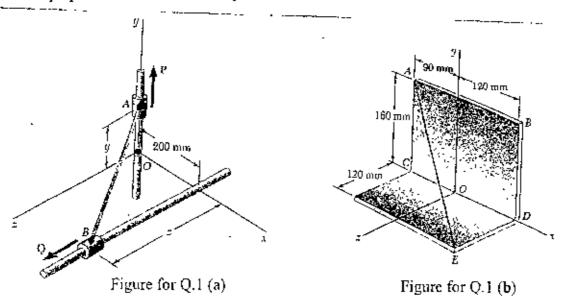
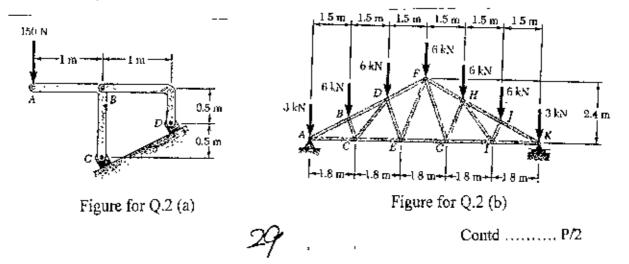
L-2/T-1/ME Date : 07/12/2014 BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY. DHAKA L-2/T-1 B. Sc. Engineering Examinations 2013-2014 Sub : ME 241 (Engineering Mechanics) Full Marks: 280 Time : 3 Hours USE SEPARATE SCRIPTS FOR EACH SECTION


The figures in the margin indicate full marks.

SECTION - A

There are FOUR questions in this section. Answer any THREE.

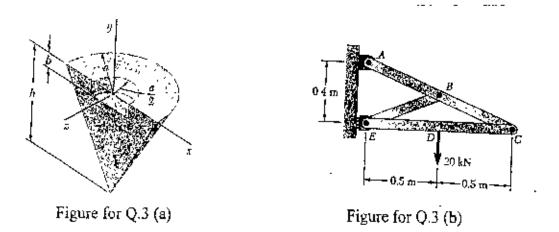

 (a) Collars A and B are connected by a 525-mm long wire and can slide freely on frictionless rods as shown in Figure for Q. 1(a). If a force P = (341 N)j is applied to collar A, determine the tension in the wire when y = 155 mm.

(b) The wire AE is stretched between the corners A and E of a bent plate as shown in Figure for Q. 1(b). Knowing that the tension in the wire is 435 N, determine the moment about O of the force exerted by the wire on corner E. Using this moment determine the perpendicular distance from point O to wire AE.

 (a) For the frame and loading as shown in Figure for Q. 2(a), determine the reactions at C and D.

(b) A Fink roof truss is loaded as shown in Figure for Q. 2(b). Determine the force in members BD, CD and CE.

(20)


(26%)

(23)

(23%)

ME 241/ME

3. (a) Determine the y co-ordinate of the centroid of the body shown in Figure for Q. 3(a). (23)
(b) For the frame and loading as shown in Figure for Q. 3(b), determine the components of all forces acting on member ABC. (23³/₃)

4. (a) Block A supports a pipe column and rests on wedge B as shown in Figure for Q. 4(a). Knowing that the co-efficient of static friction at all surfaces of contact in 0.25 and that θ = 45°, determine the smallest force P for which equilibrium is maintained. (23)
(b) Determine by direct integration the mass moment of inertia with respect to the y axis of the paraboloid as shown in Figure for Q. 4(b), assuming that it has a uniform density and a mass m. (23³/₃)

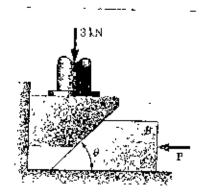


Figure for Q 4 (a)

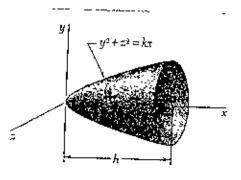


Figure for Q.4 (b)

Contd P/3

SECTION - B

There are FOUR questions in this section. Answer any THREE. Assume any missing data.

5. (a) Slider block A moves to the left with a constant velocity of 6 m/s as shown in Figure for Q. No. 5(a). Determine (i) the velocity of block B, (ii) the velocity of portion D of the cable, (iii) the relative velocity of portion C of the cable with respect to portion D.
(b) The velocity of block A is 2 m/s to the right at the instant (Figure for Q. 5(b)) when r = 0.8 m and θ = 30°. Neglecting the mass of the pulley and the effect of friction in the pulley, and between block A and the horizontal surface, determine at this instant, (i) the tension in the cable, (ii) the acceleration of block A, (iii) the acceleration of block B.

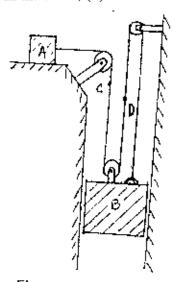


Figure for Q. No. 5(a)

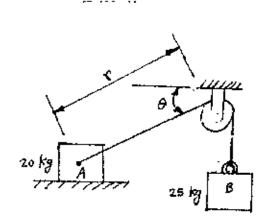


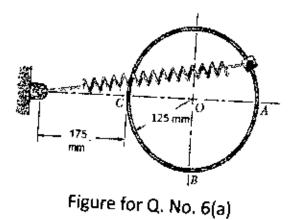
Figure for Q. No. 5(b)

6. (a) A 500 g collar is attached to a spring and slides without friction along a circular rod in a vertical plane as shown in Figure for Q. No. 6(a). The spring has a undeformed length of 125 mm and a constant k = 150 N/m. Knowing that the collar is released from being held at A, determine the speed of the collar and the normal force between the collar and the rod as the collar passes through B.

(b) Three identical small spheres, each of mass 1 kg, can slide freely on a horizontal frictionless surface as shown in Figure for Q. No. 6(b). Spheres B and C are connected by a light rod and are at rest in the position shown when sphere B is struck by sphere A which is moving to the right with a velocity $V_0 = (2.4 \text{ m/s}) \text{ i}$. Knowing that $0 = 45^\circ$, and that the velocities of spheres A and B immediately after the impact are $V_A = 0$ and $V_B = (1.8 \text{ m/s}) \text{ i} + (V_B)_y \text{ j}$, determine $(v_B)_y$ and the velocity of C immediately after impact.

Contd P/4

(20)


 $(26\frac{1}{3})$

(20)

(26%)

<u>ME 241/ME</u>

Contd... Q. No. 6

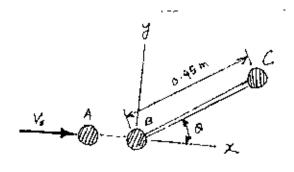


Figure for Q. No. 6(b)

7. (a) The nozzle discharges water at the rate of 1.3 m³/min, as shown in the Figure for Q. No. 7(a). Knowing the velocity of the water at both A and B has a magnitude of 20 m/s and neglecting the weight of the vane, determine the components of reactions at C and D.

(b) Collar A moves upward with a constant velocity of 1.2 m/s as shown in Figure for Q. No. 7(b). At the instant shown, when $\theta = 25^{\circ}$, determine (i) the angular velocity of rod AB, (ii) the velocity of collar B.

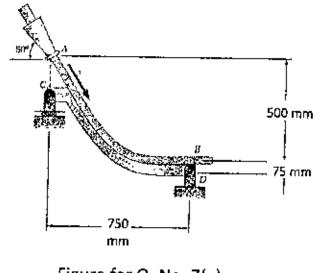
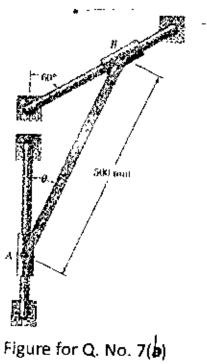



Figure for Q. No. 7(a)

Contd P/5

(26%)

(20)

<u>ME 241/ME</u>

8. (a) The collar P slides outward at a constant relative speed u along rod AB, which rotates counterclockwise with a constant angular velocity of 20 rpm, as shown in Figure for Q. No. 8(a). Knowing that r = 250 mm when $\theta = 90^{\circ}$, determine the magnitude of the acceleration of the collar P just as it reaches B.

(b) The 4 kg uniform rod ABD is attached to the crank BC and is fitted with a small wheel that can roll without friction along a vertical slot, as shown in Figure for Q. No. 8(b). Knowing that at the instant shown crank BC rotates with an angular velocity of 6 rad/s clockwise and an angular acceleration of 15 rad/s², counterclockwise, determine the reaction at A.

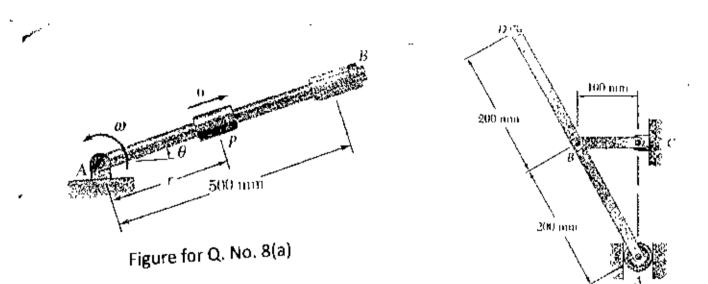


Figure for Q. No. 8(b)

(23)

 $(23\frac{1}{3})$

Date : 13/12/2014

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc. Engineering Examinations 2013-2014

Sub : MATH 261 (Vector Calculus, Matrices, Laplace Transform and Series Solution)

Full Marks: 280

Time : 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks.

