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ABSTRACT

The behaviour of -shear wall-floor slab connections has been studied by using
artificial neural network (ANN). An artificial neural network 1s an information-processing
system based on the observed behaviour of biological nervous systems. A neural net
consists of a large number of simple processing elements called neurones. Each neurone is
connected to another neurone by means of direct communication links, each with an
associated weight. The strength of the connections is dictated by the weights, which
connect different neurones. . Each neurone accepts a set of inputs from other neurones
and also from external sources and generates an output. Structural design requires
engineering judgement, intuition, experience and creative abilities in addition to number of
options available to the designer. The ANN approach has the capabilities to incorporate
some of the above-mentioned requirements for development of computer programs in
structural design. ANN has been used in this thesis to
] to determine the effective width of slabs coupling walls of different shapes and
(i)  to determine the critical perimeter and ultimate punching shear capacity of the

shear wall-floor slab junction,

A computer program is also developed for determmning the effective width and the

ultimate punching shear capacity of the shear wall-floor slab junction.

The effective width and ultimate failure load of slabs coupling walls of different
shapes as predicted by ANN is compared with the experimental and theoretical results
available. The agreement is found very good. The effect of shear wall thickness, opening
between shear walls, effect of flange wall etc. on effective width and ultimate failure load

of slabs are also analyzed. Once the neural network is developed, it will be able to predict

the effective width and ultimate failure load for different new parameters within fraction of

minute.

It has been revealed that application of ACI and British Code in case of shear wall
structures for calculating punching shear strength may lead to an overestimation of
strength. In most practical cases, the formula proposed by Bari M. S. gives a conservative
estimation of punching shear strength of shear wall structures.
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1.1

CHAPTER ONE

INTRODUCTION

Artificial Neural Networks

An artificial neural network (ANN) is an information-processing system that has certain

performance characteristics in common with biological neural networks. Artificial neural
networks have been developed as generalisations of mathematical models of human cognition

or neural biology, based on the assumptions that:

®
(i)

(i)

@)

Information processing occur at many simple elements called neurones.

Signals are passed between neurones over connection links.

Each connection link has associated weight, which, in a typical neural net, multiplies
the signal transmitted.

Each neurone applies an activation function (usually non-knear) to its net input (sum of
weighted input signals) to determine its output signal.

Again a neural network is characterised by :

1is pattern of connections between the neurones (called its architecture),

Its method of determining the weights on the connections (called its training or learning
algorithm) and

Its activation function.

Since what distinguishes (artificial) neural networks from other approaches to

information processing provides an introduction to both how and when 1o use neural networks.
A neural net consists of a large number of simple processing elements called neurones or

nodes. Each neurone is connected to other neurones by means of directed communication links
each with an associated weight. The weights represent information being used by the net to
solve a problem. Neural nets can be applied to a wide variety problems, such as storing and
recalling data or patterns, performing general mappings from input patters to output patterns,
grouping similar patterns, or finding solution to constrained optimisation problems [1].
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- 1.2 Shear Wall-Floor Slab Connections

Shear walls may be defined as structural elements, which provide strength, stiffness and
stability against lateral loads, deriving their strength and stiffness mainly from their shape. They

are vertical stiffening members designed to resist lateral loads due to wind and earthquake. The

walls may be either planar open section or close sections around elevator and stair cores.

BS 8110 defines a shear wall as a vertical load-bearing member whose length exceeds
four times its thickness. If the ratio of length to thickness of the section does not exceed four
times, the member is defined as a column, which is a vertical member designed primarily to
resist axial compression. ACI Code has no clear definition to differentiate between column and
shear wall. -

She?‘;vall buildings consist. of series of parallel walls that resist all the vertical and
honizontal loads. In the longitudinal direction lateral loads. are resisted by additional shear
walls, elevator shafts and by tube action.

A popular form of high rise structure, especially for hotel and apartment use, is a slab-
coupled shear wall structure. The reason for this is economy résulting from reduced floor
heights and simplified formwork. From the constructional and architectural points, it is

relatively easy to make the final structure aesthetically pleasing.

—y i
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Fig 1.1(a) shows a pictorial view of a shear wall structure and Fig. 1.1(b) shows a
typical (idealised) floor plan of an apartment building in which self-contained units are arranged
side by side along the length of the building. This arrangement naturally results in parallel
assemblies of division walls running perpendicular to the face of the building, with intersecting
longitudinal walls along the corridor and fagade. The cross-walls are employed not only as
division walls but also as load bearing walls. The longitudinal corridor and fagade walls are
provided with openings for access to the living areas and balconies and for window framing,
this longitudinal wall act effectively as flanges for the primary cross-walls. In addition to its use
as structural partition walls, shear walls are used to enclose lift shafts and stair wells to form
partially open box structures which act as strong points in the building. Thus, in practice, shear
walls of various shapes such as planar, flanged or box-shaped may be coupled together in cross
wall structures (Fig. 1.2).

In slab-coupled shear walls, both the gravity load and wind load has to be finally
transmitted to the walls at the wall-slab junction. The transfer of moments from slab to
columns may further increase these shear stresses, and requires concentration of negative
flexural steel in the slab in the region close to the columns. The region of a slab in the vicinity
of a support could fail in shear by developing a failure surface in the form of a truncated cone
or pyramid. This type of failure, called a ‘punching shear failure’, is usually the source of
collapse of flat siab and slab-coupled shear wall structures. In recent years, some form of shear
reinforcement is used in the slab to increase the punching shear strength of the connections.
Certain problems associated with flat plate construction require special attention. Shear
stresses near the columns may be very high, requiring the use of special forms of slab
reinforcement there.
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1.3 Purpese of this Study

The structural analysis and design of slab-coupled shear wall structure can be
performed if the behaviour of slab in the system is adequately known. As we know that the
shear walls are provided to give lateral rigidity to the structure and connecting slabs play a
significant role in resisting lateral load.

When a shear wall structure is subjected to gravity and lateral loads, substantial
bending moment, twisting moment and shear force are transferred at the slab-wall junction.
During an earthquake the slab-wall junctions of a shear wall structure will be subjected to
repeated reversal of loads. This may lead to shear failure in the slab around the wall due to
degradation of shear strength.

The object of the work, reported in this thesis is to

{) Prepare non-dimensional design curves to determine the effective width of slab for
different wall slab configuration, |

(i)  Prepare non-dimensional design curves to determine the critical perimeter and ultimate
punching shear capacity of the shear wall-floor slab junction, |

(iii) Develop a computer program for determining the effective width of floor siab .and
ultimate punching shear capacity of the shear wall-floor slab junction using the ANN.



CHAPTER TWO

LITERATURE REVIEW

2.1 General

The structural analysis and design of a slab-coupled shear wall system can be
conveniently performed using the techniques developed for beam-coupled shear wall
systems provided the effective width of the slab can be established. In a coupled-wall
system, the stresses are not uniform across the width of the slab. In order to design the
slab safely, it is necessary to know the magnitude and distribution of the stresses
developed through the coupling action and it 1s also essential to determine accurately the

interactive forces developed at the slab-wall junction.

In the 1950s and 1960s, a group of researchers combined biological and
psychological insights to produce the first artificial neural networks. After about two
decades, interest in artificial neural networks has grown rapidly over the past few years.
Professionals from such diverse fields as engineering, philosophy, psychology and
physiology are intrigued by the potential offered by this technology and are seeking

applications within their disciplines.

In this chapter, a brief cntical review of previous experimental and analytical
research work done in the following fields is given:

i) Effective width of floor slab,

(i)  Analysis of shear wall structures,

(m)  Application of ANN.



2.2 Effective Width of Floor Slab

The shear wall-slab structures subjected to lateral loads deflect and the rotation of
the wall generates moments in the slab. The portion of the slab, which acts as a beam

connecting the walls and is active in resisting the moment is called effective width of the

stab (Fig. 2.1(a)).

The resistance of the floor slab against the displacements imposed by the shear
walls is a measure of its coupling stiffness, which can be defined in terms of the
displacements at its ends and the forces producing them. Thus, referring to Figs 2.1(c) and
2.1(d), the stiffness of the slab may be defined either as a rotational stiffhess M/0 or as a
translational stiffness V/6 as the two are related as shown in Eqns. 2.3 and 2 4. Due to the
non-uniform bending across the width, the force-displacement relationship can be
evaluated only form a two dimensional plate-bending analysis. 'The rotational and

translational slab stiffness factors K and K; are given by

K_‘"A"{"l— 21
=D 21
vz

KS_ED (2.2)

Where L is the clear opening between the walls and D is the flexural rigidity of the slab
Et'/12(1 - v?). The effective width of slab may be established by equating the rotational

and translational stiffness of the slab with those of the equivalent beam

M 6EI ,
5 = LW | 23)
vV 12EI )

where W is the web length of the wall and I (Y.t*/12) is the second moment of inertia of
the beamn of effective width Y, and thickness t.
7
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The effective width may then be expressed in terms of the rotational and

translational stiffness factors, in non-dimensional form, as

Y, K

Y e )( )(L+W) (2.5)
or

Yoo K ) | (2.6)

Y 12— ¥
where Y is the bay width or longitudinal wall spacing (Fig.2.1(a)) and v is Poisson’s ratio

for the slab material.

Theoretical and experiment studies have shown that the main coupling actions take
place in corridor area and at the inner edges of the coupled walls. For walls with external
fagade flanges (Fig. 2.2¢), the flange has a negligible effect on the coupling stiffness and
the walls may be treated as plane walls (Fig.2.2a). In the case of walls with internal flanges
(Fig. 2.2d), very little bending of the slab occurs in the regions behind the flanges, and so
the influence of wall length may generally be disregarded.

2.2.1 Empirical Relationships for Effective Slab Width

Comprehensive sets of design curves have been presented in Refs. [2], [3] and [4].
However, Coull and Wong [2] proposed simple empirical relationship that fit the design
curves fairly accurately, and that may be used for design calculation. These are considered
for the various cross-sectional forms of shear walls commonly encountered in practice.
For a slab coupling a pair of plane walls as shown in Fig. 2.2(a) the effective slab width
ratio Y./Y may be taken to be

Y/Y =t/Y +L/Y [1 - 0.4 (L/Y')] for 0 < (L/Y) < 1 (2.7)
and |
YJY=tY+Y/Y[1-04 LYY forl< (LIY)<x (2.8)
9 .
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in which
t = wall thickness
Y = bay width
Y=Y-t
L = length of opening between walls.

If the wall thickness is neglected as being small, Eqns. (2.7 & 2.8) reduce to the

stmpler expressions.

Y/Y =L/Y {1 - 04 (L/Y)] for 0 <L/Y< 1 (2.9)
and

Y/Y = 1-04(L/Y)" forl< L/Y<«x (2.10)

The effective width of slab coupling wall of different shapes was investigated
theoretically by Coull and Wong [2] and Tso and Mahmoud [3]). They produced design
curves suitable for use in an engineering office. The curves generally show the variation of

the effective slab width or stiffness with different geometrical parameters.

End bay occur at the two gable ends of the building, where the gable walls are
coupled by the floor slab on one side of the wall only. With the asymmetric coupling of the
slab, gable walls will generally undergo some out-of-plane bending that will depend on the
relative stiffness of the wall. Since the gable edge of the slab is less restrained against
transverse rotation than a continuous interior edge, the coupling stiffness of the end bay

will be less than half the stiffness of an internal bay slab.

Coull & Wong [2] suggested that for a practical range of wall configurations, the
effective width of an end bay varies between 44% to 47% of the value for an interior bay.
As a convenient rule, the effective width of an end bay should be taken to be 45% of the

corresponding interior value given by Eqns. (2.7 and 2.8).
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2.3 Analysis of Shear Wall Structures

The analysis of uniform walls pierced with regular sets of similar openings i.e.
coupled shear walls, has attracted several investigators. A simplified analysis has been
produced by assuming that the discrete system of connections, formed by lintel beams or
floor slabs as shown in Fig. (2.3) may be replaced by an equivalent continuous medium, as
shown in Fig. (2.4). By assuming that the axially rigid lintel beams have a point of contra-
flexure at mid-span, the behaviour of the system can be defined by a single second order

differential equation. A general closed form solution of the problem can be obtained.

Using above simplified approach Rosman [5] first derived solutions for a wall with
one or two symmetric bands of opening, with various conditions of support at the lower
end (piers rigid basement, on separate foundation, and on various form of column
supports). Deformations due to bending moment and normal forces in the walls and
flexural and shear deformation in the connecting beam were also taken into account. The
axial force in the walls was chosen as the statically redundant function. So if q is the shear

force related to the unit length, the axial force in wall is
T={qax 2.11)

Where x is abscissa, measured from the top of the wall as shown in Fig. (2.3).
Making use of certain simplifying assumptions, the governing differential equation takes

the form
d’T /dx* - o&*T =-yx (2.12)

A direct mathematical solution of above equation can be obtained for any loading
case. Eqns. (2.13 and 2.14) show the general solutions of above deferential equation for
the case of concentrated lateral load at the top and uniformiy distributed lateral load

respectively.
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T = C, sinh ox - (y/o) x (2.13)

T = C, sinh ox - (2B /e*)(cosh ox - 1) + (B/ o) x* 2.14)

The coefficients o, B, and ¥ depend on the load and the geometrical properties of
the shear wall. Once the value of T is known, the shear force and bending moment in the

connecting beams can be easily calculated using equilibrium considerations.
2.3.1 Strength of Slab-Wall Junction

The region of a slab in the vicinity of a support could fail in shear by developing a
failure surface in the form of a truncated cone of pyramid. This type of failure, called a
‘punching shear failure', is usually the source of collapse of flat stab and stab-coupled shear

wall structures. Design of this region of slab is therefore of paramount importance.

