rid Hutabr Ron
 $7.1 . r 3$

L-2/T-1/ME

Date : 07/01/2013

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc. Engineering Examinations 2011-2012
Sub : EEE 259 (Electrical and Electronic Technology) Full Marks : 280

Time : 3 Hours
The figures in the margin indicate full marks. USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE.

1. (a) A three phase, Y connected, abc sequence voltage source is supplying a three phase load having impedance $12+\mathrm{j} 9 \Omega$ in each phase. If the line impedance is $0.06+\mathrm{j} 0.12 \Omega$ in each line connecting the source and load, determine line and phase currents, line and phase voltages both for source and load side. Given, the load is Y connected.
(b) Make a free hand plot of signal vs. time of the following two signals:

$$
\text { (i) } x_{1}=A_{1} \sin \omega t, \quad \text { (ii) } x_{2}=A_{2} \cos \left(\omega t-60^{\circ}\right) \quad\left(A_{1}=2 A_{2}\right)
$$

From this plot determine which signal is leading with proper reasoning.
(c) Draw the vector diagram of the following signals:
(i) $x_{1}=A_{1} \sin \left(\omega t+30^{\circ}\right)$,
(ii) $\mathrm{x}_{2}=\mathrm{A}_{2} \sin \left(\omega \mathrm{t}-30^{\circ}\right)$,
(iii) $x_{3}=A_{3} \sin \left(90^{\circ}-\omega t\right)$,
(iv) $x_{4}=x_{1}+x_{2}-x_{3}$
2. (a) Derive the approximate equivalent circuit referred to primary of a transformer.
(b) The equivalent circuit impedances of a $20 \mathrm{kVA}, 4000 / 240 \mathrm{~V}, 60 \mathrm{~Hz}$ transformer are to be determined. The open circuit test and short circuit test were performed on the primary side of the transformer and the following data were taken:

Open circuit test (on Primary)	Short circuit test (on Primary)
$\mathrm{V}_{\mathrm{OC}}=4000 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{SC}}=489 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OC}}=0.214 \mathrm{~A}$	$\mathrm{I}_{\mathrm{SC}}=2.5 \mathrm{~A}$
$\mathrm{P}_{\mathrm{OC}}=400 \mathrm{~W}$	$\mathrm{P}_{\mathrm{SC}}=240 \mathrm{~W}$

Find the impedances of the approximate equivalent circuit referred to the secondary side and sketch that circuit.
(c) Draw the phasor diagram of a transformer operating at a lagging power factor, unity power factor and a leading power factor. In which case the voltage regulation will be positive?

$$
=2=
$$

EEE 259 (ME)

3. (a) Derive the equivalent circuit of a synchronous generator.
(b) Show graphically, the open circuit and short circuit characteristics of a synchronous generator. How can we determine the synchronous reactance at a given field current from these characteristics?
(c) A synchronous generator is supplying a load. A second is to be connected in parallel with the first one. The generator has a no-load frequency of 61 Hz and a slope of $1 \mathrm{MW} / \mathrm{Hz}$. The first load consumes a real power of 1000 kW at 0.8 pf lagging, while the second load consumes a real power of 800 kW at 0.707 pf lagging.
(i) Before the second load is connected, what is the operating frequency of the system?
(ii) After the second load is connected, what is the operating frequency of the system?
4. (a) Discuss armature current versus field current characteristics of a synchronous motor. Why is it shaped like 'V'?

SECTION - B

There are FOUR questions in this section. Answer any THREE.
5. (a) Discuss the current-voltage characteristics of the shunt, series, cumulatively compounded and differentially compounded DC generators.
(b) A $5-\mathrm{hp}, 1500 \mathrm{rpm}, 2$-pole DC series motor is running at 3% less than the rated speed supplying 2% more than the rated load. If induced voltage is 240 V , armature resistance is 10Ω, field resistance is 2Ω, then what is the input voltage? If the output torque is raised 5% due to increased load, while keeping the speed of rotation same as before, determine the armature current assuming the same induced voltage as before.
6. (a) A $480 \mathrm{~V}, 60 \mathrm{~Hz}, 50 \mathrm{hp}, 3-\phi$ induction motor is drawing 60 A at 0.85 pf lagging. The stator copper losses are 2 kW , the rotor copper losses are 700 W , the friction and windage losses are 600 W , the core losses are 1.8 kW and the stray losses are negligible. Find (i) the air gap power; (ii) the output power and (iii) the efficiency of the motor.
(b) Draw the torque-speed characteristics of an induction motor showing the starting torque, pull-out torque and rated torque.
(c) What is transducer? Classify transducers. What are primary and secondary transducers? Give examples.