SECTION - A

There are FOUR questions in this section. Answer any THREE. Symbols have their usual meaning.

(a) Define elementary matrix. Find a sequence of elementary matrices that can be used
 to write the matrix A in row-echelon form where

$$A = \begin{bmatrix} 0 & 1 & 3 & 5 \\ 1 & -3 & 0 & 2 \\ 2 & -6 & 2 & 0 \end{bmatrix}$$

(b) Assume that $\underline{u} = (2, -2, 0), \underline{v} = (6, 1, 4), \underline{w} = (2, 0, -4)$ are vectors in \Re^3 having their initial points at the origin. Determine whether the three vectors lie in a plane. (15)

(c) For the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{bmatrix}$, find uon-singular matrices P and Q such that

PAQ is in the normal form.

2. (a) If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigenvalues of A, then prove that

- (i) $k \lambda_1, k \lambda_2, ..., k \lambda_n$ are the eigenvalues of the matrix kA, where k is a non zero scalar.
- (ii) $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \dots, \frac{1}{\lambda_n}$ are the eigenvalues of the inverse matrix A^{-1} .
- (iii) $\lambda_1^p, \lambda_2^p, \dots, \lambda_n^p$ are the eigenvalues of A^p , where p is any positive integer.

(b) If
$$A = \begin{pmatrix} 1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2 \end{pmatrix}$$
, find the eigenvalues of $(A - 3I)^2$. (10^{3/3})

(c) For the real symmetric matrix A, find a non-singular matrix P such that $P^{T}AP$ is diagonal and also find its rank, index and signature where

$$A = \begin{pmatrix} 1 & -3 & 2 \\ -3 & 7 & -5 \\ 2 & -5 & 8 \end{pmatrix}$$

Contd P/2

(15%)

(16)

(12)

(24)

L-2/T-1/ME

<u>MATH 261/ME</u>

point (2, -1, 5).

3. (a) A particle moves along the curve <u>r(t) = (t³ - 4t)i + (t² + 4t)j + (8t² - 3t³)k</u>, where t is the time. Find the magnitudes of the tangential and normal components of its acceleration when t = 2. (17³/₃)
(b) Find equations for the tangent plane and normal line to the surface z = x² + y² at the

(c) Show that $\underline{E} = \frac{r}{r^2}$ is irrotational. Find ϕ such that $\underline{E} = -\nabla \phi$ and $\phi(a) = 0$, where a > 0. (17)

4. (a) Show that ∫_C(y² - 6xy + 6)dx + (2xy - 3x²)dy is independent of path between (-1, 0) and (3, 4). (10⅔)
(b) If <u>F</u> = 2y<u>i</u> - z<u>j</u> + x²k and S is the surface of the parabolic cylinder y² = 8x in the first octant bounded by the planes y =4 and z = 6, evaluate ∬<u>F</u>.<u>n</u>dS. (16)

(c) Verify Stokes' Theorem for $\underline{F} = (y - z + 2, yz + 4, -xz)$ where S is the surface of the cube x = 0, y = 0, z = 0, x = 2, y = 2, z = 2 above xy-plane. (20)

SECTION - B

There are FOUR questions in this section. Answer any THREE.

5. (a) Find the series solution of the differential equation (x - x²)y² + (1 - x)y' - y = 0 by the method of Fröbenius. (36⅔)
(b) Show that P_n(-x)=(-1)ⁿ P_n(x) and hence deduce that P_n(-1)=(-1)ⁿ. (10)

6. (a) Show that the Legendre polynomial $P_n(x)$ is the coefficient of h^n in the expansion of $(1-2xh+h^2)^{-\frac{1}{2}}$. (30³/₃)

(b) Prove that
$$\int_{-1}^{1} P_n(x) P_m(x) dx = \begin{cases} 0 & m \neq n \\ \frac{2}{2n+1} & m = n \end{cases}$$
 (16)

Contd P/3

(12)

MATH 261/ME

7. Show that

(i)
$$\frac{d}{dx}[x J_n(x)J_{n+1}(x)] = x[J_n^2(x) - J_{n+1}^2(x)]$$
 (15)

(ii)
$$\int_{0}^{x} x^{2} J_{0}(x) J_{1}(x) dx = \frac{1}{2} x^{2} J_{1}^{2}(x).$$
 (15)

(b) State and prove Heariside expansion formula; using above formula find

$$L^{-1}\left\{\frac{3s+1}{(s-1)(s^2+1)}\right\}.$$
 (16³/₃)

(8+8=16)

8. (a) If f(t) be a periodic function with period T > 0, find $L\{f(t)\}$. (10^{2/3})

(b) Find

(i)
$$L \left\{ \int_{0}^{t} \frac{1 - e^{-u}}{u} du \right\}$$

(ii) $L^{-1} \left\{ \frac{1}{\left(s^{2} + a^{2}\right)^{\frac{1}{2}}} \right\}.$

(c) Solve the following differential equation by using Laplace transformation: (10+10=20)

(i)
$$y''(t) - 3y'(t) + 2y(t) = 2e^{-t}, y(0) = 2, y'(0) = -1$$

(ii) y''(t) - ty'(t) + y(t) = 1, y(0) = 1, y'(0) = 2.

= 3 =

L-2/T-1/ME

1.

2.

Date: 05/01/2015

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc. Engineering Examinations 2013-2014

Sub : $ME \ 201$ (Basic Thermodynamics)

Full Marks: 280

Time : 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks.

SECTION - A

There are FOUR questions in this section. Answer any THREE.	
All the symbols have their usual meaning.	
Assume a reasonable value for any missing data.	
Steam Tables add R-134a chart are supplied.	<u>*</u> .
(a) Define point function and path function. Show that work is a path dependent	
function.	(12)
(b) Differentiate between reversible and irreversible process. What are the main causes	
that render irreversibility in a system?	(10)
(c) Define 0 th law of thermodynamics. Explain its importance.	(7)
(d) A spherical balloon contains air at $P_1 = 150$ kPa is placed in vacuum. It has an initial	
diameter of $D_1 = 0.3$ m. The balloon is heated until its diameter is $D_2 = 0.4$ m. Consider	
pressure in the balloon is proportional to its diameter, calculate the work of expansion.	(17½)
(a) State the 'First Law of Thermodynamics'. Prove that energy is a thermodynamic	
property.	(8)
(b) Explain clearly the difference between a non-flow and a steady flow process. Write	
down the general energy equation for steady flow system and simplify it when applied	
for the following systems:	(17)
(i) Centrifugal water pump	
(ii) Steam nozzle	
(iii) Gas Turbine	
(c) What do you mean by "perpetual motion machine of first kind (PMM-1)"?	(7)
(d) Given a steam turbine with $\dot{m} = 1.5$ kg/s, $Q_{CV} = -8.5$ kW with the following inlet and	
exit conditions:	(14¾)
$P_i = 2$ MPa; $T_i = 350^{\circ}$ C; $V_i = 50$ m/s; $z_i = 6$ m.	
$P_e = 0.1$ MPa; $x_e = 1$; $V_e = 200$ m/s; $z_e = 3$ m	
i e	

Find the output power.

ME 201/ME

3.	(a) Give the following statements of second law of thermodynamics:	(8)
	(i) Clausius statement	
	(ii) Kelvin-Planck statement	
	(b) Derive an expression for the efficiency of the reversible heat engine.	(4)
	(c) What is entropy? Given an expression for entropy changes for an open system.	(10)
	(d) A 0.3 kg metal bar initially at 1200 K is removed from an oven and quenched by immersing it in a closed tank containing 9 kg of water initially at 300 K. Each substance can be modeled as incompressible. An appropriate constant heat value for the water is $C_w = 4.2 \text{ kJ/kg.k}$ and an appropriate value for the metal is $C_m = 0.42 \text{ kJ/kg.k}$. Heat	
	transfer from the tank contents can be neglected. Determine:	(24%)
	(i) the equilibrium temperature of the metal bar and the water and(ii) the amount of entropy produced.	
4,	(a) Explain the concept of 'Exergy'. When does the system become dead?	(8)
	(b) Derive the Maxwell relations and explain their importance in thermodynamics.	(12)
	(c) Superheated water vapor enters a valve at 3.0 MPa and exits at a pressure of 0.5	
	MPa. The expansion is a throttling process. Determine the specific flow exergy at the	
	inlet and exit and the exergy destruction per unit of mass flowing. Let $T_0 = 25^{\circ}C$ and	
	$P_0 = 1$ atm.	(24⅔)
	SECTION - B	

SECTION - B

There are FOUR questions in this section. Answer any THREE. P-h Chart for R-134a and steam tables are supplied. Assume standard data if necessary. Symbols have their usual meaning.

