OPERATIONS RESEARCH TECHNIQUE APPLIED IN REPLACEMENT OF STREET LIGHTS OF DHAKA CITY

BY
TARAPADA BHOWMICK, B.Sc.Engg(Mech).

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA
February 1984

OPERATIONS RESEARCH TECHNIQUE APPLIED IN replacement of street lights of dhaka city

BY
TARAPADA BHOHIICK, B.Sc.Engg(Mech).

A THESIS

> SUBMITTED TO THE DEPARTMENT OF INDUSTRIAL AND PRODUCTION ENGINEERING, BANGLADESH UNIVERSITY OF ENGINEERING \& TECHNOLOCY, DHAKA, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ENGINEERING(IP)*

DEPARTMENT OF INDUSTRIAL \& PRODUCTION ENGINEERING BANGLADESH UNIVERSITY OF ENGINEERING \& TECHNLLOGY, DHAKA.

CERTIFICATE

THIS IS TO CERTIFY THAT THIS WORK
has been done by me and it was not SUBMITTED ELSEWHERE FOR THE AWARD

OF ANY DEGREE OR DIPLOMA OR FIR ANY PUBLICATION.

OPERATIONS RESEARCH TECHNIQUE APPLIED IN

 REPLACEMENT OF STREET LIGHTS OF DHAKA CITYA THESIS
7.

BY

```
TARAPADA BHOWMICK, B.Sc. Engg, (Mech.)
```

APPROVED AS TO STYLE AND CONTENT BY :
м. м. R. Renew

1. (Dr. Md. Mizanur Rahman)

Professor
Department of Industrial \&
Production Engineering
B. Ј.E.T., Dhaka.
2. (Dr. A.F.ल̆. Anwarul Hague).

Professor \& Head
Department of I.P.E.
B.U.E.T., Dhaka.

3. (Dr. Md. Anwarul Azine)

Member
Professor of I.P.E.
\&
Dean, Faculty of Mech. Eng.
B. U.E.T., Dhaka.

4. (Dr. $\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$ M.JZohrul Kabir)

Member
Assistant Professor
Department of I.P.E.
B.U.E.T. \quad Dhaka.
(Mr. Md. Hamid Ali Shah)
Member
Director of Technical Education
(External)

Government of Bangladesh,
Dhaka.

DEDICATED
90
MY BELOVED PARENTS

With deep sincerity, the author acknowledges his profound fratefulness to Dr. Md. Mizanur Rahman, Professor of Industrial \& Production Engineering Department, Bangladesh University of Engineering \& Technology, Dhaka for his unfailing guidence and valuable counscl ir execution and completion of the study and imense help during the preperetion of this thesic, without which it would have been simply impossible to carryout this work.

The author is also grateful and tharkful to Dr. A.F.K. Anwarul Haque, Professor \& Head of the department of Industrial and Pradaction Engineering, Banciacesh University口f Engineering \& Technology, Dhake for his valuable advice and sugestions.

His indebtedness is due to Dr. Md. Anwarul Azim, the Professor of Industrial \& Production Engineering and now Dear of Faculty of Mechanical Enginecring, Bangladesh University of Engineering \& Technology, Bhaka for his encouragement throughout the course of the work.

He pays great indebtednesg and sincere thanke to Dr. A.B.M. Zohrul Kabir, Assistant Professor of Industrial \& Production Enginegring Department, $甘 U E T$, Dhaka for his valuable help and suggestions during his work and also for allowing access to the computer programme from his Maeter's thesis.

- The author wishes to thank the officers and staff * of Dhaka Municipal Corporation specially to Sayed A.T.M. Aminul Hoque, the Executive Engincer for their sincere co-operation and help in collecting data and relevant information. His appreciation is also extended to The Eastern Tubes for their co-operation.

He acknowledges with gratitude the kind effort of Mr. Namun Chowdhury for his keen interest in typing the manuscript as well as for his assistance.

Resides, the author expresses his indebtedness to the University euthority in providing hín financial assistance in the form of fellowship and for bearing all the expenses involved in the work.

Finally, his nover ending ratitucie to his brathers who inspired constantly with the beat of their prayexs and wishes.

ABSTRACT

Operation of the lighting system and its maintenance in the city is an extremely important service activity of the Dhaka Municipal Corporation. The level of performance of this lighting system depends more on the policy of replacement and its implementation than any other relevant factors. The level of performance in turn affects i system cost' in terms of annual cost of replacement. Establishment of a clearcut relation between the level of performance and annual cost of replacement would require such considerations as,
(i) Use of mathematics and scientific methodology of Operations Research (OR) and Statistics.
(ii) Scientific approach of record keeping, storing and retrieval of basic data etc.

In the present work a study of the $O R$ techniques and the methocis applicable for the replacement of street light bulbs are discussed. The failure rates of the bulbs have been determined and fitted to the Weibull distribution which is a general type of theoretical distribution. 'On the basis of similarity of the failure patterns of existing 'WARDS' under the two 'Divisions', the systen has been broken to four 'zones', so that failure patterns within each zone is similar. Thus four different replacement policies were suggested for the
four zones. These replacement policies could be designated as pure service replacement. The group replacement policy could not be recommended because bulk purchase discount advantage could not be obtained from the manufacturers of the light bulbs. With the proposed replacement policies characteristic curves in terins of (i) annual cost versus the percentage performance level and (ii) the percentage performance level versus frequency of service trips per week were developed for each zone. The porformance could be measured as the ratio of actual number of lisht bulbs in operation to the total number of light bulbs in the zone at any period. The level of performance could be varied by varying the frequency of service trips per period (normally per week).

- The replacement models were developed using one year's data as supplied by the Corporation. A computer programme in FORTRAN-IV language has been used in the IBM $370 / 115$ computer. The parameters of the weibull function were established using least squares method in the above programe. This programme along with other programes for generation of the character* istic curves are stored in magnetic tapes which may be available from BUET computer centre on request to the Department of Industrial and Production Engineering.

CONTENRS

Page No.
ACKNOWLEDGEMENTS i
ADSTRACT iii
LIST OF FIGURES${ }^{1} \mathbf{v}$
LIST OF TABLEG vi
NOTATIONS vii
CHAPTER IFTPODUCTION 1
1.1 Genral Introduction 1
1.2 Replacement Problens 4
1.3 Replacement Kethod for Items 5 Completely Failed

1. ${ }^{1}$ Operations Research Techniques 7
in Industrial Problen Solving
1.5 Scope and Objectives 10
CHAPTER 2 LITERATGRE GURVEY 12
CHAPTER 3 STUDY OF THE EXISTING SYSTEM OF STREET 17 LIGHTS OF DHAKA GITY - A CASE STVII
2. 1 Historical Background of Dhaka 17
Municipal Corporation
3.2 Functione of Dhaka Muricipal Corporation 18
3.3 Strength of Manporer \& Vehicle Resources 22
3. 4 Trence of Annual Consumption and 25
Expenditures of Light Bulbs of Dhaka City
3.5 Existing Replacement Policy 27
3.6 Defects and Limitations of the 31
Existing Process oî Replacements
CHAPTER 4 DEVELOPMENT OF METHODOLOGY FOR ESTABLISHMENT 33 OF A REPLACENFAT POLICY FOR LIGIIT BULBS IN THE CITY
4.1 Distribution of Failure Patterns 33
4. 2 Replacement Models 39
4.3 Proposed Methodology 47
CHAPTER 5 DATA COLLECTION AND ANALYSIS 54
5.1 Data Collection \& Aesociated Problems 54
5.1.1 Data Collection for the Present Study 57
5.? Analysis or Data 62
5.2.1 Data Speciricationt, Computer Program 63.
5.2.2 Output and Resulats 70
5.3 Estatilislment of Zones for the 74 - Lighting System of the City
5.3.1 Computer Output \& Results for the Zones 78
5. 4 Development of Characteristic Curves 82
5.4.1 Data Specifications, Computer Program 86
5.4.2 Output Specirications 88
CFAPTER 6 CONCLUSIOR \& RECOMEESDATIONS FOR FUTURE WORKS 98
6.1 Conclusion 98
6.2 Scope and Fecommendrations for 100 Future Works
REFEREIVCES 105
APPETDICES 109

LIST OF FIgupes

FIGURE	3.1	Organisation Chart of DNC
FIGURE	5 a	Fluctuations of Lives of the Bulbs in Test Line
FIGURE	5	Confidence Limits for Shape Parameter for Different Confidence Values
FIGURE	5.1	Characteristic Curve of Cost of Replacement vs, Level of Performance, \% for Zone-1
FIGURE	5.2	Characteristic Curve of Cost of Replacement ve. Level of Performance, \% for Zone-2
FIGURE	5.3	Characteristic Curve of Cost of Replacement vs, Level of Ferformance, \% for Zone-3
FIGIPRE	5.4	Characteristic Curve of Cost of Replacement vs. Level of Performance, : for Zone-4
FIGJIRE	5.5	Characteristic Curve of Level of Performance, $\%$ vs Number of Trips per Week for Zone-1
FIGIRE	5.6	Characteristic Curve of Levcl of Performance, $\%$ vs. Number of Trips per Wcek for Zone-2
FIGURF	5.7	Characteristic Curve of Level of Performance, \% vs. Number of Trips per Week for Zone-3
FIGUPE	5.8	Characteristic Curve of Level of Performance, \% vs. Number of trips per Week for Zone-4

LIST OF TABLES

TABLE 3.1 Total Strength of Vehicles 2'TABLE 3.2 Year-Wise Consumption of Tubeand Light Eulbs25
TARLE 3.3 Exponses for Bulbs \& Materials, Maintenance and Salary Cost 26
TABLE $5 a \quad$ Sample Data for a Ward 58
TABLE 5b Fuel and Maintenance Costs of Vehicles 59
TABLE 5.1 Field Data for Ten Tube Lights in a Test Line. 60
TMBLE 5.2 Trput Forms for Weibull Analysis 64
TABLE 5.3 Characteristics and Statistice of Wards 72
TMBLE 5.4 Various dards Failing Under the Zones 77
TABLE 5.5 Derived Weibull Parameters for Failure Distribution Zone-wise 78
TABLE 5.6 Cost of Replacement per Year vs. Percentrase Level of Performance for Various Zones ind Various Frequency of Service Replacements 89

NOTATIONS

A	Acquisition cost
0	Annual cosit
C_{1}	Unit cost of replacement in a graup
C_{2}	Unit cost of inciividual replacement
$\hat{\mathrm{C}}$	Average cost per mile
c.d. f^{\prime}	Gumulative distribution function
c_{f}	Failure replacement cost
C_{E}	Cost of replacing one item in group replacement
C_{T}	Cost per trip
${ }^{C_{i}}$	Trip cost for zone i ($i=1,2,3,4$)
$C(t)$	Average cost per jeriod
$c\left(t_{p}\right)$	```Total expected replacement cost per unit time for group replaccment at time, tp```
D_{T}	Total milage covered during the year
5	Total road milage for the city lithting
F	Shape factor for different confidence values
$F(t)$	Camulative distribution function at time, t
FC	Puel cost
f	Actual number of light bulbs in operation
$f(t)$	Pailure density function at time, t
$f(x)$	Number of failures in x th period
$H\left(t_{p}\right)$	Expected number of fajlure in interval ($0, t$)
$h(t)$	The hazard function at time, t

$K(t)$	Total cost from time of group installation until the end of t periods
$\frac{\mathrm{K}(\mathrm{t})}{\mathrm{t}}$	Average cost per period
MC	Maintenance cost
N	Tatal number of units in the group
NC_{1}	Cost of replacement of bulbs as a group (Group replacement cost of bulbs)
N_{i}	Number of items in zone i ($i=1,2,3,4$)
N_{0}	Initial nurber of units in the group
N_{t}	Number of survivors through time t
$\mathrm{N}_{\mathrm{t}-1}$	Number of survivors through time t-1
${ }^{\text {i }}$	Number of failures occuring in i th interval
p.i.f	Probability density function
$P(n)$	Present value of failure costs
P_{R}	Level of performance
$P_{s}(t)$	Survival probability in time t
$P(\mathrm{t})$	Probability of failure during the time period t
$R(t)$	The reliability function at time, t
$\mathrm{T}_{\text {i }}$	Time of given read out
$\mathrm{T}_{\mathrm{i}-1}$	Time of previous read out
t	Age of replacement
t_{i}	Estimatcd time to first failure
w.r.t	with respect to
'	Weibull shape parameter or slope
η	Weibull scale parameter or characteristic life
γ	Weibull location parameter or minimum life

(n)	Gamma function evaluated at n
H^{\prime}	Mean life
σ	Standard deviation
β_{u}	Upper S- confidence limit
β_{1}	Lower S- confidence limit

CHAPTER 1

IN TRODOCTION

The country is suffering in most situstions both in strategic planning and exeantion due to lack of endeavours and efforts directed in line with Operation Research (OR) thinking. The induatrial sector along with other vitally important sectors of the economy is reluctant to use mathematice in its decision making. The present study is thus devoted to find an application of CR in a problem which would be introduced in the following sections.

1.1. GENERAL INTRODJCTION

The term roplacement is used with the widest anplications. To the economist it does not mean that equipment will be duplicated at the end of its life; it does not imply like - to m like substitution. It occurs even if a manual proceas is superseded by a machine or if a group of machines is superseded by one large machine. To accountants replacements nay be either assetc or expenses, depending on how the asset unjt is defined. The replecement of an entire asset results in the writing off of the old agset and the booking of the new. The replacement of a component part of an asset is the maintenance expense. To the engineers replacement is synonymous with displacement. Replacement then means that the present incumbent process will be displaced by a similar or more economic one. Recognizing the fact that all equipments, items, parts etc. have finite lives (stochastic in nature) and need roplacement the all important fact remains with
questions to be answered such as,
i) When and how frequently to replace?
and ii) which one to replace?

