BANGI.ADESH UNIVERSITY OF ENGINEERING AND TECHINOLOGY, DHAKA

L-3/T-1 \quad B. Sc. Engincering Examinations 2013-2014
 Sub : CHE 303 (Mass Trunsfer I)
 Full Matks : 210
 Time: 3 Hours
 The figures in the margin indicate full marks.
 USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A
 There arc FOUR questions in this section. Answer any THREE.

1. A vent gas strean from a chemical plant is $15 \mathrm{wt} \% \mathrm{Z}$; the rest is air. The local pollution authorities feel that 7 is a minor pollutant and require a maximum concentration of 4 wt \% The plant owner decided to build an absorption tower using water as the absorbent. The inlet water is pure and at $30^{\circ} \mathrm{C}$. The operation is essentially isothermal. At $30^{\circ} \mathrm{C}$ the equlibrium data can be approximated by $y=0.5 x$ (where y and x are weight fractions or Z in vapor and tiquid, respectively).
(a) Find the minimum ratio of water to air (L / G) min.
(b) lind the total number of equilibrum stages using $\frac{\mathrm{L}}{\mathrm{G}}=1.22\left(\frac{\mathrm{~L}}{\mathrm{G}}\right)_{\min }$

Assuming that air is not soluble in water and that water is nonvolatile.
2. The system shown in the Fig, for Q. No. 2 is extracting acetic acid from water using bemreme as the solvctit. The temperature shift is used to regenerate the solvent and retum the aced to the water phase.
(a) Deternine y_{1} and y_{N+1} (Units arc in wt.fraction) for the column at $40^{\circ} \mathrm{C}$.
(b) Deternine R^{\prime} and $\mathrm{x}_{\mathrm{N}}^{\prime}$ for the column at $25^{\circ} \mathrm{C}$.
3. (a) Discuss the advantages and disadvantages of batch distillation compared to continuous distillation. Would you expect in sec batch or continuous distillation in the following industries? Why?
(i) Large basic chemical plant
(ii) Phamaceutical plant
(iii) Still for solvent recovery in a painting operatom
(iv) Crude oil refinery
(v) Condensate refinery
(b) The MeCabo-Thiele diagram is nost uselul when the operating line is straight. How can you achicve this in absorption process?
(c) In chemical engineering washing is treated as an equilibriun staged separation process - Explan. How do you reach equilibrium in washing?

CHE 303

4. Pure isopropyl cther is being used to extract an aqueous solution of $150 \mathrm{~kg} / \mathrm{h}$ with $30 \mathrm{wt} \%$ acctic acid and $70 \mathrm{wt} \%$ water by countercurrent multi-stage extraction. The exit concentration in the aqucous phase is $10 \mathrm{wt} \%$.
(a) Find the minimum isopropyl ether rate for this scparation.
(b) If $450 \mathrm{~kg} / \mathrm{h}$ isopropyl ether is used
(i) Calculate the number of stages required.
(ii) Find the exit cxtract concentration

The equlibrium data and right triangular diagram for water-aceticacid-isopropyl cther at $20^{\circ} \mathrm{C}$ and 1 atm are attached.
[Note: Please attach the right triangular diagram with your answer script)

SECTION - B

There are FOUR questions in this section. Answer any THREE.
If you answer $Q .7(a)$, you must attach the Fig. for $Q .7(a)$ with the answer script.
5. The equilibrium data for benzene-toluene systen is given below for a system at 1 aton pressurc. (The liquid composition of benzene in the mixture is denoted by χ_{b} : the enthalpies of saturated liquid and saturated vapor at the corresponding composition is denoted by h and \mathbf{L}, respectively). The reference for enthalples is taken as pure benyene at its boiling point.

γ_{E}	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kmol})$	$\mathrm{H}(\mathrm{kJ} / \mathrm{kmol})$
0	110.6057	5121.594	38451.43
0.1	105.837	4247.225	36821.79
0.2	101.6467	3494.285	35552.68
0.3	97.9292	2840.94	34539.77
0.4	94.60248	2270.257	33714.01
0.5	91.60229	1768.977	33028.35
0.6	88.87775	1326.605	32449.87
0.7	86.38817	934.735	31955
0.8	84.10065	586.5622	31526.47
0.9	81.98831	276.5179	31151.4
1	80.029	0	30820

A mixiure of benzene and toluene containing 40 mole percent benzenc is to be scparatod in a distillation column to give a product containing 90 mole perecnt benzene at the top and a bottom product containing not more tban 10 mole percent bensene. The liced enters the column at its boiling point and the vapor leaving the column is condensed fully, provides reflux and product. The unit operates at 1 atm and a reflux ratio of $3 \mathrm{kmol} / \mathrm{kmol}$ product The relative volatility is taken to be 2.5 .
(a) Given the above data can you make the assumption of constant molal overflow for thus unit? Give your reasoning.
(b) Assuming constant molal overflow find the equation for top operating line, bottom operating line, equulibrium line.

$$
=3=
$$

CHE 303

Contd ...O.No. 5

(c) What is the equation for the feed line? Explain your reasoning.
(d) Using the equatons above and using the Lewis method, detennine the optimum stage for the feed to enter when the fced is at boiling point temperature. Find the theoretical number of stages for the system.
6. (a) What are the reasons for rcusing old distillation equipment? What conditions must be fulfilled to reuse an existing flash drum. List some steps you can take to reuse an existing flash drum if the above condition is not fulfilled?
(b) A mixture of methanol and water in a flash drum is al 1 atm pressure. Equilibnum data at this prcssure are listed as follows. (The data are in mole percentages)

Mcthanol vapor	Methanol liquid	Temperature ${ }^{\circ} \mathrm{C}$
0	0	100
13.4	2	96.4
23.0	4	93.5
30.4	6	91.2
36.5	8	89.3
41.8	10	87.7
51.7	15	84.4
57.9	20	81.7
66.5	30	78.0
72.9	40	75.3
77.9	50	72.1
82.5	60	71.2
87.0	70	69.3
91.5	80	67.6
95.8	90	66.0
97.9	95	65.0
100	100	54.6

If the feed is $30 \mathrm{~mol} \%$ methanol and we desire a liquid product that is $20 \mathrm{~mol} \%$ methanol, what V/F must be used? For a feed rate of $1000 \mathrm{Jbmol} / \mathrm{h}$, find product flow rates and compositions. Find the dimensions of a vertical drum. Use $h_{\text {/ertal }} / \mathrm{D}=40$.
Assume vapors are ideal gases and the symbols have their usual meaning.
Data and formulac:
Specific gravity of watcr $\rho_{w}=1.00$;
Specific gravity of hquid methanol $\rho_{\mathrm{m}, \mathrm{L}}=0.7914$;
$\mathrm{MW}_{u}=18.01 . \mathrm{MW}_{\mathrm{m}}=32.04$
Pcrmissible velocity $u_{\text {perin }}=K_{\text {drum }} \sqrt{\frac{\rho_{1}-\rho_{v}}{\rho_{v}}}$

CHE 303

Contd ... Q. No. 6(b)

$$
\begin{aligned}
& K_{\text {druln }}=\exp \left[\mathrm{A} \div \mathrm{B}\left(\ln \mathrm{~F}_{\mathrm{l}}\right)+\mathrm{C}\left(\ln \mathrm{~F}_{\mathrm{l}}\right)^{2}+\mathrm{D}\left(\ln \mathrm{~F}_{\mathrm{l}}\right)^{3}+\mathrm{E}\left(\ln \mathrm{~F}_{1 \mathrm{v}}\right)^{4}\right] \\
& \text { where } \mathrm{F}_{\mathrm{l}_{\mathrm{v}}}=\frac{\mathrm{W}_{\mathrm{L}}}{W_{V}} \sqrt{\frac{\rho_{\mathrm{V}}}{\rho_{\mathrm{L}}}} \\
& W_{L} \text { and } W_{V} \text { are liquid and vapor tlow rates in } 1 \mathrm{~b} / \mathrm{hr}, \mathrm{~K}_{\mathrm{drun}} \text { is in fi/sec } \\
& A=-1.877478097 ; B=-0.8145804597 ; C=-0.1879744085 \\
& \mathrm{D}=-0.0145228667 ; \mathrm{E}=-0.0010148518
\end{aligned}
$$

7. (a) A laboratory fractionating column is to be cicsigned to operate at atunospheric pressure. We destre to separate a mixture containing 15.67% carbon disulphide mixed with carbon telrachlonde into an overhead product containing 91% carbon disulplide and a waste of 973% carbon tetrachloride (these percentages are weight percentages). A reflux ratio of $316 \mathrm{~mol} / \mathrm{mol}$ of product is proposed. Detennine the theoretucal number of plates.

