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Abstract

Complex accessing structures like indexes are a major aspect of centralized databases.

The support for these structures is the most important part of the database

management systems (DBMS). The reason for providing indexes is to obtain fast and

efficient access to data. Most of the centralized database management systems use B-

tree or other types of index structures. But in distributed databases no index structure

is used to obtain fast and efficient access to the data. Therefore efficient access is the

major problem in distributed databases. We proposed a distributed index model,

which is a data structure based index comprising of two types of index structures:

Global Index (Gl) and Local Index (Ll). GI is created and maintained by distributed

database component (DDB) and Ll is created and maintained by local database

component (DB) of a distributed database management system. B-tree was used to

implement both GI and LI. A simulation program tested the proposed model and

found satisfactory results.
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Chapter 1

INTRODUCTION

1.1 Database and DBMS

Database is a collection of related data in a specific structure of any organization or cor-

poration. Underlying structure of a database is the concept of a data model, a collection of

tools for describing data, data relationships, data semantics, and consistency constraints.

The various data models, such as object-based logical models, record -based logical

models, and physical data models have been used.

Relational data model is a record-based data model and is used in describing data at the

conceptual and view levels. In this model database structured in a fixed format records of

several types. Each record type defines a fixed number of attributes and each attribute is

usually of fixed length. The use of fixed length record simplifies the physical-level im-

plementation of the database. This makes the relational data model most popular data

model. A relational database consists of tables, each of which is assigned a Wlique name.

A row in a table represents a relationship among a set of values [17].

Although databases come in a variety of sizes, almost any collection of data can become

quite unwieldy as it receives and stores more and more data over time. Computers make it

possible to harness large data collections efficiently using a Database Management Sys-

tem (DBMS). A DBMS is a program, or collection of programs, that allows any number

of users to access data, modify it (if necessary), and construct simple and complex re-

quests to obtain and work with selected records. Data management tasks of DBMS fall

into one of three general categories:

Entering data into the database

Reordering the records in the database

Obtaining subsets of the data

Actually, there are lots of tasks anybody can perform with a DBMS, including creating

and designing the database itself. A DBMS's biggest asset is its ability to provide ex-
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tremely quick access and retrieval from large database. To determine the positions of the

specific records in a database, DBMS use a spccial technique called index.

1.2 Indexing

An index for a data file in the database system works in mueh the same way as a catalog

for a book in a library. Ifwe are looking for a book by a particular author, we look in the

author catalog, and a card in the eatalog tells us where to find the book. To assist us in

searching the catalog, the library keeps cards in alphabetic order, so we do not have to

check every to find the one we want. To gain fast access to the records in a data file, we

can use an index structure. Each index structure is associated with a particular seareh key

(one or more attributes of the data). Just like a library catalog, an index stores the values

of the search keys in sorted order, and associates with eaeh seareh key the records in the

data file that contain that search key. A data file may have several indices, on different

search keys.

Indexing is a data structure based technique for accessing records in a file. It is a data

structure technique in the sense that a search of a data structure yields the'required ad-

dress. In this technique a main file of records is supplemented by one or more' indexes.

Indexes may be the part of the main file or be separate files, and may be created and de-

stroyed as required without affecting the main file. When changes are made to the main

file, appropriate update operations must be carried out on any indexes to that file. There

are two main types of indexes such as static index and dynamic index. We elaborately

discussed both of these types and their various ways of implementations in the Chapter 2.

1.3 * +B, B , and B Trees

Instead of binary trees multi way trees can be uscd for implementing bettcr dynamic in-

dexes. Multiway Trees are a generalization of binary trces. Instead of containing a record

and two pointers, as in a binary tree, a node contains R records and R+ I pointers. This

alleviates the long rctricval timcs found with binary trccs. Thc incrcasc in the branching

factor typically makcs the trec shortcr than thc cOITcsponding binary tree for the same

number of rccords. However, complex balancing opcrations may be required as records

are inserted and deleted [18].
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B-trees were devised by Bayer and McCreight [5]. Thcy have neither the retrieval nor the

maintenance problems of binary trees because they are multiway trees with efficient self-

balancing operations.

B-trees are balanced multi way trees. A node of the tree may'contain several records and

pointers to "children". We usc term "child" to refer to the immediate descendent of a

node; hence" siblings" refers to nodes with the same parent. The operations of retrieval,

insertion, and deletion are guaranteed efficient even in the worst case.

A number of variations on the B-tree data structure have been devised. Typically, each is

designed to overcome some of the deficiencies of the B-tree. We considered two such

variations: B*-trees, which arise from a suggestion by Bayer and McCreight [5], and B+-

trees, which were suggested by Knuth [13].