Comprehensive test data and reliable design criteria exist to estimate shear strength
of slabs at interior slab-column junction loaded by reasonably concentric loads. In
contrast, limited experimental results are available regmdﬁg shear strength of slabs at
exterior column junctions and shear wall junctions. In recent years, some form of shear
reinforcement is used in the slab to increase the punching shear strength of the
connections. But detailed design methods are not available for proportioning shear
reinforcement around the slab-column connections where both shear and moment are

transferred.

Bari M. S. [6] has critically reviewed all major publications on the shear strength
of slab-column connections with or without shear reinforcement, transferring both shear
and moment or shear only to column. Works on each field are briefly discussed below

based on Ref. [6] .
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2.3.2 Strength of Slab-Column Connections with Shear Reinforcement

Transferring Shear only

A large number of tests have been carried out of slabs with shear reinforcement
subjected to shearing action only i.e. when the load is considered to be applied without
eccentricity with respect to the critical section of the slab. These tests have led to several
semi-empirical design procedures. An extensive review of the available data concerning
the shearing strength of slabs with shear reinforcement in the form of structural steel
sections, bent up bars, stirrups, prefabricated wire cages etc. was made by Hawkins [7].
He concluded that for slabs with properly detailed bent up bars or stirrups and transferring

shear only, the shear capacity equals the lesser of the fol}ouring strengths:

(1 The shear strength for a slab without shear reinforcement calculated on the
basis of ACI Code 318-71 for a critical section located d/2 beyond the
end of the stirrups or the bend in the bent up bars, where d is effective
depth of slab.

(i)  Half the shear capacity for a slab without shear reinforcement for a critical
section at a distance d/2 from the column perimeter plus the vertical
component of the yield strength of the shear reinforcement intersected by a

crack inclined at 45 degrees to the horizontal.

It was apparent from the observed behaviour of tested specimens that adequate
anchorage for the shear reinforcement is essential to obtain sufficient ductility. Shear
reinforcement, where needed, must extend to a distance of at least 1.5 d from the column
perimeter. Bars must be bent down within a distance 0.5d of the column at an angle not
less than 30 degrees to the horizontal. The maximum spacing between vertical stirrups

should be 0.5 d.
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2.3.3 Shear Strength of Slabs with Moments Transferred to Column

The state of knowledge about the strength of column-slab connections transferring
moments, that increase monotonically to faiiure, has been summarised by ACI-ASCE
committee 426 [8). Available methods of predicting the ultimate strength of such
connections can be divided into four groups:

(1) Analysis based on a linear variation in shear stress,

(2)  Analysis based on thin plate theory,

3) Beam analogies, and

(4)  Finite element based procedures.

Detail comparison with the summary of the essential features of the four methods is

presented in Ref. [6].
2.3.4 Shear Strength Predicted by Codes of Practice

The formulae given for exterior edge column-slab connections of different Codes
can be applied for estimating the punching shear strength of shear wall-floor slab
connections. Punching shear strength as predicted by Bangladesh National Building Code
(BNBQC), ACI Code and British Code BS 8110 are discussed below:

2.3.4.1 BNBC/ACI Code

The shear strength prediction by Bangladesh National Building Code (BNBC) and
the ACI Code is almost same. The ACI Code 318 and Commentary [9] specify the use of
a linear vanation in shear stress approach for predicting the limited shear capacity of
connections transferring shear and moment. This procedure was first proposed as a
working stress method by Di Stasio and Van Buren [10] in 1960. Fig. (2.5) shows the
model proposed by them. They divided the resisting mechanism of the connections into
two parts. As shown in Fig. (2.5-b), one part was an uniform shear field that resisted the
shear force. The other part was a linear shear field, Fig. (2.5-c) which resisted the torsion
part of the applied bending moment. This approach was subsequently utilised by Moe
[11], & Hanson and Hanson [12] whose procedure was first incorporated into the ACI
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building Code in 1963 and carried over essentially unchanged into ACI Codes 318-71,
318-77, 318-83 and 318-89. For an intérior slab-to-column connections, as shown in Fig.
(2.5-a), it is assumed in this approach that around the column periphery, at some distance
form it, there exists a pseudo-critical section. ACI Code specifies this critical perimeter at
a distance d/2 from the column periphery, where d is the effective depth of the slab. The
resultant forces acting on this perimeter is due to the axial force and bending moment in
column. The axial force, V, is transmitted to the column by uniform shear along the
perimeter as shown in Fig. (2.5-b). The resultant moment, M, in column is transferred
partly by bending of slab (normal frame action) and partly by hnear shear stress
distribution (torsion) at the perimeter as shown in Fig. (2.5-c). Therefore, the maximum

shear stress according to Fig, (2.5-d) will be

VAB = Vhear + Viorsion

= V/Agp + KM Cap/J (2.15)

where A, =area of the critical perimeter.
K.M =15 the fraction of the total moment, M, transferred by torsion and
Cap = is the distance from the centre of rotation to the section AB.
J= a property of the critical perimeter analogous to the polar moment of inertia.
J (for interior rectangular column) = [(Ci+d)*h’)/6 + [(Ci+d)’*h)/6 +
[(C1+d)**h*(C;+d)]/2, where h is the thickness of slab.
J (for exterior rectangular column) = [(C;+d/2)*h*)/6 + [(Ci+d/2)’*h)/6 +
[2*(C1+d/2)*h{(C,+d/2)(C+d)/(4C,+2d) + (2C+2d)}*] + (Co+d)*h[ {(C,+d/2)/2-
(C1+d/2)(Co+d)/(4C+2d) + (2C+2d)} 7]
where C,, C, = dimension of the column as shown in Fig. 2.5.
ACI Code 318-89 specifies that the fraction, K, of the total moment M, transferred

by shear across the critical perimeter is given by

K=1- ! (2.16)

1+ é‘/(cI +d)C, +d)
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The remaining fraction of unbalanced moment (1-K).M must be transferred by
reinforcement within lines 1.5h, where h is the slab thickness on either side of the column,

For ACI Code 318- 89 the maximum value of shear stress is limited to
Ve =0.17(1+2/Ry,)  f/ N/ mm? (2.17)

but not greater than 0.33  f/N/mm® Ry is the ratio of long side to short side of a

rectangular column and £, is the cylinder crushing strength of concrete.

The moment-shear interaction relationship predicted by the ACI Code procedure is
shown in Fig. (2.6) for an interior column connection. Ordinate, V,/V,, 1s the ratio of the
direct shear transferred to the column to the capacity of the section for shear transfer only.
Abscissa, K. M/M,, is the ratio of the moment transferred by shear to the same capacity for
moment transfer only. Vo and Mo are calculated from the following Eqns. :

Vo = veAo | (2.18-3)

M, = v.J/Cap (2.18-b)
Line ab on Fig. (2.6) represent the condition for which the maximum shear stress is limited
to v.. Diagrams on Fig. (2.6) indicate idealised shear stress distributions for different
points along line ab. Line cd represents the possible limitation imposed by the flexural

reinforcement which must transfer the moment ( 1 - K) M.

The geometric properties of the connection and the concrete strength are the
factors dictating the position of the line ab. The amount of reinforcement within lines 1.5h
either side of the column affects only the position of line cd. Test results [8] indicate a
behaviour not far form that idealisation. Hawkins et. el. [13] have shown that measured
ultimate shear strengths of the specimens when converted to the shear stress lie along
curve such as amn, for 2 21 N/mm® (3000 psi) concrete. That curve lies progressively
further outside the envelope acd as the reinforcement ratio within lines 1.5h either side of

the column increases above 0.8%. The reverse is true as ratios decrease below 0.8%.
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2.3.4.2 British Code BS 8110

Regan [14] proposed a simple modified linear shear stress approach which was
incorporated in the British Code CP 110 [15] and carried over the slight modiftcation into
BS 8110 [16]. The British Code BS 8110 specifies the critical section at a distance 1.5d
from the perimeter and it has square corners whether the column is square or circular. The
treatment of moment transfer accounted in this Code is also different from that in ACI
Code. The bending moment is assumed to be carried entirely by uneven shear along the
critical perimeter. In presence of unbalanced moment, M, the effective shear stress at the

critical perimeter of internal column connection is taken as:

1.5M

V_X:—) (2.19)

V
v ={—)1+
o=

Where X is the length of the side of perimeter considered parallel to the axis of bending.
According to Fig. (2.5) X, is equal to (C; + 3d). In the absence of calculation, it is
suggested that V can be taken (1/1.15) times of v..A., for internal columns in braced

structures with approximately equal spans.

At corner columns and at edge columns where bending about an axis parallel to the
free edge is being considered, the design effective shear is calculated from V = (1/1.25)
times of v..A.,. For edge columns where bending about an axis perpendicular to the edge
is being considered, the design effective shear is calculated from V = (1/1.40) times of

Ve.Agp. The maximum value of shear stress for British Code BS 8110 is limited to
v, =0.79(f., /25)" (1004s /bd)"(400/d)* / ym (2.20)

Where f.. is the cube crushing strength of concrete. Value of (100As/bd) is calculated for
widths equal to those of the column plus 1.5d of slab to either side of it. Further 0.15 <
{100As/bd) < 3.0 and (400/d) > 1 and vy, is the partial factor of safety.
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For the purpose of making comparisons between the shear strength predicted by
Codes of practice, Eqns. (2.15) and (2.19) can be written in the form of design equations

as follows:

KC,A,d
Vi ACT = ve. A,y 11+ (M IVAY—2 2] (2.21)

V,BS =v,.A, I{1+(M IVd) ;d

1

)} (for interior column) (2.22)

v, A ,
V,BS =——= (for corner/edge columns where bending about an axis parallel to

the free edge is being considered) (2.23)
vc 'AC . .
V,BS = : 40” (for comer/edge columns where bending about an axis

perpendicular to the free edge is being considered) (2.24)

Where permissible maximum shear stress, v, is given by Eqn. (2.17) for ACI Code and by
Eqn. (2.20) for British Code.

2.4 Application of ANN

In the past few years enormous progress has been made in research on ANNs and
their applications. In the field of control, ANN has been successfully applied to the control
of robot arms and manufacturing process. However, applying ANNSs to structural problem
is still in the early development stages. The potential of applying ANNs with a back
propagation (BP) algorithm to civil engineering structural problem was explored [17]. In
their study two ANNs were used. One was used to predict the structural response
subjected to the control force alone, and the other to predict the ground acceleration. The
control force was then set equal in magnitude, but in the opposite direction of the product
of the mass and ground acceleration to nullify the excitation. To the best of the author's
knowledge, other research works done in this field are:
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The use of an artificial neural network has been made by A. Mukherjee and J. M.
Deshpande [18] to arrive at an initial or the preliminary design model with an example of
optimum design of RC beams. The application of ANN in the preliminary design of RC

beams has been proposed.

A neural dynamics model for structural optimisation (application to plastic design
of structures) was proposed by Hyo Seon Park and H. Adeli [19]. They applied the model
to optimum plastic design of low-rise steel frames. They formulated the plastic design of
low-rise frames as a linear programming problem. But, the neural dynamics model for

structural optimisation is general and can be applied to non-linear programming problems.

An artificial neural network and genetic algorithm for the design optimisation of
industrial roofs was written by J. V. Ramasamy and S. Rajasekaran [20]. They applied an
expert system to the design of industrial roofs. All the codal knowledge was considered in
the design. A database containing different sections and their properties are used in the
design. Five different types of trusses were designed using the expert system and grouping
the members into six regions. Three loading cases were considered in the analysis of the
truss. The same five types of trusses were optimised using genetic algorithm. The stress
and displacement constrains for the three loading cases were considered. They concluded
that the design results using the expert system compare favourably with results of genetic

algorithm.

A study of seismic activity control using an artificial neural networks (ANN) was
done by Yu Tang [21]. He trained an ANN to recognise a linear single-degree of freedom
(SDF) system subjected to base excitations. This trained ANN was then used to control
systems with different natural frequencies, systems with non-linearity and systems
subjected to larger input motions. It is a study of the application of artificial neural
networks to activate structural control. A simple effective strategy for the on-line control

of single-degree of freedom (SDF) structures was proposed by him.
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2.5 General Discussion

Experimental as well as theoretical work have been reported on slab-wall junction
for shear walls with or without flanges, with or without using shear reinforcement in the
slab. To the best of the author’s knowledge, no non-dimensional design curves are
available for predicting the critical perimeter as well as punching shear strength of the
slab-wall junction. No attempt has been made to study the behaviour of shear wall-floor
slab junction and effective with of floor slab coupling shear walls using artificial neural

network. 1t is for this reason that the present work reported in this thesis is undertaken.
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CHAPTER THREE
ARTIFICIAL NEURAL NETWORKS

3.1 Intreduction

Among. the. various intelligent systems ANN is one of the potential tools. The
neural computing approach began more than four decades ago. It has attracted significant
attention in several disciplines such as signal processing, pattern recognition, and control.
Considerable activity can also be observed in the application of ANN for structural
problems. The success of this tool is mainly attributed due to the unique feature of the

neural networks, such as:

{) Learning ability by adjusting their network interconnection weights and
biases based on a learning algorithm. '
(ii)  Parallel structure with distributed storage and processing of information.