We wish to use a feed entering at 290 K having a specific heal of $1.7 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and a boiling point of 336 K . The latent heat of both carbon disulphide and carbon tetrachloride is assumed to be $25,900 \mathrm{~kJ} / \mathrm{mol}$.

Find the mean molccular mass of the feed stream given that the molecular weight of CS_{2} is $76 \mathrm{~g} / \mathrm{mol}$ and of CCl_{4} is $72.6 \mathrm{~g} / \mathrm{mol}$.

The final design had 14 platcs. What was the efficiency of the column? Use the Fig. for Q. 7(a) suppleed for this question and attach it with your answer sheet.
(b) With appropriate diagrams describe the regimes that can be found in a typical distillation columan
8. (a) Describe the significance of the following when dealing with distillation columns. Lise appropriate diagrams to clarify your statement: weir. downcomer, lever anm rule, pressure hcads on sicve trays, minimum reflux ratio
(b) What do you understand by open steam distillation? Why would you use open steam in a distillation column? Show the schematic representation of such a distillation column. What is the equation for the betom operating line for such a column?

$$
=5=
$$

Figure for Question No. 2

Table for Question No. 2: Distribution Cocfficient for acetic acid in water and benzene

	Sincint	Ihternt	r" ${ }^{\text {c }}$	$X_{4 t} x^{2} x_{4} x_{2}$
		Widy	27	11.5320
Acclicata		What	31)	
	Pretaita	Whats:	+41	6.1627
Acctic iciel	Ben\%itu	Water	511	fi, $\mathrm{O}, \mathrm{S}, \mathrm{SK}$
Ancilitacid	13LH/LJ]	Water	Nt	d, 隹, 3\%

Equilbrium data for water-acetic acid-1sopropyl Ether at $20^{\circ} \mathrm{C}$ and 1 atm

Wexth Armat $\therefore A$	Hituo x_{p}	$\begin{gathered} \text { Whatigy } \\ \text { EWher } \\ x_{s} \\ \hline \end{gathered}$	Acth Acid $\begin{aligned} y_{1} \\ \hline \end{aligned}$	$\begin{gathered} \text { Hiduter } \\ s_{s}^{\prime} \end{gathered}$	barporgid Fiftr 3
0.6	98.1	1.2	1.18	0.5	29.3
1.41	97.1	1.5	1,.37	6.7	1) S_{5}
$2.8)$	95.5	1.6	4.79)	1.8	9 9, 4
5.42	91.7	1.9	1.93	11.	97.1
1.330	8is.4	2.4	4.82	1.4	\%.3
25.51	71.1	3.4	[1.41]	3.4	H. 7
36.76	54.9	4.4	21.60	6.9	7.5
(4, 3i)	451	10.6	31.10	108	54,
46.40	37.1	16.5	36.20	15.1	4心,

Figure for 7(a)

$x-y$ diagram for $\mathrm{cs}_{2}-\mathrm{CCl}_{4}$ sysim

BANGI ADFSH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-3/T-1 B. Sc. Engineering Examinations 2013-2014 Sub : CHE 301 (Heat Transfer)
Full Marks : 210
Time: 3 Hours
The figures in the margin indicate full marks.
USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE.
All notations have their usual meanings.
A photocopy booklet containing data tables is to be provided.

1. (a) Natural convection heat transfer from a vertical flat rectangular plate is given by

$$
\begin{equation*}
\mathrm{Nu}_{\mathrm{x}}=0.508 \mathrm{Pr}^{1 / 2}\left(0.952+\mathrm{Pr}_{\mathbf{r}}\right)^{-1 / 4} \mathrm{Gr}_{\mathbf{x}}^{1 / 4} \tag{14}
\end{equation*}
$$

where, $\mathrm{Gr}_{\mathrm{x}}=\frac{\mathrm{g} \beta\left(\mathrm{T}_{4}-\mathrm{T}_{\infty}\right) \mathrm{x}^{3}}{\mathrm{~V}^{2}}$
The above equation gives the local heat-1ransfer coefficient along the vertical direction. Show that the average heat-transfer coefficient is given by

$$
\overline{\mathrm{h}}=\frac{4}{3} \mathrm{~h}_{\mathrm{x}=\mathrm{i}} .
$$

(b) A $20-\mathrm{cm}$-square steel plate is maintained at $80^{\circ} \mathrm{C}$. The plate is submerged vertically in a big pool of water at $30^{\circ} \mathrm{C}$. Calculate heat transfer rate from both sides of the plate. Use the equation from part (a) of this question
(c) Write a short note on heat pipe.
2. (a) Show that $A_{1,2} F_{1,2-3}=A_{1} F_{1-3}+A_{2} F_{2-7}$ in the Figure for Q. No. 2(a).

(b) Determine the shape factor F_{14} in the Figure for Q . No. 2(b) in terms of known shape factors for perpendicular rectangles with a common edge.
(c) Show that a radiation shield placed between two parallel infinite planes will reduce the heat flow by onc-half (assume all the surfaces have the same emissivity).
(d) While a lew words on fouling factor and its use in heat exchange design.

$$
=2=
$$

CHE 301

3. (a) Analyze mathematically the film condensation on a vertical plate (condensate []ow is laminar) and show that

$$
\begin{equation*}
N u_{x}=\left[\frac{\rho\left(\rho-\rho_{v}\right) g_{f, g} x^{3}}{4 \mu K\left(r_{g}-T_{w}\right)}\right]^{1 / 4} \tag{20}
\end{equation*}
$$

(b) Draw the "Heat flux" vs "Temperature excess" curve and explain the different regimes of boiling.
4. (a) Draw a simple diagram of a multipass shell-and-tube heat exchanger and label its different components.
(b) In a double-pipe heat exchanger the temperature difference between hot fluid and cold fluid varies continuously along the length of the exchanger. Therefore, some kind of mean temperature difference is to be used for heat transfer calculations Slow mathematically that log-mean temperature difference is appropriate for this.
(c) Hot water at $90^{\circ} \mathrm{C}$ flows through the inside of a $2.5-\mathrm{cm}-\mathrm{ID}$ steel tube with $0.8-\mathrm{mm}$ wall thickness at a velocity of $4 \mathrm{~m} / \mathrm{s}$. This tube forms the inside of a doublc-pipe heal cxchanger. The outer pipe has a $3.75-\mathrm{cm}$ ID and water at $20^{\circ} \mathrm{C}$ flows in the annular space at a velocity of $6 \mathrm{~m} / \mathrm{s}$. Calculate the overall heat transfer coefficient for this anrangement. The tube length is 60 m .

