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ABSTRACT

Excessive deflection of reinforced concrete slabs can cause severe serviceability

problems. In recent years, realistic estimation of slab deflection under service loads

has become more important due to the increasing use of high-strength materials and

due to the use of ultimate limit state design which generally result in thinner

members. This thesis is mainly concerned with computation of deflections of two-way

edge supported slabs. Deflection calculation of slabs is complicated and time

consuming due to the fact that it is affected by cracking, creep and shrinkage etc. The

main objective of the current work is to develop a simplified method for prediction of

immediate and long-term deflections of two-way edge supported slabs.

The work started with the elastic analysis of two-way edge supported slabs. Two

finite element softwares, FE-77 and ANSYS have been used to analyze slabs with

different end conditions. Moment and deflection coefficients charts have been

prepared for easy calculation of elastic and immediate deflections.

Hossain (1999) developed a nonlinear FE module, which was incorporated in the

finite element software FE-77, to model effect of cracking. This has been used in the

current work after proper validation against experimental results. A detailed

parametric study has been carried out and it has been observed that most of the edge

supported slabs are cracked even under service loads if restraint shrinkage IS

considered. Results of the parametric study show that deflection increase due to

cracking is only influenced by level of cracking, aspect ratio and boundary conditions.

Finally design charts have been proposed for easy calculation of immediate

deflections of edge supported slabs. Charts are also validated by comparing with

experiments results. As for long-term deflection, ACI Code (2002) multiplier

approach has been used. ACI Code thicknesses are found to be adequate for most of

the slabs with usual panel size and loading as the incremental and total deflections are

within tolerable limits. Comparison between results of FE analysis and design chart

method have been shown good agreement. With the help of these charts, a designer

can easily calculate immediate as well as long-term deflections of edge supported
slabs.
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CHAPTER!

INTRODUCTION

1.1 Background

A structure or a part of a structure, reaches a limit state when it becomes incapable

of fulfilling its function or when it no longer satisfies the conditions for which it was

designed. Two categories of limit state normally have to be considered, ultimate

limit states corresponding to failure or collapse and serviceability limit states at

which deflection and cracking become excessive. The basic aim of structural design

is to ensure that a structure should fulfill its intended function throughout its life

time without excessive deflection and cracking or collapse and this aim must of

course be met with due regard to economy and durability. Modern structural

engineering tends to produce more economic structures through gradually improved

methods of design and the use of higher strength materials. There is tendency among

designers to produce thinner sections. As for slabs a slight decrease in thickness may

save huge volume of concrete and the dead load of structure also reduces

significantly. However, the designer must not forget the possibilities of excessive

deflection and cracking associated with thinner slabs. Generally different codes

ensure serviceability through minimum thickness provisions. The ACI Code (1963,

2002) suggests guidelines for selecting thickness of two-way edge supported slabs.

However, these guidelines are for normal range of loading and geometric

parameters. The designer may want to use thinner slabs without jeopardizing

serviceability in situations where load is small. Use of thinner slabs is also permitted

by ACI Code as long as deflections are calculated and within tolerable limits. At the

same time situation may arise where ACI Code thickness may not be adequate. In

such conditions, it is important to predict short and long-term deflections accurately

to ensure serviceability limit state design.
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1.2 Scope and Objectives of the Research Work

Two-way edge supported slabs are very common types of slab. Sometimes it is

important for the designer to estimate the deflection accurately to ensure

serviceability conditions. However, reinforced concrete is not elastic, homogenous,

isotropic material as required by linear slab theories. Concrete possesses a

comparatively low tensile strength and reinforced concrete slabs contain cracks even

in service load range. Long-term deflections are also affected by creep and shrinkage

of concrete. The finite element methods to numerically model slab deflections are

complicated and time consuming. The main aim of this work is to develop an easy

method of deflection estimation. To achieve this goal the objectives are set as

follows:

• To model numerically the deflection behavior of two-way edge supported

slabs considering cracking.

• To carry out a parametric study to identify effects of different material and

geometric parameters on deflection.

• To produce a set of design charts which will be useful in prediction of

deflection.

• To calculate long-term deflections using ACI multiplier approach.

• To study the adequacy of ACI minimum thickness provisions.

It is hoped that with the successful completion of the work, it would be possible for

the designer to estimate the short- and long-term deflections of slabs using

simplified design charts. A reasonable prediction of deflection will help the designer

to choose the slab thickness needed from serviceability point of view.

1.3 Outline of the Thesis

The thesis consists of 7 chapters and I appendix, which are outlined in this section.

Chapter 1- General background to the research program and summary of aims and

objectives.
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Chapter 2- Behavior of edge supported slabs; deflection calculation methods by

uncracked and cracked models, and long-term deflection by ACI method and MC-90

methods are discussed. Deflection due to creep and shrinkage are pointed out.

Restraint cracking, construction load, deflection control and permissible deflection

limits are discussed.

Chapter 3- Elastic analysis of different edge supported slabs are performed using

softwares FE-77 and ANSYS and results are compared. Moment coefficients and

deflection coefficients of edge supported slabs are calculated and proposed for

calculation of elastic deflection. Moment coefficients are also compared with ACI

moment coefficients.

Chapter 4- Hossain's (1999) nonlinear FE module is discussed for calculation of

immediate deflection of edge supported slab considering cracking. The performance

of this model is verified against experimental results. A thorough parametric study is

carried out to identify the effects of different material and geometric parameters on

immediate deflections of edge supported slab.

Chapter 5- Nine sets of design charts are proposed for calculation of immediate

deflection of slabs with nine different boundary conditions. The calculation

procedures of elastic and immediate deflection of edge supported slab are discussed

with example.

Chapter 6- Long-term deflection calculation of edge supported slabs with the help

of FE-77 analysis and also with the design charts are discussed. The adequacy of

ACI minimum thickness of slab is also studied.

Chapter 7- Conclusions and recommendations for future work are presented.

Appendix A- Deflection ratio vs. stress ratio curves of two-way edge supported

slabs without consideration of restraint cracking.



CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Reinforced concrete slabs are relatively thin, flat, structural elements, whose main

function is to transmit load normal to their plane. In strength design, the members

are so proportioned that they will have a proper safety margin against failure under a

hypothetical overload state. It is also important that the member performance in

normal service be satisfactory. This performance, termed as serviceability, is not

guaranteed simply by providing adequate strength. Service load deflection under full

load may be excessively large, or long-term deflections due to sustained load may

cause damage to partition walls. There are other serviceability related problems like

visually disturbing wide tension cracks, vibrations causing discomfort etc.

In the past, questions of serviceability were dealt with indirectly, by limiting the

stresses in concrete and steel at service loads to the rather conservative values that

had resulted in satisfactory performance. Now, with strength design methods in

general use that permit more slender members through more accurate assessment of

capacity, with higher strength materials further contributing to the trend toward

smaller member sizes, such indirect method will no longer do. ACI Code (2002)

proposes minimum slab thickness to ensure serviceability and at the same time

allows thinner slabs if deflection calculation permits so. ACI Code also provides a

simple deflection calculation procedure.
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Figure 2.1 Slab action at a corner.

d

If individual loads are considered first, it is apparent that a concentrated load on a

slab supported on its edge is likely to create a zone of sagging moments about its

point of application. When a portion of a slab is bent about any axis, Poission's ratio

effect causes a curvature, of opposite sign to the main bending curvature, about the

orthogonal axis. Thus, application of equal and opposite couples about two edges

causes a saddle shape to form. This effect and the inherent torsional stiffness,

produces a tendency for slab to lift off support at corners. In Fig. 2.1, a corner of a

slab resting on two walls is shown. The deflection profile on diagonal A-A' due to

loading is compared with that of a series of beams. If uplift is prevented, hogging

moments are created in the corner zone of the slab, and top steel is required to

prevent excessive cracking.

2.2 Behavior of Edge Supported Slab

Engineers sometimes attempt to visualize the response of slab to loading by

imagining them to behave as a system of beams, and this can sometimes lead to

features being overlooked. Slabs are surprisingly difficult structures to analyze, and

solutions are often too complicated for important aspects of behavior to be

immediately apparent.
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Because of the complicated nature of slab action, the distribution of load to the

supporting structural system can differ substantially from that of a set of beams. In

addition, although the reactions of the beams are statically determinate, those from

the slab are not and their values can be very sensitive to the stiffuess of the bearings

provided.

The distribution of load in a panel of a large slab depends greatly on the nature of

the supporting structural system. In Fig. 2.2, the bending moment distribution on the

center and the support lines of square panels of two large slabs subjected to a

uniform loading and supported on regular grids are compared. For the first slab the

supports on the grid lines are stiff beam or walls, and the maximum moments occur

in the center regions, between the support lines. For the second slab, which is

supported on columns at the intersections of the grid lines, the maximum moments

occur in the vicinity of the grid lines. For rectangular panels, slabs supported on stiff

beams span primarily between the long beams, but the same panels supported on a

grid columns span primarily in the long direction, and the transverse moments are

confined to a limited width either side of the grid lines.

The largest moment in the edge supported slab occurs at midspan of the short strip

and that moment reduces proportionately at the edge strip. The variation of moment

in long strip is similar. These variations in maximum moment across the width and

length of a rectangular slab are accounted for in an approximate way in most

practical design methods by designing for a reduced moment in the outer quarter of

the slab in each direction. In the edge strips the design moment is assumed to

decrease from its full value at the edge of the middle strip to one-third of this value

at the edge of the panel. This distribution is shown for the moments Ma in the short

span direction and Mb in the long span direction in Fig. 2.3.

"0
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Figure 2.2 Comparison of panels on beam and columns (a) Slab panels on rigid

beams and columns; (b) load distribution in rectangular panels; adapted
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Figure 2.3 Variation of moments across the width of critical sections assumed for

design.

In strength design methods members are so proportioned that they will have a proper

safety margin against failure in flexure or shear, or due to inadequate bond and

anchorage of the reinforcement. The member is assumed to be in a hypothetical

overload state for this purpose. It is also important that member performance in

normal service be satisfactory, when loads are those actually expected to act, i.e.

when load factors are 1. This is not guaranteed ~imply by providing adequate

strength. Service load deflections under full load may be excessively large, or long-

term deflections due to sustained loads may cause damage. Tension cracks in beams

may be wide enough to be visually disturbing, or may even permit serious corrosion

of reinforcing bars. This and other questions, such as vibration or fatigue, require
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consideration. Serviceability studies are carried out based on elastic theory, with

stresses in both concrete and steel assumed to be proportional to strain. The concrete

on the tension side of the neutral axis may be assumed uncracked, partially cracked,

or fully cracked, depending on the loads and material strengths.

Two approaches can be applied to the problem of control of serviceability by

deflection:

(a) Direct control method through the prediction of deflection by

mathematical computations. The slab or plate relative stiffness can be so

proportioned that the predicted deflection falls within acceptable limit.

(b) Indirect control method through the limitation of the geometry to

qualitatively accepted values of the span-to-depth ratios.

The second approach is expectedly more conservative in many instances, while the

first approach requires more effort on the part of the designing engineer.

2.4 Deflection Calculation by Uncracked Model

The calculation procedures of elastic deflection of edge supported slab are discussed

in this section. The analytical methods for calculation of elastic deflection are briefly

discussed. From finite element analysis the elastic deflection of slab can also be

calculated.

2.4.1 Simpson's Method

This method is applicable only for simply supported rectangular plates under various

loadings. For uniformly distributed load, the maximum deflection occurs at the

center of the plate and deflects symmetrically. Due to complicated mathematical

equations this is difficult to use. Details can be obtained from Ugural (1999).

2.4.2 Navier's Solution for Simply Supported Rectangular Plates

This method is applicable for simply supported rectangular plates under various

kinds of loadings. This approach was introduced by Navier in 1820. Solution of the
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2.4.4 The Strip Method

(2.1)

a = deflection of the plate

w = transverse load per unit area

D fl I 0 'd' . °d h Eh
3

= exura ngl Ity per umt WI t = ( 2)
12I-v

where,

The classical theory of e!asticity- assuming thin plates of constant thickness, small

deflections and low stress levels- has expressed the deflection relationship as a

Lagrangian equation:

a4a +2 a4a + a4a = w
ax4 ax2i~/ cry 4 D

2.4.5 Deflection of Two-way Slab by Lagrange Equation

The strip method is a simple approximate approach, for computing deflection and

moment in a rectangular plate with arbitrary boundary conditions. In this method,

the plate is assumed to be divided into two systems of strips at right angle to one

another, each regarded as functioning as a beam. The method permits qualitative

analysis of the plate behavior with ease but is less adequate, in general, in obtaining

accurate quantitative results. However, that because this method always gives

conservative values for both deflection and moment, it is often employed in practice.

Details of the strip method can be obtained from Ugural (1999).

2.4.3 Levy's Solution for Rectangular Plate

bending problem employs the Fourier series for load and deflection. Details of this

method is described in Ugural (1999).

The Levy's method is applicable to the bending of rectangular plates with particular

boundary conditions on the two opposite sides and arbitrary conditions of support on

the remaining edges. To overcome the difficulty of Navier's solution an important

approach was developed by M. Levy in 1900. Details can be obtained from Ugural

(1999).
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2.4.6 Finite Element Method

(2.2)[F ]=[K][D]
where,

[D]= 12x I column vector consisting of vertical displacements and

rotations about each horizontal axis of each of the four comers.

[K] 12x 12 element stiffness matrix relating nodal forces and the

corresponding displacements.

[F] = 12 x I column vector consisting of transverse forces and bending

moments at the nodes.

The main problem in the application of the finite element method to linear elastic

slab systems in general is to obtain a suitable force-displacement relationship

between the nodal forces and the corresponding displacements at the nodal degrees

of freedom. A further complication, in applying the method to reinforced concrete, is

the derivation of a suitable set of constitutive relations to model the slab behavior

under various loading conditions.

In this method, the slab is divided into a number of subregions or finite elements,

which are generally triangular, rectangular or quadrilateral in shape. They are

considered interconnected only at discrete points, called nodes, at the comers of the

individual elements. The continuous displacement quantities are expressed in terms

of a finite number of displacements w(x, y), called degrees of freedom at the nodes.

Therefore, for a rectangular plate bending element having 12 degrees of freedom, for

instance,

Finite difference method can be used to solve the above differential equation to get

deflections of slabs.
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W,
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f(loads, spans, support)

£1
f,,=

Elastic deflections can be expressed in the general form

2.5 Deflection Calculation by Cracked Model

2.5.1 ACI Method Using Branson's Crack Model

In normal service load most of the edge supported slabs are cracked because of the

stresses greater than modulus of rupture of concrete. In this situation the

instantaneous slab deflection (termed as immediate deflection) will be excess than

elastic deflection. The calculation methods of immediate deflection are discussed in

Figure 2.4 Typical plate bending element with 12 degrees offreedom.

where, £1 is the flexural rigidity andf (loads, spans, supports) is a function of the

particular load, span, and support arrangement. The particular problem in reinforced

concrete structures is therefore the determination of the appropriate flexural rigidity

£1 for a member consisting of two materials with properties and behavior as widely

different as steel and concrete.
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If the maximum moment in a flexural member is so small that the tension stress in

the concrete does not exceed the modulus of rupture fr, no flexural tension cracks

will occur. The full, uncracked section is then available for resisting stress and

providing rigidity, The effective moment of inertia for this low range ofloads is that

of the uncracked, transformed section luI, and Ec is the modulus of elasticity of

concrete, For this load range, the elastic deflection is

(2.4)

At higher loads, flexural tension cracks are formed, In addition, if shear stresses

exceed and web reinforcement is employed to resist them, diagonal cracks can exist

at service loads, In the region of flexural cracks the position of the neutral axis

varies: directly at each cracks it is located at the level calculated for the cracked,

transformed section; midway between cracks it dips to a location closer to that

calculated for the uncracked transformed section, Correspondingly, flexural-tension

cracking causes the effective moment of inertia to be that of the cracked transformed

section in the immediate neighborhood of flexural-tension cracks, and closer to that

of the uncracked transformed section midway between cracks, with a gradual

transition between these extremes,

It is seen that the value of the local moment of inertia varies in those portions of the

beam in which the bending moment exceeds the cracking moment of the section

M" = fJ" (2,5)
Y,

where YI is the distance from the neutral axis to the tension face and fr is the modulus

of rupture, The exact variation of I depends on the shape of the moment diagram and

on the crack pattern, and is difficult to determine, This makes an exact deflection

calculation impossible,

Branson (1976), (1977) proposed an equation for calculation of effective moment of

inertia between uncracked and fully cracked section of a simple beam considering

tension stiffening, ACI 318-02 (2002) proposed that, for the calculation of deflection

immediately after application of load, an effective value of moment of inertia using
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(2.6)

(2.7)fLi.ic :::::--

EJ,jJ

2.5.2 Nilson's Approach

where,

Iut= moment of inertia of the gross uncracked concrete section

Ier =moment of inertia of the cracked transformed concrete section

Mer = cracking moment of the reinforced concrete beam

Ma = maximum values of bending moment in the span

Extensive documented studies (Branson, 1977) have shown that deflections of beam

as well as slab are reasonably predicted by Branson's equation:

Branson's equation should be used. ACI Code used a power n = 3 in Branson's

equation:

Nilson (1997) has presented deflection calculation procedure of edge supported slab.

Edge supported slabs are typically thin relative to their span, and may show large

deflections even though strength requirements are met, unless certain limitations are

imposed in the design to prevent this. The calculation of deflections for slab is

complicated by many factors, such as the varying rotational restraint at the edges,

the influence of alternative loading arrangements, varying ratio of side length, and

the effects of cracking, as well as the time-dependent influences of shrinkage and

creep. However, the deflection of an edge supported slab can be estimated with

reasonable accuracy, based on the moment coefficients used in the flexural analysis.

The deflection components of concern are usually the long-term deflections due to

sustained loads and the immediate deflection due to live load.

Maximum live load deflection will be obtained when the live load acts on the given

panel, in a checkerboard pattern. Therefore, live load deflection should be based on

the maximum positive moments found corresponding to that loading arrangement,

together with statically consistent negative moments at-the supported edges.



(2.8)

(2.10)
I ,IM =-WbZb =-M

po, 24 3

The coefficients for maximum live load positive moments are derived assuming 50

percent fixity. The maximum positive moment Mb as obtained, shown in Fig. 2.5c,

and the statically consistent negative moments are one-half the positive moment Mb.

