
•

,-OCll.64Z\
1990 I

,-ABD:~

RECOGNITION OF PRINTED BENGALI CHARACTERS

by

DECISION THEORETIC METHOD OF PATTERN RECOGNITION

By

MD. ABDUS SATT.AR

A Thesis

submitted to the department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka,

Bangladesh in partial fulfillment of the requirements for the

degree of

MASTER OF 'SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

o
','

AUGUST, 1990.

111111111""1111"" 1111" II " If - -
#78745#

(

I

RECOGNITION OF PRINTED BENGALI CHARACTERS
~.--~~--_.

by
- ..-- ~----- -~ ._-

DECISION THEORETIC METHOD OF PATTERN RECOGNITION

A Thesis

By
(

MD. ABDUS SATTAR

Accepted as satisfactory as to style and contents for

partial fulfillment of the requirements for the degree of

M.Sc.Engineering in Computer Science and Engineering

on 22-8-90.

~
'\'" '1\10

-------- ---~--------~
DR.SYED MAHBUBUR RAHMAN
Associate Professor and Head,
Computer Science and Engineering Dept.
Bangladesh University of Engineering and
Technology, Dhaka, Bangladesh.

__~.d.L~ _
DR. MD. SHAMSUL ALAM
Associate Professor,
Computer Science and Engineering Dept.
Bangladesh University of Engineering and
Technology, Dhaka, Bangladesh.

DR. MD. ABDUR RASHID
Associate Professor,
Dept. of Applied Physics and Electronics,
University of Dhaka, Dhaka, Bangladesh.

ii

Chairman
and

Supervisor

Member

Member
(External)

\<

•
CERTIFICATE OF RESEARCH

Certified that the work presented in this Thesis is the result of

the investigation carried out by the candidate under the

supervision of Dr. Syed Mahbubur Rahman at the Department of

Computer Science and Engineering, Bangladesh University of

Engineering and Technology, Dhaka, B~ngladesh.

22-01r- ~O

Date

iii

Signature of the
Candidate

,

DECLARATION

I do hereby declare that neither this thesis nor any part thereof

has been submitted or is being concurrently submitted in

candidature for any degree at any other university.

22. - olr- ?>D

Date

iv

----~------Signature of the
Candidate

\

ACKNOWLEDGMENTS

Keen interest of Dr. Syed Mahbubur Rahman in the field of

application of computer facilities in BangIa language has

influenced the author to carry out a research work in the field

of optical recognition of BangIa characters The author

expresses his deepest gratitude to Dr. Rahman. for his

support,advice,valuable and constant guidance and

encouragement and supervision to make the idea work

his constan.t

The author also expresses his heartiest and sincerest gratitude

to Dr. K. M. Waliuzzaman , Director , Bangladesh Institute of

Technology Rajshahi , Bangladesh for his keen interest

suggestions and encouragements. for

r-esear-ch work
the development of this

Thanks are also due to my friends who make this otherwise bore

research work into an enjoyable job. The author also expresses

his gratitudes to the personnels of the Microcomputer Laboratory

of BUET specially to Mr. Syed Ahsanul Karim, Lab Instructor and

to Mr. H. M. Rezaul Karim,Lab Attendant for their friendly helps.

ABSTRACT

A decision theo~etic patte~n ~ecognition app~oach fo~

~ecognizing Bangla alpha-nume~ics has been adopted. The app~oach

chosen as the basis fo~ the analysis only ~ecognizes the

cha~acte~s not giving any of thei~ st~uctu~al desc~iption.

The scheme ope~ates on the ~ep~esentation of one cha~acte~

at a time. The ~ep~esentation is in.the fo~m of a mat~ix whose

elements a~e '0' and '1' co~~esponding to 'black' and 'white' in

the o~iginal pictu~e. The mat~ix is obtained by optically

scanning the pictu~e of the cha~acte~.

The scheme uses the "template - matching" technique fo~

~ecognition. The input patte~n (with unknown classification) is

compa~ed with a set of templates o~ p~ototypes, one fo~ each

cha~acte~, designed p~eviously and sto~ed in machine, and the

classific~tion is based on a good match with the template.

An inte~active menu d~iven cha~acte~ ~ecognition softwa~e in

C language was developed to implement the p~oposed scheme in

IBM PC o~ compitables.

vi

••

CONTENT
i

ii
iii
iv
v
vi

1- 1
1- 2

1- 3

1- 4
1- 6
1- 7

1- S

1- 9
1-11
1-14

2- 1
2- 2

2- 2

2- 4

DECISION THEORETIC METHODS
2.1 PATTERN AND PATTERN CLASSES
2.2 ELEMENTS OF A PATTERN RECOGNITION

SYSTEM
2.3 DECISION THEORETIC APPROACH TO

PATTERN RECOGNITION
2.3.1 NON-PARAMETRIC DECISION

THEORETIC CLASSIFICATION
METHODS 2- 5
2.3.1.1 LINEAR DISCRIMINANT

FUNCTION 2- 7
2.3.1.2 MINIMUM DISTANCE

CLASSIFIER 2- 9
2.3.1.3. NEAREST NEIGHBOR.

CLASSIFICATION 2-10
2.3.1.4 POLYNOMIAL

DISCRIMINANT
FUNCTIONS 2-11

2.4 TEMPLATE MATCHING TECHNIQUE 2-12

TITLE OF THE THES IS
CERTIFICATE OF APPROVAL
CERTIFICATE OF RESEARCH
DECLARATION
ACKNOWLEDGMENT
ABSTRACT

INTRODUCTION
1.1 GENERAL
1.2 NECESSITY-OF AUTOMATIC CHARACTER

RECOGNITION BY MACHINES
>1.3 APPROACHES TO PATTERN/CHARACTER

RECOGN ITION
1.3.1. DECISION THEORETIC APPROACH
1.3.2 SYNTACTIC APPROACH

1.4 DICHOTOMY OF SYNTACTIC AND STATISTICAL
APPROACHES

1.5 A COMPARISON OF ANALOG AND DIGITAL
TECHNIQUES FOR PATTERN RECOGNITION

1.6 LITERATURE SURVEY
1.7 SCOPE OF THE PRESENT WORK

2

1

CHAPTER

CHAPTER

vii

CHAPTER

CHAPTER

CHAPTER

REFERENCES
APPENDICES

3

4

5

DEVELOPMENT OF THE CHARACTER RECOGNITION
SYSTEM
3.1 INTRODUCTION
3.2 METHODOLOGY OF THE RECOGNITION SYSTEM
3.3 DISCUSSION OF THE ELEMENTS OF

RECOGNITION SYSTEM DEVELOPED
.3.3.1 SCANNER
3.3.2 PREPROCESSOR

3.3.2.1 CHARACTER SEPARATOR
3.3.2.2 NORMALISER

3.3.3 THE CLASSIFIER
3.3.3.1 DECISION TAKING

PROCESS
3.4 DEVELOPMENT OF TEMPLATE

3.4.1 SKELETON CHARACTERS
3.4.2 DESIGNING OF TEMPLATES

3.5 SELECTION OF NUMBER OF OPTIMUM TRAINING
SET IN DESIGNING TEMPLATE

3.6 SELECTION OF MISMATCHING THRESHOLD

DISCUSSIONS
4.1 GENERAL REMARKS
4.2 GENERATION OF DATA
4.3 ISOLATION OF CHARACTERS FROM TEXT
4.4 DESIGNING OF TEMPLATES
4.5 SELECTION OF MISMATCH THRESHOLD
4.6 DISCUSSION OF THE PROGRAM DEVELOPED

CONCLUSION AND SUGGESTION FOR FUTURE WORK
5.1 CONCLUSIONS
5.2 SUGGESTION FOR FUTURE WORK

viii

3- 1
3- 2
3- 2

3- 5
3- 5
3- 6
3- 6
3-11
3-.13

3-13
3-14
3-16
3-17

3-17
3-19

4- 1
4- 2
4- 3
4- 6
4- 7
4- 8
4-16

5- 1
5- 2
5- 3

/.;~.

i;;

.....

CHAPTER .1.

INTRODUCTION

1.1 GENERAL

The problem of pattern recognition usually denotes a

discrimination or classification of a set of processes or

events [lJ. The set of processes or events to be classified

could be a set of physical objects or a set of mental

states. The number of pattern classes is often determined by

the particular application in mind. For example, in the

problem of English character recognition, the problem is of

26 classes. On the other hand, discriminating BangIa

characters from English ones is a two class problem.

Pattern recognition is a major area of activity that

encompasses the processing of pictorial information obtained

from. interaction between science and society. Pattern

recognition is needed for to communicate with the computing

machines in human being's natural mode of communication

(the human voice and hand written script [2J. Pattern

recognition is also concerned with the idea of designing and

making automata that can hear and understand what human

being say and write, the automata that can speak and make

people understand, and the automata that can process

pictorial information for human use with more and more

1 - 2

efficiency. The research in pattern recognition encompasses

the field of communication and computer science, mathematics

and statistics, acoustics, phonetics, linguistics and

psycholinguistics, speech pathology, hematology, radiology,

neurophysiology, remote sensing techniques and

photogrammetry and similar other many aspects.

Research and developments on pattern recognition and

applications may be classified into following major groups:

i) Man- Machine communication

ii) Bio-medical applications and diagnosis of

pathological conditions by analyzing X-ray and/or

cytological slides

iii) Natural resources estimation and planning in

agriculture, forestry, hydrology, geological

environment etc.

iv) Scientific and military applications

and v) Detection of crime and criminals.

1.2 NECESSITY OF AUTOMATIC CHARACTER RECOGNITION BY MACHINES

Modern high speed computers can execute millions of

instructions per seconds, but their capacity as information

1 - 3

n

proc ••ssing d••vic••s is limit••d by th••typ••of input data that

th••y can acc••pt. Much of th••information that w••might lik ••

th.. comput ••rs to proc••ss is in pictorial form; this

includ ••s alpha-num ••r.ic charact ••rs (print ••d t••xt, hand

writing ••tc.). Alphanum ••ric data can b••manually conv ••rt••d

into comput ••r r••adabl ••~orm, but much fast ••r input rat••s'can

b.. achi ••v••d if scanning and optical r••cognition t••chniqu ••s

ar••us••d.

Som.. applications of charact ••r r••cognition is shown in

Tabl ••1-1

1.3 APPROACHES TO PATTERN/CHARACTER RECOGNITION

Th••many diff ••r••nt math ••matical t••chniqu ••s us••d to solv ••

patt••rn r••cognition probl ••ms may b••group ••d into two g••n••ral

approach ••s : nam••ly,

a) th••d••cision th••or••tic (or statistical) approach and

b) th••syntactic (or linguistic) approach.

1 - 4

n

TABLE 1 - 1

SOME APPLICATION OF CHARACTER RECOGNITION

--
Problem input to

recognition system
output of
recognition system

--

•
alphanumeric
characters,
special symbols

numeric characters,
special symbols

magnetic response wave
form, optical scanned
image
optical scanned imageAutomatic process

of documents ---
utility bills,credit
card charges, sale
and inventory
documents.

Bank checks

Journal tape optical scanned image
reading
Page readers optical scanned image
automatic type
setting,input
to computers,
reading for the
blind

alphanumeric
characters,
special symbols
alphanumeric
characters,
special symbols

Label readers optical scanned image alphanumeric
characters,
special symbols

,Address readers optical scanned image letters and
numerals combined
into zip codes,
city and street
names, and street
addresses

Other readers --- optical scanned image
license plate
readers, telephone
traffic counter
reader etc.

alphanumeric
characters,
special symbols

1 - 5

1.3.1 DECISION THEORETIC APPROACH

In the decision theoretic approach the classification is

based on a set of selected measurements, extracted from the

input pattern [1,2]. These selected measurements are called

'feature'. The recognition of each pattern (assignment to a

pattern class is usually made by partitioning the feature

space. Once a pattern is transformed through feature

extraction, to a point or vector in the feature space, its

characteristics are expressed only by a set of numerical

vplues. The information about the structure of the pattern

is either ignored or not explicitly represented in the

feature space. Most of the developments in the pattern

recognition research during the sixties deal with decision

theoretic approach. Applications

recognition, crop classification,

include

medical

character

diagnosis,

classification of electrocardiograms etc.

A simplified block diagram "for decision theoretic

approach is depicted in Figure 1.1.

1 - 6

Input

Pattern

Xl ,
7

Feature x2 decision
, , Classifier ~
i' ~ ~

Extraction xn ,,

Fig. 1.1 Slock diagram of a pattern recognition system
using decision theoretic approach.

1.3.2 SYNTACTIC APPROACH

In some pattern recognition problems, the structural

information which describe each pattern is important and

recognition process includes not only the capability of

assigning the pattern to a particular class to classify

it l, but also the capacity to describe specific aspects of

the pattern which make it ineligible for assignment to

another class [3J. The syntactic approach views patterns as

complexes of primitive structural elements, called morphs

[4J. A pattern is classified by studying the set of morphs

which build up a pattern and studying the relationships

among the morphs. This method has been successfully applied

1 - 7

in problems of character recognition, chromosome analysis,

finger-print classification, X-ray analysis, speech analysis

etc.

A simplified block diagram for syntactic

recognition method is shown in Figure 1.2.

pattern

Input
pattern

Recognition

Learning

Feature classi
fica ,-, ,

Extraction tion
,

---------------------------------- ----------
.

Grammatical
Sample pattern , Inference

class

Fig. 1.2 Block diagram of a syntactic pattern recognition
problem.

1.4 DICHOTOMY OF SYNTACTIC AND STATISTICAL APPROACHES

In the past much has been made of the apparent

difference between two approaches. The stress on the

distinction between the two model hides many a similarities:

1 - 8

most of the pre-processing techniques are usefully applied

to both the approaches; feature extraction and selection in

decision theoretic approach and morphs extraction and

selection in syntactic approaches are similar in nature.

The basic difference between the two approaches is that

in decision theoretic approach the features are a set of

numerical measurements on the pattern/subpattern parameters

whereas the morphs in syntactic model are subpatterns

1.5

themselves. Statistical decision theory focuses entirely on

statistical relationships among scalar features ignoring any

other structural properties that characterized the pattern

i.e. decision theoretic approach only classifies the pattern

whereas syntactic approach serves classification as well as

description of the pattern.

A COMPARISON OF ANALOG AND DIGITAL TECHNIQUES FOR

PATTERN RECOGNITION

The digital approach to problems in pattern recognition

has many advantages [5]. Digital computers provide the user

with the capability of performing calculations to

essentially any degree of precision with almost infinite

1 - 9

flexibility as regards the type and scope of the problem

addressed. Due to the universality of most major programming

languages and general availability of digital computing

facilities, the user also benefits from both ease of

programming and the transferability of software. Last but

not the least, the digital computer usually offers the user

absolute repeatability on each execution of a given program.

