Date : 31/01/2012

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc. Engineering Examinations 2010-2011

Sub : CE 221 (Mechanics of Solids-I)

Full Marks: 210

Time : 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

<u>SECTION – A</u>

There are FOUR questions in this Section. Answer any THREE.

1. (a) A 30 inch long aluminum rod is enclosed within a steel alloy tube as shown in Figure-1. The two materials are bonded together. If the stress-strain diagrams for the two materials can be idealized as shown in Figure-1, what end deflection will occur for P = 60 kips? The cross-sectional area of steel $A_s = 1$ inch² and of aluminum, $A_{A1} = 0.5$ inch².

(b) A rectangular steel block, such as shown in Figure-2 has the following dimensions: a = 100 mm, b = 75 mm, and c = 200 mm. The faces of this block are subjected to forces of 180 kN (tension) in the x direction, 200 kN (tension) in the y direction and 240 kN (compression) in the z direction. Determine the magnitude of a single system of force acting only in y direction that would cause the same deformation in the y direction as the initial forces. Let, v = 0.25.

(a) What must be the length of a 10 mm diameter aluminum wire so that it could be twisted through one complete revolution without exceeding a shear stress of 50 MPa? Let, G = 27 GPa

(b) A shaft having the cross-section shown in the Figure-3 is subjected to a torque, T = 150 N.m. Estimate the percentage of torque carried by each of the two cross-sectional components, and calculate the maximum shear stresses in each part, neglecting stress concentrations. Let, $G = 25 \times 10^3$ GPa. Use Table-1 for necessary data.

- 3. (a) Determine the maximum stress in the concrete and the steel for a reinforced concrete beam with the section shown in Figure-4, if it is subjected to a positive bending moment of 30 kip-ft. The reinforcement consists of two #8 steel bar. Assume, n = E_s/E_c = 15.
 (b) Determine the location of the shear center for the beam having the cross-sectional dimensions shown in the Figure-5. All members are to be considered thin-walled, and calculations should be based on the centerline dimensions.
- 4. (a) A T beam has the cross-section shown in Figure-6. Calculate the shear stresses for the indicated six horizontal sections when the beam transmits a vertical shear of 400 kN. Also, plot the shear stress distribution diagram.

(b) A beam has the cross-sectional dimensions shown in Figure-7. If the allowable stresses are 7 ksi in tension, 30 ksi in compression, and 8 ksi in shear, what is the maximum allowable shear and the maximum allowable bending moment for this beam? Consider only the vertical loading of the beam and confine calculations for shear to sections a-a and b-b.

20

Contd P/2

(15)

(15)

(20)

(20)

(15)

(20)

(15)

(20)

<u>CE 221</u>

SECTION -- B

There are FOUR questions in this Section. Answer any THREE.

 (a) Draw the shear force and bending moment diagram of the beam loaded as shown in Fig.-8.

(b) Draw the bending moment diagram of the beam loaded as shown in the Fig.-9.

- 6. (a) Determine the required diameter of the bolt A to carry the shear caused by the applied load shown in Fig.-10. The bolt acts in double shear. The ultimate shear strength of the bolt material is 400 MPa and factor of safety is 2.5. All dimensions are in mm.
 (b) The bars as shown in Fig.-11 are to be cut from a 1-in-thick metal plate so that both bars have a constant thickness of 1 in. Bar A is to have a constant width of 2 in throughout its entire length. Bar B is to be 3 in wide at the top and 1 in wide at the bottom. Each bar is to be subjected to the same load P. Determine the ratio L_A/L_B so that both bars will be stretched by the same amount. Neglect the weight of the bar.
- 7. (a) A steel I beam subjected to pure bending develops a longitudinal compressive strain of 0.4×10^{-3} in the top flange in the locations shown on the Fig.-12. What bending moment causes the strain. Assume E = 200 GPa.

(b) Two 50 mm \times 150 mm full sized wooden planks are glued together to form a T section, as shown in the figure-13. If a positive bending moment of 50 kN-m is applied to such a beam acting around a horizontal axis. (i) find the stresses at the extreme fibres, (ii) calculate the total compressive forces developed by the normal stresses above the neutral axis because of the bending of the beam, and (iii) find the total force due to the tensile bending stresses below the neutral axis and compare it with the result found in (ii).

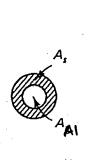
8. (a) A stainless steel sprical pressure vessel has a 36-inch inside diameter and is 0.5 inch. thick. If the tensile strength of the material is 60 ksi and the factor of safety is 4, what is the allowable working pressure? Also estimate the bursting pressure.

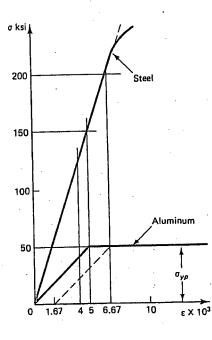
(b) A 10 mm thick low-alloy-steel plate 150 mm wide and 2000 mm long is subjected to a set of uniformly distributed frictional forces along its two edges, as shown in Fig.-14. If the total decrease in the transverse 150 mm dimension at section a-a due to the applied forces is 15×10^{-3} mm, what is the total elongation of the bar in the longitudinal direction. Let E = 200 GPa and v = 0.25. Assume that the steel behaves as a linearly elastic material.