Deflection calculations are thus based on the parabolic moment diagram, with

maximum ordinate Mb at mid span and negative end moments one-half of that value.

where, wb is the fractional part of the load transmitted in the long direction of the

panel (Fig. 2.5c). If full fixity were obtained at the supports, the negative moment is

M =..!..w Z' =~M (2.9)"'g 12 b b 3

This will be illustrated for the slab in Fig. 2.5a, considering the middle strip of unit

width in the long direction of the panel. The variation of moment for a uniformly

distributed load is parabolic, and the sum of the positive and average negative

moments must be

and the positive moment is

15

The midspan live load deflection, "'[' of the slab strip shown Fig. 2.5b, can be found

based on the moment diagram of Fig. 2.5c. For the slab with both edges continuous,

A -2.MbZ;
0/ - (2.11)

32 EJefJ

where Mb =Maximum positive live load moment

Ec =Modulus elasticity of concrete

IefJ= Effective moment of inertia of the concrete cross section of unit width

"', = Mid span live load deflection
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Figure 2.5 Live load deflection analysis: (a) plan of slab; (b) deflection curve for

unit strip; (c) diagram for maximum positive live load moment.
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For the special case of slab where edges are completely free of restraint, the mid

span deflection is

1':1, = 2- Mb/; (2.12)
48 EJ,jJ

The dead load deflection is based on the moment diagram found using maximum

dead load positive moment assuming all panels are loaded. The mid span dead load

deflection I':1d' for both ends continuous, is

I':1d =_1 Mb/; (2.13)
16 EJ,jJ

where, Mb is the dead load positive moment. For the special case where both ends

are free of restraint, the midspan dead load deflection is

I':1d =2- Mb/; (2.14)
48 EJ,jJ

2.5.3 Gilbert Crack Model

Gilbert (1983), (1988) proposed an approach for modeling tension stiffening. An

area of concrete located at the tensile-steel level is assumed to be effective in

providing tension stiffening. Figure 2.6 shows an average cross-section of a singly

reinforced member. Like the other tension stiffening models, the properties of this

average cross-section are between those of the fully cracked section and the

uncracked cross-section between the primary cracks. The tensile concrete area Act,

which is assumed to contribute to the flexural stiffness after cracking, depends on

the magnitude of the maximum applied moment M, the area of tensile reinforcement

A", the amount of concrete below the neutral axis, the tensile strength of concrete

(i.e. the cracking moment Mer), and the duration of the sustained load.

Based on short-term test results, the following empirical formula for Act was

proposed:

(2.15)

where, /31= I and 0.5 for high bond bars and for plain bars, respectively. According

to EC2-91 (1991), /3, = 0.8 and 0.5 for first loading and for loads applied in a



Figure 2.6 Gilbert model: adapted from Gilbert (1988)
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sustained manner (or for a large number of load cycles), respectively. When M <

Me" the term (Me/M) in Eqn. (2.15) is taken as unily.
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2.5.4 Polak Approach

Polak (1996) has adapted a detailed finite element formulations based on the layered

approach. The layered approach, through the rigorous treatment of the states of

strain and stress can model complex behavior of both thin and thick plates. The

results of finite element effective stiffness analyses are compared to both

experimental results and the results in the layered analyses. Polak commends that the

layered approach is a detailed, versatile and comprehensive approach to modeling

nonlinear behavior of members subjected to bending. And the effective stiffness

approach is simpler and less time consuming. For typical slab systems, the effective

stiffness formulations can provide results with accuracy comparable to the accuracy

of the layered approach.

Polak modified the materials stiffuess as follows:



19

~.

(2.16)

(2.17)

G, =Gax

leya =-
y 1

gy

E h3 uxEyh
3

0 0 0x

12(1- UxUy) 12(1-Upy)

uyExh
3 E h3y 0 0 0

12(1-upJ 12(l-uxuJ
(DJ= G h'

0 0 -'- 0 0
12

0 0 0 G,h 0

0 0 0 0 G3h

Ex. Ey= reduced Young's moduli of cracked concrete in x and y-directions

t = element thickness

ux,uy = reduced Poisson's ratios of cracked concrete on x and y-directions.

2.5.5 Scanlon and Murrary Approach

Polak also checked the sensitivity of the proposed formulation when applied to the

analysis of slabs with different reinforcement ratios, boundary conditions, and

reinforcement orientations.

where, cracked shear moduli of concrete

G, =GaXay

Scanlon & MUITary (1982) proposed an FE method to model cracking in reinforced

concrete slabs. The method utilized a secant -stiffuess formulation and used a

modified anisotropic plane-stress relationship to include the effect of cracking.

Specialized for orthotropy, the stress-strain relationships are expressed by:



(2.20)
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Ex vXEy
0Ux (l-vxvy) (l-vxvJ ex

vyEx Ey
0 ey (2.18)uy

(l-vxvJ (l-vxvJ
0 0 Gxy

'xy Yxy

(2.21)

where, Mer can be obtained from Eqn. (2.5). Material properties are modified as

follows to reflect the reduction in stiffness due to cracking:

using the ACI Building Code equation (Eqn. 2.6) in both x andy directions:

Based on the analysis of the uncracked slab, moments in x and y directions, Mx and

My, can be calculated for each element.

Scanlon & Murrary (1982) used the Branson's (1977) equations (Eqn. 2.6) with

power n = 3 to calculate the reduced flexural second moment of area in both x and y

directions. Reduction in flexural stiffness in each direction can be accounted for

Moment-curvature relationships are obtained by integrating over the slab depth to
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(2.24)

(2.23)

(2.22)

I,ya =-
Y I

gy

I",a =-
x I

gx

Jofriet & McNeice (1971) presented an FE method usmg a bilinear moment-

curvature relationship based on Branson's (1977) equation. The approach used a

tangent-stiffness formulation. The Branson formula does not yield directly the

tangent-stiffness rigidity of a region after cracking but rather the secant rigidity.

Using a least-square fit, an equivalent tangent-stiffness equation was proposed.

Before cracking, the uncracked rigidity was defined by

in which Ec = modulus of elasticity of concrete and Iu = the moment of inertia of the

cross-section including the effect of reinforcement. After cracking, the rigidity was

approximated as

2.5.6 Jofriet and McNeice Approach
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in which r = a factor that is related to the reinforcing steel percentage, p. Ier is the

moment of inertia of the fully cracked transformed section given by

The analysis is then repeated using the reduced elastic constants until a stable

condition is achieved. Scanlon & Murrary (1974) expected some reduction in

effective shear modulus due to cracking. However, they used the uncracked value of

shear modulus in the analysis before and after cracking since, according to them, a

quantitative reduction is difficult due to the effects of dowel action and aggregate

interlock. Tam & Scanlon (1986) also used an uncracked value of shear modulus in

their analysis.

where,



2.6 Long-term Deflection

Long-term deflection due to creep and shrinkage are influenced by many variables,

including load intensity, mix components, mix proportions, age of slab at first

loading, curing conditions, presence of compressive reinforcement, relative humidity

22

(2.27)

(2.26)

Initial deflections are increased significantly ifloads are sustained over a long period

of time, due to the effects of shrinkage and creep. These two effects are usually

combined in deflection calculation. Creep generally dominates, but for some types

of members, shrinkage deflections are large and should be considered separately.

Creep deformations are directly proportional to the compressive stress up to and

beyond the usual service load range. They increase asymptotically with-time-and, for

the same stress, are larger for low-strength than for high-strength concretes.

fa =~c~+pnd(d -cJ'
where Cn is the depth of the neutral axis defined as

c, =d[ ~2pn+(pn)' - pn ]

Hossain (1999) has developed a nonlinear finite element (NLFE) module to

calculate the deflection of reinforced concrete slabs which is based on a global plate

stiffness approach. The program is novel since it incorporates an incremental

approach to calculate deflections due to a time-varying load. The global plate

stiffness approach was adopted, rather than the more complex and time-consuming

layered element approach, since work by others including Polak (1996) suggests that

the accuracy of both methods is comparable. The global plate stiffness approach has

the added benefit of being consistent with the methods given in MC-90 (1990) and

EC2 (1992) for calculating the curvature of cracked sections. This model is used in

the current work and will be discussed in detail in Chapter 4.

2.5.7 Hossain's Model



2.6.1 ACI Method
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(2.28)

is a reduction factor that is essentially a
1

(1+50p')

shorl-term
deflection time-depende.flt deflection~. ,

t.(I, 10) = t.D(0)+t. L(0)+ t.'D (1,10)+ NL(1,10)+ t.' (I, 10)
'---v-'''--v---'' ' , '----v----"

dead live creep deflection due to warping due
load load dead load, and to shrinkage

su.stained live load

In Eqn. (2.29) the quantity

section property, reflecting the beneficial effect of compression reinforcement A; III

used in Eqn. (2.29) should be that at the mid section, according to the ACI Code, or

that at the support for cantilevers.

A'
where, p' = bd and'; is a time-dependent coefficient that varies from 0 to 2 .

A = ,; (2.29)
1+50p'

reducing long-term deflections, whereas ,; is a material property depending on

creep and shrinkage characteristics. For simple and continuous span, the value of p'

Deflection estimation procedure in ACI Code (2002) is simple where long-term

deflections are calculated from instantaneous deflection by using multiplier. ACI

Code 9.5.2 specifies that additional long-term deflections t., due to the combined

effects of creep and shrinkage shall be calculated by multiplying the immediate

deflection t.; by the factor

The ultimate deflection with respect to time is obtained by substituting ultimate

values of creep and shrinkage into the time-dependent terms.

beams and one-way slabs, but may result in underestimation of time-dependent

Values of'; given in the ACI Code and Commentary are satisfactory for ordinary

and temperature. While time-dependent deflection of slabs has not been studied

extensively, it is generally known that time-dependent deflections may be about two

to three times initial elastic deflections (Yu and Winter, 1960), and often result in

unsatisfactory service load performance. Time-dependent deflection of a reinforced

concrete beam in flexure at any time, I, is given by
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"

(2.33)

(2.32)

(2.30)

(2.31 )

M = principal moment

Ec(to) = modulus of elasticity of concrete at time to

II = moment of inertia of uncracked transformed section around the centroid

of the transformed section.

The curvature in state 2 at time to is given by:

M
1f/2(tO)- E (t )1

c02

h= moment of inertia of cracked transformed section around the centroid of

the transformed section and lies on the neutral axis.

When short-term deflection is of interest, the mean curvature is calculated using

following equation:

The method proposed by MC-90 (1993) and EC2-91 (1991) to calculate the mean

short-term curvature can also be extended to calculate long-term curvatures. The

where,

where,

MC-90 (1993) model gives method of deflection calculation considering the effects

of cracking, shrinkage and creep. Curvatures are calculated in state I (reinforced

concrete member is free from cracks) and state 2 (tensile stress of concrete member

is assumed to be resisted entirely by reinforcement) considering reinforcement both

in the tension and the compression zones. The curvature in state I at time of

application ofload, to is given by:

M
If/, (to) E (t )1

co,

2.6.2 Model Code 90, (MC-90) Method

where,

deflections of two-way slabs, for which Branson (1977) has suggested a five-year

value of S = 3.0.
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(2.36)

(2.34)

(2.35)

Time

Elastic recovery

-'----~ Tovery

t>lyr

Creep
strain

Initial
elastic
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Figure 2.7 Uniaxial time-dependent behavior of concrete: generalized representation

Ifm (t)=(l- ~)If, (t)+~ 1f2(I)

2.7 Creep and Shrinkage

Creep is a property of continuing to deform over considerable lengths of time at a

constant stress or load. The nature of creep process is shown in Fig. 2.7. Any

workable concrete mix contains more water than is needed for hydration. If the

concrete is exposed to air, the larger part of this free water evaporates in time, the

rate and completeness of drying depending on ambient temperature and humidity

conditions. As the concrete dries, it shrinks in volume, probably due to the capillary

tension that develops in water remaining in the concrete. Shrinkage, which

continues at a decreasing rate for several months, depending on the configuration of

the member, is a detrimental property of concrete in several respects.

where S is given by Eqn. (2.33) with /32 = 0.5.

so that the mean curvature at time 1is given by

additional curvature due to creep and shrinkage can be calculated using the approach

by Ghali & Frave (1994) described below combined with the curvatures for states 1

and 2 according to MC-90 (1993) approach at time 1which are given by

If, (I) = If, (to)+~If,

1f2(t) =1f2 (to)+~1f2



(2.37)

(2.38)n;(I)= ~(' )= E(, )[I+a(I,lo)]=n[l+a(I,lo)]Ec I Ec I

The effective modulus and effective modular ratio may be used in lieu of E c (t) and

n(l) to predict the effects of creep.

Two approaches are widely used (Kong el al., 1983) for the determination of

flexural deflection due to concrete creep. Both are based on a constant stress history,

and both utilize short-time deflection as a measure of initial concrete strain. One

approach utilizes the increased strain due to creep in combination with the initial

strain, Go, to define an effective modulus of elasticity, E; (I)

2.7.2 Deflection Due to Creep

Deflections are a function of the age of concrete at the time of loading due to the

long-term effects of shrinkage and creep, which significantly increase with time.

ACI 435 (1978) suggested that the values for concrete ultimate creep coefficient and

ultimate shrinkage strain can be estimated as 1.60 and 400xI0-6, respectively.

These values correspond to the following condition:

• 70 percent average relative humidity

• Age of loading, 20 days for both moist and steam cured concrete

• Minimum thickness of component, 6 in. (152 mm)

ACI 209 (1971, 1982, 1992) recommended a time dependent model for creep and

shrinkage under standard conditions as developed by Branson, Christianson, and

Kripanarayanan (1971, 1977). The term "standard conditions" is defined for a

number of variables related to material properties, the ambient temperature,

humidity, and size of members.

2.7.1 Creep and Shrinkage Coefficient

26

where, a-(O)is the initial stress and a(l, (0) is the creep coefficient (ratio of creep

strain to initial elastic strain) for concrete at time I, loaded at time 10. Then, the

effective modular ratio becomes
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(2.42)

(2.41 )

(2,40)

2.7.3 Deflection Due to Shrinkage

Deflection of beams due to shrinkage may be predicted from

y' (t,to) = K,hl6,h(t,to )L2

where, l6'h(t,to) is the curvature (M/El). The general practice is to assume that the

reinforcing steel along the span is constant when determining Ksh. For continuous

beams, the curvature is assumed to be the same value in the mid-span region

(positive curvature for normal gravity type loading) and in the negative-curvature

region near the end of the pans, with the inflection points arbitrarily taken at the

span quarter points. Values of Ksh based on these conditions and using a constant

According to Model Code 90 the creep strain expressed as follows:

Under sustained stress, the strain increases with time due to creep and the total

strain-instantaneous plus creep at time tis:

5, (t)-~: ~~:~[l+l6(t,to)]

where, the coefficient 16represent the ratio of creep to the instantaneous strain; its

value increases with the decrease of age at loading to and the increase of the length

of the period (t - to) during which the stress is sustained. The value also depends on

quality of concrete, ambient temperature and humidity as well as the dimension of

the element considered.

The strain 5, (t) is expressed in MC-90 by the equation:

where, K' is a reduction factor empirically determined to relate creep strain to, .

curvature.

An approach which has gained wide acceptance, both because of its ease of

application and excellent correlation with experimental results, relates the creep

effect to the short-time deflection as given in Eqn. (2.39):

y'(t,to)=K;a(t,to)y(O) (2.39)



(2.44)

(2.43)

Service load moments in two-way slabs are often of the same order of magnitude as

the code-specified cracking moment, Mer. Deflection calculations made using the

code-specified modulus of rupture will often result in an uncracked section being

used when cracking may actually be present due to a combination of flexural stress

and restraint stress.
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2.8. Restraint Cracking

In two-way reinforced concrete slabs built monolithically with supporting column

and wall elements, in-plane shortening due to shrinkage and thermal effects is

restraint. The restraint is provided by a combination of factors, including embedded

reinforcement, attachment to structural supports, and lower shrinkage rates of

previously placed adjacent panels when slab panels are placed at different times.

Nonlinear distribution of free shrinkage strains across the cross-section may also be

a contributing factor.

where, ho (mm) is the notional size of the member, Ii"o is the notional shrinkage.

where, 13, (t - t,) is a function describing the development of shrinkage or swelling

with time, given by:

13, (t -t,)=( 350(ho /1~~'Y+t - t, r

According to Model Code 90 the shrinkage or swelling at any time t (days) may be

estimated by:

value of rjJ'h(t,to)(with approximate signs for negative curvature) are 0.125, 0.625,

and 0.5 for a simply supported beam, fixed end beam, and cantilever beam,

respectively.



(2.45)
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ACI 318 specifies the modulus of rupture for deflection calculations as 0.62K
MPa (7.5K psi). Laboratory test data, summarized in ACI 209R, indicate values

ranging from 0.5 to 1.0K Mpa (6 to 12K psi).

For slab sections with low reinforcement ratios, approaching minimum

reinforcement, the difference between cracked and uncracked flexural stiffness is

significant. It is important; therefore, to account for effects of any restraint cracking

that may be present. Unfortunately, the extent of restraint cracking is difficult to

predict. To account for restraint cracking in two-way slabs, Rangan (1976)

suggested that column strip deflections be based on the moment of inertia of a fully

cracked section, Ier, and that middle strip deflections be based on (Ig + 1e,)/2. Good

agreement was reported between calculated and field measured deflections.

A more general approach was proposed by Scanlon and Murray (1982). They

suggested that the effect of restraint cracking be included by introducing a restraint

stress, Ires, that effectively reduces the modulus of rupture for calculating Men i.e.

fJ.Mcr=--
y,

where,.fe =Ir -/res

A value of 0.32KMPa (4K psi), or about half of the value specified in ACI 318,

was proposed for the reduced effective modulus of rupture. This approach was

investigated by Tam and Scanlon (1986) and has produced good correlation between

calculated deflection and reported mean field-measured deflections [Jokinen and

Scanlon 1985; Graham and Scanlon 1986(b)]. Ghali (1989) has also used the idea of

reduced modulus of rupture and demonstrates the calculation of restraint stress due

. to reinforcement in the presence of uniform shrinkage.

An additional consideration is that the moments used in design for strength are based

on some redistribution of moments. The distribution of design moments does not

reflect the high peaks of moment adjacent to columns that occur in uncracked slabs.
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Deflection calculations based on moment distributions used for design, therefore,

tend to under-predict the effects of cracking.

For slab system in which significant restraint to in-plane deformations may be

present, it is recommended by ACI Committee 435 (1991) that a reduced effective

modulus of 0.33.Jf: MPa (4.Jf: psi) be used to compute the effective moment of

inertia, Ie. A procedure for implementing this approach in finite element analysis is

given by Tam and Scanlon (1986).