Wrile answering these questions from the past, optimum replacement strategies had been evolved and new mathematics, heuristica deveIoped. At this point mention may be made that optimum replacement strategy could not always be brought into operation in situations where key factors such as cash restrictions, import policy etc. are tight, as is the case in the country. Thus the experience of the writer suggests that most equipments of the country's installations are operating at levels far fron optimum; one concrete example may be: continued operation of fleet of vehiclem in the transport sector, where lives of most of them have passed economic points. This results in (i) increase in operating cost (including maintenance and repair costs) and (ii) inefficient production with decreate in output.

A11 replacement decisions criteria include such factor(s) as minimization of average operating cost and/or maximization of reliability of the system as a whole. In the later case standby optimum numers of items are kept at hand so that syster does not breakdown or the performance is maintained at predetermined level. The effort is then directed to evolve a policy so as to search for a method of replacement to mininize the cost and upkeep the predetermined level of performance. The present work is directed in achieving such an objective. It concerns a 'service' syotem of
the city lighting. A preliminary study of the system revealed that scientific method(s) of replacement policy is absent resulting in unplanned replacement of the light bulbs of the system. This in turn results to high operating cost. The writer envisages that with the present rate of climbing cost of replacement, the overall operating cost of the system at an acceptable level of performance would be prohibitive resulting to possibly operating at lower level of performance. Thus the present work made in this context a study of the current status of the system as detailed in Chapter 3 and various limitations and shortcomings of the present system are analysed thus to suggest an improved method of replacement. The following articles are devoted to appraise the basic concepte of replacement strategy.

The street lights maintenance (excluding those of highways) is controlled by the Municipal Corporation of the city. The study of the existing system reveals that a strictly service replacement policy is adopted. The entire lighting system of the city is divided into two administrative divisions. These divisions constituted of a total of 56 wards, are administered separately. This division is made strictly on the basis of administrative point of view. Failure history for a period of one ycar has been collected and analysed initially to determine appropriate fajlure distributions for each ward. On the basis of similar failure patterns new 'Zones' have been proposed. Thus the existing two divisions may retain but it would be wise to bring the administrative jurisdiction to
zonal concept. This would help maintain efficient maintenance policies and better control.

1.2 REPLAGEMENT PROBLEMS

The replacement problems usually f_{al} in in two catagories such me;
i) replacement of items that deteriorate with time;
and ii) replacement of items that faid in service.
When equipment deteriorates, the decision to replace will depend upon the cost of new equipment and the cost of maintaining the efficiency of the old and also concerned with determining the optimum point in time at which the item should be replaced. The second one is related to circumstances in which the item breaks down or fail completely.

In the theory of item replacement it is customary to distinguish between two types of repair associated with item failure, each type of repair generating a particular replacenent problem. The first type of repair results in the item being restored to a condition as good as new. This class of replacement policy is considered in the literature as age replacement policy. Under such a policy an operating item continuously in service is subject to failure, the item is replaced at failure or at a specified age which ever comes first. Assuming instantaneous repair and replacement the author shows that when the failure rate of the item is strictly increasing and differentiable or unique
optimal replacement age exists which minimizeg the long-run total expected cost per unit time. The second category of repair, the item age is not effected by repair following a failure, thus the item failure rate remains undisturbed. In the second type of failure there may be instances when items fail abruptly. Failures of light bulbs in a street lighting system is one such example. The life of an item, in this case is probabilistic in nature as mentioned earlier and thus follows a probability distribution. The cost of maintenance and operation of the system over a year is given by:-

Cost $=\left[\begin{array}{l}\text { Cost of making } \\ \text { single replacement }\end{array}\right] \times\left[\begin{array}{l}\text { Probable number of } \\ \text { failures during year }\end{array}\right]$

The above expression contains two quantities. The first one is composed of other quantities such as item cost, and cost of replacement. Thus it is a strategic matter which decides the replacement policy. The second element could be ascertained from the probability of failure distribution of items.

1.3 REPLACEMENT METHOD FOR ITEMS COMPLETELY FAILED

The problem of roplacement arises because of two factors; firstly, the existing unit or units may have out lived their effective lives and it may not be economical to allow them to continue operation; secondly, the existing unit or units may have completcly failed. In each case operation research techniques are available. These frequently met with that of determining at what age the maintenance costs for old units will be offeset by
new purchases. Various methods developed for solving these problems are given as rollows:
a) actuarial methods
b) numerical methods
c) application of dynamic programming
d) statistical methods using simple algorithms.

In the present work statistical methods have been used and various statistical probability distributions available and used in similar situations have been studied. Considering, the generality in nature, the Weibull distribution has been used in the present work. A detailed study of failure charactristics of light bulbs for all the wards has been made and presented in Chapter 5. On the basis of similarity in failure charactristics in terms of the two parameters such as 'scale parameter' and 'shape parameter' of the Weibull distribution, the wards were pooled and thus four 'zones' were established. It is hypothesized that under the proposed zoning concept the overall performance of the entire system would be improved with corresponding reduction of replacement cost. This is because the service trips of maintenance crews could now be better planned. The total distance travelled by the service crews would be shortened as the present highly erratic and haphazard movements would be smoothened and thereby reduced.

1.4 OPERATIONS RESEARCH TECHNIQUES IN INDDSTRIAL PROBIEM SOLVING

Operations Research (OR) approach could be applied in decision making problems in strategic situations met within industry, agriculture and various field of economy. The oldest profession which has been involved in a sophisticated $O R$ work is that of an actuary who has been applying life contigency, probability and Various mathematics and other methods to enable the life offices to decide what the premium rates of various policies should be, how best profits could be distributed in case of with profit policies, etc. The problem in industry starts fram procurement of raw materials up to the despatch of the finished product. In hoth developin5 and developed economics the OR approach is equally applicable. In developing economics there is a great scope of developing an OR approach towards planning. The basic problem in most of the developing countries in Asia \& Africa is to weedout poverty and hunger as quickly as possible; there is a great scope for econonists, statisticians, administrations, politicians, technicians work together to workout this prohlem with an OR approach.

The OR approach needs to be equally developed in various agricultural problems (Neverthless, there have beer successtul applications of $0 R$ in industries in developed countries). The scientific approach aims at gjving a quantitative analysis of the problems posed, in order to develop a mathematical model on the basis of which data are collected and numerjcal investigations are made.

The basic of approach is
i) to formulate the problem as precisely as possible
ii) to device methods of attacking problems
iii) to undertake investigations on the basis of (ii) and draw ennclusions.

In 5 tage (ii) a model is to be devised and decision to be made what data should be collected and how they should be analysed. The ftage (iii) is very often followed by a study of implementation of the recommendations.

Having specified $O R$ way of attacking a problem various techniques are applied for the purpose of solving the protlem and should not distort the problem to apply a particular technique.

Operations Research Techniques are continually being evolved indeed the $O R$ worker must often avoid the pitfalls of existing techniques in maintaining his enquiring experinental attitude of mind. Certain techniques have, however, now heen used in many situations so successfully with only minor modifications on each occasion that the responsible $O R$ man must always consider these techniques first in the given situations because, after all, he is paid to produce resulte not to salary hie own intelectual curiosity.

These techisques give a clear indication of just how or workers and the results it has had. Many of these techniques are derived from mathematical statistics which is still one of the most powerful tools in the $O R$ approach. This is necessary so because
one common property of industrial systems is their variability and mathematical statistic is the method of handing the problem of variability. The other techniques are linear programming, queueing theory, simulation methods, stock and production control models, decision theory and game theory, operations gaming, informetion theory and evolutionary operation. These techniques do not ofcourre repreaent the limit of an or tean's capabilities, nor are they the sum total of existing oR techniques. Other methods which could have been mentioned are - search theory, symbolic logic, Boblean algebra and dynamic programming. Some techniques applied in OR are borrowed from other disciplines - actuarial theory and value theory for example. There are others beirg developed continualiy. Some are applicable in but a few rare cases, others acquire the powerful sweep of queueing theory or simulation.

In the present work an application of mathematical statistics of the oR is sought. The following section is devoted to identify the scope and objectives of the present work.

1.5 SCOPE AND OBJECTIVES OF THE PRESENT WORK

Scientific and systematic approaches applied to problem solving areas and also in planning are almost absent in the country as a result poor performances become almost inevitable. In the Dhaka Municipal Corporation, it is no exception. The Corporation in addition to various activities is responsible for operating and management of the street lighting system, an important sector of tho Corporation. The objective of the maintaining of lighting systems is to keep a sitisfactory level of lighting performance as economically as possible and could be achieved through a carefully design plan and strategy. From the initial study of the existing system of replacement of the lisht bulbs it was mentioned that a purely service replacement is being used. The cost of replacoment has been ascertained. The average variable cost of replacement has been determined. The inherent weaknesses of the existing policy of replacement have been studied While the city is expanding physically along with population growth, the pressure on expansion of the lighting network is becoming neceswary. The high cost of roplecement should be a pivotal factor in any redesigning of the system.

The objectives of the current resoarch work are set as follows:
i) To study the failure patterns of light bulbs of the system and to ascertain the failure parsmeters
ii) To establish zones (eub-systems) of the system on the basis of similar failure characteristics.
iii) To evolve a prediction model to help predict number of failures por period which could be simulated at various etrategies of replacement i.e. frequency of service trips of the crews per period
iv) To establish a relation between cost of replacement per year with systen performance and with various strategies of replacement.

A preliminary investigation of the present stuxy has indicated a positive pointer towards definite improvement of the present system. This could be achieved by using techriques of Operations Research ($O R$) such as Replacement . heuristic and thus formulating a clearcut policy of replacing light bulbs.

CHAPTER 2

LITERATURE GURVEY

The process of equipment replacement is a historical as well as a natural process. However new theories and strategiea have been evolved and practised in many installations. Thus many literatures on this subject have been compiled uptil today. A theory of replacement is basically concerned with the prediction of replacement cost and then determination of the most economical replacement policy. In such a prediction process another stochastic factor (variable) and its effect is to be considered. This is the process of estimation of an item's finite life. Items in group algo have finite lives which are probabilistic and thereby could best be predicted when their distributions are known. This prodiction is further complicated when 'renewal' aspect for an item is in operation. This means that an iten's original life could be extended by bringing maintenance and repair in operation to a point which is uncertain in terms of its location. Fortunately in such a situations the "Renewal Theory" and sophisticated mathematics are available, discussion of which is beyond the scope of the present work.

The carliest replacement policies mostly concerned the deterministic problems. McCall (1) published a survey on the subject and stressed upon the practical need for subtle and delicate maintenance policies. Contemporary work on replacement problems was also credited to Ghosal (2). A particular class of problems of replacement can be tackled by using the technique of Operational Research specially the
dynamie programming technique that primarily strives to determine the otate of affairs when an optimal policy is followed. Ghosal discussed how a problem in block replacement could be solved using Markov Chain. Crookes (3), Bartholomew (4), Nakagawa \& Osaki (5), Sivazlian (6), Shamblin \& Stevens (7) all have contributed towards problems and theories of equipment replacements. An optimum replacement of forklift trucks has been described by Eilon, King and Hutchinson (8). Jardine (9) and Sivazlian \& Stanfcl (10) have aiso developed various types of deterministic replacement models. West(11) compared the methods for alternative replacement policy identifying certain cost relationship partinent to the minimization of costs and developing the methods for predicting costs based on probability distribution of life spans. Many important wethods have been applied to various maintenance models; the first of whach is the class of preparedness of models where the equipment fails stochastically and alternative waintenance action for such equipment include inspection and replacement. Preventive maintenance models possess the second class of maintenance models.

Ackoff \& Sasieni (12) suggested a method to determine the optimal life of an equipment when increased age reduces its efficiency and avcrage cost per period for indiviunal replacement. Ackoif \& Sasieni also surgested a probabilistic model to predict expected namber of failed items per period in a system. It, has been demonstrated that group replacement has positive advantage over service replacement under normal cost siquations. Wild (13) considered the erfects on different costs of both randon replacement and age replacement policies.

Age replacement for an infinite time span has received attraction. When such an optimal interval existe, Morse (14) has suggested a method for determination of this replacement interval minimizing the expected cost per unit time. But in case of finite time span the optimal age replacement interval is not easy to find out. Sasieni, Yaspan and Friedman (15) presented a procedure for computing the economic life of a machine that absume the purchase only a single item. They illustrated the procedures for deterainig the policies in replacing bulbs, airline stewardesses, given the present failure age distribution and survival distribution. They also deternined the optimum adjustment interval for a machine with a spocified linear operating cost. A dynamic proeramming model for equipment replacement has been constructed by Bellman (16). He considered two possible courses of action whether a machine should be kept on for anotier period or it should be repleced by a purchased machine.

Dean (17) sumarized the replacement models developed by other authors (such as Terborgin, Orenstein, Claphan, Smith, Bellman, Rifas, Rutenberg, Pennycuick, Senju) and setup some replacement decision rules. Several problems in the optimal control of dynamic systems were investigated by Dermann (18). A system is classifiable into one of a finite or etatos and controlled by making one of a finite number of decisions. This stochastic process is dependent upon the sequence of decisions, in that the decision determines the probability laws. Using the methods duc to Dermann for sequencial decisions prohlems involving average cost per unit time criteria. Klien (19) generalized his model and formulated the problem of finding optimal policies
whose deterioration can be expressed as a Markov Chain in linear programming terms. It has been assumed that the time until the next inepeciion is variable and it is determined at each inepection.