SECTION - B

Thete are FOUR questions in this scetion. Answer any THREE.
5. (a) Dcrive an expression for the heat flow rate through a hollow sphere with inside redius r_{1}, outside radius r_{0} and constant thermal conductivity k. The inside and outside surfaces of the hollow sphere are held at constant temperature T_{j} and T_{0}, respectively. State the assumptions, if any.
(b) A sphemeal vessel used as a reactor for producing phamaceuticals has a 10 mm thick stainless steel wall $(\mathrm{k}=17 \mathrm{~W} / \mathrm{m} . \mathrm{K})$ and an inner diameter of 1 m . The exterior surface of the vessel is exposed to ambient air ($\mathrm{T}=25^{\circ} \mathrm{C}$) for which a convection coefficient of 6 W/min ${ }^{2}$ may be assumed.
(i) Dumng sleady-state operation, an inner surface temperature of $50^{\circ} \mathrm{C}$ is mantained by coergy generated within the reactor. What is the heat loss from the vessel?
(ii) If a 2 -mm-thick layer of fiberglass insulation ($k=0.040 \mathrm{~W} / \mathrm{m} . \mathrm{K}$) is applicd to the exterior of the vessel and the rate of thermal energy generation is unchanged, what is the inner surface temperature of the vessel?

CHE 301

6. (a) With the help of schematucs, explain the differences between hydrodyname and thermal boundary layers.
(b) Staring from the given simplificd continuity and momentum equations, derive the expression for the laminar boundary layer thickess for a fluid flowing Past a flat plate.

$$
\begin{equation*}
\delta=4.64 \sqrt{\frac{\mathrm{vx}}{\mathrm{u}_{\infty}}} \tag{28}
\end{equation*}
$$

where, u_{Ω} is the fuid velocity outside the boundary layer. Other symbols have their usual meanings. Also state the assumptions you make to derive the equation.

$$
\begin{aligned}
& \text { Contunuity equation: } \frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}=0 \\
& \text { Momentum cquation: } \rho\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial x}\right)=u \frac{\partial^{2} u}{\partial y^{2}}-\frac{\partial p}{\partial x}
\end{aligned}
$$

7. (a) It is suggested that eddy diffusivity plays a significant role dunng turbulent dluid flow inssde a tube. For a scenario where heat and momentum transport rates are same and $\operatorname{Pr}=1.0$, derive the Reynolds analogy:

$$
s t=\frac{f}{8}
$$

HINT: Assume no slip condition at the wall and maximum fivid velocity at the tube center is u_{tr}. Also given,

$$
\begin{aligned}
& q_{w}=h A_{w}\left(T_{w^{\prime}}-T_{b}\right) \\
& \tau_{w}=\frac{f}{8} \rho u_{n 1}^{2}
\end{aligned}
$$

(b) Water is heated from $15^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ by passing it through a 1.91 cm -diameter thinwalled copper tube at $121^{\circ} \mathrm{C}$. For a water flow rate of $0.181 \mathrm{Kg} / \mathrm{s}$, detcmine the tube lengh required to achieve the desired heat transfer. Assume fully developod turbulent flow inside the tube and use LMTD for convective heat transfer calculation. At bulk mean temperature water properties:

$$
\begin{array}{ll}
\rho=993.2 \mathrm{Kg} / \mathrm{m}^{3} & k=0.628 \mathrm{~W} / \mathrm{m} . \mathrm{K} \tag{15}\\
\nu=0.686 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s} & c_{\mathrm{p}}=4183 \mathrm{~J} / \mathrm{Kg} . \mathrm{K}
\end{array}
$$

8. (a) In a food jndustry, sugar sturry flows through a 25 -mm-diameter tube at a rute of 0.5 kg / s. The slurry enters the tube at a iemperature of $25^{\circ} \mathrm{C}$, while the tube surlite temperature is maintained at $100^{\circ} \mathrm{C}$. Determine the slurry outlet temperature for a 5 -m long tube. Assume that the entrance region prevails in the entire tube length.
Sugar slurry properties at average temperature:

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{p}}=2035 \mathrm{~J} / \mathrm{Kg} . \mathrm{K} \\
& \mu=0.0836 \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \\
& \mathrm{k}=0.141 \mathrm{~W} / \mathrm{m} . \mathrm{K}
\end{aligned}
$$

CHE 301

Contd....Q.No. 8
(b) A concentric pipe heat excbanger is used to cool lubricating oit for a large diesel engine. The inner pipe is of radius 3 cm and has water flowing through it at at rate of $0.3 \mathrm{Kg} / \mathrm{s}$. The hot oil is flowing at a rate of $0.15 \mathrm{Kg} / \mathrm{s}$ through the annular region. The outer pipe radius is 5 cm . Assuming fully developed flow in both pipes, calculate the hat transfer coefficients for water and oil sides. For the calculation purpose, consider that the average temperatures of oil and water werc $80^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$, respectively.

Oil properties at $80^{\circ} \mathrm{C}$:

$$
\mathfrak{c}_{\mathrm{p}}=2131 \mathrm{~J} / \mathrm{Kg} \cdot \mathrm{~K}, \quad \boldsymbol{\mu}=3.25 \times 10^{-2} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2} \quad \mathrm{k}=0.138 \mathrm{~W} / \mathrm{n} . \mathrm{K}
$$

Water properties at $35^{\circ} \mathrm{C}$:

$$
c_{\mathrm{p}}=4178 \mathrm{~J} / \mathrm{K} \mathrm{~g} \cdot \mathrm{~K}, \quad \mu=7.25 \times 10^{-4} \mathrm{~N} \cdot \mathrm{~s}^{\prime} \mathrm{m}^{2} \quad \mathrm{k}=0.625 \mathrm{~W} / \mathrm{m} . \mathrm{K}
$$

$$
=5=
$$

Table: Surnmary of forced-convection relations

$\begin{aligned} & \text { Subscriptst } b^{\prime}=\text { bulk lemm } \\ & : \quad, \quad w=\text { wall tem } \\ & \because \text { Geumetry } \end{aligned}$	' $f=$ film temperature, $\infty=$ fiee strearn lemperature. 14 Equation	Restrictions
Tule flow	$N u_{d}=0.023 \mathrm{Re} e_{d}^{0.8} \mathrm{p}^{2} \mathrm{r}^{n}$	Fully developed turbulent flow. $n=0.4$ Iot heating. $\#=0.3$ for coolling. $0.6<\mathrm{Pr}_{\mathrm{r}}<100$, $2500<\mathrm{R}_{\mathrm{P}_{d}}<125 \times 10^{5}$
Tube flow	$\begin{aligned} & \mathrm{Nu}_{d}=0.0214\left(\mathrm{Re}_{d}^{0.8}-100\right) \mathrm{Pr}^{0.4} \\ & \mathrm{Nu}_{d}=0012\left(\mathrm{Re}_{d}^{0.87}-280\right) \mathrm{Pr}^{04} \end{aligned}$	$\begin{aligned} & 0.5<\operatorname{Pr}<1.5 . \\ & 10^{1}-\operatorname{Re}_{d}<5 \times 10^{6} \\ & 1.5<\operatorname{Pr}<500 . \\ & 3600<\operatorname{Red}<10^{6} \end{aligned}$
Tube flow		Fully develogral iurbulent flow
Tube flow, entrance region	$\mathrm{Nu}_{d}=11.036 \mathrm{Re}_{d}^{0.8} \mathrm{~L}^{2} \mathrm{r}^{1 / 3}\left(\frac{d}{L}\right)^{0.05 \mathrm{r}}$ See also tigures 6.5 and 6-6	Turnulent flow $10<\frac{t}{d}=400$
Tube flow	J'etakuv relalort	1'ully developerd tubulent flow. $\begin{aligned} & 05<\mathrm{Pr}<2000 \\ & 10^{4}<\mathrm{RF}_{d}<5 \times 10^{4} \\ & 0<\frac{\mu t_{b}}{\mu_{4}}<40 \end{aligned}$
Tulce flow	$\mathrm{Nu}_{d}=3.66+\frac{0.0668(d / L) \mathrm{Re}_{d} \mathrm{Pr}}{1+(0) \mathrm{D}^{4}\left[(d / L) \mathrm{Re}_{d} 9 \mathrm{r}\right]^{2 / 3}}$	Laminas. $T_{u 1}=$ const.
Tube flow	$\mathrm{Nu}_{J}=t, \mathrm{BG}_{4} \mathrm{R}_{\left.L_{d} \mathrm{Pr}\right)^{\mathrm{t}} / 3}\left(\frac{d}{l}\right)^{1 / 3}\left(\frac{\mu}{\mu_{t}}\right)^{0 / 4}$	Fully dercloped laminar dow, $\begin{aligned} & T_{k^{\prime}}=\text { corst. } \\ & \mathrm{Re}_{d_{d}} \mathrm{P}_{\mathbf{r}} \frac{d}{l^{\prime}}>10 \end{aligned}$
Ronuyl tubes	$\mathrm{St}_{6} \mathrm{Pr}_{f}^{2 / 3}=\frac{f}{8}$ or Equatlon ($6-7$)	Fully daveloped turbulent fow
Noncircular ducts	Reytolds number evaluated on basiu of bydraulic diameter $\begin{aligned} & D_{H}=\frac{4 A}{P} \\ & A=\text { fow cross-sec lion ares. } \\ & P=\text { wetird perithener } \end{aligned}$	Same as purtlcular equation [or tule flow