These are the advantages which led to an almost overwhelming

preference for the use of digital computers in carrying out

calculations relating to pattern recognition.

Analog computer offers workers using low precision high-

speed one or two dimensional linear discriminant analysis a

significant advantage in hardware performance (equivalent

bits per sec per dollar) over digital computer in certain

limited but important areas [5J. These areas include finger

print identification, word recognition, chromosome spread

detection, earth resources and land use analysis and broad

band radar signal analysis. Although at present the analog

computer offers significant advantage in certain fields,
•

this advantages will eventually be overcome by digital

computer [5J.

1 - 10

1.6 LITERATURE SURVEY

Ove~ the yea~s, the field of patte~n ~ecognition has

att~acted wo~ke~s f~om a va~iety of a~eas such as

engineering, system theo~y, statistics, linguistics,

psychology etc., ~esulting in a vast literatu~e .containing

abst~act mathematical app~oaches as well as highly p~agmatic

techniques. The lite~atu~e is scatte~ed in a large number of

jou~nals in seve~al fields. At least th~ee IEEE jou~nals

Systems,Man and Cybe~netics, Compute~ and Info~mation

Theo~y) ~egula~ly publish patte~n ~ecognition papers. Some

of the impo~tant lite~atu~es, relevant to the wo~k, a~e

discussed in this section.

L.N.Kanal in his paper [4J selectively su~veyed

cont~ibutions to majo~ topics in patte~n ~ecognition du~ing

the pe~iod 1968 to 1974. This pape~ also provides a very

useful bibliog~aphy about ~ep~esentative books and surveys

on pattern ~ecognition published du~ing the above mentioned

pe~iod. Theo~etical models fo~ automatic patte~n ~ecognition

cont~asted with p~actical design methodology.a~e

selectively discussed the ~esea~ch contributions

He

to

statistical and st~uctural patte~n ~ecognition including

1 - 11

contributions to error estimation and the ewperimental

design of pattern classifiers. His paper concludes with a
. .

representative set of applications of pattern recognition

technology.

In his paper [5] Kendall Preston Jr. gave a thorough

comparison of analog and digital techniques used for pattern

,

recognition.

(electronic,

This paper reviews three major categories

acoustical and optical) of analog technology

used in pattern recognition and predicts the future trends

upon the analysis of performance advances which have taken

place in both.digital and analog fields during the. past

decade.

Unger [6] observed that for any alphabet there must

exist at least one finite set of characteristics that can be

used to distinguish amongst the members. He suggested that

there must exist a set of yes or no questions such that if

these questions are answered with respect to any given

figure then there will be.only one member of the alphabet to

which this figure can belong.

Horwitz and Shelton [7] described a class of techniques

for character recognition. These techniques are characterized

by the property that the only parameters of the input which

1 - 12

are used are those which are independent of the position of

the characters,

invariant.

i.e. these techniques are registration

Perotto [8] described a method, called

"morphotopological method for character recognition",

describe the characters in invariant termscan

considerations of topological and morphological type.

that

with

The

method makes it possible of reading english numerical

characters having strong variations in form, size and

position.

A matrix of simple, identical intercommunicating cells

is the core of a pattern classifier described by

Glucksman [9]. A test sequencer tests the matrix, on which

the pattern is mapped, by following a binary decision tree.

The result of each test determines which of two tests will

follow. Each test eliminates classes of patterns from the

total set of classes. The process lead to one final class at

the end of a sequence of such tests.

Yau and Yang [10] suggested simple template-matching

pattern recognition technique by using any general

associative memory.

1 - 13

purpose

A.W.Holt in a pape~ [11] classifies the cha~acte~

~ecognition •machine~y with a minimum ~efe~ence to the

specific components used. Acco~ding to Holt the job of all

such machines is to conve~t a set of data having high

info~mation into a cha~acte~ name having a much lowe~

info~mation content. In his pape~ he gave a desc~iption of

single stage, two stage and th~ee stage. cha~acte~

~ecognition machines. He is the fi~st man to use stage

concept in classifying cha~acte~ ~ecognition machine~y.

Fu, a pionee~ in patte~n ~ecognitionfield, in his many

pape~s discusses the diffe~ent fo~ms of .~ecognition

techniques. Inapape~ [1] he discussed in detail the non-

pa~amet~ic as well as pa~amet~ic (Bayes classification

methods. The pape~ also includes a discussion on sequential

decision model fo~ patte~n classification.

In anothe~ pape~ [18] Fu explo~es the topics on

syntactic app~oach. He~e a detailed discussion on selection

on patte~n p~imitives, patte~n g~amma~ including special

g~amma~ and syntax analysis as ~ecognition p~ocedu~e could

be found.

M. A. Satta~ and S. M. Rahman [19] in thei~ pape~

discuss the diffe~ent p~oblems of ~ecognition of p~inted

1 - 14

BangIa characters by applying the Template matching method.

They discussed about the optimum number of training set for

designing the templates and the mismatch threshold to be

used to avoid the problem of mis-classification.

1.7 SCOPE OF THE PRESENT WORK

It has already been mentioned that one of the main

aspect of pattern recognition is to communicate with the

computing machines in the natural mode of communication

(the human voice and handwritten or typed script).

Research works are going on in different ways of man-machine

communication such as speaker recognition, speech analysis,

finger print identification, character recognition etc.

Character recognition has been receiving considerable

attention as the result of the phenomenal growth of the

office automation and the need for translating human

language into machine language. Most of the workers in the

fields of character recognition used the decision theoretic

approach. For the present work decision theoretic approach

has been chosen which only classifies the

patterns/characters not going into its detailed structure. A

1 - 15

(~,
~ I

computer program has been developed to work in steps, first

separating the character from the text, second normalizing

i.e. registering the input pattern with top and left margin,

third comparing the registered pattern with the previously

designed "masks" or "templates" and finally taking the

decision to properly classify the unknown input pattern.

1 - 16

r

CHAPTER :2

DECISION THEORETIC METHODS

(

,.

2.1 PATTERN AND PATTERN CLASSES

A pattern is a quantitative or structural description

" ".

of an object or some other entity of interest , while a

pattern class is a set of patterns that share some common

properties. For example, in character recognition case,

each alpha-numeric character represents a pattern class

whereas each unknown input to the recognition system is a

pattern.

2.2 ELEMENTS OF A PATTERN RECOGNITION SYSTEM[12]

The principal function of a pattern recognition system

is to arrive at decisions concerning the class membership of

the patterns with which it is confronted. Several major

information translation processes take place between the

time a pattern is input and a decision is made by the

system. These processes. which are summarized in block

diagram form in Fig. 2.1 , extract from the input data the

discriminatory information required for classification. The

function of the blocks shown in Fig.

briefly as follows

2 - 2

2.1 are described

The senso~ is simply the measu~ement device that

t~ansfo~ms the input patte~ns into a fo~m .suitable fo~

machine manipulation. Although some simple patte~n

~ecognition systems ope~ate on the input data di~ectly f~om

the sensor, it is common to follow the senso~ with a

..

input
, decisio~

~ .-., f-'J featu~e ~ classifie~,sensor p~ep~ocesso~
e)(t~acto~

Figu~e 2.1 Components of a pattern ~ecognition system.

p~ep~ocesso~ and featu~e e)(t~acto~.The p~ep~ocesso~ ~emoves

unnecessa~y o~ co~~upting elements f~om the measu~ed data,

while the .featu~ee)(t~acto~computes f~om the p~ep~ocessed

data the featu~es ~equi~ed fo~ classification. Finally,

these featu~es a~e input into the classifie~, whose function

is to yield a decision conce~ning the class membe~ship of

the patte~n being p~ocessed.

2 - 3

2.3 DECISION THEORETIC APPROACH TO PATTERN RECOGNITION

In the block diagram of Fig. 2.1 it has been

implicitly assumed that the system "knows" the information
\

processing operations that must be performed on an input

pattern in order to arrive at a decision. Although the

general form of these operation is specified by the system

designer, in most cases each specific operation is

characterized by variable parameters that must be adapted to

a given pattern recognition problem. The adjustment of these

parameters is usually carried out by utilizing sample

patterns in what is called a learning or training process.

Machine learning techniques may be subdivided into two

principal categories: (1) supervised and (2) unsupervised.

In a supervised learning situation, the system parameters

are estimated by algorithms that utilize training sample

patterns whose class membership is specified externally by

the system designer. In this manner, the unknown parameters

are adjusted to fit a situation where the pattern classes
I

are specified and characterized by representatives samples.

Hence, the ultimate success of this approach is dictated by

2 - 4

the quality of the sample set used to train the pattern

recognition system.

The unsupervised learning approach is used when there

is little or no a priori knowledge about the pattern classes

of a given problem. In essence, this approach attempts to

extract the pattern classes present in a set of data for

which the classification of the available sample patterns is

not completely known.

As mentioned earlier, the principal function of a

pattern recognition system is to yield decisions concerning

the class membership of the pattern with which it is

confronted. In order to accomplish this task, it is

necessary to es.tablish some rules upon which to base the

decisions. One important approach to this problem is the use

of decision function. Followings are the discussions of

some of the main decision function used in

theoretic approach of pattern recognition system.

decision

2.3.1 NON-PARAMETRIC DECISION THEORETIC CLASSIFICATION METHODS

The concept of pattern classification may be expressed

in terms of the partition of feature space (or mapping from

2 - 5

featu~e space to decision space). Suppose that N featu~es

a~e to be measu~ed f~om each input patte~n • Each set of N

featu~es can be conside~ed as a vecto~ X, called a featu~e

(measu~ement) vector, o~ a point in the N-dimensional

featu~e space Wx' The p~oblem of classification is to assign

each possible vecto~ o~ point in the featu~e space to a

p~ope~ patte~n class. This can be inte~p~eted as a pa~tition

of the featu~e space into .mutuallyexclusive ~egions and

each ~egion will co~~espond to a pa~ticula~ patte~n class.

Mathematically, the p~oblem of classification can be

fo~mulated in te~ms of lldiscr-iminant functions". Let

w1,w2,...,wm be designated as the m possible . patte~n

classes to be ~ecognized, and let

x = [xl x2 ••••••••

be the featu~e (measu~ement) vecto~ whe~e xi ~ep~esents the

ith featu~e measu~ement. Then the disc~iminant function

Dj(X) associated with patte~n class Wj' j = 1, •••,m, is such

that if the input patte~n ~ep~esented by the featu~e vecto~

X is in class wi' denoted as X"-' wi' the value of Di(X) must

be la~gest. That is fo~ all X rvwi

i # j. (2.1)

Thus, in the featu~e space Wx the bounda~y of pa~tition,

2 - 6

/

called the decision boundary, between regions associated

with class wi and class Wj, respectively, is expressed by

the following equation.

Many different forms satisfying condition (2.1)

(2.2)

can be

selected for Di(X), Several important discriminant functions

are discussed in the following.

2.3.1.1 LINEAR DISCRIMINANT FUNCTION

In this case, a linear combination of the feature

i = 1, ... ,m

The decision boundary between regions in Wx associated

with wi and Wj is in the form of

(2.3)

with = Wjk and = Wj,N+1'

Equation (2.3) is the equation of a hyperplane in the

feature space Wx' If m = 2, on the basis of equation (2.3),

i,j = 1,2 (i ~ j), a threshold logic device, as shown in

figure 2.2 can be employed as a linear classifier a

2 - 7

classifier using linear discriminant func tions) •

From fig.2.2 ,let D(X) = Dl(X) - D2(X) ,

if output = +1, i.e., D(X) > 0, then Xr-vwl

and if output = -1, i.e., D(X) < 0, then X", w2

For the number of pattern classes more then two,

i.e. m > 2, several threshold logic devices can be connected

in parallel so that t~e combinations of the outputs from,

say, M threshold logic devices will be sufficient for

distinguishing m classes, i.e., 2M >= m.

-~

'Th'Y€.s~\J.
€. \<2. \'\1\.<2.'"t

""1,DCx»,!,

0Lct:r,J. ~ ~_i, D(K)L<j>

Fig. 2.2 A linear two-class classifier •

2 - 8

2.3.1.2 MINIMUM DISTANCE CLASSIFIER

An important class of linear classifier is that of

using the distance between the input pattern and a set of

reference vectors or prototype points in the feature spaces

as the classification criterion. Suppose that m reference

vectors Rl,R2, ..•,Rm, are given with Rj associated with the

pattern class Wj. A minimum-distance classification scheme

with respect to Rl,R2, ...,Rm is to classify the input X as

f~om class wi' i.e.,
if L X - Ri I is the minimum.

where IX-Ril is the distance defined between X and Ri. For

example, IX - Ril may be defined as

I X Ri1 = ,j(X - Ri)T(X - Ri) (2.4)

where the superscript T represents the transpose operation

to a vector. From equation (2.4)

Since XTX is not a function of i, the corresponding

discriminant function for a minimum-distance classifier

is essentially

i = 1, ... ,m

which is linear. Hence, a minimum distance classifier is, of

2 - 9

course, dependent upon an app~op~iately selected set of

~efe~ence vecto~s.

2.3.1.3 NEAREST NEIGHBOR CLASSIFICATION

The concept adopted in Subsection 2.3.1.2 can be

extended to the case of minimum-distance classification with

~espect to sets of refe~ence vecto~s. Let Rl,R2, .•.,Rm be

the m sets of ~efe~ence vecto~s associated with classes

wl,w2' ...'wm, ~espectively, and let ~efe~ence vecto~s in Rj

be denoted as R (.k) , i.e.,J

Rl.k)E Rj, k = l ... uj.J

whe~e Uj is the numbe~ of ~efe~ence vecto~s in set Rj.

Define the distance between an input featu~e vecto~ X and Rj

as

That i-s, the

Min
"""- :I.,... ,U

distance between X and Rj is the smallest of

the distances between X and each vecto~ in Rj. The

classifie~ will assign the input to a patte~n class which

is associated with the closest vecto~ set. If the distance

between X and I X is defined as

Equation (2.4), then the disc~iminant function used in this

2 - 10

case is essentially

Di(X) = Max {XTRlk) + (Rlk»TX - (Rlk»TRlk)} (2.5)
K.:1.Jo •• ,U

whe~e i = 1, ... ,m

Let

Then

linea~ combination ofIt

Di(X) = Max {
'1<.= !,.oo,\.\

is ncited that

Dlk)(X)} ;

D/k)(X) is a

i = 1, ,m (2.6)

featu~es, hence, the class of classifie~s using (2.5) o~

(2.6) is often called the Nea~est Neighbo~ classifie~s.

