding on the cunent partial solutions [4, 7] For

example, MaxTS can be applied dynamically (in a unilbidircctlOnal procedure) by

modifying the earliest and latest stations according to the assignmcnts made. Multi-

pass heuristics repeatedly apply different or stochastic priority rules in order to find

several solutions the best of which is taken [3, 10, 11, 12].

"



• Flexible Rule Application

Such procedures try to identify priority rules best suited to solving IIcertain problem

instance. This is done randomly, on the basis of experiences with fomler rule

applications and by exploiting problem structures [13, 14, 15].

• Reduction Techniques

Baybars [16] proposes a priority bascd procedure which involves heuristically

reducing the problem :;lzeby some logIcal tests. Furlhennore, Tonge [17J, Freeman

and Swain [18], and Fleszar and Hindi [19J proposed some alternative reduction
techniques.

• Combined Solutions

SALBP-I can be interpreted as a shortest path problem with exponential numbers of

nodes and arcs. Each feasible solution can be represented by a path in such a graph.

Therefore, Pinto et al. [20] describe a two-stage solutIOnapproach. In the first step, a

number of feasible solutions are dctcrmlned by a mlllti-p<lS5hCliristic. These

solutions arc used to constmct a subgr~ph of the completc graph in the second step

of thc procedure. For this subgraph, a shortcst path problcm is solved. That ;~, the

outlined approach trics to combine parts of several fcasiblc solutIOns in order to

obtain all improved completc solution.

2.3.1.2 Single Pass Decision Rnles

111this category, 13 single pa"s, smgle attribute, priority dispatch >cheduling rule."

such as maximum ranked positional weight technique [gl, 111aximulllnumber of

lInmediatc followers [21], maximum task time first [22J etc. are included. E<lchof

the decision rules consists of a simple, computationally efficient, list-processing

procedure that assigns tasks to work stations according to a task's computed priority.

7



Operationally, in the implementation ol cach of thcsc procedurc, a task is first

assigncd an umerical priority s pccifies b y t he Iogie 0 rthc heuristic d eeision rule.

Then tasks that arc both precedence and cycle lime feasible are placed on an

available hst. The task on the avmlable hot with the highest priority is assigned firs!.

The available list is updated to reflect lhe possible addition of task that arc now

precedence feasible, and the amount of tIme available to be a>signed to tasks in thc

work station is reduced by the task lime of lhe assigned task. This process continues

for a station Imtllno more tasks can he assigned to 11.The assignment process then

continues to the next station, and so on, until all tash have been assigned to some

work station. Whcn the final [alokhas becn assigncd, a completc balance has bcen

Oblained.

2.3.1.3 Arcus' Biased Sampling Procedure (ARCUS)

The Arcus procedure uses a biased sampling approach 10 generate feasible seqllellee

of lash for a;signment to a workstation [23]. A fil hst, consisting of those lash can

be assigned to a work station is cOll;trucled and weighls arc assigned 10 each task.

Tasks so a5signed are removed rrolllthe fillisl, and a new fit lisl, con,istmg of the

tasks which ean currenUy be assigned to a work station is cOllstnlctcd, The proccss

contmues until all tasks have been aSSIgned to some work station.

2.3.2 Backtracking Decision Rules

Most of the Simple Asscmbly Linc Balancing (SALB) lcchniqucs, which com;ider

only cycle time and precedence constraints, arc modified 10 accommodate Ule

vanous praclical conslraints and convcrted 10 GALB techniques. Thc hellri~tic

deci:;ion niles arc list processing procedures that consider a single attribnte of each

work task for assignment to work slalion.

8



2.3.2.1 Hoffman's Enumeration Procedure

Hoffman [24J used a special zero-one matrix and index vector to implement the

enumeration process, which resu)[s in a very simple computer code. Starting with

station one, a precedent feasible list of tasks is maintaineJ from which the

combin.atlOn of tasks whiCh will minimize station iJle time is found via complete

enumeration. These ta>ks are assigned to station one. Thc process continues with

statIon number two using an updated precedent feasible list. TIle procedure works

unidirectionally in a station-oriented manner. In each iteration, a load with minimal

idle time is generated for station k. That is, a smgle branch of a station-orientcl!

B&B procedure is constructed. l\'cvcrthcless, it may reqUlre considerable

computation times, bccause it has to examine all possible statlon loads of a cuncnt
sub problem.

2.3.2.2 Hoffman's Modified Enumeration Procedure

The original Hoffman approach considers 5tation~ in numerical orders. It has a

tendency to concentrate idle time in thc latcr stations. ln orJer to O\ercome the

difficulty, Gcrhhn and Pattcrson [25J proposed u very slight modification to the

original Hoffman procedure: instead of detemline the minimum Idle lime ~olution at

each work statIOn, determine one that is 'acceptably' close to J1lmimulJ], The

modilJcation accepts a load for the currently considered station if a certain amount

of idle time is not exceeded. The accepted portion of Idle time depends on the

balance delay tIme (total available ldle lime) for the theoretical minimlllll number

LMI of stations and can be controlled by a parameter. An extension of the

Hoffmann heuristic which works bIdirectionally is proposed by Flc~zar and Hindi

[19]. This heuristic is combined with a number of bound ar).'Ilments and reduction

teclmiques and, thus, has become one of the most effective of the available heunstics
for SALBP_I.
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2.3.2.3 Dar-El's Line Balancing Heuristic

Dar-EL developed MALB [26J as a heuristic ~ariant of his earlier optimal seeking

Iterative procedure [27]' His optimal seeking proeednre is based upon tbe Rank

Pusllional Weight H eunstie lnethod 0 f Helgeson a nd BIrnie [8], enhanced with a

backtracking algorithm that generales alllca5iblc ~equences oflask assignmenls.

2.3.3 Optimal_ Seeking DecisiOn Rnles

Optimal seeking decision niles dominate the heurblle ones if they are gIven enough

computation time. But in case of a eonlpntational time constraint, Optimal- seeking

deCIsion rules do not perform as well as more sophistiealed heunstie procedures,

2.3.3.1 Branch and Bonnd Methods

Magazine and Wee [28] produced excellcnt results for lhe type] hlle balancing

problem with their branch and bound procedure. With Ulcir method. each node in the

solution tree eOlTesponds to a feasible sel of tasks as~ignment to a particular work

station, where all nodes at the same depth m the tree refer to the sallle ~tation

nLImber. Starting with node zero, desccndent nodes ji-Ollla nodc of dcpth (d) are

gcnerated, which are maxima] feasihle assignlllcnts of tasks to station (d+ I).

2.3.3.2 Integer Programming

Talbot and Patterson [29] presented intcger programming approach. The basic

algoriUun is a depth first, implicit enumeration, backlracking procedure to whICh

various search, fathoming and backtracking decision rules arc a pplicd. T hcy u scd

two variations. The first variation included contains network cuts, whcre search and

backtracking arc controlled with the IWllristie decision rule. The sccond variallOll

dos not use any cut a.>sociated fathoming rulcs.
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2.3.3.3 Dynamic Programming

Schrage and Baker [30] have proposed an efficient method for implementing the

dynamic programming approach of Held e( at [31} through improved procedure for

generating feasible sllb~ets, and for labeling, M~g~zine and Wee [78] programmed

and tested the Schrage and Baker approach for solving the Type I line balancing

problem. Magazine and Wee condnded that their braneh and bound solution

procedure is preferred to dynamic programming for solvmg these types of line

balancing problems, both wIth regard to computation time and computer ,torage

reqLlired.

2.3.3.4 Multiple Solutions Technique (MUST)

Dar-El and RLlbinovitch [32] proposed MUST, a multiple solution techniquc, which

employs exhaustive enumeration to generatc all solutions, Or some subset of them,

for solving the type 2 hnc balancing problem. As a result of experiments by Dar-d

and Rubinoviteh [32], it was demonstrated that MUST dominates MALB,

2.3.4 Local Search and Metastratcgics

Local search (or improvement) pro~edures try to improve a given f~asible solution

by iteratively transforming it into other feasible solutions, Such transformations are

referred to as moves. Solutions which may be obtained from a given solution S by

means of a single move are ealled neIghboring solutions or neighborhood of S,

Traditionally, local search heuristics try to find a sequence of moves which prodLlces

a trajectory of successively improved solution, and terminate in ~ local optimum

which might be far from optimailty, This difficulty is OVerCOme by modcrn

metastrategies like labLlsearch [33] and simLllated anncaling [34]'
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2.3.4.1 Tabu Search for SALllP-l

Developing a TS procedure for SALBP-] is not very straightfo[V,'Jl'd. This IS due to

the [Jet that only three situations can occur after a move: (I) the number nI of

stations is unchanged (swapping two rea! tasks), (2) all ad(h(ionai station m is

required (shifting a (ask in an empty station), (3) one station is emply (shIfting the

only task in this station (0 another one). No problem arises in case (3). Hll\~eVer, in

most iterations a large number of (]) or (2) moves have to be evaluated which have

only two different objectIve funelion values 111 and m + I. In this situation fiuding a

promising search direction ISrather eOlllpheated. Scholl and Vol] [7] coneluJed thaI

applying theIr TS proeedme for SALBP-2 within a lower bound search (called dual

strategy) is the best way out of this dilemma. Chiang [35] proposes a TS procedure

similar to the SALBP-2 approach of Scholl and Vol] [7] but lL~es a snrrogate

objective function that maximIzes the sum over the squared ,tallon timcs. While

minimizing the number of stations, il adJltionally favors solulions containing some

heavily loaded stations to those solutions having more smoothly loaded ones. This

effect sueces~ively directs the search to solutions where saving u station in a single

move is probable. Computational experiments indicate thut both appruaches are

successful on pnnciple. However, Chiung [35] l'eports only limiled results for the

simplest data sci on hand which are not vcry meaningfuL Scholl and Voll find oul

that their dual strategy is competitive 10 exact proceJures (applied JS ~ restricted

enumeration) in case of short computalJolJ timcs but is not superior to SALOMI-;-l

m finding good feasible solutions quickly. In opposik lo SALBP-2, the qu~lity of

(he initial solution seems to be importanl for the qu~lily of the be~t solution (ounJ. A

further TS procedure for SALBP-l IS proposed by Lapicrre e( 'II. r36] uud testcd on

an arbitrary subset of (he test problems available. For these instances it compares

favorubly with Chiang's approuch.

2.3.4.2 Simulated annealing (SA) procedures

Hcinrici [37] propose~ an SA procedure for SALBP-2 which is based on shifts and

swaps. An SA approach for a stoeha;.tic vari~nt of SALBP-l is proposed by Suresh
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and Sahu [38]. McMullen and Fra:t,lcr [39] propose a SA procedure for a

generalizatIon of SALBP" 1 with respect to parallel stations, stochastic task timcs

and alternative objectives.

2.3.4.3 Ant-Cohm~' Algorithm Approach

Bautista and Pereira [40] present an ant algorithm for SAtBr-l which is based on

priority rule based procedures. McMullen and Tarasewich [41 J propose an ant

algorithm for a generali~ation of SALBP with rcspect to parallel station~, stochastic

task times, multiple objectives and mixed-model production,

2.3.4.4 Genetic Algorithm

GAs arc adaptive methods which can be used to solve optimization problems_ They

are ba;.ed on genetIc processes of biological organisms_ Over m,my generatIOns,

natural populations evolvc according to the prinCIples of natural selection and

survival of the !ilte~L In nature, individuals with the highest survival rate have

relatively a large number of offsprings; that,s, the genes from the highly adapted or

fit individuals spread to an increasing number of individuals in cach successIve

gencration. The strong characteristics from different ancestors can sometimes

produce super. fit offspring, whose fitness is greater than lh~t of either parent. In thi~

way, ,pecles evolve to become more mlapted to their environment, Holland [42J

showed that a computer simulation 0 ft his process 0 fn atl1ral adaptation c ouJd b e

employed for solving optimilalion problems. Goldberg [43] presented a number of

applications of GAs to search, optImization and machine Icaming problem>;.

In general, the power of GA comes from the fact that the technique is robl1st, and

can deal with a wide range of problem areas, Allhough GA is not gllaranteed to find

the optimal solution, it generally find, good solutions with reasonable computational

reqUlTements. To the best of our knowledge, there are only three publi~hcd papers m

literature which solve ALB problem usmg GA; t\vo of them work On th"

detelministic (SMD) problem and the other works 011 the stochastic problem (SMS).
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The first atlempt was made by Leu et al. [44J. In this study, the authors use solutions

of heuristic procedures in the initial populatIOn. They also demonstrate the

possibility of balancing assembly lines wIth multiple criteria and side constramts

such as, allocating a ta5k in a station by ItSelf. According to the authors, the GA

approach has two advantagcs: (i) GAs search a population rather than a smglc pcnnt

and thls increases the odds that the algorithm will not be trapped in a local optimum

since many solutions are considered concurrently, and (ll) GA fitne,s functwils may

take any fonn (i.e., unlike f:,'Tadicntmethods that have differcllliable evaluatIOn

functions) and several fitness functions can be utilized simultaneously.

In the second ;tudy, Anderson and Fenis [45] showed the effective usc of GAs in

the solution of eombmatorial optimization problems, working specifically on the

ALB problem. The authors first describe a fairly s tundard implementation for the

ALB problem, Then an alternative parallel version of the algorithm for use on a

message passing system i, introduced. Their aim is not to demonsll'ate the

superiority of a GA over the traditional methods, but rather to gi~e some indications

for the potential usc of this technique in combinatorial optimization problems.

Thus, the authors do not compare the GA wlth well known heuristics, but only with

a neIghborhood search scheme with mliltiplc restarls in whIch the GA IS round to be

better than this method. Suresh et aL [46] used a GA to solve the SMS version of the

ALB problem. The ability of GAs to consider a variety of ohjcetive [unctions is

regarded as the major feature of GAs. A modilied GA working with two

popu.lations, one of which allows infeasible solutIOns, and exchange of specimens at

regular intervals is proposed for handling lITeguJar search spaces, i,e., the

infeasibility problem due to precedence rC!atlOns, The authors claim that a

popnlallOn of feasible solutions wOlild lead to a fragmcnted search space, thus

increasing probability of gcttlllg trapped in local minima. They also state that

infeasible solutions can be allowed in the population only if genetic operator8 can

lead to feasible solutions from an infeasible population. Since a p urcly infeasible

population may not lead to a feasible solution in this particular prohlem, two

altemallVC pop"lations, onc purely feasible and one allowing a fixed percentage of
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infeasible chromosomes, arc combined in a controlled pool to facilitate the

advantages of both of them, Certain ehromo50mes are e>.ehangcd at rcgular intervals

between the two populations; the exchanged chromosomes have the same rank of

fitness valuc in their own pOpulatlOns. Thc results of the experiments 1l1(l1calethat

thc GA working wIth two populations gives bcttcr results than the GA wlth onc

feasible population.

2.3.5 FuzZ)' Models

In thc elassical mathematical fonnulation of SALBP, the relevant data are

considercd deterministic. But. the data of thc rcal world problems are imprecise,

vaguc or uncertain, and then \he input data can bc only estimated as withllJ

uncertainty and this uncerlainty may bc rcpresented by a fuzzy number. So the

problem can be solved by Fuzzy logic, The Fuzzy logic, which was introduced hy

Zadeh [47], has been applied to v;lrious industrial problems ineludmg production

systems. The concept of fuzzy numbers is introduced to tre~l imprecise data, such as

the processing time of each task. As long as the studies have been made in line

balancing, in most case, the processmg l)me was considcred deterministic, But

objective and constraints are known imprecisely in much of the rea] world linc

balancing problems ;lnd in such a situation fuzzy sct theory becomes effectively

functional.

Fuzzy optimization can be implemented effectively in solving ASLBP. Fuzzy sets or

fuzzy numbers can appropriately represent ImprecIse parameters, and can be

manipulated through different operations on fuzzy set8 or fu/,,..y numhers. Sincc

imprecise parameters are treated as lmprccise values instead of precise onc~, the

. process will be more powerful and its results more credible. Bence, SALBP-2 with

fuzzy task times is considered by TSUjlmUraet al. l48J.

15



2.3.6 Cost- and profit-oriented objectives

The Illstallation of an assembly line reqmres large (long.teml) capital investments.

Furthermore. operating the line causes short-lerm operating costs such as wages,

matenaJ, set-up, Illventory and incompletion costs [2]. In case of a non-fixed

production rate and dIfferent levels of production qllahty. these costs have to be

contrasted with the profit attained by thc line .

. The installation and operating costs as well as the profits mainly depend on the cycle

time and \he number of station~ [49] such that eost-onented models arc strongly

related to SALBP-E. The latter problem is w,ually solved by itcrating Oll ~ALBp.l

or SALBP-2 instances, respcctively [50].Thus, thc same procedures can likewise be

used for cost or profit oriented objectivcs on principle. However, in some situations

it is necessary to consider models which incorporate costs and/or profits explicitly.

This is cspecially true when the balancing problem i8 connected with tbe decision

problem of selecting processing Or equipment alternatives.

2.3.6.1 Cost-oriented models

Rosenberg and Ziegler [51] assume that thc operation or a station k causes a wage

rule w,per time unit that is equal to the maximum wage rate of alltash lhat arc

a:;signed to that station. The objective is to mmimize the aggregate wage rate over

all stations, while the number of stations is a variable. Produdion costs per product

umt are obtained by multiplying that rate with the givcn cycle time. The considered

objective is equiva1cnt to minimizing the number of stations. if all tasks have the

same wage rate. Hence, the problem is a direct generalization of SALBP-l.