LE 259 (ME)
7. (a) What are the differences between voltage amplifiers and power amplifiers? Classify power amplifiers.
(b) Briefly describe how a transistor can be used as an amplifier.
(c) For the circuit shown in Fig. for Q .7 (c), if an input signal v_{i} is applied such that the peak-to-peak variation of the base current is 0.01 mA , then draw the output voltage vs. time curve. Also, explain the slope of the curve.

Fig. Er $Q .7(c)$

Assume forward voltage drop of each diode is 0.7 V .

Fy. For Q. $8(b)$
(c) For the circuit shown in Fig. for Q. 8(c), calculate the base, emitter and collector currents.

L-2/T-1/ME

Date : 24/12/2012
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA
L-2/T-1 B. Sc. Engineering Examinations 2011-2012
Sub: HUM 303 (Principles of Accounting)
Full Marks : 210
Time: 3 Hours
The figures in the margin indicate full marks. USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE.

1. (a) Explain the basic accounting equation: Assets $(A)=$ Liabilities $(L)+$ Owner's Equity (OE) with examples.
(b) What is trial balance? Describe the advantages and disadvantages of trial balance.
(c) Mr. Akhand and his associates started their manufacturing business on August 1,
2. The following transactions took place during the first month of operation:

August 1 : Invested Tk. 90,000 in cash to start business.
August 7 : Purchased office equipment in cash amount Tk. 120,000.
August 10 : Hired a managing director to manage the business efficiency.
He will be paid to salary Tk. 20,000 per month.
August 18 : Incurred advertising expanse on account as Tk. 5,000.
August 20 : Incurred office rent in advanced as Tk. 10,000.
August 21 : Earned Tk. 30,000 for selling the product, Tk. 10,000 is received in cash and remaining on account.
August 23 : Withdrawn by Mr. Khan for his personal use as Tk. 5,000.
August 25 : Paid the amount due related to advertising expanse.
August 27 : Received cash from previous customer on transaction August 21.

August 31 : Employees' salaries expanse was due for Tk. 4,000.

Requirement:

Provide journal entries for above transactions.
2. (a) Discuss the objectives and importance of financial statements analysis.
(b) State qualitative characteristics and four principles to provide financial information with examples briefly.
(c) The following information taken from the financial statements of Eastern Housing Ltd.

Net Sales	Tk. 50,000
Gross Profit	Tk. 12,500
Net Profit	Tk. 6,500
Owner's Equity:	
01.01 .2011	Tk. 40,000
31.12 .2011	Tk. 30,000
Total Assets:	
01.01 .2011	Tk. 62,000
31.12 .2011	Tk. 60,000

HUM 303

Contd ... O. No. 2(c)

Required:

(i) Calculate profit ratio
(ii) Calculate Goss profit ratio
(iii) Compute Return on Equity (ROE)
(iv) Compute Return on Assets (ROA)
(v) Compute Equity ratio
(d) The following are selected items from a recent balance sheet of XYZ company:

Cash and Cash equivalents	Tk. 6000
Short term investment	Tk. 4000
Gross Accounts receivable	Tk. 8000
Allowance for doubtful debt	Tk. 1000
Merchandise inventory	Tk. 4500
Prepaid expenses	Tk. 4000
Accounts payable	Tk. 8000
Notes payable	Tk. 2000
Accured expenses	Tk. 1200

Required: Compute (i) Current ratio, (ii) Quick ratio and (iii) Working capital amount.
3. Green View limited has the following information taken as trial balance on 31st December, 2011.

Name of Accounts	Debit (Tk.)	Credit (Tk.)
Cash	8,000	
Accounts Receivable	36,000	
Allowance for uncollectible	---	4,800
Supplies	6,500	
Prepaid expense	8,000	
Inventory (01. 01. 2011)	94,000	
Office equipment	50,000	
Accumulated depreciation		
-Office equipment	---	10,000
Purchase	170,000	
Purchase Return	---	13,200
Sales Revenue	---	300,000
Sales Return	50,000	
Rent Expense	60,000	
Salary Expense	49,000	
Accounts payable	---	25,000
Notes payable	---	8,000
Advertising Expense	28,000	
Capital		198,500
Total	559500	559500

HUM 303

Contd... O. No. 3

Information for Adjustments:
(i) Estimated uncollectible account expense Tk. 2000
(ii) Supplies consumed during the period Tk. 3000
(iii) Prepaid expense is expired Tk. 2,200
(iv) Inventory on December 31, 2011 is Tk. 85,000
(v) Estimated depreciation for office equipment at the rate of 10% per year
(vi) Interest expense is accrued Tk. 1500
(vi) Advertising expense is accrued Tk. 5,000

Requirements:
(a) Show the necessary adjusting entries.
(b) Prepare adjusted trial balance.
4. The following is the trial balance of Tom Company as on 31st December, 2011.