2.9 Construction Load

Relatively high construction loads applied to young slabs with low tensile strengths

and low elastic moduli will cause extensive flexural cracking and large initial

deflection. The high applied stress/developed strength ratio may cause significant

creep, generally non-recoverable, resulting in large long-term deflections.

Construction loads on the lower slabs in the supporting assembly may often exceed

the service loads regardless of the number of floors used to support the newly cast

slabs unless appropriate construction methods are used. Sbarounis (1984a) suggested

that, in fact, a certain combinations of design loads, slab thickness, and span the

calculated overloads are close to the ultimate strength of the slabs. Construction

loads are evidently related to the method of re-propping adopted and the number of

floors which are back-propped. The following three systems of back-propping are

used:

1. In low-rise buildings, floors can be continuously propped back to ground

in which case constriction loads are zero.

2. The most recently cast slab is struck and is allowed to deflect under its self-

weight before any re-props are installed. The re-props are initially only

lightly tightened and, consequently, initially carry only a nominal load.

3. The most recently struck slab is not allowed to deflect under its self-weight

when struck and the supporting props are, consequently, initially stressed.
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Grundy & Kabaila (1963) developed a procedure for calculating the load ratio

Wconstruction/Wdead for each slab for propping system 3. They assumed linear elastic

behavior and infinitely rigid props. They found that the maximum load ratio was

greater than 2 even if four levels of back-props were used. The maximum

construction load is considerably reduced if system 2 is adopted with two or more

levels of back-propping. Liu et at. (1988) developed a computer-based

computational procedure using the same assumptions as Grundy & Kabaila (1963)

for rapid calculation of construction loads imposed on slabs which can be extended

to examine whether the slab loads are grater than the available strength at each step

of construction in high-rise buildings.

2.10 Deflection Control

Excessive deflections can lead to cracking of supporting walls and partitions, ill-

fitting of doors and windows, poor roof drainage, misalignment of sensitive

machinery and equipment, or visually offensive sag. It is important, to maintain

control of deflections, so that members designed mainly for strength at prescribed

overloads will also perform well in normal service.

In the past, deflection was achieved indirectly, by limiting service load stress in

concrete and steel to conservatively low values. The resulting members were

generally larger, and consequently stiffer, than those designed by current methods

based on strength. In addition, stronger materials are now in general use, and this,

too, tends to produce members of smaller cross section that are less stiff than before.

Because of these changes in conditions of practice, deflection control is increasingly

important.

There are presently two approaches. The first is indirect and consists in setting

suitable upper limits on the span-depth ratio. This is simple, and itis satisfactory in

many cases where spans, load and load distributions, and member sizes and

proportions fall in the usual ranges. Otherwise, it is essential to calculate deflections

. .



32

2.10.1 ACI Code Provisions for Deflection Control

(2.47)

(2.46)

In (0.8+ fy /200,000)h=--~---
36+9/3

In (0.8+ fy /200,000)h-
36+5/3(am -0.2)

and not less than 3.5 in.,

and not less than 5.0 in.

For am greater than 2.0, the slab thickness must not be less than

The parameter used to define the relative stiffness of the beam and slab spanning in

either direction is a. Then am is defined as the average value of a for all beams on

the edges of a given panel. According to ACI Code (2002), for am equal to or less

than 0.2, the minimum thickness of Table 2.1 shall apply.

For am greater than 0.2 but not greater than 2.0, the slab thickness must not be less

than •

ACI Code (2002) thickness: slab with beams on all sides

The indirect approach of deflection control is providing the minimum slab thickness

of two-way edge supported slab and the limitations have given satisfactory results.

ACI Code (1963) suggests the minimum thickness is equal to 3.5 inch or panel

perimeter divided by 180 for special case of two-way slabs supported on four sides

by relatively deep, stiff, edge beams. It has been used extensively since 1963 for

slabs supported at the edges by walls, steel beams, or monolithic concrete beams

having a total depth not less than about 3 times the slab thickness. The more general

unified method of two-way system analysis found in more recent edition of ACI

Code (2002) contains three equations governing minimum slab thickness. These

equations account for the relative stiffness of slab and edge beams, the ratio of long

to short panel side dimensions, and conditions of restraint along the edges.

and to compare those predicted values with specific limitations that may be imposed

by codes or by special requirements.
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where, In = clear span in long direction, in.

am = average value of a for all beams on edges of a panel

f3 = ratio of clear span in long direction to clear span in short direction

Table 2.1 Minimum thickness of slabs without interior beams.

Without drop panel With drop panel

Interior Interior
Exterior panels

panels
Exterior panels

panels
Yield stress .

Without With edge Without With edge
fy (psi)

edge beams edge beams

beams beams

40,000 In 133 In 136 In 136 In 136 In 140 In 140

60,000 In 130 In 133 In/33 In 133 In 136 In 136
75,000 In 128 In 131 In 131 In 131 In 134 In 134

2.10.2 Gilbert Method

Gilbert (1985) proposed a simple design-oriented procedure for control of

deflections in reinforced concrete slab system. A rational and reliable expression for

the maximum allowable span to depth ratio of beams, proposed by Rangan (1982)

was extended to the entire range of reinforced concrete flexural members including

two-way edge supported slabs, flat slabs and flat plates. The data used for the

calibration of the procedure were obtained from an extensive series of computer

experiments with reinforced concrete slabs, using a nonlinear finite element model.

Details ofthe method can be found in Gilbert (1985).

2.10.3 Hwang and Chang Method

Hwang and Chang (1996) proposed two alternative design procedures for deflection

control. One with fewer parameters is written in a form of minimum thickness

requirements. The other, allowing more flexibility in choices, involves the direct

calculation of mid panel deflections. Both procedures suggested are simple; however
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various factors influencing deflections of two-way slab systems (loading intensity,

slab geometrical configuration, material properties, cracking phenomena, slab

discontinuity, long-term effects and allowable limits) have been considered. These

techniques were provided with instructive examples as well as comparison with the

available experimental data and ACI 318-89 were made. Details of the method can

be found in Hwang & Chang, 1996.

2.11 Permissible Deflection

To ensure the satisfactory performance in service, the ACI Code (2002) imposes

certain limits on calculated deflections. These limits are given in Table 2.2. Limits

depends on whether or not the member supports or is attached to other nonstructural

elements, and whether or not those nonstructural elements are likely to be damaged

by large deflections. When long-term deflections are computed, that part of the

deflection that occurs before attachment of the nonstructural elements may be

deducted. The last two limits of Table 2.2 may be exceeded under certain conditions,

according to the ACI Code.
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Table 2.2 Maximum allowable computed deflections

Type of member Deflection to be considered Deflection

limitation

Flat roofs not supporting or attached to Immediate deflection due to the live
1

nonstructural elements likely to be 10adL --180
damaged by large deflections.

Floors not supporting or attached to Immediate deflection due to the live
1

nonstructural elements likely to be 10adL --360
damaged by large deflections.

Roof or floor construction supporting That part of the total deflection which

or attached to nonstructural elements occurs after attachment of the 1
--

likely to be damaged by large nonstructural elements, the sum of the 480
deflections. long-term deflection due to all

Roof or floor construction supporting sustained loads, and the immediate

or attached to nonstructural elements deflection due to any additional live 1--
not likely to be damaged by large load 240
deflections

2.12 Conclusion

In this chapter the behavior of edge supported slab has been discussed. Importances

of serviceability are pointed out. The deflection calculation methods of slab by

analytical and numerical approaches have been discussed for uncracked and cracked

conditions. Long-term deflection calculation using ACI multiplier approach and

Model Code 90 are presented. Deflection due to creep and shrinkage are explained.

Restraint shrinkage cracking, construction load, deflection control and permissible

deflection are discussed. The main concern of this work is deflection computation of

edge supported slabs. Finite element method is a widely used numerical technique

for analysis of such structures. However, computation of slab deflection is

complicated due to the presence of cracking which makes the problem nonlinear

even under service loads. Also, the effects of creep and shrinkage need to be

included in long-term deflection calculation. With an aim to include all these effects

in deflection calculation, the current work starts with an analysis which is presented

in the next chapter.



CHAPTER 3

ELASTIC FINITE ELEMENT ANALYSIS

3.1 Introduction

In Chapter 2, the importance of keeping slab deflections within tolerable limits are

discussed in detail. Different codes and authors proposed minimum thickness
,

guidelines which aim to ensure serviceability of slabs. At the same time, different

deflection calculation procedures are discussed in detail in the previous chapter.

Different crack models to simulate the loss of stiffness due to cracking, long-term

models to represent creep, shrinkage etc. have been discussed. In the current chapter,

elastic finite element analysis is introduced. Two general purpose finite element

softwares, namely FE-77 (1999) and ANSYS (1997) are used for analysis of'edge

supported slabs.

The purposes of this chapter are to compare the results of finite element analysis

with results from ACI Code and other authors and to prepare simplified charts for

easy calculation of elastic deflections and moments. At first, a mesh sensitivity

analysis has been carried out to decide a reasonable mesh size for obtaining correct
.'_'"

results.

3.2 Mesh Sensitivity Analysis

To obtain correct results from finite element analysis it is important to determine the,

optimum number of elements in each direction. For this purpose, !14th portions of

square slabs have been modeled with varying number of elements for calculation of

midpoint deflection and stress. From this analysis the mesh sensitivity of b()th

software FE-77 and ANSYS has been compared in the form of moment coefficif:nt



3.2.2 Deflection Coefficient

where,

(3.3)

(3.1 )

D= 8£
wi4 I t3

fbt'
M=--

6

M = bending moment

f = flexural stress

b = width of slab taken as unity

t = total depth of slab

The deflection coefficient of two-way edge supported slab IS calculated by tpe

formula:
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M = bending moment

w = load on the slab per unit area

i = span length of the slab in the respective direction

c = moment coefficient

The bending moment coefficients at support and midspan for long and short
,

directions of tWo-way edge supported slab can be computed from the formula:

Mc =- (3.2)
wI'

where,

3.2.1 Moment Coefficient

The stress developed at the support and midspan of two-way edge supported slab

can be calculated from finite element analysis. From FE results the bending moment,

M developed at any point of the slab can be calculated from flexural formula as

follows:

and deflection coefficient of two-way edge supported slabs. The calculation

procedures of moment coefficient and deflection coefficient are discussed below.
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where,

<5= total deflection of slab

E ~ modulus elasticity of concrete

w = total uniform applied on the slab

I = span length of the slab.in the respective direction

t = thickness of the slab

3.2.3 Mesh Sensitivity for FE-77 and ANSYS

Mesh sensitivity of softwares FE-77 and ANSYS has been studied by comparing the

results of moment coefficients and deflection coefficients with varying mesh sizes.

The mesh sensitivity analysis helps to decide a reasonable mesh size for further runs

so that correct results can be obtained from finite element analysis. Two types of

slab, one is all end discontinuous (case-I) and other is all end continuous (case-2)

have been analyzed. The mesh sensitivity analysis of two-way edge supported slab

. for the calculation of midpoint deflection and developed stress at support and

midspan of slab, the elastic finite element modeling has been performed with

varying the number of elements for same dimension and aspect ratio and loading.

For this purpose, 1I4th portion of a square slab has been modeled with varying

number of elements ( 4 x 4 = 16 to 20 x 20 = 400) for slab case-1 and ( 4 x 4 = 16 to

18x 18 = 324) for slab case-2 and other parameters have been taken as unchanged.

For FE-77 nine noded plate element and for ANSYS eight noded shell element have

been used in the modeling. The other parameters used are as follows:

• Slab dimension is 4572 mmx 4572 mm (15 ftx 15 ft)

• Slab thickness equal to panel perimeter divided by 180 i.e., t = 101.6 mm

• The total load applied on the slab is 6.22 kN/m2 (130 pst)

• Ec = 20685 N/mm2 (3 x 106 psi)

• h = 413.7 N/mm2 (60000 psi)

• f:= 20.7 N/mm2 (3000 psi)

• Poisson's ratio, v = 0.18

• Modular ratio, n = 10
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Figure 3.1 V!!riation of positive moment coefficient C.(+) with number ofelemeqt,

for case-I, aspect ratio, m =1.00
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It has been observed that the variations of moment coefficients and deflection

coefficients remain almost unchanged due to change in mesh size for slab case-I.

For case-2 the coefficients are slightly different for mesh size less than lOx 10.

Change of moment coefficients and deflection coefficients are slight if mesh size is

equal or finer than lOx 10 for 1/4th portion ofa square panel.

Hence mesh density mentioned above, i.e. lOx 10, may give more accurate results

for both FE program. Further finite element analyses will be performed with the

mesh size greater or equal to lOx 10 for 1/4th portion of each square slab.

From the FE analysis the moment coefficients and deflection coefficients have been

calculated from Eqns. (3.2) and (3.3) respectively. The variations of positive

moment coefficient, C.(+) and deflection coefficient against number of element have

been presented in Figs 3.1 and 3.2 for slab case-I. Figures 3.3 and 3.4 show the

variation of positive moment coefficient, C.(+) and negative moment coefficient,

C.(-) and Fig. 3.5 shows the variation of deflection coefficient against number of

element for slab case-2.
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Figure 3.3 Variation of positive moment coefficient C.(+) with number of elemem,

for.case-2, aspect ratio, m =1.00

Figure 3.2 Variation of deflection coefficient with number of element for case-I,

aspect ratio, m =1.00



Figure 3.5 Variation of deflection coefficient with number of element for case.2,

aspect ratio, m =1.00
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Figure 3.4 Variation of negative moment coefficient Ca(-) with number of element,

for case-2, aspect ratio, m = 1.00
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For different loadings, aspect ratio and slab thickness, the predicted results of elastic

deflections from both FE analyses are presented in the Table 3.2 for different

categories of slab. It is clearly observed that the both softwares FE-77 and ANSYS

have given almost same results of elastic deflection.

10

Modular ratio

0.18

Poisson's ratio

20.720685Perimeter/180

Table 3.1 Parameters used in FE analysis

Slab thickness E, (N/mm ) f: (N/mm')

3.3 Comparison of Deflections Calculated by FE-77 and ANSYS

Elastic deflection of different types of edge supported slabs are calculated using both

FE-77 and ANSYS. The results are compared in this section. For this purpose a

large number of finite element analysis has been performed by FE-77 and ANSYS

with same dimension, aspect ratio and properties of slab with different boundary

conditions. The common parameters used in all the FE analyses are presented in the

Table 3.1.



Table 3.2 Comparison of elastic deflection of slab performed by FE-77 and ANSYS

Elastic deflection (rom)
Slab Slab

udsl
Aspect dimension thickness

(kN/m') Case-l Case-2 Case-3 Case-4 Case-8 Case-9
ratio (mm X mm) (mm)

."
~ ." >- ~ >- >- ~'1' '1' z ." ." Z ." Z ."

--J '" --J '" '1' '" '1' '" '1' '" '1' '"--J -< --J -< --J -< --J -< --J -< --J -<--J --J --J. --J
. '" '" '" '" '" '"

1.00 7620 x 7620 169.33 9.0174 14.57 14.63 4.477 4.485 6.807 6.824 7.813 7.845 5.685 5.694 5.685 5.694

0.90 7620 x 6858 160.87 8.8179 13.30 13.36 4.060 4.068 6.908 6.927 7.109 7.143 5.470 5.481 4.885 4.894

0.80 7620 x 6096 152.40 8.6184 11.59 11.65 3.462 3.470 6.758 6.779 6.130 6.159 4.999 5.008 3.954 3.961

0.70 7620 x 5334 143.93 8.4189 9.50 9.54 2.724 2.730 6.252 6.272 4.913 4.944 4.249 4.261 2.969 2.978

0.60 7620 x 4572 135.47 9.4164 8.18 8.22 2.206 2.214 6.080 6.101 4.094 4.119 3.736 3.745 2.314 2.323
.

0.50 7620 x 3810 127.00 9.2169 5.46 5.49 1.359 1.366 4.545 4.563 2.613 2.624 2.492 2.494 1.386 1.393
.

.l>-
v.>
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3.4 Comparison of Moment Coefficients

Moment coefficients of two-way edge supported slab have been calculated by the

FE programs FE- 77 and ANSYS. From both FE analyses, the middle strip moment

coefficients have been calculated at midspan and the support of the slab. The

calculated results are also compared with the ACI (1963) moment coefficients and

those calculated by Chowdhury (2000).

The parameters taken in the modeling of FE-77 and ANSYS are discussed below.

The number of element considered for 1/4th part of a square slab has been 16 x 16

=256, and for aspect ratio less than 1.00, the number of element has been considered

proportionally to the respective aspect ratio. The 9-noded and 8-noded shell element

has been used for the program FE-77 and ANSYS respectively. Other parameters

used are:

• Concrete compressive strength = 20.7 N/mm2

• The modulus of elasticity of concrete = 20685 N/mm2

• Poisson's ratio = 0.18

• Modular ratio = 10

• Slab thickness = Panel perimeter /180.

• The aspect ratios (m = alb) are taken from 0.50 to 1.00.

where,

a = length of slab in short direction.

b = length of slab in long direction.

Various cases of slabs have been modeled with different aspect ratios. The positive

moment coefficients Ca( +) for short direction, Cb(+) for long direction andnegatjve

coefficients Ca( -) for short direction, Cb(-) for long direction are calculated from FE

analyses. The results obtained from both FE analyses are compared with the "ACI

moment coefficient and those computed by Chowdhury (2000). The variation of

moment coefficients for different categories of slabs have been plotted in Figs 3.q to

3.20. From the figures, it has been clearly observed that both programs FE-77 and

ANSYS have produced identical curves of moment coefficients. The coefficients



Figure 3.6 Variation of moment coefficient C.(+) with slab span ratio for case-I.
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For most of the slab cases, some variation of coefficients has been found for

different FE analyses and ACI coefficients. The ACI moment coefficients are based

on elastic analysis and also account for inelastic redistribution. On the other hand the

coefficients calculated from FE softwares are based on only elastic analysis .

calculated by Chowdhury (shown in figure as legend SRC) are incorporated with the

FE-77 and ANSYS results.
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Figure 3.7 Variation of moment coefficient Cb(+) with slab span ratio for case-I.
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Figure 3.9 Variation of moment coefficient Ca(-) with slab span ratio for case-2.
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Figure 3.13 Variation of moment coefficient Cb(+) with slab span ratio for case-3.



Figure 3.16 Variation of moment coefficient C.(-) with slab span ratio for case-5.
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Figure 3.18 Variation of moment coefficient Cb(-) with slab span ratio for case-?
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Figure 3.19 Variation of moment coefficient C.(-) with slab span ratio for case-8.