$$
=6=
$$

Table: Heat transfer and fluid friction for fully developed laminar low in ducts of various cross sections. Average Nusselt numbers based on hydraulic diameters of the cross sections

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-3/T-1 B. Se Engineering Examinations 2013-2014
Sub : MME 391 (Fundamentals of Metallurgy)
Full Marks : 210
Time: 3 Hours
The figures in the margin indicate full marks.
USE SEPARATE SCRTPTS FOR EACH SFCTION

SECTION - A

There arc FOUR questions in this section. Answer any THREE.

1. (a) Show that total idcal work done in a typical rolling process can be expressed as $\frac{2}{\sqrt{3}} \sigma_{0}\left(\epsilon_{1}^{2}+\epsilon_{1} \epsilon_{2}+\epsilon_{2}^{2}\right)^{1 / 2}$, where, the symbols have their usual meamings. Make necessary assumptions.
(b) Explain with mallcableizing cycle how ferritic malleable cast-iron is produced from white cast-iron.
(c) Show and explain the vanation of tensile strength of gray cast-iron with carbon and silicon content.
2. (a) Whech alumimum alloy is most froquently used for aircraft structures and why?
(b) Draw a phase diagram of aluminium-copper alloy and show microstructural changes that occur in an $\mathrm{Al}-4 \% \mathrm{Cu}$ alloy during sfow cooling from $700^{\circ} \mathrm{C}$ to toom lemperature.
(c) Elucidate the relationship of conductivity, strength, and thermal transformation of a 2014 aluminium alloy.
3. (a) What is siress corrosion cracking of yellow alpha brass and how it is prevented?
(b) With a ncat sketch show all points, lines and phase field of the useful part of copperzinc phase diagram.
(c) Describe microstructural changes of a yellow alpha brass containing $30 \% \mathrm{Zn}$ while cooling it from $1000^{\circ} \mathrm{C}$ to room temperature.
4. (a) Explain with necessary graphical representation a typical cold-work-anneal cycle. Strain hardening in an alloy due to cold-working 1 expressed as:

$$
\sigma=150,000 \epsilon^{0.5} \mathrm{MPa}
$$

Calculate true and engineering $\sigma_{U T S}$. Where, the symbols have their uswal ineanings.
(b) Show the relationship between the reduction of area and the reduction in height or thickness in a typical metal-forming procers.
(c) A strip of metal of 1.0 m long is stretched in three steps: to length of 1.5 m , then to
2.0 in , finally to 2.5 m . Calculate engineering and true strains. Comment on obtained results.

MME 391/CHE

SECTION - B

There are FOUR questions in this section. Answer any THREE.
5. (a) Mention the composition of the hot metal obtained from blast furnace.
(b) Explain the principles of removing impurities from hot metal for steel making.
(c) Discuss the retaining stages of hot metal in a BOF steel making process with chemical reactions.
6. (a) Draw the iron and iron carbide themal equilibrium dragram labeling all points, lines and phase fields (use a graph paper and draw the diagran to scale).
(b) Describe briefly the microstructural changes that occur in a mild stcel containing 0.20 percent carbon during slow cooling from austenite range to room temperature.
7. (a) Distinguish between full annealing and spherodize annealing. Give the important advantages of each.
(b) (i) Draw the isothennal-transfonmation diagram for a eutectord steel and label it.
(ii) What is bainitic struclure? Is it possible to produce 100% bainitic structure by continuous coolng of a plain carbon stecl? If possible, explain. If not possible describe low 100% bamulic structure could be produced.
8. (a) Explain the limitations of plain carbon steels?
(b) Discuss the influence of alloying elements on the iron-iron carbide diagarn.
(c) What are stainless steels? Mention different types of stamless steels with their composition, properlies and uses

L-3/T-1 B. Sc. Enginecring Examinations 2013-2014

Sub : MATH 323 (Fourier Analysis. Harmonic Functions

and Partial Differential Equations)
Full Marks : 210
Time: 3 Hours
The figures in the margin indicate full marks.
USE SEPARATE SCRIPIS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE.

1. (a) Find the Fourier scries for

$$
f(x)=\left\{\begin{array}{lr}
-\pi, & -\pi<x<0 \\
x, & 0<x<\pi
\end{array}\right.
$$

Hence deduce $\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}+\ldots \ldots$
(b) Expand $f(x)=x, 0<x<2$ in a half range sine serics and cosine series.
2. (a) Expand the function

$$
f(x)= \begin{cases}1, & 0 \leq x \leq 1 \tag{15}\\ -1, & 1<x \leq 2\end{cases}
$$

in a Fouricr sine series and find the sum of the series at $x=1$.
(b) Find the Fourier transiorm of

$$
f(x)=\left\{\begin{array}{cc}
1-|x| ; & |x|<1 \\
0, & |x|>1
\end{array}\right.
$$

and hence cvaluate $\int_{0}^{\infty} \frac{\sin ^{4} x}{x^{4}} d x$.
3. (a) Find the Fouriet sine integral of

$$
f(x)=\left\{\begin{array}{cl}
\sin x: & 0 \leq x \leq \pi \\
0, & x>\pi
\end{array}\right.
$$

and then cvaluate $\int_{0}^{\infty} \frac{\sin \pi \omega \sin x \omega}{1-\omega^{2}} d \omega$.
(b) Use dinite Founcr transform to solve

$$
\begin{align*}
& \frac{\partial u}{\partial t}=2 \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<4, t>0, u(0, t)=u(4, t)=0 \tag{17}\\
& u(x, 0)=3 \sin \pi x-2 \sin 5 \pi x
\end{align*}
$$

Also give a physical interpretation of the solution.