(a) What do you understand by a "Stoichiometric" mixture? Briefly explain why "Non-5. (10%) Stoichiometric" mixtures are often burnt in real engines and burners. (b) A sample of dry coal has the following composition by mass: C = 84%, H = 6%, O = 5.5%, N = 1%, S = 0.5% and Ash = 3%. Calculate the required air-fuel ratio by (20)mass when it is burnt with 20% excess air. (c) Briefly describe a "Stirling Cycle" using schematic, P-V and T-S diagrams. Which is the most important advantage of a Stirling cycle in your opinion? Justify your choice. (16)

Contd P/3

ME 201/ME

9

- 6. (a) Define absolute humidity. Deduce an expression of absolute humidity in terms of-atmospheric pressure, saturation pressure and relative humidity. Using data from the steam table calculate the absolute humidity for a room condition of 30°C and 70% RH. (20³/₃)
 (b) Define "Ton of Refrigeration". A vapour compression refrigeration cycle using R-134a operates with an evaporator temperature of -10°C as dry saturated vapour and at a condensing temperature of 40°C with 10° of subcooling. For a cooling capacity of 20 Tons, determine (26)
 - (i) COP and EER.
 - (ii) Mass flow rate of refrigerant in kg/s.
 - (iii) Required compressor power in kW.

[Draw the cycle on the p-h chart supplied]

7.	(a) Using P-V and T-S diagrams explain why the combustion in a SI engine approaches constant volume combustion, while combustion in a CI engine approaches a constant	
	pressure case.	(16)
	(b) Define MEP. State its typical values for SI and CI engine.	(6 %)
	(c) An ideal diesel cycle has a compression ratio of 18 and a cutoff ratio of 2. The displacement volume of the engine is 1800 cc. Considering air-standard analysis with	
	initial condition of 27°C and 100 kPa. Calculate—	(24)
	 (i) Temperatures at the end of each process (ii) Net work output (iii) MEP. 	
8.	 (a) What do you understand by "Regeneration" in a GT cycle? Deduce an expression of thermal efficiency in an ideal GT cycle with regeneration. Briefly state the influence of pressure ratio on such a cycle. (b) An ideal regenerative Rankine cycle operates with the steam entering the turbine of 30 bar and 500°C and is finally exhausted at 0.2 bar. An OFWH is used for regeneration 	(22 ⅔)
	which operates at 5 bar. Using the steam table supplied calculate—	(24)

(i) Thermal efficiency (ii) SSC, of the cycle.

	!	ATURA Spec	vol.	Int		Enti	halpy	Ent	гару
			=kg		/kg		/kg		(g°K)
Г	P	Sat	Sat	Sat.	Şat	Sat.	Sat	Sat.	Sal
c	bar	lig	vap.	liq.	vap	liq	vap	liq	vap
0		Vr X 1000	ν _g	Чr	цg	h _r	n,	5 r	Sg
01	0.0061	1.0002	206.1	0.01	2376	0.01	2501	0	i 9 tS
1	0 0081	1.0001	157 2	16.79	2381	16 79	2509	0.061	9.05
5	0 0087	1.0001	147 1	21 00	2383	21	2511	0.0762	9 02
5	0.0093	1,0001	137.7	25.21	2384	25.21	2512	0.0912	9 00
\$	0.0107	1.0001	120.9	33 61	2387	33.61	2516	0.1212	8 95
0	0.0123	1 0001	106.4	42.01	2389	42.01	2520	0 151	8 90
1	0 0131	1 0007	99.8 6	46.19	2391	46.19	2522	0.1658	8.676
2	0.0140	1 0007	93 79	50.40	2392	50.4	2523	Ð 1806	B 852
3	0.0150	1 0007	88.13	54.59	2393	54.59	2525	D 1953	8.828
4	0 0160	1.0007	82.85	58 80	2394	5B 8	2527	0 2099	8 80
\$ \$	0.0170	1.0007	77 93	62 99	2396	62 99	2529	0 2245	8.78 1
6	0.0182	1.0013	73 34	67.17	2397	67.17	2531	D 239	8 758
7	0 0194	1 0013	69 05	71 36	2399	71.36	2533	0 2535	8 739
8	0 0206	1.0013	65 04	75.57	2400	75.57	2534	0.2679	8 712
9	0 022D	1.0013	61 30	79 76	2401	79 76	2536	0.2823	8 690
Ď	0.0234	1 002	57.79	83 94	2403	83 94	2538	0.2966	8,667
1	0 0249	1 002	54.52	88 13	2404	88.13	2540	0.3108	8 649
2	0 0264	1 002	51,45	92.32	2406	92.32	2542	0.3251	8.623
3	0.0281	1.0026	48 58	96.50	2407	96.5	2544	0.3392	B 601
4	0 0298	1 0026	45 89	100.7	2409	100.7	2545	0 3533	6.579
5	0.0317	1.0032	43 36	104 9	2410	104.9	2547	0.3673	8.558
5	0 0336	1,0032	41 00	109.0	2411	109.0	2549	0.3814	B 537
í.	0 0 3 5 7	1 D032	38.78	113.2	2412	113.2	2\$ 5 1	D 3953	8.515
8	0 0378	1.0038	36 69	117.4	2414	117 4	2553	0 4093	8,495
9	0 0401	1 00 38	34.73	121.6	2415	121.6	2554	0.4231	8 474
Ó.	0.0425	1 0045	32.90	125.8	2416	125.8	2556	0 4369	6,45.
1	D 0450	1 0045	31.17	130.0	2418	130.0	2558	0.4507	8,433
2	0.0476	1.0051	29.54	134.1	2419	134 1	2560	0.4644	8 413
3	0 0503	1.0051	28 01	138.3	2421	138 3	2562	0.478	18 393
4	0 0532	1 0057	26 57	142 5	2422	142.5	2563	0 4917	8.373
5	0 0563	1 0057	25 22	146 7	2423	146.7	2565	0 5053	8.353
6	0 0595	1 0063	23 94	150 8	Z425	150.8	2567	0.5188	B.33 3
8	D 0663	1 007	21.60	159.2	2427	159.2	2571	0.5457	8 295
0	0 0738	1 0076	19 52	167.5	2430	167 5	2574	0.5725	8,257
5	0 0959	1.010	15 26	188.4	2437	188 4	2583	0.6386	8 169
5	0.1235	1 012	12 03	209.3	2443	209.3	2592	0.7037	8.076
5	0,1576	1,015	9.569	230.2	2450	230.2	2601	0.7679	7.991
0	0.1994	1.017	7 671	251 1	2457	251.1	2610	0 8311	7 910
5 5	0 2503	1 020	6.197	272 0	2463	272 0	2618	0 8934	7.831
9 0	0 3119	1.023	5 042	293 0	2470	293.0	2627	0 9549	7 755
5	0 3858	1.023	4 131	313 9	2476	313.9	2635	1.016	7 682
)	0 4739	1.029	3 407	334 6	2462	334.9	2644	1.075	7 612

.

4

.

		RATED STEAM - 7 Spec. vol m ³ =kg		int E kJ/	Ener.	Enth kJ/	афу	kJ≖(kg ^o K)		
		Sat.	Sat	Sat	Şat	Sat	Sat.	Sat.	Sat.	
т	P	líq	vap.	lıq.	vap.	lıq	vap	llq	vap	
°C	bar	Vr	Va	Ц.e	ue	hr.	hg.	Sr.	30	
		X1000	-							
85	0 5783	1 033	2.828	355 B	2488	355.9	2652	1 134	7.544	
90	0.7013	1.036	2 361	376.8	2494	376.9	2660	1 193	7 479	
95	0 8455	1.039	1.982	397.9	2501	398.0	2668	1.250	7,416	
100	1.013	1.044	1.673	418.9	2507	419.0	2676	1 307	7 355	
110	1,433	1.052	1.21	461.1	2518	461.3	2691	1,418	7.239	
120	1.985	1 060	0.892	503 5	2529	503 7	2706 .	1.528	7 130	
130	2,701	1.069	0 669	546 0	2540	546.3	2720	1 634	7 027	
140	3.613	1.080	0 509	588.7	2550	589 1	2734	1 739	6 930	
150	4 758	1.091	0 393	631.7	2559	632.2	2746	1 842	6 838	
160	6.178	1 102	0 307	674.9	2568	675.5	2758	1.943	6.750	
170	7,916	1.114	0 243	718.3	2576	719.2	2769	2 042	6 666	
180	10.02	1.127	0.194	762 1	2584	763 2	2778	2 140	6.586	
190	12.54	1.141	0,157	806.2	2589	B07 6	2786	2.236	6 508	
200	15.54	1 156	0,127	850.6	2596	852 4	2793	2 331	6 432	
200	19.06	1.172	0.104	895.5	2600	897 8	2798	2.425	6 35E	
220	23.18	1 190	0.086	940.8	2603	943.6	2802	2 51B	6 286	
230	27 95	1 209	0 072	986.7	2603	990.1	2804	2.610	6 219	
	33.44	1.229	0.06	1033	2603	1037.3	2804	2,702	6 144	
240	39 73	1 251	0.05	1080	2603	1085.3	2802	2.793	6 073	
250	-	1 275	0 042	1128	2600	1134.4	2797	2 884	6 002	
260	46.88	1,302	0 0 36	1177	2592	1184.5	2790	2.975	5 930	
270	54,98	1.332	0.03	1227	2587	1236 0	2780	3 067	5 65	
280	64.11	1.332	0 026	1279	2573	1289 D	2766	3 159	5,783	
290	74 36 85.81	1.403	0.022	1332	2560	1344.0	2749	3 253	5.70	
300		1,403	0 0 1 5	1445	2531	1461.5	2700	3,448	5.53	
320	112 7 145 9	1 638	0 011	1570	2462	1594.1	2622	3.659	5 33	
340	186.5	1,893	0.007	1725	2351	1760 5	2481	3,915	5 053	
360 374.14	220.9	3.155	0.003155	2030	2030	2099.3	2099	4.430	4.430	