Neural network models inspired by the biological nervous systems are providing a
new approach to problem solving. The neural network applications in structural
engineering reported so far are based on backpropagation and counter propagation [17] —
J21]. The following sections describe the basic theory of ANN and learning algorithms.

3.2 -Artiﬂcial Neural Networks

An artificial neurone is a very approximately simulated mathematical model of a
biological neurone. A biological neurone is the basic functional unit of a human brain.
Human brain is capable of parallel processing of many activities at a time due to a
massively parallel huge network of neurones. A human brain functions with 100 billion of
neurones, which are interconnected by a highly complex network. One such biological
neurone is illustrated in Fig. 3.1, together with axons from two other neurones (from
which the illustrated neurone could receive signals) and dendrites for two other neurones
(to which the original neurone would send signals).
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Several key features of the processing elements of ,artiﬁc;ial neural networks are suggested“
by the properties of biological neurones, viz., that:
() The processing element receives many signals.
(ii)  Signals may be modified by a weight at the receiving synapse.
(ii)  The processing element sums the weighted inputs.
{iv)  Under appropriate circumstances (sufficient input), the neurone transmits a single
output. '
) The output from a particular neurone may go to many other neurones (the oxen
branches).
Other features of artificial neural networks that are suggested by biological neurones are:
(vi)  Information processing is local (although other means of transmission, such as the
action of hormones, many suggest means of overall process control).
(vi1) Memory is distributed:
a Long-term memory resides in the neurones’ synapses or weights.
b. Short-term memory corresponds to the signals sent by the neurones.
(vili) A synapse’s strength may be modified by experience.
(ix)  Neurotransmitters for synapses may be excitatory or inhibitory.
26



A typical biclogical neurone receives the input through dendrites. Different
dendrites meet a particular point called synapée. All the input from the different neurones
is essentially summed up in the cell body called soma. If the summation at a given time is
greater then a particular threshold value, then the neurone fires, i.e. a signal is sent down
the axon. In a similar fashion, an artificial neurone also receives signals from other neurone
through the connections between them (Fig. 3.2). Each connection has ‘synaptic’
connection strength, which is represented by a weight of that connection. The incoming
signal is multiplied by this connection strength. Thus an artificial neurone receives a
weighted sum of outputs of all the neurones to which it 1s connected. This weighted sum is
then compared with the threshold for the artificial neurone and if it.exceeds this threshold,
the artificial neurone also fires. When an artificial neurone 1s fired, it goes to a higher
excitation state and a signal is sent down to other connected neurones. The output (y;) of a
typical neurone (j) is obtained as a result of a non-linear function of weighted sum as

follows:
Yj = F(EX, Wy - Bj) (3. 1)

Where F is a non-linear function, x; and w;; are the inputs and the weights from the i1-th
input node to j-th node and 8; is the threshold value for the j-th artificial neurone.

The node charactenistics of an artificial neurone are thus determined by Eqn. 3.1 . Various
node functions used for obtaining the output are shown in Fig. 3.3

) Hard limiter: having binary states, i.e. +1 and —1.

(ii)  Threshold logic: having varation as continuous values between 0 .and +1 with
linear variation.

(in)  Sigmoid: having sigmoid nature between 0 to +1.

The choice of the threshold function depends on the nature of the application problem.

Existing neural netwotk architecture can be divided into three basic categories:
feed forward, recurrent, and self-organising neural networks, In feed forward networks
the signals flow from the input units to the output units in.a forward direction. But in
recurrent.
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network the output signal of a neurone is fed back to its input. In a.self - organising neural
network, neighbouring units compete in their activation by means of mutual lateral
interactions, and develop adaptively into specific detectors of different signal pattemns.
Again each categories can be subdivided as single layer and multilayer connection. A
single layer net has one layer of connection weight whereas a multilayer net has two or
more layers of nodes (called ldden units) between the input units and the output units.
Multilayer nets can solve more complicated problems than single layer nets, but training
may be more difficult. Sometimes it is possible to solve.a problem by multilayer nets which
can not be trained to perform correctly at all by single layer net [22].

There are three general learning schemes in neural net works such as:

(i) Supervised learning in which the correct output signal for each input vector to be

(i)  Unsupervised or self orgamsing learning in which the network self-adjusts its
parameters and structure to .capture the regularities of input vector, without
receiving explicit information from external environment.

(i)  Reinforcement or graded learning in which the network receives implicit scalar
evaluations of previous inputs.

Among these. three learning schemes, supervised learning is used for real-time
learning controller function, non-linear mappings and process parameter identification for
adaptive and intelligent control of dynamic systems. The most useful learning algorithm of
supervised learning is back propagation technique.

Feed forward network architecture has been chosen for the present work. For
output neurones of the network, the non-linear sigmoid function is used as an activation
function. The backpropagation (BP) algorithm has been chosen as learning algorithm for
the network. The mathematical background of the algorithm has been described in the

following section.
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3.3 Backpropagation (BP) Algorithm

The backpropagation training algorithm is an iterative gradient descent algorithm
designed to minimise the mean square error between the actual computed output and the
desired output. The training of a network by back propagation involves three stages:

) To. propagate the training pattern and calculate the actual output of the network,
(ii)  Back propagate the associate error and
(iii)  The adjustments of weights.

A three layer Feed Forward Network (FFN) architecture is shown in Fig. 3.4. The
layers are fully interconnected, When signals are applied to the input layer of the network,
it propagates towards the output layer through the interconnections of the middle layer,
known as hidden layer. The propagated signal will finally produce an output. This output
is then compared with the desired output for each node. The error signals (measured at the
output layer) are transmitted backward from the output layer to each node in the
intermediate layer. Each unit in the intermediate layer receives only a portion of the total
error signal, based roughly on the relative contribution the unit made to the original
output. This process repeats, layer by layer, until each node in the network has received an
error signal that describes its relative contribution to the total error. Based on the error

signal received, connection weights are then updated.

All the relevant equations for the BP are presented in the order in which they
would be used during training for a single input-output vector pair [22]. A flow chart of
this algorithm is shown in Fig. 3.5.

* An input vector, Xp = (Xp1, Xp2, . . . Xpn), is applied. to the input layer of the network.
The subscript “P” refers to the p-th training vector. The input units distribute the
values to the hidden layer units.

» The net input to the j-th hidden unit is given as

N .
neth, =D wix, +6" (3.2)
i=1
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Where w, is the weight on the-connection from the i-th input unit to the j-th hidden unit,
and 6‘;’ is the bias term of j-th hidden unit. The superscript “h” refers to quantities on the
hidden layer.
¢ The output of this node becomes
hy; = £ (net ) (3.3)
Where the function (. ) is referred 10 as an activation function.
e All the hidden units feed their output to each unit in output layer. Net input to k-th
output unit can be written as

L
net’, = Zl:wg. h +6] (G4
pa

e  Qutput of k-th output umt is given by
O = £} (net’,) (3.5)
Where subscript “0” refers to quantities on the output layer.
» The calculated error terms for the output units
8%, = (ym - Opfy (net ) {3:6)
v Is the desired output value.
The calculated error signal for j-th hidden units
8%, =17 (net})) ia;w; (3.7
k=1 : s

Point to note that the error terms on the hidden units are calculated before the connection
weights to the output-layer units have been updated.

» The update weights of the output layer becomes
Wy (tH-y =W, )+ né 4, {3.8)

Where “t” refers to t-th iteration and 1 is the learning rate.

¢ The update weights of the hidden layer becomes
w_};i {{+l}:w; (t) + ??’5;-%,- (39)
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The error to be minimised is the sum of the squares of the errors of all the output units.

1 ) )
Ep= Eziil,(y,,k -0,)’ (3.10)

This quantity is the measure of how well the network is learning. When the error is
.acceptably small for each of the training-vector pairs, training can be discontinued.

3.4 Points to be Considered to Develop the Net

Faster convergence with minimum error and desired response depends on many training
parameters. The selection of the training parameters is discussed in the following sub

3.4.1 Selection of Activation Function

The selection of .activation function mainly depends on the intended use of the network
and method of learning. For example, when the backpropagation algorithm is used to train
the feed forward network, which is intended for a prediction problem, then the sigmoidal
non-linear nodal function is normally used. The three types of nodal function, which are
commonly used, are shown in Fig. 3.3. As it can be seen from the figure, the hard limiter
non-linearity has only two states, i.e. 0 and +1 or —1 and +1. The activation logic has a.
linearly varying part and the sigmoidal function has low output for the low input and high
output for sufficiently high input. Implementation of BP algorithm requires the activation
function to be differentiable throughout the active region. Sigmeoid function is the most
commonly used activation function in backpropagation learning and is expressed as
follows |

1
1+e™

Y =f{x)= (3.11)
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3.4.2 Learning Rate

Selection of a value for the learning rate parameter has a significant effect on the
network performance. The learning rate (1) is used to control the amount of weight
adjustment in each step of training. Usually, n} is a small number-on the order of 0.05 to
0.25 to ensure that the network will settle to a solution without much oscillation during
training. Small value of i means that the network will have to make a large number of
iterations, but that is the price to be paid. It is often possible to increase the value of nj as
learning proceeds. The network error decreases for increasing value of 1 and will often
help to speed convergence by increasing the value of n as the error reaches a minimum,
but the network may bounce around too far from the actual minimum value if i gets too
large. However it is well accepted that a small learning rate makes the learning slow but
more likely to converge, while large learning rate makes the system unstable and

sometimes the network may not learn at all.
3.4.3 Momentum Factor

Another way to increase the speed of corivergence is to use a technique called
momentum. Momentum factor allows the network to ‘make reasonably large weight
adjustment as long as the corrections .are in the same general direction for several inputs
while using a small value of learning rate to prevent a large response to the error from any
training input. It also reduces the likelihood that the network will settle to a set of weights
that corresponds to a local minimum, .not global one. With momentum factor the network
proceeds not only in the direction of the gradient but also in the direction of a combination
of current gradient and the previous direction of weight correction. Thus the use of
momentum factor, along with the learning rate, accelerates the training speed to achieve
faster convergence. When calculating weight-change value, A;w, we add a fraction of the
previous change. This additional term tends to keep the weight changes going to the same
direction-hence the term momentum. The weight-change equations on the input layer then
become

wylt+ D=wi )+ R0, + arw, (t-1) {3.12)
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with a similar equation on the hidden layer. In Eqn. 3.12 a is the momentum parameter
and it is usually set to a positive value less than 1. However, there are no guidelines to
determine the optimum momentum factor for a given task. The use of momentum term is

also optional.
3.4.4 Configuring Hidden Layer (s)

The selection of the number of hidden layer(s) and the number .of nodes in the
hidden layer(s) are the most challenging part in the total network development process.
Unfortunately, there is no fixed guideline available for this purpose and hence this has to
be done by the trial and error method. Although some investigators have tried to arrive at
an approximate formula, still, there is no reliable method available. Therefore, generally
the decision about this takes a long time and sometimes it may take weeks to train the
network. It is proved that with a sufficient number of units in a single hidden layer any
functional relationship can be mapped. But an increase in the number of hidden layers may
improve the generalisation capacity.

Determining the number of units to use in the hidden layer is not usually as
straightforward .as it is for the input and output layers. The main idea is to use as few
hidden layer units as possible, because each unit adds to the load on the CPU during
simulations. Of course, in a system that is fully implemented in hardware (one processor
per processing element), additional CPU loading 1s not as much of a consideration (inter
processor communication may be a problem, however). From experience it .can be said
that for networks of reasonable size (hundreds or thousands of inputs), the size of hidden
layer needs to be only a relatively small fraction of that of the input layer. If the network
fails to converge to a solution it may be that more hidden nodes are required. If it does
converge, fewer hidden nodes may be used to try and settle on the basis of overall system

performance.
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3.4.5 Initialisation of Weights and Biases

The choice of .initial weights will influence whether the net reaches a global (or
only a local) minimum of error and, if so, how quickly it reaches the minimum. The update
of the weight between two units depends on both the derivative of the upper unit’s
activation function and the output of the lower unit. For this reason, it is important to
avoid choices of initial weights that would make it likely that either activation or
derivations of activation .are zero. The values for the initial weights must not be too large,
ot the initial input signal to each hidden or output unit will likely to fall in the region where
the derivative of the sigmoid function has a very small value. On the other hand, if the
initial weights are too small, the net input to a hidden or output unit will be near zero,
which also cause extremely slow learning. Thus all the weights and biases are initialised by
random numbers between —0.5 and 0.5.