Rosenberg and Ziegler describe and evaluate priority rule b ascd h eunsties, where

some of the rules available for SALBP-j arc extended to allow for smoothing th~

wage rates within eaeh station [50].

Amen [52] extend:; the problem by additionally considering station related costs of

capital. i.e., eaeh station is assumed to require a constant pre"speclfied investment.
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Amen prescnts an CXllct brunch-antl-bQund proccdure which cxtcnds rcsl'eetiv~

procedures fQr SALB!'_l [50J for th" problem which uses a station-Qricntcd

construction scheme and a laser oeareh strategy based 011 a tQPologicaJ t~sk labeling,

The enumeration is restricted by means of (global und loenl) lower bound~ extending

such for SALBP-l and dOmin~nee rules, where the maximnl load rule which IS

essential for solving SALBP-l is shown to be inappropriate for the cost-oriented

problem. Therefore, only weaker version; of this rule and some other SAl-BP-1

based rules are applied [53].

For the same problem, Amen [54] develops stntwn-oricnted prionty rule based

procedures with cost-oriented d)~lamie prwrity rules and compares them to eXlstmg

ones using a large set of randomly generated problem instnnces, The new rule which

controls the idle time and the difference of wnge rates in a stntion Cbest change of

idle cost") performs best. FUithcr improvements arc Qbtained by approaches which

I.lseseveral priority Jules. The best results are reportcd for a restricted version or the

branch-and-bound procedure outlinetl above which is based on successively solving

small problems c~ch representing a fea>ible subset of remaining tasks. Malakooti

[55J and Malakooti and Kumar [56] consider a multi-objective ALBP WiUlcapacity-

and cost-oriented objectives and propose different solntion approaches including

generation or efficient altemati ves, interactive appwaches and goal programl1lilig.

2.3.6.2 Profit-o,.;euted lllodels

The cost-oriented Illodels may be extended by additionally cQllsidcring profits. The

model ofRosenblalt and Carlson [57J includes fixeJ selling prices, material costs as

well as wages and equIpment costs. This model is extendeJ by Martin [58J for the

cuse of unpaced lines with buffcrs, where inventory related cost components are
relevant.
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CHAPTER 3

FUZZY LOGIC

3.1lntroductioll

The thought of fUlZY logic declared in 1965 by Lotfi Zadch [47]. Hc claimed that

human reasoning is approximate rathcr than precisc in nature. In 1974, Ebraham

. Mamdani used fuzzy logic to control a simple stream engine for the fLr~ttIme [59].

F. Smidth of Denmark applied fuz;,;y logic to the control of a ccmcnt kl1n in 1980.

This is the first industrial application of fuzzy logic. In the early 1~80s, flizzY logic

was applied to home electronics products and the nontechnical people became aware

of fuzzy systems. Life IS full or unceltaintics. For instance, ir the weather i~

deccribcd in ternlS or !he exact percentage or cloud cover, it will be too compkx.

Therctore, people say that it is sUlmy which is morc uncertain and less precise but

more useful.

FUZZ}11eSSis particularly vagueness related to human linguistics and thinking. Such

words as' pretty' 0 r ' young' arc quite s ubj cetl ve and depend 0 n s i[uations. Thus,

fuzzy logic can manage such vagucness mathematically. TIle appheatioll~ of fuzzy

logic expand rapidly from c ontl"ol to know ledge processing. III r ecem year;, non-

engineering applieatlOllS such as social and environmental systems have been lested.

Fu;,;zy logic enables us to make applications effective.

Many decision-making and problem-solving tasks arc 100 complex 10 be \Ulderstood

quantitatively, however, people succeed by using knowledge that is imprecise rather

than precise. Fuzzy set theory, originally introduced by Lotfi Zadeh in the 1960's,

resembles human reasoning ill its usc 0 r ~pproximate information and uncertainty to

generate decisions. it was specifically designed to lll~thell1atieally represent

uncertainty and vagueness and provide lonn~hzed tools for dealing with the

imprecision intrinsic to many problems. By contrast, traditIOnal computing demands

preciSIOn down to each bit. Since knowledge can be expre8sed in a marc natural by

using fuuy sets, many engincering and decision problems can be greatly simplil,ed.
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Fuzzy logic emerged into the mainstream of infonnation tc~hllOlogy in the late

1980's and early 1990's. Fuzzy logic is u departure from classical Boolean logie in

that it implements soft linguistic variables on a contmuous range of tmth ,'alues

which allows intermediate values to be defined between conventional binary. It can

often be consl(lered a superset of Boolean or "eri8p logic" in the way fuzzy sct

thcory is a superset of conventional set theory. Since fuzzy logie can handle

approximate infomlation ina s ystcmatie way, it i s i deal for controlling nonlinear

systems and for modeling complex systems where an inexact model exi~ts or

'systems where ambiguity or vagueness is common, A typical fLIZZY system consi~ts

of a rule base, membership functions, and an inference procedure, Today, 'fuzzy

logic is found in a variety of control apphcations including chemical process control,

manufacturing, and in such consumer products as washing m~chjnes, video cameras,
and automobiles,

3.2 Crisp Sets and Characteristic Functions

Here is an example to explain crisp scts and characteristic functions. Let's aSSlimc a

tennis club and its members are defined ad follows:

X=members= {P, Q, R, S, T, Uj

A=fcmale members {Q, R, I)

B=student membcrs {Q, R, S}

Union, intersection and complement of A and B are as follows:

AuB = {Q, R, S, T}

AnB = {Q, R}

A ={P,S,U}

B = (P,T,U)
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3.2.1 Characteristic Functions

A represent a crisp set on the universe X. Its characteristic function XA can be

defined by mapping.

XA:X -'f {O,I}as

It shows that if the element x belongs to A, then XA is I and if it doesn't bclong to A,

XA is 0 (zero). This concept is very important in fuzzy sets.

3.3 Fuzzy Set Theory

Fuzzy sets are an extension of classical set theory and are used in fuzzy logic. In

classical set theory the membershIp of clements in relation to a set is assessed in

binary terms according to a crisp condition - an clement either belongs or doe~ not

belong to the set. By contrast, fuzzy set theory permits the gradual assessment of the

membership of elements in relation to a set; this is described with the aid of a

membcr,hip function fl -'frO, 1]. Fuzzy sets arc an extension or classical ~el theory

since, for a certain wliversc, a membership function may act as an indieatur

function, mapping all elements to either 1 or 0, as in the classical notion.

3.3.1 Definition

Specifically, a fuzz.y setA on a classical set X is defined as follows:

The membership function {l.A(X) quantifies the grade of membership of the clements

x to the fundamental set X. An clement mapping to the value 0 means that the

member is not lllcluded in the given set, I describes a lully included member.

Values strictly between 0 and 1 characterize the fuzzy members.
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FIgure 2, I: Difference between crisp and ful.Iy sets

The following holds for the functional value~ of the mcmbc~hip function IlA(X)

'uA(X);?,O 'hEX

sUP"X[PA (x)] = I

Fuzzy set brings a clear solution to deal with vague expression such as " a set of tall

people" and " the people living close (0 Dhaka" which are not able to be denoted by

convetional set theory, The expression sueh as" the set of people more than 1,90 in

height" or" the people hving in Dhaka" can be defined exactly by conventional sets.

These are called "crisp sets" in fuzzy set theory.

3.3.21"uzzy Subsets

There is a strong relationship between Boolean logic and the concept of a sllb,el.

There is a similar strong relationship between fuzzy logic and fuzzy subset theory.A

subset U of a set S can be defined as a set of ordered pairs, each with a first element

that is an clement of the set S, and a second clement that is an element of the set { 0,

1 }, with exaetly one ordered pair present for eaeh ckment of S. This defines a

mapping between clements ofS and clements of the set {O, I}, The value /cro is

llsed to represent non-membership, and the valuc one is used to represellt

membership. The truth 01'falsity oflhe statcmcnt

xisinU
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•• is detenllined by finding the ordered pair whose first clement is x, The statement is

true if the second c1cmentofthc ordered pair is 1, and the statement is false lfit is O.

A funy subset F of a sci S can be defined as a set of ordered pairs, each with a first

element lhJt is an element of the set S, and a second element that is a value in the

interval [ 0, 1 J, with exactly one ordcrcu pair present for each clement of S. This

defines a mapping between clements of the sct S and values in the mtcrval [0, 1J.
The value zero is used to represent complete non-membership, the value one is used

. to represent complete membership, and values in between are used to represent

intcnneliJatc degrees of membership.

The set S is referred to as the univcr:;c of discourse for the fuz>;y subset F.

Frequently, the mapping is described as a function, the (membership function) of F.

The dcgree to which the s la(emcnl xis i n F is t rue is d etcmlined b y finding the

ordered pair w hose first element i s x _The degree 0 ft mlh 0 frhe s tmement is the

second clement of the ordered pair. That's a lot of mathematkal complexity, so

here's an example. Let's talk about people and "tallness". Tn this ease the set S (the

wuversc of discourse) is the ~etof people. Let's define a fuzzy subset TALL, whieh

will answer the question "to what degree is person x tall?" To eaeh persoll in Ule

universe ofdi5COurSC, one has to assign a degree of membership in the fuzzy subset

TALL. The easiest way to do this is "ith a membership function based On the

person's height. A graph Oflhis looh hke:

o , ,
Figure 2,2: Degree orTallncss
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The function will be:

3.3.3 Fuzzy Sets vs. Crisp Sets

U heighJ.(x) <sj/.
if Sf!. <=helght(x) <=c.7jt
If h<Jlghl«~) > 7ft. I

Crisp sets are the sets that are used most in Oll, lifc. in a crisp set, an clement is

either a member oflhe set or not. It is defined in such a away as to dichotomize the

individuals in some given universe of discourse into two groups: members and

nonmembers. A sharp, unambiguous distinction exists between the members and
nonmembers ofllle set.

Fuzzy sets, on the other hand, allow elements to be partially in a set. Each element is

given a degree of membership in a set. This membership value can range from 0 (not

an element oflhe set) to 1 (a member oflhe SCI),It is clear that if one only allowed

the extreme membership values of 0 and I, that this would actually be equivalent to

crisp sets, A membership function IS the relationship between the values of an

element and its degree of membership in a set. An cxample of membership functions

arc shown in Figure 1. In this example, the sets arc numbers that are ncgative large,

negative medium, negative small, near zero, positive small, positive mcdium, and

positive large, The value, I" [0, IJ, is the amount of membershlp in the set. Each

membership function maps clements of a fuzzy set A is denoted by ,UA, that is,

Each fuzzy se tis completely and umqucly d dined b y one p artICularmembership
function.
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3.3.4 Fuzzy Sets and Membership Functions

In the given example:

A = The set of overweight people

B ~ The set of people of moderate height

Using Venn diagram to express these fuzzy sets i s inconvenient w ay because the

concepts of overweight and moderate height are different from person (0 person and

depend on the situation, The degree of overweight can vary from a Iittie heavy to

extremely heavy. In this example, a real number between 0 and I is used to a degree

.The degree I means the person completely belongs (0 the set of A and 0 degree

denotes the person doesn't belong to the set of A.

Table 3.1: Degree of OVERWEIGHT and MODERATE Hmght

SET A B C D E F
OVERWEIGHT 0.5 09 03 OA 0.7 0.6
MOD. HEIGHT OA 0.1 0.5 0.7 0.9 0.8

Fuzzy sets can be assumed to be an extension of crisp sets, Therefore, membership

functions are (he extension of characteristic functions.

A fuzzy set A on the universe X IS " set defined by a membership function f.l.
A

representing a mapping

f.l.A:X--+[O,I]

The closer the v"lue of fiA (X) to 1, the higher the grade of memhership of the

element x in fuzzy set A. If f.l.A (X)=l, the element X completely belongs to the fnzzy

set A. If fl A (X) =0, X does not belong to A at all.

24



3.3.5 Charactcristic FUllctions and Mcmbcrship 1"Il11ction:A Comparison

Table 3.2: The Valuc of Charactcristic
Functions in Crisp Sets

Mia".

;
>

170 1M

Figure 3.2: Crisp Sets of Height

From the lable, A <lndB belong 10 the "middle" height set and C belongs to the ,.

low" set although the difference in height or B ami C IS only 3 ~m while thc

difference between A and B is gem.

T<lble 3.3: V<llueof Membership Functions in
Fuzzy Sets

Hcight Low Middle High,~;
A 179 0 04 0.6

B 171 04 0.6 0

C 16S 0.7 0.3 0
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Middle

17Q 180

Figure 3.3: Fuzzy Sets of Hcight

This table indicates that A belongs to the "middle" set in the grade of 0 4 and to the

"high" ~et in the gradc 01'0.6 whereas A docs nO!belong to low set.

A: higher middle

13:lower middle

C: relatively low

3.3.6 The Notation ofFnzzy Sets

There aT~three types of fuzzy sel~. They are:

1. Fuzzy sets with a discrete nOllordered universe

2. FuZ/.y sets with a discrete ordeT~d universe

3, Fuzzy sets with a continnous universe

• Fuzzy ~cts with a discrete nonordered universe

Let X= {M, N, OJ be the sel of citie~ one may choose to live in, The fuzzy scl

C="de~irable cities to Jive in" may be {]~~cribedas follows:

C= {(M, 0.9), (N, 0.8), (0,O.6)}
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170 180

Middle High

Figurc 3.3: Fuzzy Sets of Height

This table indicates that A belongs to the "middle" sct in the grade of 004 and to the

"high" set in the grade of 0.6 whereas A docs not belong to low sct.

A: higher middle

B: lower middle

C: relatively low

3.3.6 The Notation of FuZZ}' Sets

There are three typcs of fClZZY sets. They arc:

1. Fuzzy scts with a discrete nonordered universe

2. Fuzzy sets with a discrete ordered universe

3. Funy sets with a continuous universe

• Fuzzy sets with a discrete nonordcrcd universe

Let X~ {M, N, O} be the set of cities onc may choose to Jivc m. The fuzzy set

C="dcsirablc cities to live in" may bc described as follows:

C= {(M, 0,9), (N, 0.8), (0, 0.6)}
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Apparently the universe of (hseourse X is discrete and it conLains nonordered

objects- in this case, thrce cities. As one can see, the foregoing membership grades

listed above are qnite subjectIve; anyone can come up with Lhree different but

legitimate values lo reflect hb or her prcfcrence .

• FuZty scts with a discrete ordercd utli\'cr~e

Lct X= to, 1, 2, 3, 4, 5, 6} be the set ofmcmhers ofcJuldren a family may choose to

have, Then the fuzzy set A="sensib1e uumber of children in a family" may be

described as follows:

A= {(0.0.1 ),(1 ,0.3 )'(2,0. 7),(3, 1),4,0. 7),( 5,0.3 ),( 6,0.1 )}

Here X is a discrete ordered universe; lhe MF for the fuzzy scl A IS shown m the

figure. Again, the membership grades of lhis fl1u:y set arc obVIOusly subjective

measures .

• Fuzzy sets with a continuous universe

LetX=R+bc the set of possible ages for human beings. Then the fu7.7.ysel .lJ="abolil

50 years old" may be expressed as

.lJ= l(x. Ji.B(X) IXEX}
Where,

For simplicity of notalion, an altemati ve ,liay of denoting a fu>..~y set is introduced.

A fuzzy sel A can be denoted as fol1ow&,

(

"" fl ,(x)/ x ,if X is a col/cellOn of diserelc ob)('c/L.."x ,,' ,
A= '

IxIlA(x)lx, if Xisaeontinuau.sspaee
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In the continuous expression the symbol j is used an extension of I to the

continuous world and it is not integral ;Ign, On the lower right of J sign the name of

universe is written.

3.4 Fuzzy Sets: Basic Concepts

0:;-cut: The u- cut of a fuzzy set A is the erisp set A that contains 311 tho elements of

the universal set X whose membership grades m A are greater than or equal 10 the

specified value of u. Given a fuzlY set A defined on X and any number UE [0, I]' the

u-cut, aA ,IS the crisp set aA =(x /A(x)~ a}

Strong 0:;-cut: The strong 0:- cut of a fUlzy sel A i~lhe crisp set A that eontains all

the elements of the univcrsal sel X "'hose membership gradBs Jll A are greater than

Ii eqial t,6 the specified value of 0:. Given a fuzzy sel A defined on X and any

number aE [0, 1]' the strong a-cut, ff. A ,is the cri~p sel ,,+A =(x/A(x)2: a)

Level sd: the set of all levels U'O [0, I] that represent distinct 0:-cuts of a given

fnzty set A is called a level set of A, fomlally, A (A) = (a!A(x) = CIfor somc X6X}

Where A denoles the level set of fuzzy scl a defined on X.