MATII 323/CHE

4. (a) Prove that $\int_{0}^{\infty} \frac{x \sin m x}{x^{2}+1} d x=\frac{\pi}{2} c^{-m}$, in >0.
(b) Find the solution ol the boundary value problem
$\frac{\partial \mathrm{u}}{\partial \mathrm{t}}=\frac{\partial^{2} \mathrm{u}}{\partial \mathrm{x}^{2}}$
$u(0, t)=1, u(\pi, t)=3, u(x, 0)=2$ where $0<x<\pi, t>0$

SECTION-B

There are FOUR questions in this section. Answer any THREE. Symbols used have therr usual meaning.
5. (a) Apply Lagrange's auxiliary equation techrique to solve:

$$
\begin{equation*}
(y-z x) p+(x+y \kappa) q=x^{2}+y^{2} \tag{11}
\end{equation*}
$$

(b) Solve the following PDE's by Charpit's method:

$$
\begin{align*}
& \text { (i) } 2 x z-p x^{2}-2 q x y+p q=0 \tag{12}\\
& \text { (ii) } p x+q y=p q \tag{12}
\end{align*}
$$

6. Solve the following higher order PDEs:
(a) $\left(D_{x}^{3}-4 D_{x}^{2} D_{y}+4 D_{x} D_{y}^{2}\right)_{z=4} \sin (2 x+y)$
(b) $\left(3 D_{x}^{2}-2 D_{y}^{2}+D_{x}-1\right) z=4 e^{x+y} \cos (x+y)$
(c) $\left(x^{2} D_{x}^{2}-x y D_{x} D_{y}-2 y^{2} D_{y}^{2}+x D_{x}-2 y D_{y}\right) \ll x^{2} y^{3}$
7. (a) Write down the Laplace's equation in two dunension in polar co-ordinates and hence find its solution.
(b) Find the steady temperature inside a solid sphere of unit radius if the temperature of its surface is given by $\mathrm{U}_{0} \cos 0$.
8. (a) Find the potential of the region inside and outside of a spherical surface.
(b) Temperature distribution V inside a homogencous sohd satisfies the equation $\frac{\partial V}{\partial \mathrm{t}}=h^{2} \nabla^{2} V$ where h^{2} is the diffusivity of the substance and is a constant. Determine the stcady state temperature within the plate subject to the boundary conditions

$$
\left.\left.\left.\left.\begin{array}{l}
V=0 \tag{18}\\
\mathrm{x}=0
\end{array}\right\} \quad \begin{array}{l}
V=0 \\
\mathrm{x}=\mathrm{s}
\end{array}\right\} \quad \begin{array}{l}
V=0 \\
\mathrm{y}=\infty
\end{array}\right\} \quad \begin{array}{l}
V=F(\mathrm{x}) \\
\mathrm{y}=0
\end{array}\right\}
$$

I_-3/T-1 B. Sc. Enginecring Examinations 2013-2014

Sub: CHE 451 (Fuels and Combustion Science)
Full Marks: 210
Time: 3 Hours
The ligures in the margin indicate full marks.
USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A
 There arc FOLR questions in this section. Answer any THREE.

1. (a) What are the inain sources of atmosphenic Black Carbon and PM 2.5 in Dhaka city with respect to combustion process? Write down their relative contributions to total Black Carbon and PM 2.5 in Dhaka city. What are the possible soot fomation pathway and its mitigation option in the combustion process? - State briefly. What are the reasons that can initiate dioxins formation in combustion process? How can one avoid dioxin formation in combustion process? - Write brietly.
$(5+10+10+10)$
2. What are the critena of a good bumer? Discuss the codes for gas bumer classification How matny types of conventional gas burners are there? - Describe different types of gas bumers altong with their symbols, fluid maxing phenomena and velocity profile.
3. (a) Show the classification of solid fuel firing systems on pressure drop-flow diagram What type of solid fucl firing system do you recommend for a 500 MW power plant? Describe its working principle with a neat sketches.
(b) Briefly discuss the gasification steps of solid fuel (coal) in a fluidized bed gasificr along with its temperature profile.
4. (a) What are different steam turbine cogeneration systems'? - Show them with schcmatic diagram.
(b) A process industry has decided to install cogeneration plant. The process requitements are:

- The plant requites 4.5 MW of clectrical power
- The boilet has naximum stean generating capacity of 31.25 TPH at $63 \mathrm{~kg} \mathrm{~cm}^{2}$ pressure and a temperature of $486^{\circ} \mathrm{C}$.
- The table below gives the process steam requirements:

Process	Steam flow (TPH)	Pressure $\left({\left.\mathrm{kg} / \mathrm{cm}^{2}\right)}^{2}\right.$	Tempcrature $\left({ }^{\circ} \mathrm{C}\right)$	Enthalpy $(\mathrm{K} \mathrm{cal/kg}$
Boiler	31.25	63	486	808
Process \# 1	3.25	21	310	669
Process \#2	8.00	8.0	174	662
Process \# ${ }^{\#}$	20.00	5.0	160	659

CHE 451

Contd ... O. No. 4(b)

(i) Determine the total power that could be generated by a single turbine that meets the process steam requirements.
(ii) Calculate the additional amount of power to be purchased from the grid.
(iii) Calculate the heat to power ratio of the cogeneration plant.

SECTION-B

There are FOUR questions in this section. Answer any THREE.
5. (a) Draw and describe the Van Krevelen plot.
(b) "Gascous fucls are simpler to ignite, handle and control than liquid or solid fuels" - why?
(c) What is the difference between external ignition and autoignition? What do you understand by ignition limits?
(d) "Encrgy production by combustion must increase to meet the global energy demand" - what is your opinion in this inater?
(c) What are the objectives of studying combustion science?
6. (a) Describe the fire triangle and its significance in fire fighting.
(b) A 6 -year old pump motor is to be replaced. The new motor, just like the old one, would run 75% of the time. Buth existing and replacement motors would operate at 100 OUTPUT HP (Brake 1IP). lhe existing motor efficiency is 86% while the replacement motor would be guaranteed at 94% efficiency. Electricity currently averages BDT 7.42 per kWH. Calculate the energy cost saving per year (assume 365 days/yr) if the existing motor is replaced with the new motor.
(c) A refinery fuel gas has the composition 75 (volume) $\%$ bulane, 10% propane, 15% ethane. Detennine the fuel gas temperature if the fuel is burned with 15% excess air. Given:

7 (a) The exhaust gases from a limace are leaving at $900^{\circ} \mathrm{C}$ at the rate of $2100 \mathrm{~m}^{3} /$ hour. The owner of the process wants to recover the waste heat and asked you the following questums:
(i) What will be the minimum temperature of the exhaust gas strean if you recover heat using a heat exchanger? What limits the minimum tempcraturc?
(ii) What is the maximum recoverable heat?
(iii) If this heat is recovered by installing a recuperator. to preheat the combustion air, what is the fucl (NG) savings? Volume of conbustion am $=200 \mathrm{~m}^{3} / \mathrm{howr}$.

$$
=3=
$$

CHE 451

Contd ... Q. No. 7(a)

You can use the following additional inlomation to answer his query -
specific heat of the fuel gas $=0.24 \mathrm{~K} \mathrm{cal} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$
calorific value of $\mathrm{NG}=35 \mathrm{MJ} / \mathrm{m}^{3}$
density of the flue gas $=1.19 \mathrm{~kg} / \mathrm{m}^{3}$
specific heat of air $=0.24 \mathrm{~K} \mathrm{cal} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$
density of air $=1.22 \mathrm{~kg} / \mathrm{m}^{3}$
(b) Describe the working principle of
(i) a heat wheel
(i1) a heat pipe
8. (a) What is a Brayton cycle? What is a Rankine cycle? What advantages can you gain from combining these two cycles?
(b) Very often, the power engineer is required to perform some basic calculations regarding the key parameters of a power plant. Most imporant is the quantity and cost of fuel that is required. Make an estimate of the coal required for munning a power plant of 100 MW capacity.