McCall (20) determined some of the operations characteristics of opportunistic replacement and anspection policies which makes the replacemont of a single inspected part conditional on the state of one or more continuously inspected parts. Weiss (21) presented a derivation of the asymptotic results from the theory of Semi-Markov process. The derivations founi are not completely rigorous. Handlarski (22) analysed mreventive maintenance scheme for improving machine utilization. He has introduced a new model integrating the availability and the cost function into one profit function which bas been done by adding a new parameter, revenue gained per unit operation time of tho machine. An interesied reader is referred to Roll \& Naor (23), Parsons (24), Wyder (25) for some of the works in preventive maintenance policy and replacoment theory.

Kaufmann (26) constructed an equipnent aurvival curve taking a classic example of light bulbs to show the relation between the number of surviving bulbs at any given moment and the number of bulbs originally placed in service. The probability of failure is an important choracteristic to measure the risk involved to keep in service an item of equipment that has been in oneration for a particular time.

From the above survey of available literatures the works of Kaumann and dckoff \& Sasieni are devoted to replacement of items whose lives ond after finlure. The failure distribution used in their models was the negative exponential. Moreover input cost parameters for both individual item cost and group item cost are such that a strategy for group replacement (failed ard unfailed) may become a possible oftimum policy. But such delferential costs and cost advantage of one over other does not exist in the present study. Thus the methods available could not bo used in the present work.

A modified service replacement policy has been suggested in the present work. Allhourh the negative exponential distribution is accepted to be a very close approximation of real life situation, it lacks generality. Thus the weibull distribution is proposed in the present work.

CHAPTER 3
STUDY OF THE EXISTING SYSTEM OF STREET
LIGHTS OF DHAKA CITY - A CASE SITDY

3.1 HISTORICAL BACKGROUND OF DHAKA MUNICIPALITY CORPORATION

Early in the nineteenth century the city of Dhaka was a mere wreck of its once-splendid self and civic facet of its overall milico. A Europian chronicler who visited Dhaka in 1824 recorded that two-thirds of the vast area of the city were filled with ruins in which the bulk of its estimated 3,00,000 citizens (29)

A Comittee of Improvement existed in the city ass early as in 1823. It confined itself to a modest range in two spheres of public works, viz*, sanitation and transport, specifically its function were defined to be the improvement of Bazar Street, the construction of bridges and roade, the filling of unsanitary pools and ditches. The committee was an official body and its fund was sanctioned by the Government. In 1840 Government created a Dhaka Committee with wider range of functions. The functions of the Committee were to look after the conservancy drains, tanks and general cleanliness of the fown, to guard against any encroachaent on the roads. A relevant thing to be noted during the period 1840-64 is the degree of public participation in civic function. like watering of the main Bazar Street.

Formally established on the $18 t$ of August, 1864, Dhaka Municipality has its prototypes through retrospective decades,
though they were germinal and fell far short of a full-fledged Municipal body with a corporate entity of its own. Municipal Act was publiehed in 1884 and that period Magistrate was the Chairman of the Paurashava. Governent abolished Dhaka Paurashava at the end of the year 1947 and at that time the functions of the Paurashava was run by the Government selected body. In 1960 Government established the Municipal Ordinance. In the month of October, 1978 the Government converted the Dhake Paurashava into Dhaka Municipal Corporation by an Ordinance.
3.2 FUNGTIONS OF DHAKA MUNICIPAL CORPORATION

The existing functions of Dhaka Municipal Corporation are deposed as under.

Public Health

The Corporation is reponsible for the sanitation of the city, control of environmental pollution and removal of refuse from all public streets, public latrines, urinals, drains, and all building and land vested in the Corporation and for the collection and proper disposal of such a refuse. The Corporation keeps records of lirths, deaths and marriages within the limits of the city and adopts preventive measures for infectious disecses by vaccination. Mosquito control scheme is now cxecuted by the Corporation.

Water Supply and Drainage

The function of Dilc is to look after, construct, mantain
and clean of surface drains only of the city. The water supply and other drainage system, swerage system has been maintained by VASA and the storm swerage drainage is now maintained by Public Health Engineering. The Corporation maintains the portion when handed over by Public Health Engineering to Dhaka Municipal Corporation.

Articles of Food and Drink

The Corporation prohibits the manufacture, sale or preparation or the exposure for sale of any specified article of food or drink in any place unless licensed by them. The Corporation also prohibits the import of such articles for salo without the licerse. The Corporation is authorized for seizure and disposal of ary animal, poultry or fish intended for food which is diseased, or any food or drink which is noxious. The Corporation has also the function to establish and waintain public warkets and secure the proper managentent and sanitation of such markets.

Culture and Social Welfare

The Corporation provides and maintains public hall and commanity centres and also provides for the reception of distinguish visitors, arranges on the occasion of any faire, showe or public festival within the city. It maintains burial grounds and burning ghats.

Trees, Parks and Girdens

The Corporation plants trees on the public streets and public places and takes care for the plantation and protection of trees. The Corporation takes care of the parks namely Victoria Park, Gulistan Park, Narinda Park and Shishu Park. They also maintain public gardens.

Engineering Works

Development and maintenance of roads and some dimes project offered to DMC by Government, e.g. bus terminal scheme (Jatrabari, Tejgoan and Mirpur Inter-mistrict bus terminals) are the functions of civil entineering. Offiee buildings of the Corporation are to be constructed by them. Street lighting, Street waterint, trafic control are the main functions of elcctrical engineering section. Development and maintenance of ' road carpeting by asphalt plant, slaughter house, decomposed plants are the rechanical engineering functions of the Corporation.

The above functions and responsibilities and the personnel are depicted in an organization chart. The objective is to identify and locate the position of the lighting system management function in the chart. The organization chart is show in Fie. 3.1. It can be observed that the organization is classical line-staff type. The scope of the current discussion is restricted upto showing the organization of the Corporation.

FIG 3.1 ORGANISATION CHART OF DMC

3.3 GTRENGTH OF MANPOWER aND VEHICLE RESOURCES

The total number of employees of the Corporation is 8090 and among them 4491 are serving on day-basis on hire. Statement below shows the distribution of staffs.

Statement showing distribution of staff Department/Section wise

Department/Section

Administrative Department
Establishment Section 29
Administrator Cell 28
Public Relation Officer 7
Security Section 146
Law Section 7
Social welfare Section 245
Arboriculture 188
Finance Department . 70
Revenue Department 680
Estate Department 28 . 43
Health Sanitation 153 3,927
Health Department 613128
Livestock \& Veterinary Hospital 71
Engineering Department 854
Education Department 14
Store Section 16

Department/Section
Transport Section
Outfall Works

Number of Employee.
Regular! Daymbasis
$\begin{array}{cc}309 & - \\ & \frac{46}{3,599}\end{array}$

Enginearing Department (Electrical) is responsible for the maintenance of street jighting system of Dhaka city. This Division is subdivided into two divisions mamely, Engg. Div. (Elc.)-I and Engg. Div. (Elc.)-II. These divisions are set up from the administrative point of view. The total number of employees of these two divisions are 119 and 158 respectively. It has already been shown the place and responsibility of these two division in the organization chart in art 3.2. It may be useful to note that there are total of $377(119+158)$ staffs under these two divisions responsible in operating the lighting system. Incidentally the ratio of this number with the total strength in the department is 0.34 .

Strength of Vehicles

A total strength of 276 number of vebicles are being uged by the Corporation. There are twelve vehicles used for street light maintenance work. The vehicles are of three types:
i) Hydraulic Ladder carrier engaged for quick repair maintenance of strect lights
ii) Trucks over which bamboo ledders are carried and vehicles are engaged in the areas having wide roads
iii) Push trolly $\ddagger s$ uscd in medinm or small lane/bylene where trucks, ladder carriers are not accessible to the point.

The total strensth of vehicles is listed in table 3.7.

Table 3. 1 Total strength of vehicles.

Name of Vehicle	No. of Vehicles used for lighting	Total No. of Vehicles or DHC
Truck	3	123
Hydraulic Ladder	7	7
Pick-UF	-	2
Mini Truck	-	52
Tractor	-	1
Water Tanker	-	5
Bus	-	1
Micro Bus	-	2
Jeep	-	13
Car	2	15
Motor Gycle	-	55
Total	12	276

3.4 TREND OF ANNUAL CONSOMPTION AND EXPENDITURES
 OF LIGHT BULBS OF DHAKA CITY

Generally four types of bulbs are used by Dhaka Municipal Corporation for street lighting of Dhaka City - incandascent lamp bulbs, flurescent tubes, mercury bulhs and sodium lamps. Mercury and sodium lamps are rarely used due to high cost. Though these two types of bulbs are extensively used in all developed countries, flurescent tubes of 40 watts are commonly used in the city. Incandascert bulos still exist in many places of Diaka city and ruture scheme of $D=10$ to replace all the incandascent lamps by 1985.

The total consumption of flurescent twies and incandascent bulbs are shown year-wise for the last three years in table 3.2 .

Table 3.2 Year-rise consumption of tube and light bulbs.

Year	No. of Elurescent tubes	No. of
incandascent bulbs		
$1980-81$	34,000	18,000
$1981-82$	45,000	14,000
$1982-83$	52,000	8,000
$1983-84(e s t i m a t e d)$	66,000	6,000

Source:- DN:C file preserved by the XEN of Elc. Div.II

From the above it is observed that the use of flurescent tubce arc eradually incrensing with the decreasing of incandascent lamps and total. consumption is also increasing. With this increseing trend in consumption the overall expenses per year has an increasing trend. This is siver in the following section.

Expenses Yearwwise

The annual expenses of street light bulbs \& materials, maintenarce of street lighting and the salary of street lighting staff were retrieved from the corporation files and are listed in table 3.3.

Table 3.3 Expenses for bulbs \& materials, maintenanee \& salary cost

Year	Bulbs and Materials Taka	Manterance of lighting Taka	```Salary of stroet lighting staif for 8 months(up to Feb) Taka```
1974-75	-	20,06,915	2,32,046
1975-76	-	14,38,832	2,62,049
1976-77	-	22,27,216	3,23,779
1977-78	-	23,66,537	5,08,906
1978-79	17,03,378	25,30,548	5,70,343
1979-80	20,57,365	25,17,088	7,69,159
1980-81	56,14,286	49,98,697	$6,65,602$
1981-82	39,10,166	$13,23,149$	-
1982-83	$\begin{gathered} 27,49,538 \\ \text { (up to Fob } 183 \text {) } \end{gathered}$	$\begin{aligned} & 37,04,210 \\ & \text { (up to Febl } 83 \text {) } \end{aligned}$	11,31,910

3.5 EXISTING REPLACEMENT POLICY

The entire street lighting system of Dhaka Gity is under the management of the Municipal Corporation of the City (LNC). The management follows the service replacement policy for the replacement of street light. In service replacement the unit is replaced after its complete failure i.e. replacing an individual item that has failed. This existing system of replacement process is the most conventional one. It consists of one regular field trip of the system everyday. Thus any failed bulb locatcd in the system is replaced by a new item. This is the normal replacement. There is another service replacement based on specific complaint received from the user point of view.

Normal Replacement Process

In the normal replacement the service crews who are called Maintenance Gang makee at least one trip of the system (wardwiee) to detect any failed item. One Gang consists of one lineman and. two helpers. Each gang ie assigned for one large ward or two smaller wards. The gangs function from $1-30 \mathrm{p} . \mathrm{m}$ to $9-00 \mathrm{p} . \mathrm{m}$. for all the wards other than the VIP roads. The normal duty for those VIP roads is from $1-30 \mathrm{p} . \mathrm{m}$. to $11-30 \mathrm{p} \cdot \mathrm{m}$. Gange for VIP roads are provided with modern radio cominnicating devices such as wireless sets. Sufficient materials are given in advance to those gangs so as to replace failed item within shori ime. For other wards materials are procured from the stores following necessary formal paper works.

Normilly a fixed mount of fuel oil is issued for maintenance of vohicles on the basis of daily consumption of past records which is relaxable in the case of emergency and extra works. In some wards the working gangs use push trollies. In case of emergency such as arter storm and high winds the supervisors make an emercency trip and assess the situation and instruct accordingly.

Service Replacement on Request/Complaint

under this system of service, complaints/requests are received and accordjngly these are feet on first-come-firstserve basis. These complaints regarding any failure of any laciot-bulb in the system, are made by one of the following ways:
a) Complaint recejved from the public either by telephone or by written application. These complaints are received by the Corporation by one of the following control points:
i) Complaint received by the wireleds control room
ii) Complaint received by the complaint centre of DMC
iij) Complaint received by dirferent offices such as Chief Fingineer'g Office, Superintendent Engineer's Orifee and others.
b) Complaint received by the maintemance mobile ging. The maintenance dange on duiy travel in the wards and detect the failed bulbs in the eystem. Koreover, any defocts in
the accessories, problems in the line etc. are replaced by them. The failed buibs are replaced immediately. These crews are also capable to detect any failures on the bulbs due to uneven fluctuations of yoltages. For any shaping of wire if detected, written information is given to the relevant office for further necessary actions.
c) Each ward Comittee $i s$ headed by a chairman with few members. This committee is also responsible to inform concerned electrical divisions if any irregularities in the performance of the street lighting system are detected.

In some cases other agencies such as the Electric Supply Agency (Dhaka Electric Supply) of the Power Development Board reports to the DMC, of any failures of light bulbs dected during their own servicing and operational activitics.

These above complaints are attended to on priority basis. The normal replacement as mentioned earlier along with these service replacement constitutes the existing replacement policy of the Corporation. The actual replacement process is now described below.

Replacement Process

a) Complaint received from the public are attended by the concerned maintenance gang posted in the complaining area. In case of any major fault they invostigate the matter and prepare a list of materials. Appropriate supervisory
perisonnel such as SAE/AE in some cases the higher supervisory personnel such the Exccutive Engineer investigate the complaint and endorse the replacement process.
b) Complaint received from the mobile gang and necessary materials are issued after proper scrutiny. Afier the replacement the working gang submit a list of work (address, nature of replacement etc, to the affice with area). Supervisory level officer occusionally investigates and takes some on the spot verification.
0) Complaint received from the ward Committee are carried out by working gang receiving necessary materials from the office. After replacement/repair of street lights the working gang takes signature from the ward Chairman or Memper and produce it to the office for proper record.