2.3.1.4 POLYNOMIAL DISCRIMINANT FUNCTIONS

An rth-o~de~ polynomial disc~iminant function can be

exp~essed as

whe~e fj(X) is of the
n, 'h2. XhY

XK, X\<..2.... I<.r

fo~m
= ! 00 OJ N

J

The decision bounda~y between any two classes is also

in the fo~m of an rth-o~de~ polynomial. Pa~ticula~ly,

2 - 11

if r = 2, the discriminant function is called a quadric

discriminant function In this case,
r. rv) Xn• XY\;> ...£-y K., K;>= 1.,.... ,NI) \.." ~ \0<.., K.2.., v

and

L = I2. N(N+3) •

Typically,
N 111-' N '"Di(X) = Z::WkkX~ +L~WjkXjXk + 2:..w jXj + WL+1

I(0 1)'1 "")+!.).,
In general, the decision boundary for quadric

discriminant functions is a hyper-hyperboloid. Special cases

include hypersphere,hyperellipsoid and hyperellipsiodal

cylinder.•

2.4 TEMPLATE MATCHING TECHNIQUE

When a pattern class is characterized by a roster of

its members, the design of a pattern recognition system may

be based on the member-ship-roster concept. Characterization

of a pattern class by a roster of its member suggests

automatic pattern recognition by Template matching [1,13].

Matching or correlation plays a major role in the

recognition of characters that have known shapes. Simple

template like features are appropriate for classifying

2 - 12

patterns of known shape, such as characters [14]. This

concepts lead to the design of inexpensive recognition

schemes[14] •

The template-matching approach can be regarded as a

special case of decision theoretic approach when patterns

are represented by their raw data or corresponding feature

vectors.

Template-matching recognition technique works as

follows: Each character in the character set is assigned a

template or mask, which is a matrix of O's and l's

representing black and white points. To classify a given

character sample, it is digitized onto a matrix and compared

to all templates; the comparison process consists of

comparing the matrix elements of the sample to that of the

templates.

templates

Classification is achieved if one of

provides a sufficiently good match to

the

the

character sample. The principal design efforts in this

technique is in designing the masks or templates; the object

is to maximize the probability of correct classification of

each character and to minimize the probabilities of

incorrect and/or no classification.

2 - 13

Mathematically. if X = {

rectangular array obtained by scanning a character that is

to be recognized and if T = {t1 •...•ti •...• tN } be the

rectangular array for a template, then the pattern X is

assigned to the class T when
N

2.(xi 8 ti)

i..,=.1.
is minimal, where xi GJ ti is the exclusive OR of

Template-matching approach may be .interpreted as a

special case where "fe~tures" are stored in the template and

a special classification criterion (matching) is used for

the classifier[l].

2 - 14

CHAPTER :3

DEVELOPMENT OF THE CHARACTER

RECOGNITION SYSTEM

I "

3.1 INTRODUCTION

Fu [1] and Tou and Gonzalez [13] observed in the

mentioned papers that characterization of a pattern class by

a roster of its member suggests automatic pattern

recognition by Template matching. Rosenfeld [14] in his

paper observed that matching or correlation plays a major

rore in the recognition of characters that have known

shapes. In the paper he concludes that simple template like

features are appropriate for classifying patterns of known

shape, such as characters. He also points out that the

template matching concept leads to the design of inexpensive

recognition system.

So, to develop the first BangIa character recognition

system, the template matching method/technique was adopted.

3.2 METHODOLOGY OF THE RECOGNITION PROCESS

To design a character recognition system the

methodological procedures are required

digitization : To recognition a given text first it is

to be digitized onto a matrix i.e., to be t~ansformed

, 3 - 2

into binary form for ease of handling by computer.

separation : To separate characters from the text as

all the individual characters must be isolated to

recognize them properly.

normalization : To register the character onto a common

reference. Here it is registered tangent to its left

and top margin.

taking decision: Depending on its previous 'learning'

the machine takes the decision to the class belongings

of the character. To classify, the classifier fetches a

template from the template dictionary and calculates

the amount of mismatch between the fetched template and

the character. If the amount of mismatch is within the

tolerable limit then the classifier gives the decision

that the character belongs to the template class,

otherwise the classifier fetches the next template and

repeats the process until either a decision about the

class belongings of the character is reached or the end

of the template dictionary is reached in which case the

decision is taken that the character can not be

recognized and it belongs to rejection class.

3 - 3

A schematic diagram of the proposed methodology is

shown in Figure 3.1.

In template matching technique the main design effort

is spend on developing the decision taking algorithm. In the

subsequent sections the design procedure of each step

mentioned above is discussed.

.pre-processor classifier

nor-maliset"'" decision

input
text digitizer

sensor-

template
dictionary

Diagram showing the methodology
different components bf the
pattern recognition system.

3 - 4

and the
developed

3.3 THE ELEMENTS OF THE RECOGNITION SYSTEM DEVELOPED

The dotted enclosures in Figure 3.1 above shows the

different components of the recognition system developed.

The arrangements of the different components into different

groups was based on the suggestion of Gonzalez and

Thomason [12]. A brief discussion on the different

3.3.1

components of the above diagram follows.

SCANNER

The digitizer is a device which converts a physical

sample to be recognized into pattel'n v'ector.

It is often convenient, for recognition purpose, to

arrange the pattern/character in the form of a pattern

\/ector:

x = (x1,x2'x3' •.•• ,xn)

where n is the number of measurements and component xi of

the vector X assumes the value 1 or 0 , depending on the

state of the ith position fora particular input[9].

The digitizer used was a hand held scanner capable of

scanning images of 10.5 cm (4.13 inches

3 - 5

wide. The

~esolution of the scanned image is 8 dots pe~ mm (2~~ dots

pe~ inch) in both di~ections which is equivalent to 84~

dots pe~ line. Though the scanne~ offe~s fou~ encoding mode:

th~ee half-tone encoding and one black and white encoding,

the black and white option was used to scan the cha~acte~s.

This mode conve~ts the image into bina~y image ----- ~ fo~
•

the p~esence of a black spot, 1 fo~ the absence of any black

spot. Figu~e 3.2 shows a bina~y image of a cha~acte~. The

b~ightness of the scanned image can be cont~olled by the

use~. The scanne~ is softwa~e cont~olled. The output of the

scanner i.e., the bina~y image obtained by scanning the

cha~acte~s we~e sto~ed fo~ fu~the~ use.

3.3.2

3.3.2.1

PREPROCESSOR

CHARACTER SEPARATOR

No~mally the classifie~ is designed to take decision on

a sample p~esented to it. The sample cha~acte~s a~e fed to

the classifie~ one cha~acte~ at a time. But, in ~eal

stand alone cha~acte~s ca~~y ve~y little message. Real

life,

life

documents consists various combinations of characters. So,

3 - 6

11
11
111111111000001111111111111111111111111111111111
111110000000000000000000000000111111111111111111
111100000000000000000000000000000000000001111111
111100000000000000000000000000000000000001111111
111100000000000000000000000000000000000000111111
111100000000000000000000000000000000000000111111
111110000000000000000000000000000000000001111111
111111000111111111111111111111110000000111111111
111111111111111111111111111111111100001111111111
111111111111111111111111111111110000001111111111
111111111111111111111111111111000000001111111111
111111111111111111111111111100000000001111111111
111111111111111111111111110000000000011111111111
111111111111111111111111110000000000011111111111
Llllllllllllllllllllll10000000011100011111111111
111111111111111111111100000000011100011111111111
111111111111111111111100000111111110011111111111
111111111111111111110000001111111110011111111111
111111111111111110000000011111111110011111111111
111111111111111100000000111111111110011111111111
111111111111111000000011111111111100011111111111
111111111111110000000011111111111100001111111111
111111111111100000000001111111111100001111111111
111111111111100000000000111111111100001111111111
111111111111110000000000111111111100001111111111
111111111111110000000000011111111100001111111111
111111111111111000000000001111111100001111111111
111111111111111100000000000111111100001111111111
111111111111111111100000000011111000011111111111
111111111111111111110000000011111000011111111111
111111111111111111111100000001111000011111111111
111111111111111111111111000000111000011111111111
lllllllilllllllllllllll1000000000000011111111111
111111111111111111111111100000000000011111111111
111111111111111111111111111000000000001111111111
111111111111111111111111111000000000001111111111
111111111111111111111111111100000000011111111111
111111111111111111111111111100000000011111111111
111111111111111111111111111100000000011111111111
111111111111111111111111111100000000011111111111
111111111111111111111111111111000000001111111111
111111111111111111111111111111000000001111111111
111111111111111111111111111111100000001111111111
l111111111Lllll111111111111111110000011111111111
11
11

Figure 3.2 Binary image of a sample character
as obtained from the output of the
scanne~.

3 - 7

an algorithm was developed to separate the characters from

words. The same algorithm also differentiates between the

consequitive lines and also the words in a line. This

separated characters were then fed to the normaliser for

normal~zation. In English (European and American) language

characters are well separated in a word. But in BangIa this

is not the case. Sometimes they are separated from one

another but in most cases they are connected in the top by a

horizontal line known as "Matra" (~). It was observed

that this horizontal line is always less than one-fifth of

the over-all height of the characters. [Part of the data is

depicted in Table 3-1]. This information was applied in

separating the characters joined by the top horizontal line.

After being separated from a word the character was

normalized before feeding to the classifier for decision. A

flow-chart of the algorithm of character separation is shown

in Figure 3.3 [For source coding refer to separate

function in Appendix A].

3 - 8

TABLE 3-1

Part of the data set used to determine

the height of the MATRA

name of total height heig,ht of MATRA
character in line in line in f.

Glt sample III 44 6 13.64
~ sample 112 39 6 15.3B
4' sample III 42 7 16.67
~ sample 112 42 6 14.29
~ sample III 38 5 13.16
~ sample 112 41 5 12.21Zl
41 sample III 42 5 11. 91Zl
41 sample 112 41Zl 6 15.1Zl1Zl
4" sample III 44 7 15.91
:;r sample 112 43 6 13.96
)!" sample III 44 7 15.91
):1 sample 112 43 7 16.28
~ sample III 48 7 14.58
:;q sample 112 46 8 17.39
ir sample III 44 6 13.64
~ sample 112 42 5 11.91Zl
:s:r sample III 58 6 llZl.34
-:<f sample 112 58 7 12.1Zl7

3'- 9

separationofCharaoters

Check the Inputyattern for the firstine oontainlng black(non-white) point.Saue It as row1.

Continue checking forline contalnint onl~white poin s.Saue this lIne as row2.

Check uertlcall~between row! and row2for first colUMnhaUlnt blaok(non-whl e) point.Saue It as co11.

Continue checkinguertloall~ for oolUMnoontalnlng all whitepOInts.Saue It as co12.

returnrow! ,row2col1,col2

Figure 3.3 Flow-chart for the algorithm of separation
of characters.

3 - 10

3.3.2.2 NORMALISER

It is often necessary to "preprocess" the given

pictu~es in o~de~ to imp~ove the ~eliability of subsequent

matching. An.impo~tant type of p~ep~ocessing is NORNl"LIZING,

in which the pictu~e is b~ought into a standa~d fo~m, in

o~de~ to make featu~e values independent.of, o~ at least

insensitive to, va~ious t~ansfo~mations which may have

affected the o~iginal pictu~e. Fo~ the p~esent wo~k the

digitized bina~y ve~sion of a p~inted cha~acte~ was

no~malized tangent to the top and left-hand ma~gins of a

~ectangle field as llpreprocessifl9 is the necessary

p~ocessing of the input image befo~e the subsequent steps

can be applied" [4].

A flow-cha~t of the algo~ithm fo~ no~malizing the input

cha~acte~ tangent to the top and to the left-hand ma~gins is

shown in Figu~e 3.4. [Fo~ sou~ce coding ~efe~ to no~malize

function in Appendix A].

3 - 11

Figure 3.4

NOrMal isationofinput pattern

Soan the digitizedpattern row-wise fora transition froMwhite to black point.Thi sisfirst-effective-row.

Continue scanningrow-wise for a linehaving all whitepoints.The line before thisline is thelast-effeotive-row.

~

Scan the pattern coluMn-wise for. thefirst-effective-coluMn.
I

Continue soanning forthelast-effective-ooIUMn.

returnthe effeoti verow and colUMnvalues.

Flow-chart of normalising the
input pattern

3 - 12

3.3.3 THE CLASSIFIER

The classifier classifies the input pattern to a class

to which it belongs to i.e. it takes decision as regard to'

the belonging of the input pattern to a certain class. The

character represented by the pattern matrix after being

separated and normalized is now fed to the classifier. A

dictionary of templates is searched to find the best

matching template corresponding to the input character • The

technique of developing the template has been described

later in Section 3.3.

The dictionary of templates is arranged according to

the frequency of occurrence of the characters because this

will lessen the comparison time by finding the most frequent

alphabets with less trials. The frequency table is given in

Appendix B [11].

3.3.3.1 DECISION TAKING PROCESS

The decision procedure consists only of determining

whether any of the templates affords a sufficiently good fit

for an unknown sample. Determination technique works as

3 - 13

follows:

Unknown sample matrix is compared with pre-stored

template matrix. If there are p elements in the unknown

sample matrix, m is the total mismatching found, t is

the tolerance threshold in percent , then the unknown

sample US belongs to class !'1when

in (= P I/< t

The flow-chart for decision taking process is depicted

in Figure 3.5.

3.4 DEVELOPMENT OF TEMPLATE

The principle design efforts in template-matching

technique, as mentioned earlier, is in designing the

templates. In designing a template .for the individual

characters, two objectives are paramount:

1) The template must fit the design character.

2) A certain minimum mismatch level must be

maintained against all other character.

3 - 14

Decisiontakingprocess

get the firstteMPlate froMthe teMpI atedictionary

Calculate the aMount ofMisMatch between theinput pattern and theteMplate

n

get the nextteMplate froMthe dictionary

n

input patternbelongs toteMplate class

input patternbelongs torejection class

return

Figure 3.5 Flow-chart of decision taking process.

3 - 15

3.4.1

Templates are constructed from compressed version of sample

char-acters called "skeletonslt
•

SKELETON CHARACTERS

When the binary version of a printed character is

registered tangent to top and left-hand margins of a

rectangular field, some points are found to be black for

most characters in the same class, while other points are

usually white. There is also a regron of uncertainty,

distributed mainly along the border of the characters. Since

the template designing procedure requires knowledge of the

stable points, i.e., those which are reliably black or

reliably white for a given character, so called Ilskeletonll

characters

Appendix C

are derived through

as follows:

a computer program

A fixed numbers of samples of each character are read

from the secondary storage, where the scanned binary

version of the printed samples are being stored, and

registered in the field. The number of black points in

each bit position is counted. If this count is equal to

3 - 16

or more than a predetermined threshold, the point is

designated as a "stable black point", and if it is

equal to or less then another predetermined threshold,

the point is designated as a "stable white point". A

point which fails to satisfy either criterion is

labeled The flow-chart is shown in

3.4.2

Figure 3.6.