(15)

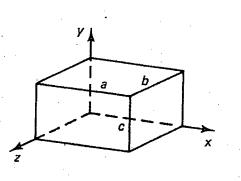
(15)

(20)


(15)


(20)

(20)


(15)

(20)

30

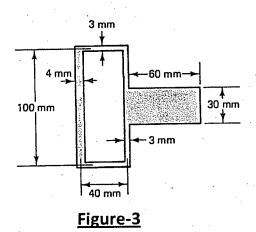
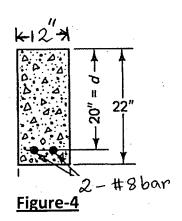
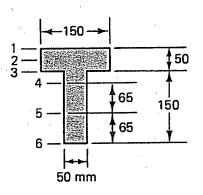




Figure-2

and the second second

b/t	1.00	1.50	2.00	3.00	6.00	10.0	∞ `
α.	0.208	0.231	0.246	0.267	0.299	0.312	0.333

(LA (Q)

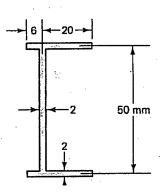
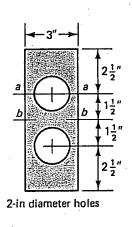
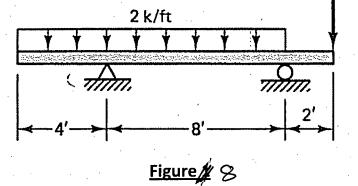
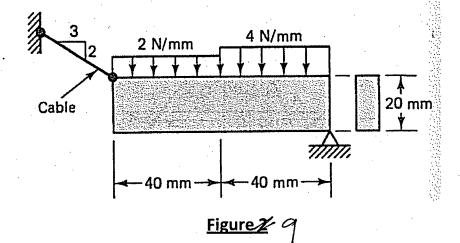
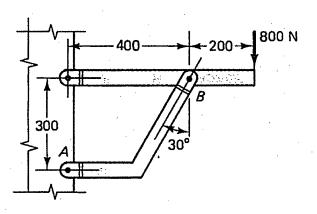
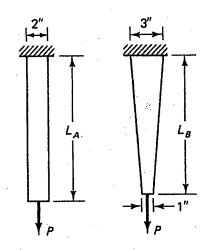


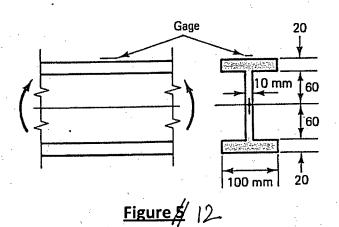
Figure-5


Figure-7

& be


moholu P 27-1121 11



and the second second

(19) (9) big:

æ.

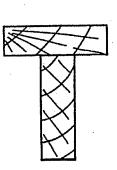


Figure 4/

Figure 6/ 13

R. Shal 26.12.11

8 k

Date : 18/02/2012

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc. Engineering Examinations 2010-2011

Sub : CE 291 (Engineering Materials)

Full Marks: 210

Time : 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

<u>SECTION – A</u>

There are FOUR questions in this Section. Answer any THREE.

1.	(a) Write down the function of four principal compounds (C_3A , C_3S , C_2S , C_4AF) in	
	cement.	(10)
	(b) How do the following cements differ from Ordinary Portland cement in functions and	
	ingredients	(6)
	(i) Low Heat cement	
,	(ii) Quick Setting cement	
	(c) Differentiate between the Flash Setting and False Setting of cement.	$(4\frac{1}{2})$
	(d) Define calcinations, slaking and hydraulicity. What are the constituents that are	
	responsible for hydraulicity of lime?	(10)
	(e) Differentiate between fat lime and quick lime.	$(4\frac{1}{2})$
2.	(a) Give a brief description of brick burning operation in the Hoffman's klin.	(12)
	(b) What is 'Frog mark'? Why frog mark is used in brick?	(4)
	(c) The figure-1 shows the gradation curve of two sand samples. If the sample 1 is mixed	
	with samples 2 as a 1.5 : 2.5 ratio, what will be the fineness modulus (FM) of the	
	combined aggregate?	(15)
	(d) Write down the function of sand in mortar.	(4)

3. (a) For a residential building at Gulshan, 1st class brick is required. The contractor has brought five samples of brick from the supplier. The test data of the brick samples are as follows:

Sl. No.	Siz	Size of full brick			Weight			
	Lengthe	Weidth	Height	Dry	after 24 hours soaking in water	load of half brick		
	in	in	in	lb	lb	kip		
1	9.50	4.50	2.75	6.1	6.9	55		
2	9.50	4.50	2.75	6.2	7.0	56		
3	9.50	4.50	2.75	6.1	6.8	58		
4	9.50	4.50	2.75	6.3	7.1	61		
5	9.50	4.50	2.75	6.2	6.9	59		

As an engineer would you recommend use of the supplied bricks? Why?