	Debit (Tk.)	Credit (Tk.)
Sales revenue	\cdots	50,000
Merchandise inventory (01.01.11)	6,000	
Purchase	24,000	
Purchase return	--	1,000
Sales discounts	2,500	
Accounts receivable	20,000	
Accounts payable	$\cdots-$	14,000
Capital	$\cdots-$	40,000
Drawings	10,000	
Salaries	8,000	
Supplies	3,000	
Delivery Van	20,000	
Cash	9,300	
Prepaid insurance	2,200	
Total	105,000	105,000

Other information:
(i) Supplies used Tk. 1,200
(ii) Depreciation on delivery Van is Tk. 2,000
(iii) Merchandise inventory on 31st December, 2011 was Tk. 5,500
(iv) Tk. 2,500 of accounts receivable was uncollectible
(v) Salaries were accrued Tk. 4,000
(vi) Insurance expense was Tk. 2,000

Required:
(a) Prepare multiple income statement for the period ended on 31st December, 2011.
(b) Prepare statement of Owner's Equity and Balance Sheet as on 31st December, 2011.

$$
=4=
$$

HUM 303

SECTION - B

There are FOUR questions in this section. Answer any THREE.
5. (a) What is meant by a product's CM ratio? How is this ratio useful in planning business operations?
(b) Quality Products manufacture plastic football. The selling price is Tk. 37.50 per unit and variable cost is Tk .22 .50 per unit. Over the past year company sold 40,000 units of football, with the following results:

Sales $(40,000$ footballs)	Tk. $1,500,000$
Less: Variable expenses	Tk. 900,000
Contribution Margin	Tk. 600,000
Less: Fixed expenses	Tk. 480,000
Net Operating Income	Tk. 120,000

Required:

(i) Compute CM ratio and break -even point in units and sales Taka. Also compute degree of operating leverage of sales.
(ii) The company estimates that, in the next year variable cost will increase by Tk. 3 per football. The selling price will remain constant at Tk. 37.50 per football. What will be the new CM ratio and the new break-even point in units and sales Taka.
(iii) Refer to the data (ii) above if the expected change in variable costs take place how many footballs will have to be sold to earn the same net operating income (Tk. 120,000) as last year?
(iv) Refer to the original data. Assume that will decrease variable cost by 40% but fixed cost will increase by 90%. What would be the new CM ratio and break-even point in units and sales Taka?
(v) Refer to the data in (iv) above. Assume that in next year company will sell 50,000 units of football. Compute -

Contribution margin income statement and Margin of safety in units.
6. (a) Explain how fixed manufacturing overhead costs are shifted from one period to another under absorption costing.
(b) Advance Products Company manufactures and sells a single product. You have been given the following information:

Particulars	Amount (Tk.)
Variable cost per unit:	18
\quad Direct materials	7
\quad Direct labor	2
Variable manufacturing overhead	5
Variable selling and administrative	
Fixed costs per year:	160,000
\quad Fixed manufacturing overhead	110,000

HUM 303

Contd... Q. No. 6(b)

During the year, the company produced 20,000 units and sold 16,000 units. The selling price of per unit is Tk. 50.

Required:
(i) Compute the unit product cost under absorption costing and variable costing.
(ii) Prepare income statement under both of the techniques.
7. (a) What are the purposes of cost allocation?
(b) Navana Company has two support departments - Administrative Services (AS) and Information Systems (IS) and two operating departments - Government Consulting (GOVT) and Corporate Consulting (CORP). For the first quarter of 2012, the following records are available

Navana Company

For the first quarter, 2012

	Support Dept.		Operating Dept.		Total
	AS	IS	GOVT	CORP	
Budgeted overhead before allocation	600,000	$2,400,000$	$8,756,000$	$12,452,000$	$24,208,000$
Support work supplied by AS	--	25%	40%	35%	100%
Support work supplied by IS	10%	--	30%	60%	100%

Required:
Allocate the two support departments cost to the two operating departments by using
(i) Direct method
(ii) Step-down method
(iii) Receiprocal method
8. (a) What are the objectives of cost accounting?
(b) Following information are available for Doel company at December 31, 2012.

Doel Company
December 31, 2012

Particulars	Beginning Inventory Amount (Tk.)	Ending Inventory Amount (Tk.)
Raw material	3,200	2,500
Work-in-process	1,350	1,700
Finished goods	8,500	9,500

L-2/T-1/ME
Date : 31/12/2012
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA
L-2/T-1 B. Sc. Engineering Examinations 2011-2012
Sub : MATH 261 (Vector Calculus, Matrices, Laplace Transform and Series Solution)
Full Marks : 280
Time : 3 Hours
The figures in the margin indicate full marks.
Symbols used have their usual meaning. USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A

There are FOUR questions in this section. Answer any THREE.