DESIGNING OF TEMPLATES

Samples and skeletons of characters belonging to a

•

single class constitute the input to the template designing

program. A template for a given character is composed of

stable points selected from the skeleton of that character.
/

3.5 SELECTION OF 'NUMBER OF OPTIMUM TRAINING SET IN DESIGNING

TEMPLATE

The -effect of variation of number of training set in

making template is depicted in Figure 3.7 . It is seen from

the Figure 3.7 that the number of "reliable'l points

decreases as the number of training set increases. This is

3 - 17

Set TJ as
"uncertain point"

Making ofteMPi ate

Move to the jth eleMentof the teMpl atearray • T

n

Set TJ as
"stable black point"

y

Set TJ as
"stable white point"

n

return

Figure 3.6 Flow-chart of making template.

3 - 18

because with the addition of mo~e t~aining sets the

ambiguous points a~e being d~opped out ---- the template

contains mo~e and mo~e "~eliable" points. F~om the figu~e it

is also clea~ that while the~e is significant diffe~ence in

templates with less numbe~ of t~aining sets, a fu~the~

inc~ease in t~aining set does not app~eciably inc~ease the

pe~fo~mance. The fact can be seen in Figu~e 3.8. F~om

Figu~e 3.7 it is obse~ved that the cu~ves become almost

ho~izontal afte~ point 13 o~ 14. Applying t-test of

statistics it was found that the cu~ve f~om point 15 can be

taken as ho~izontal. So, the optimum value fo~ the numbe~ of

t~aining set fo~ making template was chosen as 15.

3.6 SELECTION OF MISMATCHING THRESHOLD

In selecting the mismatch th~eshold special emphasis

was given to.avoid the chances of misclassification between

the cha~acte~s. To find the optimum mismatching th~eshold,

the ~ecognition p~ocess was ~un on almost 900 cha~acte~s

[each alphabet has nea~ly 20 di1fe~ent samples.] fo~

diffe~ent pe~centage of mismatch tcile~ance.A summa~y of the

~esult obtained is shown in Table 3-2 and in Figu~e 3-9.

3 - 19

. .

(

EFFECT OF NUMBER OF TRAINING SET
ON DESIGNING TEMPLATE

[

1.4

\ 1.3 ::=-" " lE)(1.2

1.1 ~;~z
(5 0.90.
w~
..J • 0.8

~I 0.7:J
••• 0OF 0.6

"'~w 0.5m
:l!
:> 0.4z

0.3

0.2

0.1

0

o patlern /I 1 ("J1) +

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

/I OF TRAINING SET FOR MAKING TEMPLATE

potIern /I 2 ~ () pollern /I 3 (5l) l> patlern /I 4 (20 X potIern /I 5(~)

Figure 3.7 Effect of number of training set on designing template
3 - 2121

EFFECT ON MISMATCH PERCENTAGE
OF A PAnERN WITH DIFFERENT TEMPlATES

12

11

10

9
I
0
~ 8
:l!

'"~ 7

"-0 6

'"
~ 5

'"0 4It:

'"ll.
3

2

o
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

/I OF TRAJNING SETS FOR MAKING TEMPLATES

Figure 3.8 Effect on mismatch percentagee of a pattern
with different templates

3 - 21

,
:.1

F~om the Table 3-2 it is obse~ved that with the

inc~ease of pe~centage of mismatch tole~ance initially the

numbe~ of p~ope~ly classified cha~acte~s inc~eases, but

afte~ a ce~tain pe~centage the numbe~ of p~ope~ly classified

cha~acte~s began to dec~ease. On the othe~ hand, the numbe~

of w~ongly classified cha~acte~s inc~eases g~adually. The

~eason fo~ dec~easing the numbe~ of p~ope~ly classified

cha~acte~s with the inc~ease in mismatch tole~ance is that,

with theinc~ease in tole~ance mo~e and mo~e cha~acte~s

begin to match with othe~ then its own template and a~e

being misclassified which we~e ea~lie~ classified p~ope~ly.

F~om Table 3-2 and also f~om the g~aph of Figu~e 3.9,

it is found that the maximum numbe~ of p~ope~ classification

of cha~acte~s is obtained fo~ 11% mismatch tole~ance. Hence,

11% was chosen as the mismatch th~eshold.

3- 22

,

TABLE 3 - 2

A SUMMARY OF THE TEST OF PERFORMANCE OF THE

RECOGNITION SYSTEM ON 896 CHARACTERS

allowable ch,•.•...acters characters characters
mismatch classified classified rejected
tolerance properly wrongly

in /. in # in /. in # in /. in # in /.

6 684 121.763 5 121.1211216 21217 121.249
7 721 121.787 8 121.1211219 167 121.21214
8 766 121.837 9 121.1211121 121 121.153
9 783 121.856 23 121.12126 9121 121.118

1121 792 121.866 31 121.12135 73 121.12199
11 798 121.873 38 121.12142 .59 121.12185
12 777 121.849 7121 121.12178 49 121.12172
13 752 121.822 91 121.11211 53 121.12175
14 737 121.81215 11218 IZl• 121Zl 51 1Zl.1Zl75
15 7121121 121.766 133 1Zl.146 63 1Zl.1Zl88

3 - 23

o

PERCENTAGE OF TOLERANCE
VB. PERCENTAGE OF RECOGNISATlON

15141312111098

0.9

0.8

'" 0.7
Cl

~ 0.6'"~
'"•• 0.5

~

12
0.4

~ 0.3

0.2

0.1

0
6 7

TOLERANCE IN PERCENTAGE

Figure 3.9 Effect on classification for different
percentage of mismatch tolerences.

3 - 24

/

CHAPTER 4-

DISCUSSIONS

4.1 GENERAL REMARKS

Recognition of characters is a very involved task as

characters of allowable writing styles as well as variations

in quality of the digitizer output have to be taken. into

consideration. The program developed has been successfully

tested with a number of characters from different sources.

The tests were designed to consider two aspects :

(i) To see whether the program develops consistent

codes for cha~acters of the same font i.e.,

whether the two instances of the same character

from the same source yield the same code

(ii) To see whether the program work for characters

from different sources.

Sources in the above statements relates to different

styles of writing, the result of the test was positive. To

see whether the program developed gives consistent code for

characters of same font i.e., whether the program can

recognize the characters properly a test run on all

characters each with 20 different samples was performed. The

result of the te~t is shown in Table 4-1. Out of total 896

samples the program recognizes 798 times correctly, 39 times

4 - 2

incorrectly and in 59 cases it fails to give a decision

i.e., it rejects the input pattern. So, from Table 4-1 it is

seen that Test (i) gives 89.06% accuracy and Test (ii)

gives consistent accuracy within allowable writing styles.

The program developed for the present analysis operates

on a representation of one character at a time. The

representation is in the form of a matrix whose entries have

level '1' or '0' corresponding to white or black pixels in

the original pattern. Figure 3.2 shows one such binary form

of a character.

4.2 GENERATION OF DATA

The present work concentrates on the analyzing of

digitized characters. For this work, the digitized character

in binary form was obtained from the output of the scanner

used which has already been described in Section 3.3.1. This

binary data was transferred to a matrix through software.

Characters of different writing styles were considered and

at the same time the errors which are quite natural to the

practical digitizer output were taken into consideration.

Though no "smoothing" operation has been used on the input

4 - 3

TABLE 4-1

SUMMARY OF THE RESULT OBTAINED BY RUNNING THE RECOGNITION
PROGRAM oN A TOTAL OF 896 CHARACTERS.

pattern IIof properly wrongly rejected
name samples classified classified

~ 20 20
~ 20 19 1
~ 20 20
~ 20 19 1

'-Y 20 19 1
il-< 20 15 5
~ 20 18 2
~ 20 18 2
\5 20 20
\d 20 18 2
~ 20 19 1
"-l"" 20 18 2
s-r 20 20
'Z 20 19 1

'& 20 18 2
-; 20 19 1
1i 20 20
~ 20 14 • 6
a< 20 18 2
~ 20 20-t 20 19 1
~ 20 19 1

" 20 14 6
iJ' 20 18 2
1'" 20 20
'i5" 20 19 1
w- 20 12 7 1
>\ 20 20
S; 20 18 2
";\ 20 20
9r 20 18 1 1,. 18 18
<s 20 20
~ 20 17 3
1>< 20 7 1.3
:D 20 17 2 1
~ 20 18 2

4 - 4

continuation of TABLE 4'-1

pattern It of properly wrongly rejected
name samples classified. classified

(;I. 20 18 2
""t"' 18 15 3
~ 20 10 9 1
~ 20 19 1
:[20 20
'i 20 18 2
'f 20 15 '5
~ 20 18 2

896 798

4 - 5

39 59

data, this could be used for characters having distortion

like gaps and holes. This would lower the rejection rate.

4.3 ISOLATION OF CHARACTERS FROM TEXT

In BangIa language, even in printed text, the

characters are not isolated from one another i~e. from the

previous or the next character ---- most of the time they

form a continuous figure. First requirement of the

r~cognition problem is that the characters must be alone by'

itself. Hence, the individual characters must "be isolated

from the text. As the top horizontal line, known as

MATRA(~), forms a continuous line, so the isolation work

was not an easy task. However, it was observed that if the

presence of the matra can be ignored then the characters

seem to be isolated from one another. Hence, the recognition

of the presence of matra plays a significant role in

1solating the characters. Though the height of the matra

varies depending on the quality of printed text and on some

other factors related to scanner [discussed in detailed-in

Appendix D J, on close observation it was found that the

height of the matra is well within 20% of the total

4 - 6

height

of the cha~acte~. [Pa~t of the data used is shown in

Table 3.1]. Th~ough the softwa~e this 201.top po~tion of

the image was p~ocessed and the p~esence of any matra was

igno~ed to appea~ the cha~acte~s isolated f~om each othe~.

However-, this algo~ithm fails to isolate the conjunctive
('cha~acte~s as well as the 'T'-ka~ and';<''-ka~ ove~lapped

with the cha~acte~s.

4.4 DESIGNING OF TEMPLATES

A wide va~iety of templates f~om diffe~ent .numbe~ of

sample sets with diffe~ent th~eshold levels fo~ "stable

points" we~e designed and t~ied. It was obse~ved that the

pe~fo~mance of the template designed with 15 sample sets and

801. th~eshold level was satisfacto~y. 801. th~eshold level

means that to be stable point a point must be white o~ black

in mo~e than o~ equal to 801.of the total cases. With

templates p~oducedusing mo~e sample sets, the pe~fo~mance

incr-eases but the design time, sto~age ~equi~ement

outweights the pe~fo~mance. Dec~easing the th~eshold level

incr-eases

cha~acte~s.

the ~isk of

4 - 7

misclassification among the

4.5 SELECTION OF MISMATCH THRESHOLD

As it has al~eady been mentioned that the object of a

~ecognition system is to maximize the p~obability of co~~ect

classification of each cha~acte~ and to minimize the

p~obability of inco~~ect o~ misclassification, so, to avoid

misclassification, obse~ving the ~esemblance between the

cha~acte~s and applying the intuition, all the simiia~

appea~ing cha~acte~s we~e g~ouped togethe~. List of such

g~ouping is given in Table 4-2. To ve~ify the validity of

such g~oupings, a numbe~ of samples of each cha~acte~ of the

g~oup we~e taken, all the samples we~e then checked against

the templates of the individual membe~ of the g~oup. A table

was fo~med with the mismatch numbe~. Two samples of such

table is shown in Table 4-3 and 4-4. Table 4-3 was obtained

by compa~ing the template ~ (RA) with the othe~ membe~s

of g~oup # 7 of Table 4-2 whe~eas Table 4-4 was obtained by

compa~ing the template of B (GHA) with the.othe~ membe~s

of g~oup #10. Fo~ each membe~ 20 samples we~e compa~ed.

Fi~st column of the table indicates the sample numbe~.

Column 2 (total point) shows the total numbe~ of points of

the template that we~e compa~ed with the co~~esponding point

4 - 8

TABLE 4-2

GROUPING OF BANGLA CHARACTERS

Group 1* 1 ~ \m <0- ~

Group 1* 2 t 2"
Group 1* 3
Group 1* 4 ~ ~ W ~
Group 1* 5 ~ ..:f ,;}>

Group 1* 6 \3 15
Group 1* 7 '2!-\ 'IT """4\ ~ <r

Group # 8 'll.\ ::>-t
Group 1* 9 G'r or
Group 1*10 ~ ., ~ -Z

Group 1*11 ~ ~ \:Y

Group #12 b ~
.,-

Group 1*13
~Group 1*14 "ti

Group 1*15 7;-
Group #16 \:Y \:Y

•
Group 1*17 (; ~
Group #18 at
Group 1*19 Vi
Group #20 <'\
Group 1*21 -s:p ~
Group #22 ~
Group 1*23 M
Group #24 -xr
Group 1*25 -sf

4 - 9

of the sample. The ne~t two columns show the number of

.., '.

mismatch found during comparison. Column 3 shows the

mismatching in numbers whereas column 4 shows the same

information in percentage form calculated on the basis of

total number of points.

From Table 4-3 it is observed that il(RA) has a dis-

similarity of 52.91 to 59.73% with ~ (vowel #7), 28.82% to

37.00%

39.92%

with "4' (KA), 27.05% to 32.23% with 4t (JHA),

to 56.03% with ~ (DHA) and 14.00% to 36.33% with

BA whereas the amount of dis-similarities between

the samples of ~ (RA) itself ranges from 0.22% to 8.27%

only .. So, it can be easily concluded that though"2r"(BA

has some resemblance with ~ (RA) but ~J 4>, aJ. ~ 21- have

very little resemblance with ~(RA).

From Table 4-4 it is observed that the dis-similarity

of samples of ~(GHA between themselves ranges from 0.00%

to a maximum of 7.25% [except sample # 18, which has a high

value due to high distortion in scanning] whereas that with.

ranges from a minimum of 10.77% to a ma~imum of

32.89%, with ~ from 15.99% to 36.58% and ~ith ~ ranges
c

from 35.5% to 57.72%.