Contd P/2

(10)

Date : 18/02/2012

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc. Engineering Examinations 2010-2011

Sub : CE 291 (Engineering Materials)

Full Marks: 210

Time : 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

<u>SECTION – A</u>

There are FOUR questions in this Section. Answer any THREE.

.1.	(a) Write down the function of four principal compounds (C_3A , C_3S , C_2S , C_4AF) in	
	cement.	(10)
	(b) How do the following cements differ from Ordinary Portland cement in functions and	
	ingredients	(6)
	(i) Low Heat cement	
х ^{та} .	(ii) Quick Setting cement	
	(c) Differentiate between the Flash Setting and False Setting of cement.	$(4\frac{1}{2})$
	(d) Define calcinations, slaking and hydraulicity. What are the constituents that are	
	responsible for hydraulicity of lime?	(10)
	(e) Differentiate between fat lime and quick lime.	$(4\frac{1}{2})$
2.	(a) Give a brief description of brick burning operation in the Hoffman's klin.	(12)
	(b) What is 'Frog mark'? Why frog mark is used in brick?	(4)
	(c) The figure-1 shows the gradation curve of two sand samples. If the sample 1 is mixed	
	with samples 2 as a 1.5 : 2.5 ratio, what will be the fineness modulus (FM) of the	
	combined aggregate?	(15)
	(d) Write down the function of sand in mortar.	(4)

3. (a) For a residential building at Gulshan, 1st class brick is required. The contractor has brought five samples of brick from the supplier. The test data of the brick samples are as follows:

Sl. No.	Siz	e of full brick	K	W	'eight	Crushing
	Lengthe	Weidth	Height	Dry	after 24 hours soaking in water	load of half brick
	in	in	in	lb	lb	kip
1	9.50	4.50	2.75	6.1	6.9	55
2	9.50	4.50	2.75	6.2	7.0	56
3	9.50	4.50	2.75	6.1	6.8	58
4	9.50	4.50	2.75	6.3	7.1	61
5	9.50	4.50	2.75	6.2	6.9	. 59

As an engineer would you recommend use of the supplied bricks? Why?

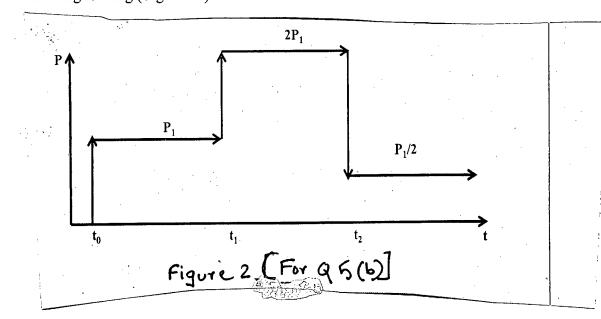
Contd P/2

(10)

CE 291

Contd ... Q. No. 3

	(b) What is veneer? How is the plywood manufactured?	(4)
	(c) List the methods of preservation of timer. Describe Wolman's salts method of timber	
	preservation.	(7)
	(d) Write down the salient features of the water seasoning of timber.	(4)
	(e) What is FRP? Write down some important civil engineering applications of GFRP	
	and CFRP.	(10)
4.	(a) List the laboratory tests of brick.	(4)
	(b) What is efflorescence of brick? What are the effects of alkalis present in the brick?	(6)
	(c) What is bulking of sand? Explain with qualitative graph.	(4)
	(d) How does fineness affect the properties of cement?	(4)
	(e) Write short notes on light weight mortar and fire resistance mortar.	(5)
	(f) What are the advantages of artificial seasoning of timber?	(4)
	(g) Write briefly about the manufacturing process of FRP.	(8)


= 2 =

SECTION – B

There are FOUR questions in this Section. Answer any THREE.

5. (a) Draw a typical stress-strain diagram for ductile material and explain proportional limit, elastic limit and yield point from the diagram.
(b) Draw the strain response curve for an ideal elasto – visco - plastic material under the

following loading (Figure 02).

(c) Explain isochronous stress-strain relationship of an ideal elasto – plastic material with appropriate diagram(s).

(7)

(7)

(11)

CE 291

Contd ... Q. No. 5

- (d) Differentiate between each of the following pairs:
 - (i) Modulus of resilience and modulus of toughness;
 - (ii) stress-strain behaviour of ductile and brittle material.
- 6. (a) What is gradation of aggregate? What do you know about different types of gradation of aggregate? how do the different types of gradation of aggregate affect the concrete proportions and concrete properties? (3+7+4=14)

(b) Why blending of aggregate is required? From the following aggregate gradations
(Table 01) determine the batch proportions of aggregate 01, aggregate 02and aggregate
03 so that 50% of the blended material passes through 3/4" sieve, 24% of the blended
material passes through No. 4 sieve and 9% of the blended material passes through No.
30 sieve. (3+12=15)

Sieve Size	Aggregate 01	Aggregate 02	Aggregate 03	
Sleve Size	% Passing	% Passing	% Passing	
1.5″	100	100	100	
3/4 "	100	99	13	
3/8"	100	33	8	
No. 4	99	5	2	
No. 8	76	0	0	
No. 16	58	-	-	
No. 30	40	-	-	
No. 50	12	-	-	
No. 100	2	-	-	

Table-01

(c) How does the water/cement ratio and the grading of aggregate affect the properties of concrete?