3.4.6 Evaluation of the Net Performance

The performance -of the net is tested by watching it’s behaviour towards unseen examples.
When a net is successfully trained, it is supposed to have mapped the desired functional
relation between the given input and output vectors in the solution space. But there is
every possibility of the net having mapped a different relationship than the desired. one,
which still gives the correct output for the training pairs. This may happen if both the
desired relation and the one that net has mapped have some.common pounts i the solution
space which happened to be training set pairs. Hence to make sure that the network has
learnt the desired function only, it is important to evaluate the performance of the net by
submitting it to a number of unseen examples. A neurone basically computes by
classification. Therefore, the network can only try to approximate the desired .output
values as .accurately -as possible. Hence a small tolerance limit should be allowed while
evaluating the performance of the network. Comparison of the percentage error in the

values desired and those, the network has predicted may be a better choice.
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CHAPTER FOUR
EFFECTIVE WIDTH OF FLOOR SLAB

4.1 Introduction

A common form of construction for multi-story residential buildings consists of
assemblies of shear walls and floor slabs, in which the coupling of the cross-walls by the
floor slabs provides a more efficient structural system of resisting lateral forces. Fig. 2.1
[reproduced as Fig.4.1} (a) shows a floor plan of a slab block where apartment units are
placed side by side. Division walls perpendicular to the length of the building, intersecting
longitudinal walls along the corridor and fagade enclosing the living spaces are employed
as load bearing walls and. can efficiently transmit both gravity and lateral loads to the
structural elements. Any longitudinal corridor and fagade walls, if they are designed to be
load-bearing act effectively as flanges for the primary cross-walls. In addition to the
partition walls, shear walls are used to resist the lateral load due to wind and earthquake.
Shear walls, if used for lift shafts and stairwells act as strong points for the structure.
Thus, in practice, shear walls of various shapes such as planar, flanged or box shaped may
be coupled together in cross wall structures (Fig.2.2) [reproduced as Fig.4.2].

The shear walls resist the lateral load due to wind or earthquake effects, by
cantilever bending action, which results in rotations of the wall cross-sections. The free
bending of a pair of shear walls is resisted by the floor slab, which is forced to rotate and
bend out of plane where it is connected rigidly to the walls (Fig. 4.1(b)). Due to large
depth of the wall, considerable differential shearing action is imposed to the connecting
slab, which develops transverse reactions to resist the wall deformation (Fig. 4.1(c)), and
induces tensile and compressive axial forces into the walls. As a result of the larger lever
arm involved, relatively small axial forces can give rise to substantial moments of
resistance, thereby reducing greatly the wind moments in the walls and the resulting tensile
stresses at the windward. edges. The lateral stiffness of the structure is also considerably

increased.
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A similar situation arises if relative vertical deformation of the walls occurs, due to
unequal vertical loading on the walls or to differential foundation settlement. The effect on
the slab is similar to that produced by parallel wall rotation caused by bending as shown in
Figs 4.1(d) and 4.1(e).

The structural analysis and design of a slab-coupled shear wall system may readily
be performed using existing techniques for beam-coupled wall structures, provided that
the equivalent width of the slab which acts effectively as a wide coupling beam, or its
corresponding structural stiffness, can be assessed.

This chapter presents a comprehensive set of design curves to determine the
effective width using ANN. Input data are generated based on simple empirical formulae
of Reference [2] to enable the effective bending stiffness of a floor slab coupling a pair of
cross-walls to be determined quickly and accurately. The curves.apply to all common wall

cross-sections in practical structures.

The finite element technique and method of analysis used are described in
Reference [23]. The accuracy of the results obtained by ANN is checked by comparing
with those published data of Reference [2] & [4] .

4.2 Plane Wall Configurations
For a slab coupling a pair of plane walls as shown in Fig. 4.2(a), the effective slab
width ratio Y. /Y [23] may be taken to be

YJ/Y = t/Y +L/Y [1 - 0.4L/Y)} for 0 < (L/Y) < 1 4.1

and

YSY =t/Y + Y/Y [1 - 0.4/ YY"} for 1 <{((L/Y) < (4.2)
in which
t= wall thickness
Y = bay width
Y=Y-t
L = length of opening between walls.
Above Eqns. (4.1 and 4.2) will generally yield results that are within a small percentage of
the accurate values obtain directly from a finite element analysis.
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The values from which the empirical relationships were derived based on a
Poisson’s ratio for concrete of 0.15. The effective width is not sensitive to small difference
in the value of Poisson’s ratio, but, if desired, the value of Y./Y may be corrected
approximately for the actual value of Poisson’s ratio v by multiplying by the factor
(1 —0.15(1 - V9.

If the wall thickness is neglected as being small, Eqns. (4.1 and 4.2) reduce to the
simpler expressions.

YJ/Y=L/Y [1-04L/Y) for0<(L/Y)<1 (4.3)
and
YSY = [1 —04L/YY '} for 1 < ((L/Y)< o (4.4)

4.2.1 Development of the Net and Design Curves

Tao develop the net, values of learning rate, momentum factor and hidden neurones
were varied to get the best fit net. To begin with, different values of learning rate such as
0.05, 0.3, and 0.9 are chosen to train the network with a constant momentum 0.1, Table.
4.1 shows the percentage difference to a set of data between values of YJ/Y calculated by
Eqns. (4.1 and 4.2) and ANN. We can see that the minimum error is achieved at the
learning rate of 0.9. Thus the value of the learning rate is chosen as 0.9.

During the training process various values of momentum factor such.as 0.1, 0.2,
and 0.3 are taken to choose the best one. At this stage, the same set of data is again used
to show the percentage difference between values of Y./Y calculated by Eqns. (4.1 and
4.2) and ANN. From table 4.1 1t is found that the value of momentum factor has little
effect on the system. Thus 0.3 is taken as the momentum factor for training the network.

In this work a neural network having a single hidden layer with various number of
neurones such as 12, 15 and 18 is trained individually. Their training history is also shown
in table 4.1. Network with 15 neurones having learning rate 0.9 and momentum factor 0.3
after 35000 iteration is chosen to develop the network with an input file having 319 sets of
data [Appendix A]. Network weights and bias are also given in appendix A. The output
response of finally accepted parameters for the network to the set of data (which was used

for table 4.1) is shown in table 4.2.
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The range of various parameters for input data are as follows :

X = 12.00 meter,

Y = 7.20 meter to 12.00 meter,

L = 1.00 meter to 11.00 meter,

t = 0.10 meter to 0.50 meter.

Table 4.1 Percentage difference between Y/Y calculated by formula and ANN.
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St | Learming | Momentom | Hidden No of Average %
| No ] rate | factor neurones iteration difference
1 0.05 0.1 15 20000 0.53
(-0.78 to +1.58)
2 0.30 0.1 15 20000 0.54
(-0.71 to +1.43)
3 0.90 0.1 15 20000 0.51
(-0.75 to +1.37)
4 0.90 0.2 15 20000 0.50
{-0.71 to +1.40)
5 0.90 03 1.5 20000 0.48
{-0.67 to +1.42)
6. 0.90 03 12 20000 051
{-1.14 t0 +1.32)
7 0.90 a3 18 20000 (.53
(-1.09 to +1.35)
b 0.90 03 15 25000 0.48
(-0.62 10 +1.42)
9 0.90 0.3 15 30000 0.48
(-0.56 to +1.42)
10 0.90 03 15 35000 0.48

(-0.52 to +1.42)




Table 4.2 Percentage difference between values of Y./Y calculated by formula and ANN
(ANN after 35000 iterations having 15 hidden neurones, learning rate = 090 &
momentum factor = 0.30).

X . Y 1 L t Y/Y Calculated by % difference
(meter) (meter) (meter) (meter) | Formula | ANN
12.00 8.00 10.50 0.15 0.7066 0.7051 -0.21
12.00 11.50 2.50 0.15 0.2113 0.2106 -0.33
12.00 9,50 8.50 0.15 0.5852 0.5874 +0.38
12.00 10.00 7.50 0.15 05366  0.5338 -0.52
12.00 11.50 3.50 0.25 0.2882 0.2896 +0.49
12.00 8.00 7.50 0.25 0.6058 0.6123 +1.07
12.00 10.50 11.50 0.25 0.6520 0.6507 -0.20
12.00 9.00 4.50 Q.25 0.4249 0.4251 +0.02.
12.00 9.00 71.50 0.35 0.5832 0.5837 +0.09
12.00 7.50 9.50 0.35 0.7130 0.7110 -0.28
12.00 10.00 4.50 035 0.4011 0.4033 +0.55
12.00 8.50 11.50 0.35 0.7282 0.7260 -0.30
12.00 10.00 9.50 0.45 0.6170 0.6257 +1.4]1
12.00 8.50 6.50 0.45 0.5707 0.5689 -0.32
12.00 8.00 7.50 0.45 0.6212 0.6300 +1.42
12.0G 9.25 10.25 0.45 0.6733 0.6729 -0.06

Average % difference = 0.48
(-0.52 to +1.42)
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From the above testing data set, it is seen that the network gives the maximum
error when X = 12.00 meter, Y = 8.0 meter, L. = 7.50 meter & t = 0.45 meter. For this set
of data, the comparative study of effective width is given in Figs. 4.3 to 4.5 by varying a
single parameter when other parameters remain constant. The schematic and flow diagram
of ANN for plane wall configurations are shown in Figs. 4.6 & 4.7.

The set of curves given in Figs. 48, 4.9, and 4.10 show the variation of effective
width ratio (Y./Y) for a range of wall opening ratios L/X for varying wall thickness ratio
t/Y for plane wall configurations. The numerical results (for.a constant ratio of Y/X = 0.6)
which are calculated by ANN for plane wall configurations is compared with the results
proposed by Coull & Wong [2] and Hossain M. A. [4], which is given in table 4.3. The
effective width ratio predicted by ANN is found slightly higher than the values given in
Ref 2 and 4. In ANN wall thickness has been .considered but Coull & Wong [2] and
Hossain M. A. [4] neglected the wall thickness, this may be one of the reason of slight

vaniation of results.

4.3 Flanged Wall Configurations-Equal Width

It has been demonstrated both theoretically and experimentally that the main
coupling actions in the slab take place in the corridor region between the internal edges of
the walls. The coupling .actions are dependent only .on the flange dimensions, since the
regions behind the flanges are essentially stress free. Consequently, the effective width is
unatfected by the location of the web wall, and the results presented are equally
appropriate for offset web walls provided the flanges are located opposite each other as
shown in Fig. 4.2(i) and ().

For the configuration shown in Fig. 4.2(d), the effective width of a slab .coupling
two walls with equal flange width may be taken to be [23}:

YSY = Z/Y + LY {1 -0.4L/Y)} for 6 <(L/Y) < 1 4.5)

and ,
YSY =Z/Y+ Y/IY[1 - 04L/ Yy for 1< ((L/Y) < {4.6)

in which Z = flange widthand Y = Y- Z
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Fig. 4.6 Schematic diagram of ANN for calculation of effective slab width
for plane wall configurations
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Turn on the computer & Run the program
by typing: C> 4a & press Enter

The program will give the message “Test output file:”
here type the file name & press Enter

The program will give the message “HN:”
here type 15 & press Enter

The program will give the message “loop no:”
here type the loop number & press Enter

' The program will give the message
“Input serial 1-Y/X, 2- L/X, 3 -L/(1.6*Y), 4 - /Y
Loop 1--------- Givedata...1.”
here type first input data & press Enter

The program will give the message “Give data...2
. here type the second input data & press Enter

The program will give the message “Give data... 3 :
here type the third input data & press Enter

The program will give the message “Give data...4:”
here type the fourth input data & press Enter

No

Input data sets = loop number

End

Fig 4.7 Flow diagram for calculation of effective slab width
for plane wall configurations
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Table 4.3 Comparison between results proposed by Coull & Wong, Hossain M. A, and

ANN for plane wall configurations.
Vatues of Y./Y Calculated by
Y/X L/X LY t'Y ANN | Coull & Wong | Hossain
M A
0.6000 0.1000 0.1667 - - 0.1500 0.1600
0.0150 0.1667 - -
0.0300 0.1812 - -
0.0450 0.1962 - -
0.0600 02116 - -
0.6000 0.2000 0.3333 - - 0.2800 0.2900
0.0150 0.2997 - -
0.0300 - 03151 - -
0.0450 0.3305 - -
0.0600 0.3459 - -
0.6000 0.3000 0.5000 - - 0.3800 0.3800
0.0150 0.4086 - -
0.0300 0.4229 - -
0.0450 0.4370 - -
0.0600 0.4510 - -
0.6000-  0.4000 0.6667 - - 0.4700 0.4700
0.0150 0.4940 - -
0.0300 0.5069 - -
0.0450 0.5197 - -
0.0600 0.5322. - -
0.6000 0.5000 0.8333 - - 0.5200 0.4800
0.0150 0.5626 - -
0.0300 0.5743 - -
0.0450 0.5857 - -
0.0600 0.5970 - -
0.6000 0.6000 0.9999 - - 0.5800 0.5800
0.0150 0.6192 - -
0.0300 0.6268 - -
0.0450 0.6402 - -
0.0600 0.6502 - -
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4.3.1 Development of the Net and Design Curves

Various values of learning rate, momentum factor and hidden neurones were taken
to develop the net for selecting learning rate. Different values of learning rate such .as
0.50, 0.70, and 0.90 are chosen to train the network with a constant momentum 0.6. Table
4.4 shows the percentage difference between values .of Y/Y calculated by Eqns. (4.5 and
4.6) and ANN for a set of data. We can see that the minimum error is achieved at the
learning rate of 0.90. Thus the value of the learning rate is chosen as 0.90.