Complaint given by other agencies are also attended and after proper action the concorned agency is reported back of the action taken. ,

Exceptional Replacement

There are few very important linea neeaing special attention Any complaints from such special lines are immediately attended to on top priority. As such sufficient reserved materials are Eiven to the sangs in this jurisdiction to carry out the maintenance work. This gang generally subnits work lists to the office everyday.

- .

3.6 DEFECTS \& LIMITATIONS OF THE EXISTTNG PROCESS OF REPLACEMENTS

The existing system of replacenent is rather unscientific where systematic procedure is almost absent. The defects of the existing system of replacement are listed below;
i) Eratic movements of the gang may be comparable to spaghetti which is formed due to unplanned and uneconomic trips. As service replacement policy exists, the crew attends any complaint as first-come-first-serve basis. This ignores the application of techniques of $O R$ such as traveliling salesman problem, branch and bound, network analysis etc.
ii) Primary data of the failure characteristics of the items in the present system are not available. Thus decisions in terms of planned level of performance at various costs could not be made. Thus proper replacement strategy could not be cstablished.
iii) The existence of a centralized system of management hindere the promptness of the process of replacements. The procurement of necessary materials from the central stores has the rollowing disadvantages:
a) lengthy paper work and bureaucratic infposition
b) increase the cost of acquisition as the crews at the furthest wards have to travel back to the store to collect their stores.
iv) The existing two electrical divisions which are responsible
for street litht maintenance were set up arbitrarily based entirely on administrative ease. This resulted in dissimilar wards interms of their failure patterns, being brought under a division. Thus no single roplacement policy could be adopted.
v) Tnere is no.provision for recording the daily movement of the crews. Thus the trips of the crews.could not be planred.
ii) Most of the replacements are made when attending the complainte previously made. In the process the crews make survey of the system to detect any normal failures. As a result normal replacement could not be accomplished あ社tisfactorily.
vii) Ine present recora keeping system is defective. Thus any installation of new item is not recorded according to 'pole' identification, a holding number of the light posts. As a result estimation of the actual performances of the Light bulbs could not. be made.

The proposed replacement policy nould renove few of the above defects of the existing system. But a final word regarding the mangement of the lighting system, may be that a carefully planned reorganization is necessary giving more autonomy and decentraljzation of authority.

CHAPTER 4

DEVELOPMENT OF METHODOLOGY FOR ESTAHLISHMENT OF A REPLACEMENT POLICY FOR LIGHT BDLES IN THE CITY

A study of lighting system of the city was made in chapter 3. The study revealed that the existing system of replacement policy had few inherent weaknesses. Thus to overcome these weaknesses, a method has been proposed. The methodology used for the proposed method has becn estalisished in the present chapter.

4.1 DISTRIEUTION OF FAILURE PATMERHS

Exponential distribution is generally used for feilures of light bulbs. But the exponential and hyper-exponential distributions are found to be typical for failures of many electronic components, electronic computers, bus-motors etc. These distributions are widely used for relitability prediction. But these should not be used indis* creminately rather be used cautiously depending on situations and their typicality. The hazard function for exponential density function is constant which is applicable of the density function.in life teating. The other probability distribution namely the hypergeometric should be used in a situation where the failure is increasing. The exponential distribution is a special case of both Gamma and Weibull distrie bution. This is characterjzed by a constant hazard function which is also the parameter of the distribution, i.e, if a system has survived for a particular period, the probability of survival for the next increament of the period is the same as if it has just been placed
into service neglecting degradation failures. The weibull distribution is probably the most widely used distribution for life testing applications. The weibull distribution was known to atataticians as the Fisher - Tippett Type III distribution of smallest values or as the third asymptotic distribution of salaleat extreme values. In case of hyper - exponontial distribution the failure rate decreases with increase in time.

The Poisson distribution is applicable when a randon failure exists, practical examples of this type of failure distribution can be found in the failure of lamps and vehicle engines. Due to paramount importance of this distribution in statistical practice, tables of random normal variates have been established. Lives of various machinery items and biological species follow exponential distribution; the inter-arrival time of shipe in a port or of customers at a shop counter may approximate to exponential distribution. This type of distribution is expected to be used often to describe service time in queuing problems.

Gama distributions are characterized by two parameters - shape parameter and scale parameter; possess increasing failure rate in the case when shape parameter is greater than unity. This distribution can also be used to model the time to the failure of syatem if the underlying failure distribution is exponential. The problem from a practical stand point is the selection of a distribution model. Drless one has considerable test data it is difficult to determine whether the proper model is, for instance, Wejbull or Gamma. Distribution models such as these will generally 'fit' well in the 'middle' of
the range of the random variable. There are certain values of skewness and kurtosis which are indicative of the shape of a distribution that the weibull can not attain which the log normal or gama distribution can attain (27). Fortunately, in most engineering application the Weibull is usually close enough to provide reasonable guidance; when the shape parameter is approximately one, the Weibull distribution takes an exponential shape whereas it approximates normal distribution when the shape parameter is approximately 3.5 .

The parameterg of weibull distribution, shape, acale \& location indicate the weibull slope, characteristic life and the rinimum life respectively. The two-parameter weibull has a minimun life of zero and the three-parameter distribution can always be converted to the two-parameter distribution by a aimple linear transformation. The hazard function decreases in time when shape parameter is less than one, increases when greater than one and constant in case of unity value, location parameter of a weibull distribution is usually assumed to be zero and its value less than zero could indicate failure in storage (27). Its reliability is not easy to find out directly as in the case of exponential distribution. One of the main feature of this distribution is its ability to generate a family of curves with different shapes of the failure-rate functions.

The writer has chosen the weibull distribution for the analysis of failure characteristics of light bulbe considering its generality and ease in handling. The failure density function, reliability function, cumulative distribution function and hazard function of
weibull distribution may be stated as follows:

$$
\begin{equation*}
f(t)=\frac{\beta(t-\gamma)^{\beta-1}}{\eta} \exp \left[-\left(\frac{t-\gamma}{\eta}\right)^{\beta}\right] \tag{4.1}
\end{equation*}
$$

where, $f(t)=$ Failure density function

Cumulative distribution function could be obtained by interreting $f(t)$ with respect to t

Thus, $\quad F(t)=1-\exp \left[-\left(\frac{t-\gamma}{\eta}\right)^{\vec{B}}\right]$
where, $F(t)=$ Cumulative distribution function

The Reliability function is given by,

$$
R(t)=\exp \left[-\left(\frac{t-\gamma}{\eta}\right)^{\bar{\beta}}\right]
$$

The Hazard function is given by,

$$
h(t)=\frac{f(t)}{R(t)}=\frac{\beta(t-\gamma)^{\beta-1}}{n^{\beta}}
$$

where, $\quad \beta=$ Shape parameter
$\eta=$ Scale parameter
$\gamma=$ Location parameter
$t=$ Time period

The expression of above functione for other types of distribution failure are availnble in standard text books.

Estimation of the Parameters of Weibull Diatribution

For the estimation of the weibuli parameters of group data, the following methods can be used;
i) Least Suruares Method,
ii) Haximum Likelihood nethod,
and iji) Minimized Chi-Squares Method.

The Least Squares method has been used for the estimation of the parameters by Kabir (28) and computer programme in complete in formpan IV language was available. In the present work, the above mackage has been used with some neeessary modifications. This method is based on the inversion and double logarithmic transformation of the equation for the cumulative distrihution funciion, $P(t)$ is given earlier in equation $4 . \overrightarrow{2}$. For convenience it is rewritten as follows,

$$
F(t)=1-\exp \left[-\left(\frac{t-Y}{\eta}\right)^{\beta}\right]
$$

which on transformetion becomes,

$$
\log _{c} \log _{e} \frac{1}{1-F(t)}=\beta \log _{e}(t-\gamma)-\beta \log _{e} \eta
$$

This is a linear equation of the stanaard form,

$$
Y=m X-C,
$$

$$
\frac{l+T_{u}}{T_{J}+l-T_{U} r_{u}}+l-r_{J}=T_{Z}
$$

'qoitanba

- әuṭ

$$
\begin{aligned}
& u^{2} \mathrm{gotg}=0 \\
& (\lambda-7)^{Э_{80 L}}=X \\
& y=\square
\end{aligned}
$$

long. The third is the best from the stand point of Chi-Square criterion for goodness of fit.

4.2 REFLAGEMENT MODELS

Replacement models fall into two categories, depending upon the life pattern of the equipment under atudy. The first of which deals with models for replacing equipment that deteriorates with time. The other category presents replacement models that may be used to establish replacenent policy for equipment that does not deteriorate with time, but fails instantaneously and completely. Replacement model for items that fitil requires the use of probabilistic concepts and the atatistics of failure data. The moaels for these replacement policies are well developed now a days and available in all reljability and Operations Fesearch text books. The present work has dealt with service replacement. Light bulbs exibit the characteristic of instentaneous and complete failure and they are presented as follows:

Andlysis of failure data.

Failure data would be collected and recorded within discrete time of interval. The survivor bulbs function properly at the end of each time period. The probabjijty of failure during the time period and that of survival are calculated from basic date using equations (4.12), (4.13), and (4.14).

If x_{t} denotes the number of replacements made at the end of the t th period, the number of replacement at the end of each period would be

$$
\begin{aligned}
& x_{0}=x_{0} \\
& x_{1}=x_{0} P(1) \\
& x_{2}=x_{0} P(2)+x_{1} P(1) \\
& x_{3}=x_{0} P(3)+x_{1} P(2)+x_{2} P(1)
\end{aligned}
$$

and so forth.

A general expression for x_{t} would be

$$
x_{t}=N_{0}\left[P(t)+\sum_{j=1}^{t-1} P(j) P(t-j)+\sum_{b=2}^{t-1}\left\{\sum_{j=1}^{b-1} P(j) P(b-j)\right\} P(t-b)+\ldots\right](4.3)
$$

The average life of the units under consideration is given by the expression

$$
\begin{equation*}
\sum_{t=0}^{n} t[p(t)] . \tag{4.4}
\end{equation*}
$$

This equation may be compared with equation (4.15)

The cost of a replacing fialure involves item cost, labour cost, production cost, material damage cost otc., the sum of these costs may not be costant for each failure. It depends on the number of failures in cach period. Group replacing may cost less than replacements of failures by virtue of labour savings, volume discounts on materials or for other resource. This Eroup replacement policy is applicable where the iter cost is low and labour cost is high. To develop an equation for the cost of maintaining a system as a function of the control variable t, tho number of period in group replacements let us assume $K(t)$ as the total cost from time of group instalalation until the end of t periods. If the entire group is replaced at intervals of length t periods, then

$$
\frac{K(t)}{t}=\text { avergge cost per period of time }
$$

Further more, let

$$
\begin{aligned}
C_{1} & =\text { unit cost of replacement in a group } \\
C_{2} & =\text { unit cost of jndividual renlacement after failure } \\
f(x) & =\text { number of failures in the } x \text { th period } \\
N & =\text { number of units in the group }
\end{aligned}
$$

Then, the total cost $K(t)$ will be given by

$$
\begin{equation*}
K(t)=I V C_{1}+\operatorname{cin}_{2} \sum_{x=1}^{t-1} r(x) \tag{4.5}
\end{equation*}
$$

in which NC_{1} is the cost of replacing the bulbs as a group, and
$c_{2} \sum_{x, 1}^{t-1} f(x)$ is the cost of replacing the individual failures at the end of each $t-1$ periods before the group is again replaced. Therefore, the cost per period is given by

$$
\begin{equation*}
\frac{K(t)}{t}=\frac{N C_{1}}{t}+\frac{c_{2}}{t} \sum_{x=1}^{t-1} f(x) \tag{4.6}
\end{equation*}
$$

The above scheme of ascertaining of group roplacement cost was proposed by Churchman (11). A similar method was arrived at from a different approach as proposed by Jardine (9). This will be presented later.

Groun Replacement of Items Subject to Failure

When the equipment replacement is required by the failure of the original unit or units having negligible salvage value the problem is one of determining whether it should be replaced individually or in group. The development of group replacement model needs to determine the optimal interval between group replacements for minimizing the total expected cost per unit time. The model developed for this problem is based on the assumption
i) the replacement policy is to perform group replacemente at rixed interval of time
ii) with failure replacements occuring as necessary

The following scheme was developed by Jardine;

Let,

```
            C be the cost of replacing one item in Eroup replacement
        C
        f(t) be the probability density function of the
            failure time of items
        N be the total number of itcms in the Eroup
```

The policy is illustrated below

The total expected replacement cost per anit time for eroup replacement at time t_{p} is given by the relation

$$
\begin{align*}
& Q\left(t_{p}\right)=\frac{\text { Total expected cost in interval }\left(0, t_{p}\right)}{\text { Interval length }} \\
& =\frac{\text { Cost of sroup replacement }+\begin{array}{l}
\text { Expected cost of failure } \\
\text { at time } t_{p}
\end{array} \quad \text { Interval lengem }}{\text { Inth in that interval }} \tag{4.7}
\end{align*}
$$

Thus, $C\left(t_{p}\right)=\frac{N C_{g}+N H\left(t_{p}\right) C_{f}}{t_{p}}$

En. (4.5) is used for group relacement problem relating replacement interval t_{p} to total cost.

To compare the model for determining optimal interval between en prevcritive replacements of equipment subject to breakdown with the aforesaid model Jardine (9) developed a model assuming the performnance |of preventive replacements at constant intervals.