Support: The support of a fuay set A is the set of nll point x 1I1 X sneh that ,u"[x»O:

Support (A) = {xl f',f(~-»O}

Core: The core of a fuzzy set A is the set of all points x ill X such that flA(x)=l;

Core (A) = {xl flA(X)~1}

3.5 Fundamental OperatiOlls of Fuzzy Sets

Fuzzy union, intersection nnd complements arc called 'the standard fuzzy

operalions'. Thc standard fuzlY operations al'Cgeneralizations of the corresponding

classical set operations.
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3.5.1 Union of Iinny set A alld B

'111eunion oftwo fuzzy sets A and B is a fuzzy set C, written as C=AUB or 00A OR

E, whose MF is related to those of A and E by

,uc(x) = max (f'A(X), f'8(X») =IIA(X) v jl"(x)

3.5.2 Intersection of Fuzzy ~et A and B

The intersection of two fuzzy sets A and B is a fuzzy set C, written as C=AWB or

C=A AND B, whose MF ISrelated to those of A and B by

3.5.3 Complement of Fuzzy set A alld n

Theeomplement of fuzzy setA, denoted by A (~A,NOT A), is defined as

IU(X) = 1- flAx)

Fuzzy sets have properties whleh are valid for crisp sets. And yet, lhere are some

properties whieh are not valid for fuzzy sets,

3.5.4 The Law of Excluded Middle

A u A = X for crisp SCI but

Au A,,"x for fuzzy set

3.5.5 The Law of Contradiction

A " A = ~ for erisp set but

AnA "'9 for fUZlY sel
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3.5.6 Equality and Inclu,ion of Fuzzy set

Equality of fuzzy sets is defined as

A=B ++ ,"A(X) = ,"B(X); \:IxX EX

Inclllsionoffuzzy sets or A bemg a subset orB is defined as

AcB ++ fl,,(X)::; ,"~(x)

Example

Ag' 5 10 20 30 40 50 60 70 80
Young 1 1 08 0.5 0.2 0.1 0 0 0
Old 0 0 0.1 0.2 0.4 0.6 0.8 1 1

5 10 20 30 40 50 60 70 80
YounguOld 1 1 08 0.5 0.2 0.1 0 0 0
Young,.-,Old 0 0 01 0.2 0.4 0.6 0.8 1 1

Old 1 1 0.9 0.8 0.6 0.4 02 0 0

Example

5 10 20 30 40 50 60 70 80
OldvOld 1 1 0.9 0.8 06 0.6 0.8 1 1

Old,.-,Old 0 0 0.1 0.2 0.4 0.4 0.2 0 0
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3.8 Decomposition Principle

Using (X-cuts a membership function JIA(x) can be deeompo~ed mto an inlinite

nllmber of rectangular membership fllnctlOns. When these TBclangular membership

functions and max-operation are aggrega!cd. the original fuuy set A can be obtained

HereX4ofx) is a characteristic equation of the set A"

The dilTcrcnee between strong and \veak a-cuts centers on whether they include

equality. Here are the i1IustratiOllSof both a-cut am! decomposition sels.

)

/ '\
,

/ \
I" -,

I
"A

I

Figure 3.4: (X-Cliland Decomposition Principle

In thIS figure," A is an example of an ft-CU!. The iJea of the decompositIOn principle

is also illustrated in the figllre. Let the characteristic function of a weak 0: cut

XA(J;(X) for an a (a E (0,1]). Define a rectangular membership function that

satisfies O:!\ XAa(X). Changing the value of 0: ill the intcn-al of a E (0,1] thc

similar operation is repealed and an infinite number of rectangular membership



functions is found. The dccomposition principle tclls us that (hc mcmbcrship

function of the original fnzzl' ~et A ean be expressed by thc max opcration of the

previously obt<lined rcct<lngular membcrship functions.

This b defined by I-'-A(X)= Max [IX /\ XAaJX)] (IX E (0,1])

3.9 Fuzz)' Numbers lind Extension Principle

Whcn there is a relation y=3x+2 betwcen x and y, the value of y for x=4 can be

calcubted by (3 x 4) +2 = 14.Then, how the valuc of I' can be culcubted by a fuzzy

set such a.>x = "about y'''! The cxtcn~ion prin~iplc give~ a mcthod for thi~.

Abau1
,. 14

, ,

Figurc 3.5: Example of cxtension principlc

The proee~~ of calculation can be intcrpretcd as 3 x "ahout 4" + 2 = "about 12""+ 3 =
"about 14"

Let A be the fu/.lY set that gives "about 4" such as 1\=0.5 / 3 + 1.0/4 + 0.5 /5

Also define XI =3, X2=!-, xJ=5 so thaly,=3x,+2, i=1, 2, 3

,
leA) '"2:,u.cy,) 1y,

f=',
=2:,u.(y,)/(3x, +2)
'"'

= 0.5 1(3x 3+ 2) + I.OI(3x 4 + 2) + 0.5(3x 5 + 2)
= 0.5 1II + 1.01 14+0.5 117
="abouI14"
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3.10 Fuzzy Numbers

A fuzzy number is a convex, normali7,ed fuzzy sct A c=9t whosc membership

function is at least segmcntally continuous and has thc functiorml value f.!Ax) = I at

prccisely one elemcnt.

If a fuzzy set A On the universe R of real numbcrs satisfics the following comlitiOlls,

it is ea1ed a fuzzy number.

I. A is a convex fuzzy set;

11. There is only one Xo that satisfies JlAxo) = I;

Ill, P,l is continuous in an interval.

If a fuzzy number A satisfies the following condition, it i~called a nat fuzzy

number.

(m" mz) E R; m, < ml

fI.(x) =1 V, E [m!, ml]

3.11 FuzZ)' Interval

A fuay interval is an uncertain set A h ~l with a mean interval whose dements

possess the member~hip function value ,u,,(x) = 1. As in fuzzy numbers, the

membershIp function must be convex, nomlaJized, and at least continliOus m

scgments.

3.12 Aritbmetic Operations of Fnuy Nnmbers

FliZZYarithmetic is based on two propellies of fuzzy numbers

1. each fuzzy sets, and thus also each fuzzy number, Can fully and lltllqucly be

represented buy it's a-cuts

2, a-cuts of each fuzzy HUlllber are closed intervals of real numbers for all

aE(O,1J
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Let * denotes any of the four arithmetic operation>; on closed intervals: addition +,
snbtraetion -, multiplication', and 01vision I,

Then, [a,b]*[d,ej={f"gl a>Sf>Sb,d>Sg<:::e}

As results, the four arithmetic operati(Jns on closed intervals are

[a,bj+[d,e]= [a+d, b+eJ

[a,bj-[d,e]= [a.e, bod]

[a,b]' fd,e]=[min(ad, ae, bd, be), max(ad, ae, bd, be)

[a,b J/[ d,e j=[min( aid, ale, bid, ble), max( aid, ale, bid, ble), provide that Oil'[d,e J

Let A=(a,b,e,J...), A=(d,e,f,J...)€F;;€( I,), kE,R and assume that C=(p,q,r, ).,,)€ FN (},j,
then - -(a)C = A+B = (a+d,b+c,c+ j;2)- - -(6) C = A- R= (a- j,h-e,c-dJ)

(e) C =.4 x]j = (min(ad,af,Gd,cj),bc,max(lId,aj,cd,(j); A)

(d) C =.4 -i-B = (min(a I d,1I I j,e I d, cI j),bl c,max(a I d, III f,e I J,c! j); A)O

= (0,0,0) I': B

(e) If k > 0, C = k, (.).4 = (kll,kb,ke;:1.)

(j) If k < 0, C = k, OA = (kG,kb,ka;:1.)
- - -(g) If k = 0, C = k, (,)A = (0,0,0;2)

J.B Application of Fuzzy Logic

Fnzzy Set Theory defines Fuzzy Operators on Fuzzy Sets. The problem in applying

this is that the appropriate Fuzzy Operator may not be known. For this reason, Fuzzy

logic u;ually uses IFfTHEN rules, or constructs that are equivalent, such as fuzzy

associative matrices.

Rules arc usually expre~sed in the fornl 11' variabk IS set THEN action. For

example, an extremely simple temperature regulator that uses a fUllmight look hke

thi; IF temperature IS very cold THEN stop fan IF temperature IS cold THEN tum
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down fan IF (empcratllre IS nomJaI THEN maintam level IF temperature IS hot

THEN speed up fan.

Notice there '5 no "ELSE". All of the rules al'e evaluated, because the tcmperaturc

might be "cold" and "noTIllal" at the sa1\1~tIme to differing degrees. The AJ\'D, OR,

and NOT operators of booleau logic exist in rllLZYlogic, lIsually defined as the

minimUm, maximum, and complement; when they are deliued this way, they are

called the Zadeh operatot'S, because they were first defined as sueh in Zadeh's

original papers. So for the fuzzy variables x and y:

NOT x = (1 "lruth(x))

x AND Y'" minimum(lruth(x), truth(y»)

x OR Y=maximum(truth(x), tmth(y»)

There arc also other operators, more linguistic in nature, callcd hedge> that can be

applied. 1bcse are generally adverbs such a~ "very", or "somewhat", which modify

the meaning of a set' using a mathematical fonnula.

In application, the programming language Prolog is well gcared to imp1cmenting

funy logic wilh its facihties to set up a database of "rules" which are queried to

deduct logic. This SOt(of programming is known as logic programming.

3.14 Fuzzy Ranking Methods

To handle the funy chameteristic of the FMABL problem, the fllzzy processmg

time is needed to be ordered and compared with fuzzy cycle time of each product

model. The rcquirement or thIs ranking operator IS not only simple III computation

but a l~o flexible enough to adapt w ilh d iffcl'cnt sources 0 f data From the rcal-hfe

because the processing timc and maximum cyc1c time could be cstimated by

linguistic terms (short, medium, long, etc,) or ju~t an intcnal of datu. In Iilcmture,
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several fuay comparison methods have been proposcd ~ueh as pscudo order fllZly

prefcn:nce model [60.]_ new fuzzy-weightcd average [61], and signed disl~nee

method [62]. Among these methods the ~igned distan~e method j~~uitahle for fuzzy

lime comparison beeau~e it i~ simple in computation and flexible to eOllvert from the

interval data. Furthermore, fuzzy arithmetic necd~ to be performed to caleulule fuz~y

times in our heuristic However, there are man} lundamelllal ploblenls with fuZl;y

ariUunetic, Its operation is principally based on thc extension principle and/or

interval arithmetic. The problem of exten~ion principle i~ that it is computationally

too complex. Another fundamenw.l prohlem with fuvy arithmctic 18 the cxistcnce

and uniqlleness problem of the fuzzy llllillbers. For example, cvcn for the simple

operation of fuuy subtraction of two fuzzy nllmbeQ" the results may not exist At

this point, Olle may believe that fuzzy arithmetic based on interval operations could

bc better because it is easy to calculatc. Howcver, a dil"ficulty with fuzzy arithmctic

u~ing interval p,incipleg is the non-linear rep(e~entation of results_ Thus it could leJd

to increase the computational complexity_ Thcre is one solmilln to overcome this

difficulty by approximating the operation's results in a linear form.

3.14.1 Signed Distance Ranking ofthe Level AFuzzy Nnmbcrs

Yao and Wu presented signed distance method of ranking triangular fuzzy numbers

[62]. They presented the following definitions:

Definition 1. If the membership~ function of the I'uzzy set A on R is

J..,(x-p)/(q-p),p"'x"'q,

J..,(H)/(r_q), q",x"'r,

0, otherwise

p<q<r, then A is ealled a level J..fuzzy number, 0", J..,'" I

A'" (p, q, r, I,), ler, FN(J..)be the family of all1cvcl J..fuzzy numbers

F~{}_)={(p, '1, r, fi.) I p<q<r; p, 'I, rE R}, 0< )..$; I
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Definition 2. Signed DistaJlee

For each a, OER, the definition of signed di,lance do !i'om a to 0 is e~pressed by

d,,(a,O)=a

Ifa>O, do (a,O) implies that a is on lhe right hand "de of 0 with di,lance do{~,O}=a

If~<O, d,,{a,O) implies that a is on lhe left hand side oro wilh distance -do(a,O)=-a

Which is called the signed dislance of'a' wIneh l5measure from O.

Definition 3. The sIgned distance ofTFr\ A-= (p, '1, r) is defined as

- I J Id(A,O) = - [p +{'j- p)u -for -{r- 'I)a Jda = -(21! 4- P + r).2 4

o p

FIg 3,6: Level J...fuay Set

Let A-= (p, '1, r, J...) E I'K (I..)the signed d istanec or If from a I(y axis) IS

-- I;I[ "Jd(A,O,) =-],- p+r+{lq- p-r)- da
All

I
=-(2q+p+r)
4
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Definition 4. For each t. E(G, J], the ranking of the level t, fuzzy numbers in FN(A.) is

defined as

H-<A iffd(B,O,) <d(4,O,)
B '" A iff J(R,O,)==d(A,O,)
B>--A iffd(B,O,)<d(A,O,)

Proposition 1. for A,B,C E F,,(,l)

a. If A -<'" jJ and jJ -<'"A then A '" jJ
- - - -b,lfA-<BandB-<ClhenA-<C

c. In FN (4), there is only one A -<Band jJ '" A, A -<jj holds

The signed distance method ean be easily implemented to rank di rferent types of

fllJ;zynumbers. Tnthis case, the ranking method ofTFN is used.
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CHAPTER 4

GENETIC ALGORITHM

4.1 Introduction

A genetic algorithm (or shorl GA) is a search technique used in conlputing to find

true or approximate 5Olulions to optimization ami search problems_ Genetic

algorithms are categorized as global search heuristics_ Genctic algoritlmls arc a

particular class of evolutionary algorithms that use techniques inspired by

evolutionary biology such as inhcritancc, mutation, selection, and crossover (also

called recombination).

Genetic algorithms are implemented as a computer simulallon in which a population

of abstract representations (called chromosomes or the genotype or the genome) of

candidate solutions (called individuals, creatures, or phenotype~) to an optimization

problem evolves toward better solutions. Traditionally, solutions are represenled in

binary as strings of Os and h, but other encodmgs arc also possible. Th~ evolution

usually starts from a population of randomly generated individuals and happens in

generations. In each generation, the fitness of every mdividual in the population is

evaluated, muUiple individuals are ,wehastieal1y selected from the eunent

population (based on theIr fitness), and modified (recombined and possIbly mutated)

to ronn a new population. The new population is then used in the next iteration or

the algorithm.

4.2 History

Computer simulations of cvolutlOn started with Nil; Aall Barrieclli [03]. BalTiec1li

was simulating thc evolution of automata that played a simp!c e<lrdgamc. Statting in

1957, the Australian quantitative geneticist A!cx ha;cr ptLhlished a papcr on

,imulation of artificial selection of organisms WIth multiple loci control1ing a

measur<lble trait [64]. From thesc bcginmngs, computer simulation of evolution by
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biologists became more common in the early t 960s, and the melhods were ?escribed

in books by Fraser and Burnell [05] and Crosby [66].

AllhoClgh Barricc11i had also used evolulion~ry simCllation <IS<Igeneral optimization

method, genetic algorithms bec<lme a widely recognized optimization method as a

result oflhe work of John Holland in the early 1970s [42J. His work originated with

studies of celli.dar automata, conducted by Holland and hIs colleagues at the

University of Michigan. Research 1IlGAs remained largely theorclical until the mid-

19805, when The Fir.qt International Conference on Genetic Algorithms was held at

The University of Illinois. As aeadelllic interest grew, the dramatic incre~se in

desktop computational power allowed for practical ~pplicatioll of the nev" technique.

Tn 1989, The New York Times wriler John Markoff wrote about Evolver, the first

commercially ~val1able desktop genetic algorithm. Custom computer applications

began to emerge in a wide variety of fields, and (hese algorilhms are now used by a

m~jority of Forlune 500 companies to solve difficult schednling, data fittlllg, trend

spoltlllg and budgeting problems, and virtually any other type of combinatorial

optimization problem.

4.3 GA procedure

A typical genetic algorithm requires two things to be defined.

1. A genetic represcnt~tion of the solution domalll,

2. A fitness functIOn 10evaluate the solution domain

A standard representatIOn of the solLition is as an array of bils. Arrays of other types

and structures ean be used in essentIally the same way. The main property that

makes these genetic representations convenient is that their parts are easl1y aligned

due 10 their fixed size that facihlales simple crossovcr operalion. Variable length

representations were also used, b u[ c ros>over i mplemcntation Ism ore complex in

this case. Tree-like representations are explored in Gcnctic programllling and free-

form representations are explored in Human Based Genetic Algonlhm (HBGA).
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The fitness function is defined over the genetic representation and measures the

quality of the represented solutIOn. The fitness flmction i, always problem

dependent. A representallon of a solution might be an anay of bits, ",'here each bit

reprcscnts a diffcrcnt object, and thc value of the bit (0 or 1) represents whether or

not the object is in the knapsack. Not every such representation is valid, as the size

of objects may exceed the capacity of the knapsack The fitness of the solution is the

sum of vall1es of all objects in tbe knapsack ir the representation is valid or 0

otherwIse. In some problems, it 15hard or even impossible to define the fitness

expression; in these cases, interactive genetic algorithms are used,

Once the genetic representation and the fitness function arc defined, GA procecds to

initialize a population or solntions randomIy, and then improve it through repetitive

application of mutation, crossover, and selection operators,

4.4 Pseudo-code Algorithm

1. Choose initial populatIon

2, Evaluate the fitness of each individual in the population

a. Repeat
b. Select best-ranking individuals to reproduce

c. Breed new generation tbrough crossover and mutation (genetic

operations) and give bn1h to offspring

d. Evaluate the individuallilness of the offspring

3, Replace worst ranked part of population with offspring

4. Untiltenllinating condition is met

4.5 Initialization

Initially many mdividual solutions are randomly generated to fonn an initial

population. The population size depends on the nature of the problem, but typically

contains several hundreds or thousand" of possible solutions. Traditionally, the
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population is generated randomly, covering the entire range 01'po~siblc solutions

(the search space). Occasionally, the solutions may be "seeded" in areas where

optimal solutions arc likely to be found,

4.6 Encoding a Chromo~omc

The chromosome ,hould contain infornlution about the solution it represents,

4.6.1 Binary Encoding

One way of encoding is a binary string. The chromosome could look like this:

Each bit in the string can represent some characteristic of the solution or it could

represent whether or not some particular characteristic was present. Another

possibility is that the chromosome could contain just 4 numbers where each number

is represented by 4 bits (the highest number therefore bemg 15.)