The B' -tree performs searchcs in the same way as the B-tree, except that there arc differ-

ent operation of a B-tree more efficient by reducing the number of occasions when a node

had to be split. If the node into which we need to insert a record is full, we might in cer-

tain circumstances be able to solve the overflow problem by local redistribution of rec-

ords rather than by splitting the nodes.

Knuth proposed a variation on B trees that for clarity Comer designed the B+-tree. Rec-

ords in a B+-tree are held only in the terminal nodes of the trec. The terminal nodes arc

linked together to facilitate sequential processing of the records and termed the sequence

set. Non-terminal nodes are indexes to lower levels in a similar way to that orB trees.

Nodes in the index levels contain only key values and tree pointers. There is no need for

the temlinal nodes'tree pointer fields. Thus terminal nodes have a different structure from

non-terminal nodes. We discussed B, B', and B+ trees and their numerous algorithms in

the Chapter 2.

We did a simulation program for constructing and using B, B', and B' trees for database

indexing based on the available structures and algorithms. This program generates ran-

dom data to insert, search, and delete. Performance of each tree is measured in terms of .

number of comparisons, number of nodes, number of splits and the height of the tree re-
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quired. The results of the simulation program were recorded and plotted separately. We

showed these results in the Chapter 3.

1.4 Distributed Database

In recent years, distributed databases have become an important area of information proc-

essing, and it is easy to foresee that their importance will rapidly grow. There are both

organizational and technological reasons for this trend: distributed databases eliminate

many of the shortcomings of centralized databases and fit more naturally in the decen-

tralized structures of many organizations. A distributed database is a collection of data,

which belong logically to the same system but are spread over the sites of a computer

network. Each site of a network has autonomous processing capability and can perform

local applications. Each site also participates in the execution of at least one global appli-

cation, which requires accessing data at several sites using a communication subsystem.

The global schema defines all the data, which is contained in the distributed database as if

the database were not distributed at all. Each global relation can be split into several non-

overlapping portions, which are called fragments. Fragments are logical portions of

global relation, which are physically located at onc or several sites of the network [7]. We

discussed distributed database in dctails in the Chapter 4.

1.5 Finding records in a Distributed Database

At present distributed databases are inefficient in locating records since it is not using any

global index structure. Distributcd Database Managcment Systcms collect the pertaining

fragments from different sites and reconstruct the data filc as if it were not fragmented.

After reconstruction every record is read and checked one by one to identify the desired

record. Alternatively, Distributed Database Management Systcms can search the record in

every fragments one after another. In both of these cases lot of extra works need to be

done to find a record. To eliminate these extra works during searching a record an 'effi-

cient index structure can be used.
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1.6 Proposed Distributed Index

Most of the centralized database management systems use B-tree or other types of index

structures. But in distributed databases no index structure is used to obtain fast and effi-

cient access to the data. Because it is very difficult to build and maintain such structures
,

and because it is not convenient to navigate at a record level in distributed databases.

Therefore, efficient access is the main problem in distributed databases. To provide effi-

cient access to the data we proposed a distributed index concept. Distributed index is also

a data structure based index comprising of two types of index structures. One is Global

Index (GI) and the other is Local Index (LI).

GI is created and maintained by distributed database component (DDB) of distributed

database management systems (DDBMS). LI is created and maintained by local database

management component (DB) ofDDBMS. We preferred B-tree for implementing both GI

and LI of distributed index. For every site there is a Local Index (LI), which has been cre-

ated, updated and used independently. Like other local database management components

LI enjoys autonomy in each site. There must be a single global index (GI) f9r a distrib-

uted index. GI is created, updated and used based on local indexes. All the local indexes

are perfectly mapped with the global indexes. When a record is searched in a distributed

database, Gl used first to determine which LI needs to be used to find the data. After se-

lecting the right LI it is used to access records in the corresponding site. The records in a

GI node are different from that of a LI. LI holds the index value and the pointer/address

of the concern record in the data file. But Gl record holds the minimum and maximum

index values of a local index and the pointer/address of that local index. We explained the

proposed distributed index structures and its algorithms in Chapter 5.

We developed the second simulation program for constructing and using the proposed

distributed index. We showed the results of the program in Chapter 6.

We proposed and examined the structure and algorithms for distributed index considering

simple distributed databases. Complex distributed databases will certainly require extra

efforts for indexing.
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Chapter 2

DATABASE INDEXING

2.1 Introduction

Many queries reference only a small proportion of the records in a data file. For example,

the query "Find all accounts at the Perryridge branch" references only a fraction of the

account records in the Account data file. It is inefficient for the database systems to have

to read every record and to check the branch name field for the name "Perryridge". We

need database systems should be able to locate these records directly and for this we need

to keep additional structure i. e. index structure, associated with the data file.