1. (a) Find the value of k for which the following system of equations has non-trivial solutions. Also find the solutions.

$$
\begin{aligned}
& x+k y+3 z=0 \\
& 4 x+3 y+k z=0 \\
& 2 x+y+2 z=0
\end{aligned}
$$

(b) Examine the following system of vectors for linear dependence. If dependent, find the relation among them.

$$
\begin{equation*}
X_{1}=(1,1,-1,1), \quad X_{2}=(1,-1,2,-1) \text { and } \quad X_{3}=(3,1,0,1) . \tag{15}
\end{equation*}
$$

(c) Use Cayley-Hamilton theorem to find the inverse of the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & -2 \tag{15}\\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right)
$$

2. (a) Find a matrix P which diagonalizes the matrix $A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right)$. Write down the diagonal form of A and also find A^{4}.
(b) Express the following quadratic form as a sum of the squares and classify it as definite, semi-definite or indefinite:

$$
\begin{equation*}
q=4 x_{1}^{2}+3 x_{2}^{2}-x_{3}^{2}+2 x_{2} x_{3}-4 x_{3} x_{1}+4 x_{1} x_{2} \tag{23}
\end{equation*}
$$

Also write down the equations of linear transformation and find a non-trivial set of values of $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$ which makes the form zero.
3. (a) Find $\underline{A} \times(\underline{\nabla} \times \underline{B})$ and $(\underline{A} \times \underline{\nabla}) \times \underline{B}$ at the point $(1,-1,2)$ if $\underline{A}=x z^{2} \hat{i}+2 y \hat{j}-3 x z \hat{\mathrm{k}}$ and $\underline{B}=3 x z \hat{i}+2 y z \hat{j}-z^{2} \hat{k}$.
(b) Show that $\operatorname{curl}(\operatorname{curl} \underline{F})=\operatorname{grad} \operatorname{div} \underline{F}-\nabla^{2} \underline{F}$ and hence show that $\nabla^{2} \underline{F}=n(n+3) r^{n-2} \underline{r}$ where $\underline{F}=r^{n} \underline{r}$.
(c) Use Green's theorem to find the area bounded by the hypocycloid

$$
x^{2 / 3}+y^{2 / 3}=a^{2 / 3} ; \quad a>0
$$

MATH 261

4. (a) Show that

$$
\underline{F}=\left(6 x y z+z^{2}\right) \hat{i}+3 x^{2} z \hat{j}+\left(3 x^{2} y+2 x z\right) \hat{k}
$$

is a conservative force field. Find the scalar potential of this field and the work done in moving an object in this field from the point $(2,-2,2)$ to $(2,-1,3)$.
(b) State Gauss's divergence theorem, Verify the theorem for

$$
\underline{F}=2 x^{2} y \hat{i}-y^{2} \hat{j}+4 x z^{2} \hat{k}
$$

taken over the region in the first octant bounded by $y^{2}+z^{2}=9$ and $x=2$.

SECTION - B

There are FOUR questions in this section. Answer any THREE.
5. (a) Solve the Bessel's differential equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0 \tag{36}
\end{equation*}
$$

by the method of Fröbenius.
(b) When n is positive integer, show that $\mathrm{J}_{-\mathrm{n}}(\mathrm{x})=(-1)^{\mathrm{n}} \mathrm{J}_{\mathrm{n}}(\mathrm{x})$.
6. Show that
(i) $\int_{0}^{x} x^{-n} J_{n+1}(x) d x=\frac{1}{2^{n} \underline{L}}-x^{-n} J_{n}(x)$.
($162 / 3$)
(ii) $P_{n}(x)=\frac{1}{2^{n} \operatorname{Ln}} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$.
(iii) $P_{2 n}(0)=(-1)^{n} \frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2 \cdot 4 \cdot 6 \ldots \cdot 2 n}$.
7. (a) Show that $\int_{-1}^{1} P_{m}(x) P_{n}(x) d x=\left\{\begin{array}{cl}0 & \text { if } m \neq n \\ \frac{2}{2 n+1} & \text { if } m=n\end{array}\right.$.
(b) Evaluate $\mathrm{L}\left\{\mathrm{J}_{\mathrm{o}}(\right.$ at $\left.)\right\}$ and $\mathrm{L}\left\{\mathrm{J}_{1}(\right.$ at $\left.)\right\}$.
(c) Using Laplace transformation, show that $\operatorname{Si}(\infty)=\frac{\pi}{2}$.
8. (a) Using Laplace transformation, show that $J_{0}(t)=\frac{1}{\pi} \int_{0}^{\pi} \cos (t \cos \theta) d \theta$.
(b) Find (i) $L^{-1}\left\{\frac{s e^{-4 \pi s / 5}}{s^{2}+25}\right\}$ (ii) $L^{-1}\left\{\frac{e^{4-3 s}}{(s+4)^{5 / 2}}\right\}$.
(c) Solve (using Laplace Transformation)

$$
\mathrm{Y}^{\prime \prime}(\mathrm{t})-\mathrm{t} \mathrm{Y}^{\prime}(\mathrm{t})+\mathrm{Y}(\mathrm{t})=1, \quad \mathrm{Y}(0)=1, \mathrm{Y}^{\prime}(0)=2
$$