7. (a) Write short note on segregation by specifically mentioning its forms, causes and available control measures.

(b) What is workability of concrete? How can you measure workability of concrete in the site? Why slump test is not a reliable test of workability for lean mixes? (4+6+4=14)

(c) Design the mix of a concrete for the mean strength of 4,000 psi at 28 days. Find out the amount of different ingredients at the SSD condition and also at the laboratory condition on weight basis. Use ACI 211.1 method. Material properties are given below and the necessary tables are attached at ANNEXURE-1 and 2. Assume reasonable value for any missing data.

(14)

1.

(6)

(7)

Contd P/4

lations

(10)

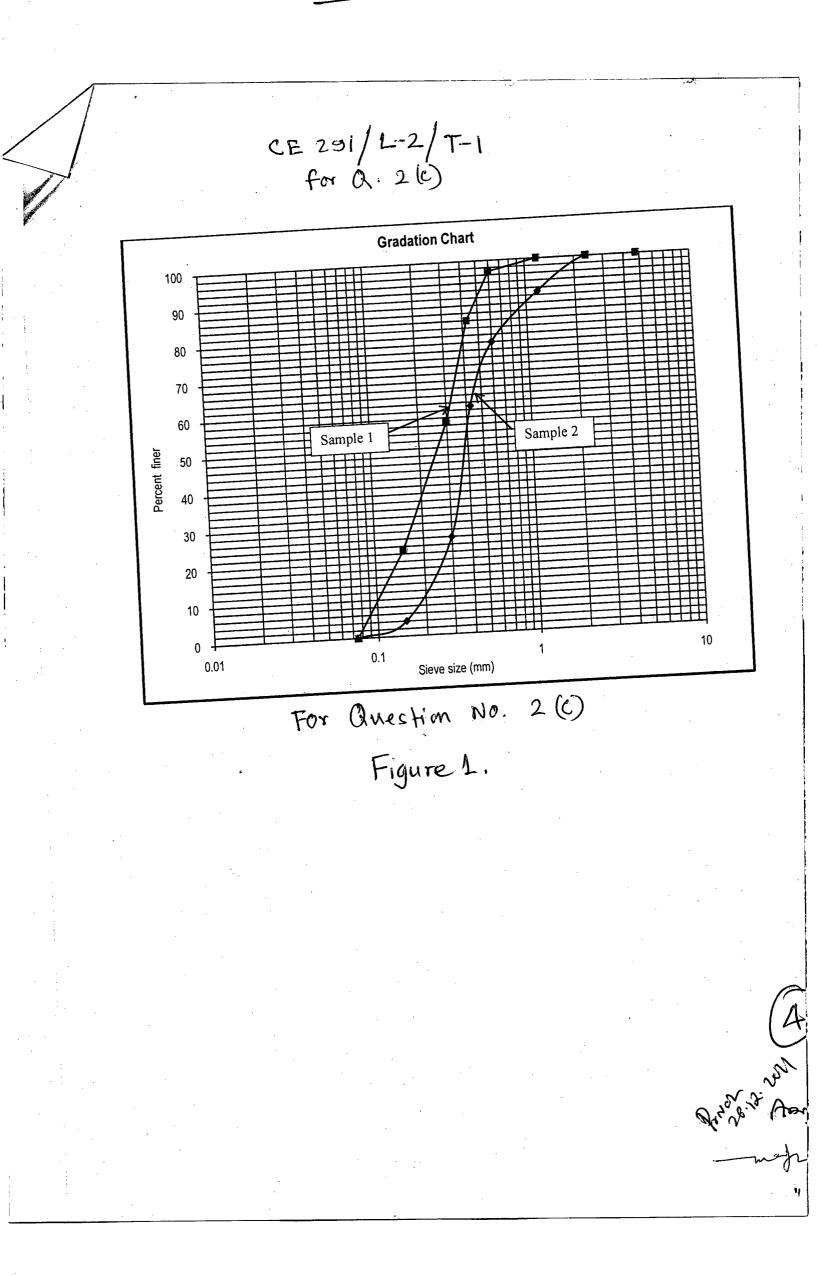
CE 291 Contd ... Q. No. 7(c)

> **Concrete** : Mean strength : 4,000 psi slump: 30 – 50 mm

Cement type: Ordinary Portland Cement (OPC) Specific gravity: 3.15

Coarse Aggregate:

Maximum size : 40 mm Absorption capacity : 2% Moisture content in the laboratory : 1% Bulk specific gravity (OD): 2.62 Dry rodded unit weight: 1570 kg/m³ Fine Aggregate: Fineness Modulus: 2.50 Absorption capacity : 2% Moisture content in the laboratory : 5% Bulk specific gravity (OD) : 2.68


(6)

Ù

8. (a) How does the corrosion initiate in the RCC structures and how doest it propagate? (6+6=12)How can corrosion be prevented in RCC structures by design considerations? (b) How does the ferrocement construction reduce the load on the column and footing and how does it reduce the cost of the overall construction? Explain with appropriate (6) example.