Tine total expected cost per unit time for preventive replacement at time, t_{p}, is

Cost of preventive replacement + Expected cost of failure replacements
$=$ Length of interval
Thus, $C\left(t_{p}\right)=\frac{C_{p}+C_{f} H\left(t_{p}\right)}{t_{p}}$
where, $\mathrm{C}_{f}=$ Cost of a failure replacement
II $\left(t_{p}\right)=$ Expected number of failure in interval $\left(0, t_{p}\right)$
$C_{p}=$ cost of preventive replacement

This is the model relating replacement interval t_{P} to total cost, $\mathrm{c}\left(\mathrm{t}_{\mathrm{p}}\right)$.

The model for group replacement policy and that of service replacement policy have been discussed after Ackoff \& Sasieni, Jardine, Fabricky and Churchman. In contrast of the above models the computational procedure of Sasieni, Yaspan \& Friedman has now been sumarised for general interest.

Computational Procedure for Age Replacenent

Sasieni, Yaspan ard Friedman presented a procedure for computing the economic life of machine that assumes the purchase of only a single item. The present value of failure costs expresced as

$$
\begin{aligned}
& P(n)=A+\sum_{i=1}^{n} c_{i} X^{i-1} \\
& \text { where, } X=\frac{1}{1+r}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (u) } \mathbb{C} \nabla>0>(\mathrm{l}-\mathrm{u}) \mathbb{I} \nabla \text {. }
\end{aligned}
$$

${ }^{4}$ umuuturuer

 （LL゙け）

$$
\begin{aligned}
\frac{u^{x}-\downarrow}{(u) d} & =(u) \mathbb{U} \\
\frac{u^{X}-L}{(X-L)(U) d} & =(u)^{O}
\end{aligned}
$$

 （01． \boldsymbol{F}_{7} ）

4.3 PROPOSED METHODOLOGY

Assuming the distribution pattern as Weibull family of diatributions the different parameters namely shape parameter, scale parameter \& location parameter have been calculated. The probability density function for failure times and cumulative density function for the individual ward of the city are found out. The mean life and standard deviation are also determined. The probability of new bulus that fail in successive weeks are computed. The number of replacement due to failure in successive weeks, under a policy of scrvice replacement can be computed. The development of replacement policy for units that fail must be replaced by an analysis of failure data. The probability of a bulb failing within each time period can be calculated by

$$
\begin{equation*}
P(t)=\frac{N_{t-1}-N_{t}}{N_{0}} \tag{4.12}
\end{equation*}
$$

where,

$$
\begin{aligned}
P(t) & =\text { Probability of failure during the time period } t \\
N_{0} & =\text { The initial number of units in the group } \\
N_{t} & =\text { The number of survivors through time } t \\
N_{t-1} & =\text { The number or survivors through time } t-1
\end{aligned}
$$

The probability that a bulb having survived to an age t-1, will fail during the interval t-1 to t can be calculated from

$$
\begin{equation*}
P_{c}(t)=\frac{N_{t-1}-N_{t}}{N_{t-1}} \tag{4.13}
\end{equation*}
$$

The survival probability may be calculated from

$$
\begin{equation*}
P_{s}(t)=\frac{N_{t}}{N_{0}} \tag{4.14}
\end{equation*}
$$

The assumptions taken to find the number of replacement per period are as follows:
a) The failures are detected only at the end of a time period
b) If failed fitems are replaced, the replaced items will evantually fail and must be replaced. These will also fail and require replacement, thus giving rise to the replacement of the replaced.

To compute the cost of individual replacement, the limit n tending to infinity of f_{n} and assuming that limit which is equal to f, the survivers f from the inserted f replacements for a long time are just replaced.

Then ($1-P_{0}$)f eurvivors from insertions at time t previously; ($\left(1-P_{0}-P_{1}\right) f$ survivors from time $2 t$ ago; ($\left.1-P_{0}-P_{1}-P_{2}\right)$ from $3 t$ ago, and so on. Because the survivors must total N, the number in the system,

$$
N=f\left[1+\left(1-P_{0}\right)+\left(1-P_{0}-P_{1}\right)+\left(1-P_{0}-P_{1}-P_{2}\right)+\cdots\right]
$$

$$
=f\left[P_{o}+P_{1}+P_{2}+\cdots\right.
$$

$$
+P_{1}+P_{2}+\cdots
$$

$$
+p_{2}+\cdots
$$

$$
+\ldots
$$

$$
\cdot]
$$

$$
\begin{equation*}
=x\left[P_{o}+2 P_{1}+3 P_{2}+\cdots\right] \tag{4.75}
\end{equation*}
$$

The expression in brackets is the average life, assuming that the failures in the interval K_{t} to $(K+1) t$ occur at time $(K+1) t$.

The equation (4.15) is the all important equation based on which the proposed method of replacement policy has been developed. The eqr. (4.15) composed of three elements such as N, f and (F_{o}, P_{1}, $P_{2}, \ldots \ldots, P_{n}$). This equation when rearranged gives,

$$
\begin{equation*}
\frac{\mathrm{f}}{\mathrm{~N}}=\frac{1}{\left(P_{0}+2 P_{1}+3 \mathrm{P}_{2}+\cdots \cdot\right.} \tag{4.16}
\end{equation*}
$$

The ratio f / N at any specified period, t_{n}, gives an indication of some degree of 'measure of performance' of the system and it seems quite logical to assume. Thus in the present work, the level of performance is measured by using the following equation:

$$
\begin{equation*}
P_{R}=1-\left[\frac{\mathrm{r}}{\mathrm{~N}}\right]_{\mathrm{t}_{\mathrm{n}}} \tag{4.17}
\end{equation*}
$$

The numerical values of the term ($P_{0}, P_{1}, P_{2}, \ldots, P_{n}$) could be calculated from the cumulative Weibull distribution function, $F(t)$ given by equation (4.2). Since the performance level depends on the values of $\left(P_{0}, P_{1}, P_{2}, \ldots, P_{n}\right)$ a simulation procedure was adopted using the Weibull function. The time period, t, could be simulated by varying the number of service trips of replacenent per week $N_{t}{ }_{p}$. The original weibull function was developed for normal replacement policy of 7 trips per week (i.e. one trip per day).

Thus the time period, t, is assumed to be of weck. This time period, t, could be veried by varying N_{t} by using the following expression,

$$
\begin{equation*}
\mathrm{t}=7 / \mathrm{N}_{\mathrm{t}_{\mathrm{p}}} \tag{4.18}
\end{equation*}
$$

Thus for the existing policy, for $N_{t_{p}}=7, t$ becomes 1 week. In the present study $\mathrm{N}_{\mathrm{t}_{\mathrm{p}}}$ has been varied from 2 to 20.

Cost of Replacement for Various Pexformance Level

The average cost per period t, for individual roplacement could be known from the rollowing expression,

$$
C(t)=\frac{\mathrm{NC}_{1}}{\text { Average Life }}
$$

where,

$$
\begin{aligned}
C(t) & =\text { Average cost/period } t \\
t & =\text { Age at replacement } \\
C_{1} & =\text { Cost of replacing an individual item. }
\end{aligned}
$$

But much benefit can not be derived from eqn.(4.19), when the total cost of replacement per year is to be determined at any specific level of performance. Thus a coti equation is developed and presented below.

Let, N be the total number of items in the system $N_{1}, N_{2}, N_{3}, N_{4}$, be the number of items in zones 1,2 , 3 , and 4 respectively
c be the annual cost
FC be the fuel coat
MC be the maintenance cost
C_{T} be the cost per trip
$\mathrm{C}_{\mathrm{T}_{1}}, \mathrm{C}_{\mathrm{T}_{2}}, \mathrm{C}_{\mathrm{T}_{3}}, \mathrm{C}_{\mathrm{T}_{4}}$ be the trip cost for zones $\mathrm{i}, 2$, and 4 respectively
D_{T} be the total milage covered during the year
D_{0}, be the total road milage for the city lighting

$$
\begin{equation*}
c=\Sigma F C / Y_{r}+\sum M C / Y_{r} \tag{4.20}
\end{equation*}
$$

Annual Cost
Average cost per mile

$$
\begin{aligned}
& =\frac{\text { Total milage covered during the year }}{C} \\
& =\frac{(4.21)}{J_{T}}
\end{aligned}
$$

$$
\begin{equation*}
\operatorname{Trip} \cos t, C_{T}=\frac{C}{D_{T}} \times D_{0} \tag{4.22}
\end{equation*}
$$

Thus, cost or one complete trip of the entire lighting system of the city could be estimated by using equation (4.22). The immediate problen develops when one has to estimate the trip cost for a specific zone, say zone 1 consisting of N_{1} light-bulbs. This is practically very difficult to ascertain the line-length in miles of the zone. Thus to resolve this probler, and in order to estimate the cost of one trip of the zone a fair-basis of apportionment has been

used as follows:

For N number of light bulbs in the system,

$$
C_{T}=\frac{C}{D_{T}} \times D_{0} \text { as given by eqn. (4.21) }
$$

For N_{f} number of light bulbs in zone 1, trip cost would be proportional such as,

$$
\mathrm{C}_{\mathrm{T}_{1}}=\frac{\mathrm{C}_{\mathrm{T}}}{\mathrm{~N}} \times \mathrm{N}_{1}
$$

Sirilarly costs of single trips for other zones could be estinated.

The replacement policy of the light bulus has definite influence on the performance level as defined in equation (4.17) and also on the cost of replacement. The performance eqn. (4.17) indicates that when f is decreased that is number of failures is decresed P_{R} would increase. This would be achieved by making more replacements in a period. Thus number of trips per week would require to be increased. This would increase cost of replacement. These hypotheses are depicted diagrammitically below.

CHAPTER 5

DATA COLLECTION AMD ANALYSIS

In the preceeding chapter statistical models and procedures have been developed for the replacement of street light bulbs. These models are now developed using actual data obtained from the Corporation. In the present chapter, the inherent problems of data collection have been identified. Trne models were established by developing computer programmes in FortranIV language in an IBK 370/115 computer.

5.1 DATA COLLECTION AND ASSOCIATED PROBLEMS

Procedure for data collection should be such that the desired accuracy could be derived with loss of information kept at the lowest. At the same time there must be a clear understanding of the objectives and the requirements.

The raw data comes primarily from the following sources:
(i) Copies of standard operational meintenance or supply forms as used by the system operatives.
(ii) Special data forms originated by the study group for a specific requirement for a specific period
(iii) Direct data generation by instrumentation measurement, experinentetion etc..

The basic means of collecting data are the study of procedures, manual evaluation of forms and interviewine of departmental representatives. The deqartmental employees can
provide useful information in most cases. These objectives and requirements of each system are clearly and concisely stated in a procedures manual.

The data sources as mentioned above could now be catagorised into two broad classifications namely, generation of primary data and collection of data in secondary form.

In the present study data have been collected from the field records as maintained by the supervisora. These files maintain records of failure statistics of street light bulbs. The data recorded by him in of the rirst generation type wherc only the first hand records are put in the ${ }^{1}$ log book'.

The process of data collection could be depicted in a figure below:

Thus it could be observed that data could be available in any of these gereration levels as mentioned above such as (i) Firsi generation (ii) Second generation and (iii) Third generation.

In the first gencration the raw data are posted in files as obtained from the field. The file is however contimuously updated. This data could be arranged sequentially, when the data are compiled according to roquirement, also they are scrutinized, classified etc. to some degree and transferred to a permanent record file. These could be designated as Second ceneration data. Recent developments in computer technology have madie possible to store massive quantity of data economically, cheaply and conveniently. In this generation the bata are screened and missing data are checked. Fere input data could be coded which makes it possible for easy searching and retrieval.

Problem of data collection in developins countries

The problema encountered in data collcction in a developing country could be mextioned as follows:
(i) The source of data is available in its raw form, unprocessed and uncompiled. In most cases these are available in first generation form with few exceptions of second generation. Proper data storage system is absent and filing of data is processed very unwisoly and unscientifically.
(ii) It is difficult to retricve data from these records at the right time.
(iii) The records are kept unscientifically and not properly maintained. Thus missing data is not uncommon.
(iv) Relevant data could not be available at right time and noeds to be extricted from a large volume of disorganjsed documents, log book nnc ledgers, etc.
(v) Documentation Centre and Data Processing Centre are seldonly found. Data Organisation and Data Kanagement are the two vitally important activities in data handifns. In most cases theso are absent. Thus collection of data become extremely difficult.

The fact occacionally confronted by resexrcher is that the desired data are not available and that relable data cannot be obtained because relevant records have not been kept.
5.1.1 DATA COLLECTION FOR THE PRESENT STUDY

The failure history has been collected daywise for a full fear and then tabulated werkwise. Blank forms were desifned for the present work. Sample or one particular month's data for a particular ward is given below (table 5a).

Table 5a Sample data for a ward.

For the month of January 1982

Werid	Total No. of bulbs	Total No. of Bulbs replaced	No. of bulbs replaced			
No.			1st week	2nd week	3rd week	4th week
2	489	93	30	22	26	15

The entire data collection process could be devided into threc parts. The first part which is already accomplished above. In the second part of the data collection, the cost figures were obtained from various sources of the Hunicipal Corporation namely, Electrical Division, Maintenance Division, Transport Sections etc. The cost of light bulbs, maintenance and repair costs of vehicles used for the elements. The fixed costs and storing cost of the materials were not considered. The item cost is entimated to be Taka 72.00 at 1982 price.

The maintenance and repair costs of vehicice were collected from the mechanical workshop, situated at Aga Sadek Road, Dhaka. Fuel and Lubricating costs are supplied by the transport section of the same authority. All the costs are found out vehicle- wise for the whole year; these are shown in table 5 b.