4.6.2 Permutation Encoding

PemlUtation encodmg can be used in ordering problems, such as the tr~veling

salesman problem or a task ordering problem, Every chromosome is a string of

numbers, which represents number in a sequence. In the TSP each number would

represent a city to be visited.
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4.6.3 Value Encoding

Direct value encoding can be u,cd m problems where some complicated values,

such as real numbers, arc used and where binary encodmg would not suffice. While

value encoding is very good for some problems, it is often necessary to develop

some specific crossover and mutation techniques for these chromosomes.

Chromosome 1

Chromosome 2

ABEDBCAEDD
NWWNESSWNN

In chromosome I above, A could represent a particular task, B another, elc. For

chromosome 2 N could be north, S south, and thus could be the path through a

maze.

4.6.4 Trec Encoding

Tree encoding is used to actually have programs or expressions evolve. In tree

encoding every chromosome is a tree of wme objects, such as functions or

commands in the programming language. LISP IS often used for this bceausc

programs in LISP can be repl'esentcd in this fonn and then be easily parsed as a tree.

4.7 Crossover

Crossover is a genetic operator used to vary the programming of a chromosome or

chromosomes from one genel'ation to the next. It is an analogy to reproduction and

biologICal crossover, upon which genetic algorithms: are based.

4.7.1 Crossover Techniques

Many crossover tcchniqucs cxi~t for orgam,ms which u"e different data 8trueturc8 to

store themselves.
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4.7.1.1 Onc l'oint Crossover

Gh.ld,.",

Figure 4,1: One Poml Crossover

A crOSSOVerP oinl on the parent 0 rgani'l1l sning iss elected. All dal.1beyond that

point in the organism string is swapped bctwccn the two parent organism,. The

resulting organisms arc the children.

4.7.1.2 Two Puint Crossover

Parents

Chlldron:

Figure 4.2: Two Pomt Crossover

Two point crossover call> for two poml> to be selecled on thc parent organism

strings. Everything between the two points i, swapped behveen the parent

organisms, rendering two child organisms. Two point croSSOVCrshows bctter resutt

in c1ili,t process. The variety of gen~s i" greater In two point crO,"o~er than ,inglc
point crOSSOVer.
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4.7.1.3 Cut alld Splice Crus.lover

P,,""', --I- ~~-----
Figure 4,3: Cut and Splice Crossover

Ano!her crossover variant, the "cut and splice" approach, result, in ~ ~hangc in

length Oflhe children string,. The reason for this difference is that each parent ,tring

ha" a separate choice of crOSSOverpoint.

4.7.1.4 Uniform Crossover and Half Uniform Cro"over

In both these s~hemes: the two parenls are combined to produce Iwo new off'pring,

In the uniform croSSOVer"cherne (UX) individu~l b,t, in th~ ,tring are compared

between tv,o parents. The bits are swapped with a fixed probability, typically 0.5.1n

tile half unilorm crossover scheme (HUX); exactly half of the mismatching bils are

swapped. Thos first the Hamming distance (the number of differing bits) i,

e~1cu1ated.This numbcr is dividcd by 1;1.\'0.The resulting number is how many of the

bIts th~t do not match between the m'o parents will be swapped,

4.7.2 Crossover for Ordered Chromosome;

Depending on how the chromosome represent, the solution, a ,hreet swap may not

be pos"ible, One such ea,e is when the chromosome i, an ordered list, such as an

ordered list the citie, 10be tmveled for the travchng s~le;man problem. A cro"SOVer

point is ,elected on thc parents. Since the ehromosom~ is an ordered Ii;!, a direct

swap 'Would introduce duplicates and r~movo Ilccc;sary ~andidatc, from llw list.

In,tead, the ~hromosomc up to thc crnSSO.crpoint is retained for caeh parent. The

information ~flcr the cro,sovel' pomt is ordcred ~s il is ordered in the other p~rcnL

For example, if our two parents ~l'CAllCDEFGHI and IGAHl'DBEC and nUr

croS"over point is aftcr Ihe fourth cbamclcr, tben the resulting c hildrcn w0111dbe
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ABCDlGHFE and IGAHBCDEF. Other posoible methods include the eJge

recombination operator and partially mapped crOS50ver.

4.7.3 Cro~sover biases

For crossover 0 perators which exchange e onllguous sections 0 rthe chromosomes

(e.g. k-point) the ordering of the variables may become important. This is

particularly true \vhen good solution; contain bnilding blocks which might be

disrupted hy a non-respectful crossover operator,

Partially matching crossover (l'MX)

PMX may be viewed by a cros:;over of permutations thal guarantees that all

po:;itions are found exactly once in each orf:;pring I.e, each offspring recei'ves a full

sel of genes followed by the corresponding filling in of alleles from their parents.

PMX proceeds as follows I) the two chromosomes are aligned 2) two erobsing sites

are selected uniformly at random along the strings, defining a matching seetion.3)

The matching section is used to affect a cross thrOL1ghpositlOn-by-position exchange

operation4) Alleles are moved to their new positions IIIthe offspring

The followmg illustrates how PMX worh:

Lel us consider a traveling salesman problem. There arc eight cities \vhere the

salesman has lo travel. This is a problem in Jiserete or combinatorial optimization.

Under PMX, two strings (pemlUtations ~Ildtheir associated alleles) are ~ligned, and

two crossing sites are picked uniformly at random along the strings. These two

points define a matching section that is used to aff~d a cross through position-by-

position exchange operation:

There arc two strings:

A=9841567113210 B=S711231019546
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PMX proceeds by position wise exchange. First, mapping string B to string A, the 5

and the 2, the 3 and the G, and the 10 and 7 exchange place~. Similarly mapping

string A to stnng B, the 5 and the 2, the 6 and the 3, and the 7 and the 10 exch~nge

places. Follo\ving PMX two offspring are left, Nand B':

N=9841231011657

8'=8101156719247

where each string contains ordering information partIally detemlllled by each of Its

parents.

Order Crossover (OX)

The order crossover operator starts offin a manner similar to PMX. Let the example

strings A and B consIder again. First a matching sectIon is selected (for comparison,

the matching section of PMX example is chosen):

A=98415G7113210

B=8711231019546

Like PMX, each string maps to eOl1l>tlluentsof the matching section of its mate,

Instead of using point-by-point exchanges to effect the muppmg as PMX does, order

crossover uses a sliding motion to fill the holes left by transferring the mapped

positions. For example, when string B maps to string A, the cities 5, 6, and 7 will

leave holes (marked by an H) in the string:

A~98415671IHHH

B=8H11231019H4H
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These holes are filled with the matching section city llJillCS taken fwm the mate,

Performing this operation and completing the complementary eros, the offspring A'

and S' are obtamed as follows:

N=5 6 712 3 Icll 9 84

B'~2310156719481

Althongh PMX and OX are similar, they process different kinds of similarities,

C~'c1eCrossuver (CX)

The cyele crossover operator is a cross of a different color, Cycle crossover

performs recombination under the constraint that eaeh gene eomes from the one

parent or the other. To see how this is done eXJmple tours C and 0 arc started with

below:

C=98217451063

0=12345678910

Instead 0 f choosing e rossover s itcs, the p roccss iss tarted a tthe 1en a nd a city i s

chosen from the first parent

C'=9---"---- ----. _

Since every city is to be taken from one of the two parcnt~, city 1 will be taken from

string C because of the 1 in position ofstring O.

C=9----------1----------_

This selection requires that city 4 will be selected from string C. the process

continues until the following paltem is left:

C=92315478610 0'=18247651093
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4.8 :Fitness Function

A fitness f'lllction is a particular type of objective function that quantifies the

optimality of a solution (that is, a chromosome) in a genetic algoritlml so that thal

partIcular chromosome may be ranked against all the other chromosomes. Optimal

chromosomes, Of at least chromosomes whICh are more optimal, are allowed to

breed and mix their dalasets by any of several teclmiques, producing a new

generation that will (hopefully) bc even beller. Another way of looking at fitness

functions is in lelms of a fitness landscape, which shows the fitness for each possible

chromosome,

An ideal fitncss function corrclates closcly with the algorithm'~ goal, and yet may bc

computed quickly. Speed of execution is very importani, a, a typical genetic

algoriUun mu,t be iterated many, many limcs in order to produce a usable rcsult fOf

a nOll-trivial problem.

Dcfinition of thc fitness function is not str~ightforward in many cases and often is

performed iteratively If tlle fittest solution, produced by GA are not what is de~lfed,

In some cases, it is very hard Of impossiblc to eome up evell with a guess of what

fitne~s function dcfinition mighl be. Intcractive genetic algorithms addrc~s this

difficulty by outsourcing evaluatIon to extcmal agents (nonnally humans)

4.8.1 Fitness Scaling

Reealllhat the two umiesirablc characteristics of FPS me:

Premature convergcnce: Early on, a few sllpcr-lIldivlduals come to

dominate selection

Stagnation: Later on, selectIve pressure "disappears"

Fitness scaling offers a way to allcviate both ofthesc problems. Thcre are 3 gcneral

scaling methods:

a) Linear scaling
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b) Sigma truncation

c) Power law scaling

4.9 Selection

During each successive generation, a proportion of the existing population is

selected to breed a new generation. IndlVldual solutions are scleeted through a

fitness-based process, \vhere fitter solutions (as measured by a fitness funetlOn) arc

'typically more likely to be selected, Celtain sc1eetion methods rate the fitness of

each solution and preferentially select the best solutwns, Other methods rate only a

random sample of the population, as this process may be very time-consuming,

Most functions arc stochastic and designed 50 that a small proportion of less fit

solutions are selected, This helps keep the diversity of the pOpulatlOn large,

preventmg premature convergence on poor solutions. Popular and well-studied

selection methods include roulette wheel selection and tOllmamentselection.

4.10 Reprodnetion

The next step is to generate a second generation population of solutions from those

selected through genetic operator:;: crossover (also called recombination), and/or

mutation. In genetic algorithms, mutation is a genetic operator used to maintain

genetic diversity from one generation of a population of chromosomes to the next. 11
is analogous to biological mutatIon.

The classic example of a mutation operator involves a probability that an arbitrary

bit in a genetic sequence will be changed [rom its original state, A common method

ofi mplementing the IIIutatlOn0 pcrator involves generating a random variable for

each bit in a scqllence. This random variable tells whether or nol a particular bit will

be modified.
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The purpose of mUlationm GAs is to allow the algorithm to avoid local lllmm1U by

preventing the population of chromosomes from becoming too similar to each other,

thus slowing or even stopping evolution. This reasoning also explains the fact that

most GA systems avoid only taking the fittest of the population in generating the

next bnt ralher a random (or semi-random) ~e1echonwnh a weighting towanllhose

that arc fitter.

For each new solution to be produced, a pair of "parent" solutions is selected for

breeding from the pool selected previously. By producing a "child" solution using

the above methods of crossover and mutation, a new solution is created which

typically shares many o[(he characteristics of its "parents". New parents are selected

for each child, and the process contmnes until a new population of solutions of

appropriate size is generated.

These processes ultimately result in the next generation population of chromosomes,
that is different from the initial generation. Generally the average fitnes~wlll have

increased by this procedure for the population, since only the best organisms from

the first generation are selected for breeding, along with a small proportion of less fit

solutions, for reasons alreadymentioned above.

4.11 Termination

This ~enerational process is repeated until a temlination conditIOnhas been reached.

Common temlinating conditions are

• A solntion is found that satisfies mimml.lmcriteria

• l'ixed number or generations reached

• Allocated bndget (eompllla[jon lime/money) reached

• The h ighcsl ranking solution's fitness is reaching 0 r h as re~ched a p lalcau

such that successive iterations no longer produce better results

• Manual inspection

• Combinations of the above.
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4.12 Variants of GA

The simplest algorithm represents each chromosome as a bit string. Typically,

numeric parameters can be represented by integers, though it is possible to usc

floatmg point representations. The basic algorithm pcrfomlS crossover and mutation

nllhe bIt level. Other variants treal the chromosome as a list of numbers which arc

indexes inlo an instruction tahle, nodes in a linked list, hashes, objects, or any other

imaginablo data structure. Crossover and mutation are p erformcd so as to resped

data element bOlmdarics. For mosl data types, specific variation operators can be

designed. Different chromosomal data types seem to work _better or worse for

different speCIfic problem domains.

Other approaches involve using arrays of real-valued numbers in~tead of bit strings

to represent chromosomes. Theoretically, the smaller the alphahet, th~ beUer the

perfommnee, h ul paradoxically, good results have b ecn 0 htainf:'d from using rcal-

valued chromosomes.

A slight, bl.lt very successful variant of the general process of constructing a new

population is to allow some of the better organisms from the eUTTentgeneration to

carry over to the next, unaltered, This strategy is known as elitist selection,

It can be quite effective to combine GA with other optlllllzation methods. GA (ends

to be quite good at finding generally good global solutions, but quite ineffiCIent at

finding the last few mutations to lind the absolute optimum. Other techniques (such

as simple hill climbmg) are quitc efficient at finding absolute optimum in a lunited

region. Alternating GA and hill climbing ean improve the effieicncy of GA while

overcoming the lack ofrobustncss of hill clill1bing.
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eHAI'TER 5

PROBLEM FORMULATION

5.1 Introduction

An assembly line eon,i,ts of (work) stations k=l,,,., m arranged along a conveyor belt

or a similar mechanical material handling equipment. TIle workpieees (jobs) arc

consecutively launchcd down the linc and arc moved from station to stalion. At cach

station, ccrtain operations are rcpeatedly perfomled regarding the cycle ti me c (maximum

or average time available for eaeh work cycle). The cycle timc c determines the

production rate which is IIc.The decision problem of optimally partitioning (balancing)

thc assembly work among the stations with respcct to some objective is known as the

Assembl)' Line Balancing Problem (ALBP).

Manufacturing a prodllCl on an asscmbl y line requires partitioning the total amowlt of

work into a sct of clementary operations namcd tasks V = {l,,,,,n}. Performing a ta,k j

takes a task time lJ and requircs certain eqUlpment of machines and/or skill, ofworkcrs,

Dlle to teclmologieal and orgamzational conditions precedencc constraints between the

ta"ks bave 10 be observcd. These elements can be slUnmarized and \'isualiz~d by a

precedence graph, It contains a node for each task, node weIghts for thc task times and

arcs for the precedence constraints.

Any type of ALBP consists in finding a feasible line balance, i.e., an assignlllent of each

task to a station such lhat the precedencc constraints and further rcstrietions are fulfilled

The set Sk of tasks assigned to a station k (=l, ...,m) constitutes its station load, the

cWllulated task time is called station time. When a fixed common cycle time e is given, a

line balance is feasible only if the station timc of neither st~tion excecds c, Tn case of

t(Sk) < c, the station k has an idle timc of c - t(5k} time units in cach cyclc. A simple

lowcr bound On the minimal numbcr of stilllons is LBt=ft"",lcl (rxldcnotes lhe smallest

integer not bcing ~maller than xl
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The installation of an assembly linc is a long-term decision and usually requires large

,apital inveSlments, Thcrefore, it is impOltant thJt such a syslem i5 designed and

balan,ed 50 that it works as elTieiently as possible, Besides balan,ing a new system, a

running one has to be re-bal~need periodically or alicr changes in the pl'Oduction process

or the production program have taken plac;e. Becallse of the long-term effect of balancing

decisions, lhe used objectives have to he carefully chosen considering !he strategic goals

of the enterprise. From an economic point of view ,o~t and prolit related objectives

should be considcrcd, However, measuring ond predicting the cost of mnning a line over

months or years and the profits achieved by selling the products assembled is rather

eomphealed and error-prone. A usual allernative objeclive consists in mnximizing the

line utilizalion which is mcasured by the lille efficiency as !he productive fraction ofthc

line's total operating time and directly dcpcnds on !he cycle time c and lhe number of

stations m,

Balance delay time is anothcr important faclor. It is lhe am()lln! of idle lilTl~Onptoduetion

assembly lines caused by the uneven divi5ion of work among operators or stations. It is

relatcd to the ex.tent and way !he lotal task is subdivided, ln this mathematical model the

problem ofbalallee delay is lreated cmpirically and analytically, Empirical studies show

that high balance delay is associated with a wide range of work-clement tilllcs and a high

degree of line mechanization.
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5.2 Mathcmatical Model

Thc processing time and cycle timc are of luz7,y nature. The objective Is to dislnhute n

lasks among In stations in lhe assembly line so tllat minimum number of station ",ith

minimum idle time can be achieved and the outcome ",ill be a highly b'llanceJ line i.e,

the smoothness index will be lowest. The inputs are fuzzy cycle time and fnzzy task time.