4 - 10

The same type of ~esults we~e obse~ved ~ega~ding the

othe~ g~oups of Table 4-2. As the amount of dis-simila~ity

is st~ikingly high in most of the cases, so the hypothesis

of g~ouping the cha~acte~s acco~ding to Table 4-2 was

ultimately disca~ded.

4 - 11

TABLE 4-3

TABLE USED TO VERIFY THE VALIDITY OF GROUPING OF CHARACTERS.
TABLE OBTAINED BY COMPARING THE TEMPLATE OF "4 (RA)

WITH THE OTHER MEMBER OF ITS GROUP.

sample total mismatch sample total mismatch
II point in II in I. II point in II in I.

PATTERN USED : ?1:l-« VOWEL II7

1 1177 664 56.41 2 1248 715 57.29
3 2003 1156 57.71 4 1278 741 57.98
5 1177 703 59.73 6 1248 708 56.73
7 1218 708 58.13 8 1297 694 53.51
9 1381 749 54.24 10 1151 684 59.43
11 1206 719 59.62 12 1391 761 54.71
13 1177 692 58.79 14 1391 736 52.91
15 1218 699 57.39 16 1319 723 54.81
17 1361 742 54.52 18 1407 752 53.45
19 1218 689 56.57 20 1257 719 57.20

PATTERN USED ~(CONSONANT II1)

1 1254 399 31.82 2 1254 464 37.00
3 1311 448 34.17 4 1213 443 36.52
5 1311 413 31.50 6 1311 418 31.88
7 1356 423 31.19 8 1341 435 32.44
9 1433 413 28.82 10 1283 430 33.52
11 2353 1482 62.98 12 1283 423 32.97
13 1283 371 28.92 14 1387 424 30.57
15 1327 433 32.63 16 1254 403 32.14
17 1356 425 31.34 18 1387 413 29.78
19 .1327 400 30.14 20 1254 397 31.66

PATTERN USED 41.(CONSONANT II9)

1 1176 360 30.61 2 1160 356 30.69
3 1283 347 27.05 .4 1186 361 30.44
5 1241 362 29.17 6 1150 337 29.30
7 1297 391 30.15 8 1098 328 29.87
9 1241 342 27.56 10 1268 395 31.15
11 1241 383 30.86 12 1203 355. 29.51
13 1241 383 30.86 14 1150 358 31.13
15 1213 391 32.23 16 1098 325 29.60
17 1254 377 30.06 18 1125 338 30.04
19 1241 367 29.57 20 1142 363 31.79

4 - 12

continuation of Table 4-3

PATTERN USED ~(CONSONANT # 19)

1 892 453 50.78 2 852 436 51.17
3 987 553 56.03 4 912 456 50.00
5 1020 559 54.80 6 957 475 49.63
7 987 459 46.50 8 987. 510 51.67
9 1010 516 51.09 10 932 506 54.29

11 957 521 54.44 12 894 398 44.52
13 957 506 52.87 14 1017 444 43.66
15 957 508 53.08 16 975 500 51.28
17 998 526 52.71 18 1020 522 51.18
19 953 493 51.73 20 754 301 39.92

PATTERN USED 4(CONSONANT # 23)

1 1229 172 14.00 2 1241 331 26.67
3 1140 279 24.47 4 1257 187 14.88
5 1203 223 18.54 6 1248 368 29.49
7 1166 228 19.55 8 1341 294 21.92
9 1356 364 26.84 10 1268 227 17.90

11 1268 316 24.92 12 1203 437 36.33
13 1356 265 19.54. 14 1241 247 19.90
15 1311 266 20.29 16 1283 404 31.49
17 1268 348 27.44 18 1229 266 21.64
19 1176 333 28.32 20 1327 273 20.57

PATTERN USED ~(CONSONANT # 27)

1 1348 7 0.52 2 .1329 108 8.13
3 1306 4 0.31 4 1487 31 2.08
5 1473 21 1.43 6 1564 102 6.52
7 1348 7 0.52 8 1306 14 1.07
9 1306 108 8.27 10 1438 13 0.90

11 1375 77 5.60 12 1473 87 5.91
13 1151 90 7.82 14 1391 12 0.86
15 1381 i5 1.09 1"6 1361 24 1.76
17 1348 71 5.27 18 1407 52 3.70
19 1381 3 0.22 20 1615 112 6.93

4 - 13

TABLE 4-4

TABLE USED TO.VERIFY THE VALIDITY OF GROUPING OF CHARACTERS.
TABLE OBTAINED BY COMPARING THE TEMPLATE OF ~ (GHA)

WITH THE OTHER MEMBER OF ITS GROUP.

sample total mismatch sample total mismatch
It point in It in f. It point in # in f.

PATTERN USED : ~(CONSONANT # 4)

1 1116 73 6.54 2 1214 27 2.22
3 1115 50 4.48 4 1214 35 2.88
5 1355 25 1.85 6 1313 11 0.84
7 1433 70 4.88 8 1245 0 0.00
9 1321 30 2.27 10 1433 65 4.54
11 1315 .12 0.91 12 1236 22 1.78
13 1355 7 0.52 14 1277 24 1.88
15 1355 11 0.81 16 1393 86 6.17
17 1393 101 7.25 18 1358 474 34.90
19 1313 12 0.91 20 1315 61 4.64

PATTERN USED : ~(CONSONANT # 26)

1 1393 334 23.98 2 1397 422 30.21
3 1438 473 32.89 4 1393 306 21.97 ,"
5 1479 471 31.85 6 1393 187 13.42
7 1282 188 14.66 8 1393 306 21.97
9 1245 153 12.29 10 1245 156 12.53
11 1355 185 13.65 12 1355 154 11.37
13 1315 204 15.51 14 1277 142 11.12
15 1288 175 13.59 16 1479 464 31.37
17 1315 202 15.36 18 1355 146 10.77
19 1399 413 29.52 20 1315 225 17.11

PATTERN USED : ~ (CONSONANT # 30)

1 1352 302 22.34 2 1245 320 25.70
3 1391 343 24.66 4 1282 205 15.99
5 1308 346 26.45 6 1503 497 33.07
7 1277 209 16.37 8 1277 282 22.08
9 1214 302 24.88 10 1277 248 19.42
11 1236 420 33.98 12 1094 394 36.01
13 1345 492 36.58 14 1352 245 18.12
15 1214 253 20.84 16 1391 278 19.99
17 1163 412 35.43 18 1351 382 28.28
19 1345 430 31.97 20 1313 305 23.23

4 - 14

continuation of Table 4-4

PATTERN USED : '5:(CONSONANT # 36)•
1 1845 917 49.70 2 1845 736 39.89
3 1993 810 40.64 4 1693 764 45.13
5 1993 819 41.09 6 1093 489 44.74
7 2053 1185 57.72 8 1364 627 45.97
9 1913 824 43.07 10 1752 735 41.95

11 1873 757 40.42 12 1781 689 38.69
13 1976 972 49.19 14 1674 719 42.95
15 1625 692 42.58 16 1937 856 44.19
17 1898 811 42.73 18 1845 732 39.67
19 1859 660 35.50 20 1625 660 40.62

4 - 15

4.6 DISCUSSION OF THE PROGRAM DEVELOPED

The p~og~am is menu d~iven and du~ing its execution

inte~-acts with the use~. It was designed in modula~ fo~m.

The main ~outine afte~ displaying a welcome message fo~ the

use~ p~esents a menu and waits to know the use~ option. The

use~ has th~ee options to choose :

(1) ~ecognition option: it p~esents yet anothe~ sub-

menu.

(2) make/see mask menu

menu.

which also shows fu~the~ sub-

(3) the option to quit this p~og~am and ~etu~n to the

ope~ating system.

Recognition menu is a menu with th~ee options :

(1) scan and ~ecognition option: which allows the

use~ to scan a cha~acte~and p~esent the cha~acte~

to the ~ecognition system fo~ ~ecognition.

(2) p~e-scanned cha~acte~ ~ecognition option : which

allows the use~ to use a p~e-scanned and sto~ed

data file to use fo~ the pu~pose of ~ecognition.

(3) quit option

menu.

: which takes the use~ to the main

4 - 16

Make/see mask menu has also three options :

(1) Make new mask: using this option one can make a

new mask from the named patte~n sets. This option

has further sub-options

(1) make mask from pre-scanned character

patterns.

(2) scan and make mask.

(3) return to mask menu.

(2) see pre-designed mask option : by choosing this

option one can see the mask on the screen in

graphics mode.

(3) this options takes the user to the main menu.

4 - 17

CHAPTER :5

CONCLUSION AND SUGGESTION

FOR FUTURE WORK

5.1 CONCLUSIONS

For the present analysis the basic idea of template

matching decision theoretic method ----- i.e. to compare the

unknown character with pre-stored templates in order to

classify it ---- is utilized. The idea was first proposed

and successfully used by Casey and Nagy [17] in 1965 to

recognize printed Chinese characters. One major difference

between their work and the present work is that Chinese

symbols are well separated from one another but this is not

the case with BangIa characters. BangIa characters are

joined with one another in most of the cases. So, a

technique for separating characters from one another into

their original form has been suggested.

Though the technique developed here is quite efficient

in recognizing BangIa characters, it fails to recognize any

conjunctive characters or characters having a '-'-kar or~ a

\''Z'-kar under it or a 'T'-kar preceding it.

The technique for separation of characters from a text

will no doubt playa significant role in the field of BangIa

character recognition; but still it needs further

improvement so as to make it able to separate characters

5 - 2

having special vowel o~ consonant sign unde~ it, such as

0\. , ':Z::, "'- etc., o~ the specia1 vowe1 sign 1ike ~, 1-.
etc.

Like eve~y method the p~esent one natu~ally has got

some limitations as mentioned; but still the pe~fo~mance of

the p~esent method in ~ecognizing Bangla cha~acte~s has

found to be quite satisfacto~y.

5.2 SUGGESTION FOR FUTURE WORK

Fu~the~ Tesea~ch wo~k in automatic ~"ecognition of

Bangla cha~acte~ should concent~ate on

i) developing an algo~ithm fo~ designing templates

fo~ composite cha~acte~s.

ii) developing an algo~ithm fo~ sepa~ating ove~lapping

cha~acte~s.

iii) instead of using the whole mask mat~ix whethe~

selected elements of the mask mat~ix could be

used , should be investigated. This would lessen

the compa~e time, inc~easing the th~oughput.

iv) modification of the p~esent algo~ithm fo~

implementing in composite cha~acte~ ~ecognition.

5 - 3

v) Other methods of character recognition such as

Syntactic methods should be investigated and the

performance should be compared with the present

work.

5 - 4

REFERENCES

1. K. S. Fu

REFERENCES

Introduction, Dig~tal Pattern Recognition: ed.

by K. S.'Fu, pp. 1 - 14, Springer-Verlag, New York, 1976.

2. D. Dutta Majumder : Pattern Recognition Methods and

Applications, Recent Developments in Pattern Recognition and

Digital Techniques

Institute, 1977.

pp. 150 - 190, Indian Statistical

3. K.S.Fu Introduction to Syntactic Pattern Recognition,

Syntactic Pattern recognition applications: ed. by K.S.Fu ,

pp. 1 - 30 , Springer - Verlag, New York , 1977.

4. Laveen Kanal : Patterns in Pattern Recognition 1968 - 1974

IEEE Trans. Information Theory, vol. IT - 20, pp. 697-722 ,

Nov ' 1974.

5. Kendall Preston Jr. A comparison of analog and digital

techniques for Pattern Recognition Proc. IEEE, vol. 60,

pp. 1216 - 1231 , Oct. 1972.

6. S. H. Unger : Pattern detection and recognition

vol. 47, pp. 1737 - 1752, October' 1959.

Proc. IRE.

7. L. P. Horwitz & G. L. Shelton: Pattern recognition using

auto-correlation Proc. IRE. January '1961, pp. 175-18~.

R - 2

8. P. G. Per-otto ': A new method for- automatic cha..-acter-

r-ecognition IEEE Tr-ans. on Electr-onic Computer-s,

pp. 521- 526, October-'1963.

9. H.A. Glucksman A par-apr-opagation patter-n classifier-

IEEE Tr-ans. on Electr-onic,Computer-s, pp.434-443, June'1965.

10. S. S. Yau & C. C. Yang: Patter-n r-ecognition by using

Associ'ative memor-y : IEEE Tr-ans. on Electr-onic Computer-s,

pp. 944 - 947 ,December- ' 1966.

11. A.W.Holt

machines

Nov ' 1968.

Compar-ative r-eligion in Char-acter- Recognition

IEEE Computer- Gr-oup News, vol. 2 , pp. 3 - 11

12. R.C. Gonzalez and M.G. Thomason Syntactic patter-n

recognition An Intr-oduction : 1982 , Addision Wesley

Publishing Company , Reading , Massachusetts , U.S.A.

13. J. T. Tou and R.C. Gonzalez Patter-n r-ecognition

pr-inciples 1981 ,Addision-Wesley Publishing Company,

Reading, Massachusetts, U.S.A.

14. Rosenfeld, A. Digital pictur-e analysis edited by

Rosenfeld A., Spr-inger-- Ver-lag , 8er-lin , 1976 .

R - 3

15. Md. Mozammel Huq Azad Khan: Optimal ~ealization of Bengali

key-boa~d and cha~acte~ encoding fo~ compute~ applicatl0ns :

M.Sc. Engg. Thesis, Oct.'1986, Depa~tment of Compute~

Science and Enginee~ing, Bangladesh Unive~sity of

IEEE

Enginee~ing and Technology , Dhaka, Bangladesh.

K.S. Fu : Recent developments in patte~n ~ecognition

T~ans. on Compute~s , vol.: C - 29 ; octobe~'1980 •

17. Casey and Nagy : P~inted Chinese cha~acte~ ~ecognition

16.

IEEE T~ans. on Elect~onic Compute~s, vol.: EC-15, no. 1,

Feb~ua~y'1966, pp. 91 - 101.

18.' K. S. Fu Int~oduction, Digital Patte~n Recognition ed.

by K. S. Fu, pp. 95 134, Sp~inge~-Ve~lag, New Yo~k, 1976.