(c) How can laitance be distinguished from bleeding and how can you mitigate the adverse effect of laitance and bleeding on the subsequent layer of casting? (d) How does the water /cement ratio affect the strength of concrete? "At a given degree of hydration water/cement ratio determines the porosity of concrete." How? Explain with (5+6=11)appropriate diagram(s).

= 5 = CE291

ANNEXURE -1

=6 =

Table 2: Recommended Slumps for Various Types of Construction

Types of construction	Slumps, i	nch (mm)
	Maximum	Minimum
Reinforced Foundation walls and footings	3 (80)	1 (20)
Plain Footings, Caissons and Substructure walls	3 (80)	1 (20)
Beams and reinforced walls	4 (100)	1 (20)
Building columns	4 (100)	1 (20)
Pavement and Slabs	3 (80)	1 (20)
Mass Concrete	3 (80)	1 (20)

Table 3: ACI Recommended mixing water content for unit volume of concrete (Non-Air Entrained)

Max. Size of Aggregate — (mm)	10	12.5	20	25	40	50	70	150
Slump Value (mm)		Amo	ount of m	ixing wate	er in kg p	er 1 m ³ co	ncrete	
<u>25 - 50</u> ★	207	199	190	179	166	154	130	113
75 - 100	228	216	205	193	181	169	145	124
150 - 175	243	228	216	202	190	178	160	
Entrapped Air (%)	3	2.5	2	1.5	1	0.5	0.3	0.2

 Table 4: ACI Recommended mixing water content for unit volume of concrete (Air Entrained)

Max. Size of Aggregat <u>e</u> (mm)	10 •	12.5	20	25	40	50	70	150
Slump Value (mm)		Amo	ount of m	ixing wate	er in kg p	er 1 m ³ co	ncrete	<u> </u>
<u>25 - 50</u> ♥	181	175	166	160	148	142	133	107
75 – 100	202	193	181	175	163	157	148	119
150 - 175	216	204	193	184	172	166	160	-
Air Content						- Au	<u>. </u>	
Mild (%)	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0
Moderate (%)	6.0	5.5	5.0	4.5	4.5	4.0	3.5	3.0
Extreme (%)	7.5	7.0	6.0	5.5	5.5	5.0	4.5	4.0

Table 5: ACI Recommended w/c ratio for concrete

28 day Compr	essive Strength	w/c	Ratio
psi	MPa	Air Entrained	Non-Air Entrained
6,000	41	0.32	0.41
5,000	34	0.40	0.48
4,000	28	0.48	0.57
3,000	21	0.59	0.68
2,000	14	0.74	0.82

· 📠 🕬 🗠 🖓 ·

ANNEXURE -2

=7=

 Table 6: Required Average Compressive Strength when data are not available to establish a standard deviation

	Required Average Compressive Strength, f cr, psi		
Specified Compressive Strength, f c, psi			
Less than 3,000	f _c + 1,000		
3,000 to 5,000	f _c + 1,200		
Over 5,000	1.10f _c + 700		
Specified Compressive Strength, f _c , MPa	Required Average Compressive Strength, f _{cr} MPa		
Less than 21	f _c + 7.0		
21 to 35	$f_{c} + 8.5$		
Over 35	$1.10f_{c} + 5.0$		

 Table 7: Maximum Permissible water-cement or water-cementitous material ratios for concrete in sevenexposures

0.40**
0.45**
50

ratio may be increased by 0.05

 Table 8: ACI recommended dry rodded bulk volume of coarse aggregate per unit volume of concrete

	FM of fine	aggregate	
2.40	2.60	2.80	3.00
	0.48	0.46	0.44
	0.57	0.55	0.53
······································		0.62	0.60
		0.67	0.65
	0.73	0.71	0.69
		0.74	0.72
		0.78	0.76
			0.81
	2.40 0.50 0.59 0.66 0.71 0.75 0.78 0.82 0.87	2.40 2.60 0.50 0.48 0.59 0.57 0.66 0.64 0.71 0.69 0.75 0.73 0.78 0.76 0.82 0.80	2.40 100 0.50 0.48 0.46 0.59 0.57 0.55 0.66 0.64 0.62 0.71 0.69 0.67 0.75 0.73 0.71 0.78 0.76 0.74 0.82 0.80 0.78

Table 9: Estimate of density of fresh concrete

Nominal Maximum Size (mm)	Density of Fresh Concrete (kg/m ³)
9.5	2280
12.5	2310
19	2345
25	2380
37.5	2410
50	2445
75	2490
150	2530

9

Date : 11/03/2012

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc. Engineering Examinations 20010-2011

Sub : **HUM 313** (Principle of Accounting)

Full Marks: 140

Time : 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION The figures in the margin indicate full marks.