Objective Function: min f :t[x, + (2' - sJy, +~(e -,.,)' Y&]
i-I j=l

subject to,
m "L L~Ylj ::>c;i=1,2,3 ,....,m
.~L J.' , ... (1)

,
LY" = 1; j = 1,2,3 ,n.. ''' (2)
'.",
'" I' '"

~>,}Y"-CLY" - LY,,)" 0 (3),.,

7EfJiciency, if = ---
x",,, xc

, (4)

Here, x, =No of stallon

c =FuzzyCycleTime

7; '= Fuzzy Task Time (TFN)

s: = FuzzyStation Time for Station i
y'j = I;if task j is assigned to station i

= 0; othcrwise

i~Work stalion index, ;~I, 2, 3 ill

j"-Taskindex, j~l, 2, 3 ", n

Task} is aS5igned to station iE [Ej,L)] itT p,' ~ s, u U s, and I(S,) + ~ ,,;2'
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(1) can be written as (5), IJ, rJ)Y'J",,(t,u,v)

if A=(s" 1" rLIand B~(s" h, r21

A ""S iff S,<S2, s]-1L<s,-l" S,+rI<Sl+rl

So, from (1), it can bc expressed as

... ,,, .... ,, ..... ,, .. ,.(1)

'" ,
LL(Sj -lily,; 5:(1-1') .." " (2),-, ,-,
'" "LL(Sj +r,)y" 5: (I +v)
."' )=,

.__... (3)

,
Iy. '"l;j ~ 1,2,3, .. ,.. ,Il, .... ,..... ,... (4)
'.E,

, ,
c-IIZy"<':0 ..

,.L j.'
. , , (6)
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5.3 Genetic Algorithm Searching Method

Genetic algorithms (GAl are a general concept fol' solving complex optimization

problems which is based ()n manipulating a population of solutions by genetic operators

like selection, recombination and mutation [43J, In order to adapt the general approach to

SALEP (or a generalized ALBP), two main difliculties have to be resolved:

• For manipulating solutions by means Gf genelic Gperat()rs, they huve tG be encoded ln

form of 'chromosomes' each of which consIsts of a ,equencc of genes. Several encoding

schemes are possible each having pros and cons concerning the type 01"applicable genetic

operators. In particular, pertaining feaSlbility ol"manipulated solutions is a critical is,ue .

• The objective function 01"SALBP-l is not operali()nal for b'lliding the search to

promi"ing parL<;of the s()lution space, because It docs not give a strong distinction

hetween the solution's fitness: Usually there are a fn, optimal solut1ons \Vhleh rcqmre

the minimal Ilumber m* of stations and many olhers "around them" m()st of which nmy

require m* + I (or some mOre) stations, That is, a population might consist of solutions

all having the same or a few different objeellve values such that selecting the most

promising ones IS not obvious, So the fitness function value is modified to search the

highly balanced linc with mimmum Idle time. The scqucntiJI steps of thc proposed
algorithm are as follows:

Step 1; Ranking the fuz;.y task times according to signcd <.1Jstaneevalue.

Step 2; Generati()n of iniltal parent strings.

Step 3: Generation of offspring using eros:;over procedure.

Step 4: Generation of initial population pool of randomly constructed s()lutions (a

solution IS represented by a problem-specific structure of characters or bits) using
scramble mutation.

Step 5: Selection of two solutions based on their fitness fUneli()n vJlue and gellerati()ll 01"

new solutions using crossover procedures whidl arc supposed to provide inheritance of

some basic propertics of parent structures by the olTsprings.
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Step 6: Mutation of child structures with contmllcd mutation rate M, which implies

eXchange of number of elements between two randomly selected positions in a structure,

Step 7: Decoding/evaluation of the child stmctulC!, to obtain thc objective function
values.

Step 8: Selection procedure including compari~on of child solutions with the worst

solntions in the population and replacement of the wOlOtsolution by the new one If it is
better.

Step 9: Termlllation of the algorithm after repetltion of step 5 to step 8 R times, where R
is an initially ~pecllicd parameter,

5.4 Standard Encoding

The filOt step in constructing a genetic algorithm is delining a genetic representation

(encoding), Having a good representation that can well describc problem-specific

characteristics is crucial since it significantly alTects all the subsequent steps of the GA.

Three string representations applicable to ALB pmbJcms are introduced [67].

(I) WorkstallOn-oriented representation: if task I is aSSIgned to workstation j, the station
nurnber,j, is placed at the I_th position in the string.

(2) Sequence-oriented representation: all tasks arc sequentially listed in the order lhat lhe
tasks are assigned to workstations.

(3) Partition-oricnted representation: separators arc introduced in the scquenee-oriented
reprc.>entatioll to partition !asks mto workstations.

\Vorkstation-orientcd representation can handle all types of ALB? The other two

representations are applicable only to the Type-2 and Type-E problems wlwre the Illllnbcr

of workstations is pre-,pcclficd. It provides cOllSuJel'UbleJkXlbiWy in d'()Osing genctie

operators. Many gcnetic operators that have been developed for sequencmg problems are

avaIlable, and the representation makes it possible for them (0 be adapted to ALB
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problems. The other two representations require Complicated additional operations, such

as the use of penally functions. In the propc>sed algorithm, thc workstation-oriented
encoding method has been used.

The chromosome is dcllned as a vc<;lorcont~ining the labels of the stations to which the

tasks 1,. .,n arc assigned [67]. When standard crossovers or mutations are applied to

such chromosomes, the resulting solutions are often infeaSIble. nlis aspect must be dealt

with by penalizing infeaslbilities or rearranging the Solulion by ecrlain heurisllc

slrategies, Kim et al. [68] achieve populations wilhoul infcu>,ible solutions by decoding

chromosomes using a proccdure similar to that of Helgeson and Birme [8J. III the

proposed olgorithm, only valJd pools ofehromosollleS are cow,ldel'ed.

5.5 Initial population

A genetIc algorithm operales on a populalion of individual strings. Eilher heurislic

procedures or random creatlons can be used to generate fea,ible strings thai fonn the

initial population. Anderson and Ferns [45] have mentioned that thc performance of the

GA sehollle is not as good from the pre-selected starting population as il is from a random

start. In this resemch, individuals in an initial population me all randomly generated, As

mentioned earlier, the initial stnngs should mainlain feasible sequences, So from the list

generated on the basis of signed distancc melhod an inillal parent strings are formed. If it

is infeasible then repair method is used to create a feasible siring.

5.6 Cross{lver operator

Crossover or mUlation depends on a certam probability, i e., if the probabillly of

recombining is 98% then the pmbabilily of mutating is 2% In this case, thc erossovcr

(recombination) 0 peralor i s a variant 0 f 0 avis' [69] 0 rder c rosS(Jver 0 perutor. The t wo

parents lhat are selected fOTcros!'ovcr a re cut at two random cutpoints. The offspring

lakes the same gencs outside the cut-points at the same location as its parcnl aod the

genes in between the cut-points are scrambled according 10lhe order that thcy have in the
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other parent. The major reason that makes this crossover operator very suitable for ALB

is that it assures feasibility of tile offspring. Since both parents are feasible, both children

must al.so be feasible. Keeping a feasible population is a key to ALB problcm since

preserving feasibility drastically reduccs computational effort. The genes can be 8v,apped

as a single bit or a cluster. The number of thc genes to be s\vapped ean be easily

eonlrollcd by a user delineJ percentage of the length of the string.

5.7 Mutation operator

In the proposed algorithm, the scramble mutatIon opcrator is used. It was first proposcd

by Leu ct aL [44]. A random cut-point is selected anl! the genes after the ellt-point are

randomly replaced (scrambled), assuring feasibility. Elitism, j,e., replacing a parcnt with

an offspring only if the offspring is better than the parcnt, is applied to both thc crossover

and the mutation procedurcs.

5.8 Selection Method

In this algorithm, c]lromosomes arc selected lIsing clIstomized tOllrnament sclcction

mcthod .Tournament sclcction is one of many methods of selection in gcnetic algorithms

which runs a "tourn~ment" among a few mdividu~ls chosen at random from the

population and selccts the willller (the onc with thc best fitness) for crossover. Selection

pressl.lre can be easily adjl.lsted by changing the tOllmament size, If the toumament si".e is

larger, weak individuals have a smaller chance to be selected. In this case, the tOlInJament

size is equivalent to the total population inellIdillg thc parents, Thc best fit chromosomcs

are selected according to thcir fitness function value from a mutated pool. At first,

chromosomes with minimum ll\unber of stations are sclected, So the entire pool is

curtailed to a pool wilh smaller population. Then the titness fllllction values of the valid

chromosomes are computed and thc best two chl'Omosomes arc selected.

In De long's [70] study of genetic algorJthms in lunetion optiml7.ation. a series of

parametric studies across a five-function SUlk of pl'Oblcm, suggested that good GA
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perfOlU1Srequire, [he choice of a high crossover prahahility, a law mutmian probability

(inver,cl y proportional to the population ~ize), and a moderate population 8ize.

5.9 Fitness functions

In GA the bettcr fit sollltiollS survive across gcnerations. Hence the litness of a sollltiall

shauld reflect its quality with respect to the problem's ohjeetive. The sc1ectian policy

should ensure survival ofhetter fit solutions. In the proposed algorithm,

2:' -Fil""ss Function'" ,_,Cc -S,) +
m

,",'" - 'L'~I(c-s,)

The fitness function is modified to achieve the optimum number of stations which ".rill be

the minimum wllh the minimum idle time and mmimum smoothness index. Howcvcr,

given twa diffcrent salutions with Ihe 5ame numbcr of stations, one moy be bCller

balanced lhan the other. For example, a line with three stattonB may have stations timcs

il'S30-50-40 or 50-50-20. The 30-50.40 solution is considered to be supcrior (belter

balanced) to the 50-50-20 solution. Hcnce, a fitness function )s uscd that consists of two

objectivcs, i.e., minimizing the number of ,tations and obtaining balanced station .The

first part of the fitness functiOll aim, to find the bcst balance white [he second p~'1

minimi~es the idlc time among the solution, thaI have the snmc n1l1l1herof stattons.

5.10 Stopping Condition

The algorithm terminates after a certain number ol"iterations. 50, 500 and 1000 values

ha~e been used as the number of iterations paramcter.
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CHAI'TER 6

RESULT ANALYSIS

6.1Computational Rc~ult

The proposed fuzzy line balancing algorithm using genetic algoritlml has been coded in C

and run on a Personal Computer haying lntel Pentium- 4 core 2 duo/2,66 GHz and 512 Mb of

RJu\t The minimum requIrement ofrulllling lhe program: Operatmg System Willdow~ XP or

allY othcr Willdows Operating System of equivalent file struclure and having Microsoft

Visual C installed.

To demonstrate lhe effectiveness and robustness of the approach compulational resuhs are

prcsented lhat is obtained on a set of SALBP-l problems found in literalure. The program

was run for different iterations: 50,500 and 1000, For all ileration, the ALBP-l datasets are

used and have been compared with EUREKA [71]' SALOME [72] and Hybrid GA [73].

TIle algoritlun has been evalualed on three sets of inslances: The Talhol-Set (64 instances)

[29], the Hoffman-Set (50 instances) [74J and the Scholl-Set (168 instances) [75]' The

combined set consists of 269 instances (minus 13 instances whIch arc in the TalbOI-Sel as

well as in lhe Hoffmann-Set). The sources of the problems as well as u ddmled description

are given by Scholl [7SJ.The basie characteristics of the problems arc sllll1ll1urized in Table

G.!. The first coilimn displays [he allthor of the instance. The second column shows the

number of tasks. The third and fOlirth column shows the minimum and mm:imllm cycle time,

The fifth COllillUlgives the nllmber of different cycle times out oflhe interval, which arc used

to define a problem in the Talbot-Set (T), in the Hoffmann-Set (H), and in the Scholl-Set (S).

The remaining collinUls conlam the mimmllm processing time, the maximlllll processing

time, the sum of processing times, the order strength in percent, and the time variability ralio
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Table G, 1: Problem Characteristics

:',Author "I' " em", '.Cm"". tm", 1m"" I,um OS TV
" .' (%).. . .

Arcus 1 83 3786 10816 23J 3691 75707 59,1 15.8
Arcus 2 1" 5755 17067 10 5689 150399 40.4 568,9
Bartholdi! 148 403 805 3 383 5634 25,8 127.7
Bartholdi2 148 84 170 1 83 4234 25.8 83
Bo"man 8 20 20 3 17 " " 5.3
Buxey 29 23 " 1 25 324 50,7 "Gunther ;0 " 81 , " m 595 40.0
Hahn 53 2004 4676 " 1775 14026 H8 44.4
He.,klaolI 38 D8 "2 , 108 1024 22,5 108
Jackson " 7 21 , 3 '6 58.2 7
Jaeschke 9 6 '8 , 6 37 83.3 8
Kilbridge '5 58 '84 3 55 552 44-6 18,3
Lutzl 32 1414 2828 100 1400 14140 83.5 14
LUlu 89 " 31 1 10 485 n6 W
Lutz3 89 75 ''" , 74 IG44 77.6 34
Mamoor 11 48 94 3 45 185 60.0 22.5
M~'T1ens 7 6 18 1 6 29 52.4 6.0
Mitchell 21 " 39 1 " 105 71.0 13.0
Mukherjee 94 nG m 8 171 4208 44,8 21.4
Ro,zieg 25 14 32 1 " m 71.7 13.0
Sawyer ;0 " 75 1 25 324 4.8 25.0
Scholl 297 1394 2787 ] 1386 69655 58,2 277.2
Tonge 70 160 527 1 '56 35 I0 59.4 156.0
Wamccke 58 " " 7 53 1548 59,1 76
Wee-mag 75 28 56 2 33 1499 22,7 13.5
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Table 6.2 Bcnchmarkmg Wilh EUREKA

Total Optimal Ideal EUREKA Proposed Idle ReT.Dev.
No of Cycle Algorithm Total Idle From

Author Operations Time Procosslng No of Minimum No Of No Of Time Time Efficiency EUREKA['!o]
Time Stations Idle Time Station Station ('!oj

Bowman " " " 5 " 5 5 " " 75.00 000
Merten , 5 " 5 , 5 5 , 19.44 80.56 0,00, " 5 5 5 5 B 3095 69.05 20.00'

S " 5 " 5 5 " 27,5 72,50 0.00

'" " 3 , 3 , " 27.5 7250 3333

" '" , , , 3 " 35.56 64.44 50.00

'" " , , 3 3 , 19.44 aO.56 0.00
Jaeschke 5 5 I " " " 5 , " 22,92 77.08 0.00, " , " , , '" 3393 6607 1429, " 5 " 5 , " 33.93 66,07 16.67

'" " , 3 , 5 B 3' 74.00 25.00

'" " 3 " 3 3 " 31.48 68.52 0.00
Jac~son " , " , W 5 5 " 26,98 73,02 12,50

5 " 5 , 5 , " 26.98 73 02 16.67

'" " 5 , 5 5 " 23.33 76,67 20.00
B " , 5 , , 5 11.54 88.46 0.00

" " , W , , W 17,86 82.14 0.00

" I " 3 " 3 5 " 2698 7302 0,00
Mitchell " " 'DO , , 5 W " 16.67 83,33 12.50

" '"5 5 " , 5 " 12.5 87.50 0.00

" 'DO 5 0 5 5 " 16.67 83.33 20,00

" W5 5 " 5 5 " 1923 80,77 0,00

" 'DO 3 , 5 , 35 " 75,00 3333

" 'DO 3 " 3 3 " 10.26 89.74 0.00

[Rest orthe table is given in Appendix AJ
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Table 6.3 Benchmarking with SALOME

Total Optimal SALOME Proposed Ret. Dev. Total Idle
Precedence No of Processing Cycle No of No of Algorithm From Idle Time Eff.('Yo)

Graph Operations Time Optimum
Time Stations Station Station Salome ['Yo] Time (%)

Arcus1 " 75707 3786 " " " 14.29 15157 16.68 63.32

Arcus1 75707 3985 " " 23 15.00 16948 17.4 82.60

Arcus1 75707 4206 '0 '" " 10.53 12619 14.29 85.71

Arcus1 75707 4454 '" '" " 11.11 13313 15.01 8499

Arcus1 75707 4732 " " '" 5.88 9469 11.12 88,88

Arcus1 75707 5048 '" '" '" 0.00 5061 6.27 93,73

Arcus1 75707 5408 " " '" 6.67 10821 12,51 87,49

AIcus1 75707 5824 " " " 7.14 11653 1334 86,66

AIcus1 75707 5853 " " " 7.14 12088 13,77 86.23

AIcus1 75707 6309 B B B 0,00 6310 ;eo 92.31

AIcus1 75707 6842 " " " 0.00 6397 7,79 92.21

Arcus1 75707 6883 " " " 000 6889 8,34 91.66

Arcusl 75707 7571 " " " 0,00 7574 9.09 90.91

Arcus1 75707 8412 W " " 000 8413 " 90.00

Arcusl 75707 8898 " " 0 0,00 4375 5.46 9454

Arcusl 75707 10816 , , , 000 10821 12.51 87.49

Arcus2 '" 1503!m 5755 " " " 18,52 33761 18,33 81 67

Arcus2 150399 5785 " " 33 22.22 40506 21,22 75,78

Arcus2 150399 6016 23 23 " 15.38 34581 " 8333

Arcus2 150399 6267 23 23 33 24.00 43878 22,59 77.41

Arcus2 150399 ";40 24 " 23 16.67 I 32721 17.87 82.13

Arcus2 150399 6837 23 23 2e 13.04 27363 15.39 84.61

Arcus2 150399 7162 23 23 23 18.18 35813 19.23 80.77

[Rest of the !able is given in Appendix B]
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Table 6.4 Benchmarking with Hybrid GA

Total Optimal Hybrid GA Proposed Rei. Dev.