During the training process various values of momentum factor such .as 0.50,
0.60,0.70 and 0.80 are taken to choose the best one. At this stage, the same set of data is
again used.to show the percentage difference between values of Y/Y calculated by Egns.
(4.5 and 4.6) and ANN. From table 4.4, it is found that the value of momentum factor has
negligible effect on the system. Thus 0.70 is taken as the momentum factor for training the
network.

In this work a neural network having a single hidden layer with varicus number of
neurones such as 12, 15 and 18 is trained individually, Their training history is also shown
in table 4.4. Network with 15 neurones having learning rate 0.90 and momentum factor
0.70 after 40000 iteration is chosen to develop the network with an input file having 339
sets of data [Appendix B]. Network weights and bias .are also given in appendix B. The
output response of finally accepted parameters for network for the set of data (which was
used. for table 4.4) is shown in table 4.5. The range of various parameters for input data

are as follows :

X =12 .00 meter,

Y =3.50 meter to 9.00 meter,
L = 1.00 meter to 9.00 meter,
Z = 0.10 meter to 4.00 meter.

55



Table 4.4 Percentage difference between values of Y./Y (for flanged wall- eqml width)
calculated by formula (Eqns. 4.5 & 4.6) and ANN,

St | Learning { Momentum | Hidden Noof | Mean % difference
1 No rate factor neurones iteration '
1 0.50 0.6 15 20000 0.32
{-0.51 to +1.45)
2 0.70 0.6 15 20000 0.27
(-0.39to +1.25)
3 0.90 06 15 20000 024
{-0.39 to +1.32)
4 0.90 0.7 15 20000 021
{-0.26 t0 +1.12)
5 090 0.5 15 20000 026
(-0.30t0 +1.26)
6. 0.90 08 15 20000 021
(-0.23 to +1.20)
7 0.90 0.7 12 20000 022

(-0.35t0 +1.09)

8 090 0.7 18 20000 0.29
(-0.42 t0 +1.15).

9 090 0.7 15 40000 0.18
(-0.39 to +0.95)

56



Table 4.5 Percentage difference between values of Y./Y (for flanged wall- equal width)
_calculated by formula (Eqns. 4.5 & 4.6) and ANN (ANN after 40000 iterations having 15

hidden neurones, leamning rate = 0.90 & momentum factor = 0.70).

X Y L z Y./Y Calculated by % difference
(meter) | (meter) | (meter) | (meter) Formula | ANN
12.00 8.50 1.20 1.0625 0.2571 0.2561 -0.39
12.00 6.50 1.20 16250 0.4164 04178 +0.34
12.00 4.50 1 :20 1.6875 0.5962 0.5952 -0.17
12.00 7.50 1.20 3.7500 0.6395 0.6386 -0.14
1200 350 1.20 2.6250 0.9271 0.9268 -0.03
12.00 8.50 4 80 1.0625 0.5439 0.5437 -0.04
12.00 6.50 4.80 1.6250 0.6976 0.7042 +0.95
12.00 4.50 4.80 1.6875 0.8535 (0.8533 -0.02
12.00 7.50 4.80 3.7500 0.8438 0.8416 -0.26
12.0G 330 4 80 2.6250 (0.9818 0.9830 +0.12
12.00 2.50 6.50 2.2500 0.9985 0.9987 +0.02
1200 550 850 3.6250 0.9699 0.9705 +0.06
1200  3.50 2.50 26750 0.9689 0.9685 -0.04
12.00 7.50 7.50 3.2500 0.8716 0.8715 -0.01
12.00 5.50 5.50 2.3730 0.8709 0.8703 -0.06

Average % difference =0.18
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From the above testing data set, it is seen that the network gives the maximum
error when X = 12.00 meter, Y = 6.50 meter, 1. = 4.80 meter & Z = 1.625 meter. For this
set of data, the comparative study of effective width is given in Figs. 4.11 to 4.13 by
varying a single parameter when other parameters remain constant. The schematic and
flow diagram of ANN for flanged wall configurations- equal width are shown in Figs. 4.14
& 4.15.

The set of curves given in Fig. 4.16, 4.17, and 4.18 show the variation of effective

I

width ratio (YJ/Y) for a range of wall opening ratios L/X for varying flange width ratic

Z/Y. The numerical results which are calculated by ANN is compared with the results
calculated by finite element [23], which is given in table 4.6. The agreement is found very
good. In this comparison the value of Y is taken equal to 4.8 meter.

Table 4.6 Comparison between finite element, formula and ANN results for flanged wall
configurations-equal width.

L/X ZY Y./Y Calculated by %o difference
| finite element | Formula ANN with finite element
_ (Ref 2) ,
010 0125 0.3388 0.3464 0.3503 +3.39
0.10 0250 0.4603 0.4667 0.4691 +0.51
010 0375 0.5804 0.5830 0.5841 +0.64
0.10  0.500 0.6985 0.7000 0.6983 -0.03
010 0.750 09176 0.9000 0.9052 -1.26
0.40  0.125 0.6950 0.6938 0.6950 0.00
040 0250 0.7666 0.7750 0.7741 +0.98
040 0375 0.8325 0.8437 0.8430 +1.26
040 0500 0.8918 0.9000 0.8996 +0.88
040 Q750 0.9906 09750 0.9764 -1.43
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Fig. 4.11 Comparative study of Y./Y for flanged (equal width) wall configurations
for varying Y keeping X, L and Z constant
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Turn on the computer & Run the program
by typing: C> 4b & press Enter

The program will give the message “Test output file:”
here type the file name & press Enter

v

The program will give the message “HN:”
here type 15 & press Enter

v

The program will give the message “loop no:”
here type the loop number & press Enter

3

The program will give the message

“Input senal 1-Y/X, 2- L/X, 3 L/(2 5*Y),4-Z/Y
Loop 1--—-—-- Give data .

here type first input data & press Enter

v

v

The program will give the message “Give data .
here type the second input data & press Enter

The program will give the message “Give data .
here type the third input data & press Enter

The program will give the message “Give data...4:”
here type the fourth input data & press Enter

No

Input data sets = loop number

End

Fig. 4.15 Flow diagram for calculation of effective slab width
for flanged wall (equal width) configurations
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4.4 Results and Dischssions

The curves show the variation of the effective slab width or stiffness wath different
geometric layout parameters. However, as many variables are concerned (slab thickness,
wall lengths, wall spacing, size of opening, wall thickness and wall flanged width), many
curves are required to cover all likely practical situations. The influence of important
parameters are discussed below:

4.4.1 Effect of Wall Thickness (t)

In examining the influence .of wall thickness of shear wall on the effective wadth
ratio, Y./Y, curves are plotted (Figs. 4.8 to 4.10) for varying t/Y ratio, keeping slab width
(Y) constant. For the same value of Y, the ratio, t/Y increases with the increase of wall
thickness. It is seen from the graph that wath the increase of wall thickness the effective
width ratio, Y./Y also increases. The rate of increase of Y/Y is maximum when length of
opening between walls (1) and slab length (X) ratio, L/X, is minimum When t/Y is
increased from 0.015 to 0.045, the effective width ratio, Y./Y increases by 18% for L/X
equal to 0.10 and YJ/Y increases by 3% only for L/X equal-to 0.60 for the same value of
Y/X (Y/X = 0.60). Graphs for various values of slab width (Y) have been plotted keeping
the slab length (X) constant, which was assumed 12.00 meter. The rate of increase of

effective wadth ratio 1s almost same for different values of Y.
4.4.2 Effect of Opening Between Walls (L)

Effect of opening between walls (L) can be examined when other parameters i.e.
shear wall thickness (t), slab width (Y) and slab length (X) are constant. So curves have
been plotted for varying values of L., keeping all other constant. When L is increased, the
ratio L/X also increases. From the Figs. 4.8 to 4.10, it is seen that with the increase of
L/X, the effective width ratio Y/Y .also increases. When L/X is increased from 0.10 to
0.60, the effective width ratio Y./Y increases by 3.71 times for t/Y equal to 0.015. The
effective width ratio Y./Y is maximum for higher values of L/X.
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4.4.3 Effect of Flange (Equal) Width

The influence of flange width (Z) on the effective width ratio, YJ/Y is quite
prominent. In examining the effect of flange width, curves are plotted in Figs.4.16 to 4.18
for varying Z/Y ratio, keeping slab width (Y) constant. For a constant value of Y, the ratio
Z/Y increases with the increase of flange width (Z). When Z/Y is increased from 0.125 to
0.50, the effective width ratio, YJ/Y increases by 2.29 times for L/X equal to 0.10 and
Y/X equal to 0.60. The rate of increase of Y./Y is maximum/sharp when L/X is minimum
and the increment is negligible as the value of L/X exceeds 0.50. That.is the influence of
the flange width (Z) and finite wall thickness (t) are practically identical. Table 4.7 gives a
comparative study of the rate of increase of Y/Y.

Table 4.7 Comparative study of the rate of increase of Y./Y for different values of Z/Y to
see the effect of flange width.

Y/X X Y./Y Calculated when
ZIY=0125 | Z/Y=0250 | Z7Y=0375 | Z/Y =0.500

0.60 0.10 0.2801 0.4046 0.5237 0.6427
0.60 0.20 0.4117 0.5266 0.6351 0.7400
0.60 0.30 0.5126 0.6157 0.7134 0.8045
0.60 0.40 0.5873 0.6815 0.7697 0.8483
0.60 0.50 0.6457 0.7328 0.8117 0.8788
0.60 0.60 0.6946 0.7742 0.8436 0.9004
0.60 0.70 0.7362 0.8074 0.8673 0.9154




4,44 Comparisoen of ANN with Other Published Results

To illustrate the accuracy of the ANN, when they are applied .to plane and flanged
wall configurations, the ANN results are compared with the Coull & Wong {2], Hossain
M. A [4}] and finite element results [23] in table 4.3 and 4.6 respectively. The agreement
with the results of Coull & Wong [2] and Hossain M. A [4] is found very good. The
results agree with the accurate finite element values to within 3.5%. Once the artificial
peural network is developed, the effective width ratio (Y/Y) can be found out accurately
and within fraction of minute, when the required input parameters such as Y/X, L/X t/Y
or Z/Y and L/Y are known for a particular problem.

4.5 Computer Program

There are two different sets of program. These are:

a. First set of program consists of two files: 4a.wt and 4a.exe files. These are used to
calculate the effective width of plane wall configurations. The listing of files 4a.wt
and 4a.exe are given in appendix A

b. Second set of program also consists of two files: 4b.wt and 4b.exe files. These are
used to calculate the effective width of flanged wall {equal width) configurations.
The listing of files 4b.wt and 4b exe are given in appendix B.

Use of the computer program:

Once the program files are copied, we can start it by simply typing 4a or 4b (as
applicable) at the root directory and pressing Enter.

“Test output file” writing will appear on the screen. Here the output file name. is to
be given. File name can be alphabetical or numerical. File name will have an extension
“out”. Example of file name: A out or 1.out. After typing output file name Enter is to be
pressed.
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“HN” writing will appear.on the screen. Number of hidden neurones, which was
used during training must be given here. Otherwise output value will not be correct. The
value of HN for plane and flanged wall configurations is 15. After typing 15 Enter is to be
pressed.

“Loop no” and “Give data ... 1” writing will appear on the screen. It is the
number of sets of data one wants to calculate. After loop number input data is given.
During data input, input serial must be maintained, input serial will appear on the screen.
Otherwise output value will not be correct. After typing first input data Enter is to be
pressed. “Give data ... 2” writing will appear on the screen. Here second input data is
given and Enter is to be pressed. “Give data ...” writing will continue to appear on the
screen until data input is completed.

Qutput writing along with cutput will appear on the screen. Qutput is given in the
same sequence of loop number. The output for the effective width of plane and flanged
wall configurations is in the form of Y/Y. So to get the effective width the computed
value should be multiplied by total slab width or longitudinal wall spacing (Y).
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CHAPTER FIVE

PUNCHING SHEAR OF WALL-SLAB CONNECTIONS

5.1 Introduction
The region of a slab in the vicinity of a support could fail in shear by developing a
failure surface in the form of a truncated cone or pyramid. This type of failure, called a
‘punching shear failure’, is usually the source of collapse of flat slab and slab-coupled
shear wall structures. In slab-coupled shear walls, both the gravity load and wind load has
to be finally transmitted to the walls at the wall-slab junction. The transfer of moments
from slab to columns may further increase these shear stresses, and requires concentration
.of negative flexural steel in the slab in the region close to the columns. Again when two-
way slabs are supported directly by columns, as in flat slabs and flat plates, or when slabs
carry concentrated loads, as in footings, shear near the columns is of critical importance.
Tests of flat plate structures indicate that, in most practical cases, the capacity is governed
by shear. '

5.2 Punching Shear Design in Flat Plates and Flat Slabs

Two kinds of shear may be critical in the design of flat slabs, flat plates or footings.
The first is the familiar beam-type shear leading to diagonal tension failure. Alternatively,
faillure may occur by punching shear, with the potential diagonal crack following the
surface of a truncated cone or pyramid around the column capital or drop panel, .as shown
in Fig.5.1a. The failure surface extends from the bottom of the slab, at the suppot,
diagonally upward to the top surface. The angle of inclination with the horizontal, 8
(Fig.5.1b), depends upon the nature and amount of reinforcement in the slab. It may range
between about 20° to 45°. The critical section for shear is taken perpendicular to the plane
of the slab and a distance d/2 from the periphery of the support, as shown in Fig. 52. The
shear force V. to be resisted can be calculated as the total factored load on the area
bounded by panel centreline around the column less the load applied within the area
defined by the critical shear perimeter, unless significant moments must be transferred
from the slab to the column.
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At such a section, in addition to the shearing stresses and horizontal compressive
stresses due to negative bending moment, vertical or somewhat inclined compressive
stress is present, owing to the reaction of the column. The simultaneous presence of
vertical and horizontal compression increases the shear strength of concrete.