BJBAT BAUSSBAR - MABTS GBTARUTAS

		-	、	110 01	<u> </u>			,	
4.430		5066	5066	5026	5030	0.003	551 8	314 1	500.6
126.6	1 013	L102	9281	5622	9871	900.0	5 03P	8 598	00Z -
2054	859 5	5465	9221	8882	0721	700.0	1.924	S-196	061
501.3	178 2	5210	ZE71	5212	6691	800 D	628.1	0 258	081
841.5	3 808	6492	0691	5097	0991	800.0	0111	ZSE	0/1
2 549	912 8	1852	0991	2432	£Z9L	600.0	112.1	1 L ME	09L
018 9	3 982	1192	1191	5 429	985 L	010.0	869.1	345 3	091
215 5	£79 £	8892	1251	5411	6†5l	Z10'0	1191	8 955	001
2 135	199 8	5995	2891	9672	1191	£10 0	499 L	33110	[OCL
767 5	961 8	5897	1011	·£197	E201	Þ1010	1'255	8.425	150
£99 S	3'¢56	9012	091	OESZ	1434	910.0	681 1	2 8t£	011
719 S	096.8	5212	8001	SYSZ	1363	810.0	£57 L	1112	001
229'5	3 589	2742	6961	BSSZ	OSEL	120.0	814'L	303.4	-06
2°343	£07 E	8972	2181	5210	9061	6 03d	≯8€ L	562.1	09
E18.2	121 8	711 7	1921	5280	1528	LZ0.0	1 325	582'6	02
	2 021	\$3184	EtZL	0652	5021	280.0	6181	9 522	09
688 5	079.20	P915	¢ili ¢SLL	2692	1148	620 D	982.1	0 \$92 -	05
2 613	962'2	1082	2801	5905	2901	050 0	2521	Þ 052	0
020 9		2804	8001	1092	500L	490'0	2121	533.6	30
281 9	200 C 200 C	0082	B 806	0092	≥906	0010	4466	5124	so
106 9 985 9	6212	8775	B 800 B 791	5284	1196	0100	1211	6 624	0L
£69'9	560 Z	922C	8 Z#L	0892	812	517 0	LZLL	7 SZL	6
£999	900 C	6912	1124	2257	2 027	070	SLLL	17071	ŝ
			7 169	5292	1 969	£12.0	801.1	0 591	ž
807.8	2661	\$9 <u>1</u> 7					101'1	6'89L	9
092.9	1 634	5167	9 0 <u>/</u> 9 7 050	299Z	6 699	910 O 910 O	1 063	8 LSL	ç
6.821	L98'L	5146	2 049	1992	£'6£9			9 2 4 1	
968.9	LLL L	5136	8 109	5654	£ 1/09	E917 0	780 L		P
Z66'9	ZL9 1	5775	5,168	2244	1.188	909 0	5/0 L	133.9	3
7,127	1,230	2101	2.005	5230	9°‡09	9 8 8 0	190 L	2 0ZL	Z
1 553	1-434	₽69Z	1.764	5250	6 99	6511	ESO'L	1111 7044	5.1
69812	11303	5 <u>7</u> 97	Þ (1)	909Z	5'210 1 5 3 5	769 L	1-043	66 95	1 60
968 L	072,1	1297	(1907	2032	L 500	0281	140'I 450 I	17 96 S 66	80
S£4.7	1 533	5666	1168	5466	9 L6£	480 Z	1 036		
069 L	Zoll	5990	1915	7464	9915	598 Z	980'L	S6 68	210 010
7 532	S⊳1'l	5923	6 69ê	5460	8 658	21132	1 933	76198	9.0
1 264	160 L	3646	3.00.5	5484	340 4	3"5#0	1 030	81.33	50
029 L	9Z0'1	7637	9119	2422	3112	3,994	1 D7C	48 St	₽'0 8 0
69L L	VV6'0	5625	2.99.2	5468	586.5	2 556	1 053	11.69	60
806 2	288.0	5610	561.4	242 <u>)</u>	▶ 19Z	679 L	ξ ι0 (20 09 0'Cm	05
051.8	6#9 0	5892	8,191	5038 7038	8.191	89 ¢L	0101	8'S₽	L 0
8 556	0'263	2677	B 821	2435	8 671	18,11	1 008	9 L P	80'0 20 0
165.8	122.0	2992	S LSL	5452	SISL	53122	900 1	91.92	90.0
94 M B	0.423	5554	121.4	51¢Z	\$'lZl	34 80	1001	96.97	\$0 O
5 -	1.4	6		⁶ n		6 _A	0001 X	1	
5 ₅	45 5	⁶ ц doa	ч ч		4n Ibu		JA be	⊃ ₀ [bed
dev	pil	dev	bң	.qev	.pil	dea	pil	1	đ
165	185	<u>')85</u>	162	10S	162	10S			
(ک _و نڊ)		/אַל (קויפי)		/kð		€ ∦ =,	u) ode		
. Кdou	toj	Adjey	Euti	EDEL	1 01	107	1903	ł.	

vinm^z=kg, u in kJ/kg, n in kJ/kg, s in kJ∗(kg°K) SUPERHEATED STEAM

616.6	3486	3135	61 01		51.01 2013	3486	3135	20 CC	005 05*
B41'6	3383	3046	5,632		266.6	3383	3020	Z9 S5	
0 0 50	3536	5669	278 8		£48.P	3380	696Z	<i>(L</i> 19	000
£06'8	3161	5062	178 B		81 <u>7</u> 6	316B	5062	69.84	09E
111 B	3116	£1/8Z	718 L		6 '289	211E	5843	Z9 SÞ	350
169.8	3039	1872	982.7		900 6	3031	Z872	45.54	560
8 483	1962	2120	L51.9		992.9	5628	5151	9 1 68	540
\$ 35¢	878S	5990	9 558		011.0	2880	1992	86 38	500
Z51 B	5801	5901	969'9		696 8	2802	2003	33 3O	091
196 L	\$353	ZPSZ	£91 S		284 B	922Z	2642	30 35	0Z I
£98 L	5684	5243	968 🕈		587.8	5688	9152	58 VB	100
994 L.	9¥9Z	2484	979 V		085.8	0592	<u> 1897</u>	<u>51'75</u>	08
5	ч	'n	Λ		5	Ч	n	۸.	<u> </u>
	अस्य इष्ट	Q = d				bar	90'0 4	d	
	(M	กิจโลกจา	IL C BY	Sel.	<u>и и '6м/с'</u>	<u>чшп'</u> Б	N=_U1_U1	л	

MABTE DETABHREQUE

	<u>160 </u>			<u>и, п. руу</u> г,	09t 8 [°] a			
s	ч	n	Λ	5	<u> </u>	n _	. А	
19812	<u>9292 </u>	<u>9057</u>	S69 1	\$£8'L	5980	2210	5 (34	<u>00</u>
199 L	5343	2832	£67 †	T£8.T	5150	5640	5 23J	¢Z
0991	9612	8692	₹86 L	7,828	864Z	5666	1 8 Z	- 09
1,834	528Z	5928	57175	100 8	1187	6992	801 E	00
966 L	7 56Z	5140	5'326	191.8	5629	6172	3 314	01
8 144	3034	2380	5°242	8 310	SEDE	5380	669 E	- 08
987.8	3112	5845	51330	057.8	SL18	ZB15	3 604	0Z
L11-8	3169	706Z	216 Z	£85 8	96LE	506Z	\$ 110	09
6123	3578	8967	20L 8	807.8	3516	5668	4,434	- 00
£69 B	3382	3048	3 334	8 \$28	3383	670E	\$9L \$	- 09
€8 834	3488	3135	3 292	666'8	3488	3135	P60 S	- 60
696.8	9655	3216	96L E	671.29	3663	3213	274 S	- 09
L60 6	504 G	. ZOEE ,	220 M	25Z 6°	3301	358B	£97.8	QC