19. M. A. Satta~ and S. M. Rahman An expe~imental

investigation on BangIa cha~acte~ ~ecognition system

Bangladesh Compute~ Soceity Jou~nal , vol. - 4,

Dec'89, pp. 1 - 4 .

no. 1,

R - 4

APPENDIX

,,-,.,

APPENDIX A

SOURCE CODING OF THE PROGRAM DEVELOPED

/* THE COMPLETE PROGRAM OF THE RECOGNITION SYSTEM DEVELOPED */

#include <stdio.h>
#include <conio.h>
#include <dir.h>
#include <process.h>
#include <stdlib.h>
#include <string.h>
#include <dos.h>
#include <math.h>
#include <graphics.h>
#include <io.h>
#include <ctype.h>
#include <mem.h>
#include <alloc.h>

#define MASKI
#define MASK2
#define M

I2lx80
I2lx01
3

/* === */
/* DEFINITION OF DIFFERENT MESSAGES */
/* === */

char
{

*msg[] =
"******** MAIN MENU *******",
"RECOGNITION",
"DESIGN/SEE TEMPLATE",
llQUIT",
******* RECOGNITION MENU *******",
SCAN AND RECOGNITION",
PRE-SCANNED CHARACTER RECOGNITION",
******* DESIGN/SEE TEMPLATE MENU *******",
DESIGNING TEMPLATE ",
SEE PRE-DESIGNED TEMPLATE ",
********* MAKING TEMPLATE MENU *********",
MAKE TEMPLATE FROM PRE-SCANNED CHARACTERS",
"SCAN AND MAKE TEMPLATE ",
"******* DESIGNING TEMPLATE MENU *******",
"MAKING A NEW TEMPLATE",
"DELETING AN OLD TEMPLATE",

}

/* =========== END OF MESSAGE DEFINITION ================== */

A-I

~egs.h.ch = 32; b~eak;
~egs.h.ch = 11; ~egs.h.cl = 12; br-eak;

~egs.h.ch = 0. ~egs.h.cl = 13; b~eak;,
exit(0) ;

cha~ patte~nname[20]
unsigned long size;
div_t divide;
typedef st~uct { int width, height, ~owl, ~ow2, coIl

int col2, pixl, pix2 ;
int condition_~ow, condition_col ;

} SEPE_INFO ;
typedef st~uct { int ~owl, ~ow2, coIl, col2, pixl, pix2;

} NORM_INFO

NORM_INFO *file[15] ;
SEPE INFO *sepe_file ;

/* === */
/* CURSOR CONTROL ROUTINE. */
/* HIDES, ELONGATES OR SETS THE CURSOR TO NORMAL SHAPE */
/* ACCORDING TO USER NEED. */
/* CALLED BY : WELCOME AND THANKS FUNCTION. */
/* CALLS ON: NONE . */
/* === */

void setcu~so~ int x)
#define HIDE 0
#define NORMAL 1
#define ELONGATED 2
{ union REGS ~egs;

switch (x)
{ case 0

case 1
case 2
default:

}
~egs.h.ah = 1;
int86 (0x10 , &~egs , &~egs);

}

/* =============== END OF CURSOR CONTROL ROUTINE ========= */

void sing (void) { p~intf ("\a\a"); }

void box (void
{

cl~sc~(); window (25,7,70,18);
}

A - 2

/* === */
/* SHOW OPTION FUNCTION */
/* THIS FUNCTION SHOWS THE OPTIONS AVAILABLE TO THE USER */
/* CALLED BY : MAIN , RECOGNITION AND MAKEMASK FUNCTIONS */
/* CALLS ON : NONE. */
/* === */

void
{

}

show_option (cha~ *sl,cha~ *s2,cha~ *s3,cha~ *54)
c 1~sc ~() ;
cp~intf (" I.s\~\n\n" ,51);
cp~intf (" 1. I.s\~\n" ,52);
cp~intf (" 2. I.s\~\n" ,53);
cp~intf (" 3. I.s\~\n\n" ,54);
cprintf (" Press your- choice II);

/* =========== END OF SHOW OPTION FUNCTION ============== */

/* === */
/* GET OPTION FUNCTION */
/* THIS ROUTINE GETS THE USER OPTION */
/* */
/* CALLED BY : MAIN , RECOGNITION AND MAKEMASK FUNCTIONS */
/* CALLS ON : NONE . */
/* === */

cha~
{

get_option (void)
char choice;
while («choice = getc he,()) <'1' :: choice> '3') \

&& choice != '\x1b')
{ printf (H\a\a");

textatt~ (0xf0);
cp~intf ("\n\n\n\

textatt~ (0x07);
gotoxy (24,7);

W~ong option . \
Try again II);

}

}
~etu~n (choice)

/* ============ END OF GET OPTION ROUTINE

A - 3

================ */

\

/* === */
/* SHOWS A WELCOME MESSAGE TO THE */
/* USER AFTER EVOKING THE PACKAGE. */
/* CALLED BY : MAIN FUNCTION */
/* CALLS ON: SETCURSoR FUNCTION */
/* === */

P~ess any key to p~oceed ... ");
NORMAL) ;

void
{

}

welcome (void
box();
setcu~so~ (HIDE);
highvideo ();
textatt~ (0xF0);
cp~intf (
cp~intf (
cp~intf (
cp~intf (
cp~intf (
cp~intf (
cp~intf (
cp~intf (
cp~intf (
textatt~ 0x07);
no~mvideo ();
sing ();
cp~intf (" \~\n
getch(); setcu~so~

WELCOME TO

BANGLA CHARACTER

RECOGNITION SYSTEM

\r-\nll
);

'r\nll
);

\r\nll
);

\~\n");
\r\n");
\r\nll

);

\r\n");
\r-\nll

);

\r\nll
);

/* ======== END OF WELCOME MESSAGE SHOWING ROUTINE ======= */

/* === */
/* THIS IS A THANKS GIVING ROUTINE. WHEN THE */
/* USER WISHES TO "RETURN TO DOS A "THANK YOU" */
/* MESSAGE IS SHOWN ON THE SCREEN. */
/* === */

void
{

thanks (void)
setcu~so~ (HIDE);
cl~sc~ ();
textatt~ (0xf0);
cp~intf (\n");
cp~intf (
cp~intf (
cp~intf (
cp~intf (
cp~intf (
cp~intf (

THANK YOU

FOR

\r-\nll
);

\~\n");
\r\nll

);

\\n");
\r-\nll

);

\r-\nll
);

A - 4

\r\nll
);

\r-\nll
);

\r-\n") ;

SYSTEMRECOGNITIONUSINGcpr-intf ("
cpr-intf ("
cpr-intf ("
textattr- (~x~7);
cpr-intf ("\n\n Pr-ess any key to r-etur-n to DOS ... ");
getch ();
window (1,1,8~,25);
clr-scr- ();
setcur-sor- (NORMAL);

}

/* ========== END OF THANKS GIVING ROUTINE =============== */

/* === */
/* CHARACTER ISOLATION ROUTINE */
/* TO ISOLATE CHARACTERS FROM PRINTED TEXT */
/* CALLED BY : RECOGNITION FUNCTION. */
/* CALLS ON: NONE . */
/* === */

void
{

isolate_char-acter- (
int h, col, n ;
unsigned long count
unsigned char- data,

char- huge *patter-n

;
bit ;.

/* === */
/* r-ow sear-ch for- the fir-st tr-ansition fr-om white to black */
/* === */

h = s-)r-owl
count = 32 + s-)width * h - 1
while (h++ < s-)height
{ col = ~;

while (col++ < s-)width)
{ data = patter-n[count++];

if (data != ~xff) goto labell;
}

} /* h gives the r-ow wher-e tr-ansition occur-s */
s-)condition_r-ow = -1
r-etur-n
labell: s-)r-owl = h - 1;
===
===

to whiter-ow sear-ch for- the fir-st tr-ansition fr-om black

col = ~;
count = 32 + s-)width * s-)r-owl

A - 5

while (col++ < s->width)
{ data = patte~n[count++];

if (data != 0xff)
{ col = 0 ;

count = 32 + s->width * h
h++ ;
continue ;

}

labe12:

h gives the ~ow whe~e t~ansition f~om black
to white occu~s */
s->~ow2 = h - 1

/* == */
/* column sea~ch f~om bottom to top */
/* fo~ the fi~st t~ansition f~om white to black */
/* == */

col = s->col1 ; h = s->pix1
while (col++ < s->width)
{ while (h++ <= 7)

{ n = s->~ow2
labe15:
while (n-- >= s->~ow1)
{ if whe~ey() > 10)

{ cp~intf("\n\~P~ess any key.... ");
getch() cl~sc~()

}
count = 32 + n * s->width + col - 2
data = patte~n[count];
data «= (h - 1)
bit = data & MASK1
if (bit .==0)

if ((s->~ow2 n) >= 35)
b~eak;

else goto labe13 ;
}

}

h = 0 ;
} /* col gives left ma~gin */
s->condition_col = -1
return ;
labe13:s->col1 = col - 1
s->pix1 = h - 1

/* == */
/* column sea~ch f~om top to bottom */
/* fo~ the fi~st t~ansition f~om black to white */
/* == */

col = s->col1 ;
h = s->pix1 + 1

A - 6

end
}

while (col++ < s-)width
{ while (h++ <= 7)

{ n = s-)row2 ;
while (n--)= s-)row1)
{ count = 32 + n * s-)width + col - 2

data = pattern[count];
if (wherey()) 1~)
{ cprintf("\n\rPress any key ... ");

getch() clrscr()
}
data «= (h 1)
bit = data & MASK1
if (bit == ~)

goto labe14
}
s-)co12 = col - 1 ;
s-)pix2 = h - 2 ;
if (s-)pix2 < ~)
{ s-)co12 -=1

s-)pix2 = 7
}
goto end ;
labe14:
if ((s-)row2 - n))= 35
{ s-)co12 = col - 1 ;

s-)pix2 = h - 1 ;
if (s-)pix2 < ~)
{ s-)co12 -= 1 ;

s-)pix2 = 7 ;
}
goto end;

}
}
h = ~ ;

} /* col gives right margin */. ,

/* =========== END OF CHARACTER IpOLATION ROUTINE =========== */

A - 7

/* === */
/* NORMALISE ROUTINE. */
/* THIS ROUTINE TAKES A PATTERN AND FINDS THE ROWS */
/* AND COLUMNS FROM WHERE THE CHARACTER ACTUALLY */
/* STARTS. IT THEN STORES THE INFORMATION IN A */
/* STRUCTURE FOR FURTHER USE. */
/* CALLED BY : RECOGNITION AND MAKEMASK FUNCTIONS */
/* CALLS ON: NONE */
/* === */

void
{

normalise (char huge
int h,col,bit,n,c ;
unsigned long count ;
unsigned char data ;

*pattern • NORM INFO *s

/* === */
/* SEARCHING ROW-WISE FROM TOP TO BOTTOM FOR THE FIRST */
/* TRANSITION FROM WHITE POINT TO BLACK POINT. */
/* === */

h = sepe_file-)row1 ;
while (h++ < sepe_file-)row2
{ col = sepe_file-)col1 ;

while (col++ < sepe_file-)co12)
{ count = 32 + (h - 1) * sepe_file-)width + col - 1 ;

data = pattern[count++];
if (data != ~xff) /* IF THE CONDITION IS TRUE THEN A

TRANSITION FROM WHITE POINT TO
A BLACK POINT IS FOUND */

{ s-)row1 = h - 1; ./* SAVES THE INFORMATION
IN A STRUCTURE */

/* === */
/* SEARCHING FROM BOTTOM TO UPWARD FOR A TRANSITION */
/* FROM WHITE POINT TO BLACK POINT */
/* === */

n = 1;
h = sepe_file-)row2 ;
while (h--) s-)row1)
{ col = sepe_file-)col1 ;

count = size - (sepe_file-)height - sepe_file-)row2 \
- 1) * sepe_file-)width

while col++ < sepe_file-)co12)
{ data = pattern[count++];

if (data != ~xff) /* IF THE CONDITION IS TRUE
THEN A TRANSITION FROM WHITE

POINT TO BLACK POINT IS FOUND */

A - 8

/* SAVES THE INFORMATION IN
/* A STRUCTURE

s-)row2 = h + 1;{ */
*/

/* === */
/* COLUMN SEARCH FROM TOP TO BOTTOM FOR THE FIRST */
/* TRANSITION FROM WHITE POINT TO BLACK 'POINT */
/* === */

col = sepe_file-)col1 ;
while (col++ (sepe_file-)co12
{ n = s-)row1 - 1;

while (n (= s-)row2)
{ count = 32 + n * sepe_file-)width + col - 1;

data = pattern[count];
if (data != 0xff) /* IF THE CONDITION IS

TRUE THEN A TRANSITION
FROM WHITE POINT TO
BLACK POINT IS FOUND */

{ h = 0; c = n ;
while (h++ (= 7)
{ while (n (= s-)row2)

{ count = 32 + n * sepe_file-)width + \
col - 1;

data = pattern[count];
data «= (h - 1);
bit = data & MASK1;
if (bit == 0)
{ s-)col1 = col ;

s-)pix1 = h - 1
/* === */
/* COLUMN SEARCHES FROM RIGHT TO LEFT FOR THE */
/* FIRST TRANSITION FROM WHITE POINT TO BLACK POINT */
/* === */

col = sepe_file-)co12
while (col--)s-)col1)
{ n = s-)row1 - 1;

while (n (s-)row2)
{ count = 32 + n * sepe_file-)width + col;

data = pattern[count];
if (data != 0xff) /* IF THE CONDITION IS TRUE

THEN A TRANSITION FROM
WHITE POINT TO BLACK POINT
IS FOUND */

{ c = n
h = 0
while (h++ (= 7)
{ while (n (= s-)row2)

{ count = 32 + n * sepe_file-)width + col;

A - 9

}

}
}

}
end: ;
}

data = pattern[count];
data »= (h - 1);
bit = data & MASK2;
if (bit == 121)
{ s-)col2 = col + 1;

s-)pix2 = 7 - h + 1;
goto end; /* ALL THE ROWS AND COLUMNS

IS FOUND , SO TERMINATE THE
SEARCHING */

}
n++;

}
n = c;

}
}
n++;

}
} /* col gives right margin */

}
n++;

}
n = c;

}
}
n++;

}
} /* col gives left margin */

}
}
n++;
/* height gives the last effective row */

/* h gives first effective row */

/* ============= END OF NORMALISE ROUTINE

A - 1121

================ */

/*=== */
/* COMPARE ROUTINE */
/* THIS ROUTINE COMPARES THE UNKNOWN PATTERN WITH */
/* DIFFERENT TEMPLATES AND CALCULATES THE AMOUNT */
/* OF MISMATCHING BETWEEN THE TWO. IF THE AMOUNT OF */
/* MISMATCHING IS LESS THEN THE MISMATCH THRESHOLD */
/* THEN THE TEMPLATE CODE IS RETURNED OTHERWISE THE */
/* FUNCTION RETURNS NULL */
/* CALLED BY : RECOGNITION FUNCTION */
/* CALLS ON : NONE */
/* === */

int compare (char huge *pattern, NORM_INFO *s)
{ FILE *mask , *order ;

char *sequence_buffer ;
int pattern_height,pattern_width,mask_width ;
int yes,no,total,n,counter,c,col,h , bit, headerAddress
int pattern_counter , sequence_counter
unsigned int SequenceFileLength ;
long templateAddress, filePointer ;
unsigned char pattern_data, mask_data , template_code
char huge *c_mask

if «order = fopen("check .seq", "rb"))==NULL)
{ perror ("check.seq"); exit(l); }

SequenceFileLength = (int) filelength(fileno(order));
if « sequence_buffer = (char *)calloc(SequenceFileLength ,\

sizeof(char») == NULL)
{ cprintf("\n\rSequence buffer allocation failure");

cprintf("\n\rProgram is aborting •.. ")
fcloseall(); exit(l);