Additional information:
Gross colorific value (GCV) of coal $=20,000 \mathrm{~kJ} / \mathrm{kg}$
Efficiency of the boilet and combustion $=88 \%$ on GCV basis
Stearn cycle efficiency $=42 \%$
Turbine efficiency $=97 \%$
Cost of coal $=\$ 65 / \mathrm{tomne}$

$$
=4=
$$

For Question 6(c)
Specific Heat Capacities at bligh Temperatures

$$
\hat{\mathrm{c}}_{\mathrm{p}}=\infty+\beta \mathrm{T}+\gamma \mathrm{T}^{-2} \mathrm{~T} \text { in } \mathrm{K}
$$

Data taken from K.K. Kelley, U.S. Bur. Mines Bull 584,

L-3/T-1 B Se Fngineering Examinations 2013-2014
 Sub: HUM 201 (Sociology)
 Full Marks : 210
 Tine: 3 Hours
 The figures in the margin indicate full marks.
 USE SEFARATE SCRIPTS FOR EACH SECTION

SECTION - A
 There are FOUR questions in this section. Answer any THREF,

1. (a) What major environmental problems now challenge the ccosystems of modern industral socleties?
(b) Why can't technology solve all the problems of diminishing resources and environmental pollution?
(c) How does the "Tragedy of the Commons" help cxplain ctvirommental desinction?
2. (a) How would a Malthusian theorist's view of current world population patterns differ from that of a demographic transitionist?
(b) What is the demographic "fallout" of explosion?
(c) What social factors influence our health?
3. (a) According to symbolic interactionsin, how does social change influence our personal life?
(b) How is technology changing our socicty?
(c) What impaci did the industrial revolution have on societies?
4. Write short notes on any THREE of the following:
(a) Green house gases and global warming
(b) Orange category A industry and Green category industry
(c) Impacts of capitalism on a socicty
(d) The functions of a family.

SECTION - B

There are FOUR questions in this section. Answer any THREF.

5 (a) Illustrate the cultural impact of globalization on developing nations.
(b) Critically discuss the argument of Immanuel Wallerstein on 'World Systen Theory'.
(c) Describe the causes of povery in Bangladesh by cting examples from our socicly.

HUM 201/CHE

6. (a) Explain different types of crime with suitable examples.
(b) Make a comparison between crime and deviance?
(c) Illustrale the social factors associated with deviant behaviour.
7. (a) Explain the major forces of international migration in Bangladesh.
(b) Briefly discuss the functions of family in socicty.
(c) Who are juveniles'? Discuss the causes of juvenile delinquency in our society.
8. Write short notes on any THREE of the following:
(a) Uses of sociology for chemical engincening students,
(b) Characteristics of culture,
(c) Interactionist perspective,
(d) Steps of social research.

BANGLADESH UNIVERSITY OF ENGINEERING AND IECHNOLOGY, DHAKA

L-3/T-1 B. Sc. Engineering Examinations 2013-2014 Sub: HUM 203 (Government)
 Full Marks : 210
 Time : 3 Hours

The figures in the margin indicate full marks.
USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE.

1. (a) Define state. Discuss the essential elements ol'a modern slate.
(b) How do you define a constitution? Describe various lypes of constitution with examples.
2. (a) Discuss the rights and duties of a cilizen in a state.
(h) Detine foreign policy. Analyze the principles of Bangladesh forcign policy.
3. (a) Discuss the reasons and consequences of mass upsurge of 1969.
(b) 'Crisis of national integration was the man reason behind the emergence of Bangladesh' - discuss this statement.
4. Write short notes on any threc (3) of the following:
(a) Intemationalism
(b) Good Governance
(c) Popular Sovereignty
(d) Independence of Judiciary

SECTION - B

There are FOLR questions in this section. Answer any THREE.
5. (a) Analyre the merits and demerits of democracy.
(b) Make a comparative discussion on parliamentary and presidential forms of govemment.
6. (a) Define political party. Discuss the functions of the political parties in a democracy country.
(b) Discuss the salient features of the constitution of Bangladesh.

$$
=2=
$$

HUM 203/CHE

7. (a) Write short notes on the following topics:
(1) Unutary form of Govermment
(ii) Socialism
(b) Desenbe the rule making process in Bangladesh
(20)
8. (a) What do you know about the United Nations Organization (UNO)? Discuss the achevernents and failures of it.
(b) Define clectoral college. Discuss about the political system of USA.

BANGLADESH UNIVERSITY OF ENGINEERING AND TECFINOLOGY, DHAKA
I.-3/T-1 B. Sc. Engineering Examinations 2013-2014

Sub : HUM 303 (Principles of Accounting)
Full Marks: 210
Tine : 3 Hours
USE SEPARATE SCRIPTS FOR EACH SECTION
The figures in the margn indicate full marks.

SECTION-A

There are FOUR questions in this section. Answer any THREE.

1. (a) What is meant by product's CM ratio'? How is this ratio usefil in planning busincss operations?
(b) Crown Creative inc. makes high quality Personal Digital Assustant (PDA). Sales and production data relating to the most recent year are given below:

Sales (in unit)	2800
Selling price per unit	Tk 265
Contribution Margin Ratio	60%
Annual fixed cxpenses	Tk 111300

Management is anxious to improve the company's profit performance and has asked for several items of information.

Required:
(i) Compute break-even point in units and sales Taka.
(ii) Assume that sales increases by Tk. 60,000 next ycar. If cost belavior patterns remain unchanged, by how much will the company's net income increase?
(iii) Refer to the original data. Assume that next year managenent wants to earn at Tk. 182,850 profit. How many units will have to be sold to meet ths target profit?
(iv) Refer to the original data. Compute margin of safoty both in Taka and percentage form.
(v) Refer to the original data. The salcs manager $1 .$. convinced that a 15% reduction in the selling price combined with a Tk. 56100 increase in adverising cost would cause annual sales in units to increase by 40%. Would you reconmmend that the company should do as the salcs manager suggests?
(vi) * Compute degree of operating levcrage at the present level of sales.

* Assume that the company likes to increase its net profit by 90% next year. By what percentage would you expect sales to increasc? Lisc degree of operating levcrage (DOV) to answer.
* Verify your answer by preparing income statenent.

HUM 303/CHE

2. (a) What is the basic difference between absoption costing and variable costing?
(b) Chuck Wagon Grills manufacturing company makes a single product - a hand made specially barbecue gril that it sells for Tk. 210. Data for least year's operations follow:

Linits in beginning inventory	$-0-$
Units produced	20,000
Units in ending inventory	1000
Unit sold	19,000
Variable cost per units:	
\quad Direct Materials	Tk. 50
\quad Direct Labour	80
\quad Variable manufacturing overhead	20
\quad Variable selling and administrative overhead	10
Fixed cost:	Tk. 700,000
\quad Fixed manufacturing overhead	285,000

Required:

(i) Compute unit production cost under both absoption costing and variable cosling method;
(ii) Prepare income statement under both of the methods;
(iii) Explain the reason for any difference between the net income under the both methods.
3. (a) Discuss the concepts - costs, expenses, losses and assets from cost accounting point of view. Give one example illustrating the relationship between them.
(b) The data below have been taken from the cost records of Beverles Hospital. A carefisl soudy by the company's cost analyst has determined that if the number of X-rays taken is 7000 , the average operating cost is Tk .4 .14 per X -ray. If the number of X-rays taken is $\mathbf{3 0 0 0}$, the average cost is Tk. 5.65 per X-ray.
Requirod:
(i) Using high-low point method, determinc the variable cost per X-ray taken and the lixed cost in total.
(ii) Express the variable cost and lixed cost in the cost equation.
(iii) If the number of X -rays taken in a month is 4600 , what total operating X -rays costs would you expect?
(iv) What is the major disadvantage of high-low point method?