Table 5b
Fuel and Maintenance costs of vehicles

For the year 1982 (January-December)

Description of Vehicles	Fucl Consumption (Gallons)	Fuel Cost (Taka)	Maint. \& Repair Cost in Taka	Total Nillage covered
Hydraulic Ladder 4688	1448	41,583.40	34,830.00	28375
" 4689	1395	$40,145.48$	8,150.00	19324
114690	1693	$49,375.87$	1,290.00	25023
" 4691	1561	45,346.35	-	22644
11 4692	1015	31,062.15	1,290.00	15150
" 1208	249	7,880.44	$80,414.00$	2988
". 313	221	6,966.73	100,466.00	2523
Truck 4000	982	31,507.13	370.00	16573
" 2334	350	8,512.00	2,991.00	5697
Jeep 2753	735	20,621,65	16,802.00	13520
" 5850	874	25,100.71	-	17415
Total=	10523	3,08,101.91	246,615,00	169232

In the third part actual failure characteristics of light bulbs were investigated. For this purpose a test-line was selected. This test-line was located close to the University campus (near Bakshi Bazar Area). There were ten liyht pointe on the line. The line was under continuous monitor so that any replacement of a light bulb was recorded. In addition both the dates of installation of a light bulb and its date of replacement were recorded, so that actual life of the jight bulb could be ascertained. The monitoring and data collection on the test-line were done for a period of 6 (six) months. The field deta of the test-Iine is given below:

Table 5. 1 Field data for ten tube lights in a test line

Eulb Foint	Date of Installation	Date of 1st replacement	Calculated life, days	Date of 2nd replacement	Calculated life, days
1	09.03 .83	27.03 .83	18	12.09 .83	168
2	09.03 .83	11.06 .83	94	Contd.	-
3	09.03 .83	05.05 .83	58	10.09 .83	127
4	09.03 .83	30.03 .83	21	01.08 .83	123
5	09.03 .83	02.07 .83	115	Contd.	-
6	09.03 .83	24.07 .83	137	Contd.	-
7	09.03 .83	02.08 .83	146	Contd.	-
8	09.03 .83	28.05 .83	70	06.08 .83	69
9	09.03 .83	11.04 .83	32	10.09 .83	150
10	09.03 .83	27.04 .83	48	12.07 .83	76

From the above data it is observed that the actual life of a bulb ia widely varied. The bulb at point No. 1 was alive for 18 days only which was fallen in the stormy and inclement weathor period of the year. In the same point the sccond replacement took 168 days. The average life of the bulbs in the test-ine was 97 days which is bignificantly higher than that found for the total system. From the indings of the above test line it may be concluded that unplanned and mismanaged replacement procest is prevailing.

The fluctuations of the lives of the bulbs are shown in figure below:

FIG. 50 FLUCTUATIONS OF LIVES OF THE BULBS IN TEST LINE

5.2 ANALYSIS OF DATA

The data were compiled and organized and transferred in computer coding sheets. These were organised wardwise for each week. The use of these data for the various models discussed in the preceeding chapter are now presented.

Failure characteristice of light bulbe

The ward-wise failure characteristicf of light bulbs have been determined. This is accomplished by using data of ihe 'failures' and the 'suspensions' of light bulbs for each ward. Toe failure characterigtice could now be determined as follows . From the figure given telow the probability of failure of a light bulb in a specific period, t, could be explained.

The probability of failure of a light bulb between time t_{1} and t_{2} could be ascertained from this figure. This is given by the shaded area under the curve which is defined by afunction, $f(t)$, called the probability density function. Cumulative probability, $F(t)$, where $F\left(t_{2}-t_{1}=t\right)$ is obtained by usual integration of p.d.f. , $f(t)$, within limits t_{1} and t_{2}. This is equivalent to the shaded area under the curve. The p.d.f. was assumed to be a weibull function. The scheme of transforming the failure data to Weibull probabilities is given by

$$
\text { Probability of railure, } \quad \mathrm{FR}=\frac{\mathrm{FO}}{\mathrm{FO}+30}
$$

Where,

$$
\begin{aligned}
& \text { ro }=\text { No. of bulbs failed in a specific week } \\
& S O=\text { No. of bulbs in suspencion (active) }
\end{aligned}
$$

Computer solution of determining the Weibull probability function is now presented.
5.2.1 DATA SPECIFICATIONS, COMPUTER PROGRAM

The input data for finding the expected number of failures are as follows:
(i) Number of class intervals for which raw data are taken
(ii) Number of Wards
(iii) Number of failures in each class
(iv) Number of suspensions in each clags

The input form for this case is shown in table 5.2.

Table 5.2 INPUT FORMS FOR WEIBULI ANALYSIS

,	Problem Name :	
	Class Interval :	
	Number of Class :	
	Failure and Suspension	quencies :
Clase	Failures	Suspensions
1	xxx	xKX
2	$x \times x$	xxx
3	xxx	xxx
4	xxx	xxx
-	- *	**
-	. .	\cdots
-	\cdots	**

Mention has been made that a least square method has been used to establish the Weibull parameters. Thus a computer program, specifications of which are given below has been developed in FORTRAN IV langurge.

SUBROUTINE ZK_{3}	a subprogramme for Weibull analysis and prints shape, scale and location parameters, failure probabilities, cumulative distribution functions, failure characteristics, and also calculates hazard rates, reliability probabilities, and the truncated mean life for each class interval.
SUBROUTINE ZK_{4}	```a subprograme which analyses raw data to give a cumulative density functi- on (c.d.f.)```
IUNCTION YY	a function subprogramm which evaluates the gamma function.
AI	represents the numerical number of the individual ward.
B	ropresents the shape parameter of the fitted Weibull distribution.
E_{1}	an array containing the suspension and failure items of zones.
BF	an array representing the Weibull c.d.f.
c	a constant trrm of the least squares equation used for the estimation of Weibull paraneters.

$\varepsilon+N$ squosexdex ddN
- VWWDI

xәput doot b fo әntea mimụum eq7

-spotrad 以еati loy sexittej fo

- 40ヶfnatufstp

－防比p mex fo

WVSN

Y゙I

NZ	represents the number of zones.
SB, SE	represent the number of survival at the begining and the end of each class interval, respectively.
SD	denotes the otandard deviation of the fitted weibull distribution.
SH	represents the derivative of H.
SO	an array containing the suspension frequencies for each class of interval.
T	a du:any veriable used in the function subprogramis Yy.
TENP	a duminy variable used in the subroutine ZK_{4}.
WFR	an array storing the values of the Weibuld failure rates for each cless interval.
X, Y	represent the transformed data in the. least sruares analysis.
$\begin{aligned} & s X, \operatorname{SXS}, \text { SXY } \\ & \text { SY, SYSZ } \end{aligned}$	variables which enable the summation of $X \& Y$ in the least squares analysis.
$\begin{aligned} & \mathrm{I}, \mathrm{II}, \mathrm{IJ}, \mathrm{IN}, \mathrm{~J}, \mathrm{JI}, \\ & \mathrm{JJ}, \mathrm{~K}, \mathrm{KI}, \mathrm{KJ}, \mathrm{KK}, \mathrm{KM}, \\ & \mathrm{I}, \mathrm{LI}, \mathrm{LJ}, \mathrm{LL}, \mathrm{M} \end{aligned}$	loop index variables.

Output Specifications

The output from the PROGRAM contains:
(i) A print out of the input data as a check including a tabulated sumary.
(ii) A hazard analysis in tabular form based on raw data.
(iii) The Weibull distribution parameters.
(iv) Cumulative failure density function.
(v) Probability density function for failure times.
(vi) The renewal analysis based on the fitted weibull distribution which contains survival protability, truncated mean life and cumulative renewals for each class intervals.

The listing of the prooram is given in Appendix 1 .

5.2 .2 OUTFUT AND RESULTS

The computer output for a particular ward has been shown in page No. 102, $103 \& 104$ and consolidated resulto of all the Wards are also given (Table 5.3).

The Weibull parameters namely shape, scale and locaiion, mean life and standard deviation have been calculated ward-wise. The formulae used for mean life and standard deviation are

$$
\text { Mean, } \mu=\gamma+\eta \Gamma\left(1+\frac{1}{\beta}\right)
$$

Standard
Deviation,$\left.\quad \sigma=\sqrt{\Gamma^{2}[\Gamma}\left(1+\frac{2}{\beta}\right)-\left\{\Gamma\left(1+\frac{1}{\beta}\right)\right\}^{2}\right]$
for the probability analysis bascd on raw data.

The gamma function is evaluated from the following formula

$$
\left.\Gamma(n)=n^{n} e^{-n} \sqrt{\left\{\frac{2 \pi}{n}\right.}\left(1+\frac{1}{12 n}+\frac{1}{288 n} 2\right)\right\}
$$

for large values of n. For values of n greater than 1 , it gives accurate result of gama function.

The failure characteristics and statistics of the different wards were determined by INPUTing 40 sets of data. For comparison purpose of the failure patterne, the parameters are summarised in table 5.3. It is found that the shape parmmeters of ward No. $6,13,20 \& 25$ are very small thus the distribution could be explained as hyper exponential in nature measuring that no efficient replacement method ifi in operation. Some of the wards, such as ward Mo. 4, 5, 8, 9, 10, 11,
$14,18,22,24,26,28,29,30,31,32,33,34,37,39$ with the values of the shape parameter close to unity, the distribution patterns could be explained as exponential. But ward No. 23,27,35 and 38 have their β-vajues more than unity.

The frec failure time (γ) is zero, thus the two-parameter Weibull distribution used. The mean life varies from 12.02 to 88.77 and standard deviation ranges from 15.38 to 69.88 with the exception of two exceptional wards with very low β-valucs. Most of the B - values are found approximately close to 1 indicating exponential distribution.

From the above discussion, it has becone clearer that the two concepts of replacement such as (i) Replacement policy for cach division and (ii) Replecement policy for each ward could not be of any use to the manegement. Firstly, for division-wise replecement various wards are grouped with dissimilar failure patterns, thus a single replacement policy would not be effective. Secondly, for ward-wise replacement, forty various replacement policies could rervire to be.adopted. This is not a practical proposition. Thus the existing 'aivision' and 'ward' concepte of replacement are not acceptable. Accordingly a new'zone' concept as introduced in chapter 4 is now developed in the following article.

Table 5.3
Characteriatics and statistics of wards

Ward No.	FO	N	β	η	μ	\square
1	344	116	0.57	7.47	12.02	22.48
2	871	489	0.89	26.44	28.08	31.75
3	792	795	0.88	50.08	53.34	60.66
4	634	441	1.02	31.27	31.02	30.41
5	790	470	1.02	27.87	27.60	26.93
6	806	270	0.20	70.82	1375.95	22282.98
7	955	824	0.91	40.86	42.68	46.82
8	711.	596	1.00	38.44	38.46	38.45
9	465	263	1.02	25.56	25.31	24.68
10	2362	4200	0.95	86.74	88.77	93.96
11	245	116	0.95	20.46	20.90	21.91
12	697	360	1.06	24.23	23.65	22.21
13	170	53	0.41	7.20	22.66	68.85
14	488	328	0.95	31.54	32.23	33.79
15	550	396	0.91	34.53	36.16	39.82
16	972	690	1.05	32.44	31.81	30.24
17	394	282	0.88	33.02	35.23	40.19
18	608	493	0.94	37.13	38.25	40.79
19	613	399	1.05	28.83	28.24	26.78
20	490	130	0.30	4.15	10.17	221.26

Table 5.3 (contimued)

Wara No.	FO	N	B	\dagger	μ	σ
21	681	265	1.05	16.49	16.17	15.38
22	716	405	0.86	26.06	28.18	32.91
23	1000	610	1.19	26.73	25.19	21.17
24	538	383	0.94	33.20	34.13	36.26
25	1244	385	0.22	7.89	462.39	5546.93
26	277 ${ }^{4}$	3505	0.93	63.21	65.25	96.88
27	3007	3848	1.12	57.59	55.32	48.58
28	913	997	1.00	53.01	53.14	53.37
29	1296	913	1.02	36.38	36.06	35.26
30	1178	997	0.93	42.18	43.72	47.21
31	1132	1298	0.94	59.44	61.22	65.27
32	1151	696	0.97	29.35	29.78	30.77
33	986	590	0.94	28.11	28.97	30.91
34	1314	795	0.84	26.29	28.76	34.26
35	1184	1282	1.13	49.43	47.25	41.70
36	1414	1126	0.73	36.91	45.09	63.05
37	1262	782	0.84	29.19	32.09	38.56
38	1096	1044	1.20	41.73	39.25	32.77
39	1504	763	0.92	22.94	23.86	25.44
40	685	539	1.03	40.18	39.77	38.73

5.3 ESTABLISHMENT OF ZONES FOR THE LIGHTIN\& SYSTEM OF THE CITY

Mention has been made that the whole lighting system of the Dhaka city is under the jurisdiction of two electrical divisions under the Corporation. These two divisions were created on the basis of administrative poini of view. The logical approach should be to diviae the division on the basis of similarity ar railure patterms rather than administrative ease. Thus sone bissis and criteria were sought for the proposed new division(s). There are statisticml methods such as Discriminant Analysis Method and cluster Analysis Fethod for the purpose ard theso methods would perhaps be appropriate in the current application. Unfortunately, no computer library package were available to the author from any source, thereby the author has to resort to the following heuristic approach. The weibull parameters such as shape and scale nerc considered to be the important and influential parameters which control the pattern and shape of the weibull curve. Thus, the zoning process was accomplished based on these prarameters.