0.00
0.50

"2 0.12
"'u
IE
"0<.> 0.08c
0.",
<.>
"0::
"c:l 0.04

0.16-----.--1.--~- .. -.r.. - .- .... --- - -_C -0 ---.~-------!

.~j---------..--------------n- = ::r~i
-1- ---~---I-- I

-----~-~-~---- __t- ----I
I i II

! i
0.60 0.70 0.80 0.90 1.00

Aspect ratio

53

3.5 Comparison of Deflection CoeffiCients

The defll!.ctjon coefficients have been calculated by using the finite element program

FE- 77 and ANSYS for different aspect ratio and slab cases. The parameters for both

FE analyses have been considered same as section 3.4. The variations of deflection

coefficients are presented in Figs 3.21 to 3.32 for short direction and long direction.

Both FE- 77 and ANSYS produced identical results and some small variations have

been observed with the coefficients computed by Chowdhury (2000) (shown in

figure as legend SRC) for two-way edge supported slabs.

Figure 3.21 Variation of deflection coefficient with span ratio for short direction,

case-I.



Figure 3.22 Variation of deflection coefficient with span ratio for long direction,

case-I.
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Figure 3.26 Variation of deflection coefficient with span ratio for long direction,
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Figure 3.28 Variation of deflection coefficient with span ratio for long direction,
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Span length of slab = 3048 mm

Slab thickness = 89 mm

Total uniform load = 7.12 kN/m2

Modulus of elasticity of concrete, Ec = 20685 N/mm2

Poisson's ratio v= 0.18

The calculated results of deflections from both the FE analyses and calculated using

formulae are shown in the Table 3.4. It has been observed that almost same results

have been obtained from FE analyses and from formulae.

parameters:

Figure 3.32 Variation of deflection coefficient with span ratio for long direction,

case-9.

The formulae for midpoint deflections of beam or one-way slab for different support

conditions are tabulated in the Table 3.3. Using finite element analysis both FE-77

and ANSYS the midpoint deflections have been computed with the fonowing

3.6 Comparison of Midpoint Deflection of One-way Slab



60
Table 3.3 Midpoint deflections for different types of support

Beam with support condition Deflection at midspan

p

~ we =5pr /384EI
I~ L -I

p

~ We =pr /384EI
I~ L -I

p

tw fTf1JTf}L
~

We =pr /192EI

I~ L -I

Table 3.4 Comparison of one-way slab deflection for different support conditions

Deflection (nun)

From FE analysis

Support condition FE-77 ANSYS

From formula % variation % variation
wrt formula wrt formula

One end hinged

and other end roller 6.590 6.6051 0.230 6.6136 0.36

Both end fixed
1.318 1.3170 0.080 1.3240 0.45

One end fixed and

other end roller 2.636 2.6359 -0.004 2.6450 0.34
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3.7 Comparison of Deflection for Full 3-D Building Model and Single Slab
Model

In all the analyses performed so far, single slab panels were modeled with different

boundary conditions. A more correct approach of modeling would be to consider

multiple panels as in the real structure with beams and columns. This approach,

though more rigorous and logical, will definitely involve more computational time.

To check the correctness of using single panel analysis, parallel single panel and

multiple panel analyses have been carried out for the same structure using ANSYS.

For full 3-D modeling a 3 x 3 span of column beam structure has been considered

shown in Fig. 3.33(a). For full modeling the column dimension is 381 mmx 381 mm

(15"xI5"), beam dimension is 305 mmx610 mm (I2"x24"), slab thickness is 135.4

mm (5.33 inch) and center to center distance of columns has been considered as

6096 mm (20 ft). In full 3-D modeling the beam size has been considered as 254

mm x 508 mm (10" x 20") for slab cases 6 and 7. The mesh density of slab for both

modeling has been taken same i.e. lOx 10 for each panel. For full modeling each

beams are divided into 10 divisions. The relevant material properties for both

modeling have been considered the same. The other common parameters Jre

modulus of elasticity concrete, Ee = 20685 N/mm2
, Poisson's ratio, v= 0.18 and

total load applied on the slab is 14.37 kN/m2 (300 pst). The calculated deflections for

both analyses are presented in the Table 3.5 for different slab cases. From FE

analysis single slabs deflections are found slightly higher than full 3-D modeling:of

the building and it is conservative for the calculation of elastic deflection of edge

supported slab. Hence single slab modeling for calculation of elastic deflection is

conservative and less time consuming than 3-D full building modeling.



Figure 3.33 Full 3-D modeling of the building with slab and beam.
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Table 3.5 Comparison of deflection calculated from single slab model and full 3-D

building model

Figure 3.34 Figures of different slab cases (A crosshatched edge indicates that the

slab continues across, or is fixed at, the support; an unmarked edge

indicates a support at which torsional resistance is negligible).
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Case-9Case-8

~
Case-I

~
Case-2 Case-3:::

::::::
%

- .

Case-4 Case-5 Case-6

Case-7

Deflection (mm) % variation wrt

Slab case Single panel model Full 3-D model full model

Case-2 5.77 5.05 14.2

Case-3 8.64 8.28 4.4

Case-4 9.73 8.89 9.4

Case-5 8.64 8.28 4.4

Case-6 12.67 12.11 4.7

Case-7 12.67 12.11 4.7

Case-8 7.19 6.75 6.5

Case-9 7.19 6.75 6.5
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3.8 Deflection and Moment Coefficients of Edge Supported Slabs

From finite element analysis, it has been found that the results of FE-77 and ANSYS

are identical which are discussed in the sections 3.3 to 3.6. The moment coefficients

are found different against ACI moment coefficients because of consideration of

inelastic redistribution in ACI moment coefficient. Deflection coefficients and

moment coefficients of edge supported slabs have been calculated from elastic FE
()

analysis. It is logical to use elastic moments for the calculation of immediate

deflection (considering cracking) of edge supported slab. The deflection coefficients

are presented in Table 3.6 for easy calculation of elastic deflection. A designer can

calculate the elastic deflection at the center of any categories of slab using the

following equation:

Elastic deflection, 8 = D" wi: (3.4)
Et

where,

Da = elastic deflection coefficient in short direction

w = total load applied on the slab

i = span length of slab in short direction

E = modulus of elasticity of concrete

t = total thickness of slab

From finite element analysis, it has been observed that under service load, most of

the edge supported slabs are cracked i.e., dcveloped flexural stresses are greater than

modulus of rupture of concrete. It is obvious that the immediate deflection of slab

will be greater than the elastic deflection due to cracking of slab. For calculation of

immediate deflection considering cracking, it is important to find the maximum

stress developed in the slab. For this purpose the elastic moment coefficients are also

proposed in Table 3.7 for calculation of elastic stress developed in the slab without

FE analysis. From FE analysis the stresses developed at the most cracked zone of

slabs (nine categories) have been computed and moment coefficients of th9se

respective zone have been proposed. Using Eqn. (3.1) the maximum stn,:ss

developed in the slab can be calculated without FE analysis.
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Table 3.6 Deflection coefficients for elastic deflection of two-way edge supported

slab center, considering short direction

Aspect Ratio Case-l Case-2 Case-3 Case-4 Case-5 Case-6 Case-7 Case-8 Case-9

(m ~ 1,11,)
(10.') (10.') (10.') (W') (10.') (10.') (10.') (10.') (10.')

1.00 4.8332 1.4817 2.2542 2.5977 2.2542 3.3789 3.3789 1.8824 1.8824

0.95 5.3403 1.6346 2.6233 2.8652 2.3654 3.6324 3.8357 2.1365 2.0212

0.90 5.8970 1.7956 3.0585 3.1581 2.4741 3.8963 4.3553 2.4208 2.1615

0.85 6.5050 1.9635 3.5701 3.4673 2.5797 4.1679 4.9434 2.7368 2.3019

0.80 7.1650 2.1347 4.1703 3.7889 2.6800 4.4433 5.6053 3.0811 2.4367

0.75 7.8762 2.3052 4.8693 4.1256 2.7738 4.7184 6.3445 3.4545 2.5705

0.70 8.6363 2.4706 5.6761 4.4743 2.8584 4.9872 7.1617 3.8563 2.6947
++ . ,

0.65 9.4385 2.6265 6.5951 4.8013 2.9333 5.2471 8.0521 4.2573 2.8051

0.60 10.271 2.7673 7.6256 5.1483 2.9949 5.4992 9.0088 4.6809 2.9035

0.55 11.124 2.8870 8.7539 5.4484 3.0420 5.7371 10.013 5.0783 2.9800

0.50 11.971 2.9801 9.9548 5.7246 3.0752 5.9472 11.048 5.4410 3.0390
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Table 3.7 Moment coefficients for calculation of maximum stress in the slab

Aspect
Case-I Case-2 Case-3 Case-4 Case-5 Case-6 Case-7 Case-8 Case-9.ratio

(m =1,llb) cN c.;T-) cb-i:) C,(- ) C,(-) C,(-) Cb(-) C.(- ) C.(-)

LOO 0.0403 0.0439 0.064 0.0577 0.064 0.0762 0.0767 0.0468 0.0529

0.90 0.0483 0.0505 0.0588 0.0668 0.0681 0.0844 0.0683 0.0557 0.0589

0.80 0.0578 0.0572 0.0523 0.0761 0.0717 0.0919 0.0587 0.066 0.0643

I

0.70 0.0688 0.0646 0.0446 0.0856 0.0755 0.1002 0.0482 0.0783 0.07

0.60 0.081 0.0704 0.0357 0.0947 0.0778 0.107 0.0373 0.0904 0.0741

0.50 0.0941 0.0746 0.0261 0.1024 0.0787 0.112 0.0267 0.1012 0.0766

3.9 Conclusion

In this chapter the performances of the softwares FE-77 and ANSYS have been

studied. A mesh sensitivity analysis revealed the required mesh size for a correct FE

analysis. The moment coefficients of edge supported slabs have been calculated

using program FE-77 and ANSYS and compared with ACI coefficients. Most of the

slab cases the ACI coefficients are significantly different from FE results. The

deflection coefficients have been calculated from both programs for easy calculation

of elastic deflection of slab. The midpoint deflections of one-way slab for different

end conditions have been verified with FE-77 and ANSYS. The elastic deflections

of slabs by 3-D full building modeling and single slab modeling have been
I

compared and conservative results have been found in single slab modeling. :For

calculation of elastic deflection of slab, deflection coefficients and for calculation 'of

maximum stress, moment coefficients have been proposed in tabular forms.

However, it must be noted that slabs are usually cracked under service loads ajld

deflection calculations need to include effect of cracking which is done in the next

chapter.



CHAPTER 4

•
NONLINEAR FINITE ELEMENT ANALYSIS

4.1 Introduction

In Chapter 2, the methods for calculation of slab deflection using elastic and

nonlinear analysis have been discussed. In Chapter 3, the performances of the

software FE-77 and ANSYS have been studied and moment coefficients and

deflection coefficients of edge supported slabs have been proposed for calculation of

slab deflection. In the current chapter, Hossain's (1999) nonlinear finite element

model is presented for calculation of immediate deflection of slab. The performance

of Hossain's nonlinear FE module incorporated in FE-77 is verified with the

experimental results of McNeice (1971) comer supported slab, McNeice (1967) one-

way slab and Shukla and Mittal (1976) slabs. A thorough parametric study to

identify the effects of different parameters on deflection of two-way edge supported

slabs is carried out. The difference of immediate deflection considering cracking and

elastic deflection is compared with variation of applied load on the slab. Mesh

sensitivity analysis is performed for the calculation of immediate deflection of slab.

The effects of concrete strengths (f;), excess reinforcement and slab thickness on

slab deflection are studied. The immediate deflections of slab are checked against

ACI allowable limits for varying slab thickness and loads.

To prepare a new approach for calculation of immediate deflection of slab

considering cracking deflection ratio vs. stress ratio curves are proposed. From this

approach, a designer will be able to calculate the immediate deflection of sIilb

without FE analysis. To identify the effects of different parameters on deflection

ratio vs. stress ratio curves a thorough parametric study is carried out.

•
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4.2 Description of Hossain's Nonlinear Finite Element Program Module

A program module based on global plate stiffness approach has been developed by

Hossain (1999) to incorporate the different short- and long-term models for

predicting deflection of reinforced concrete slabs. The module acts as an integral

part of the FE package FE-77 (1999) and calculates modified elastic properties to

represent cracking, creep and shrinkage for each element, on the basis of stresses of

FE solution, which are then fed back into the assembly module of the FE package.

Hossain and Vollum (2002) found good correlation in the analysis of the real full

scale 7 storied building at Cardington using this FE module employing EC2 (1992)

and CEB.FIP Model Code 1990 (MC-90, 1990) where creep and shrinkage

deflections have been dealt with more rigorously along with the effect of

construction load. Deflection estimation procedure in ACI Code is simpler than

these codes where long-term deflections are calculated from instantaneous deflection

using multiplier. Branson's crack model (1977) which is adopted in the ACI Code

(2002) has been used in the current work to calculate instantaneous deflection.

Within the FE program, elastic moments in two principal directions for each element

are calculated in the first run which are then used to calculate the effective moment

of inertia in two principal directions using Branson's (1977) equation:

(4.1)

where, Ig and Ier are gross and cracked moment of inertia of slab element. Mer is the

moment at which cracks occur and MJ and M2 are the principal moments.



69

4.3 Sequence of Analysis

A flow chart describing the incorporation of the ACI I Branson's model is shown in

Fig. 4.1. First, the analysis is carried out on the slab with gross concrete section

(without reinforcement) using QD09 (general shell and plate bending element with

nine nodes) elements. The FE solution gives deflections and stresses at all nodes.

Stresses are calculated in principal directions from x-y directional stresses. Gross

moment of inertia Ig and cracked moment of inertia Ie, are calculated for two

principal directions. Effective moment of inertias are calculated using (J" I (J", ratios

in both principal directions. Factors to modify the [E'] matrices in the principal

directions are calculated comparing effective moment of inertia and corresponding

gross moment of inertia. The modified [E'] matrices are then transformed into

global x-y directions from principal directions. With the modified set of [E' ]

matrices, the FE package gives the desired solution of stresses and deflections.

The incorporation of the ACI model to calculate the effective moment of inertia are

presented in section 4.4. Once modification factors are calculated using Eqn. (4.5),

modified [E'] matrices are formed in the principal directions and then transformed

into global x-y directions as described in section 4.5.
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Calculation
of

lee2using
Eqn. (4.4)

Effective moment of inertia
1,,2using Eqn. (4.2)

Calculation
of

I,

Modification factor a/ Eqn. (4.5)

Initial FE solution with
gross concrete section

Transformation of E-matrix in global
x-y direction using Eqn. (4.7)

Formation of E' -matrix in
Principal directions using Eqn. (4.6)

E-matrices are fed back into the assembly
module of FE-77

Calculation
of

lerl using
Eqo. (4.4)

FE solution ax' a y' rxy and immediate deflections

Effective moment of inertia
I,,] using Eqn. (4.2)

Calculation
of

"

Modification factor a" using Eqn. (4.5)

Figure 4.1 Flow chart showing the sequence of calculation
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4.4 Incorporation of ACI Method

(4.4)

(4.3)

(4.2)

- a,+~a;-4a, aJe,=---~----
2a,

Ie'=(~JIg +[1-(~]J]led
Ie' =(: JIg +[1-(~J]I",

al = b/2

a2 = nA" + (n-l)Asp

aJ =- nAs d -(n -1)A,pd'

The second moment of area around the neutral axis is:

beJ

I" =f+nA, (d -eJ' +(n -1)A,p (d' -eJ'

where,

by:

where 0", and 0", are the two principal stresses at the surface of slab and Ia is the

moment of inertia of the fully cracked transformed section. Jofriet & McNiece

(1971) used Eqns (2.27) and (2.26), respectively, to calculate the depth of neutral

axis and the second moment of area of a fully cracked section. These equations do

not take into account the presence of compression steel. In the current work, the

depth of neutral axis and the second moment of area of a fully cracked section are..
calculated considering both tension and compression steel. The depth of neutral a~is

of a fully cracked section, considering both tension and compression steel, is given

The following equations are used to calculate the effective moment of inertia in the

major and minor principal directions, respectively:

The effective moment of inertia adopted by the ACI Building Code (2002) was,
, I

discussed in section 2.5.1. The method uses the ratio of the section cracking moment

to the applied moment to interpolate between uncracked and fully cracked states. In

the present work, the ratio of modulus of rupture to principal tensile stress at the face

of the section i.e. (j, /0",) or (j, /0",) is used instead of (Me, / M) in Eqn. (2.6).
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(4.7)

(4.6)

(4.5)

o

o

o

all valEc

(I-a"a, v')
a,E,

(I-a"a, v')

[E ]=[C,j' [E'][C,]

o

an Ec
(I-ana, v')

[E']= . a, ya" E"
(I-a"a, y )

I"a =-
n I

g

I"a=-
I I

g

where, an and a, are the modification factors for major and mmor principal

directions respectively.

4.5 Formation of [E] Matrices

For the ACI method, the modification factors, to account for cracking, are obtained

similarly to Scanlon & Murrary approach (Eqn. 2.23) where calculations were

performed in x and y directions. However, in the present work they are calculated in

the major and minor principal directions:

The modification factor

where [C2l are transformation matrices.

In the FE analysis, initially the 6x 6 elasticity matrices for all the elements are

defined as anisotropic, so that they can have different values in orthogonal

directions. These matrices are then modified for each element using the modification

factors an and at to incorporate cracking, by using Eqn. (4.5). The modified matrix

in the principal directions is thus follows:

These [E']matrices are then transformed into global directions using Eqn. (4.7).
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A set of 3 x 3 matrices for all the elements are obtained:

(4.8)

The global [EJmatrix is then adjusted so that it can be used in the FE package

(Hitchings, 1994). These [E] matrices for all the elements are written in a file which

is subsequently read by the FE package in the next run and it modifies the global

stiffness matrix accordingly. As the material elasticity, and hence the structural

stiffness is modified, there will be redistribution of stresses. Hossain's module has

the capability of continuing until a state of equilibrium between stress redistribution

and material properties is reached. However, in the current work, effect of stress

redistribution has been ignored and FE analyses are carried out only once with

modified elastic properties. Polak's (1996) approach, discussed in section 2.5.4, also

used a similar procedure ignoring effect of stress redistribution, as the effect of

redistribution of stress on deflection is small.

4.6 Comparison of Experimental Results

In this section, FE analysis results are verified with available experimental results.