مسمعد

SUPERHEATED STEAM

		P = 15	Dar			P= 3	bar	
Τ	v	<u>u</u>	h	S		u	h	S
120	1 188	2533	2711	7 269	- XXX	XXX	XXX	
160	1 317	2595	2793	7.466	0.6506	2587	2782	7 128
200	1 4 4 4	2656	2873	7.643	0.7162	2651	2866	7.311
200 240	1.570	2717	2953	7.805	0 7802	2713	2947	7.477
240 280	1.570	2779	3033	7.955	D.8438	2775	3029	7 630
280 320	1,819	2841	3113	8.096	0.9067	2838	3110	7 772
360	1.943	2903	3195	8.229	0.9692	2901	3192	7 906
400	2 067	2967	3277	B 355	1 031	2966	3275	B 033
450	2.221	3048	3382	8 505	1.109	3047	3380	8,183
+ 90 500	2 376	3131	3488	8 646	1.186	3130	3486	8 325
	2.530	3216	3595	8.781	1 264	3215	3594	6 460
550 600	2.530	3302	3704	8,910	1.341	3301	3703	8.589

SUPERHEATED STEAM

	v	ln m ³ =k	g, u in k	J/kg, h in	kJ/kg, s in	kJ=(kg°⊧	<u>() </u>			
		P=5 b			Pe 7 bar					
T		u .	h	s	v	u	h	5		
160	0 3836	2576	2767	6 865	XXX	XXX	XXX	XXX		
200	0.4249	2643	2855	7.059	0.2999	2635	2845	6 886		
240	0 4644	270B	2940	7.230	0.3292	2702	2932	7 064		
280	0 5034	2771	3023	7.386	0 3574	2767	3017	7 223		
320	0.5416	2835	3105	7.531	0.3852	2831	3101	7.370		
360	0 5795	2899	3188	7 666	0 4125	2896	3185	7 506		
400	0.617	2963	3272	7 793	0.4397	2961	3269	7.635		
450-	0.6642	3045	3377	7,945	0.4735	3043	3375	7.787		
500	0.7109	3128	3484	8 087	0 507	3127	3482	7.930		
550	0.7575	3213	3592	8.223	0 5405	3212	3590	8.066		
600	0.6041	3300	3702	8 352	0 573B	3298	3700	8 195		
650	0 8505	3388	3813	8 476	D.6071	3387	3812	B 320		
700	0 8969	3477	3926	8 595	0.6403	3477	3925	8 439		

SUPERHEATED STEAM

.

	v	īn m³≖k	<u>ig</u> , u in k	:J∕kg, h_ln	kJ/kg, š in	kJ <u>=(kg</u> ⁰l	<)			
			ar		P=15 bar					
ĩ	Ÿ		h	\$	v	U	h	5		
200	0.2059	2622	2828	6.694	0.1325	2598	2797	6.455		
240	0 2275	2693	2920	6 882	0.1482	2677	2899	6 663		
260	0.248	2760	3008	7.046	0.1627	2749	2993	6,838		
320	0.2678	2826	3094	7 196	0 1765	2817	3082	6 9 94		
360	0.2873	2892	3179	7 335	0.1899	2884	3169	7.136		
400	0.3066	2957	3264	7 465	0 203	2951	3256	7 269		
450	0 3304	3040	3371	7.618	0.2192	3035	3364	7 424		
500	0 3541	3124	3479	7.762	0 2352	3120	3473	7 570		
550	0 3776	3215	3587	7 899	0 251	3206	3583	7.707		
600	0 401 1	3297	3698	B 029	0 2668	3294	3694	7.838		
650	0.4245	3385	3810	8,153	0.2825	3383	3806	7 964		
700	0.4245	3475	3923	8.273	0 2981	3473	3920	8 084		

SUPERHEATED STEAM

	. <u> </u>	in m ³ =k	n. u in k	J/ka, h in	kU/kg, s u	n kJ⊳(kg°i	K)	
·		≥⇒ 20 b			-	P= 3	0 bar	
	v	U	h	5	v	Ų	h	S
240	0 1084	2660	2876	6 4 4 5	0.0687	2620	2824	6 226
280	0.12	2736	2976	6 683	0 0771	2710	2941	6 446
320	0 1308	2808	3069	6 845	0.085	2788	3043	6 624
360	0 1411	2877	3159	6 992	0 0923	2862	3139	6.7 8 0
400	0 1512	2945	3248	7.127	0.0994	2933	3231	6.921
450	0 1635	3030	3357	7 284	0 1079	3020	3344	7 083
500	0 1757	3116	3468	7 432	0 1162	3108	3456	7 234
•	0.1877	3203	3578	7 570	0 1244	3196	3569	7 3/5
550		3291	3690	7.702	0 1324		3682	7 508
600	0 1996			7 828	0 1404		3796	7.636
650 700	0.2114 0.2232	3380 3471	3803 3917	7 949	6 1484		3912	7.757

SUPERHEATED STEAM

a,

ļ

	— V	In m ³ =k	g, u in k	J/kg, h In	kJ/k <u>g, s in l</u>	kJ <u>=(kg°</u> K	<u>e </u>	
						P= 60) bar	
		U	h	5	- v	u	. Þ	5
280	0 0555	2680	2902	6 257	0.0332	2605	2804	5.925
320	0.062	2767	3015	6.455	0 0387	2720	2952	6.184
	0.002	2846	3117	6 621	0.0433	2811	3071	6.378
360	0 0734	2920	3213	6 769	0.0474	2893	3177	6.541
400	0.08	3010	3330	6,936	0 0521	2989	3302	6 719
450	0.06	3100	3445	7 090	0.0567	3082	3422	6.880'
500	•	3189	3560	7 233	0.061	3175	3541	7.029
550	0 0927			7.369	0.0653	3267	3658	7 168
600	0 0988	3279	3674		0.0694	3360	3776	7 299
650	0.1049	3370	3790	7,497	•		3894	7.423
700	0 1109	3462	3906	7 620	0 0735	3453		
750	0.1169	3556	4023	7.737	0 0776	3547	4013	7 542

SUPERHEATED STEAM

	. <u> </u>	in m ⁴ =k	g, u in k	JZkg, h in	kJ/kg, s in l	KJ=(kg°l	<u><)</u>	
_			ar			P = 10	xo bar	
٣	· <u> </u>	<u>u</u>	h	s	- V	Ц	<u>h</u>	2
320	0 0268	2663	2877	5.949	0 0 1 9 3	2588	2781	5 710
360	0 0309	2773	3020	6.182	0 0233	2729	2962	6 006
	0 0343	2964	3138	6.363	0.0264	2832	3096	6.212
400		2966	3272	6 555	0.0297	2944	3241	6 419
450	0 0 3 8 2		3398	6.724	0 0328	3046	3374	6 597
500	0.0417	3065	3521	6.878	0 0356	3145	3501	6 756
550	0.0451	3160 3254	3642	7 020	0 0384	3241	3625	6,903
D03	0 0485	•	3762	7.154	0 041	3338	3748	7 040
650	0 0517	3349	3882	7 281	0.0436	3434	3870	7 169
700	0 0548	3444			0 0461	3532	3993	7,291
750	0.0579	3540	4003	7 402	0.0407	2442	3,10	