AutMor No 01 Cycle Processing Noof Nool Atgorithm Total Idle Idle Time Efficiency From
Oporalions Tima NoDI Time ('\'oj Hybrid GA

Time Stations Stations Station ['I,]

Bowman , " " , , , " " 75.00 0.00

Merten , , " , , , , 19.44 80.56 0.00, " , , 6 " 30,95 69.05 20,00

6 " , , , " '" 72.50 006
W " , , , " 27.5 72 50 33,33

" " , , , " 35.56 64.44 50.00

" " , , , , 19.44 80,56 0.00

Jaeschke 6 , " 6 6 6 " 22.92 77.08 0.00, " , , 6 " 33.93 66.07 14,29

6 " , , , " 33.93 66.07 1667
W " , , , " " 74.00 25,00

" " , I , , H 31,48 6852 0.00

J~ckson " , " 6 6 6 H 2698 73,02 12.50, " 6 , , H 26,98 7302 16.67
W " 6 6 6 " 23.33 76.67 20.00

" " , , , 6 11.54 88.46 0,00

" " , , , W 17.86 82.14 006

" " ; 3 6 H 26,98 73 02 0,00

Mitcnell " " '60 8 6 W " 16,67 8333 12.50

" I '60 6 6 6 " '" 8750 0.00

" '60 , , 6 " 16.67 83,33 20.00

" '60 , , , " 19.23 80.77 0.00
65 '60 3 3 , 65 " 75.00 33,33

65 W, 6 3 6 " 10.26 89.74 OCO

[Rest of [he lable is given in Appendix C]
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Table 6.5: Fuzz)' Task Time

Task
Task Time Task Task Time Task Task Time Task

" 0,430.5058 J01 1,751.81.89 '" 1.2C1.J 1.47 '"" 0,C50.7°76 J" 0,160,20.24 J" 0.780.80.89 J"

" 0,720.80B4 J" 0,260,30.36 '" 0,760B09 '"" 0,961.1123 J" 0170,20.25 '" 0.530,60.&8 '";, 0,870.9102 J" 0,270,30.36 '" 0.991.11.21 '"" 0,890.91,08 '.' 131.51.a '" 0.17 0,2 0.25 "" 02£ 0.3 0,32 J" 0881,01.03 '" 0.260,30.34 J",

" 0,120.20,23 J" 1 2 1.J 1.45 '" 0.690,70.78 '"" 0520.60,68 J" 0320,40.46 '" 0.460,50,57 '"'" 0.260.3033 " 0.430,50.57 '" 1,12121.20 .I"
" 0,700,80,82 " 1210,30.36 '" 0420,00,56 "J1, 0,650.70.8 J,.' 1,11,21.26 .I" 0,3204046 .I"
'" Q 37 0.4 0.42 " 1.121 21.25 .I" 060.650.71 '"'" 0,190,20.22 '" 0,320.4 0049 '" 0,260,30 J4 J"

'" 0570,60.67 '" 0160<0.21 .I," 0870,90,98 '"" 0,320,40.44 '" 0750,80,89 " 0330.4 0,51 "" 005010.14 J,t7 0,0607085 .I" 0,93101,02 hi

" C,<10,3 0.34 '" 0971,01.08 " 1141,21,23 "'" 0.480,50.56 '" 0,921.0 La6 '" 0,790,8182 '"" 0,690,91.03 '" 0.43 C,50.56 '" 0,981,0103 '"
Parameters:

Population size: 20

Iteration: 30

CycJetime,C=(llllll)

Result:

Optimum Number of Station: 6

Tolal idle time: (7.11 13.9 17.21)

% of idle time: (10.77 21.06 26.08)

EfJiciency: (73.92 78.94 89,23)
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Task Time

021030,35

0360.4 0.47

o 2a C.3 0,30

0,540.60,69

0.760.80,86

O.4J0.5 0,6

0.470.5 a 59

1,2G1.3139

0971,01,05

0.170.20,24

0.160.2023

0.38040.43

0.420,50.56

0.27030.31

0.71 0,80.91

0,51 0,55062

0.65 0.7 0.79

0.87 0.9 1 03

0.74 o.a G95

0.34 0.4 0 57



Table 6.6 Comparison ofEi!:ht Methods on the 70 Task Problem;

Cycle Moodie Tonge Tonge Tongeood Nevins Baybars Sabuncuoglu Propo,edTime Young M" "0 Beo Algorithm

83 48 ;0 ;0 " " " " "86 47 47 " " " " " "89 " '" " " " " " "92 " " " " " 42 " "95 " " " " " 40 " ""0 " " " " " " " "m " " " " " " " "'" " " " " " " " "m " " " " " " " ""2 " 23 " " " " " 23

'" " " " " " " " ""9 " " " " 11 " " "'5' 11 " " " " " 11 "
The proposell algorithm has been compared with seven other algorithms [16, 21, 22, 76, 77J

in solving Tonge's 70 task problem [17J with 13 cycle times_ From above eomputnhonal

results i tis c lear in s onte cases proposed algoriUun0 utperfonns the 0 ther seven methods,

even the genetic algorithm based algorithm of Subuncuoglu [77]'TholLgh some rcslllts of

other algorithms are better than the proposed algorithm, it must be mentioned here (hat the

proposed algOlitiunholus au objective function wIthmultiple objectives_So it tries to find out

the nllmber of the optnllum stations having the minimum idle time and minimum smoothnc;s

index. So in the other case, it is most likely that the oplmlUm solution of the proposed

algori!hm may give better result than other algorithms with respect to idle time and

smoothness mdex that is achieved through a traue-off between minimum number of 5tations
and minimum idle time.
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6.7 Convergence Analysi~

Genetic algorithms use a selection schcme to seleelllldividuais fi:om the pop"lallon to insert

into a mating pool. Individuals from the mating pool are used by a recombination operator to

generate new offspring, with the resulting offspring fOlnling the basis of the next generation,

As the individuals in thc mating pool pass their gcnes on to the next generation it is d~slrable

that the mating pool be comprised Dfgood individuals. A selec(ion scheme in GAs is ~lmply

a process that favors the selec(ion ofbeller individlJals in the population for thc maling pooL

The selection pressure is the degree (0 which the better individnals arc favored; (he hIgher the

selection pressure, the more the bettcr individuals are favored. This selection pressure drives

the GA tD improve the population fitness over succeeding gencration~, The convergence rate

of a GA is largely determined by the magnitude of the selection pressure with higher

selcetion p«,;sl.lres resulting in higher convergence rates. Genetic algorithms are "ble (0

identify optimal or near-optimal solutions under a wide rallge of selection pressurc.

If thc selection pressllre is too low, the convergence rate wIll be slow, and the GA will

unnecessarily take longer time to find the optimal soll.ltion, If the selectIOn pressure is too

high, there is an increased chance of the GA prematurely converging to an incorrect (sub-

optimal) solution. In addition to providing selcc(ion p«',sure, selection sehemcs should also

preserve population divcrsity a" this helps avoid premattLw convergence, Thc proposed

algDlithm has becn 11m on (wo options of CrDssovcr operator, Onc Cr()ssovcr operator

pedonlls [he 0 peratiDn b y swapping 0 nly 0 ne gcne. The 0 ther c rossovel' 0 pcrator swaps a

eluster of gencs. Therc is an option to control the numbcr of genes to bc crossed-over by an

user del1ned rate. The convergence analysis was done on Arcus83 dataset under scveral

parameters, The results arc depicted in the following section.
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Paramete~

Maximum population: 50

ItCTlltion:30

Crossover method: single gene two point erosKlver
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Graph 1: Convergence Analysis

Maximum population: 50

!lcnltion: SO
Crossover melhod: clustered gene two

point eroS!ovcr
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Graph 2: Convergence Analysis
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Maximum population: 50

Iteration: 50

Crossover method: clustered gene two point eros50ver

Cros50ver rate: 0.001
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Graph 3: Convergence Analysis

From the above results, it Can be concluded that single gene crossover is better than

clustered gene Cro5S0Veras it converge in smaller number of iterations. TIle smaller the

crossover rate. the lower the number of genes in a cluster and the smaller the number of

iterations to converge_
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CHAI'TER 7

CASE STUDY

7.1 Introduction

SALBP is a classic optimization prob1cm, having been tackled by rcsearchcrs o,er

several decades. Many algorithm, have bcen proposed for the problem. Yet despite the

practical imponanee of [he problem, and the vurious eff0l1s that have bcen made to ta~kle

It, little commercially available software is avaibble to help industry in optimizing their

lines, It appears thalthe gap'between the available results and their disseminatJOn in

today's industry is probably due to a nllsalignment between the academic LB pmb1cm

addressed by most of the approaches, and the actual pmblcm being faced by the indnslly.

LB is a difficult optimization problem (even its simplcst fonus are NP.hard) rI8]. So the

approaeh taken by researchcrs has typically been [0 simplify it, ill order to bring II to a

level of complexity amenable to optimization tools. 'Mule this is a perfectly valid

approach ill gcneral, in the particular case ofLB it led to some defini[]ons of the problem

that 19lJOremany aspects of the real-world problem.

To establish the robustness of the proposoo algoritiun, it has been Implemented to solve u

practical hne balancing pmblem. ln this case study, the assembly linc of the

RahimAfrooz Butteries Limited has been stndred and balanced ~pplying tire algoritlml.

1lle data has been collected fmm a recently conducted time study and fuzzy jib tIme has
been constructed for each specific job.
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7.2 Overview of Problem Area

Rahimafrooz Batteries Limited (RBL) is the largest lead-acid battery manufacturer in

Bangladesh and offers an exlensive range of automotive & specializcd industrial balter)'.

It manllfaclures over 300 different types of alllomotive and industrial batteries. It, pbnt

i:; ISO 9001 & ISO 14001 certil,ed. It is one of the key players in South Asia in its field.

RBL has also extended its product hne to secure power solution with UPS, Rectifier and

VRLA Batteries with collaboration of Enersys-USA, Eltck-Nomay, AEES-FrallCe.

RilL has a suceesstul slory of installing solar power in the relllote rural areas of

Bangladesh. It has succe5slully installed more lhan 10,000 home solar systcms in the

remote rural area, orBanglade:;h.

Rahimafrooz has slate of the art manufacturing plant. It is equipped with all latest

technologies with complete air treatmcnt and lead-recycling management. RilL produces

different types of ballene:; to meet the local and intemationul market.

Its capacity ill Automotive Battery is 660,000 (N50) units per allllnm and 15 million AH

of Industrial Battery per annum. All the products are manufactul'ed undcr ;lr;el quality

control and ensured by internalional certifications.

lts main product rangc includes:

Automotive battery

Motorcycle baltery

Apphance battery

Deep cycle - Flat plate ballery

Industrial tubular battery

VRLA battcry

UPS

Solar system
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• Cells:

• Battery

Polarity:

• Plates:

It hilS different technical collaboration agreements with Lucas Battcry Company, U ,K,

Technical support Group (TSG), Hawker Batteries, UK, lnvensys, UK, Hawker Batteries,

UK, EHek - Norway, AEES - France to ensure the quality of bat tel)'.

Unit-2 0 f RBL, In Panisail, Zirani bazaar, S avar, G Jzipur, is q nite huge and produces

mainly automotive halleries. In this thcsis data has been collectcd from umt-2 of RBL to

implement the TS-based algorithm.

7.3 Some Important DcfinitioRs

Before cxplonng the specific problem arca the following definitions should be noted:

• Active Chcmically active compounds in a cell or battery that convcrt from one

Matcrial: composition to Jnother while producing eUTTent(electrical energy) or

~ecepting current from an externJI circuit.

A baUery has two poles or posts. The positive baltery post is uwally

marked POS, P, or + and is larger than the negative post which is usually

marked NEG, N, or". The polarlty of the chorgcr ond bnucry must mulch

10 avoid damage 10the b~llery and churger.

The bu~ic dectrochemicol current producing unit in 0 baltery consisting of

a set of po~itive plates, negative plmes, electrolyt~, ~eparator ond casing.

There are six eells in a 12-volt 1cod-ocidbattery .

• Container: The polypropylcnc or hurd rubbcr casc thai holds platc,;. electrolyte ~nd

separators .

• Eleclrolyte: A solution of sulfuric acid ond water thm conducts current through the

movement of ions (c1mrged pattic1cs in th~ electrolyte solution) between

positive and negative plolCs. It supplie~ wlrale ions 1'01'reaction with th~

octive nmtcl'inl of both PO,ltlve and negative plates.

Flal, typically rectangular componcnls that conlain the active malcrinl and
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a mechanical support structure c~lIed a grid, which also ha, an d~ctri~al

function, carrying electrons to and froln active materiaL Plates are either

pO:;ltlve or negalive, dependmg on ilie actIve material iliat It holds.

7.4 Specific Problem Area: Assembly line in RBL-2

There are two assembly lines in Rahimafrool balleries ltd. (Unit-2). The configurations

of the asscmbly lincs arc straight. TIIC products arc transfcrrcd from one workstation to

another over roller conveyor. At each worhtation different operations are perf011l1ed.

From a reccntly conducted time study, it is observed thn! the wOl'htations eycle time are

not equal for each workstations and the line is not balanced. So the proposed algonthm

can be applied to (he existing assembly line configuration and the new design can be

proposed.

7.4.2 Assembly' Operations

The assembly of the differcnt types ofbattcrics rcquil'es a total of 14 operations. The task

required for the assembly operations are:

1. stacking or separating

2. group buming

3, attaching side pack and inserting in the container

4. short and polarity test

5. inter-cell welding

6, shcar testing

7. scaling the container

8, burning the pole

9. hrushing (he pole and makmg it positive or negatlvc

10, performing the leak test

I L attaching the pass tag and bar code

12. attaching the aluminum foil
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13. wrapping the battery with required vent plug

14. packagmg

Table 7.1: Prccedence Graph

Job (Ji)

1

2

3

4

5

6

7

8

9

10

11

"
13

14

Table 7.2: Production quantity of Battery

[lIllI/edillle

Predecessor

2

3

4

5

6

7

8

9

10

11

12

13

Type of battery
Maximum

VHV 1500 PCM29 PCM27 N 120

Maximum 245 245 245 285 285
qnantity/shift
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So m 8 hour shin or 480 minutes the workers produce 285 pieces of boUer)'. So it needs

(480/285) ~1.68 min or 101 second for producing one battery. So the ruu.y cycle lime for

the process is (l01 113 117)

From the conducted time study, the fuzzy job lime for each job as follows:

Table 7.3: Fuzzy Task Time

.fob (JJ p q ,
1 48.66 52.01 53.66

2 55.66 58.23 62
3 36.66 40.9 47.33

4 18,5 20 23
5 27 30.5 3G

6 23 26.8 32
7 18 20 26
8 7 20 30
9 8 10 13
10 20 22.1 28
11 6 8 10
12 18 19.5 26

13 24.5 27 30
14 30 34 37

7.4.3 Result

Applying proposed Ime balancing algorithm the result is:

Optimum Number of Station: 6

Total idle time: (152,01288,96 361,02)

% of 1dle Time: (21.65 42.62 59.57)

Efficiency: (48.57 57.38 74.92)
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CHAPTER 8

CONCLUSION AND RECOMMENDATIONS

8,1 Cunc!lIsion

This reseatch work has customized a genetic algorithm Ime balancing; algorithm in a

fuzzy environment, This algorithm can bc cmploy~d to balance hoth the fuzzy and

crisp environment. Thc objective of the algorithm is not only confined to find out the

minimum number of station but also to minimi7,e idle tim~ and lllinnni~"

.,moothne" index. So the outcome i, a highly balanced line WIth mi"imutllldk time

and possIble minimum n umber of sratlons, The algOl ithm ha, been benehm"rked

with two well known algonlhm, namely 'EUREKA' [71) and 'SALOME' [72]. The

result shows that the proposed algorithm ohm,s a small amount of relative deviation.

The algorithm has also been compared with eight different algonlhllls fot' solving

assembly hne bal~neing prublellllllethod.

It must be mentioned that ~11of the previo", algorithmlla"~ the objective of finding

out the minimum number of station,. The pl'oposed "Igorithm l1as multi obj~etive

and it tries to find out the opllmllm eombin~tion u f minimum numb", oJ's tallOn,

with mimmum idle time and ,moothness Index.

8.2 Recommendations

The perforrmnce of the pre, en ted GA-based algorithm can b~ further a!l~lyzed in

tenns of CPU time by comparing it with other best known algonthms fot' assembly

Iin~ b"laneing problem In the croSsover operator, ordn crossover mclhod has been

used. Other ~rossover operator c"n be used ~lld compared "ith the proposed

algorithm to observe the result. If the ,ome of the stations call be fl'O~en after a

.peciflC !lumber of Iterations then the computation timo will be lower, In this case

the fuzzy time is considered Triangular fuzzy number. .Jh~ algorithm c"n also be

u,ed to handle other type uf fuzzy number"



REFERENCE

[1] Baybars, I, "A survey of cxact algorithms lur the simple assembly line

balancing problcm". Management Science, Vol. 32, pp. 909-<)32, 1986

[2J Scholl, A., "Balancing and sequcllcing a'scmbly lines", 2nd ed. Physica,
Heidelberg, 1999.

[3J Talbot., F.B., Patterson, J.H., Gehrlein, W.V., "A comparative evaluation of

heuristic linc balancing techniques". Managemcnt Science, Vol. 32, pp. 430-454,

1986.

[4] BQctor, F,F., "A multiple-nile hcuristlc for asscmbly line balancing". Journa/ of

the Operational Research Society, Vol. 46, pp. 62-69, 1995.

[5] POllnambalam, S., Aravindan, G., Mogilceswm Naidu, G., "A multi-objective

genetic algorithm for ~olving assembly line baluncing problem". international

Journal of Advanced Manufacturing Teehnolog)', Vol. 16, pp. 341-352, 2000.

[6J Hackman, S.T., Magazinc, M.J" Wce, T.S., "Fast, effccllve algorithms luI'

simple assembly line balancing problems", Opera/iom Rcscarcli, Vol. 37_pp. :916-
924,1989.