McNeice corner supported slab, McNeice one-way slab and Shukla & Mittal slabs

have been analyzed for this purpose.

4.6.1 McNeice Corner Supported Slab

McNeice slab (McNeice, 1967) has been widely used as a benchmark of modeling

of slabs. It was 914 mm (36 in.) square by 44.45 mm (1.75 in.) thick and reinforced

with an isotropic mesh giving a reinforcement ratio 100AJbh =0.85. It was

supported at four corners and loaded by a central point load. All the materials

properties and details are taken from Jofriet & McNeice (1971); as modulus of

rupture is not specified, it is assumed to be 0.62F: N/mm2 (7.5F: psi), according
to ACI Code (2002). Details of the material properties, slab dimension,

reinforcement and the finite element mesh used in the present analysis are shown
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Fig. 4.2. Load verses immediate deflection curves for four nodes of experimental

results and modeled results are presented in Figs 4.3 to 4.6. The FE results are

similar to the experimental results.

Figure 4.2 Details of comer-supported two-way slab tested McNeice.



9

7

8

6

7

5

6

4

54

3

Deflection, mm

Deflection, nun

3

2

2

r----r--- ----I----~--.------I------1-------,
--------+-------+----+-- _.---:--------- -- .

I

-+ L -----~----J------J
i I

o
o

75

16

12

o
o

16

12 --.--.

Figure 4.3 Load-deflection curve for the corner supported slab at node-7
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Figure 4.7 Details of simply supported one-way slab tested by McNeice: adapted

from Jofriet & McNeice (1971)

A one-way slab, 304.8 mm wide by 44.5 mm thick, simply supported with a span of

863 mm and reinforced with 0.8 percent steel, was tested by McNeice (1967).

Details of the materials properties and slab dimensions are shown in Fig. 4.7.

Central deflections have been calculated with FE-77 analysis employing ACI model

and compared with the experimental results shown in Fig. 4.8. The FE analysis

results are similar to the experimental results.

4.6.2 McNeice One-way Slab
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4.6.3 Shukla and Mittal Slabs

Figure 4.8 Load versus deflection curve for the simply supported one-way slab

tested by McNeice

Shukla & Mittal (1976) carried out a series of test on two-way edge supported slabs.

All the slabs were 214 cm square and 8 cm thick. The slabs were supported on

reinforced concrete walls with center to center span of 183 cm each way. Their

corners were held down by means of 40 mm diameter steel rods anchored to the

floor. Loads were applied to the test slab in increments of 2 Tons each through an

inverted warne-tree system, which transferred load at 16 equidistant point of the

slab. Three slabs (S-8, 8-11 and 8-12) from this series have been analyzed here. 8-8

and 8-11 were isotropically reinforced with 10 mm bars to provide 5.24 and 4.36
cm2/m steel in each direction respectively. 8-12 is reinforced with 10 mm and 6 mm

bars to make an orthotropic slab with 5.24 and 1.35 cm2/m steel in two directions.

The amount of top steel is not specified by the authors and it is assumed to have the

same amount of steel as the bottom layer. The three slabs differ in concrete strength,

which were 15.9 (8-8), 22.0 (8-11), 19.1(8-12) N/mm2
. Moduli of rupture and

elasticity were not reported and hence have been estimated using the ACI equations
(in N/mm2

):
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Details of the slab dimensions and FE mesh are shown in Fig. 4.9. Experimental and

FE based short-term load-deflection curves are compared for the central nodes of all

the three slabs, and are presented in Figs 4.10 to 4.12. The results are similar to the

experimental deflections.

Figure 4.9 Details of edge supported two-way slabs tested by Shukla & Mittal

(1976).
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Figure 4.10 Load verses deflection curves for the edge supported Shukla & Mittal

slab S-8 using FE.77 analysis, employing ACI model.

Figure 4.11 Load verses deflection curves for the edge sllpported Shukla & Mittal

slab S.ll using FE-77 analysis, employing ACI model.
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Figure 4.12 Load verses deflection curves for the edge supported Shukla & Mittal

slab S-12 using FE-77 analysis, employing ACI model.

To estimate the optimum number of elements for the purpose of the prediction of

correct results, a sensitivity analysis has been performed with changing the number

of elements and other parameters are taken as unchanged. For this purpose, two

4572 mmx4572 mm (15'xI5') simply supported (case-I) and fixed supported (case-

2) slabs have been modeled. For both slabs, the foIlowing parameters are used in the

FE analysis:

• The slab thickness = Panel perimeter 1180 = 101.6 mm(4 inch)

• Total load applied on the slab for slab case-l = 6.22 kN/m2 (130 pst)

• Total load applied on the slab for slab case-2 = 19.63 kN/m2 (410 pst)

• Concrete cylinder strength,f: = 20.7 N/mm2 (3000 psi)

• Yield strength of steel, fy = 413.7 N/mm2 (60000 psi)

• Modulus of elasticity of concrete, Ee = 20685 N/mm2 (3 x 106 psi)

• Modulus of elasticity of steel, Es = 206850 N/mm2 (30 x 106 psi)

• Poisson's ratio, v=0.18
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• The number of plate elements used in the analysis are 4x4 = 16, 6x6 = 36,

8x8 = 64, lOx 10 = 100, 12x 12 = 144, 16x 16 = 256 and 20x20 = 400 for

1/4th portion of the slab.

• Modular ratio, n = 10

• Modulus of rupture of concrete, ff=0.62jf; N/mm2 (7 .5jf; psi)

,i

Figure 4.13 Comparison of elastic and immediate deflection with respect to number

of element of 4572 mmx4572 mm slab for case-I.

The effect of the variation of element number used in the finite element analysis has

been verified by calculating the elastic and immediate deflection of slabs. In Figs .

4.13 and 4.14, variation of elastic and immediate deflections with respect to number

of elements are shown for slab case-I and 2, respectively. From FE analysis, it has

been observed that for both elastic and immediate deflections the number of plate

elements equal or finer than lOx 10 = 100 have given more or less same results of

deflections. So it can be concluded that the optimum number of element for 1/4lh

portion ofa slab square panel is lOx 10= 100.
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4.8.1 Effect of Load on Elastic and Immediate Deflection of Slab
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When a reinforced concrete member is subjected to bending at low range of loading

it behave nearly elastically i.e. stress and strains are quite closely proportional. In

this proportional range of stress-strain curve the corresponding deflection of a

loaded slab.is called elastic deflection. For a heavily loaded slab or flexural member

Figure 4.14 Comparison of elastic and immediate deflection with respect to number

of element of 4572 mmx4572 mm slab for case-2.

The deflection of edge supported slab depends on different material and geometric

parameters. It is important to study the effect of these parameters on deflection of

slab. The parameters related to the deflection' of edge supported slab are slab

thickness, panel dimensions, loadings, material properties i.e. concrete compressive

strength, modulus of rupture of concrete, modulus of elasticity of concrete etc. In

this section the effects of the variation of these parameters on slab deflection are

studied.
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when the stress-strain curve is not proportional or the tensile stress of a concrete

member exceeds its modulus of rupture then crack propagates from tension zone to

neutral axis and reduces the effective area of concrete as well as moment of inertia.

Due to effect of cracking the deflection of slab might be more excess than elastic

deflection and it is called immediate or short-term deflection. To study the change in

elastic and immediate deflection for varying loads a 7620 mmx 5334 mm

(25'xI7.5') slab is modeled with FE analysis considering following parameters

presented in the Table 4.1.

Table 4.1 Parameters for elastic and immediate deflection of slab for varying load.

Concrete cylinder Modulusof Modulusof

strength, f: elasticityof Poisson's elasticityof Slabthickness
concrete, Ec ratio, V steel, Es

27.6 N/mm' 24856 N/mm 206850 N/mm' t = perimeter/l80

(4000 psi) (3.6xl06 psi) 0.18 (30 x 106 psi) (143.93 mm)

The two levels of modulus of rupture of concrete used in this analysis are fr =

0.62.Jf: N/mm2 (7 .5.Jf: psi) and 0.33.Jf: N/mm2 (4.Jf: psi). The total load

applied on the slab in the range of7.22 to 12 kN/m2 (\50 to 250 pst). The modeling

details of the slab are shown in the Fig. 4.15. The half portion of the slab is modeled

with 16x 24 = 384 number of plate elements. From FE analysis the results of elastic

and immediate deflections for both rupture strengths of concrete have been

presented in Fig. 4.16. It has been observed that the immediate deflection is greater

than the elastic deflection for different loadings and both deflections increased

almost linearly against increasing ofload applied on the slab.

•
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Figure 4.16 Comparison of elastic and immediate deflection of 7620 mmxS334 mm

slab for case-8.
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Figure 4.17 Variation of mid point deflection of slab with respect to concrete

strength and rupture strength of concrete, for case-2 ..
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4.8.2 Effect of concrete strength on deflection

To identify the effect of concrete strength (r:) on deflection, a 6096 mm x6096 mm., .

(20'x20') slab for case-2 has been modeled considering ACI Code (1963)

suggested slab thickness i.e. panel perimeter divided by 180 (t =135.47 mm) and

total uniformly distributed load applied on the slab is 10.6 kN/m2
• The 1/4th portion

of the slab has been modeled with 16x 16 = 256 number of shell elements. The

concrete strength was varied from 17.2 N/mm2 to 41.4 N/mm2 (2500 psi to 6000

psi). The modulus of rupture of concrete has been considered in the FE analysis are

f, = 0.62.Jf: N/mm2 and 0.33.Jf: N/mm2• The immediate deflection at central point

of the slab has been considered for different concrete strength and modulus of

rupture. The variation of immediate deflections for different concrete strength and

rupture strength of concrete are presented in the Fig. 4.17. From the FE analysis it

has been observed that the concrete strength and rupture strength of concrete has

significantly affected the deflection of slab.
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4.8.3 Effect of Reinforcement on Deflection

To study the effect of reinforcement on deflection, a 4572 mm x 4572 mm (15' x 15')

two-way edge supported slab has been modeled with varying the percentage of

required reinforcement from 100% to 200%. The slab end has been considered as

monolithic to the support (case-2). The slab thickness is 101.6 mm and total load

applied on the slab is 7.8 kN/m2 (163 pst) in the FE analysis. The parameters used in

the FE are as follows:

• Concrete cylinder strength, f; = 20.7 N/mm2 (3000 psi)

• Modulus of elasticity of concrete, Ee = 20685 N/mm2 (3 x 106 psi)

• Modulus of elasticity of steel, Es = 206850 N/mm2 (30 xl 06 psi)

• Poisson's ratio, v=0.18

• Modular ratio~ n = 10

• The number of plate elements used in the analysis 16 x 16 =256 for l/4th

portion of the slab.

The analysis has been performed with rupture strength of concrete f, = 0.62.,Jf:

N/mm2 and 0.33.,Jf: N/mm2
• The calculated deflections of slab for different

percentage of reinforcement have been presented in the Fig. 4.18. It has been

observed that the effect of reinforcement on deflection of slab is negligible for

f, = 0.62.,Jf: N/mm2 and is more noticeable for f, = 0.33.,Jf: N/mm2• Thus it may be

concluded that the effect of reinforcement becomes more significant when slab is

severely cracked.

•
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4.8.4 Effect of Slab Thickness on Deflection
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Figure 4.18 Variation of immediate deflection of 4572 mmx4572 mm (15 fix 15 fi)

slab with % reinforcement for case-2.

The effect of slab thickness on deflection has been observed in this section. For this

purpose a 4572 mmx4572 mm (15'x15') slab for case-1 and a 7620 mmx 7620 mm

(25'x25') slab for case-2 have been modeled with changing their slab thickness at

constant live load with the following parameters presented in the Table 4.2. The slab

thickness have been changed as 1.2t, t, 0.9t and 0.75t; where t = panel perimeter/180

according to ACI Code (1963). For both modulus of rupture of concrete,

f, = 0.62.Jf: N/mm2 and O.33.Jf: N/mm2 have been used in the finite element

analysis. The number of plate element used in the modeling of 1I4th portion of slab i~

l6x 16 = 256.

From FE analysis the elastic deflection and imme<liate deflection (considering

cracking) are presented in Figs 4.19 and 4.20 for slab c<lse-l and case-2 respectively.

It has been observed that the variations of elastic and immediate deflections are,
affected significantly with change in slab thickness.
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Table 4.2 Parameters for calculation of elastic and immediate deflection of slab for

varying slab thickness.

Concretecylinder Modulusof Modulusof

strength, f: elasticityof Poisson's ratio, V elasticityof Total liveload
concrete, Be steel, Es

20.7N/mm 20685 N/mm 206850 N/mm' 2.6 kN/m

(3000 psi) (3xI06 psi) 0.18 (30xI06 psi) (55 pst)

50
f, = 0.33jf; N/mm'

40

~
f, =O.62jf;Nlmm'

30
'" Elasticdeflection0

T~
'" 20 -'='"0
10

0
1.2t t 0.9t 0.75t

Slab thickness

Figure 4.19 Variation of elastic and immediate deflection of 4572 mm x 4572 mm

slab for varying thickness with constant live load, for case-I.



4.9 Deflection Limitations
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Figure 4.20 Variation of elastic and immediate deflection of 7620 mmx7620 mm

slab for varying thickness with constant live load, for case-2.

To study the effect of slab thickness and span length on immediate deflection of

edge supported slab, FE analysis has been done here. The immediate deflection of

two-way edge supported slab has been computed with varying the slab thickness i.e.

75% to 120% of ACI Code (1963) suggested slab thickness and varying span length

of slab for aspect ratio, m = 1.00. Three slabs have been modeled for case-2 whose

span lengths are 4572 mm (15 ft), 6096 mm (20 ft), and 9144 mm (30 ft). The

number of plate elements used in the modeling for l/4th portion of the slab is 16x 16

= 256. The common parameters used in the FE analysis are as follows:

(a) Loads

Live load = 2.4 kN/m2 (50 pst)

Floor finish = 1.2 kN/m2 (25 pst)

Partition wall = 1.44 kN/m2 (30 pst)

(b) Material properties

Modulus elasticity of steel, Es = 206850 N/mm2 (30 x 106 psi)

Modulus elasticity of concrete, Ee = 20685 N/mm2 (3 x 106 psi)
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Compressive strength of concrete, ( = 20.7 N/mm2 (3000 psi)

Poisson's ratio, v = 0.18

(c) The total load applied on the slab has been calculated as follows:

Total load = Self-weight of slab + partition wall + floor finish + live load.

In some cases the slab thickness has been considered below the ACI (1963) range of

89 mm (3.5 inch). The immediate deflection has been calculated using above

parameters and the ratio of immediate deflection to span length of slab has been

determined and presented in the Table 4.3 in the form of L'. (where, L'. = immediate
L

deflection computed from nonlinear FE analysis for full live load and L = span

length of slab). The Fig. 4.21 shows the variation of immediate deflection for

different slab thicknesses and span lengths of slab. It has been clearly found that the

immediate deflection of slab does not exceed the ACI allowable limit (L'. = _1_)
L 360

for slab thickness up to 80% of ACI Code (1963) suggested guidelines and the

variation of immediate deflection with span length has been observed almost linear

for normal range of loading. It can be concluded from the above analysis that ACI

minimum slab thickness or even less thickness may be found to be sufficient to

satisfy immediate deflection limit, i.e. 1/360 under normal loading.

Table 4.3 Immediate deflections versus span length of slab for different span length

and slab thickness for full live load, for case-2.

120% of ACI ACI thickness 80%ofACI 75% ofACI

thickness .thickness thickness

Slab dimension /:"/L
4572 mm X 4572 mm I I I I

(15 ftx 15 ft) -- -- - -
2445 1194 461 370

'j

6096 mm X 6096 mm I I I I
(20 ftx 20 ft) -- -- - -

2088 1004 425 338
9144 mmx9144 mm I I I I

(30 ft X 30 ft) -- - - -
1480 760 370 307 !

.
"



4.10 Deflection against Live Load.
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Figure 4.21 Variation of immediate deflection of slab for application of full load

with varying span length and slab thickness, for case-2.

The effect oflive load on immediate deflection of two-way edge supported slab has

been studied in this section. For this purpose a 7620 mmx6096 mm (25'x20') slab

for case-4 has been modeled with different live load range of 1.92 kN/m2 to 9.58

kN/m2 (40 psf to 200 pst). In addition to this live load another 1.43 kN/m2 (30 pst)

of partition wall load has been considered as live load. The total dead load including

self-weight of slab and 1.2 kN/m2 (25 pst) of floor finish load has been considered.

The slab thickness has been considered as according to the recent ACI Code (2002)

guidelines. In the modeling the modulus of rupture of concrete has been considered

as fr =0.33.Jf: N/mm2 and other parameters are taken frqm section 4.7.

The maximum values of immediate deflection have been taken from nonlinear FE

analyses of slabs for different live load applied on it an~ the calculated values have

been presented in the Table 4.4. Figure 4.22 shows the variation of immediate

deflection to span length of slab. It has been found from FE analysis that the

immediate deflection of slab is within the range of ACI apowable (L / 360) limits for
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-+- Immediate deflection

- Allowable deflection

119

Total load, kN/m'

7

25

20

~ 15
d'
0
'f3
" 100=
"Q

5

0

5

Total load .

(kN/m2
)

7.14 8.09 9.05 10.0 11.92 14.80

Live load

(kN/m2
)

1.92 2.87 3.83 4.79 6.71 8.58

I1/L I I I I I I
-- - - - -- --
1116 873 703 581 420 290

Figure 4.22 Variation of immediate deflection with varying live load of 7620 mm x

6096 mm (25' x 20') slab, for case-4.
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total load up to 13 kN/m2 (270 pst) and variation of immediate deflection is

significant with increase in load.

Table 4.4 Immediate deflection of slab with varying live load for 7620 mm x 6096

mm slab, for case-4.



4.11 Deflection Ratio vs. Stress Ratio Curve
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7620 X 6096

4572 X 3658

Case-4Case-l Case-2 Case-3
9144X9144

7620 X 7620
7620 X 7620 7620X 7620

6096 X 6096
6096 X 6096 4572 X 4572

4572 X 4572
4572 X 4572 3018 X 3048

3048 X 3048
3048 X 3048

Slab dimension

(mm X mm)

4.11.1 Effect of Span Length

Table 4.5 Panel dimension of slab for different slab case

Slab case

For the purpose of preparation of unique design charts, the effect of span length on

deflection of slabs have been studied. For this purpose four types of slabs (case-l to

case-4) are analyzed with varying span length and varying live load applied on it.

The panel dimensions are presented in the Table 4.5 for different slab case.