SECTION - A

There are FOUR questions in this Section. Answer any THREE.

1. (a) Discuss the steps of recording transactions into the basic accounting equation. (b) State any two assumptions you need to follow to do accounting. Explain each of them in brief.

(c) Mr. Arif opened a law office, Arif, Attorney at law, on July 1, 2011. On July 31, the Balance Sheet showed Cash Tk. 4,000, Accounts Receivable Tk. 1500, Supplies Tk. 500, Office Equipment Tk. 5,000, Accounts payable Tk. 4,200 and capital Tk. 6,800. During August, the following transactions occurred:

(i) Collected Tk. 1400 of accounts receivable.

(ii) Paid Tk. 2700 cash on accounts payable.

(iii) Earned revenue of Tk. 7500 of which Tk. 3000 is collected in cash and the balance is due in September.

(iv) Purchased additional office equipment for Tk. 1000 paying Tk. 400 in cash and the balance on account.

(v) Paid salaries Tk. 3000, rent for August Tk. 900 and advertising expense Tk. 350.

(vi) Withdraw Tk. 550 in cash for personal use.

- (vii) Received Tk. 2000 from standard Bank-money borrowed on a note payable.
- (viii) Incurred utility expenses for the month on account Tk. 250.

Required: Prepare a tabular analysis of the August transactions beginning with July 31 balances.

2. (a) Discuss the importance of ratio analysis as a way of Financial statement analysis. Give examples.

(b) Lineea started her own consulting firm, Lineea Consulting, on May 1, 2011. The trial balance at May 31 is as follows:

(20)

 $(3\frac{1}{3})$

Lineea Consulting Trial Balance May 31, 2011

Account title	Debit (Tk.)	Credit (Tk.)
Cash	7,700	
Accounts Receivable	4,000	
Prepaid Insurance	2,400	
Supplies	1,500	

Contd P/2

(3)

(3)

 $(17\frac{1}{3})$

Contd ... Q. No. 2(b)

Office Furniture		12,000	
Accounts Payable			3,500
Unearned Service Revenu	ie		3,000
Capital			19,100
Service Revenue			6,000
Salaries expense		3,000	
Rent expense		<u>1,000</u>	
	Totals	<u>31,600</u>	<u>31,600</u>

Other data:

 \rightarrow Tk. 500 of supplies have been used during the month.

 \rightarrow Travel expense incurred but not paid on May 31, 2011, Tk. 200.

 \rightarrow The insurance policy is for 2 years

 \rightarrow Tk. 1000 of the balance in the unearned service revenue account remains unearned at the end of the month.

 \rightarrow May 31 is Tuesday and employees are paid on Fridays. Lineea Consulting has two employees, who are paid Tk. 500 each for a 5-day work week.

 \rightarrow The office furniture has a 5-year life with no salvage value. It is being depreciated at Tk. 200 per month for 60 months.

 \rightarrow Invoices representing Tk. 1000 of services performed during the month have not been recorded as of May 31.

Required: (i) Prepare the adjusting entries for the month of May.

(ii) Prepare an adjusted trial balance on May31, 2011.

3. Mr. Siham opened a business. During May, the following transactions occurred:

 $(23\frac{1}{3})$

May-1:	Services reformed but not yet received Tk. 5000.
May-5:	Purchased furniture Tk. 10,000 on account.
May-7:	Earned revenue of Tk. 5,000 of which Tk. 2,000 is collected in cash and the balance due for next month.
May-10:	Paid salaries Tk. 5,000, rent Tk. 900, and advertising expense Tk. 500.
May-12:	Withdraw Tk. 500 in cash for personal use.
May-20:	Received Tk. 3,000 from a local bank signed as a note payable.
May-30	Incurred utility expenses for the moth on account Tk. 750.

(i) Journalize each transactions.

(ii) Post the journal entries to the ledger accounts.

(iii) Prepare trial balance on May 31.

Contd P/3

= 2 =

4. The adjusted trial balance of XYZ Co. Ltd on December 31, 2011 has the following balance of accounts.

XYZ Co. Ltd

Adjusted Trial Balance

Accounts titles	Debit (Tk.)	Credit(Tk.)
Cash	19,600	
Accounts receivable	23,600	
Prepaid Insurance	1,400	
Land	56,000	-
Building	106,000	
Equipment	49,000	
Accounts payable		10,400
Unearned rent revenue	· · · · · · · · · · · · · · · · · · ·	2,800
Notes payable		200,000
Capital		120,000
Drawings	18,000	
Service Revenue		75,600
Rent revenue		26,200
Salaries expenses	35000	
Advertising expenses	17,000	
Utility expenses	15,800	
Patents	100000	
Insurance expenses	1,700	
Depreciation expenses Building	2,500	· · · · ·
Depreciation expense-Equipment	3,900	
Interest expenses	900	
Accumulated Depreciation Building		2,500
Accumulated Depreciation Equipment		3,900
Interest payable		9,000
Total	<u>450400</u>	<u>450400</u>

Required :

(i) Prepare income statement and owner's Equity Statement.