$$
=3=
$$

HUM 303/CHE

Contd... Q. No. 3
(c) The following information has been taken from the records of Blue-bird company:

Particulars	Tk.
Ratw materials purchased	100,000
Direct labour	200,000
Indirect labour	3,000
Salesnan's salaries	25,000
Miscellaneous factory expenses	4,000
Fuel for the factory equipment	2,000
Factory insurance	8,000
Depreciation, factory plant	40,000
Depreciation, office equipment	12,000
Power and electricity	5,000
Sales	420,000
Adverisenent	17,000
Office salaries	30,000
Office rent	20,000
Utilities (40\% for factory, 60% for office)	15,000

| Invenlories | January 1 | Decenber_31 |
| :--- | ---: | ---: | ---: |
| Raw materials | Tk 10,000 | Tk 12,000 |
| Work-in process | 15,000 | 9,000 |
| Finished goods | 5,000 | 7,000 |

Requirements:
(i) Prepare a cost of goods sold statement and
(ii) An income statement for the year.
4. (a) Explain the purpose of cost allocation.
(b) Phoenix consulting provides outsourcing services and advice to both govemment and comporate clients. For costing purposes, phocnix classifies its departments into two support deparments (Human Resources and Information Systems) and two producing departments (Govermment Consulting and corporate consulting). For the lirst quarter of 2013, overhead cosb across the depanments and other data 1s given below:

IIUM 303/CHE

Contd... Q. No. 4 (b)

	Support Department		Producing Dcpartment	
	Human Resources	Information Systern	Govermment Consulting	Corporate Consultung
	Tk.	Tk.	Tk.	Tk.
Overhead costs belore allocation	600.000	24,00,000	87.56,000	124,52,000
Supporied by (in percentage)				
Human Resources	-	25\%	40\%	35\%
Infonnation Systems	10\%	-	30\%	60\%

Requirements:
You are asked to altocate the two suppor departments cost to the two producing deparments using the following inethods:
(i) Disect Method
(ii) Reciprocal Service Method.
(c) A production depariment of a manufacturing company has five different groups of machines. The machine hour rate of each of five machines are:

	I	II	III	IV	V
Machine Group					
Machine Hour Rate (Tk.)	2.33	3.05	2.98	4.83	2.21

Requrements:
Calculate the overhead cost that will be absorbed by one unit of Product A and one unt of Product B on the manufacture of which the following time (in hours) are spent in the machine groups of this departments:

Machine Group	I	II	III	IV	V
Product A (each unit)	2	-	7	1	2
Product B cach unit	4	1	-	6	I

SECTION - B

There are FOUR questions in this section. Answer any THREE.
5. (a) What are the assumptions of Accounting according to Generally Accepted Accounting Principles (GAAP)?
(b) Define gains and losses with example.

HUM 303/CHE

Contd... Q. No. 5

(c) "Unique Boutiques" was opened on June 1,2014 by Mr. Y. The following transactions occurred in the month of Junc-

June 1. Mr. Y invested Tk. 100,000 cash in the business
June 2: Purchased a machine for Tk. 50,000 in cash.
June 5: Gave an advertisement to the news paper costing Tx. 7,000; the payment will be made on next month.
June 6: Borrowed Tk. 100,000 in cash from City Bank by signing notes payable.
Junc 10: Eamed revenue Tk. 80,000 by delivering products, 50% of which received in cash and the remaining halance was on account.
Junc 13: Purchased office supplied for Tk. 10,000; Paid Tk 8,000 in cash and the temaining amount will be padd in a later date.
Junc 14: Recerved Tx. 20,000 cash from the customers related to transaction June 10.

June 16: Pald to accounts payable Tk. 2.000 in cash.
June 25: Paid office rent in cash Tk. 25,000 in cash.
June 28: Withdrew Tk. 5,000 cash from the business for personal use.
Requirod:
(i) Prepare a tabular summary for the month of June, 2014.
(ii) Prepare an Income Statement for the month of June.
6. (a) What is a trial balance and what is its purpose?
(b) Mr. Mamun started a business on February 1, 2015. The following transactions took place during the month-

February 1: Owner invested Tk. 800,000 cash th the business.
licbruary 2: Scrvice provided to a customer bul not yet received Tk. 60,000.
February 3: Purchased equipment costing Tk. 70.000; A cash payment of Tx. 50,000 was made.
Febnary 7: Paid the monthly salary of the two employees, totaling Tk. 20,000 m cash.

February 10: Incurred utility expenses for the month on account Tk. 2,000.
February 11: Made an investment by Mr. Manun for Tk. 400,000 in cash
February 13: Received Tk. 10,000 in cash from the customer by providing services.
February 22: Paid telephone bill lor the month Tk, 5,000 in cash.
February 25: Jaid Tk. 15,000 to account payable for equipment.
February 25: Received l'k. 50,000 in cash from customers in payment of accounts receivables.
Required:
(i) Give journal entries for the inonth of January, 2012.
(ii) Prepare the ledger of "Cash Account".

HUM 303/CHE

Contd... Q. No. 5
7. (a) What are the basic reasons of recording adjusting eniries? Explain.
(b) The Trial Balance of "Navana Builders" on May 31, 2014 is given below-
"Navana Builders"
Tral Balance
May 3I, 2014

Accounts Title	Debit (lk.)	Credit (Tk.)
Cash	15,000	
Accounts receivable	7,000	
Prepaid insurance	2,400	
Supplies	1,500	
Office furniture	15,000	
Account Payable		5,500
Uneamed service revenue		6,000
Capital		27,500
Service revenue	2,000	7,900
Salary expense	$\mathbf{1 , 0 0 0}$	
Rent expense	2,000	
Maintcnance cxpense	1,000	
Drawings	$\mathbf{4 6 , 9 0 0}$	$\mathbf{4 6 , 9 0 0}$
Total		

Other lnformation:

* Supplies on hand t'k. 1000.
* Maintenance expense incurred but not paid on May 31, Tk. 8000.
* Tk. 3.000 of service perfonned during the month but has not been recorded as on May 31.
* Insurance policy is for two ycars.
* Interest accrued on May 3, is Tk. 1,000.
* Office equipnent is being depreciated at Tk. 250 per month.
* Accrued salary is Tk. 1000.

Required:
(i) Prepare necessary adjusting entries.
(ii) Prepare an adjusted trial balance as on May 31, 2014.

HUM 303/CUE

8. (a) What arc the standards for companson in the case of ratio analysis?
(b) The following accounts arc taken from the ledger balances of "P" Company Ltd on $31^{\text {st }}$ December, 2014
"P" Company Ltd
Trial Balance
31st December, 2014

Accounts Title	Debit (Tk.)	Crodit (Tk.)
Cash	60,800	
Accounts receivable	20,500	
Account payable		21,000
Capital	25,000	71,000
Land		
Sales revenue	12,000	
Salary expense	4,000	
Prepard rent	1,000	
Unity expense	3,000	
Commisston expense	1,000	
Supplics		7,100
Notes payable	2,000	
Drawings	20,000	
Goodwill	100,000	
Machinery	50,000	
Long tenn investment		155,000
Bond Payable	299,300	$\mathbf{2 9 9 , 3 0 0}$
Wage Payable		
Total	15,000	

Adjustments data:
(i) Accrucd salary is Tk. 500.
(ii) $\mathrm{Tk} .5,000$ of notes payable will be paid in the year 2016.