5.3 Calculation of Critical Perimeter for Punching Shear

According to the study reported in Reference [6], the length of critical penimeter,
b, for critical section in Fig. 5.2 may be taken as:

b= pH2r+q) 6.1
Where

p=Z+d

Z = flange width for T-section shear walls

= equal to wall thickness for plane models

d = effective depth of tension reinforcement

g=te+ d2

t; = flange thickness

r = length of inclined portion of the section

x = distance behind flange up to which the critical section extends

1= web thickness

X/Z = 4.0 e HOE™ (5.2)

rF=x"+0.25p —tw)° | (5.3)
5.3.1 Developnient of the Net and Design Curves

Different values of learning rate such as 0.1, 0.2, and 0.3 are chosen to train the
network with a constant momentum 0.3. After 150,000 iterations for each network (for
learning rate = 0.1, 0.2 & 0.3), the weight of the network is saved for calculating the error
of a set of data having known output. Comparison between the output response of the
network (ANN) and values calculated by Eqn. 5.1 to the set of data is shown in table 5.1,
From table 5.1, it is seen that minimum average percentage difference is achieved at the
learning rate of 0.2. Thus the value of the learning rate is chosen as 0.2.
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Table 5.1 Percentage difference between b,/d calculated by formula and ANN.

Sl | Leamning | Momentum Hidden No of Average %
no rate factor neurones iteration difference
1. 0.10 0.30 15 150000 1.24
(+1.91 to -3.47)
2. 0.20 0.30 15 150000 1.20
(+1.43 to -4.66)
3. 0.30 030 15 150000 1.26
(+1.12 to -4.99)
4, 0.20 030 15 150000 1.19
(+1.37 10 -4.20)
5. 020 0.10 15 150000 1.21
(+1.40 to -4 03)
6. 020 0.30 18 150000 132
(+1.58 10 -4.07)
7. 0.20 030 12 150000 1.50
(+1.91 to -4.21)
2 0.20 0.20 15 125000 1.21
(+2.82 to -4.20)
9. 0.20 0.20 15 175000 1.18
(+1.57 t0 -4.20)
i0. 0.20 0.10 15 175000 1.18
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During the training process various values of momentum factor such as 0.1, 0.2,
and 0.3 are taken to choose the best one. Comparison between the results calculated by
formula (Eqn. 5.1) and ANN at different momentum factors to the same set of data is
shown in table 5.1. The minimum average percentage difference is achieved at momentum

factor 0.1. Thus 0.1 is taken as the momentum factor for training the network.

In this work a neural network having a single hidden layer with various number of
neurcnes such as 12, 15 and 18 is trained individually. After 150,000 iterations for each
network, the weight of the network is saved for calculating the error of the set of data
having known output. Comparison between the output response of all the networks are
shown in table 5.1. From the table it is seen that the output response of the net having 15
neurones is the best. Again the weight of the network having 15 neurones is saved after
150,000 and 175,000 iterations. Between the output responses of the later networks the
average percentage difference is very small. So the network with single hidden layer

having 15 neurones after 150,000 iterations is selected to develop the network with an -

input file Having 239 sets of data [Appendix C]. Network weights and bias are also given
in appendix C. Detail of the output response of finally accepted parameters for the
network for the set of data having known output is shown in table 5.2
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Table 5.2 Percentage difference between values of by/d calculated by formula and ANN.
{ANN after 150000 iterattons having 15 hidden units, learning rate = 0.20 and momentum

factor = 0.10}

ti d Z W by/d Calcutated by | % difference -
(cm) (cm) {cm) (cm) Formula | ANN
20.00 18.00 30.00 55.00 12.19 11.90 -2.38
25.00 15.00 50.00 50.00 1585 16.07 +1.38
23.00 18.00 70.00 70.00 16.82 1635 -2.78
27.00 22.00 90.00 60.00 15.23 1528 +0.33
30.00 24.00 65.00 90.00 15.10 14.59 -3.36
35.00 25.00 45.00 75.00 12.76 12.76 0.00
32.00 29.00 75.00 85.00 13.16 13.14 -0.15
35.00 21.00 50.00 90.00 16.46 16.02 -2.65
38.00 15.00 30.00 45.00 15.08 15.01 -0.48
42.00 29.00 95.00 65.00 13.47 13.40 -0.49
48.00 18.00 100.00 68.00 21.39 21.27 -0.55
25.00 2200 20.00 79.00 10.25 10.20 -0.45
50.00 17.00 95.00 55.00 20.90 20.90 0.00
38.00 26.00 65.00 70.00 13.18 1336 +1.40
50.00 15.00 90.00 90.00 2721 27.16 -0.18
25.00 22.00 85.00 60.00 1474 1476 +0.11
35.00 26.00 59.00 80.00 13.41 13.50 +0.70
45.00 18.00 30.00 60.00 1534 1512 -1.43
38.00 28.00 35.00 85.00 12.10 11.61 -4.03
45.00 27.00 50.00 70.00 12.50 12.66 +1.25
Average % difference = 1.21
Range (+1.40 to -4.03)
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From the above testing data set, it is seen that the network gives the maximum
error when t;= 38.00 cm, d = 28.00 cm, Z = 35.00 cm & W = 85.00 cm. For this set of
data, the comparative study of effective width is given in Figs. 5.3 to 5.6 by varying a
single parameter when other parameters remain constant. The schematic and flow diagram
of ANN for calculation of critical perimeter are shown in Figs. 5.7.& 5.8

The length of critical perimeter (b;) can be evaluated satisfactorily by equation 5.1.
In selecting the range of input data emphasis is given to cover the range that is frequently
encountered in practical design. The range of input data for various parameters are as
follows:

te =ty = 200 to 500 mm.

d =150 to 300 mm.

Z =200 to 1000 mm.

W =500 to 1000 mm.
Fig. 5.9 shows the critical perimeter (b,) for a constant ratio of d/t: = 0.3. Similarly Figs.
5.10, 5.11, 5.12 and 5.13 show the critical perimeter (b,) for a constant ratio of d/ts= 0.5,
0.7, 0.9 and = 0.1.2 respectively. For easy consulting all the curves are presented in non-
dimensional form. Following points are observed in calculating critical perimeter:
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Turn on the computer & Run the program
by typing: C> 5a & press Enter
The program will give the message “Test output file:”
here type the file name & press Enter
The program will give the message “HN:”
here type 15 & press Enter
The program will give the message “loop no:”
here type the loop number & press Enter

The program will give the message
“Input serial 1-d/(1.5t;), 2- d/(l S*Z) 3-t/W
Loop 1-----—-- Give data .
here type first input data & press Enter
The program will give the message “Give data .
here type the second input data & press Enter
The program will give the message “Give data .
here type the third input data & press Enter
No
.

Input data sets = loop number

l Yes

ﬂe program will give the output in bp/(40V

End

Fig. 5.8 Flow diagram for calculation of critical perimeter
of shear wall and edge column-slab connection
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5.3.2 Results and Discussions

To produce non-dimensional design curves, different ratios are selected in plotting
the curves. The influence of various parameters is discussed based on these ratios.

5.3.2.1 Effect of Web Wall and Flange Thickness

In calculating critical perimeter, b,, web wall thickness, t. .and flange wall
thickness, t¢ are always taken to be equal. This is also true for maximum practical design
problem. Curves are plotted in Figs. 5.9 to 5.13 for various d/tr ratios [0.30 to 1.20]. From
the curves it is seen that the critical perimeter ratio, by/d is maximum when the ratio d/tg is
minimum. For a constant effective slab width, d, the ratio d/t; decreases when flange wall
thickness increases. That is when web wall thickness or flange wall thickness increases, the
~ critical perimeter ratio, by/d also increases. The critical perimeter ratio, by/d increases by
2.47 times when d/t; is decreased by 4.0 times for a constant t#W ratio (tyW = 0.20).

5.3.2.2 Effect of Web Wall Length (W)

Effect of web wall length, W can be examined when other parameters i.e. flange
thickness, t; flange width, Z and slab thickness, d is constant. When W is increased, the
ratio tyW decreases. From the curves in Figs. 5.9 to 5.13, it is seen that with the increase
of the ratio t/W, the critical perimeter ratio, by/d decreases for various values of d/Z and
d/te The critical perimeter ratio, by/d is maximum when the ratio tyW is minimum. The
critical perimeter ratio, by/d increases by 64% when t/W is decreased by 500% [from 1.0
to 0.20] for a constant d/t; ratio (d/t; = 0.30). But the critical perimeter ratio, by/d
increases only by 9% for the value of d/t; equal to 1.20 when t¢#W is decreased from 1.0 to
0.20.
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5.3.2.3 Effect of Flange Width (Z)

The influence of flange width, Z on the critical perimeter ratio, by/d is quite
prominent for smaller d/Z ratio. In examining the effect of flange width, curves are plotted
for varying d/Z ratio. ¢/Z is minimum for maximum flange width. Other values remaining
constant, the critical perimeter ratio, by/d increases with the increase. of flange width, Z.
The rate of increase is maximum/sharp for lower values of d/Z. The rate of increase is very

small for values of d/Z greater than 0.50.
5.3.2.4 Effect of Considering t/W instead of ty/X for Plotting the Graph

From the discussion in 5.3.2 2, it is clear that the increase of the critical perimeter
ratio, b,/d with the increase of web wall length, W has also some limitation. In calculation
of critical perimeter “X” (distance behind flange up to which the critical section extends) is
considered, not the total web wall length, W. It is because, if W is too long, web wall
length influence in calculation of critical perimeter reduces. greatly. But for ease of
consulting the graph, W has been used for plotting the graphs, since X can not be found
out directly without calculation. For considering t#W instead of t#/X for .plotting the
graphs, in Fig 5.12, it is seen that line for t¢#W = 0.3 has crossed the line for tyW = 0.2. In
Fig.5.13 the crossing of lines is more than that of Fig. 5.12. This situation would not have
arised if t#X could also be considered for preparing the graphs. Table 5.3 shows the effect

of this in calculating critical perimeter by using the graphs.

Table 5.3 Effect of considering t¢#W instead of t¢X for plotting the graph.

d 1 te=tw | z ‘ W b,/d Calculated by | %6 difference
(em) | (em) | (cm) (cm) | formula | graph
20.00 2222 100.00 11111 16.17 16.15 0.12
20.00 2222 100.00 74.04 16.17 16.65 +2.96
15.00 12.50 75.00 62.50 14.39 13.89 -3.47
15.00 12.50 75.00 41.67 14.39 14.81 +2.92
15.00 12.50 75.00 31.25 1439 1482 +2.99
15.00 12.50 75.00 25.00 14.39 14.28 -0.76
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From the table it is seen that maximum percentage difference is 3.47 which is
acceptable. So it is concluded that use of graph is quite logical for calculating critical

perimeter, more so it is to be remembered that safety factor is not considered here.

5.3.2.5 Comparison Between ANN, ACI and British Code

The value of critical perimeter obtained from design curves (ANN), ACI Code and
British Code are compared in table 5.4. In BS 8110, the critical section is defined as being
at a distance equal to 1.5d, where d is the effective depth of the slab, in ACI 318-83, the
critical perimeter is located at a distance d/2 from the column faces. For ANN, it is
considered that the critical perimeter is located at a distance d/2 from the column faces.
Due to this reason the value of critical perimeter obtained from design curves (ANN), ACI
Code and British Code varies too much from one another.

5.4 Calculation of Punching Shear Strength of Shear Wall-Floor Slab
Connections

5.4.1 General

So far research work on theory of punching for slab-wall connections is very
limited. The design curves given in Figs. 5.20 to 5.24 are based on empirical formulas
proposed by Bari M. S. in his Ph.D. thesis [6]. Code recommendations on the calculation
of punching shear strength of slab-column connections differ in regard to the distance
from the column faces to the critical perimeter, and in the expression used to define the
limiting value of the shearing stress.