(ii) Prepare a classified Balance Sheet.

(23¹/₃**)**

<u>SECTION – B</u>

= 4 =

There are FOUR questions in this Section. Answer any THREE.

5. (a) Differentiate between direct method and reciprocal service method for cost allocation.Which one is the best and why?

(b) Savanna Pharmaceuticals has two producing departments-Molding and Finishing and two service departments- Plant Maintenance and Marketing. The overhead costs across the departments and other relevant data for allocating service departments costs over production departments are given below:

	Service Depart	Production Departments			
	Plant Maintenance	Marketing	Molding	Finishing	
Overhead costs before	600,000	116,000	400,000	200,000	
allocation (Tk.)	000,000	110,000	+00,000	200,000	
Services rendered by			· · ·		
Plant Maintenance Deptt:		20%	30%	50%	
Budgeted machine hours in %		2070	3070	5076	
Marketing Deptt: Budgeted	10%		80%	10%	
sales in %	10%	-	80%	10%0	

Required: Allocate the service department costs to the production departments using Direct Method and Reciprocal Service Method.

(c) A production department of a manufacturing company has five different groups of machines. The overhead incurred for these five groups machines and machine working hours are:

Machine group	I	II	III	IV	V
Machine overhead costs (Tk.)	55,922	122,314	47,963	96,759	133,042
Machine working hours	24,000	40,000	16,000	20,000	60,000

Required:

(i) Calculate a machine hour rate for each of the five groups of machines.

(ii) Calculate the overhead cost that will be absorbed by one unit of product A and one unit of product B on the manufacture of which the following time (in hours) are spent in the machine groups of this department:

Machine groups	Ι	II	III	IV	V
Product A (each unit)	2	-	7	1	2
Product B (each unit)	4	1	-	6	1

Contd P/5

 $(4\frac{1}{3})$

(14)

(5)

6. (a) What is degree of operating leverage? The degree of operating leverage for 'X' company is 5 times where as it is 7 times for 'Z' company. What does it imply?
(b) Angie Silva has recently opened the Sandal shop in Brisbane. She has prepared the following analysis for her new shop:

= 5 =

	<u>Tk.</u>
Sales price per pair of sandals	40
Variable costs per pair of sandals	<u>16</u>
Contribution margin per pair of sandals	<u>24</u>
Fixed costs per year:	
Building rental	15,000
Equipment depreciation	7000
Selling expenses	20,000
Administrative expenses	<u>18,000</u>
Total fixed costs	<u>60,000</u>

Required:

(i) Compute contribution margin ratio;

(ii) How many pairs of sandals must be sold each year to break-even? What does this represent in total sales taka?

(iii) Prepare a contribution break-even chart for the shop from a zero level of activity upto 4000 pairs of sandals sold each year. Indicate the break-even on your graph and also specify different terms in the chart (use of graph paper is not necessary).

(iv) Angie has decided that she must earn at least Tk. 18,000 in the first year to justify her time and effort. How many pairs of sandals must be sold to reach her target profit?

(v) Angie now has two sales persons working in the store, one full time and one part time. It will cost her an additional Tk. 8000 per year to convert the part time position to a full time position. Angie believes that the change would bring in an additional Tk. 25,000 in sales each year. Should she convert the position?

(vi) Compute degree of operating leverage and use it to forecast the changes in net income of next year if sales increase by 15%. Verify your answer by preparing income statement.

7. (a) Discuss the concept - costs, expenses, losses and assets. Give one example illustrating the relationship among these four.

(b) "Manufacturing cost is composed of three components - direct materials, direct labour and manufacturing overhead". Define each of the components and give examples of each component for a pump manufacturing plant.

Contd P/6

(19 ½)

(4)

(5)

Contd ... Q. No. 7

(c) What is the major disadvantage of high and low point method?

(d) The data below have been taken from the cost records of Atlanta Processing company. The data relate to the cost of operating one of the company's processing facilities at various levels of activity:

= 6 =

Month	Unit processed	Total cost (Tk.)
January	8,000	14,000
February	4,500	10,000
March	7,000	12,500
April	9,000	15,500
May	3,750	10,000
June	6,000	12,500

Required:

(i) Using the high-low point method, determine the cost formula for processing cost of the company;

(ii) What will be the total processing cost, if the company processed 3000 units during the month of July (Use the cost formula you derived above).

8. (a) Name the various user groups of accounting information.