Required:
(i) Prepare a single step income statement for the year ended Decomber, 2014,
(ii) Prepare an owners' cquity statement and a classified balance shect on $31^{\text {st }}$ Decenber, 2014.
\qquad

BANGLADESH UNIVERSITY OF ENGINEERING AND TECIINOLOGY, DHAKA

L-3/T-1 B. Sc. Engineering Examinations 2013-2014
 Sub : CHE 307 (Chemical Enginecring Thermodynamics II)
 Full Marks: 210
 Time: 3 Hours
 The figures in the margin mdicate full marks.
 USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION-A
 There are FOUR questions in this section. Answer any TIIREE.

1. (a) Show that the Linde process is a limiting case of the claude process with necessary diagram and equation.
(b) A refrigerator with telta lluorocthanc as refrigcrant opcrates with an evaporation temperature of $-26^{\circ} \mathrm{C}$ and a condensation temperature of $27^{\circ} \mathrm{C}$. Saturated liquid refrigerant from the condenser flows through an expansion valve into the evaporator, from which it emerges as saturated vapor.
i) For cooling rate of 5.3 kW , what is the circulation rate of the refrigerant?
ii) Suppose the cycle of (i) is modified by the inclusion of a counter current heat cxchanger between the condenser and the throttle valve in which heat is transferred to vapor returning from the evaporator. If liquid from the condenser enters the excluanger at $27^{\circ} \mathrm{C}$ and if vapor from the evaporator enters the exchanger at $-26^{\circ} \mathrm{C}$ and leaves at $21^{\circ} \mathrm{C}$, what is the circulation rate of the refrigerant?
iii) Determine COP for isentropic compression of the vapor for case (i) and (ii).
2. (a) Derive a relation between standard Gibbs-energy change and the equilibrium constant.
(b) Prove that for gas phase reaction:

$$
\begin{equation*}
\Pi\left(y_{i}\right)^{v_{v}}=\left(\frac{P}{P^{\alpha}}\right)^{-r} K \tag{10}
\end{equation*}
$$

(c) The feed gas to a methanol synthesis reactor is composed of 75 mole $\% \mathrm{H}_{2}$, 15 mole $\% \mathrm{CO}, 5$ mole $\% \mathrm{CO}_{2}$ and 5 mole $\% \mathrm{~N}_{2}$. The system comes to equilibrium at 550 k and 100 har with respect to the reactions:

$$
\begin{gather*}
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \tag{15}\\
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\end{gather*}
$$

Assuming ideal eases, determine the composition of the cquilibrium mixtures.
3. Fthanol is produced from ethylene via the gas phase reaction

$$
\mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{C}_{2} H_{5} O H(g)
$$

Reaction conditions are 400 K and 2 bar.
a) Determine a numerical value for the equilibrium constant K for this reaction at $25^{\circ} \mathrm{C}$.

CHE 307

Contd ... Q. No. 3

(b) Determine the value of K at 400 K .
(c) Determinc the composition of the equibbrium gas mixture for an equimolar feed containing only ethylene and $\mathrm{H}_{2} \mathrm{O}$.
(d) For the same feed as in part (c), but for $\mathrm{P}=1$ bar, would the cquilibrium mole fraction of cthanol be hither or lower" Explain.

4 (a) By clearly showing all the necessary cquations, write a block diagram for the calculation of Dew T.
(b) With a neal sketch, write the working principle of an absorption refrigeration system.

Derive necessary equations.
(c) A system initially containing $2 \mathrm{~mol}_{\mathrm{C}_{2}} \mathrm{H}_{4}$ and $3 \mathrm{~mol} \mathrm{O}_{2}$ undergoing the reactions

$$
\begin{gather*}
\mathrm{C}_{2} \mathrm{H}_{4}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow\left(\left(\mathrm{CH} \mathrm{I}_{2}\right)_{2} \mathrm{O}(g)\right. \tag{10}\\
\mathrm{C}_{2} \mathrm{H}_{4}(g)+3 \mathrm{O}_{7}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
\end{gather*}
$$

Develop expression for the mole fractions of the reacting species as function of the reaction coordinates.

SECTION-B

There are FOUR questions in this section. Answer any THREE.
5. (a) Of the following fine binary liquidivapor systoms, which can be approximately modeled by Raoult's law? Explain your answer. (Hint: Table B. 1 of App B may be uscful)
i) Benzencitoluene at 1 atm.
ii) n-Hexanc/n-heptane at 25 bar
iii) Hydrogen/propane at 200 K
iv) Iso-Octane'n-Octane at 373.15 K
v) Water/л-decane at 1 bar.
(b) A binary system of species 1 and 2 consists of vapor and liquid phase in equilibnum at teinperature T, for which

$$
\begin{array}{cc}
\ln \gamma_{1}=1.8 \mathrm{x}_{2}^{2} & \ln \gamma_{2}=1.8 \mathrm{x}_{1}{ }^{2} \tag{20}\\
\mathrm{P}_{1}^{\text {sat }}=1.24 \text { bat } & \mathrm{P}_{2}^{\text {sat }}=0.89 \mathrm{bar}
\end{array}
$$

(i) for what range of values of the overall mole fraction / can this two-phase systen exist with a liquid mole fraction $x_{1}=0.65$.
(ii) what is the pressure P and vapor mole fraction y_{1} within this range?
(iii) What are the pressure and composition of the azcotrope at temperature T?

$$
=3=
$$

CHE 307

6. (a) Detinc ługacily. What $1 s$ its physical significance?
(b) The excess Gibbs encrgy of a binary liquid mixture at T and P is given by

$$
\begin{equation*}
\frac{G^{E}}{R T}=\left(-2.6 x_{1}-1.8 x_{2}\right) x_{1} x_{2} \tag{27}
\end{equation*}
$$

(i) Find expressions for $\ln \gamma_{1}$ and $\ln _{2}$ at T and P
(ii) Show that these expressions satisfy the Gibbs/Dulhem equation.
(iii) Plat $\ln \gamma_{1}$ and $\ln \gamma_{2}$ versus x_{1}, Label points $\ln \gamma_{1}{ }^{\prime \prime}, \ln \gamma_{2}{ }^{\prime 2}$ and show their valucs.
7. (a) "Henry's law applics to a specics as it approaches inftnite dulution in a binary solution, and the Gibbs/Duhern cquation insures validity of the Lewis/Randall rule for the other speces at it approaches purity"-justify this statement with necessary cquations.
(b) Figure for Question No. 7(b) presents the plots of excess properties of two binary mixtures. Draw the corresponding plots of $\ln \gamma_{1}$ and $\ln y_{2}$ vs x_{1} qualitatively. (Hints: for x_{1} $\rightarrow 1, \ln \gamma_{1} \rightarrow 0$ and i generally have the same sign as G^{F}.)
(c) What is the basic criterion to chock whether the experimental values of activity coefficients contain systematic error?
8. (a) A concentrated binary solution containing mostly specics 2 (but $x_{2} \neq 1$) is in oquilibrium with a vapor phasc containing both species 1 and 2 . The pressure of this twophase system is 1 bar; the temperature is 298.15 K . Determine from the following data good estimates of x_{1} and y_{1}
$\mathrm{H}_{1}-200$ bat $\mathrm{P}_{2}{ }^{\text {Sal }}=0.10$ bar
State and justify all assumptions.
(b) For SO_{2} at 600 K and 300bar. make good estimates of the fugacity and $\frac{G^{\prime \prime}}{R T}$.
(Hint: use the supplied data book and figure for Question No. 8(b))
(c) Distinguish between excess properties and residual properties.

$$
=4=
$$

Figure for Question 7 b) excess properties at 323.15 K for i) chloroform($1 \mathrm{~h} / \mathrm{n}$ heptane (2) and ii) acetone(1)/chloroform(2)

Comparison of correlations for Z^{t}. The virial-coeffolent correlation is represented by in e strathtlines', the Leakesler correlation, by the points.

Figure for Question No. 8 (b)