Confidence intervals of shape garameter

Confidence intervals on the shape parameter, B must be evaluated since iocisions may be based upon this value. Figure 5b gives factors F_{B} against same size n for different S - confidence levels (99\%, 95\%, 90%) on B.
S.alıen:

The upper and lower \mathcal{S} - confidence limits sre then

$$
\begin{aligned}
& \mathcal{B}_{\mathrm{U}}=\hat{\beta} F_{\beta} \text { and } \beta_{1}=\hat{\beta} \frac{1}{F_{\beta}} \\
& \text { which is rearranged in the form } \\
& \frac{B}{F_{B}} \leq \hat{B} \leq B F_{\beta} .
\end{aligned}
$$

It has been observed that the B has an expected value of 1.0 considering the forty waris together, explaining that failure probability distribution is negative exponential. The factor F_{β} for ($n=40$ and $P R=90,2$) was found from fig. 50 to be 1-18; thus the confidence intervale are

$$
0.84 \leq 8 \leq 1.18
$$

Fron the above interval limits, the wards could be classified into three main groups as follows:
i) Wards with β-values are less than 0.84
ii) Wards with β-valucs between 0.84 and 1.18
iii) Wards with β-values higher than 1.18

Dut group (ii) is further broken into followint two proups as bujk of wards fall under this group.
a) Wards with β-values between 0.84 and 1.0
and b) Wards with B-values between 1.0 and 1.18

Thus the four groupe exorged are given below:

5.3.1 COMPJTER OUTPUT AND RESULTS FOR THE ZONES

The original data bank for fo, so for the wards were used for the program as developed in art. 5.2.1. Eut the program has slifhtiy been modified tailored to the requirement of the zones. This modification was necessary so that it could generate a set of new arrays Fo, and so for the individual zones as follows:
i) The program will search for the relevant wards of the zone in the master file.
ii) The FO and so arrays for the wards foume in (i) above were cumulated and new arrays of $F 0$ and 50 were generated for the zones.

The output from the computcr for one such zone, for example, is given-in pageg $79,80,81$ and consolidated output are shoun in table 5.5.

Table 5.5

> Derived Weibull parameters ior failure ¿istribution zonewise

Zone	B	T	μ	σ
I	0.88	20.80	27.13	25.12
II	0.91	44.89	46.97	51.68
III	1.04	41.53	40.84	39.14
IV	1.18	35.15	35.21	28.18

Group I	$\beta \leq 0.84$
Group II	$0.8 \quad<B \leq 1.0$
Group III	$1.0<B \leq 1.18$
Group IV	$B>1.18$

The ward-wise distribution of the above groups termed as . zonc 1, zone II, zone III and zone IV are shown in table 5,4.

Table 5.4 VARIOUS WARDS FALLING UNDER THE ZONES

Zone	B - value	Wards
I	Less than 0.84	1, 6, 13, 20, 25, 36
II	0.84 to 7.0	$\begin{aligned} & 2,3,7,10,11,15,16,17,18, \\ & 22,24,26,30,31,32,33,34,37,39 \end{aligned}$
III	1.0 to 1.78	$\begin{aligned} & 4,5,8,9,12,14,19,21,27, \\ & 28,29,35,40 \end{aligned}$
IV	Groater than 1.18	23, 38

The other factor namely scale parameter, η was not considered since suitable method was not available to find the confidence limite for this parametcr.
f

1
t
f

ZLivE MJPEEから 4

CLAS 5	FAILIJ！ES	
l	31	1624
2	37	$1{ }^{1} 17$
\％	31	－6，
4	42	1414
ᄃ	\％	16 ± 7
6	17	16ご
7	21	16.4
E	27	1627
5	54	$16 \geq 7$
1 C	31	1017
11	39	iblo
12	47	1 all
1 F	30	1010
1 ＊	4	1675
15	43	1 tis
16	44	1615
17	42	1512
$1 \pm$	41	d 61
15	34	1627
20	45	1 ${ }^{\text {a }}$
21	45	10.95
2゙	42	did
25	47	15， 5
24	$4{ }^{4}$	10.16
2 E	4	150
2t	39	1416
$\overline{2}$	42	＋ 12
$2 E$	－$\frac{1}{4}$	1400
25	± 2	1502
31	64	15 ± 0
31	66	$154 d$
32	EI	15，
3	E1	15， 5
35	47	1257
38	$4 \frac{2}{2}$	$1{ }^{1} 11$
37	5	1570
\％${ }^{\text {¢ }}$	40	16） 5
39 40	45	1515
4 4	47	1577 164
4%	46	1 al
47	41	1615
45	45	10.5
$4{ }_{4}^{6}$	25	$1{ }^{1} \geqslant 5$
42	29	1020
47	$こ 7$	$16 i 7$
A 8	17	$16 \pm$

Co4ss		CUA＊Mrtú LF FA
1	$0 \cdot 013$	［．gis
2	c．0x2	1.040
3	0．cis	C． $0,0 \mathrm{~B}$
4	¢－Cご	6.032
5	cocli	1－0，7
6	$0 \cdot 017$	6－119
7	O．L15	c． $1<4$
E	OLIT	＋ 143
5	$C+18$	c－131
10	C－Cls	¢．150
18	$5 \cdot 10$	coby
12	¢0．42\％	
14	¢0025	c．${ }^{\text {c，}} 4$
1F	C．0シ）	1．29，
16	C－04	C．350
17	C－ $2+5$	C．3 54
15	$\mathrm{c}-6+8$	［ $3+5$
19	$\mathrm{C}=\mathrm{Cls}$	$[436$
20	0.019	4.375
21	¢0．0if	C： 4.410
27		C．4，${ }^{6}$
25	C．019	$t+5>4$
25	Colic	1．4．${ }^{\text {c }}$
$2 f$	a＊くこと	L－4．40
27	¢0．ck	4－4才14
28	$0-1017$	L．515
36	0.020	
31	0．5＜	0.530
32	0.639	［ 0 ¢？ 7
33	C －02 1	¢ 640
34	${ }_{C}^{C-014}$	C－6，
36	0.009	4.40
37	C－Cit ${ }^{7}$	6－8，
38	$0-16)$	6．707
39	0.0115	c． 11 d
40	\％．015	c．7ys
42	0×604 0.001	C． 809
43	c－004	6． 143
44	c．0u＇	1．132
45	$6 \rightarrow 0$	L－702
46	0.0	d．t＇ris
$4{ }^{4}$	－ $0.60{ }^{\text {d }}$	Loras
47	C．c．03	－\％at

It is observed that the value of shape parameter of the Weibull function for the zones ranges from 0.88 to 1.18 . The $\beta-$ value for zonem is the minimun ($\beta=.88$) which indicates that the bulbs in this zone have failed earlier before they could attain their avorage lives. So this zone should be critically looked into for the possible causes of those early failures and therely steps should be taken to alleviate this situation. In the other zones the failure dibtributions would approximate to negativo exponential thus the failure behaviours in terms of failure times are random.

For the improveraent of the situation steps may be taker to ensure that supply of quality materials required for the aystem in terms of starters, chokes, light bulbs etc. is to be maintained. This will also requirc that optimurn quantity of the materials are to be available at risht tine and properly kept in store.

5.4 DEVELOPMENT OF CHARACTERISTIC GIERVES

It was the objective of the preaent work to establish a relation between annual cost of replacement (variable costa) and percentage level of perfomance and hence frecuency of eervice trips per period (week) was ascertained. The replacement policy would then be, deteraination of the number of service trips por woek throughout the year for a desired level of performance. This could be achieved by gencrating character-
istic curves such as:
i) Annual cost of feplacement vis. percentage level of performance
ii) Percentage level of performance vs.frequency of sorvice trips per week.

Referring to the model earlier discussed in order to calculate the various paraneters such as average failures, total failures per year and various service periods (by simu2ation) are introduced in the scheme of the computer program as follows:

The prohability of failure for a period, t, has been determined by using

$$
P_{t}=-\left(\frac{t}{\mu}\right)^{\beta} \quad \text { and }
$$

then cumulative prohability of failure, $F(t)$, could be calculated, as

$$
\begin{equation*}
F(t)=-e^{p_{t}}+1.0 \tag{5.1}
\end{equation*}
$$

vsing equation (5.1) probability for any time period, T, could be round out as $P(T)$

$$
P(T)=F(T)-F(T-1)
$$

Average life in weeks of the items has been calculated as,

$$
S X=\sum_{T=1}^{T=\pi} P(T) \cdot \Gamma
$$

$$
\text { where, } n=\text { No. of weeks of the year. }
$$

The average fajlures $F X$ could be calculated from

$$
F X=\frac{X}{S X}
$$

where, $X=$ Number of bulb pointe. $F X=$ Average number of failures.

The level of performance, $P R$, was then found out using

$$
\begin{gather*}
P R=\frac{F S}{X} \times 100 \tag{5.2}\\
\text { where, } F S=X-F X
\end{gather*}
$$

The total number of failures in a ycar could be estimated using egn. 4.3 in chapter 4.

Finally the cost of replacement per year wao calculated by using the following cost equation.

Cost of replacement/ $\mathrm{Yr}^{\text {, }}$

$$
\begin{aligned}
\mathrm{CH}= & \text { Total No. of failures } x \text { item } \cos t+ \\
& \text { No. of trips } / \mathrm{yr} x \operatorname{cost} / \text { trip } y \text { No. of weeks }=(5.3)
\end{aligned}
$$

The average cost per mile, C, could be calculated by equations (4.20) and (4.21). The average trip cost for any

where, $D_{i}=$ Total road milage for zone i.
Trip costs have been calculated for each zone using the equations (1.21) anc (5.4). The calculation of the trip cost for zone-I has been shown below, for example.

The basic data are obtained as

Iter	Value
Total road milage, D_{0}	450 miles
Total number of bulb points, N	32916
Number of bulbs in zone-I, N1	2080
Amnual Fuel cost, FC	TK. $3,16,101.90$
Annual Maintenance cost, MC	Th. $2,46,615.00$
Tatal milage covered (Annual), D_{T}	169232 miles

Now, $D_{1}=\frac{D_{o}}{N} \times N_{1}$
where, $D_{1}=$ estimated milage for zone-I
D_{1} is estimated as follows:

$$
\begin{aligned}
\mathrm{D}_{1} & =\frac{450}{32916} \times 2080 \\
& =28.436 \mathrm{miles}
\end{aligned}
$$

And $\quad \mathrm{C}=\frac{\mathrm{FC}+\mathrm{MC}}{\mathrm{D}_{\mathrm{T}}}$

$$
\begin{aligned}
& =\frac{316101.90+246615.00}{169232} \\
& =3.325 \mathrm{Tk} / \mathrm{Mile}
\end{aligned}
$$

Thus, trip cost for zone-I,

$$
\begin{aligned}
C T_{1} & =\mathrm{C} \times \mathrm{D}_{1} \\
& =3.325 \times 28.436 \\
& =94.5497 \\
& =94.55 \mathrm{Taka} .
\end{aligned}
$$

Similarly for the other zones trip coste were calculated as shown below:

Zone	Total No. of bulb points	Trip cost ${ }^{*}$ (Tk.)
I	2080	94.55
II	18137	824.47
III	11045	502.04
IV	1654	75.19

* All coste are at 1982 prices.
5.4.1 DATA SPECIFICATIONS, COMPUTER PROGRAM

The input data for performance and cost analysis for each zone contains:
i) Number of zones in the system
ii) Number of wards for each zone
iii) Number of estimated trips for finding the cost of replacement per year and performance
iv) Cost of individual item
v) Trip cost for each mone
vi) The Weibull distribution parameters for each zone
vii) Number of bulbs in each zonc.

The mathemaiical hieuristic procedure developed earlier was then converted to a computer program in FORTRAN IV language. The format specifications for inputs have been given in free format.

5.4.2 OUTPOT SPECIFICATIONS

The autput of this program contains:
i) A print out of the input trips and weibull parameters along with the total number of pointe for each zone.
ii) Tabulated results based on the fitted weibull distribution and input data containing period of replacement, total number of failures per ycar, percentage level of performance and cost of replacement per year for each given trips.

The computer program has been listed in Appendix II

The cost of replacement per year and percentage level of performance for different strategies of replacements in terms of number of replacertent trips per week have been calculated using the equations (5.2) and (5.3). The results of these values for each zone are, tabulated in table 5.6. Then characteristic curves of cost of such replacement ve.percentaje Level of performance for the zones have been plotted as shown in Figures $5.1,5.2,5.3 \& 5.4$ and percentage level of performance vs.number of trips per week have been plotted in Figs. $5.5,5.6,5.7 \& 5.8$. It is fourd that the cost of replacment increases very rapidly when the level of performance exceeds 98%. The level of performance increases rapidly when the number of service trips increases beyond 10 trips per week.

Table 5.6 Cost of replacement per year vs. percentage level of performance for various zones and various frequency of service replacement

Trips/week	$\begin{aligned} & \text { Type of } \\ & \text { result } \end{aligned}$	Number of Zones			
		I	II	III	IV
2.00	PR	84.90	92.57	91.55	89.77
	CR	310520.19	1400822.00	872369.00	147986.50
3.50	PR	91.06	95.68	95.09	94.02
	CP	344895.69	1553289.00	970181.94	164748.00
5.00	PR	93.65	96.95	96.53	95.77
	CR	353862.94	1611359.00	1004976.38	169976.38
6.00	PR	94.68	97.46	97.10	96.46
	CR	361832.06	1661329.00	1035949.63	174868.31
7.00	PR	95.42	97.81	97.51	96.96
	CR	368837.88	1708360.00	1064987.00	179400.31
8.00	PR	95.88	98.09	97.82	97.34
	CR	369389.00	1728870.00	1076059.00	180640.13
10.00	PR	96.77	98.47	98.25	97.86
	CR	382228.31	1820775.00	1132788.00	189440.74
12.00°	PR	97.30	98.72	98.54	98.21
	CR	393825.13	$19084!6.00$	1186695.00	197719.06
14.00	PR	97.68	98.90	98.75	98.47
	CR	404709.56	1993700.00	1238982.00	205697.69
20.00	PR	98.37	99.23	99.12	98.92
	CR	432833.75	2232209.00	1384203.00	227486.88

Fig. 5.1. Characteristic curve of cost of repiacement vs. Ievel of performance, $\%$ for zone number-?