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc. Engineering Examinations 2011-2012
 Sub : ME 201 (Basic Thermodynamics)
 Full Marks : 280
 Time : 3 Hours
 The figures in the margin indicate full marks.
 USE SEPARATE SCRIPTS FOR EACH SECTION

SECTION - A
There are FOUR questions in this section. Answer any THREE.
Steam table R-134a properties are supplied.

1. (a) Briefly explain 'thermodynamic equilibrium' and 'quasi-static process'.
(b) With a suitable diagram, show that work is a path function. Mention some similarities between 'work' and 'heat'.
(c) Draw a typical P-T diagram of a pure substance and label it. Briefly explain the physical meanings of (i) critical point (ii) triple point.
(d) One kg of air is compressed reversibly and isothermally from 0.1 MPa and $27^{\circ} \mathrm{C}$ to 1.0 MPa . Assuming ideal gas, estimate work done and heat transfer during this process.
2. (a) Using 'First Law of thermodynamics', show that internal energy is a thermodynamic property. Briefly explain the physical meaning of 'internal energy and how it differs from 'entropy'.
(b) With schematic diagrams and proper assumptions, simplify the dst Law of thermodynamics for the following devices:
(i) Nozzle
(ii) Heat exchanger
(iii) Throttling device
(c) Briefly explain Joule's free expansion experiment and show that, $\mathbf{u}=\mathrm{f}(\mathrm{T})$ for ideal gases.
(d) Air initially at 1 bar and $27^{\circ} \mathrm{C}$ is compressed in steady state to 5 bars and $177^{\circ} \mathrm{C}$. The power input to the compressor is 5 kW and heat loss is 0.5 kW . If the changes in potential and kinetic energies are neglected. Estimate mass flow rate of air.
3. (a) Briefly present Kelvin-Planck (KP) and Clausius (C) statements of the second law of thermodynamics. Show that, any violation of Clausius statement implies the violation of KP statement.
(b) Show that, $\eta_{\text {rev }}>\eta_{\text {irevev }}$.
(c) Distinguish between perpetual motion machine of 1 st kind and 2 nd kind.
(d) Dry saturated steam at 10 MPa expands isothermally and reversibly to 1.0 MPa .

Calculate the heat supply and work done per kg of steam during the process.

$$
=2=
$$

ME 201
Contd... Q. No. 3
(e) Suppose that, 1 kg of saturated vapor at $100^{\circ} \mathrm{C}$ is converted to saturated liquid at $100^{\circ} \mathrm{C}$ in an isobaric process. If the surrounding air is at 300 K , estimate net change in entropy of the system plus surroundings.
4. (a) Show that, $C_{p}-C_{v}=\frac{\beta^{2}}{k T} \cdot v T$
where $\mathrm{kT}=$ isothermal compressibility, and
$\beta=$ volume expansivity
(b) Using the expression of 4(a), show that for ideal gas, $\mathrm{C}_{\mathrm{p}}-\mathrm{C}_{v}=\mathrm{R}$.
(c) What is the difference between saturated liquid and compressed liquid?
(d) A system undergoes a process between two states: first in a reversible manner and then in an irreversible manner. For which case is the entropy change greater? Why?
(e) The entropy of hot water decreases as it cools. Is this a violation of increase of entropy principle?
(f) An insulated rigid tank is divided into two equal parts by a membrane. Air is contained in one half and the other half is evacuated. The membrane is punctured and air quickly fills the entire volume. Explain the work done and entropy generation in the process.
-

SECTION - B

There are FOUR questions in this section. Answer any THREE.
Make reasonable assumptions in case of any missing data.
Symbols indicate their usual meaning.
5. (a) Write short note on Binary Vapor Power Cycle. Provide component-wise schematic and corresponding T -s diagram.
(b) A styeam power plant operates on an ideal reheat-regenerative Rankine cycle with one reheater and one open feed water heater. Steam enters the HP turbine at 10 MPa and $600^{\circ} \mathrm{C}$ and leaves the LP turbine at 8 kPa . Steam is extracted from the turbine at 2.0 MPa and it is reheated to $550^{\circ} \mathrm{C}$ at a pressure 0.8 MPa . Water leaves the feed water heater as saturated liquid. Heat is transferred to the steam in the boiler at a rate of 630 MW . Determine (i) the mass flow rate of steam through the boiler, (ii) the net power output (iii) the thermal efficiency of the cycle.
(c) The plant engineer is thinking about discarding the condenser. He instead plans to pump water at atmospheric pressure to the boiler and expel steam out from the turbine at atmospheric pressure for he thinks of the condenser as a wastage of energy since it is only condensing steam and may be using a separate cooling tower for itself. However, you have reasons to believe that condenser is a necessary component for augmenting work output. Substantiate your reasoning with appropriate T-s diagram. What are the theoretical and practical limits of condenser pressure?