}

if SequenceFileLength!= (fread(sequence_buffer,\
sizeof(char),SequenceFileLength,order»)

{ cprintf("\n\rCheck order file read error");
cprintf("\nProgram is aborting ..• ") ;
fcloseall(); exit(l);

}

fclose(order) ;

if((ma.sk=fopen("template. lib" ,"rb"))==NULL)
{ perror ("TEMPLATE.LIB");

cprintf ("Program is aborting ... ") ;
exit(l);

}
size = filelength(fileno(mask»;

A - 11

if ((c_mask = (char *) farcalloc(size, \
(unsigned)sizeof(char») == NULL)

{ cprintf("\nTemplate buffer allocation failure");
cprintf("Program is aborting ")
fcloseall(); exit(1);

}

}
filePointer = 0L ;
do
{ mask_data = fgetc(mask)

c_mask[filePointer++] = mask_data
} while ((feof(mask»))
fclose(mask);
sequence_counter = 0 ;
while (sequence_counter < SequenceFileLength)
{ template_code = sequence_buffer[sequence_counter++]

headerAddress = (template_code - 1) * 4 ;
templateAddress = c_mask[headerAddress] + \

256 * c_mask[headerAddress++] +\
256*256*c_mask[headerAddress++]+ \
256*256*256*c_mask[headerAddress++]

mask_width = c_mask [templateAddress++];
templateAddress++ ;
total = 0; yes = 0 ; no = 0 ;
pattern_height = s->row1 - 1;
while (pattern_height++ < s->row2)
{ pattern_counter = 32 + (pattern_height - 1) * \

sepe_file->width + s->col1-1
n = 0; CDunte~ = 1;
pattern_width = s->col1;
while (pattern_width++ <= s->col2)
{ pattern_data = pattern[pattern_counter++];

n++;
if ((n == 1) && (s- >pi x1 != 0»

{ col = s->pix1; h= 7; pattern_data «= col; }
else if (n==(s->col2-s->col1+1) &&(s->pix2 != 7»)

{ col = 0; h = s->pix2; }
else {col = 0 ; h = 7 ; }
for (c = col ; c <= h ; c++)
{ mask_data = c_mask[templateAddress++];

counter++;
bit = pattern_data & MASK1
if (bit == 128) bit = 1;
if (mask_data == 255) ;
else if (mask_data == bit

{ yes++; total++; }
else {no++; total++
pattern_data «= 1;

}

A - 12

}
while (counte~++ <= mask width
c_mask[templateAdd~ess++);

}
n = total*15/100 ;
if (no <= n) /* n is pe~centage of mismatch */

~etu~n ((int)template_code);
}
~etu~n ((int) NULL) ;

}

/* ============== END OF COMPARE ROUTINE ================= */

===

===
RECOGNITION ROUTINE
MAIN FUNCTION
ISOLATE_CHARACTER , NORMALISE
AND COMPARE FUNCTIONS

CALLED BY
CALLS ON

FORMAT OF THE INPUT PATTERN :
4TH AND 5TH BYTE GIVES THE WIDTH OF THE PATTERN
6TH AND 7TH BYTE GIVES THE HEIGHT OF THE PATTERN
IN BOTH THE CASES THE FIRST BYTE IS OF LOW ORDER
PICTURE INFORMATION STARTS FROM 32ND BYTE
BLACK SPOT IS REPRESENTED BY 0 AND
WHITE POINT IS REPRESENTED BY 1

void recognise(void)
{ FILE *patte~n , *oc~

cha~ ch ;
cha~ huge *patte~n_buffe~
NORM_INFO *coo~;
int a, b, c ;
unsigned cha~ low_byte , high_byte ;
long buffe~Pointe~ ;
cha~ d~ive[3) , di~[25) , file[9) , ext[5) , oc~name[30)

(III , "c:\\scan\\scan.exe'l ,\
"c:\\scan\\scan.exe")) < 0

pe~~o~ ("So~~y ~"); ex i t (1); }{

c 1~sc~ ();
do
{ show_option (msg[4),msg[5),msg[6),msg[3);
ch = get_option ();
switch (ch)
{ case '1' if«spawnl

A - 13

case' 2' : clrscr();
cprintf("\n\r Name the pattern file to be recognised");
cprintf ("\n\r (with full pathname) .•.");
cprintf ("\n\r ");
scanf (111.5" , patter-nname);
if ((pattern = fopen (patternname, "rb" » -- NULL)
{ perror (patternname);

cprintf("Program is aborting ... ")
exit (1)

}
size = filelength (fileno(pattern»;
if ((pattern_buffer = (char *)farcalloc (size, \

sizeof(char») == NULL)
{ cprintf("\r\nbuffer memory allocation failure");

cprintf("\r\nProgram is aborting ...•)
exit(1);

}
bufferPointer = 0L
do
{

pattern_buffer[bufferPointer++] = fgetc(pattern)
} while (~ (feof(pattern»)
fclose(pattern);

fnsplit (patternname , drive , dir , file " ext)
fnmerge (ocr-name, drive, dir , file, ".ocrll

if « ocr = fopen (ocrname, "wb" » == NULL)
{ perror (ocrname);

cprintf("Program is aborting ... t')
exit (1)

}
if coor = calloc (sizeof(NORM_INFO) , \

sizeof (char ») == NULL)
(cprintf("\r\nstructure memory allocation failure");

cprintf("\r\nProgram is aborting ... ")
exit(l);

}

if (sepe_file = calloc (sizeof(SEPE_INFO),\
sizeof (char ») == NULL)

(cprintf("\r\nstructure memory allocation failure");
cprintf("\r\nProgram is aborting ... ") ; exit(l);

}
a = 4;
low_byte = pattern_buffer[a++];
high_byte = pattern_buffer[a++];
sepe_file->width = (high_byte * 256 + low_byte)/8

/* width in byte */

A - 14

/* height */

low_byte = pattern_buffer[a++];
high_byte = pattern_buffer[a];
sepe_file-)height = high_byte * 256 + low_byte
a = lZl; b = 121;
sepe_file-)condition_col = 121
sepe_file-)condition_row = lZl
for (")
{ if (sepe_file-)condition_row < 121)

break;
/* == */
/* initiallising the structure */
/* == */

}ocr)

+ 1

, ?'

c)"

fputcII) ;

sepe_file->row2
1 .,
121;

cprintf (" (1.1212X)
fpu tc (c , oc r)

if (a == 121)
{

sepe_file-)row1 = 1
sepe_file-)col1 = 1
sepe_file-)pix1 = 121

}
else if (b == 121
{

sepe_file-)col1 = sepe_file-)col2 ;
sepe_file-)pix1. = sepe_file-)pix2 + 1

}
else
{

sepe_file-)row1 =
sepe_file-)col1 =
sepe_file->pix1 =
b = 121;

}

isolate_character (pattern_buffer , sepe~file);
normalise (pattern_buffer , coor) ;
c = compare (pattern_buffer, coor);
if (c == NULL)

{ cprintf (" (7)
else
(

}

a++ ;
if (sepe_file->condition_col < 121)
{ b++ ;

sepe_file->condition_col = 121
continue

}
}

A - 15

fa •.f•.ee ((cha •. *)patte •.n_buffe •.)
fclose (oc •.) ;

case '\xlS':
case '3' b•.eak;

}
} while (ch == '1'

}
ch , 2') ;

1* =============== END OF RECOGNITION ROUTINE ============ *1

1* === *1
1* DRAW MASK ROUTINE *1
1* THIS ROUTINE DRAWS THE TEMPLATE ON *1
1* THE SCREEN IN GRAPHICS MODE *1
1* CALLED BY : MAKEMASK FUNCTION *1
/* CALLS ON: NONE *1
1* === *1

void
{

d •.awmask (void)
FILE Hp;
int driver, mode, x = 1, Y = 1 ;
cha •. *buffe •. ;
int width, code, counte •., length
long int offset

c 1"sc •.();
cp •.intf("\nGive the code of the template, please ... ");
scanf ("%d ", &code) ;
if ((fp = fopen ("template.lib"," •.b") -- NULL
{ pe •.•.o •.("template.lib");

cp •.intf("P •.og •.am is abo •.ting ... ")
exit(l) ;

}

counte •.= (code - 1) * 4 ;
if ((fseek (fp, counte •., I2l)
{ cp •.intf("\ •.\nERROR !,,") ;

cp •.intf("\ •.\nP •.og •.am is abo •.ting •.. ")
fcloseall(); exit(l);

}
offset = fgetc(fp) + 256 * fgetc(fp) + \

256*256*fgetc(fp) + 256*256*256*fgetc(fp)
if (offset == I2l)
{ c p•.in tf ("\ •.\nNo suc h TEMPLATE in TEMPLATE LI SRARY .");

return ;
}

A - 16

if ((fseek (fp, offset, ~)
(cprintf("~r~nERROR !'!") ;

cprintf ("\r\nProgram is aborting ... ") ;
fcloseall()
exit(l)

}
length = fgetc(fp) + 256 * fgetc(fp)
if ((buffer = calloc(length, sizeof(char)) == NULL)
(cprintf("\nMomory buffer allocation failure.");

cprintf ("Program is aborting •.. ")
fcloseall();
exit(l) ;

}
if length!= (fread(buffer,sizeof(char), length,fp) »
(cprintf("\nTemplate file read error");

cprintf("Program is aborting ... ")
fc 1osea 11 ();
exit(l);

}
fclose (fp)
counter = ~ ;
width = buffer[counter++]
counter-++ ;

for code = 1~ ; code)= 1 code--)

{ dr-iver- = code ;
swi tch (code)
{ case 1~ mode = ~ break

case 9 mode = 2 break
case 8 mode = 5 break
case 7 mode = ~ break ;
case 6 mode = 1 break
case 5 mode = 3 break
case 4 mode = 1 break
case 3 mode = 1 break
case 2 mode = 5 break
case 1 mode = 4 break

}
initgraph(&driver,&mode,"");
if (graphresult() -- ~) break

}
while counter < length)

{ if (!(buffer[counter++]))

putpixel (x+32~,y+15~,1);
x++;
if (x) width) { x = 1 ; y++; }

}

A - 17

outt~xtxy (250,340,"Press any key to exit •••");
getch(); closegraph();

}

/* =============== END OF DRAW MASK ROUTINE

/* === */
/* DELETE MASK ROUTINE */
/* THIS ROUTINE UPDATES THE TEMPLATE BY */
/* DELETING A TEMPLATE ON USER OPTION */
/* CALLED BY : MAKEMASK FUNCTION */
/* CALLS ON: NONE */
/* === */

void
{

deletemask (void)
FILE Up ;
char ch ;
unsigned char mask_data ;
long filesize, offset, masklength
ldiv_t find remainder
int code, x, y, n
char huge *buffer

i, filePointer

Try again .•• ")

'= "N" && ch != "Y"

I I I tWrong option

cIrscr() ;
cprintf("Type in the code of the template \

to be deleted ...") ;
scanf('l'l..dll

, &code) ;
cprintf("\r\n\nAre you sure (Y / N) ..•")
x = wherex() ; y = wherey() ;
while ((ch = toupper(getche()
{ printf("\a\a") ;

cprintf ("\r\n\n
gotoxy (x, Y)

}
if (c h == "N"
else
{ if « fp = fopen ("template. lib" I "r+b")== NULL)

{ perror("template. lib") ;
cprintf("Program is aborting .•• ") ; exit(l)

}
filesize = filelength (fileno (fp)) ;
if « buffer = (char*) farcalloc (filesize I \

sizeof (char))) == NULL)
{ perror("buffer allocation failure")

cprintf("Program is aborting ... ")
exit(l) ;

}

A - 18

into memory

mask_data = fgetc(fp)
buffer[filePointer++]= mask_data

} while (! (feof (fp »
ends here */
filePointer = (code - 1) * 4
i = filePointer ;
offset = buffer[i++] + 256 * buffer[i++] + \

256 * 256 * buffer[i++] + \
256 * 256 * 256 * buffer[i++] ;

buffer[filePointer++] = buffer[filePointer++] \
= buffer[filePointer++] = buffer[filePointer++]\
= 0 ;

mask length = buffer[offset++] + \
256 * buffer[offset]

reading the TEMPLATE.LIB
filePointer = 0L
do
{

/* reading

offset-- ;
do
{ i = filePointer ;

offset = buffer[i++] + 256 * buffer[i++] + \
256 * 256 * buffer[i++] + \
256 * 256 * 256 * buffer[i++]

if (offset == 0) goto end ;
offset -= (mask length - 2)
n = 0 ;
findremainder = ldiv (offset , 256L)
while (n++ < 4)
{ buffer [filePointer++]= findremainder.rem

find remainder =ldiv(findremainder.quot,256);
}
end : ;

} while (filePointer < 1024)
filePointer = 0L ;
do
{ fputc (buffer[filePointer++] , fp)
} while (filePointer < offset)
filePointer = offset + mask length ;
do
{ fputc (buffer[filePointer++] , fp
} while (filePointer < filesize)
fclose (fp) ;