From section 4.8, it is clearly observed that most of the slabs are cracked due to

normal range of loadings and the immediate deflection is higher than the elastic

deflection. It has also been observed that there is a unique relationship between

immediate and elastic deflections which only depends on aspect ratio, boundary

conditions and level of cracking. Under this circumstance, curves may be developed

for the calculation of immediate deflection from elastic deflection without the help

of FE analysis. The curve is termed as deflection ratio vs. stress ratio curve in which

the abscissa of the curve is expressed as stress ratio and ordinate is deflection ratio.

The stress ratio is the ratio between the maximum elastic stress developed in the slab

and the modulus of rupture of concrete; and deflection ratio is the ratio of immediate

deflection and elastic deflection of slab. From simple calculation a designer can

predict the actual immediate deflection of slab from the proposed deflection ratio vs.

stress ratio curve. To generate these curves, parametric studies have been performed

with change in parameters like span length of slab, slab thickness, aspect ratio,

concrete compressive strength, loading, modulus of rupture of concrete etc.



Table 4.6 Slab thickness for slab case-2.
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= 2.4 kN/m2 to 12 kN/m2 ( 50 psfto 250 psf) for slab case-I,

Slab Panel dimension (mm x rom)

thickness 9144X 9144 7620x7620 6096 x 6096 4572 x 4572 3048 x 3048

1.21 243.84 mm 203.20 mm 162.56 mm 121.92 mm 81.28 mm

1 203.20 mm 169.33 mm 135.47 mm 101.60 mm 67.74 mm

0.9t 182.88 mm 152.40 mm 121.92 mm 91.44 mm 62.00mm

0.8t 162.56 mm 135.67 mm 108.37 mm 81.28 mm

0.751 152.40 mm 127.00 mm

(a) Loads

Live load

case-3 and case-4.

Floor finish = 1.2 kN/m2
( 25 psf).

Partition wall = 1.44 kN/m2 ( 30 psf).

For case-2 the slabs have been modeled with varying thickness from 0.75t to 1.2t

(where, t = Panel perimeter /180) of slab and varying span length with a constant

live load of 2.63 kN/m2 (55 pst). The respective thicknesses are presented in the

Table 4.6.

The maximum stress has been taken at support for case-2, case-3 and case-4 and for

case-I at mid point of the slab. For all cases of slab the maximum immediate

deflections at the center of slab have been monitored. Figures 4.23 to 4.26 show the

variation of deflection ratio vs. stress ratio curve for case-I to case-4 for modulus of

The common parameters used in the FE analysis are as follows:

(b) Material properties used in the modeling are the same as in section 4.7 and two

levels of modulus of rupture of concrete, f, = 0.62.jf; N/mm2 and 0.33.jf; N/mm2

has been used.

(c) The sustained load applied on the slab has been calculated as follows:

Sustained load = Self weight of slab + floor finish + partition wall + 50% of

live load.

(d) The slab thickness = Panel perimeter 1180 for slab case-I, case-3 and case-4.
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Figure 4.23 Variation of deflection ratio vs. stress ratio curve of edge supported

slab, for case-I, m =1.00, f, = 0.62.Jf: N/mm2

3.02.5

-e- 6096mm x 6096mm slab

-6-4572mm x4572mmslab

~ 3048mm x 3048mm slab

2.01.5

Stress ratio
1.00.5
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1.5 --

2.5 ~-,-- - ~'-- 1- - -- -~'1---"-'--l' --I
2.0 '------- ~-~---,I-- --~-------- - --' ------I~~--------,
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,

i
0.5 ._,--_ ..-_.---~-- --~- - "."-'----- ,-- -------- .. ---- ---I'

.~
c

j
Q) 1.0
Q

rupture of concrete, f, = 0.62.Jf: N/mm2
• In Figs 4.27 to 4.30 the variation of

curves for case-l to case-4 for modulus of rupture of concrete, f, = 0.33.Jf: N/mm2

are presented. The deflection ratio vs. stress ratio curves have been found to be

almost identical for each slab case and same aspect ratio for both levels of modulus

of rupture of concrete.
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Figure 4.25 Variation of deflection ratio vs. stress ratio curve of edge supported

slab, for case-3, m =1.00, f, = 0.6ZK N/mjIl2

Figure 4.24 Variation of deflection ratio vs. stress ratio curve of edge supported
slab for case-Z with varying slab thickness, f, =O.6ZK N/mm2
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Figure 4.26 Variation of deflection ratio VS. stress ratio curve of edge supported

slab, for case-4, m =0.80, f, = 0.62-Jf: N/mm2

Figure 4.27 Variation of deflection ratio vs. stress ratio curve of edge supported

slab, for case-I, m =1.00, f, = 0.33-Jf: N/mm2
•
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Figure 4.28 Variation of deflection ratio vs. stress ratio curve of edge supported
slab, for case-2 with varying slab thickness, f, =O.33K N/mm2

Figure 4.29 Variation of deflection ratio vs. stress ratio curve of edge supported

slab, for case-3, m =1.00, f, = 0.33K N/mrn?



4.11.2 Effect of Applied Load and Slab Thickness
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Figure 4.30 Variation of deflection ratio vs. stress ratio curve of edge supported

slab, for case-4, m =1.00, f, = 0.33.Jf: N/mm2

From the FE analysis, the results of stress ratio and deflection ratio have been

presented in Table 4.7 to 4.10 for varying live load and varying slab thickness. The

variation of deflection ratio vs. stress ratio curves have boen shown in Figs 4.31 and

4.32 for slab case-I and case-2, respectively, using rupture strength of concrete,

For the purpose of the preparation of unique deflection ratio vs. stress ratio curves,

the effect of change of slab thickness and variation of live load have been compared.

A4572 mmx4572 mm (15'xI5') slab (for case-I) and a 6096 mmx 6096 mriJ.

(20' x 20') slab (for case-2) have been modeled with varying live load of 2.4 kN/m2

to 12 kN/m2 (50 psf to 250 pst) keeping constant ACI Code (1963) suggested slab

thickness. The above slabs have also been modeled with constant live load of 2.63

kN/m2 (55 pst) and varying slab thickness from 0.75t to 1.20t, where, t = panel

perimeter divided by 180. The moduli of rupture of concrete used in the FE analysis

are, f, = 0.62,Jr; N/mm2 .and 0.33,Jr; N/mm2 for both cases of slabs. The

parameters used in this FE analysis from section 4.9.
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f, = 0.6Z.jf; N/mm2 and Figs 4.33 and 4.34 that for 0.33.jf; N/mm2
. It has been

observed that for thin slabs, the deflection ratio vs. stress ratio curves has some

difference when they are severely cracked. Slab thickness up to 0.90t and live load

up to 4.79 kN/m2 (100 pst), an insignificant difference has been found. So, with the

help of these charts it would be possible to calculate immediate deflections for slabs

with thickness even 90% of ACI minimum thickness.

Table 4.7 Stress ratio and deflection ratio with changing live load and slab thickness

for case-I, f, = 0.6Z.jf; N/mm2

4572 mm x 4572 mm slab for varying live 4572 mm x 4572 mm slab for varying slab thickness

load, t ~ Panel perimeterll80. Sustained live load ~ 2.63 kN/m2 (55 pst)

Live load Deflection Deflection

(kN/m2
)

Stress ratio Slab thickness Stress ratio
ratio ratio

204 1.176 1.152 1.20t 0.883 1.000

3.83 1.313 1.311 t - Perimeter/180 1.176 1.152

4.79 1.402 1.412 0.90t lAO 1.418

7.19 1.631 1.642 0.75t 1.882 2.019

9.58 1.857 1.828

Table 4.8 Stress ratio and deflection ratio with changing live load and slab thickness

for case-Z, f, = 0.6Z.jf; N/mm2

6096 mm x 6096 mm slab for varying live 6096 mm x 6096 mm slab for varying slab thickness

load, t ~ Panel perimeter/I 80 Sustained live load ~ 2.63 kN/m2 (55 pst)

Live load Deflection Deflection

(kN/m2
)

Stress ratio Slab thickness Stress ratio
ratio ratio

1.92 1.462 1.081

2.87 1.562 1.105 1.20t 1.15 1.000

3.83 1.670 1.135 t - Perimeter/180 1.529 1.097

4.79 1.770 1.160 0.90t 1.779 1.177

9.58 2.288 1.233 0.80t 2.132 1.270

12 2.546 1.239
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Table 4.9 Stress ratio and deflection ratio with changing live load and slab thickness

for case-I, f, = 0.33.Jf; N/mm2

4572 mm x 4572 mm slab for varying live 4572 mm x 4572 mm slab for varying slab thickness

load, t = Panel perimeter/180. Sustained live load ~ 2.63 kN/m' (55 pst)

Live load Deflection Deflection
Stress ratio Slab thickness Stress ratio

(kN/m') ratio ratio

2.4 2.204 2.488 1.20t 1.655 1.800

3.83 2.463 2.683 t - Perimeter/180 2.204 2.488

4.79 2.628 2.785 0.90t 2.615 2.909

7.19 3.058 2.932 0.75t 3.528 3.567

9.58 3.482 2.985

12 3.906 2.990

Table 4.10 Stress ratio and deflection ratio with changing live load and slab

thickness for case-2, f, = 0.33jf; N/mm2

6096 mm X 6096 mm slab for varying live 6096 mm x 6096 mm slab for varying slab thickness

load, t = Panel perimeter/I 80 Sustained live load = 2.63 kN/m' (55 pst)

Live load Deflection Deflection'

(kN/m')
Stress ratio Slab thickness Stress ratio

ratio ratio

1.92 2.740 1.534

2.87 2.933 1.612 1.20t 2.158 1.327

3.83 3.130 1.689 t = Perimeter/180 2.866 1.577

4.79 3.323 1.755 0.90t 3.336 1.829

9.58 4.290 1.939 0.80t 3.998 2.117

12 4.773 1.954
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Figure 4.31 Variation of deflection ratio vs. stress ratio curve of slab for varying

live load and slab thickness, for case-I, f, = 0.62.Jf; N/mm2•

Figure 4.32 Variation of deflection ratio vs. stress ratio curve of slab for varying

live load and slab thickness, for case-2, f, = 0.62.Jf; N/mm2•
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Figure 4.33 Variation of deflection ratio vs, stress ratio curve of slab for varying

live load and slab thickness, for case-I, f, = 0.33.Jf: N/mm2•
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Figure 4.34 Variation of deflection ratio vs. stress ratio curve of slab for varying

live load and slab thickness, for case-2, f, = 0.33.Jf: N/mm2 •.
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4.11.3 Effect of Live Load and Concrete Strength

To identify the effect of varying concrete compressive strength and varying live on

deflection a study has been carried out. Two sets of deflection ratio-stress ratio curve

have been developed with changing parameters of concrete strengths and live loads.

The parameters are tabulated in Table 4.11 and 4.12. The moduli of rupture of

concrete separately used in the FE analysis are 0.62.Jf[ N/mm2 and 0.33.Jf[ N/mm2
•

The deflection ratio vs. stress ratio curves are presented in Figs 4.35 and 4.36. It is

clearly observed that the variation of concrete strength and live load does not affect

the deflection ratio vs. stress ratio curve. So it would be possible to develop unique

curves irrespective of concrete strength and live load for a specified aspect ratio and

boundary condition of slab.

Table 4.11 Data for varying concrete strength of 6096 mm x 6096 mm slab.

Concrete strength Modulus of elasticity of Live load Slab thickness

concrete

N/mm' psi N/mm' kN/m' mm

17.2 2500 19650
20.7 3000 20685
27.6 4000 24856 9.58 135.47
34.5 5000 27790
41.4 6000 30442
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Figure 4.35 Variation of deflection ratio vs. stress ratio curve of slab for varying

live load and concrete strength, for case-2, fr= 0.62 Jf:N/mm2

,

Modulus of
Concrete

Live load
elasticity of

strength Slab thickness,
concrete

kN/m' psf, N/mm' N/mm' mm

1.92 40

2.87 60

3.83 80,

4.79 100
,

20685 20.7 135.47

9.58 200

12 250

14.37 300

Table 4.12 Data for varying live load of 6096 mmx 6096 mm slab.



4.11.4 Effect of Live Load, Concrete Strength and Span Length
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Figure 4.36 Variation of deflection ratio vs. stress ratio curve of slab for varying

live load and concrete strength, for case-2, fr= 0,33 K N/mm2

To produce a unique deflection ratio vs, stress ratio curve the effect of live load,

span length of slab, concrete strength for individual type of slabs have been studied,

For this purpose three types (case-4, case-5 and case-8) of slab have been modeled.

The common parameters used in the FE analysis for above three slabs are presented

in the Table 4,13, and other parameters are presented below as slab case-wise. Two

levels of modulus of rupture of concrete O.62K N/mm2 and 0.33K N/mm2 have

been used in the FE analysis for all slabs mentioned above,

Table 4.13 Common parameters used FE analysis.

Modulus of Poisson's ratio Partition wall load

elasticity of steel treated as live load.
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Varying parameters for slab case-4:

For slab case-4 three slabs have been modeled with following dimensions. The slab

dimensions are 4572 mm x 3658 mm (15 fix 12 fi) and 7620 mmx6096 mm (25

fix 20 fi) having aspect ratio, m = 0.80. The first slab has been modeled with

varying concrete strength with constant live load and second slab for varying live

load with constant concrete strength. The second slab has also been modeled for

varying concrete strength with constant live load.

Varying parameters for slab case-5:

For slab case-5 three slabs having aspect ratio, m = 0.6 have been modeled with

following dimensions. The slabs 7620 mm x 4572 mm (25 fix 15 fi) and 4877

mmx2926 mm (16 fix 9.6 fi) have been modeled for varying concrete strength with

constant live load, and 7620 mmx4572 mm (25 fix 15 fi) slab also for varying live

load with constant concrete strength.

Varying parameters for slab case-8:

For slab case-8 four slabs have been modeled with varying live load, concrete

strength having aspect ratio, m = 0.70. The slab dimensions are 7620 mmx 5334 mm

(25 fix 17.5 fi) and 6096 mmx4267 mm (20 fix 14 fi). The first slab has been

modeled with varying concrete strength and varying live load and second slab with

only varying the concrete strength.

The FE results are presented in Figs 4.37 to 4.39 for modulus of rupture of concrete,

f, = 0.62.Jf: N/mm2 and Figs 4.40 to 4.42 for f, = 0.33.Jf: N/mm2 and almost

identical curves have been found for all cases of slabs. From above analyses, it has

been clearly observed that the deflection ratio vs. stress ratio curves are not affected

by the variations of concrete strength, span length of panel and load applied on the

slab. So it is possible to produce a unique curve for individual aspect ratio and

rupture strength of concrete irrespective of span length, concrete strength and

loadings.



Figure 4.37 Variation of deflection ratio vs. stress ratio curve of slab for varying

live load, concrete strength and span length, for case-4, fr = 0.62.Jf:
N/mm2

Figure 4.38 Variation of deflection ratio vs. stress ratio curve of slab for varying

live load, concrete strength and span length, for case-5, fr = 0.62 '.Jf:
N/mm2
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Figure 4.40 Variation of deflection ratio vs. stress ratio curve of slab for varying

live load, concrete strength and span length, for case-4, fr = 0.33K
N/mm2
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4.11.5 Effect of Modulus of Rupture of Concrete

Figure 4.43 Variation of deflection ratio vs. stress ratio curve of slab for varying

rupture strength of concrete, for case-l

From this analysis it has been observed that deflection ratio vs. stress ratio curve are

separate for different levels of modulus of rupture of concrete. In Fig. 4.43, the

variation of deflection ratio vs. stress ratio curve for simply supported slab for

varying load applied on the slab has been shown. So it is not possible to produce

unique curves for two levels of modulus of rupture of concrete.

The effect of modulus of rupture of concrete on deflection ratio vs. stress ratio curve .

has been studied for f, = 0.62.Jf: N/mm2 and 0.33.Jf: N/mm2• For this purpose a

4572 mmx4572 mm (15 fix 15 fi) has been modeled. The parameters used in FE

analysis are those used in section 4.7. The live load is varied from 2.4 to 12 kN/m2
.
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•

2.0 -

To check the effect of aspect ratio (m = I, / Ib) on deflection two slabs have been

modeled with considering 2.4 kN/m2 (50 pst) oflive load, 1.2 kN/m2 (25 pst) floor

finish, 1.44 kN/m2 (30 pst) partition wall and ACI Code (1963) suggested slab

thickness. In this analysis the long dimension of slab has been taken as Ib =c7620mm.

The slab dimensions are changed with following aspect ratios of 1.00, 0.90, 0.80,

0.70, 0.60 and 0.50 and separate deflection ratio vs. stress ratio curves for each

aspect ratio have been found. In Figs 4.44 and 4.45 the variation of deflection ratio

vs. stress ratio curves for slab case-l and slab case-2 have been shown. Different

curves are obtained for different aspect ratio. From this type of chart a designer can

find the immediate deflection for any aspect ratio, loading and dimension of two-

way edge supported slab. Finally designer can predict the long-term deflection using

ACI multiplier (ACI Code, 2002) approach.

4.11.6 Effect of Aspect Ratio
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4.12 Conclusion

In this chapter it has been observed that most of the edge supported slabs are cracked

and immediate deflection is higher than elastic deflection. Performance of Hossain's

nonlinear finite element module using ACI I Branson's crack model has been

verified against experimental results of McNeice (1971) comer supported slab,

McNeice (1967) one-way slab and Shukla and Mittal (1976) slabs. The parametric

analyses have been performed with changing panel dimension, live load, slab

thickness, concrete strength, and modulus of rupture of concrete, aspect ratio and

percentage reinforcement required in the slab. It has been observed that the

deflection ratio vs. stress ratio curves are not affected by the change of panel

dimension, concrete strength and live load for particular aspect ratio and modulus of

rupture of concrete. Deflection magnification is only affected by level of cracking

f/f" aspect ratio and boundary conditions. This curve is valid for slab thickness up to

90% of ACI Code (1963) suggested thickness. From FE analysis, it has been

observed that for a particular slab case, the deflection ratio vs. stress ratio curves for

different aspect ratio form a band zone. It is possible to develop deflection ratio vs., .

stress ratio curves for different boundary conditions of slab to help easy calculation

of immediate deflection.