$$
=3=
$$

ME 201

6. (a) For an air-standard ideal diesel cycle with compression ratio " r_{c} ", cut-off ratio " β ", and ratio of specific heats of air " k ", show that the thermal efficiency,

$$
\begin{equation*}
\eta_{\text {th, diesel }}=1-\left(r_{c}\right)^{1-k}\left[\frac{\left(\beta^{k}-1\right)}{k(\beta-1)}\right] \tag{15}
\end{equation*}
$$

(b) Calculate net work output per unit mass of air, back work ratio and thermal efficiency for a Brayton cycle with one stage reheating and one stage intercooling, where air enters the compressor at 300 K and 100 kPa , and enters the turbine at 1400 K and 1300 kPa . Turbines and compressors are isentropic. The regenerator effectiveness is 0.75 . Take $\mathrm{k}=$ 1.4 and $\mathrm{C}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K}$.
(c) A simple gas turbine is working on the ideal Brayton cycle with a maximum cycle temperature T_{3} and minimum cycle temperature T_{1}. Show that, pressure ratio (r_{p}) for maximum net work should be,

$$
r_{p}=\left(\frac{T_{3}}{T_{1}}\right)^{k / 2(k-1)}
$$

Will the cycle efficiency be maximum at this pressure ratio as well?
actial
7. (a) List the deviations of vapor compression refrigeration cycle from the ideal one. Identify them on the P-h diagram.
(b) The initial conditions for an air-standard ideal Otto cycle operating with a compression ratio of $8: 1$ are 0.95 bar and $17^{\circ} \mathrm{C}$. At the beginning of the compression stroke, the cylinder volume is 2.20 L , and 3.60 kJ of heat is added during the heating process. Calculate the pressure and temperature at the end of each process of the cycle, and determine the thermal efficiency and the MEP.
(c) A commercial refrigerator with refrigerant R134a as the working fluid is used to keep the refrigerated space at $5^{\circ} \mathrm{C}$ by rejecting its waste heat to cooling water that enters the condenser at $17^{\circ} \mathrm{C}$ at a rate of $0.2 \mathrm{~kg} / \mathrm{s}$ and leaves at $25^{\circ} \mathrm{C}$. The refrigerant enters the condenser at 1.4 MPa and leaves at the same pressure at $42^{\circ} \mathrm{C}$. The inlet state of the isentropic compressor is at 100 KPa and $-20^{\circ} \mathrm{C}$. Determine (a) the quality of the refrigerant at the evaporator inlet, (b) the refrigeration load in tons, and (c) the COP of the refrigerator.

$$
=4=
$$

ME 201

8. (a) Define ton of refrigeration.
(b) For a dry bulb temperature of $25^{\circ} \mathrm{C}$ and wet bulb temperature of $15^{\circ} \mathrm{C}$, determine the absolute humidity (ω), relative humidity (ϕ), and mixture enthalpy (h) in $\mathrm{kJ} / \mathrm{kg}$ of dry air at a pressure of 0.5 bar .
(c) A mixture consists of 19.23 percent carbon dioxide, 8.86 percent water vapor and 71.91 percent nitrogen by mass. The mixture is being maintained at 298 K and 1 bar where under ideal gas assumptions the enthalpies of the gases are known ($\mathrm{h}_{\mathrm{CO}_{2}}=9364 \mathrm{~kJ} / \mathrm{kmol}$, $\mathrm{h}_{\mathrm{H}_{2} \mathrm{O}}=9904 \mathrm{~kJ} / \mathrm{kmol}, \mathrm{h}_{\mathrm{N}_{2}}=8669 \mathrm{~kJ} / \mathrm{kmol}$). Determine (a) the specific enthalpy of the mixture in $\mathrm{kJ} / \mathrm{kmol}$, and (b) apparent gas constant of the mixture in $\mathrm{kJ} / \mathrm{kg}-\mathrm{K}$.
(d) Write down the stoichiometric combustion equation of n-Octane with air at 1 atm and $25^{\circ} \mathrm{C}$ and calculate the LHV and HHV of n-Octane for a complete combustion using data from the following table:

Substance	Formula	$\Delta \mathrm{h}_{\mathrm{f}}^{0}(\mathrm{MJ} / \mathrm{kmol})$	$\mathrm{h}_{\mathrm{fg}}(\mathrm{MJ} / \mathrm{kmol})$
Oxygen	$\mathrm{O}_{\mathrm{Jf}}^{\mathrm{f}}(\mathrm{g})$	0	
Nitrogen	$\mathrm{N}_{2}(\mathrm{~g})$	0	
Carbon dioxide	$\mathrm{CO}_{2}(\mathrm{~g})$	-393.52	
Water	$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	-285.83	44.01
n-Octane	$\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g})$	-208.45	41.46

Saturated Water, Pressure Table

Saturated Water, Temperature Table

							5				
160	0.6178	0.001102	0:3071	$\therefore 874.9$	2568.4	675.5	2082.6	2768.1	1.9431	4.8079	6.7510
170	0.7916	0.001114	0.2428	718:3	2576.5	719.2	2049.5	2768.7	2:0423	4:6249	6.6672
180	4.002	0.001127	0.1941	762.1	2583.7	763.2	2015.0	2778.2	2:1400	4.4466	6.5868
									Kx		
220	2.318	0,001180	0.08620	240:3:	2602:4	943.6	1858.5	28029	2.5183	3.7686	6.2869°
230	2.795	0.001209	0:07159	986.7	2603.9	890%	1813:9	2804.0	2.6105	. 3.6050	6.24165
240	3,344	00001228	$0,0597 \%$	1033.2	2604.0	1037:3	4766.5	2803.8	$2: 7021$	34425	6.1446:
				6ak							
280	6.41 .1	0.001332	0.03017	1227.4	2586.1	1236.0	1543.6	2779.6	3.0674	2.7905	5.8579
290	7.436	0.001366	0.02557	1278.8	2576.0	1289.0	1477.2	2766.2	3.1600	2.6230	5.7830
300	8.580	0.001404	0.02168	1332.0	2563.0	1344.0	1405.0	2749.0	3.2540	2.4513	5.7053
340	14.59	0.001638	0.01080	1570.3	2464.6	1594.2	1027,9	2622.1	3.6601	1.6765	5.3366
350	16.51	0.001740	0.008815	1641.8	2418.5	1670.6	893.4	2554.0	3.7784	1:4338	6.2122
360	18.65	0.001892	0.006947	1725.2	2351.6	1760.5	720.7	- 2481.2	3.9154	1.1382	5.0538
		dex			Wex						Sx

Superheated Water Vapour

Hyw														
0.15 (111.4)				2972			3277	3381.7	448	3595.1	37043	3927.8	415	
	W/ko	201	7.6444	7,8446	8.0278:	-8.197	8.35	8.505	8:64	8.78	8810	9,453	9.37	9.5903
		0.4708	0.5342	0.5951	6548	0.7	0.7726	0.8311						
		2564.5	2646.8	2726.	2804:	2884		3046	29	32138	3300.2			3853.8
0.4		27 20 ${ }^{\text {B }}$	28800.5	2984:2	066	69					202			
	S. KJfikg. M	69307	7.1714	73737	7.56	7:7390'	78982	8:060	8.18	Q 32	8.4566	8.8858	$8:$	
$0.8(170.4)$				0231	031	0.3544	03843		0.4433	0.4726	:0,5018.	0501	061	
								30422	3125.8	321	32970	76.		28
						3161.7	3267	3373.3	3488	35893	3699.4	39243		4393.6
			6.8167	3932	7.2338:	7.4097	75723	77245	78680	8.0042	8:1341	3.3779	8.6043	$\cdot 8.8161$
$1.5(158.27]$	$r, m^{3} \mathrm{~kg}$		0.1325	0.1520	0:1697	0.1866	62006	-	0172	c. 2510	0.2658	0.2981.	0.3288.	0.3803 :
				2695.3	2783.1	28676	295	3035	3120	3206.4	3293	3479	355	855
			2795.8	2923	3037.6	147	32558	3364	347	3562	. $\mathbf{3} \mathbf{9} 4$ ¢ 0	3\%20,3	41528	491
			6.4554	6.7098	6.8187	7.1025	7.2697	7.4249	7.5706	7.7083	2:8,823	:80846:	8.3118.	8.52

Saturated R134a Vapour

Superheated R134a Vapour

Table C.8b. Superheated Refrigerant-134a Vapor (Metric Units) continued

L-2/T-1/ME

Date : 19/11/2012

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc. Engineering Examinations 2011-2012
Sub : ME 241 (Engineering Mechanics)
Full Marks: 280
Time: 3 Hours
USE SEPARATE SCRIPTS FOR EACH SECTION
The figures in the margin indicate full marks.

SECTION - A

There are FOUR questions in this Section. Answer any THREE.
Symbols indicate their usual meaning. Assume any missing data.