When the perimeter is drawn close. to the column the corresponding stresses are
very high. If the perimeter is moved outward, the stresses reduce. In BS 8110, the cntical
section is defined as being at a distance equal to 1.5d, where d is the effective depth of the
slab, in ACI 318-83, the critical perimeter is located at a distance /2 from the column

faces.
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Table 5.4 Values of b, calculated by formula (Eqn. 5.1), ACI and British Code

b, (in mm) calcutated by

te d Z W L | formula ACT British Code
(mm) (mm) {mm) (mm) (mm) Code
200.00 125.00 200.00 600.00 2000.00 18e2.76  2050.00 2550.00
200.00 125.00 200.00 700,00 200000 186276 2250.00 2750.00
20000 12500 20000 80000 200000 186276 2450.00 2950.00
200.00 125.00 200.00 900.00 2000.00 186276  2650.00 3150.00
20000 12500 200.00 1000.00 200000 186276 2850.00 3350.00
200.00 175.00 200.00 60000 2000.00 1970.14 2150.00 2850.00
200.00 175.00 200.00 70000 200000 197014 235000 3050.00
200.00 175.00 200.00 200,00 200000 197014 2550.00 3250.00
200.00 175.00 200.00 90000 2000.00 1970.14 2750.00 3450.00
200.00 175.00 200.00 1000.00 200000 197014 2950.00 3650.00
200.00 175.00 200.00 600.00 300000 197014 2150.00 2850.00
200.00 175.00 200.00 700.00 300000 197014 2350.00 3050.00
200.00 175.00 200.00 800.00 3000.00 1970.14 2550.00 3250.00
200.00 175.00 200.00 900.00 300000 197014 2750.00 3450.00
200.00 17500 20000 1000.00 300000 1970.14 295000 3650.00
200.00 175.00 200.00 600.00 4000.00 1970.14 215 O.QO 2850.00
200,00 175.00 200.00 70000 400000 1970.14 2350.00 3050.00
20000 17500 20000 80000 4000.00 1970.14 2550.00 3250.00
200.00 175.00 200.00 900.00 4000.00 1970, 14 2750.00 3450.00
200.00 17500 20000 1000.00 4000.00 1970.14 2950.60 3650.00
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The proposed method [6] is, in fact, based on the shear criteria of failure in which
punching is assumed to occur when the shear stress around a critical perimeter reaches a
limiting value. The shear capacity is estimated from the product of three terms — a critical

area term, a critical shear stress term and a moment transfer reduction factor.

5.4.2 Calculation of Shear Strength

A typical shape of the critical section is shown in Fig. 5.2. The thickness of the
wall is assumed as flange width for the models with plane walls. The properties of this
section are :

p=Z+d

Z = flange width for models with T-section shear walls

= equal to wall thickness for plane shear walls

d = effective depth of tension reinforcement

g =1+ d/2

t; = flange thickness

r = length of inclined portion of the section

x = distance behind flange up to which the critical section extends

t = web thickness

X/Z = 4.0 ¢ 4™

17 = x*+0.25(p — tw)*

Ci={q +(x + 29/ p+ 2Aq +1)] 54)

Co=q+x-C

Where C;, C; determine the location of neutral axis

by, = length of critical perimeter

=p+2rt+q) (5.5)

A, = area of critical perimeter |

=d.b,
1 = similar to polar moment of inertia

3

Wrgle, — glc, —2q/3)y+2r e, — )’ +¢
g{c, - glc, —2q/3} (c,—q) 21 5.6)

3x{xq+r{c, —q})

=d Cl,[p C; +q(C; —qf3) +
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The shear stress value for critical section in Fig. 5.2 is.

ve = 0.17-(1+ 2/RYE) "

where rectangularity factor, Re= (x +.q) = 2.0

To incorporate the effect of flexural reinforcement, it is assumed that an increase of every

0.5% in the ratio of flexural steel in the slab above 0.8%, the calculated value of v. should
be increased by 0.05 N/mm’. Thus

ve =0, 17-(1+ 2/RHEH + 0.1 (100As/bd - 0.8) 5.7
where value,(,of (100As/bd) are calculated for width (Z + 3d) and 0.8 <(100As/bd) <2.0
For the second part of Eqn. 5.7, a constant value of 0.12 is taken during calculation of
input data assuming value of 100As/bd = 2.0. Two approaches are usually adopted for
punching shear capacity of slab column connections transferring shear and unbalanced
bending moment. The first approach calculates the increase in shear stress caused by
moment transfer (e.g. ACI) and then compares it with the permissible shear value. The
second approach calculates the punching capacity for no moment transfer and then applies
a reduction factor (e.g. BS 8110). The first approach is followed in this study. The net
shear stress is around the slab-wall junction is given by:

Ve = VJ/Agp+ (KM.Cy)j

Where K= —roee (58)
1+ > ‘/R y
and Re=(x + q)/p
For the present study M = 0.5(V_L). Therefore,
VeV B v, A,
c without shear steel = H_E i (5.9)
2 (JIC)
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Based on experimental observation, Bari M. S. proposed [6] that an increase in
ultimate strength can be obtained by the use of properly designed shear reinforcement in
the slab. In addition, the failure mode can be changed from brittle to ductile mode, using
shear reinforcement in the slab. The punching shear strength, V. ie. V oot shoar stect, Canl be
increased by 50% by the provision of closed vertical stirrup as required in the slab. So, the
punching shear strength of the shear wall-floor slab connections with shear Ieinfo;fcement
in the slab can be calculated from:

V=15*V cithout shear sct (5.10)

5.4.3 Development of the Net and Design Curves

Different values of momentum factor, learning rate and neurones were chosen to
train the network having single hidden layer. The training history at different values of
momentum factor, learning rate and neurones is shown in table 5.5. Detail of the output
response of finally accepted parameters for the network for a set of data having known
output is shown in table 5.6. From the above testing data set, it is seen that the network
gives the maximum error when t,=21.00 ¢m, d = 10.00 ¢cm, Z = 54.00 cm & W = 45.00
cm. For this set of data, the comparative study of effective width is given in Figs. 5.14 to
5.17 by varying a single parameter when other parameters remain constant. The schematic
and flow diagram of ANN for calculation of punching shear strength are shown in Figs.
S5.18& 5.19.

The numerical results as evaluated by the Egn. 5.9 have been used as input data for
ANN (Appendix D). Network weights and bias are also given in appendix D. In selecting
the range of input data emphasis is given to cover the range that is frequently encountered
in practical design. Point to note that Z is always more or equal to t; During calculation of
the input data the range of various parameters are as follows:
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1= 150 to 400 mm.

d =100 to 250 mm.
Z =200 to 1000 mm.
W =400 to 1000 mm.
L = 2000 mm.

£/ = 15 N/mm’

Table 5.5 Percentage difference between V./V, calculated by formula (Eqn. 5.9) and

ANN.
St | Learning { Momentom | Hidden No of ' Average %
No | rate factor neurones iteration difference
1. 0.003 010 10 20000 5.15
(-9.59t0 +1.37)
2. 0.005 0.10 10 20000 362
(-8.92 t0 +8.96)
3. 0.009 0.10 i0 20000 3.77
(-8.87 10 +9.19)
4. 0.005 0.10 8 20000 3.61
(-9.02t0 +8.79)
5. 0.005 0.10 12 20000 3.54
(-8.82 10 +8.69)
5. 0.005 0.10 12 20000 3.54
(-8.82t0 +8.69)
6. 0.005 0.10 15 20000 3.65
(-9.44 to +8.71)
7. 0.005 0.15 12 50000 3.57
(-8.801t0 +8.75)
8. 0.005 0.08 12 20000 353
(-8.85 to +8.64)
9. 0.005 010 12 125000 336
(-7.85to +8.10)
10. 0.005 0.10 12 150000 ' 3.47

(-7.05 to +8.75)
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Table 5.6 Percentage difference between V/Vy calculated by formwula (Eqn. 5.9) and
ANN (ANN after 125000 iterations having 12 hidden umits, learning rate = 0.005 and
momentum factor = 0.10)

1t d Z w { L £/ R¥V/Ve) | %
(mm) | (mm) | (mm) | (mm) | (mm) | (NVmm?®) | Calculated by diffe-

' | ' Formula | ANN rence
160 190 500 900 2000 15 04771 04707 -1.34
210 100 540 850 2000 15 05070  0.4951 235
210 180 300 850 2000 15 0.4801 0.4424 -7.85
160 190 500 700 2000 15 04771 04744 -0.57
375 140 375 700 2000 15 04998 05181 +3.66
210 180 300 650 2000 15 0.4801 0.4455 =721
210 100 540 650 2000 15 0.5062 0.4974 -1.74
375 190 375 600 2000 15 0.5284  0.5232 -0.98
375 110 375 500 2000 15 04838 05190 +7.28
375 190 375 500 2000 15 0.5086 0.5259 +3.40
160 190 500 500 2000 15 04771 04809  +0.80
210 100 540 450 2000 15 04640 05016  +8.10
210 180 300 450 2000 15 0.4420 0.4512 +2.08
200 220 230 410 2000 15 04290 04369  +1.84
170 240 240 430 2000 15 04357 04267 2.07
160 200 210 490 2000 15 0.4173 0.4099 -1.77
330 240 400 400 2000 15 05045 0.5286 +4.78
170 200 200 400 2000 15 04035 04165  +322
200 175 400 550 2000 15 04805  0.4671 2.79

Average % difference = 3.36
(+8.10t0 -7.85)
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Tum on the computer & Run the program
by typing: C> 5b & press Enter

The program will give the message “Test output file:”
here type the file name & press Enter

v

The program will give the message “HN:”
here type 12 & press Enter

v

The program will give the message “loop no:”
here type the loop number & press Enter

,l

The program will give the message
“Input senial 1-Z/(2*L), 2- d/'W, 3 - t/(3*Z)
Loop 1--------- Givedata...1:”
here type first input data & press Enter
v
The program will give the message “Give data . ..2 :”
here type the second input data & press Enter
v

The program will give the message “Give data...3:”
here type the third input data & press Enter

N

N

The program will give the message “Give data...4:”
here type the fourth input data & press Enter

No

Input data sets = loop number

l Yes

ﬂe program will give the output in 12*VV

End

Fig. 5.19 Flow diagram for calculation of punching shear strength of shear wall
and edge column-slab connection by using computer program
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The punching shear strength, V., is given in the form of V/V, to make the curves
non-dimensional, where V,, = £ b,.d. Figs. 5.20 to 5.24 show the punching shear strength
ratio (V./Vy) as a function of /W and t/Z for L = 2000 mm and f.' = 15 N/mm’.

The punching shear strength for other than £ = 15 N/mm® and L = 2000 mm, the
value of V/V, obtained from the graph should be multiplied by multiplying factors. The
multiplying factor for different £ and L can be calculated from Fig. 5.25 and Fig. 5.26.
The multiplying factor is introduced to avoid a large number of curves.

5.4.4 Results and Discussions

The ultimate shear strength for exterior edge column-slab connections or shear
wall-floor slab connections, V. is expressed as the ratio of V./Vp to make the design
curves non-dimensional. The ultimate shear strength ratio, V/V, of exterior edge coluwmn-
slab connections or slab-wall connections are given in Figs. 520 to 524 for a range of
flange width ratio Z/L of 0.10 to 0.50 respectively. In all the figures, the vaiue of £ is
taken as 15 N/mm’ and L equal to 2000 mm. Web wall thickness t. is always equal to
flange wall thickness t¢. Results based on these figures are discussed below:

S5.4.4.1 Effect of Flange Width (Z)

Effect of flange width (Z) is expressed in terms of Z/L. to make the curves non-
dimensional. With the increase of flange width (Z), the ratio between flange width and
opening between walls, Z/L increases, when L is constant. From the figures, it is seen that
with the increase of Z/L ratio the punching shear strength increases, when all other
parameters are constant. The rate of increase of V./V, is higher for lower values of /W &
t¢#Z and the rate of increase is lower for higher values of d/W & t¢/Z. The rate of increase
of Vo/Vedue to increase of Z/L, /W & t#Z is shown in table 5.7. It can be concluded that
the punching shear strength ratio, V./Vy increases with the increase of flange width (Z)
and it is very prominent for lower values of &/W & t/Z.
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Table 5.7 Rate of increase of V./V, due to increase of Z/L..

d/W t/Z Vatues of V/Vy
‘ ZAL =010 | ZL =020 | ZL =030 [ Z/L =040 Z/L='0.SO'-

Q.10 0.60 00310 0.0393 0.0467 0.0528 0.057¢
0.20 0.60 00314 0.0398 0.0472 0.0533 0.0581
0.30 0.60 0.0318 0.0402 0.0477 0.0538 0.0586
0.40 0.60 0.0322 0.0406 0.0481 0.0542 0.0591
0.50 0.60 0.0325 0.0411 0.0486 0.0547 0.0595
0.10 0.80 0.0329 0.0418 0.0496 0.0559 0.0608
0.20 0.80 0.0333 0.0423 0.0501 0.0564 0.0612
0.30 0.80 0.0337 0.0427 0.0505 0.0568 0.0616
0.40 0.80 0.0340 0.0431 0.0509 0.0572 0.0620
0.50 0.80 0.0343 0.0434 0.0513 0.057¢ 0.0624
0.10 1.00 0.0345 0.0439 0.0521 0.0586 0.0634
0.20 1.00 0.0348 0.0443 0.0525 0.0589 0.0638
0.30 1.00 0.0352 0.0447 0.0529 0.0593 0.0641
0.40 1.00 0.0355 0.0450 0.0532 0.0597 0.0645
0.50 1.00 0.0357 0.0454 0.0536 0.0600 0.0648

5.4.4.2 Effect of Web Wall Length (W)

Punching shear strength, when calculated by the formula (Egn. 5.9), increases with
the increase of web wall length (W) and it remains constant, if W is more than three times
of t (table 5.8). The test results [6] also show that the punching shear strength does not
increase if W is increased more than three times of .. But the calculated punching shear
strength by ANN shows slight decrease in strength, when W is more than three times of t..,

considering &/W instead of d/X in plotting the graph is one of the reasons of this variation.