[7] Scholl, A., VoB, S., "Simple assembly line balancing-Heuristic appm~che5",

Journal of l-lellnslics, Vol. 2, pp. 217-244, 1996,

[8] IIclgeson, WY., Birnie, D.P., "As>cmbly line balancing lIsing the ronkcd

posillonal weight technique", Journ,,1 of Im/u,lIr,,,1 engineering, Vol. 12, 1'1',394-398,

1961.

79



[9] Wcc, T.S., Magazme, M.J" "Assembly Ime balanClng as gencrah~ed bin

packing". OperatiOilSResearch Lellers, Yol. L NO.2, pp. 56-58. 1982,

[10] Arcns, A.L, "COMSOAL: A computcr method of scquencing opcralions for

assembly lincs". International Journal of PJ'OductioJlResearch, VolA, pp. 259-277,
1966.

[11] Bonney, M.e., Schofield, N.A., Green, A., "As,embly line balancing and mixed

model linc sequencing". Procecdmgs of the Fifih INTERNET World Congress,

Birmingham. pp.112-121, 1976,

[12] Scholield, N.A., "Assembly line balancing and thc applicaLioll of computer

techniques". Computers and Im/ustrial Engineerillg, Vol. 3, pp, 53-69, 1979,

[13] Tonge, F.M" "Assembly line balancing usmg probabilistic combinations of

heuristics". Managemenl Science, Yol. II, pp. 727-735, 1965.

[14J Bellllett, G.B., Byrd, J., "A trainable heunstic proccdure for thc a%embly linc

balancing problem". AIlE TransactJO"",Yol. 8, pp. 195-201, 1976.

[15] RaQuf, A., nUl, e.L, EI.Sayed, b:.A., "A new heuristic uppmueh to as~cmbly

line balancing", Computers and Industrial Engineering, YoJ. 4, ]Jr, 223 -234, Ino.

[16] Baybars, I., "An efficient heuristic method for the simple ussembly Ime

bulallcillg problem". IlIIernatlO"al Jour/lal of Production Research, Vol. 24, pp. 14<}-

166,1986

[17] Tonge, F.M" "Summary of u heuristic line baluncing procedure" MwwgclilcJII

Sclencc, Vol. 7, pp. 21-39, ]%0.

80



[18] Freeman, D,S., S"ain, R.W., "A heuristic technique lor balancing automated

assembly lines". Research Repa!"/ No. 86.6, !nc1ustrwl and Systems Engineering

Department, University of Florida, Gainesville, 1986,

[19J Fleszar, K., Hmdi, K.S., "An enumerJtive heuristic and rcdllctlOn methods for

the assembly linc balancing problem". European Joumai of Operalional Research,

Vol. 145, pp. 606-620, 2003.

[20] Pinto, P.A., D~nnenbring, D,G., Khumawala, B.M" "A heuristic network

procedure lor the assembly lme balancing problem". NaV<l/ Res('arc/I Lugislles

Quarleriy, Vol. 25, pp. 299-307, 1978.

[21J Tonge, r.M., "A heuristic program of assembly line balancing", Englewood

Cliffs, NJ, 1%1.

[22] Moodie, c.L., Young, H.B., A henristlc method of assembly line balancing for

assumptions of constant or variable work clement times. Journal of indus/rial

E"gineering, Vol. \6, pp. 23-29, \965,

[23] Arcus, A.L., "An allalysi~ of a compllter method of Seqllcncing Assembly Lme

Operations", Ph.D. dissen~tion, University of CnhJomla, Berkeley, 1963.

[24] Hoffmarul, T.R., "Assembly line balancing with a precedence m~(rix".

Management Science, Vol. 9, pp. 551-562, 1963.

[25] Gehrlein, \V.V., P~ttersQn, J.H" "Sequcncing for assembly lines with integer

task times". Managemelll Science, VoL21,pp.1064-1070, 1975.

[26] Dar-EI, E.M.;'MALB. A heuristic techniquc for balancing largc-scale single-

model as,embly lines"" AfF,E TrallsaCliolls., Vol 5, No.4, pp 343-356, \973.

81



[27] Dar-E!. E.M" "Assembly line balancing _ an improvement on the ranked

positionnl weight teehmque", Journal of illdus/rial Engineering, Vol. 15, No.2. pro

73-77,1964.

[28] Wee, T. S, and Magazine, M., "An ef1ieienl branch and bound algorithm for an

assembly line balancing problem - palt I: minimize the number of work stations",

University ofWalerloo, Ontario, Canada. 1981.

[29] Talbot, F.R, Patterson, J.H., "An mteger programming algoritlllll wilh nehvork

euts for solving the assembly line balancing probkm". Management Science, Vol. 30,

pp. 85-99, 1984.

[30] Schrage, 1., BJker, K.R., "Dynamic programrnmg solntion of sequencing

problems with precedence constraints", Opera/ioll.\' Research, Vol. 26, PI', 444-449,

1978.

[31] Held, M., Karp, R.M" Shareshian, R., "Assembly line balancmg-Dynamic

programmmg wilh precedence constraints". Operations Research, Vol. 1I, pp. 442-

459,1963.

[32] Dar-El, E,M., Rubinovitch, Y" "MUST-A multiplc solutions technique for

balancing single model assembly lines, Management Science, Vol. 25, pr. 1105~

1114,1979.

[33] Glover, F., Lab'Una, M., "Tabu search". Kl",vcr Academic Publishcrs, Boston,

1997,

[34] Aarts, E.H.L., Ko~t, J.H.M., "Simulatcd annealing and BolVmann machines: A

stocha~llc approach 10 combinatol'ial optimization ami neural computing", Wiley,

Chichester, 1')89.

82



[35] Chiang, W.-c., "The application or a tabu search metahcuristic 10 the assembly

line balancing problem", Annals ojOperatiolls Research, VoL 77, pp. 209-227, 1998.

[36] Lapierre, S.D" Ruiz, A, Soriano, P., "Balancing assembly hncs with tabu

search". European Journal ojOpera/ional Research. VoL 168, pp 666-693, 2006,

[37] Heinrici, A, "A comparison between sillllllmed annealing and t~bu search wIth

an cxample from the production planning"- In: Dyckho[f, H. ct aL (Ed;,), Operations

Research Proceedings, Springer, Berlin, pr. 498-503,1994.

[38J Suresh, G" Sahu, S., "Stochastic assembly lme balancing using simulated

annealing".intema/w,,,,i Journal oj Prod"clwn Research, VoL 32, pp, 1801-1810,

1994.

[39] McMullen, P.R., Frazier, G.V., "Using simulated annealing to >olve a multi-

obJectlVe assembly linc balancing problem with parallel workstations", Internlltional

Journal of Produel;on Research, VoL 36, pp, 2717-2741, 1998.

[40J Bautista, J., Pereira, J., Ant ~lgorithms for assembly hna balancing. LccIIIl'''

NOle;' m Comp"t"r Sctence 2463, pp, 65-75, 2002.

[41J McMullen, P.R., Tarasewlch, P" "Using ant techniques to solve the assembly

line balancing problem". IJE Transactions, Vol. 35, pp. 605-617, 2003.

[42] Hollanu, J. H., "Adaptation in natural and artificial system~", The University of

MichIgan Press, Ann Arbor, MI, 1975.

[43] Goldberg, D,E" "Genetic algorithms 10 >carch, optimi7.<ltiOlland machine

learning". Addison.Wesley, Reading, MA, IQ89,

83



[44] Leu, Y.Y., Matheson, L.A, Rees, L.P., "Assembly line halancing using genellc

algoritluns with heuristic-genera led initial populations and muUiple evaluation

critcria ". Decision Sciences, Vol. 25, Pl'. 5~1-606, 1994

[45J Anderson, E.]., Ferris, M.e., "Genetic algorithms for combinatorial

optimization: The assembly line balanciug problem"- ORSA Jour"a! Oil Computing,

Vol. 6, 1'1'.161-173,1994.

[46] Suresh, G_, Vinod, V.V., Sahu, S., "Gcnctlc algoritlllll for a,>sembly line

balancing". Production P!anmng alld COiltrol,Vol. 7, Pl'. 38-46, 1996.

[47J Zadeh, L.A., "Fuuy Set,", InformallOn "lid Corl/rol, Vol. 8, pp 338-353, 1905.

[48] Tsujimura, Y., Gen, M., Kubota, E., "Solving fUZlY assembly-bne balancing

problem Witll genetic algoritluns". Compllters and I"dustria! Engineering, Vol. 29,

1'1'.543-547,1995.

[49J Dcckro, R.F, "Balancing cycle time and workstations", JIE Transactions, Vol.

21,pp. 106-111, 1989.

[50] Scholl, A, Becker, e., "Stale-of-the-an exact and heul'istic solution proccdures

for simple assembly line balancing", Jellaer SchriJten zur Wirisch"Jrswissenschafi.

Vol. 20, University of lena, Gelmany, 2003

[SIJ Rosenberg, 0., Ziegler, H" A comparison of heuristic algoritlllllS for COSl-

oriented asscmbly line balancing", Operatiolls Research, Vol. 36, pp. 477-495, 1992.

[52] Amen, M., "An cxaet method for co~t-oriented assembly line balancing".

Inlernational JOUrH"/oj ProductiOIl Economics, Vol. 64, Pl'. 187-195,2000

84



[53] Scholl, A., Bccker, c., "A note on "An ex~ct melhmj for cost-ol'ic11lcuassembly

line b~lancing". Jenacr Schr!fle" zur Wirtsr/wjisw;,sem chaji, Vol. 22, universIty {)f

Jena, Germany, 2003

[54] Amen, M., "Heuristic melhods for cost-oriented assembly line balancmg: A

SllrVey".International Journal of Produelion Ecollomics, Vo1.68, pp.1-14, 2000

[55] Malakooti, 8., "Asscmbly line balancing with bulTer, by multiplc cntcriu

oplimizallon", Illternational Journal of Productioll Research, VoL 32, pp. 2159-2178,

1994.

[56] Malakooti, 8., KumJr, A., "An expert systcm for solving multi-objective

asscmbly Iinc balancing problems", I"lernallOJJai JOllrnal of Production Research,

VoL 34, pp. 2533-2552, ]996.

[57] Rosenblatt, MJ., Carlson, R.C., "Dcsigning a production line to maximize

profit",JfE TransaelJOIlS,Vol. 17, pp, 117-121,1985.

[58] Martin, G,E., "Optimal design of production lincs". jJJlcmalJOlial Journal oj

Production Research, Vol. 32, pp, 939 -lOOO, t994.

[59] E,H. Mamdani, S. Asslhan,"An experiment in linguistic synthcsis Wilh ~ fuzzy

logic conlroller". IllIemaliollaljourna/ of Mnll-A!achme SIu<!Jes,Vol. 7, NO.1, pp, 1- '

13,1975.

[60] Roy, B" Vincke, "Relational systems of prefcrcncc with one or more pscudo-

crileria: Some ncw concepts and results", Management Scirnec, Vol. 30, pp, 1323-

1335,1984.

85



[GJ] Vanegas, LV., Labib, A.W., "Application of new fuzzy weighted average

method to engineering de5ign evaluation". Internalwnal Joumal of Productioll

Research, Vol. 39, No. G, PI', I J 4 7-1162, 200 J .

[62] Yao, J,S., Wu, K., "Ranking fUI,,';ynumbers based on decompo~ltion pnncipJc

and signcd distance", Fuzzy Sets a"d Systems, Vol. J 16, Pl'. 275-288, 200[).

'[63J Nils Aall Barl'icclli. "Symhiogcnelic evolulion processcs realized by arljf;ei~l

methods". Mellwdos, Vol. 9, Pl'. 35-36, 1957,

[64] Alex S. Fraser, "Simulation of Genetic Sy~tems by Automatic Digital

Computers. I. !ntroduclion." Australia" Journal of Biological ScienL'es, Vol. 10, Pl'.
484.491, 1957.

[65] Fraser, Alex and Donald Burnell, '"Computer Models m Genellc5", McGraw-
HIll, Ncw York, 1970.

[GG] Cl'Osby, Jack L., Computer Simulaliol1 In Genetics, John Wiley & Sons, London,
1973.

[67] Bautisla, J., Suare?" R., Mateo, M., CompallYS, R, "Local search heurislics for

[he assembly line balancing problem with mC[)Illpallbilitics belwcml lasks."

Proceedings oflhe 2000 IEEE International Confercnce Oil Robotics ,,,,d AutomatlOiJ,

San rranmco, CA, pp. 240+-2409, 2000.

[68] Kim, Y.K., Kim, Y., Kim, Y.I" Two-sided a5sembly linc balancing: A genelic

algorithm approach. Productioll Pla""'"g a",1 Contrul, Vol. 11, Pl'. 44-53, 2000,

[69] Davis, L., "Applying algorithm, lo epl~latic domains".

r"ternational Joint Conference 'ill Artificial IlItelligcllcc, 1985.

80

!'/"occcdiIJ"s ofo .



[70] Dc .long, K. A., "An ~nalysis of (he behavior of a class of genetic adnp!ive

systems". Doctoral Dissertation, Univcrsit y 0 f Michigan, 1975.

[71] HoITmann, T,R., "EUREKA: A Hybrid Systcm for Assembly Line iJalancing"

Managemenl Science, Vol. 38, pr, 39-47, 1992

[72] Scholl, A., Klein, R., "SALOME: A bldlreetional branch and bound procedure

for assembly line balancing". INFORA1S Journal 011 Comp"ling, Vol. 9, pp. 319-334,

1997.

[73) Goncalves, J. r., Almeida, 1.R., "A hybrid genetic algorithm for a~sembly hnc

balancing". Journal 01Heuristics, Vol. 8, pp. 629-642, 2002.

[74J HolTmann, T.R., "A5sembly Line Balancing: A Set of Chal1<;;ngingProblems."

Inlemaliuna! Journal 01Production Research, Vol. 28, pp. 1807-1815, 1990.

[75] Scholl, A., "Data of Assembly Linc Balancing Problem,", Working Paper, TH

Darmstadt, 1993.

[76] Nevins, A. 1. "Assembly line balancing using best 11lld se~reh". Marwgumcnl

SClencc, Vol. 18, pp. 529-539, 1972.

[77] Sabuncuoglu, I., Ercl, E., Tanyer, M" "As5embly line balancing usmg genetic

algOlitoms". Journal ollmelilgeill Manuluc-Iurmg, Vol. II, pp. 295-310, 2000.

87



Appendices



" ~ 0 0 0 ~ " 00 , 0 0 0 00 , 00 " 00• 00 0 0 00 N 0 0000 '.~ 00
~ 0 ~ 00 0 00 00 00 0 00

~~
00 00 0'" 00

~
00 0 ~

00
~

00 0 00 ~ " " 00 0 N 0 '00 " 00 6,-0 - 0 N ~ N N - " 0 0 - - " 0 " 0 ""
"•00 '00 00 - 00 00 00 0 00 " 0 00 g 00 $ g 0 00 N '00, 0 0 : g 00 00

~ 0 00 00
~

00 ", " 0
~ 0 " ,• N ~ 00 00 00 , - ,~0 00 , 00 - 0 00 , 00 ~E 00 00 0 00 - , , - , 00 00 • 00 00 00 00 00 00 , • 00 00 00

"
~• 00 " 00 00 oo, 0 00 00

N
00 0 00 00 • 00 00 00 00,- , 00 ,

" 0 00 " " 00 00 - ~
00 00 N - 0 00 N 00 00 00- , • 0 00 00 oo, 00 " 00 00 00 - N 00 N N - N

00 " 00 - " 00
00 0- - 0 0 0 " - - - - " -"•

•
" • 00 00 00 00 00 00 00 00, 0 00 00 - 00 0 0 , 00 - 00 0 N 00 00, " 0 00 00 - 00 0 0 00 - 00 00 00 , 00 0 0 oo, 00 - 00 00 -" 00 " 00 0 00 - - " - 00 00 - N,-

0 ,
~ E '0 •

~ - 0 • - - 00 -00 • 0 0 0 00 0 0 - - " - 0 - 00 - 0 - ill 00 0
N - 0 0~ ~ =q

~- .~" 00 • - " 0 0 " 0" ,, 00 00 00 00 • - - " - 00 , 00 - , 0 0 00 - 0 " 0 00, 0 •
",

" ,•,
" ~~ .~ 0 00 0 0 - 00 0 • - 00 00 0 0 00 00• 00 " 00 0 - N 0 00 00 - 00 00 00 " " 0 0 00 0 00 Ooo • "" • 0 - " - 00

" " "• -00•- " - ,,0 0
00 00 N 0 00 - 0'" " a • ooo 00 00 00 - - - " " - 00 - , 00 00 00 N, 0 • 00"Z0

•0
~ ~

,0 00 00 00 • 00 • • • • 00 00 • • " " 00 00 N N 0 • 0 00, N 8 0 " N " " N N " " N N 00 '0 00 • 0 " - - "• "
00 0 0 00 00

00 - - ~ eo 00 - 00 • 00 • " " 00 '0 00 00

" • , - - - - - eo • eo 00

" 0

"
~

0,
" 00 " 00 0 • N 0, , 0 0 " 00 '0 , " N

00 00 • • • 00 0000

~
~ 0 " " N • N 00 - - 00 00 , " , 00 " • 00 , 0 00 0 00 N - - - " " - • •0 00

~ u
,, 5• - g• 00

000 00 0 00• 0 , 0 00 • ,• z •"< •
,!:i
00 •

~

, 0 0 • •, 0
0 • , 00, 00 • 00 "l •• 00

~ < 00 >2 &;0: -
•



Table 6.2 <ontluned

Tolal Optimal Ideal EUREKA Pmpo-.d ,'el. d••..