CHAPTERS

DEFLECTION ESTIMATION USING DESIGN CHARTS

5.1 Introduction

A method of calculating deflection considering cracking using Branson's equation

has been presented in Chapter 4 with appropriate validation against test data and a

thorough parametric study has been carried out to identify effects of different

parameters on deflection. It has been observed that even under service loads, the

slabs do experience cracking and calculating deflection based on elastic analysis

ignoring cracking may result in very unconservative design. But deflection

calculation as shown in Chapter 4, considering cracking may prove to be

complicated for the designer. In the current chapter a simplified method is proposed

to help the designer to calculate short-term deflection considering cracking. Several

design charts are proposed considering different boundary conditions and aspe,ct

ratio. The immediate deflection estimated from design charts are compared with the

results of FE analysis. The estimated immediate deflections are also compared with

experimental deflection of slabs tested by Shukla & Mittal (1976). An example for

simple calculation of elastic and immediate deflection has been presented at the end

ofthe chapter.

5.2. Selection of Parameters

In order to produce design charts for deflection calculation for all possible cases,

geometric and material parameters are varied in usual ranges. The main parameters,
are slab thickness, loading, material strength, support conditions, aspect ratio etc. '.
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5.2.1 Slab Thickness

The FE analyses have been performed with ACI Code (1963) permitted slab

thickness, which is equal to total panel perimeter divided by 180 and not less than 89

mm (3.5 inch). For all slab cases, the thickness has been taken equal to ACI

thickness and rounding is avoided for exact modeling. For relatively smaller sizes of

panel the thickness has been considered less than 89 mm (3.5 inch) for the purpose

mentioned above. For heavily loaded slab the thickness has exceeded from ACI

thickness for some slab cases and for that cases the slab thickness has been taken

from strength point of view. The recent ACI Code (2002) specified slab thickness

has been verified with ACI Code (1963) and comparatively higher thickness has

been observed for all cases of slab. From FE analysis it has been observed that in the

section 4.11.1 and 4.11.2 the variation of slab thickness (20% more and 10% less of

ACI Code (1963) suggested thickness) not affected the deflection ratio vs. stress
ratio curve.

5.2.2 Loading

The design charts are intended to be used for the whole range of load usual for

common buildings. The slabs are designed for the purpose of modeling in USD

system and dead loads and live loads have been considered in the analysis. The s~lf-

weight of slab and 1.2 kN/m2 (25 pst) of floor finish load are treated as total &~d
., i

load. The total live load is calculated with the sum of 1.35 kN/m2 (30 pst) of

partition wall load and live load applied on the slab. FE analysis has been performed

using total load. The live load is varied from 2.4 kN/m2 (50 pst) to 12 kN/m2 (250

pst) for design and modeling of each slab with constant floor finish and partition
wall load.

5.2.3 Support Conditions

The nine types of slab have been modeled with respect to end condition of slab~.

The slab fixed to the support or continuous to the adjacent panel is expressed with

hatching line and discontinuity is expressed without hatching line. All nine cases of
slabs are presented in Fig. 3.34 with support conditions.
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5.2.4 Span Ratio and Span Length

The span ratio or aspect ratio, m =fa / fb is varied from 0.50 to 1.00. The analyses

have been performed for fb = 7620 mm (25 ft) and variation of aspect ratio m = 1.00,

0.90, 0.80, 0.70, 0.60 and 0.50 with 0.10 interval of m for all slab cases. For slab

cases 1,2,3 and 4 some additional slabs have been modeled with fa = 3048 mm (10

ft).

5.2.5 Reinforcement Ratio

Calculation of required reinforcement has been followed by the ACI Code (1963)

coefficient method. The minimum reinforcement has been taken equal to 0.00 18bt in

which b = width of slab (considered as unity) and t = slab thickness.

5.2.6 Material Properties

The material properties used in the modeling are concrete strength f;, modulus of.
elasticity of concrete Ee, modulus of rupture of concrete f" yield strength of steel fy,

Poisson's ratio v and Modular ratio n. The material properties used in the modeling

are as follows:

f; = 20.7 N/mm2 (3000 psi), 27.58 N/mm2 (4000 psi), 34.48 N/mm2

(5000 psi) and 41.3 N/mm2 (6000 psi).

fy =413.7 N/mm2 (60000 psi)

The modulus of elasticity of concrete, Ee has been considered according to ACI

Code, i.e. Ee = 57000.Jf: psi.

The values of Poisson's ratio, v of concrete fall in the range between 0.15 and 0.25.

In the study the value of v is taken equal to 0.18.

The values of rupture strength of concrete fr used in the modeling has been equal ~o

0.33.Jf: N/mm2 (4.Jf: psi) instead of 0.62.Jf: N/mm2 (7.5.Jf: psi). Tam and
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Scanlon (1986) produced good correlation between calculated deflection with

0.33 -Jf: N/mm2 value and mean field-measured deflection. This approach of using

reduced modulus of rupture to take into the effect of cracking due to restraint

shrinkage is reported in a series of papers [ACI Committee 435 (1991), Thompson

& Scanlon (1988), Scanlon & Murrary (1982), Ghali (1990)].

5.3 Mesh Sensitivity of the Modeling

The modeling of edge supported slab has been performed for the preparation of

deflection ratio vs. stress ratio curves to facilitate the easy calculation of immediate

deflection. In previous sections 3.2 and 4.7 the mesh sensitivity of the modeling of

slab deflection have been discussed. It has been found that the number of element

less than lOx 10 = 100 for 1/4th portion ofa square panel insignificantly affected the

FE results. To get correct result, based on previous mesh sensitivity analysis,

following mesh sizes are used for different slab cases and aspect ratios. For

calculation of immediate deflection, nine types of slabs have been modeled with the

following mesh density. The slab cases 1, 2, 3 and 5 the 1/4th portion of the slab

have been modeled considering axis of symmetry. The number of plate element used..
in analysis for aspect ratio m =1.00 equal to l6x 16 =256 for 1/4lh portion of above

slab cases and reduction of element number in the short direction has been

considered with proportional to the aspect ratio. For slab cases 6 and 8 the half

portion of the slab have been modeled with mesh density 16x 32 = 512 for aspect

ratio 1.00 and reduction of meshing has followed by the other aspect ratios. For slab

cases 7 and 9 the half portion of the slabs are also modeled with mesh density

32 x 16 = 512 for aspect ratio 1.00 and other slabs with aspect ratios less than 1.00

are followed with same. The slab case 4 the full slab is modeled with 20 x 20 = 400

number of plate element for aspect ratio 1.00 and 0.90 and 24 x 18 =432 for m =

0.80, 24x 16 = 384 for m = 0.70, 24x 14 = 336 for m = 0.60 and 24x 12 = 228 for m

= 0.50.
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5.4 Moment and Deflection Coefficients for Calculation of Deflection

The bending moment coefficients of two-way edge supported slabs have been

calculated from the finite element program FE-77 and ANSYS. The results were

compared with ACI moment coefficient discussed in the section 3.4 and observed

that both FE programs have shown identical results. The coefficients predicted from

FE analysis are presented in the Table 3.7 for calculation of maximum flexural stress

developed in the slab. The results have been found from elastic FE analysis and are

different from ACI moment coefficient, which considers inelastic redistribution. For

calculation of elastic deflection of slab elastic deflection coefficients are presented in

Table 3.6. With help of elastic deflection coefficients designer can calculate the

elastic deflection of edge supported slab without FE analysis.

5.5 Deflection Ratio VS. Stress Ratio Curve

Nine sets of design charts have been prepared to facilitate the easy calculation of

deflection. For each boundary type and particular aspect ratio, a large number of

analysis has been carried out with varying thickness, load etc. such that slabs with

different levels of cracking are considered. For a particular type of boundary

condition, deflection ratio vs. stress ratio curves are plotted with stress ratio in x-axis

and deflection ratio in y-axis. The term stress ratio means the ratio between the

maximum stress developed in the slab and modulus of rupture of concrete:

M h t. II t . Developedmaximum stressat ema lca y, s ress ratIO= ------------
Modulus of rupture of concrete

and the term deflection ratio means the ratio between immediate deflection and

elastic deflection of slab:

M th t. II d fl' . 1mmediate defl.ectiona ema lca y, e ectlOnratIO= --------
Elastic deflection
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When the slab is not cracked then immediate deflection must be equal to the elastic

deflection and deflection ratio is equal unity.

The stresses are calculated from the most cracked zone of edge supported slabs.

From analysis, it has been observed that the slabs are more cracked at support than

the other portions. For slab case-I, to check the level of cracking, the stress at

midspan of the slab has been considered along the shorter direction. For slab cases 3

and 7 the stresses are considered at support along the longer direction and rest of the

slab cases the stresses are checked at the support along shorter direction of slabs.

The stress has been considered in the middle strip of the slab.

A designer can calculate the actual immediate deflection of slab from design charts.

In each slab case, separate curves for different aspect ratios have been found and

formed a band of curves. For slab case-I, the upper range of the curve corresponds

to aspect ratio 1.00 and lower range to 0.50 and rest of the slab cases, i.e. 2 to 9,

have shown reverse trends. The deflection ratio vs. stress ratio curves are shown in

the Figs 5.1 to 5.9. The stress ratio up to unity means no cracking of slab and

immediate deflection will be equal to elastic deflection. The stress ratio greater than

unity represents cracking of slab and immediate deflection will be greater than the

elastic deflection and it can be calculated by multiplying factor called deflection

ratio. All curves are proposed for modulus of rupture of concrete, f, =

0.33fi: N/mm2 (4fi: psi). Similar design charts are prepared with modulus of

rupture of 0.62 fi: N/mm2 (7 .5fi: psi) which are presented in Appendix A. They

correspond to a condition where restraint shrinkage is negligible.
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Figure 5.7 Deflection ratio VS. stress ratio chart of edge supported slab for case-7.

fr = 0.33..Jf: N/mm2

Figure 5.8 Deflection ratio VS. stress ratio chart of edge supported slab for case-8,

fr= 0.33 Jf: N/mm2
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In Chapter 3, elastic deflections of different types of slabs have been calculated by

finite element softwares ANSYS and FE-n. Also, in Chapter 4, immediate

deflections considering cracking have been determined employing Branson's

equation in FE- 77 software. Both calculation of elastic and immediate deflection

using finite element software are not simple and not particularly suitable for use in

design office. To simplify the calculation, design charts are proposed in section 5.5.

In the current section, use of these design charts are discussed.

Figure 5.9 Deflection ratio vs. stress ratio chart of edge supported slab for case-9,

fr=O.33-Jf[ N/mm2

5.6 Calculation of Elastic and Immediate Deflection of Slab

5.6.1 Calculation of Elastic Deflection of Slab

The elastic deflections of two-way edge supported slabs have been calculated by the

softwares ANSYS and FE-n and same results are found for any support condition

and aspect ratio. From finite element analysis, deflection coefficients have been



5.6.2 Calculation of Immediate Deflection of Slab Using Design Charts

After calculation of the developed stress, the stress ratio ( f If,) is to be determined.

The corresponding deflection ratio is then read from deflection ratio vs. stress ratio

curve for the particular boundary type. Appropriate interpolation may be necessary

•

(5.2)

M = bending moment of slab

c = moment coefficient from Table 3.7

w = total load applied on the slab

Z = span length of slab

J= flexural stress developed in the slab

b = width of slab usually taken as unity

t = total thickness of slab, and

M=cwZ2
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proposed (Table 3.6) for the calculation of elastic deflection of edge supported slabs.

Chowdhury (2000) has also proposed deflection coefficients for the calculation of

deflection and observed that the deflection coefficients are more or less same which

has been discussed in the section 3.5. The elastic deflection coefficients of edge

supported slabs are presented in the Table 3.6. The designer can easily calculate the

elastic deflection at the center ofthe edge supported slab by using Eqn. (3.4).

The calculation procedure of immediate deflection of two-way edge supported

reinforced concrete slabs using design charts for different edge conditions and

aspect ratios are presented here. The designer select a slab panel and assume the slab

thickness and calculate the total load acting on it. Using material properties the

elastic deflection can be calculated from Eqn. (3.4). The maximum flexural stress

developed at support or midspan is then calculated for selected slab thickness and

total load as follows:

6M 6cwZ2

J= bt2 = bt2 (5.1)

where,

where,
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to obtain a deflection ratio for an intermediate aspect ratio. Finally the immediate

deflection is calculated from multiplication of elastic deflection and deflection ratio.

Immediate deflection = Deflection ratio xElastic deflection. (5.3)

A designer can easily calculate the immediate deflection of two-way edge supported

reinforced concrete slabs for different edge conditions and aspect ratios without help

of any finite element program.

5.7 Comparison ofImmediate Deflection with FE Analysis

The immediate deflections predicted using proposed design charts is verified here.

For this purpose, a large number of slabs with different end conditions has been

considered with changing aspect ratio, loading and slab dimensions. In any aspect

ratio between upper and lower range (0.5 and I) the respective deflection ratio has

been taken as weighted average value from the deflecti~n ratio vs. stress ratio chart.

Both deflections computed from FE analysis and estilllated using design charts 'are

presented in the Table 5.1 and variation in results have been observed to be

insignificant. In most cases conservative results of immediate deflection have been

found when using charts.

Estimation of immediate deflection

To estimate the immediate deflection of two-way slab, a 7620 mm x7620 mm (25 ft

x25 ft) corner panel has been considered with following parameters. Total dead load

= 5.19 kN/m2 (108 pst), live load = 5.27 kN/m2 (110 pst), slab thickness = 169.33

mm (6.67 inch), Ec = 20685 N/mm2 (3x 106 psi), ("': 20.7 N/mm2 (3000 psi) and

modulus of rupture of concrete, f, = 0.33-Jf: N/mm2
( 4-Jf: psi).

The aspect ratio of the panel, m = 1.00 and corresponding deflection coefficient and

moment coefficient have been calculated from Table ~.6 and 3.7 respectively. Th~

required values for calculation of elastic and immediat~ deflection are:
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Deflection coefficient, D. = 2.5977 X 10-2

Moment coefficient, c = 0.0577

Span length, I. = 7620 mm

Total load on slab, w = 10.46x 10-3N/mm2 (218.33 pst)

Modulus of rupture of concrete, fr = LSI N/mm2

Elastic deflection, 0 = D, ~l:
Et-

_ 2.5977xI0" xI0.46xlO.3 x (7620)'
- 20685x (169.33)'

= 9.116 mm.

The flexural stress developed at support in the short direction,

f = 6cwl;
b t'

= 6xO.0577xI0.46xI0.3x(7620)'
Ix (169.33)'

=7.33 N/mm2

The stress ratio, flfr = 7.33 / LSI = 4.85

The deflection ratio determined from design chart (Figure 5.4) = 2.6

The immediate deflection = Elastic deflection x Deflection ratio

=9.116x2.6

=23.7mm.

From FE analysis of the slab the immediate deflection has been found = 23.612 mm

% variation with respect to FE analysis = 0.40
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Table 5.1 Comparison of calculated and FE analyzed deflections for different slab
cases.

Immediate Immediate
Slab Slab Total deflection deflection % variation

Slab case dimension thickness load from FE wrt FE
(mmxmm) (mm) (kN/m') from deign analysis analysischart (mm) (mm)
3048x3048 67.73 6.624 12.47 12.49 -0.1
4572x4572 101.60 7.425 22.04 21.42 2.9

Case. 1 7620x 6096 152.40 11.013 46.74 46.18 0.9
7620x 3810 127.00 12.808 22.49 22.29 0.9
7620x 3810 127.00 10.418 3.36 3.27 2.8
7620x 6096 152.40 13.41 12.89 12.27 5.0

Case-2 7620x 4572 135.47 17.803 10.40 9.55 8.8
6096 x 6096 135.47 8.22 6.08 6.07 0.2
7620x 6858 160.87 10.258 10.50 9.96 4.0
7620x 5334 143.93 8.422 15.49 14.12 9.7
5486x 2743 91.44 14.37 15.36 15.39 -0.2

Case-3 7620x 4572 135.47 10.617 19.11 17.70 8.0
7620x6096 152.40 11.017 21.99 20.94 5.0
4877x4877 108.37 10.50 14.70 15.06 -2.5
7620x 6858 160.87 8.339 14.44 14.60 1.1

Case-4 7620x6858 160.87 10.258 21.93 21.24 3.2
7620x 6096 152.40 10.06 17.48 18.08 -3.3
7620x 4572 135.47 10.617 12.49 11.57 8.0
6096x 6096 135.47 9.66 13.Q4 13.15 .0.9
7620x 5334 143.93 9.86 9.02 8.43 7.0

Case-5 7620x 4572 135.47 10.617 6.70 6.54 2.5
7620x 4572 127.00 12.813 5.09 5.09 0.0
7620x 7620 169.33 9.02 27.11 26.58 2.0
7620x6096 152.4 11.017 25.53 24.26 5.2

Case-6 7620x 5334 143.93 9.86 17.55 16.22 8.2
7620 x 4572 135.47 15.4 20.07 18.85 6.4
7620x 6858 160.87 10.25 31.83 31.79 0.1
7620x 6096 152.40 8.622 24.35 24.01 1.4

Case-7 7620x 4572 135.47 15.407 34.78 34.10 2.0
5486x 2743 91.44 8.62 8.86 8.85 0.1
7620x 3810 127.00 9.46 14.02 13.51 3.8
7620x 7620 169.33 10.46 15.19 14.99 1.4
7620x 6858 160.87 13.61 20.81 20.61 1.0

Case-8 7620x 6096 152.40 8.62 11.32 10.60 6.0
7620x 5334 143.93 13.21 17.25 16.96 1.7
7620x 3810 127.00 15.21 6.02 5.94 1.3
7620x 4572 135.47 10.617 6.31 6.04 4.4

Case-9 7620x 6096 152.40 10.06 10.77 9.934 8.4
7620x 7620 169.33 11.416 16.95 16.71 1.4
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Figure 5.10 Deflection ratio vs. stress ratio chart of two-way edge supported slab

for case-I, f, = 0.62.jf; N/mm2 (7.5.jf; psi),

5.8 Validation of the Design Charts with Experimental Results and FE Analysis

Considering modulus. of rupture of concrete, f, = 0.62.jf; N/mm2 (7 .5.jf; psi) a

design chart has been developed for calculation of immediate deflection for slab

case-I, as shown in Fig. 5.10. The developed design chart for prediction of

immediate deflection of two-way edge supported slab has been verified with the

experimental results tested by Shukla & Mittal (1976). For this purpose three slabs

8-8, 8-11 and S-12 have been considered. These slabs are single panel and resting

on masonry walls and as a result extra tensile stress was not generated due to

restraint shrinkage and a value of 0.62.jf; N/mm2 (7 .5.jf; psi) for modulus of

rupture is logical. The details Shukla & Mittal (1976) slab are discussed in section

4.6.3. The deflections predicted using design chart and experimental results are

presented in Figs 5.11 to 5.13. It has been observed that the calculated immediate

deflections from design chart compare well with those obtained from experiments.
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Figure 5.12 Load-deflection curve for Shukla & Mittal slab, S-II.