The design curves can only be applied to calculate the ultimate shear strength for exterior

edge column-slab connections if W is more than 2.5 times of t;.
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Table 5.8 Comparison between results calculated by ANN, formula (Eqn. 5.9), ACI and British code for p'unchjng shear strength.

V calculated by % difference with formula

te d Z W L f/f., ANN | formula | ACI code | British code | ACI code | British code | ANN
(mm) | (mm) | (mm) (mm) (mm) (N/mm?) (KN) | (KN) EKN) (KN)

200.00 12500 200.00 600.00 200000 20.00/2555 132.93 11724 12254 271.40 +4.53 +131.50  +13.38
200.00 12500 200.00 700.00 2000.00 20.00/25.55 13255 11724 13952 292 68 +19.01 +149.66  +13.06
200.00 12500 200.00 800.00 2000.00 20.00/25.55 13227 11724 157.15 313.97 +34.05 +167.81  +12.82
200.00 12500 200.00 900.00 2000.00 2000/25.55 132.08 11724 17539 335.26 +49.61 +185.97  +12.66
200.00 125.00 20000 1000.00 2000.00 20.00/25.55 131.88 11724 19422 356.54 +65.66 +204.12  +12.49
200.00 17500 200.00 600.00 2000.00 20.00/2555 19834 19476 181.53 390.40 -6.79 +100.45  +1.84
200.00 175.00 200.00 700.00 2000.00 20.00/2555 19759 194.76 205.66 417.79 +5.60 +114.52 +1.45
200.00 17500 200.00 800.00 2000.00 20.00/25.55 197.02 19476  230.63 445.19 +18.42 +128.58  +1.16
200.00 175.00 200.00  900.00 2000.00 20.00/2555 19660 19476 25641 472.59 +31.65 +142.65  +0.95
200.00 17500 200.00 1000.00 2000.00 20.00/2555 19622 19476 282.94 499 98 +45.28 +156.72  +0.75
200.00 17500 20000 600.00 3000.00 20.00/25.55 13931 14593  135.82 390.40 -6.93 +167.52  -4.54
20000 17500 20000 700.00 300000 20.00/2555 13880 14593  154.56 417.79 +5.91 +186.29  -4.86
200.00 175.00 20000 800.00 3000.00 20.00/25.55 13836 14593  174.07 44519 +19.28 +205.06  -5.19
200.00 175.00 20000 900.00 3000.00 20.00/25.55 13807 14593 19432 472.59 +33.16 +22384  -5.39
20000 17500 20000 1000.00 300000 20.00/25.55 137.82 14593 21528 499 98 +47.52 +242 61 -5.56
200.00 17500 200.00 600.00 4000.00 20.00/25.55 10661 11668 10850 390.40 -7.01 +23458  -8.63
200.00 175.00 20000 700.00 4000.00 20.00/2555 10620 11668 12381 417.79 +6.10 +258.06  -8.98
200.00 175.00 200.00 800.00 4000.00 20.00/2555 10588 11668 13979 44519 +19.81 +281.54 926
200.00 17500 200.00 900.00 4000.00 20.00/2555 10564 11668 156.44 472.59 +34.07 +305.02  -9.46
200.00 175.00 200.00 1000.00 4000.00 20.00/2555 10544 11668 173.73 499 98 +48 89 +328.50  -9.64
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5.4.4.3 Effect of Effective Slab Thickness (d)

For examining the influence of effective slab thickness (d) on V./Ve the ratio
between effective slab thickness and web wall length, d/W is increased. With the increase
of d, the ratio d/W increases, when W remains constant. When the ratio d/W is increased,
V/V, also increases as evident from the curves. That is the punching shear strength ratio,
V/V, increases with the increase of effective slab thickness. The rate of increase is
maximum for Jower values of d/W. As the value of d/W increases, the rate of increase of

the punching shear strength ratio, V/V, decreases (table 5.7).

5.4.4.4 Effect of Slab Opening Length (L)

The ultimate shear strength ratio, V/V, of slab-wall connections are given in Figs.
5.20 to 5.24. All these Figs. are for L = 2000 mm. For other values of L (ie. L = 2000
mm to 4000 mm), the calculated ultimate shear strength value is to be multiplied by a
factor which is given in Fig. 5.26. There is no unique relation between the ultimate shear
strength for various values of L. All parameters remain constant except L, when L equals
to 3000 mm, the ultimate shear strength is 0.735 to 0.81 times of the ultimate shear
strength of L. equals to 2000 mm. For L equals to 4000 mm, the ultimate shear strength is
0.58 to 0.67 times of the ultimate shear strength of L equals to 2000 mm. In plotting the
graph for multiplying factor of L (Fig. 5.26), the .average value is taken. The factor
depends on the value of various parameters. Normally it i1s seen that the value of this
factor is small when the va.lue.rof t, d, Z etc are small and the value of this factor increases
as the value of t¢, d, Z etc are increased. In British Code effect of L on ultimate shear
strength is not at all considered. But practically the effect of L on ultimate shear strength
is very prominent. So British Code should not be used when the value of L is high.
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5.4.4.5 Comparison of ANN with Other Results

The punching shear strength for exterior edge column-slab connections or shear
wall-floor slab connections obtained by ANN .are compared in table 5.8 with the results
calculated by formula (Eqn. 5.9), ACI and British Code. In ACI Code the cylinder
strength is used and in British Code the cube strength is used. According to
BS.1881.1970, the strength of a cylinder is equal to four-fifth of the strength of a cube,
but experiments have shown that there is no unique relation between the strength of the
specimens of the two shapes. The cylinder strength/cube strength ratio depends primarily
on the level of strength of the concrete. It is suggested in Ref 24 that the ratio of the
strengths of the cylinder and a cube can be taken as
0.76 + 0.2 logy £/2840 (5.11)
where f.. is the strength of the cube in Ibs/in>. Based on Eqn. 5.1 a curve (Fig. 5.27) is

drawn to find out converston factor from £, to £,

It is seen from the table 5.8 that the values calculated by ACI and British Code
gives much higher value than the values calculated by formula, where ratio of long side to
short side of a rectangular column is greater than 2.5 times of t;.

When compared with the formula, the maximum percentage difference is 65.66%
for ACI Code and 328.50% for British Code (table 5.8). The ANN results agree with the
values calculated by formula.(Eqn. 5.9) to within 14%. The test results [6] also show that
the punching shear strength is very close to the value calculated by formula. Once the
artificial neural network is developed, the punching shear strength can be found out within
minutes, when the required input parameters for ANN such as (d/ty), (d/Z), (t/W), (Z/L),
(d/W).and (t/Z) are known for a particular problem.

5.4.4.6 Calculation of Punching Shear Strength using Design Curves

The punching shear strength for any structure can be calculated satisfactorily by
the design curves shown in Figs. 5.20 to 5.27, if the various parameters of the structure
fall within the following range:
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t;= 150 to 400 mm.
d =100 to 250 mm.

Z =200 to 1000 mm.
W =400 to 1000 mm.
L = 2000 to 4000 mm.
£/ =15 to 45 N/mm’

The flow diagram for calculation of punching shear strength is given in Fig. 5.28.
To explain the procedure of consulting the graph, two numerical examples are given
below. '

5.4.4.6.1 Example 1: Flanged Shear Wall

Let the various parameters for the example (C; of Fig. 5.29) be ty =250 mm, d =

150 mm, Z = 400 mm, W = 1600 mm, L = 3000 mm and f.’ = 25 N/mm’. To find -out the

punching shear strength, by/d and V./V, is to be calculated from the graph. The sequence

to be followed is:

» For calculating by/d, values for different ratios d/t;, d/Z and t¢W are to be calculated.
The values of these ratios for the present example are d/t; =0.60, /Z = 0.375 and t¢yW
= 0.25. Depending on the value of d/t;, the relevant curve (for this example, Figs. 5.10
& 5.11) is to be consulted. Interpolation is to be done for intermediate values.

e For d/ts = 0.50, d/Z = 0.375 and t#/W = 0.25, by/d = 21.00 and for d/ts = 0.70, &/Z =
0.375 .and t/W = 0.25, by/d = 16.50. By interpolation the value of b,/d for d/t; = 0.60,
d/Z=10.375and tyW = 0.25 is 18.75. '

» Whatever may be the value of L, at first the punching shear strength for L equals to
2000 mm and f. = 15 N/mm® is to be caleulated, keeping the value of all other
parameters same. Once the punching shear strength for L equals to 2000 mm and £ =
15 N/mm?’ is calculated, for other vatues of L and f, Figs. 5.25 & 5.26 is to be
consulted.

117



Start

:

Calculate b,/d from figures 5.9 t0 5.13

v

Take L = 2000 mm and calculate
the value of Z/L, d/W and t,/Z

!

Calculate V/V, from figures 5.20 to 5.24

Yes

Isf/ = 15 N/mm?

I

Find out Multiplying factor (M. F.) from figure 525 for f

Yes
IsL =2000 mm

Find out Multiplying factor from figure 5.26 for L

1

Multiply calculated V /V, by multiplying factors calculated
from figure 5.25 and 5.26, if applicable.

v

The punching shear strength
V.= (VJSV )M, /d)*d** f/* M F.

End

Fig. 5.28 Flow diagram for calculation of punching shear strength of
shear wall and edge column-slab connection by using graph
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,_ Y=7200 4’

Fig. 5.29 Typical plan of a shear wall structure
(all dimensions are in mm)
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Values for different ratios Z/L, d/W and t¢Z are to be calculated. The values of these
ratios for the present example are Z/L = 0.20, /W = 0.15 and t¢/Z = 0.625. Depending
on the value of Z/L., the relevant curve-(for this example, Figs. 5.21) is to be consulted.
For ¢/W = 0.15 and t/Z = 0.625, the value of V./V, is 0.0399.

The -calculated punching shear strength ratio, V/V, is 0.0399 for f. equal to 15
N/mm®. For calculating the punching shear strength for f. equal to 25 N/mm?, the
value of V./V, obtained from the graph should be multiplied by a multiplying factor.
The multiplying factor for different values of £, can be catculated from Fig. 5.25. From
the Fig. 5.25, the multiplying factor is 0.703 for f. equal to 25 N/mm’. So the
punching shear strength ratio Vo/Vy, for £, equal to 25 N/mm’ is 0.0399 X 0.703 =
0.028.

Now the multiplying factor for L = 3000 mm is to be considered. The multiplying
factor for L = 3000 mm is 0.775. So the punching shear strength ratio V/Vy, for £,

equal to 25 N/mm’ and L = 3000 mm is 0.028 X 0.775=0.02174.

Therefore the punching shear strength, V. is 0.02174X18.75X150X150X25 =229289
N or 229.3 KN for the said example.

For this example 1.e. when tr=250 mm, d = 150 mm, Z =400 mm, W = 1000 mm, L =
3000 mm and £, = 25 N/mm?, if the punching shear strength (V) is calcutated by
design equations, the calculated punching shear strength is 246.55 KN. The percentage
difference between the values calculated by graph and formula 1s 7%.

5.4.4.6.2 Example 2: Plane Shear Wall

Let the various parameters for the second example {C; of Fig. 5.29) be ts = 200

mm, d = 140 mm, Z = 200 mm, W = 500 mm, L = 2000 mm and f. = 20 N/mm’. To find
out the punching shear strength, by/d and V./Vy is to be calculated from the graph. The

sequence to be followed is:

For calculating b,/d, values for different ratios d/t;, d/Z and t/W are to be calculated.
The values of these ratios for the present example are d/ts = 0.70, d/Z = 0.70 and /W
= 0.40. Depending on the value of d/t;, the relevant curve (for this example, Fig. 5.11)
is to be consulted.
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e For d/te=0.70, d/Z = 0.70 and t#W = 0.40, the value.of by/d is 12.70.

» The values of the ratios Z/L, d/W and t¢Z for this example are 0.10, 0.28 and 1.00
respectively. For Z/L. = 0.10, the relevant curve {Figs. 5.20) is to be consulted.

o For d/W = 0.28 and t/Z = 1.00, the value of V/V;1s 0.0351.

o The calculated punching shear strength ratio, Vo/Vy is 0.0351 for £, equal to 15
N/mm?. For calculating the punching shear strength for £ equal to 20 N/mm’, the
value of V/V; obtained from the graph should be multiplied by a multiplying factor.
The multiplying factor for different values of £ can be calcutated from Fig. 5.25. From
the Fig. 5.25, the multiplying factor is -0.8189 for f. equal to 20 N/mm® So the
punching shear strength ratto V./V,, for f)’ equal to 26 N/mm? i3 0.0351 X 0.8189 =
0.02874.

s Therefore the punching shear strength, V. is 0.02874X12.70X140X140X20 =143062
N or 143.06 KN for the said example.

o The punching shear strength, V. for ty = 200 mm, d = 140 mm, Z = 200 mm, W = 500
mm, L = 2000 mm and £/ = 20 N/mm’ is 138.16 KN when calculated by design
equations. The percentage difference between the values calculated by graph and
formula is 3.42%.

3.5 Computer Program
There are two 