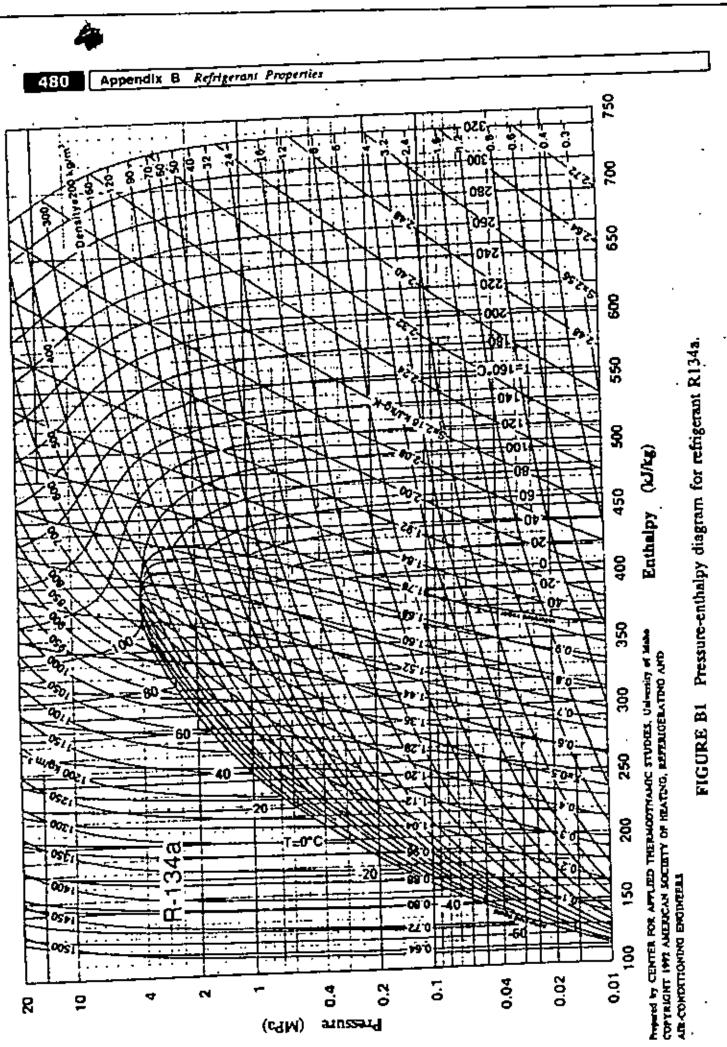
SUPERHEATED STEAM

		······	<u></u>		k l (ka c lb	k I-/ka ^b k	0	
				, јук <u>а</u> , п. ш	kJ/kg s in	$\frac{N-(N-1)}{D-1}$	0 bar	
	P	'≐ 120 <u>k</u>)ar				<u> </u>	
τ	- V	υ	- h	s	<u> </u>	<u>L</u> ł	<u> </u>	
360	0 0181	2678	2896	5 836	0.0142	2618	2816	5.660
	0 0211	2798	3051	6.075	0 0172	2761	3002	5.945
400		2919	3208	6 300	0 0201	2893	3174	6.192
450	0 0241				0 0225	3007	3322	6 390
500	D 0268	3027	3348	6 487			3459	6 562
550	0 0293	3129	3480	6 653	O 0247	3113		
600	0 0316	3229	3608	6 804	0 0268	3216	3591	6 717
		3327	3734	6.944	0 0268	3316	3720	6 860
650	0 0339			7 075	0 0307	3416	3846	6.994
700	0 0361	3425	3868		• •	3515	3972	7.120
750	0.0382	3524	3982	7,199	0 0326		-	
800	0.0403	3611	4095	7 305	0 0344	3604	4085	7.227

SUPERHEATED STEAM

_ .__. - . ._..

......


		3	UPER		0.010/0	V	~	· · · · · · · · · · · · · · · · · · ·
	v	in m³=k	g, u în k	<u>J∕kg</u> ,hin	kJ/kg, s in l	kJ=(K <u>g</u> ≈i	<u></u>	
			<u>лаг</u>			P = 18	0 bar	
	v	<u>u</u>	<u>n</u>	5	- v	<u> </u>	h	\$
	0.0111	2538	2716	5.461	0 0081	2418	2564	5 192
360			294B	5.817	0 0119	2673	2887	S 689
400	0.0143	2719		5.017 5.091	0 0146	2837	31DÓ	5 995
450	0.017	2866	3138		0.0168	2965	3267	6.21B
500	0.0193	2 98 6	3295	6 301	•	3079	3416	6,405
550	0 0213	3097	3438	6 480	0.0197	3188	3556	6.570
600	0 0232	3202	3573	6.640	0.0204	-		6719
650	0 025	3305	3705	6 786	0 0221	3292	3690	
700	0 0267	3407	3834	6 922	0.0236	3397	3821	6 858
	0 0284	3507	3961	7.050	0 0251	3499	3951	6 988
750	•		4088	7 171	0 0266	3600	4079	7 110
800	0 03	3608	4 000	, , , , ,	2 0200			

SUPERHEATED STEAM

		5	SUPER	HEATE	D <u>STEAN</u>	<u>л</u>		
		in m ³ =k	g, u in k	J/kg, h in	kJ/kg, s in	kJ=(kg°i	<u>0</u>	
			oar:			P= 24	0 bar	<u> </u>
- 	V	ų	h	5		U U	h	<u> </u>
400	0 0099	2620	2818	5 554	0 0067	2479	2639	5 239
45D	0 0127	2806	3060	5,902	0 0098	2738	2973	5.720
500	0 0148	7942	3238	6 140	0 0117	2897	3178	5 994
	0 0 1 6 6	3061	3393	6 335	0.0134	3026	3347	6 207
550		3174	3538	6.505	0.0148	3145	3501	6 387
600	0 0182			6 658	0.0163	3259	3645	6.548
650	0 0197	3281	3675			3366	3784	6.695
700	0 0211	3387	3809	6 799	0 0174			6 830
750	0 0225	3490	3940	6.931	0.0186	3473	3919	•
800	0 6239	3592	4070	7 054	0.0197	3579	4052	6 957
900	0.0264	3782	4310	7 267	0.0219	3787	4312	7 189

SUPERHEATED STEAM

							L I that		
	V	īn m³=k	ig, u in k	J/kg, h ii	n kj	/kg, s la	KJ=(K <u>y</u> -)	<u>()</u>	
			саг			_	P= 32	o ba <u>r</u>	
		<u> </u>	h	s	Γ۱.	v	u	<u>h</u>	
	0 0038	7224	2331	4 749	-	0.0024	1979	2056	4.324
400			2875	5 537		0.006	2572	2764	5.346
450	0 0076	2662				0 0079	2794	3047	5.725
50Q	0 (JO96	2845	3114	5.857			2950	3251	5 981
550	0 0111	2989	.3300	6 090		0.0094			6 186
600	0.0124	3116	3463	6 282		0 0106	3085	3425	-
650	0.0136	3234	3614	6 451		0 0117	3209	3583	6 363
		3347	3758	6 603		0 0127	3326	3733	6.520
700	0 0147			6 742		0 0137	3438	387ó	6 664
750	0 0158	3455	3898			0 0146	3548	4015	6 797
BÓQ	Q 0168	3563	4033	6 872		4	3763	4285	7.037
900	0 0187	3775	4299	7.108		Q 0163	2102	4200	1100

4

ł

---- A CHEAE 1007

ı بر

L-2/T-1/ME

Date : 10/01/2015

Time: 3 Hours

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc. Engineering Examinations 2013-2014

Sub : **EEE 259** (Electrical and Electronic Technology)

Full Marks: 280

USE SEPARATE SCRIPTS FOR EACH SECTION

The figures in the margin indicate full marks.

SECTION - A

There are FOUR questions in this section. Answer any THREE.

Students are advised to keep their answers concise.

1.	(a) Drive the relationship between phase and line voltages and currents for a delta (Δ)	
	connection.	(8½)
	(b) Describe the two-wattmeter method for measuring three-phase power.	(20)
	(c) The two-wattmeter method produces wattmeter readings $P_1 = 1560$ W and $P_2 = 2100$	
	W when connected to a delta-connected load. If the line voltage is 220 V, calculate-	
	(i) the per-phase average power	(4)
	(ii) the per-phase reactive power	(4)
	(iii) the power factor	(4)
	(iv) the phase impedance	(6)

(a) Establish the expression describing the apparent power rating advantage of an autotransformer over a conventional transformer.
 (10)

(b) A 5000-VA, 480/120-V conventional transformer is to be used to supply power from a 600-V source to a 120-V load. Consider the transformer to be ideal, and assume that all iusulation can handle 600-V.

- (i) Sketch the transformer connection that will do the required job. (4)
- (ii) Find the kVA rating of the transformer in the configuration. $(3\frac{1}{3})$
- (iii) Find the maximum primary and secondary currents under these couditions.

(c) Three 25-kVA, 24000/277-V distribution transformers are connected in Δ -Y. The open-circuit test was performed on the low voltage side of this transformer bank and the short-circuit test was performed on the high voltage side of this transformer bank. The following data were recorded:

 Open Circuit Test:
 $V_{\text{line, OC}} = 480 \text{ V};$ $I_{\text{line, OC}} = 4.10 \text{ A};$ $P_{3\phi, OC} = 945 \text{ W}$

 Short Circuit Test:
 $V_{\text{line, SC}} = 1600 \text{ V};$ $I_{\text{line, SC}} = 2.00 \text{ A};$ $P_{3\phi, SC} = 1150 \text{ W}$

Contd P/2

1.1.2.4

(4)

<u>EEE 259/ME</u>

-

ŧ

3.

4.