Figure 5.11 Load-deflection curve for Shukla & Mittal slab, S-8.
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5.9 Conclusion

In this chapter the calculation procedure of elastic and immediate deflection of two-

way edge supported slabs have been presented. Nine sets of design charts have been

proposed for the calculation of immediate deflection of two-way edge supported

slabs for different boundary conditions and aspect ratio to facilitate the designer.

The calculation procedure of elastic and immediate deflection of edge supported

slab with an example has been worked out. The imm!ldiate deflections calculated

from finite element analysis and those obtained using design charts compar~

reasonably well. Finally the immediate deflections calculated from design chart~

have been compared with experimental results and de.flections predicted from FE

analysis. Design charts have been proved to yiel<,!very good estimation of

immediate deflection.
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CHAPTER 6

ESTIMATION OF LONG-TERM DEFLECTION

6.1 Introduction

In Chapter 5, the calculation of immediate deflection of slab using design charts for

different end conditions has been discussed. In this chapter the calculation of long-

term deflection of two-way edge supported slab are discussed using FE analysis and

design charts. ACI Code (2002) simplified multiplier approach has been used to

consider the effects of creep and shrinkage. The adequacy of ACI minimum

thickness of slab for different live load, span length and concrete strength are

verified in a parametric study by checking incremental and total deflection. The

calculation procedures of incremental and total deflection are demonstrated with

examples.

6.2 Example Showing Short- and Long-term Deflections Estimation

To demonstrate the method of deflection calculation following ACI Code, an

example is worked out here. Unlike the approach shown in Nilson (1997), cracking

in slab is considered in the FE analysis. In the current example, short- and long-term

deflections of a 4267 mm x 3658 mm (14 ft x 12 ft) corner panel slab has been

estimated with following parameters.

Slab thickness has been calculated using recent formula shown in Eqn. (2.47) and

found to be 95 mm (3.73 inch), the following parameters are assumed:

f; = 20.7 N/mm2 (3000 psi), fy = 413.7 N/mm2 (60000 psi), Ee =20685 N/mm2

(3x 106psi), Poisson's ratio = 0.18 and Modular ratio, n = 10.
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A reduced value of 0.33KN/mm2 (4Kpsi) has been used for rupture strength of

concrete instead of 0.62KN/mm2 (7.5Kpsi). The total dead load with 1.2 kN/m2

(25 pst) of floor finish was 3.45 kN/m2 (72 pst) and live load was 3.83 kN/m2 (80

pst). Full panel has been modeled with 24 x 20 = 480 plate elements and from FE

analysis using ACI crack model, the immediate deflection has been found for total

dead and live load. The calculation of long-term deflection has been performed

using ACI multiplier method as discussed in section 2.6.1 with a sustained load of

30% live load and q = 3.0 as proposed by Branson for slabs.

6.2.1 Long-term Deflection Calculation from FE Analysis

Long-term deflection calculation method demonstrated in this section is adapted

from Nilson (1997). Immediate deflection for dead load and live load from FE

analysis, ""d+1 = 4.44 mm

The time-dependent portion of dead load deflection is,

""d = 4.44 x 3.45 x3 = 6.31 mm
7.28

The long-term deflection due to sustained portion of the live load is

""03L =4.44x 3.83 x 0.3 x 4= 2.80 mm
. 7.28

The instantaneous deflection due to application of short-term portion of the live load
IS

""07L =4.44x 3.83 xO.7 = 1.63 mm
. 7.28

The total incremental deflection is ""= 6.31 + 2.80 + 1.63 = 10.75 mm

The ACI Code limitation of incremental deflection is _1_ = 7.62 mm, it is observed
480

that the slab thickness needs to be increased to control the incremental deflection of
slab.

The total deflection is ""total =6.3IX~+2.80+1.63= 12.84 mm
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The ACI Code limitation of total deflection is _1_= 15.24 mm. From calculation,
240

slab thickness is found to be adequate regarding total deflection.

6.2.2 Long-term Deflection Calculation from Design Charts

In Chapter 5, the calculation of immediate deflection of a slab for different end

conditions from design charts are discussed. With the help of those design chart the

immediate deflection of the above slab has been estimated to be 4.8 mm. The

calculation of incremental and total deflections from above procedure are presented

as follows.

Immediate deflection for dead load and live load from design chart, tld+1 = 4.8 mm

The time-dependent portion of dead load deflection is,

tl = 4.8x 3.45 x 3 = 6.82 mm
d 7.28

The long-term deflection due to sustained portion of the live load is

8 3.83 0tl03L=4. x--x .3x4=3.03mm
. 7.28

The instantaneous deflection due to application of short-term portion of the live load

IS

4 8 3.83tl07L= . x--xO.7= l.77mm
. 7.28

The total incremental deflection is tl= 6.82 + 3.03 + 1.77 = 11.62 mm

The ACI Code limitation of incremental deflection is _1_ =7.62 mm, it is observed
480

that the slab thickness needs to be increased to control the incremental deflection of
slab.

The total deflection is tlIO'" =6.82x~+3.03+1.77= 13.89 mm
3

The ACI Code limitation of total deflection is _1_' = 15.24 mm. From calculation,
240

slab thickness is found to be adequate regarding total deflection.
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6.3 Parametric Study Showing Adequacy of Thickness

To study the adequacy of minimum thickness of ACI Code (2002), a parametric

study has been carried out varying live load, concrete strength, slab thickness and

panel size. Incremental and total deflections have been calculated using the approach

shown preceding section. The effects of these parameters on incremental and total

long-term deflections have been monitored.

6.3.1 Live Load

To investigate the role of live load, it has been varied from 1.92 kN/m2 to 6.71

kN/m
2 (40 psf to 140 pst) for a 4267 mmx3658 mm (12 ftx 14 ft) slab. The panel

under consideration is a comer panel, the thickness has been chosen using Eqn.

(2.47) and Direct Design Method was employed. The FE analysis was carried using

20 x 24 = 480 number of plate elements. Plate stiffness was reduced considering

cracking using Branson's equation (Eqn. 4.1). Incremental and total deflections were

calculated following the procedure described in the previous section assuming that

only 30% of the live load remains sustained. In the analysis, deflection calculations

under dead and live load were carried out with both elastic and cracked sections.

Two levels of modulus of rupture, i.e. f,. = 0.33F: N/mm2 and 0.62F: N/mm2

(4F: psi and 7.5F: psi) were used to show the effect of restraint shrinkage

induced cracks. Incremental and total deflection variations with live load along with

the allowable value have been plotted in Figs 6.1 and 6.2, respectively. The results

show that if a reduced of modulus of rupture is used in the analysis to cater for

restraint shrinkage, the incremental deflections seem excessive even at 2.87 kN/m2

(60 pst) live load. The total deflection limit, which is generally easier to satisfy, is

also exceeded at higher loads. The curves also show the effect of considering
:!

cracking which is often ignored in calculations of slab deflections.
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Figure 6.1 Variation of incremental deflection with varying live load for a 3658

mrnx4267 mrn (12'x14') comer panel.

Figure 6.2 Variation of total deflection with varying live load for a 3658 mmx4267

mrn (12'x 14') comer panel.
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6.3.2 Concrete Strength

Thickness selection based on ACI Code does not consider the effect of concrete

strength. To identitY the effect three concrete strengths, 20.7, 27.58 and 34.48

N/mm2 (3000, 4000 and 5000 psi) were used in the analysis. Change in concrete

strength changes modulus of rupture fr and modulus of elasticity of concrete Ec• The

variations of incremental and total deflections with concrete strength are plotted in

Figs 6.3 and 6.4. The analysis is based on fr = 0.33.Jf: N/mm2 (4.Jf: psi). The

results show that for higher live loads where slab is more cracked, the effect of

providing higher concrete strength may prove beneficial. However, for lightly

loaded slabs, which are mostly uncracked, the effect is not significant.

25 .~-~.------

20 .__. ~~~~-__-~~-_~-I_~_~~_~~_~~~=~~~~:I:::~:::on~
-e-L.L~3.832kN/m'2

15 -----~ __ L.L=5.748kN/m'2

10 -1--
13

al- d.-- --:---5

I I
0
20 24 28 32 36

Concrete strength (MPa)

Figure 6.3 Variation of incremental deflection with varying live load and concrete

strength for a 3658 mm x4267 mm comer panel, f, = 0.33.Jf: N/mm2
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To demonstrate the effect of slab thickness on deflection, a study has been carried

out where slab thickness were chosen using both 1963 ACI Code (perimeter 1180)

and 2002 ACI Code (using Eqn. 2.47); at the same time, thickness 20% more and

less than obtained from Eqn. (2.47) were used in the analysis. The comparative

thickness of slab calculated from both Codes for comer panels are presented in the

Table 6.1 and higher thickness are yield in ACI Code (2002). Two levels of live

load, 1.92 and 3.82 kN/m2 (40. and 80 pst), were used in the analysis. Incremental

and total deflections with different thickness are plotted in Figs 6.5 and 6.6. The

results show that deflections are reduced drastically if an increase in thickness

results in reduction in cracking. For slabs, which are mostly uncracked, a thickness

increase will not reduce deflections appreciably.
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6.3.4 Panel Size

Figure 6.6 Variation of total deflection with varying slab thickness for a 3658 mmx

4267 mm (l2'x 14') corner panel, f, = 0.33K N/mm2

To identify the effect of span length of two-way edge supported slabs on deflection,

different panel sizes with varying live loads have been analyzed. The panel sizes are

3658 mmx4267 mm, 4877 mmx4877 mm and 6096 mmx7620 mm. The analyses

were carried out for concrete strength of 20.7 N/mm2 (3000 psi) and reduced value

. of rupture strength. The live load was varied from 1.92 to 4.79 kN/m2 (40 to 100

pst). The variation of incremental and total deflections with varying live loads are

plotted in Figs 6.7 and 6.8. The results show that for smaller spans with relatively

light loads the estimated deflections are within tolerable limits.
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Figure 6.7 Variation of incremental deflection with varying span length and live

load.



144

6.4 Conclusion

The results of the study show that in most cases the thickness provided by the ACI

Code (2002) proved to be adequate where spans, live loads, concrete strength etc.

are in normal range. However, for shorter spans with lighter loads, a smaller

thickness may suffice from serviceability point of view. The AC1 Code allows slab

thickness less than the specified value if calculated values are within code-specified

limits. So it would be economical to use thinner slabs in such situations where

deflection analysis permits so. On the contrary, for excessive live load and larger

panels, providing ACI Code minimum thickness may not be adequate. In such

conditions, deflection calculations should be mandatory to decide a higher thickness.

Nevertheless, it must be noted that deflection estimation procedure embodied in ACI

Code, as discussed in section 2.6.1 and used in the current chapter to calculate long-

term deflection, is crude in nature and does not intend to calculate deflection

precisely.



CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Introduction

The main objective of this research work is to develop a simplified method for

prediction of immediate as well as long-term deflections of two-way edge supported

slabs. In recent years, realistic estimation of slab deflections under service loads has

become more important than ever due to increasing use of high-strength materials

and due to the use of ultimate limit state design which generally result in thinner

members. Deflection calculation is difficult since slabs designed according to ACI

Code are mostly cracked even under service loads which demands use of nonlinear

finite element analysis. Long-term deflections, which are the main concerns of

serviceability, are also affected by creep and shrinkage which make analysis further

complicated. In this work, nonlinear finite element method using Branson's equation

is employed to simulate cracking. Based on the results of a large number nonlinear

analyses simplified design charts have been prepared. With some accompanying

charts to calculate elastic deflections and stresses, theses simplified charts can be

used to calculate immediate deflections with ease and reasonable accuracy.

Calculation of long-term deflection using ACI Code multiplier approach is shown

with examples to demonstrate the proposed deflection calculation procedure.
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7.2 Conclusions

Within the scope and limitation of this research work the conclusions can be

summarized as follows:

I. The deflection coefficients based on elastic FE analysis have been computed for

the calculation of elastic deflection of slabs for the most common boundary

conditions and for different aspect ratios. These will be useful in deflection

calculation without time consuming FE analysis. However, from FE analysis it

has been observed that most of the edge supported slabs are cracked even under

service load when restrained shrinkage is significant. It is important to check the

maximum stress developed in the slab and include the effect of cracking if

stresses exceed modulus of rupture.

2. The moment coefficients based on elastic FE analysis for nine cases of boundary

conditions of slabs have been proposed for calculation of maximum elastic stress

in slabs which will be useful in deciding whether there is cracking in slab. The

elastic stresses are also used to determine level of cracking which is needed in

simplified .deflection calculation. The moment coefficient calculated from FE

analyses are compared with the ACI Code (1963) moment coefficient and some

variations have been observed. This is due to the fact that the ACI Code (1963)

has accounted for inelastic redistribution of stresses. It would be logical to use

elastic stresses which represent state before cracking.

3. Branson's model to reduce stiffness due to cracking has been employed. The

results obtained from nonlinear FE analysis have been compared with a number

of experimental results and good correlations have been observed.

4. The effect of tensile reinforcement on deflection of slab has been studied and it

has been found that providing more steel has little effect on deflection when slabs

are lightly cracked. For slabs which are severely cracked, effect of reinforcement

on deflections is more pronounced.

5. A large number of slabs with a combination of most common boundary

conditions and aspect ratio has been analyzed. For certain end condition with a

particular aspect ratio, all slabs show an identical pattern in deflection

magnification due to"cracking. Deflection magnification is only determined by

the level of cracking flfr, aspect ratio and end conditions.

I
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6. Deflection calculation using FE analysis considering cracking is time consuming

and may prove to be complicated for the designer. A simplified method of

deflection estimation has been proposed. First the designer needs to calculate the

elastic deflection using the proposed charts of deflection coefficients. Based on

the maximum flexural stress developed in the slab, which can be found from

proposed elastic moment coefficients, the designer can determine the level of

cracking of the slab. Using this level of cracking, one can estimate the deflection

magnification factor. Nine sets of design charts for different boundary conditions

and aspect ratios are prepared based on a large number of FE analyses using

Branson's equation to incorporate effect of cracking. The immediate deflection

can be found by multiplying the elastic deflection with this magnification factor.

Immediate deflections of a large number of slabs have been calculated following

this approach and they are found be in good agreement with those obtained from

rigorous FE analysis and some limited experimental results.

7. A parametric study has also been carried out and adequacy of ACI minimum

thickness has been studied. ACI simplified multiplier method has been used in

the analysis. Both incremental and total deflections of smaller sized panel

designed with ACI thickness remain within tolerable limits when loads are light.

For larger panels, ACI thickness provisions are found to be inadequate

particularly when loads are high. When slabs are severely cracked due to

excessive Jive loads, use of high strength concrete may prove beneficial.

8. It is easier to satisfy total deflection tolerable limits whereas incremental

deflection limits are found to be frequently exceeded in case of high loads and/or

larger panels.
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7.3 Recommendations for Future Work

The following research topics are possible future extensions ofthe current work:

• This study was performed for single slab modeling and some differences

have been observed when compared with 3-D elastic analysis. More realistic

results of immediate slab deflection would be found if a full 3-D building is

modeled.

• In this study the design charts containing deflection magnification factors are

presented in the form of two bounding lines which correspond to aspect ratio

0.5 and 1.0. If more lines corresponding to intermediate aspect ratios can be

generated, deflection calculation will be more accurate.

• Further study is possible to develop design charts for flat plate and flat slabs

for calculation of immediate deflection.

• Crack width is another important aspect of serviceability and affects the

corrosion of reinforcing bar or may be visually objectionable. Study is

possible for prediction of crack width.

• Experiments involving measuring immediate and long-term deflections of

edge supported slabs for different boundary conditions are needed for further

verification of the proposed numerical analysis.

• A neural network based deflection prediction tool can be developed which

will be useful in selection of slab thickness.
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Figure Al Deflection ratio VS. stress ratio chart for slab case-1, f, =O.62Jf: N/mm2



"

4.0

5.0

3.0

o m =1.00
o m=0.90
b. m=0.80
• m=O.70
..K m = 0.60
T rn=O.50

-Upper range(m= 0.50)
-Lowerrange(m= 1.00)

o m=1.00
o m=0.90
b. m=0.80
• m=0.70
.I: m = 0.60
or m=D.50

-Upper range(m= 0.50)
-Lower range(m= 1.00)

3.0 4.0 -

--",--.---1 .I:.I:

2.0

Stress ratio

2.0

1.0

1.0

-1 ---~- - ----,-------1- - l-----l--= .....-..J !._---- : ~

I I
___ .1-_ ---

155

0.0

0.0
Stress ratio

0.5

0.5-----._------ --- ..-.--.---- -------

0.0

0.0

1.0

1.5

2.0 -------.

2.5

2.5

2.0

.~ 1.5
=0."~
'" 1.0~
Q

Figure A4 Deflection ratio VS. stress ratio chart for slab case-4, f, =O.62..jf; N/mm2

Figure A3 Deflection ratio vs. stress ratio chart for slab case-3, f, =O.62K N/mm2



156

4.03.5

1---1

.1 I
I

I

3.0

o m ~1.00
o m~0.90
I> m~0.80
• m~0.70
..K m = 0.60
or m=O.50

-Upper range(m= 1.00)
-Lower range(m= 0.50)

2.5

...I----T.
, J:

• I>
-0----

2.0

Stress ratio

1.51.0

Stress ratio

-~-=--~~-~]-~--,-----~
.~~-I~~~-~-.'.1

o m-I.o~ I
[] m =0.90
A m~0.80
• m~0.70
J: m~0.60
T rn = 0.50

-Uppcrrange (m= 1.00)
-Lower range(m= 0.50)

i-----.---.----_
2 3 4 5

-~-~-r--- ---...., -
--l-. --

0.5

0.0
o

0.5

2.0

0.5 ------.--

1.5 -

2.0 ----

2.5

.~ 1.5 -----

.~
II
~ 1.0

Figure A6 Deflection ratio vs. stress ratio chart for slab case-6, f, =O.62K N/mm2

Figure AS Deflection ratio vs. stress ratio chart for slab case-5, f, = O.62.Jf: N/mm2



Figure AS Deflection ratio VS. stress ratio chart for slab case-8, f, =O.62.Jf: N/mm2
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Figure A9 Deflection ratio vs. stress ratio chart for slab case-9, f, = O.62.Jf; N/rnm2
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