} /* else loop ends */
}

/* ========= DELETEMASK FUNCTION ENDS HERE ================ */

A - 19

/* === */
/* MAKE MASK ROUTINE */
/* THIS ROUTINE MAKES THE TEMPLATE FROM */
/* THE PATTERNS NAMED BY THE USER. MAXIMUM */
/* NUMBER OF PATTERNS CAN BE USED IS 15. */
/* CALLED BY : MAIN FUNCTION */
/* CALLS ON: SHOW_OPTION, GET_OPTION, DRAWMASK */
/* FORMAT OF THE TEMPLATE LIBRARY : */
/* FIRST 1024 BYTES CONTAIN THE ADDRESSES OF THE */
/* TEMPLATES. EACH TEMPLATE ADDRESS IS GIVEN BY 4 */
/* CONSEQUITIVE BYTES ---- FIRST BYTE IS OF LOWEST */
/* VALUE, THE 4TH BYTE IS OF HIGHEST VALUE. EACH */
/* TEMPLATE IS PRECEDED BY 4 BYTE HEADER. FIRST 2 */
/* BYTES GIVES [LOW ORDER BYTE FIRST] THE LENGTH */
/* OF THE TEMPLATE IN BYTES. THE 3RD BYTE GIVES THE */
/* WIDTH OF THE TEMPLATE AND THE 4TH BYTE GIVES THE */
/* HEIGHT OF THE TEMPLATE. THEN THE TEMPLATE DATA */
/* FOLLOWS. */
/* 0 REPRESENTS "STABLE BLACK PO INTS" , */
/* 1 REPRESENTS "STABLE WH ITE PO INTS" AND * /
/* -1 REPRESENTS "UNCERTAIN POINTS". */
/* === */

void makemask (void)
{FILE *fp;

struct ffblk filename;
char *black, *buffer , filenames[25], ch1, ch2, ch3
char drive[3], dir[20], files[9], ext[5];
char drive1[3], dir1[20], files1[9], ext1[5];
int i, file_no = 0, h, c, n, file_found, code
int width, height, bit, col, nn = 0, counter;
int max_width = 0, max_height = 0 , maskfilelength
int pattern_counter;
unsigned char data;
char *pattern_buffer[15] ;
long filePointer, fileSize
ldiv_t findRemainder ;

c 1rscr();
do
{ show_option (msg[7],msg[B],msg[9],msg[3]);

ch1 = get_option (l;
switch (ch1)
{ case '1'

do
{ show_option (msg[13],msg[14],msg[15],msg[3]);

ch2 = get_option (l;

A - 20

((Z) , llc:\\scan\\scan.exe'l ,\
" c:\\scan\\scan.exe")) < °)

{ cprintf ("Sorry! Cannot load scanning program");
cprintf("\r\nProgram is aborting ... ");
fcloseall()
exit(l)

show_option (msg[10],msg[12],msg[11],msg[3]);
ch3 = get_option ();
switch (ch3)
{ case '1'

if « spawn 1

switch (ch2
{ case '1':

do
{

) \lltemplate.libll "wtll

-- NULL)

}
case '2'

c 1rsc r () ;
file_found = findfirst("template. lib" ,&filename,0);
if (file_found)
{ if ((fP = f0pen (

{ perror ("template. lib") ;
cprintf ("\nUnable to open TEMPLATE.LIB");
cprintf ("\nProgram is aborting ... "
fcloseall()
exit (1)

}
if (buffer = char *) calloc (1024 , \

sizeof(char))) == NULL)
{ cprintf ("\nUnable to allocate memory");

cprintf ("\nProgram is aborting ... ")
fc1osea 11 ()
exit (1)

}

if 1024!= (fwrite (buffer, sizeof(char) ,\
1024 , fp)))

{ cprintf("\nWrite error to disk");
cprintf("\nProgram is aborting .. ")
fcloseall()
exit (1)

}
fciose (fp)
free (buffer

}

clrscr()
cprintf ("\n\rfile name (pathname
cprintf ("\n\rwild cards allowed
scanf (11%511 , patternname);

with
)

11) ;

\n\rll
) ;

A - 21

1* == *1
1* FINDS ALL THE FILES IN THE DISKETTE *1
1* MATCHED WITH THE WILD CARDS. *1
1* == *1

fnsplit(patternname,drive,dir,files,ext);
file_found = findfirst (patternname, &filename,0);
while (!file_found)
"{ fnsplit(filename.ff-0ame,drivel,dirl,filesl,extl);

fnmerge (filenames,drive,dir,filesl,extl);
if «fp=fopen(filenames,"rb"»==NULL)
{ perror(filenames);

cprintf("Program is aborting ")
exit(l);

}
size = (int) filelength(fileno(fp»;
if«pattern_buffer[file_no]=(char *) calloc«int)size,\

sizeof(char») == NULL)
{ cprintf("\nbuffer memory allocation failure");

cprintf ("Program is aborting ... ")
exit(1);

size ,\!fread (pattern_buffer[file-0o], (int)
sizeof (char) , fp

ERROR") ;

}
if (

{

cprintf("\nREAD
fclose(fp);
if ((file[file_no] = (NORM INFO *) calloc (\

sizeof(NORM_INFO),sizeof(char»)==NULL)
cprintf("\nstructure memory allocation failure");
cprintf ("Program is aborting ... ") ;
exit(1);

}
normalise (pattern_buffer[file_no], file[file_no]);
if (max_height < (h = (file[file_no]->row2 \

- file[file_no]->rowl + 1)))
max_height = h;

if (max_width < (h = (B * (file[file_no]->co12\
- file[file_no]->coll-l) + \
(B-file[file_no]->pixl)\
+ (file[file_no]->pix2 + 1»»

max_wid th = h;
f i le_no++;
if (file-00 == 15) break;
file_found = findnext(&filename);

}

A - 22

if (black = (char *) calloc ((int)size = max width \
* max_height, sizeof(char))) == NULL)

{ cprintf ("\nUnable to allocate memory •.. "
cprintf ("\nProgram is aborting ... ")
fcloseall() ;
exit (1)

}
for (i = 0 ; i < file_no i++)
{ nn = 0 ;

countel'" = 1 ;
height = file[i]-)row1 - 1;
while (height++ < file[i]-)row2)
{ pattern_counter = 32+(height-1)*sepe_file-)width\

+file[i]-)col1-1;
n = 0 ; width = file[i]-)col1;
while (width++ <= file[i]-)co12)
{ data = pattern_buffer[i][pattern_counter++];

n++;
if (
{

(n == 1) && (file[i]-)pix1 != 0»
col = file[i]-)pix1; h= 7;
data «= col;

}
else if (n==(file[i]-)co12 - file[i]-)col1 +1)\

&& (file[i]-)pix2 != 7»)
{ col = 0; h = file[i]-)pix2; }

else { col = 0 ; h = 7 ;}
for (c = col ; c <= h ; c++)
{ bit = data & MASK1;

if (bit == 0) black[nn] += 1
nn++; counter++;
data «= 1;

}
if
{

(wherey ()
getch();

) 10)
clrscr() ; }

}
while (counter++ <= max_width)

nn++;
counter = 1;

}
free file[i]) ;

} /* for loop with i ends */
c = 0 ; i = 0 ; bit = 0 ;
for (n = 0 ; n < size ; n++)
{ if ,(b 1ac k[n] <= M)

{ black en] = 1; /* white point */
c++;

}
else if (black en])= file_no - M)

A - 23

{ black en] = 0; /* black point */
i++;

}
else {

}

black en] = -1; /* uncertain point */
bit++

}
cprintf ("\r\nCode of the template .•. ");
scanf("%d",&code) ;
if ((fp = fopen ("template. lib" ,"r+b"» -- NULL)
{ perror ("template.lib");

printf("Program is aborting ... ")
exit(l);

}
fileSize = filelength (fileno (fp)
filePointer = (code - 1) * 4 ;
if (! (fseek (fp , filePointer , 0) »
{ cprintf("\r\nWRITE ERROR !!!") ;

cprintf("\r\nProgram is aborting ... ")
fcloseall()
exit(l)

}
n ::;;;Ql ;
findRemainder = ldiv (fileSize , 256L) ;
while (n++ < 4)
{ fputc ((int) findRemainder.rem , fp) ;

findRemainder = ldiv (findRemainder.quot , 256L)
}
if ((fseek (fp , 0 , 2) »
{ cprintf ("\r\nWRITE ERROR !!!")

cprintf("\r\nProgram is aborting ••. ")
fc 1osea 11 ()
exit(l) ;

}
maskfilelength = (int) size + 2 ;
divide = div (maskfilelength 256
fputc (divide. rem , fp)
fputc (divide.quot , fp) ;
fputc (max_width,fp);
fputc (max_height, fp);
n = 0
while (n < size)

fputc (black[n++] , fp)
fclose (fp);
fcloseall();
break;

A - 24

case '\xlb'
case '3' break

}

} while (ch3 == '1'
break;

case '2' deletemask()
case '\xlb'
case '3' break

ch3

break

, 2') ;

drawmask ()

}
while (ch2

break

}
break

case '2'
case '\xlb'
case '3' break;

,l' , ,, , ch2 , 2'

}

} while (chl == '1' , ,, , chl , 2') ;
}

1* =============== END OF MAKE MASK ROUTINE ============== *1

1* === *1
1* MAIN ROUTINE *1
1* === *1

void main (void)
{ char option;

break;
break;

recognise() ;
makemask ();
thanks ();

show_option (msg[~J,msg[lJ,msg[2J,msg[3J);
option = get_option ();
switch (option)
{ case '1'

case '2'
case '3'

welcome ();
mainmenu:
do
{

}
} while (option == '1' option == '2');

}

A - 25

APPENDIX B
~

TABLE OF THE FREQUENCY OF OCCURRENCE
OF THE BANGLA CHARACTERS

Character I. of Character I. of
name occur-rence name occur-r-ence

'3\ 1.6234 13" 3.6599

~

:>i 121.6319
1.141218 "j;j 1.712187

1 121.5267 2r 121.6326
121.3916 ;; 3.6762
121.12112185

'a-l 121.12112136 <>t 1.951214
-'l 121.9781 ,.,. 121.1621
~ 121.12131216 :q 3.1282
\3 121.5992 \& 121.5686.;) 121.12112121 -sr 2.1345
~ 3.7871 5r 121.6511
"" 121.5729 ".. 5.3843
9r 121.9482 M 2.1836

SC 121.1564 ;q- 1.12112129
~ 121.121341 ~ 121.2872

'6 121.7136 "51' 2.121577
11 121.7846 .:? 1. 311217
"Ii 121.951121 ~ 121.412144

:<l\ 121.121725 1¥ 121.12112128
4- 121.12112143
~ =>l' 121.2196
'(; 121.9368 ~ 1.712173
)- 121.2161 '> 121.1592
\5- 121.1542 ~ 121.2239
'Ii 0121.12137121 0 121.121611<t 121.4428 \:J 121.21219121

B-1

APPENDIX C

SOURCE CODING OF THE FUNCTION FOR MAKING
SKELETON OF THE CHARACTERS

void skeleton void)
{FILE Hp;
cha~ *black,filenames[25],ch;
st~uct ffblk filename;
cha~ d~ive[3],di~[20],files[9],ext[5];
cha~ d~ivel[3],di~1[20],filesl[9],extl[5];
int i,file_no = 0,h,c,n,file_found;
int width,height,bit,col,nn = 0,counte~;
int max_width = 0, max_height = 0,y;
int patte~n_counte~;
cha~ maskname [25];
unsigned cha~ data;

c1~sc~();
cp~intf ("\n\~file name (pathname with");
cp~intf ("\n\~wild ca~ds allowed) \n\~");
scanf (ll'l.sll , patternname);
/* == */
/* FINDS ALL THE FILES IN THE DISKETTE */
/* MATCHED WITH THE WILD CARDS. */
/* == */
fnsplit(patte~nname,d~ive,di~,files,ext);
file_found = findfi~st (patte~nname,&filename,0);
while ('file_found)
{ fnsplit(filename.ff_name,d~ivel,di~l,filesl,extl);

fnmerge (filenames,drive,dir,filesl,extl);
if ((fp = fopen (filenames, "~b")) == NULL)

{pe~~o~(filenames);exit(l); }
size = filelength (fileno (fp)) ;
if (patte~n_buffe~[file_no] = (cha~ *) calloc (size,\

sizeof(cha~»)==NULL) ,
{ p~intf("\nbuffe~ memo~y allocation failu~e");
exit(l);

}
if(!f~ead (patte~n_buffe~[file_no], size, \

sizeof(cha~), fp »
p~intf("\nREAD ERROR");

fclose(fp);
if«file[file_no] = (INFO *) calloc(sizeof(INFO),\

sizeof(cha~»)==NULL)
{ p~intf("\nst~uctu~e memo~y allocation failu~e");

exit(l);
}

C - 1

normalise (pattern_buffer[file_no], file[file_no]);
if (max_height «h=(file[file_no]-)row2 -\

file[file_no.]-)rowl +1»)
max_height = h;

if (max_width < (h=(B*(file[file_no]-)col2\
- file[file_no]-)coll-l)\
+ (B-file[file_no]-)pixl)\
+ (file[file_no]-)pix2 + 1»)))

max_width = h;
file_no++;
file_found = findnext(&filename);

}
cprintf("\n\rThere are 'l.dfiles.",file_no);
black = calloc((size = max_width * max_height),\

sizeof(char));
for (i = ~ ; i < file_no; i++)
{ nn = ~; counter = 1;

height = file[i]-)rowl - 1;
while (height++ < file[i]-)row2)

{ pattern_counter = 32+(height-l)*file[i]-)width\
+file[i]-)coll-l;

n = ~
width = file[i]-)coll ;
while (width++ <= file[i]-)col2)
{ data = pattern_buffer[i][pattern_counter++];

n++;
if ((n == 1) && (file[i]-)pixl ~= ~))
{ col = file[i]-)pixl; h= 7;

data «= col;
}
else if (n==(file[i]-)col2 - file[i]-)coll +1) && \

(file[i]-)pix2 ~= 7»)
{ col = ~; h = file[i]-)pix2;}

else { col = ~ ; h = 7 ;}
for (c = col ; c <= h ; c++)
{ bit = data & MASK1;

if (bit == ~) black[nn] += 1
nn++; counter++;
data «= 1;

}
}
while (counter++ <='max_width)

nn++;
counter = 1;

}
}
c = I2J

/* for loop with i ends */
i = 0 ; bit = 0 ;

C - 2

fol'" (
{ if

{

n = 0 ; n < size ; n++)
(black[n] <= M)
black En] = 1; /* white point */ c++;}
else if (black En])= file_no ~ M)
{ black En] = 0; /* black point */ i++;}
else { black En] = -1; bit++ ; }

}

}
fc 1osea 11 ();

C - 3

)

\

APPENDIX D

THE CHARACTERISTICS OF THE SCANNER USED

The output of the scanne~ depends on the followings

1. The speed with which the scanne~ is being moved. If the
scanne~ is moved slowly then the lette~ has a tendency
to elongate. On the othe~ side the lette~ sh~inks
ve~tically if the scanne~ is moved swiftly.

2. The position of the LIGHT •..DARK slide cont~ol.
Rotating the setting ccw will p~oduce a da~ke~ pictu~e.

3. The p~essu~e of the scanne~ on the pape~. If the
p~essu~e is mo~e then the output will be da~ke~. With
the same LIGHT ...DARK setting less p~essu~e will ~esult
in a less da~k output.

4. The da~kness of the p~inted matte~.

D - 1

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118