(b) Listed below are a number of costs typically found in an organisation:

- (i) Boxes used for packing detergent produced by the company;
- (ii) Lubricants for machine;
- (iii) Advertising cost;
- (iv) Power and electricity

(v) Account's salary;

(vi) Cost of x-ray film at Matro Clinic Radiology lab;

(vii) Sales person's commission;

(viii) Wages of workers assembling computers;

- (ix) Executive life insurance;
- (x) Shipping costs or merchandise sold;
- (xi) Thread in a garment factory

(c) "There could be three types of inventories on a manufacturer's balance sheet" - What are these three types of inventories? Define each of them with an example. (d) Haaki Shop, Inc., is a large retailer of water sports equipment. An income statement for the company's surfboard department for the most recent quarter is presented below:

(2 ½)

(12)

(3½) (6)

(4)

(10)

Contd P/7

Contd ... Q. No. 8(d)

The Haak Shop Inc. Income Statement-Surfboard Department For the Quarter Ended May 31

Sales		Tk. 800,000
Less: Cost of goods sold		<u>300,000</u>
Gross margin		500,000
Less: Operating expenses:		
Selling expenses	Tk. 250,000	
Administrative expenses	<u>160,000</u>	<u>410,000</u>
Net income		<u>Tk. 90,000</u>

The surfboards sell, on the average, for Tk. 400 each. The departments' variable expenses are Tk. 50 per surfboard sold. The remaining selling expenses are fixed. The administrative expenses are 25% variable ad 75% fixed. The company purchases its surfboards from a supplier at a cost of Tk. 150 per surfboard.

Required:

Prepare an income statement for the quarter using the contribution approach.

Date : 25/02/2012

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-1 B. Sc. Engineering Examinations 2010-2011

Sub : MATH 231 (Differential equations)

Full Marks: 210

Time : 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

<u>SECTION – A</u>

There are FOUR questions in this Section. Answer any THREE.

1. Solve the following differential equations.

(a)
$$xy - \frac{dy}{dx} = y^3 e^{-x^2}$$

(b) $(6x - 4y + 3)dx - (3x - 2y + 1)dy = 0$
(c) $x^2ydx - x^3dy = y^3dy$
(12)

(b) Solve
$$(x^2 + y^2 + 1)dx - 2xy dy = 0$$
 (12)

(c) Solve the differential equation $\frac{d^3y}{dx^3} + 2 \frac{d^2y}{dx^2} - 5 \frac{dy}{dx} - 6y = 0$ given that y = 0, $\frac{dy}{dx} = 0$,

$$\frac{d^2 y}{dx^2} = 1$$
 at x = 0 (12)

3. Solve the following:

(a)
$$\frac{d^2 y}{dx^2} - 6\frac{dy}{dx} + 13y = x^2 e^{3x}$$
 (11)

(b)
$$\frac{d^5y}{dx^5} - \frac{d^4y}{dx^4} + 2\frac{d^3y}{dx^3} - 2\frac{d^2y}{dx^2} + \frac{dy}{dx} - y = \cos x$$
 (12)

(c)
$$x^3 \frac{d^3 y}{dx^3} - x^2 \frac{d^2 y}{dx^2} + 2x \frac{dy}{dx} - 2y = x^3 + 3x$$
 (12)

4. Solve the following differential equation in series by Fröbenius method.

$$(2x + x^3) \frac{d^2 y}{dx^2} - \frac{dy}{dx} - 6xy = 0.$$

<u>SECTION – B</u>

There are FOUR questions in this Section. Answer any THREE.

5. (a) Solve the following first order PDES

(i)
$$x(y^2 + z)p - y(x^2 + z)q = z(x^2 - y^2)$$
 (7)
(ii) $Z = px + qy + a\sqrt{x^2 + y^2 + z^2}$ (8)

Contd P/2

(35)

MATH 231 Contd ... Q. No. 5

(b) Solve the following PDES by Charpit's method

(i)
$$2xz - px^2 - 2qxy + pq = 0$$
 (12)
(ii) $Z = px + qy + p^2 + q^2$ (8)

6. Solve the following higher order PDES

(i)
$$\left(D_x^2 - 7D_xD_y + 12D_y^2\right)Z = y^2 Sin(x - 2y)$$
 (12)

(ii)
$$(2D_x - 3D_y + 4) (3D_x + 4D_y - 5)Z = e^{x+y}x^2y^2$$
 (14)

(iii)
$$\left(x^2 D_x^2 + 2xy D_x D_y - x D_x\right) Z = \frac{x^3}{y^3}$$
 (9)

7. (a) Find a surface satisfying
$$t = 12x^3y$$
 containing the two lines $y = 0 = Z$, $y = 1 = Z$ (11)

(b) Show that
$$P_n(x) = \frac{1}{2^n \angle n} \frac{d^n}{dx^n} (x^2 - 1)^n$$
 (14)

(c) Prove that
$$x p'_{n}(x) - p'_{n-1}(x) = nP_{n}(x)$$
 (10)

8. (a) Show that
$$\frac{2nJ_n(x)}{x} = J_{n+1}(x) + J_{n-1}(x)$$
 (17)

(b) Show that
$$\int_0^1 x^3 J_0(ax) = \frac{a^2 - 4}{a^3} J_1(a) + \frac{2}{a^2} J_0(a)$$
 (18)