,

Contd... Q. No. 2(c)

(i) Find the per-unit equivalent circuit of this transformer bank.	(15)
(ii) Find the voltage regulation of this transformer bank at the rated load and 0.90	
PF lagging.	(5)
(iii) What is the efficiency of this transformer bank under the condition in part (ii)?	(5)
(a) Describe the effect of load change on a synchronous generator operating alone at	~
leading pf with the help of phasor diagrams.	(10)
(b) What is an infinite bus? What constraints does it impose on a generator paralleled	
with it?	(6¾)
(c) How can the real power sharing between two generators be controlled without	
affecting the system frequency? Explain with the help of house diagram.	(10)
(d) Two generators are supplying a real load totaling 2.5 MW at 0.8 PF lagging.	
Generator-1 has a no-load frequency of 61.5 Hz and a slope $S_{\rm pl}$ of 1 MW/Hz.	
Generator-2 has a no-load frequency of 61.0 Hz and a slope S_{p2} of 1 MW/IIz.	
(i) At what frequency is this system operating, and how much power is supplied	
by each of the two generators?	(6)
(ii) Suppose an additional 1-MW load were attached to this power system. What	
would the new system frequency be, and how much power would Gen-1 and	
Gen-2 supply?	(7)
(iii) What action could an operator take so that the real power is shared equally by	
Gen-1 and Gen-2, and the system frequency would remain unchanged?	(7)
(a) "If a three-phase set of currents, each of equal magnitude and differing in phase by	
120°, Nows in a three-phase winding, then it will produce a rotating magnetic field of	
constant magnitude" – prove.	(15)
(b) Explain, using phasor diagram, what happens to a synchronous motor as its field	(10)
current is varied. Derive the synchronous motor V-curve from the phasor diagram.	(15%)
	(1573)
(c) A 208-V, 45-kVA, 0.8 pf-leading, Δ -connected, 60 Hz synchronous machine has a	
synchronous reactance of 2.5 Ω and a negligible atmature resistance. Its friction and	
windage losses are 1.5 kW, and its core losses are 1.0 kW. Initially, the shaft is $\frac{1.5 \text{ k}}{100000000000000000000000000000000000$	
supplying a 15-hp load, and the motor's power factor is 0.80 leading.	(0)
(i) Find the values of I_A , $ I_L $ and E_A .	(8)
(ii) Assume that the shaft load is now increased to 30 hp. Find I_A , $ I_L $ and E_A after	201
the load change. What is the new motor power factor?	(8)

.

Contd , P/3

/

,

= 2 =

· +

<u>EEE 259/ME</u>

SECTION - B

There are FOUR questions in this section. Answer any THREE.

5. (a) Derive the induced-torque equation of a induction motor. (23)
(b) A 460 V, 25 Hp, 60 Hz, four pole, Y-connected induction motor has the following impedances in ohms per phase referred to the stator circuit: (23²/₃)

$R_{1}=0.641~\Omega$	$R_2 = 0.332 \ \Omega$	
$X_1 = 1.106 \Omega$	$X_2 = 0.464 \ \Omega$	$X_{M} = 26.3 \Omega$

The total rotational losses are 1100 W and are assumed constant. The core loss is lumped in with the rotational losses. The rated speed of the motor is 1760 rpm. At rated voltage and frequency, find the motor's: (20)

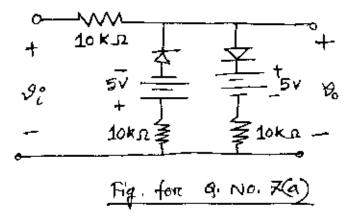
- (i) Shp
- (ii) Stator current
- (iii) Power factor
- (iv) τ_{ind} and τ_{load} (τ denotes torque)
- (v) Efficiency.

(a) Derive the expression for the terminal characteristic of a shunt DC motor. Using that expression discuss various speed control method for shunt DC motors. (20)

- (b) Draw the equivalent circuit for the following DC motors:
 - (i) Separately excited DC motor
 - (ii) Shunt DC motor
 - (iii) Series DC motor
 - (iv) Cumulatively compounded DC motor.
- (c) A duplex lap-wound armature is used in a six-pole DC machine with six brush sets, each spanning two commutator segments. There are 72 coils on the armature, each containing 12 turns. The flux per pole in the machine is 0.039 Wb, and the machine spins at 400 rpm. Calculate-
 - (i) How many current paths are there in this machine?
 - (ii) What is its induced voltage E_A .

Contd P/4

(12)


(14%)

= 3 =

<u>EEE 259/ME</u>

Ļ

- 7. (a) Assume that the diodes in the circuit of Fig. for Q. No. 7(a) are ideal. For the circuit-(20)
 - (i) Derive the expression for transfer-characteristics
 - (ii) Sketch the transfer-characteristics

(b) In the circuit of Fig. for Q. No. 7(b), the NMOS transistor has $V_1 = 0.9$ V and $V_A =$ (26%)

50 V, and operates with $V_D = 2$ V. Find-

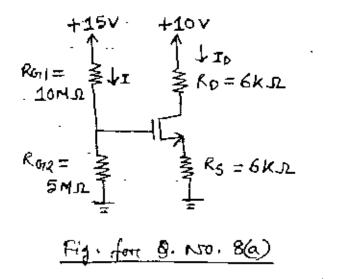
- (i) Small signal equivalent circuit.
- (ii) Voltage gain, $A_v = v_o/v_i$.
- (iii) Voltage gain A_v and DC voltage at drain $V_D,$ if I increased to 1 mA.

$$\frac{10 \text{ MSL}}{10 \text{ MSL}} = 10 \text{ V}$$

$$10 \text{ MSL} = 500 \text{ MA}$$

$$10 \text{ MSL} = 500 \text{ MA}$$

$$\frac{10 \text{ MSL}}{60} = 8$$


$$R_{\text{GR}} = 10 \text{ K} \text{ JL}$$

$$\frac{1}{4} = \frac{10 \text{ K} \text{ JL}}{10 \text{ K} \text{ JL}}$$

$$\frac{1}{4} = \frac{10 \text{ K} \text{ JL}}{10 \text{ K} \text{ JL}}$$

$$\frac{1}{4} = \frac{10 \text{ K} \text{ JL}}{10 \text{ K} \text{ JL}}$$

8. (a) Analyze the circuit of Fig. for Q. No 8(a) to determine the voltages at all Nodes (V_{G_7} V_D , V_S) and current through all branches. Let, $V_t = 1$ V and $k'_n (W_L) = 1$ mA/V². (23)

Contd P/5

EEE 259/ME

<u>Contd... Q. No. 8</u>

(b) In the circuit of Fig. for Q. No. 8(b), the emitter voltage is 1.0 V. Find out-

(23%)

- (i) V_B, V_C
- $(ii) \quad I_B, \, I_E, \, l_C$
- (iii) α, β

Here, all symbol represents usual meaning.

+ 5V 5kJ E 86) for Q.NO. kυ 5V

L-2/T-1/ME

<u>نا</u>

Date : 15/01/2015

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc Engineering Examinations 2013-2014

Sub : HUM 303 (Principles of Accounting)

Full Marks : 210

Time: 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE.

1. (a) "A variable cost is a cost that varies per unit of product, whereas a fixed cost is (5) constant per unit of product". Do you agree? Explain. (8)

(b) Define the following cost concept with example (any four):

(i) Non-manufacturing cost.

(ii) Relevant range.

(iii) Committed cost.

(iv) Differential cost.

(v) Prime cost.

(c) The SUSAN Company makes art prints. The following details are available for the (22)year ended 31st December, 2010.

	Amount (1k.)
Opening stock:	
Direct material	26,000
Work-in-process	74,000
Finished goods	120.000
Direct material purchased	436,000
Direct labor	12,000
Indirect labor	44,000
Administrative expenses	160,000
Depreciation on factory equipment	70,000
Selling expenses	140,000
Factory power, heat and light	20,000
Building rent (production uses 80% of the	50,000
spaces, administration and sales uses the rest)	
Sales promotion	10,000
Sates	100,0000
Utility, factory	5,000
Closing stock:	
Direct material	42,000
Work-in-process	54,000
Finished goods	80,000

Required:

(i) Prepare a cost of goods sold statement.

(ii) Prepare an income statement.

3

2. (a) What is meant by degree of operating leverage? Why is it calculated? (5)
(b) "Sun Flower" company has the following information related to cost structure and other data: (30)

<u>Cost data</u>	Amount (Tk.)
Direct material	115
Direct labor	10
Variable manufacturing overhead	5
Total variable cost per unit	130
Total fixed cost	180,000
Selling price per unit	150
Number of units produced and sold	30,000

Required:

- (1) Compute break-even-points in units and in amounts.
- (ii) Compute degree of operating leverage.
- (iii) Prepare a contribution margin format income statement selling price increases by

Tk. 2 per unit, fixed cost increases by Tk. 15,000 and sales volume decreases by 10%.

(iv) Compute break-oven-points in units if selling price increases by 10% and variable cost increases by 20%.

(v) Compute margin of safety in units and value. (Consider original data)

(vi) Compute number of units sold if target profit is Tk. 500,000. (Consider original data)

(vii) Compute income or loss when 40,000 units is sold and variable cost increases byTk 5 per unit. (Other information remaining same)

(viii) The company estimates that sales will increase by Tk. 45,000 next year due to increased demand. By how much should net operating income increases (Use CM ration to calculate your answer).

3. (a) What account is created when overhead cost is applied to work-in-process? Would you expect the amount applied for a period to equal the actual overhead costs of the period? Why or why not?