Fíg.5.2. Characteristic curve of cast of replacement v_{s}. level of performance, $\%$ for zone number-2

Fig.5.3. Characteristic curve of cost of replacement v_{s}. level of performance $\%$ for zone number-3

Fig. 5.4. Characteristic curve of cost of replacement v_{s}. level of performance, $\%$ for zone number- 4

Fig. 5.5. Chorocteristic curve of level of performance, $\% v_{s}$, number of trips per week for zone number-1

Fig. 5.6. Characteristic curve of level of performance, $\%$ vs. number of trips per week for zone number-2

Fig. 5.7. Chorocteristic curve of level of performance $\%$ ws. number of trips per week for zone number-3

Fig. 5.8. Characteristic curve of level of performonce, $\% v_{s}$ numben of trips per week for zone number-4

CHAPTER 6

CONCLUSION AND RECOMMENDATIONS FOR FUTURE WORK

6. 1 CONCLUSION

The objective of the present work wes to apply the Operations Research technique in replacement of light bulbs of Dhake city. Existing lighting system of the Corporation has been studied and the various weaknesses of the systena identified. To remove the defects of the system and thus to evolve a better system the techniques of Operations Research and Statietics have been employed. With the present policy. the management has no conirol over maintaining a specified level of performance of the lighting system measured in terms of percentage of active light bulbs in the system at any time. Moreover, the management could not ascertain the level of cost involvement for each unit increase of the performance. Thus to overcome these inherent problems analytical methods have been used with the past one year's data for the existing lighting area comprising of forty $\mathbf{1}^{\mathbf{1}}$ wards' in two Divisions. The failure petterns of these wards were known when a theoretical failure distribution such as Weibull distribution was fitted. Analysing and comparing the Weibull parameters of these distributions - it was obserbed that some wards could be grovped together as they indicated similar failure patterns. Thus the replacement policy would be same for the wards and from management point of view it would be
useful to combine these wards and create a zone. On the basis of this argument, the entire lighting system was devided into four zones.

The pure service replacement policy has been proposed for each zone. Weibull probability function has been used to find total failured for the year, and the long run average number of faile. Thie would be achioved by varying the service replacement policy in terms of service trips per week. Thus for any particular service replacement policy when the long run avorage fails per period was known, the percentage survivals were calculated. This percentage survivals was desicnated as performance level of the system. Thus for various policies of replacements, percentage levels of performance of the system were calculated. Relationship between this percentage levels of performance and service replacement policy has been shown in figs $5.5,5.6,5.7$, \& 5.8 in chapter 5.

The annual cost of replacement relates nonlinearly with percentage level of performance. These are show in figs 5.1, $5.2,5.385 .4$ for the four zones. From the cost equation mentioned in chapter 5, it is found that total cost has two components (i) item cost and (ii) total trip costs. The individual item cost and the trip costs components of the cost equation are linear but the number of average failure (f) per year varies non-linearly with performance. Thus the cost
curveg become nonlinear with performance.

The management now can use this approach as a tool for decision making in terms of formulating replacement policy of the system. It can set any cut-off point in terms of the percentatre level of performance; accordingly, the cost of replacement per year could be ascertained when the fixed cost is added. On the other hand the total cost of replacement per year could be known (at 1982 price level) adopting a policy for replacement of light bulbs at a predetermined performance level. Due to inflation or any other reason the cost parameters may change in which case new sets of characteristic curves could be generated by the computor package already developed.

6.2 SCOPE AND RECOMMENDATIONS FOR FUTURE WORK

The scope of future work are given as follows:-
(i) There have been advarices towards computerised data processing. Thus striking results and better management decisions are possible through this computor application. In this respect data storing and record keeping should be computer based. Future work may be directed in exploring the feasibility of installing rini-computers for the corporation.
(ii) Numerical Taxonomy (Cluster analysis) is a powerful tool so also the discriminart analysis. A project should be
carried out to invoatigate possible alternatives in redesigning the system in terms of zones using those methods. Thus for each zone appropriate replacement policies could be uscd.
(iii) The models doveloped in the present work are bascd on data obtained from a single source. In addition the time scale of the project has meant that these models could not be exhaustively tested. The author is very much aware that a statistical model of the type needs more data. Thus any future work should consider this aspect.
(iv) In the present work only the exising systen of failures of light buibs (as it operates) has been considered without considering the reasons behind ticir failures. This was rather deliberate because of the time constraint and scope of the present work. It could now be stressed upan that a soparate study may be made in this context. Thus procedures should be developed to control the system and thus to improve its operation; in this regard a detailed system study may be nade on all the components of the system especially the critical componento such as the choves, starters, fuses ctc. and also the environmental factors and conditions whicin arfect the system. It may be mentioned that factors such as weather corditions, seasonality effects etc, are the few important factors which fall under this calegory. There exists some 'invisible' factors from within the organization thich also need consideration as they signiricantly affect the system operation. These are artificial but need deliberate control.
${ }^{\prime} 1$
t

1
f

CL：			
b	¢．ここと	3.934	$t . r y z$
2	3.124	1．7．16	［： 150
－ 1		2．15	（， F ，t
4	3．447	直コご	C．7
！	J＋431	2．127	6：Ei？
6	c＋414	〕－2	
7	コ．${ }^{\text {c }}$ ， d	3.457	＋J7\％
¢	2． 232	$\cdots 2$	1.15
4		7.15	1．dJt
15	G13う	$\underline{4-x 5}$	1.111
11	G：＜${ }^{\text {d }}$	j－ j^{1}	1．د゙\％
12	C＊－¢	$5-130$	$1+612$
13	0．	8.120	1． 19
14	¢．$\overline{\boldsymbol{z}} 15$	C． 5	1．-16
15	G－225	\rightarrow ctac	1．tyd
16	C－ Cl	こ．S l6	－6\％
17	9．332	5.15	$\because 5$
18	3.14	$5+4 \leq$	迷
15	¢． $1: 3$	$7 \times 19 \mathrm{y}$	
2！	¢． $17 \equiv$	7＊ころ＊	こ：312
21	0.164	7 － 7 \％	¢－71
2	c． 150	7.215	
3	J． 145	$\therefore=150$	边
24	－ $1+2$	7.214	－ 72
こう	ᄃ＋1．1t	5，	\％－rad
72	3．113	－-114	¢－
27	2．1」4	4．$=14$	シーズ家
2E	5×115		シー－ご
25	¢ +114	d－ 2 d：	$\because 17 \mathrm{C}$
1 C	$\mathrm{C}+175$	」2去䊽	7． 480
11	」＊17！	年7\％	－． 30
$3{ }^{2}$	C．IT	19.574	二．tse
≤ 1		）－¢ ¢	－5－
39	2， $0 \times$	2．亿年7	－ 05
$\frac{5}{5}$	v．03s	7－1	E．山＇s
56	0．c9E	＝$-\frac{2}{2}$	\％tst
57	9－9 0^{2}	¢＋2	ら．${ }^{\text {c．}}$
49	9． 0775		こ．20゙
3 H	ᄃ－67	3.4 J \times	4.120
70	こ． 074		4×120
11	O． 51	4×13	4．く］
72	2． \cos	7.7 ¢	4．2¢3
02	C．Cus	$\cdots 7 \%$	4.37
44	5.64	，1． 30	4．4う7
15	3．531	1.4 $y+50$	$4 . E$ ar $4 . c 24$
16 +7	－¢－\％	13．0似	4.73 a
16	9， 55	12．0）	4．7＇s

REFERENCES

	A Study Survey ", Nanagement Science, Vol. 11, No. 5, March 1965. pp. 493 521.
2. Ghosal, A. ;	" Elements of Operational Rescarch ", S.Chand \& Co. Ltd., New Delhi, 1979.
3. Crookes, P.C.I. ;	" Replacement Strategies ", Operational. Research quarterly, Vol. 14, No. 2, pp. 167 - 184, 1963.
4. Bartholomew, D.J. ;	"Two-Strage Replacement Strategies ", Operational Research quarteriy, Vol. 14, No. 1, pp. 71 - 86, 1963.
5. Nakagewa, T. and Osaki, S. ;	" The Optimum Repair Limit Replacement Policies ", Operational Research quarteriy, Vol. 25, No. 2, Pp. 311 - 317, 1974.
6. Sivazlian, B.D. ;	" On A Discounted Roplacement Problem With Arbitrary Repair Time Distribution ", Manarement Science, Vol. 19, No. 11 , pp. 1301 - 1309, 1973.
7. Shamblin, J.E. and Stevens, Jr. G.T. ;	"Operations Research: a fundamental approach ", Mctraw Hill, Inc. 1974.
8. Eilon, S., King, J.R. and Hutchinson, D.E.	" A study in Equipment Replacement ", Oporational Rescarch quarterly, Vol. 17, No. 1, pp. 60-71, 1966.

	Reliability ", Pitman Publishing, 1973.
10. Sivazlian, E.D. and Stanfel, L.E. ;	" Analysis of Systems in Operations Research ", Frentice Hall, Inc., pp. 392 - 441, 1975.
11. Westi, c.c. Ackoff, R.L. and Armoff, E.L. ;	```" Introduction to Operations Research ", John Wiley & Sons, Now York, pp. 481- 514, 195?.```
12. Ackoff, R.L. and Sasieni, M.hi. ;	"Fundamentals of Operations Research ", John wiley and Sons, New York, pp. 20 214, 1967.
13. Wila, R. ;	" Production and Operations Management: Prjnciples \& Techniques ", Holt, Rinchart anc Winston, pp. 518-532.
14. Morse, P.M. ;	" Zquacs, Inventories and Maintenance ", John wiley and Sons, Inc. New York, pp. 157-179, 1958.
15. Sasieni, M. Yaspan, A. and Friedman, L. ;	"Operations Research: Kethods and Problems ", John Wiley \& Sons, Inc. pp. 102-112, 1959.
1G. Bellman, R.E. and Dreygus Stuart, E. ;	" Applied Dynamic Programming ", Jursey, Princeton University Press, 1962.
17. Dean, B.v.;	"Replacement Theory ", 'Progrees in Oparations Research', Vol. 1, No. 5, edited by R.L.Ackoff, John wilkey \& Sons, Inc. pp. $330-360,1961$.

	Chains ", Management Science, Vol. 9, No. 1, pp. 16 - 24, 1962.
19. Klein. M. ;	"Intpection-Mantenance-Replacement Schedules under Markovian Deterioration", Management Science, Vol. 9, No. 1,
-	pp. 25 - 32, 1962.
20. MeCall, J.d. ;	"Operating Characteristics of Opportuni- stic Replacement and Ingection Policies". Management science, Voд. 10, No. 1, pp. 85 - 97, 1963.
21. Weiss, G.II. ;	"A Problem in Equipment Naintenance ", Management Science, Vol. 8, !o. 3, pp. 266-277, 1962.
22. Pandlarski, J. ;	" Mathematical Analysis of Preventive Maintenance Schemes ", The Journal of the Operation Research Socicty, Vol. 31, No. 3, 1980.
23. Roll, Y. and Naor, P. ;	"Preventive Maintenance of Equipment Subject to Continuous Deterioration and Stochastic Failure ' ${ }^{1}$, Operational Research Quarterly, Vol. 19, No.1, 1968.
24. Parsons, J.A. ;	"Preventive-Maintenance Policy Selection", The Journal of Industrial Engineerine, Vol. XVI, No. 5, 1965.

	Maintenance Fngineering Handbook, Korrow L.C, NeGraw Hill, Inc. pp. 92 121, 1957.
26. Kaufmann, A. ;	"Methods and Models of Operation Research", Prentice Hall, Inc. Englewood Cliff, New Jursey, 1963.
27. Kapur, K.c. and Lamberson, L.R. ;	" Reliability in Engineering Design ", John Wiley and Sons, Inc. 1977.
28. Katir, A.B.M.Z. ;	"Solution Procedures for Replacement Problems ${ }^{7 \prime}$; An M. Sc. Thesis, University of Birmingham, England, 1977.
29. Haider, A. (ea) ;	"A.Cily and Its Civic Body ", A Souvenir to mark the Centenary of Dhake Municipality, 1966.

APFENDICES

APFFINDIX I Computer Proeram 110
APPENDIX II Computer Program 113
APPENDIX III Flow Chart 11^{4}

AFFENDIX - I

Computer Programme to determine the woibull parameters


```
    Gcs=+FAZ4
```



```
    [4 dJ LJ= &.N
```



```
    H二!UR.
    [NL
\(\mathrm{Cl}^{2} 7\)
6 C 7
```



```
CO C
038
CS0j
```



```
[NL
```


Computer Programe to determine the relationship between annual cost of replacenent and level of performance


```
    0.054
    0しつ% <
    000%1
        吅吅
        G06%
        EJ13
        031%
        0y15
        C514
        0016
        0016
        O)
        @うとう
        Gうど1
        C32.9
        4324
        05 25
        0026
        G3ご7
        9927
        9531
        0.3末末
        @コゴ
        0.3)
        かO***
        C539
        C539
        J541
        0042
        0043
        01444
        0045
        O3AT
        0ッ43
        00.49
        C351
        0053
    M1E1dJd
```



```
    &K{5}=X-d{:!
```



```
        X{=XT+1\&)
```



```
        <15=0%2
        11= \x-i
            L二}70\mathrm{ In=1,15
```



```
        70 CGM\ \\U
```



```
            FK\J!=1人\」!+XY{\K)
            ccutivu=-
```



```
            2E<UNT&NLご
```



```
            C
```



```
            c<=|く+1
```



```
            Ely% ニー 
            EN[
```

REPGETRTX-III