1. (a) The slider block A, as shown in Fig. 1(a); starts from rest and moves to the left with a constant acceleration. Knowing that the velocity of block B is $304.8 \mathrm{~mm} / \mathrm{s}$ after moving 609.6 mm , determine (i) the acceleration of A and B, (ii) the velocity and position of A after 5 s .
(b) Two wires AC and BC are tied together at C to a sphere which revolves at a constant speed v in the horizontal circle as shown in Fig. lb). Determine the range of values of v for which both wires remain taut.
2. (a) The $3-\mathrm{kg}$ collar is initially at rest and is acted upon by the force Q which varies as shown in Fig. 2(a). Knowing that $\mu_{k}=0.25$, determine the velocity of the collar at (i) $t=1 \mathrm{~s}$, (ii) $t=2 \mathrm{~s}$. Solve the problem using the principle of impulse and momentum.
(b) A $1.4-\mathrm{kg}$ collar is attached to a spring and slides without friction along a circular rod which lies in a vertical plane as shown in Fig. 2(b). The spring has a constant $k=25$ N / mm and is undeformed when the collar is at B. Knowing the collar passes through point D with a speed of $1 \mathrm{~m} / \mathrm{s}$, determine the speed of the collar as it passes through (i) point C , (ii) point B .
3. (a) A rectangular plate is supported by two $150-\mathrm{mm}$ links as shown in Fig. 3(a). Knowing that at the instant shown the angular velocity of link $A B$ is $4 \mathrm{rad} / \mathrm{s}$ clockwise, determine (i) the angular velocity of the plate, (ii) the velocity of the center of the plate.
(b) End A of $\operatorname{rod} \mathrm{AB}$, as shown in Fig. 3(b), moves to the right with a constant velocity of $2 \mathrm{~m} / \mathrm{s}$. For the position shown, determine (i) the angular acceleration of rod AB , (ii) the acceleration of the midpoint G of $\operatorname{rod} \mathrm{AB}$.
4. (a) The double pulley shown in Fig. 4(a) has a total mass of 6 kg and a centroidal radius of gyration of 135 mm . Five collars (weights), each of mass 1.2 kg , are attached to cords A and B as shown in the figure. When the system is at rest and in equilibrium, one collar is removed from cord B. Neglecting friction, determine (i) the angular acceleration of the pulley, (ii) the velocity of cord A at $t=2 \mathrm{~s}$.

ME 241

Contd O. No. 4

(b) The $9-\mathrm{kg}$ rod AB is attached by pins to two $6-\mathrm{kg}$ uniform disks as shown in Fig. 4(b). The assembly rolls without sliding on a horizontal surface. If the assembly is released from rest when $\theta=60^{\circ}$, determine the angular velocity of the disks when $\theta=90^{\circ}$.

SECTION - B

There are FOUR questions in this Section. Answer any THREE.
5. (a) A $450-\mathrm{kg}$ crate is to be supported by the rope-and pulley arrangement as shown in Fig. 5(a). Determine the magnitude and direction of the force F which should be exerted on the free end of the rope.
(b) Determine the polar moment of inertia of the shaded area as shown in Fig. 5(b) with respect to the centroid of the area.
6. (a) The frame ACD is hinged at A and D and supported by a cable which passes through a ring at B and is attached to hooks at G and H as shown in Fig. 6(a). Knowing that the tension in the cable is 1125 N , determine the moment about the diagonal AD of the force exerted on the frame by portion BH of the cable.
(b) One end of rod AB rests in the corner A and the other is attached to cord BD as shown in Fig. 6(b). If the rod supports $200-\mathrm{N}$ load at its midpoint C , find the reaction at A and the tension in the cord.
7. (a) Determine the distance h for which the centroid of the shaded area as shown in Fig. 7(a) is as high above line BB^{\prime} as possible when $\mathrm{k}=0.10$.
(b) Determine the force in members FH and GH of the truss as shown in Fig. 7(b) when $\mathrm{P}=35 \mathrm{kN}$.
8. . (a) The frame as shown in Fig. 8(a) is loaded by a clockwise couple of magnitude 150 N -m applied at point A . Determine the components of the reactions at D and E .
(b) A cord is attached to and partially wound around a cylinder of weight W and radius r which rests on an incline as ${ }_{h}^{\text {sown in Fig. 8(b). Knowing that } \theta=30^{\circ} \text {, find (i) the tension }}$ in the cord, (ii) the smallest value of the coefficient of static friction between the cylinder and the incline for which equilibrium is maintained.

Fig. $1(a)$

Fig. 1 (b)

Fig. $2(b)$

Fig. 2(a)
Accul

Fig. 3(b)

Fig. A(a)

Fig: 4(b)

Fig. 5(a)

Fig. 5(b)

Fig. 6(a)

Fig. 6(b)

Fig. 7(a)

Fig. 7(b)

Fig. 8(a)

Fig. 8(b)