(b) The following information is available for "Quality Products Ltd" for the year 2010. The opening inventory account balances were as follows:

Raw materials	10,000
Work-in-process	4,000
Finished goods	8,000
Total	22,000

The company applies overhead cost to jobs on the basis of machine-hours. It was estimated that the company would operates 45,000 machines-hours and incur Tk. 99,000 in manufacturing cost. During the year, the following transactions were completed:

Contd P/3

= 2 =

(3)

(20)

ç,

Contd ... Q. No. 3(b)

(i) Raw material purchased on account Tk. 160,000.

(ii) Raw material requisitioned for the use in production Tk. 14,0000 (materials costing Tk. 120,000 were chargeable directly to jobs, remaining were indirect).
(iii) Costs of employee services were as follows:

Direct labor	90,000
Indirect labor	60,000
Sales commissions	20,000
Administrative salaries	50,000

(iv) Prepaid insurance expired during the year was Tk. 18,000 (Tk. 13,000 of this amount related to factory operation and the remainder related to selling and administrative activities).

(v) Utility costs incurred in the factory Tk. 10,000.

(vi) Advertising costs incurred Tk. 15,000.

(vii) Manufacturing overhead cost was applied to production (The company recorded 50,000 machine-hours of operating time during the year).

(viii) Goods that had cost Tk. 310,000 to manufacture according to their job cost sheets were transferred into the finished goods warehouse.

(ix) Sale (all on account) to customers during the year totaled Tk. 498,000. These goods had cost Tk. 308,000 to manufacture according to their job cost sheets.

Required:

• Prepare journal entries to record the transactions for the year 2010.

• Is manufacturing overhead under applied or over applied for the year? Prepare a journal entry to close any balance in the manufacturing overhead account to Cost of goods sold.

(c) Xavier Company produces a single product. Variable manufacturing overhead is applied to products on the basis of direct labor hours. The standard costs for one unit of product for June, 2009 arc as follows:

Direct material: 6 ounces at \$0.50 per ounce	\$3
Direct labor: 1.8 hours at \$10 per hour	18
Variable manufacturing overhead: 1.8 hours at \$5 per hour	9
Total standard variable cost per unit	<u>\$30</u>

During June, 2000 units were produced. The costs associated with Junes operations were as follows.

Material purchased: 18,000 ounces at \$0.60 per ounce	\$10,800
Material used in production: 14,000 ounces	
Direct labor: 4,000 hours at \$9.75 per hour	\$39,000
Variable manufacturing overhead costs incurred	\$20,800

Required: Compute

(i) Direct material variances. (Both quantity and price variance)

(ii) Direct labor variances. (Both rate and efficiency variance)

(iii) Variable manufacturing overhead variance. (Both spending and efficiency variance)

Contd P/4

(12)

- 4. (a) Speedy parcel service operates a fleet of delivery trucks in a large metropolitan area. A cost analyst has determined that if a truck is driven 120,000 miles during a year, the average cost is Tk. 11.6 per mile. If a truck is driven only 80,000 miles during a year, the average operating cost increases to Tk. 13.6 per mile.
 - Required:

(i) Using high-low method, estimates the variable and fixed cost elements of the annual cost of truck operation.

(ii) Express the variable and fixed costs in the form Y = a + bX,

(iii) If a truck were driven 100,000 miles during a year, what total cost would you expect to be incurred?

(b) What do you meant by Capital Budgeting decision? Mention several typical capital budgeting decisions.

(c) What is IRR? How is IRR computed?

(d) As a manager of The Heliberton Company, you are going to evaluate following two Projects: named as Project S and Project L. Both projects will require initial cost of Tk. 3,000. The cash flows of the projects, subsequent to the initial year, during their 4year life time has been presented in below:

Year	Project S	Project L
1	Tk. 1,500	Tk. 400
2	1,200	900
3	800	1,300
4.	300	1,500

Assume the required rate of return is 10%.

Which project you will accept, if the decision is based on:

- (i) Pay-Back Period
- (ii) Net Present Value
- (iii) Internal Rate of Return
- (iv) Profitability Index.

SECTION - B

There are FOUR questions in this section. Answer any THREE.

(3)

(3)

(20)

(9)

14

Contd ... O. No. 5(c)

- May 1: Made cash investment of Tk. 12,000 to start business.
- May 2: Paid monthly rent of Tk. 800.
- May 5: Purchases equipment for Tk. 8,000 on account.
 - May 8: Billed Tk. 5,300 to customers for services performed.
 - May 12: The owner withdrew Tk. 1,200 cash from business for paying school fees of child.
 - May 20: Make a proposal for purchasing a land costing Tk. 10,000.
 - May 21: Received eash from customers billed in (4).
 - May 25: Incurred advertising expense of Tk. 550 on account.
 - May 28: Purchased additional equipment amounting Tk. 6,000 for cash.
 - May 30: Received Tk. 7,700 cash from customers when service was performed.

Instruction:

Prepare a Tabular Analysis of the transactions using appropriate column headings.

6. (a) A student	, unaware of accounting terms, says that debit balances are favorable and	
credit balance	es are unfavorable? Do you agree? Explain your argument.	(5)
(b) Are the fe	blowing events recorded in the accounting records? Explain your answer in	
each case:		(6)
(i) The ov	vner of the company dies.	
(ii) Suppl	ies are purchased on account.	
(iii) An er	nployee of the company is fired.	
(iv) The o	wner of the business withdraws cash from the business for personal use.	
(c) On Dece	mber I, 2013 Javed started his business. The direct Delivery, Inc. He	
completed the	e following transactions during December of the current year.	(24)
December 1 :	Started his product delivery services by investing Tk. 15,000 cash.	
December 2:	Purchases Tk. 1,200 of office equipment on credit.	
December 3:	Purchased Tk. 300 supplies with eash.	
December 4:	Completed work for a client and immediately received Tk. 900 cash	
December 8:	Completed work for ABC Co. on credit, Tk. 1,700.	•
December 10:	Paid full amount for the purchase of Office Equipment On December 2	
December 18:	Received payment in half from ABC Co. for the work completed on	
December 27:	December 8. Javed withdrew Tk. 625 from business for his personal use.	
December 30:	Paid Tk. 275 cash for utility bills.	
December 30:	Received a bill for Tk. 550 for advertising for the current month.	

Contd P/6

= 5 =

Contd ... Q. No. 6(c)

Instructions:

(i) Journalize the following business transactions in general form. Explanations are necessary part of a journal entry.

(ii) Prepare Accounts Receivable and Service Revenue Ledger Account.

7 (a) Why may a trial balance not contain up-to-date and complete financial information? (5)
(b) The trial balance columns of the worksheet for Sasse Roofing at March 31, 2014, are as follows: (30)

Sasse Roofing

Trial Balance

For the Month Ended March 31, 2014

Account Titles	Debit	Credit
Cash	Tk. 4,500	
Accounts Receivable	3,200	
Supplies	2,000	·
Equipment	11,000	
Accumulated Depreciation- Equipment		1,250
Unearned Revenue		550
J. Sasse, Capital		12,900
J. Sasse, Drawing	1,100	
Service Revenue		6,300
Salarios Expense	1,300	
Miscellaneous Expense	400	
	23,500	23,500

Other Data:

- \rightarrow A physical count reveals only Tk. 650 of supplies on hand.
- \rightarrow Depreciation for the year is Tk. 3,000.
- \rightarrow Uncarned revenue amounted to Tk. 170 at March 31.
- \rightarrow Accrued Salaries are Tk. 600.

Instructions:

(i) Prepare the Adjusting Entries for the month of March. You may omit explanations.

- (n) Prepare Adjusted Trial Balance.
- (iii) Prepare Income Statement, Owner's Equity statement for the month of March and
- a Balance Sheet as at March 31, 2014.

Contd P/7

2

8. (a) Mention the importance and limitations of Financial Statement Analysis.

(b) Selected financial statement data for Skylark Corporation are presented below:

	2014	2013
Net Sales	Tk. 700,000	Tk. 650,000
Cost of Goods Sold	420,000	400,000
Interest Expense	35,000	30,500
Net Income	45,000	30,000
Accounts Receivable	45,000	48,000
Inventory	133,000	115,500
Total Assets	640,000	600,000
Current Liabilities	75,000	80,000
Long Term Debt	80,000	85,000
Total Shareholder's Equity	485,000	435,000
Weighted Average common shares outstanding	34,000	31,000
Market Price of each Share	Tk. 4.00	Tk. 5.00

Additional Information: For 2012, Total Assets was Tk. 533,000; Current liability was Tk. 70,000 and Long Term Debt was Tk. 50,000.

Instructions:

(i) Compute the following ratios for both 2013 and 2014.

- Current Ratio
- Profit Margin
- Return on Total Assets
- Earnings per Share
- Price-Earnings Ratio
- Debt to Assets ratio

(ii) Based on the Ratios calculated, discuss briefly the improvement or lack thereof in financial position and performance of the company from 2013 to 2014.

(8) (27)