Anlhor No of C}'deTim. rro<e"in~ No of Minimum 110of Algorilbm Total Idie % ••f Idle Efficiency from
operation, Time Stalion, Idle Time ,tatlon no of Time Time EUREKA

'lalion [%J
on 3510 , '" , , '"' 16.75 95.15 0.00

Arcus "' 5048 75707 " 5061 " " 10109 IL78 88.22 6,25

5853 75707 " 6235 " " 12088 13,77 8623 no
6842 75707 " 6397 " " 6397 7.79 9221 0.00

7571 75707 " 7574 " " 15145 16.67 83.33 9.09

8414 75707 W 8433 ;0 '" 8433 10.02 89.9& 0.00

899R 75707 " 5275 , , 5275 6.51 9349 000
10816 75707 , 10E2I , , 10821 12,51 87.49 '.00

Areus '" 5755 150399 " 4986 " " 39516 20.81 79.19 17,86

8847 150399
"

8847 " '" 26541 " 85.00 I 1.11

loon I 150399 '" 1003.1 W " 20060 11.77 88,23 6,25

10743 150399 " 10746 " '" 21489 P.5 8750 ."
11378 150399 " 8893 " " 20'71 I 1.88 ES.l2 7.14 I17067 150399 , 3204 W W 20271 11.88 88.12 II II

A,'erage Relalive D"'iation (%) 11.50
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AI'PENDIX D. COMPUTER CODE (C LANGUAGE)

#illclude<lime. h>
#include<math.h>
#include<stdio.h>
#include<std1ib.h>
#include<string.h>
#mclude<eonio.h>
#mclude<algorithm>
using name'paee std;

#deJine MAX 500

#de(ine For(i,a,b)

typedcf_inl64 LL;

for(i=( a);i«b );i++)

int i"ac[] = (1,1,2,6,24,120, nO) ;
int TlerationNumber;

int MaximwnPoolSize;
double CrossOverRatc;

ill! n;
int prc[MAXJ[MAXJ; I/pre[i][j} = 11[(i) precedes (j)

SllUctFuzzy{
double d,e,f; lid < c < r

JCycleTime, Zero. BcstTotalldleTimc, PercentldlcTimu. Effi~iency, TOlaiJobTimc;

int DcstStationNumber, nJobSlation[MAX];

inl npop;
S!lUetChromosome {

int index[MAXJ;
int StationNumber;
FlllZY FrV;

}poplilation[3~ 1000J , ~rossed[21;

strLLct Job{
Fuzzy llille;
double SD;

}J[MAXJ;

/'
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Function Prototype5
'1

int sort _desccnd(const vo".! * ,const void *);
int sort ascend( const void * ,const void *);

Fuzzysqr(Fuuy);
fuzzy sqrt(Fuay);
Fuzzy operutor/(Fu7..Zy ,Fuzzy);
Fuzzy operator/(Fuuy ,double);
Fuz~y opcrator"(Fuzzy ,Fuzzy);
Fuuy opcrator*(Fuzzy ,double);
Fuzzy operator*(doublc,Fuuy);
Fuzzy operator+(Fuz7.Y ,Fuzzy);
Fuv-y operator -(Fuzzy ,Fuzzy);
bool operator«Funy ,FuLLy);
bool opcralor>(Fuzzy ,Fuzzy);

void PrintFuzzy(Fuzz,y);
int $canFuzzy(Fuzzy *);

int ScanAndlnil(j;
void PrintBox(ehar ~);

void PS{Chromooome &);
bool Va!id(Chromo'ome &);
boolopcralol (Chromosome,Chromosome);

//getting the St~tion number and Fitness Function Value of a Chromosome
void Process(Chromosomc &P){

in! i,TIS;
Fuzzy RemainTime;
Fuzzy TotalldleTime, IdleTime[MAX];
FU72y swn,sum2;

RemmnTime = CyclcTmle;
TOlalJdIcTime = Zero;

liS =0;
I'or(i,O,n){

it{ J[ P .index[i] ].time <: Remain TmlC )

RcmainTimc = RemainTime - J[ P.index[i] ].lime;
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}

J

else(
IdlcTimc[ns] = RemainTime;

TotalldleTime = TotalIdleTimc + JdlcTimc[ns];
RemamTime = CyclcTime - J( P.index[IJ ].time;
ns++;

}

I
IdleTime[ns] =RcmainTime;
TotaJldleTime = TotalldIeTime + JdleTime[ns];
ns++;

sum = sum2 =Zero;
ForO,O, ns)l

SIll, = sum + IdJcTime[i];
.um2 = sum2 + ~qr(ldleTime[i]);

P.StationNmnber = ns;
P,FFV = sum f ns + sqrt(sum2);

void CrossOverO (

int i,k,pos;
intgcne[4];

whilc(l){
k = randO % n;
if( cro.sed(O]'index[k j != crosscd[l ].index(k] )

break;
}

genc[O] = cros.cd[O].index[k];
gene[I] = crossed[l].indcx[k];

for(i=O;i<n;i++ )
if( crosscd[OJ.index[i] = gcne[I])

break;
crossed[Oj.mdex[k] = genc[I];
po:; = ,;
for(i=pos;i<n_l ;i++)

cro:;scd[O].index[i] = crossect[O].illdex[i+1];
crossed[O].indcx[n_l] = genc[O];
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}
else

fori l={l;i<n;i++)
if( crossed[l].index[i] = genc[O])

brcak;
cro~sed[ 1]'indcx[k 1= gcnc[O];
pos = i;
for(i=pos;i<n_1 ;i++)

cros,cd[l].indcx[ i] = crossed[ 1J.index[i+ 1];
crosscd[l].index[n_IJ = genc[lJ;

l'roccs,( crosscd[OJ );
Process( crossed[l]);

}

void Scramble(Chromosomc C, ill! k){
int n I , max chrom, count;
int p;

nl = n-k;
If(nl<7){

max_chrom = [ac[nl];
i[{MaximumPooISizc < max chrom)

max chrom = MaximumPoolSizc;

max_chrom =MaximumPoolSile;

counl = 0;
p= 0;
whilc{counl < max_chrom && ++p < 1000) {

If( Inext-permUlation(C.index + k, C.index + n))
brcak;

if( Valid(C)){
Process{ C);
population[npop++]" C;

}
count++;

}
}

voidMutationO{
int k;
jf( Valid( crosscd[OJ)) popliialion[npop++] = crossed[O];
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}

ilt Valid{ crosscd[l]))

k = rundO % 11;
Serarnble( crossed[O] , k);
Seramble( crossed[l], k);

popul~liul1[l1pop++]= crosscd[l];

fu7,l.y GetTotal IdleTimc(Chromosome P) {

int i , ns;
fuzzy RemoinTimc;
Fuzzy TotalTdleTimc, IdleTimeIMi\Xj;

RemainTime = CycleTirne;
TotalldleTime = Zero;

ns = 0;
For(i,O,n){

ir( J[ P.indcx[i] ].time < RernainTime)
RemainTime = Rem~inTime _J[ P.index[i] ]'l1mc;

else{
IdIeTime[ns] = RemainTime;

TotalldleTime = TotalldleTime + IdleTime[nsJ;
RemainTime = CycleTime - J[ P.mdcx[ij ].lime;
nJobStalion[ns] = i;

ns++;
}

}
ldleTime[ns] = RemuinTimc;
TotalIdlcTime = TotalldlcTime + IdlcTime[ nsJ:
nJobStalion[nsj = n;
ns++;

return TOlalldleTimc;
)

VOId inil() {
Zero.d = 0;
Zero,e = 0;
Zero.f= 0;
srand( time(NULL) );
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intmainO{
int i;
int step, k;
fuuy Min,Max,A~g, Total;

initO;

whiJe( ScanAndInitO = 1 )(

I!dctcrmining the MAX SD based sct
For(i,a,n)

population[O].index[i] = i;
qsort( population[O].index, n, sizcoltJntj, sorl dcscend);
Proccss( populaiion[O] ); -

!!determining the MIN SD bascd set
For(i,O,n)

population[l].index[i]'" i;
qsort( popuJation[lj.index, n, sizcof(mt), sort_ascend);
Process( popuJation[l]);

For{step, 0, llerationNumbcr){

npop = 2;
crossed[OJ = population[OJ;
cl'Ossed[1] = population! I];

ForO,O,n * CI'OSsOVCrRale)
CrossOverO;

Mutation();
sort(popuJation , population + npop);

Min = pOpUlallon[O].FFV;
Max = popuJation[npop-l].FfV;
Avg = Zero;
For(i,a,npop)

Avg = Avg + population[i].FFV;
Avg = Avg! «(doubJc)(npop));

printf{"ltcration #%dln", stcp+l);
prinlf("MinimUJn FFV = "); PrintFuzzy(Min);
printf("Averagc FFV = "); PrintFuzzy(Avg);
printf("Maximum FPV = "); PrintFuzzy(Max);
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FOr(I,l,npop)
if( !(population[O] = popuJation[i]) )

break;

poplilation[ 1] = population[ i];

)

libest is population[O];
BestStalionNumber = population[O].StationJ\ umber;
BcstTotalldleTime = GetTolalldlcTimc( population[O) );
PcrcenlldlcTimc = 100 * Bes(TotalldlcTime I

CyclcTime); (BestStationN limber ~

PrinIBox("The Best Solution");
prinlf("\n");

1 = 0;
for(k={l;k < BCslSt~tionNlUl1ber;k++){

Total = Zero;
prinlf("Stalion %d:",k+l);
for( ; i < nJobStation[k ];i++){

printf(" %d",populalion[O). indcx[i] + 1);
TOlal = Tot~l + J[ population[O].index[i] ].timc;

)
printf("\n ");

printft"Processilig Time, ");
Prin(Fuzzy(T otal);
prilltf("\n");

prinlf("Fuzzy Idle Time:: ");
Total = Cyc1eTime _Tolal;
PrintFuzly(T ot"l);
printf("\n\n\n");

}
printf("\n");

printf("Tot~lldle Time = ");
PrintFuay( BestTolalldleTmlc);
printf("\n");
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}
,eturn 0;

/'

'/

prinlf("Pcrcenlagc of ldle Time = ");
PrintFuzzy( Percen!IdlcTime);
printJ{"\n");

Efficiency" 100. * T(}w1JobTime i (DcstSt~tionNumber * CydeTime);
printf("EffiClency(%%) = ");
PrintF lilZY( Efficicncy);
printf("\n");

printf("\n\n\n\n\n\n\n");

Other Functions

void PnntB(}x(ehar *Text) {
int i;
mt L = strlen(Text);

1/1sl line
pnntf("%c",218);
for(i=O;I<L;i++)

printf("%c",196);
printf("%c\n", 191);

Il2nd line
printf{"%c",179);
printf("%s", Text);
prinlf("%c\n",179);

113rd line
printf("%c",I92);
for(i=O;i<L;i++)

printf("%c", I96);
primf("%C\Il" ,217);

}

int SeanAndlnil{)l
in! iJ,k;
int bcfore,aJlor;

I/scanning number of jobs
PrintBox("lnpul munber of Jobs (0 to break)");
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}
printf("\n");

scanf("%d",&n);
if(ln) return 0;

printf"("\n");

I/initialization of prec~dcnc~ table _Adj a,cncy list
I'or(i,O,n)

FOr(j,O,ll)
pl'e[l][j] "'0;

/lseannillg TASK mfo
PrintBox("lnput Fuay-Time for e<lchJob"};
TotalJobTime '" Zero;

For(i,O,n){

ScanFLlZZY(&J[i].time);
J[i].SD '" (1[i].time.d + 2*J[i].time.e + J[i] .tim~.f) I 4.;
TotaUobTime '" TotalJobTime + J[i].time;

}
prinlf("\n");

l/scanningCYCLE TlME
Pl'intBox("Inpm Fuzzy-Cycle-Time");
ScallFuny( &CyclcTime);
printf("\n");

Iiscanning Pre,edenee relationship
Printl3ox("Input !'re<;cd~necRelationship (0 0 to end)");

whiJc(I){
II"before" should preeed~ "an~r"
scallf("%d%d" ,&before,&a1ter);

if(!befol'c II !after)
br~ak;

before-_;
aft~r.-;

pre[ before][ after] '" I;

(/all pairs algorithm
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For{k,O,n)
For(i,O,n)

ForO,O,n)
;f(]J~[l][k] && prc[k][j])

pre[i][j] = 1;

PrintBox("lnput Numher of Iteration");
scanl{"%d" ,&IterationNumber);

PrintBox("lnput Maximwn Number of Offsprings in pool");
seanft"'Yod" ,&MaximulllPooISize);

PrintBo>.("lnpl1[ Rate of Crossover");
seanf("%II" ,&CrossOverRate);

rcturn 1;
I

/'
Sorting Job Initially

'/

int sort _desccnd( eonst void *p,cQnst void *q) I

int a - *«int *)p);
int b "" *((int *)q);

if( pre[aJ[b])
if( prc[b][aJ)

rcturn _I;
return 1;

if( J[o]'SD > J[b].SD )retum -1;
return 1;

}

illt sort ascend( eonst void *p,cons[ void *q) {

int a - *{(int *)p);
int h - *«(int *)q);

if( pre[aJ[bJ)
if( pre[bJ[a])

return -1;
return I;

ilt J[ a]'SD < J[b ].SD )rctum -1;
retlim 1;
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}

I'
Chromosome Functions

'I
bool opcrator«Chromosomc A,Chromosomc B) (

if(A.Stationl\'umhcr < B.Stationl\'umbcr)
return 1;

double ~A,sB;

sA ~ AFI'V.d + 2*A.FFV.e + A.FFY.f;
sB - B.FFV.d + 2*B.FFV.e + B.FFV.f;

if(sA < sB)
rerum 1;

return 0;

Ithool Equal(Chromosome &Cl,Chromosome &C2){
bool opcrator=={Chromosome Cl,Chromosomc C2){

mt i;
For(i,O,n}

il{Cl.index[i] ]= C2.mdex[i])
rcrum 0;

retum I;
}

bool Valid(Chromosome &C){
int i;
for(i=O;i<n-l ;i++)

if( pre! C.index[i+iJ][ Cindex[i]] = 1)
return 0;

return 1;
}

I'
Fuzzy Structure Operator & Fl.lllction Definitions

'I

In! ScanFw-zy(Fuzzy ~A) {
if( scunf("%1t%lf"/olf' , &A->d, &A->e, &A->I) == 3)

return 1;
return 0;

}

III

/Ireturn (A < B)

•



}

void PnnlFuzzy(FuzlY A) {
printf\"['Yo,2f, %.2If, 'Yo.21f}", Ad, A.e, A.f),

Fuzzy operator/(Fuzzy A,Fuzzy B){
Fuzzy C;
double v[4];
v[O] =A.d / B.d;
v[l]=A.d/B.f;
v[2] =Af / B.d;
v[3] =A.f/B.f;

sort(v,v+4);

C.d = v[O];
C.e = A.c I B.e;
C.f= v[3];

l'etum C;

Fuuy opcrator/(Fuzzy A,lloublc x){
FuzzyC; Cd=Ad/x;
return C;

)

Fu~zy opemtor*(Fuzzy A,Fuzzy B){
Fuzzy C;
dOllble v[4];
v[O] =Ad * B.d;
vel] = A.d * B.f;
v[2] =A.f* B.d;
v[3] =A.f* B.f;

80rl(v,v+4);

Cd = v[O];
C.e =A.c * B.e;
Cf= v[3];

return C;
}

Fuzzy operalor*(FuZ/.y A,double x){
FlllZYC; C.d = A.d * x;

//return C = A I B

Ilrelurn C =A I x
Ce=Ae/x;

//retumC=A*B

Ilreturn C = A ~ x
Cc = A.c * x;

112

C.f=A.f/x;

C.f= A.f~ x;



}

Fuuy operator*(doublc x,Funy A){
Fuzzy C; C.d = A.d * x;
return C;

!/rctuffi C = x * A
c.e=A.e*x; C.f=A.f*x;

Fuzzy operator+(Fuzzy A,Fuzzy B)!
Fuzzyc; C.d= A.d+ B.d;
return C;

Ifretum C ~ A + B
e.c ~ A.c + S.e; C.f= A.f + S,f;

J

Fuzzy operator-(Fuzzy A,Fuzzy B){
FuzzyC; C.d=Ad.B,f;
return C;

Ilretum C = A + B
C.O= A.e - B.e; C.f= A.I"- B.d;

}

Fuzzy sqr(Fuzzy A){
Fuzzy C; C.d = A.d* A d;

A.f*A.f;
return C;

Ilreturn square of A
C.c= A.c*A.e; C.f=

}

Fuay sqrt(Fuzzy A){
Fuz~y C; C.d = sqrt(A.d);
retum C;

//rcturn square root of A
c.", = sq11(Ae); C.f= sqrl(A.f);

}

bool operator«Fuzzy A,Fl.lzzy B)l {/return (A <B)
if(Ad <8.[ && A.a<B.c && A.f< B,d)

return 1;
relllffi 0;

J

~~~. .
<,' ,................-'
" '!)To jJ, •............. ~

'~-iT.&

l

bool opcrator>(Fulzy A,Fuzzy Bl{ Ilretum (A > B)
if(A.d > B.f && A.e;> B.e && A.f> B.d)

retum I;
return 0;

113


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130