Indexing is a data structure based technique for accessing records in a file. It is a data

structure technique in the sense that a search of a data structure yields the required ad-

dress. In this technique a main file of records is supplemented by one or more indexes.

Indexes may be the part of the main file or be separate files, and may be created and de-

stroyed as required without affeeting the main file. When ehanges are made to the main

file, appropriate update operations must be carried out on any indexes to that file.

Index files can be compared with the index or table of eontents of a book. Consider the

index of a book. It consists of a number of entries, each of which is a pair:

Topic, page number(s)

Book indexes are usually arranged alphabetically, which makes it easy to find a partieular

topic and hence the pages on which it are mentioned. An index file is like a book index.

Index files typically contain records of the following form:

Key value, pointer(s) to the main file

The pointers reference records in the main file that have the particular key value. Here we

will discuss using data structure techniques rather than computational techniques to solve

the file accessing problem. We consider the efficiency of the data structures and the op-

erations required to maintain optimum efficiency. It is important to remember that when'

we discuss "records" in an index, for example in a node of a search tree, we mean records

of the form shown above rather than records of the main file.

8



Although indexes to sequential files arc common, non-scqucntial files can also be in-

dexed. A sequential file is typically in sequcnce only with respect to one key. For exam-

ple, a file of insurance records ordered by policy number would be non-sequential with

respect to a second key such as name of policyholder.

Without data structures, processing records with respect to a key other than the one by

which the file is sequenced is likely to be inefficient. Consider thc file of insurance rec-

ords. To find a record when given the name of the policyholder, we would probably have

to perform a linear search through the file. If we necd a list of policyholders according to

date of birth, we would probably have to perform a sort operation.

Except in certain books, topics in the body of a book do not normally appear in alphabeti-

cal order. Books can therefore be regardcd as non-scquential from thc point of view of

topic. Indexes help to locatc topics. In the remaindcr of this chapter wc consider index

organization in the context of indcxcd scqucntial filcs.

A sequential file is one in which records can be acccssed in sequential order, which is

usually primary key order. An indexed sequential file is sequential file supplemented by

an indcx structure. The purpose of the index is to speed up access to a particular record.

Normally the index is effective only when the file is being indcxed is stored on a direct-

access device. Un-indexed scquential files on the other hand, could reasonably be stored

on serial devices.

There are alternatives to indexing as a tcchniquc for achieving fast access to sequential

files, but they tend to be comparatively slow or restrictive. A binary search is one possi-

bility, but it requires that for a given I it must be possible to compute the address of the

lth record in the file. If sequcncing is implementcd by pointcrs rathcr than physical adja-

cency, this may not be feasible. Even if it is possible to compute the address, performance

of a binary search algorithm is not impressive. Suppose that there are M logical records in'

a file and that they are packed N to a physical record. Thc avcragc number of physical

accesses required to find a record using a binary search is about (Iogl MINl)- I.

9
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The way we organize an index file will depend on the operations we wish to perform via

key field. Possible operations include retrieval of individual records and processing of all

records in the key order. If the index is used only to locate a record with a particular value

of a key, then hashing may be suitable way of organizing it. However, if the index is the

means of accomplishing both sequential processing and fast individual record access, then

a tree structure is a better choice. This is because sequential processing is accomplished

by simple tree traversal and the nature of the tree also allows a particular record to be lo-

cated quickly. The indexes we examine here are based on trees.

Because the main file is sequenced, it may not be necessary for the index to have an entry

for each record. Figure 2. I shows a sequential file with a two level index. Level I of the

index holds an entry for each three-record section of the main file. In a similar way, level

2 indexes level I. It may be sufficient for an index to a sequential file simply to identify

the part of the main file containing the desired record. The final part of a search operation

can then be a simple linear or binary search of the identified section. Typically this will

be a search in main memory, of a physical record retrieved from the file. Consider the

book analogy. The table of contents acts as an index in our sense of term. The file (book)

is in sequence by the key being indexed (chapter and section numbers). Section numbers

in the body of the text may be long (for example, p.q.r.s.t). In the table of contents, how-

ever, entries may be limited to p.q.r, leaving the reader to interpolate to find more precise

sub headings. Thus while there is still a search space, it has been reduced through the use
of the index.

Indexed sequential organization is straightforward apart from the problem of inserting

new records into the file. The problems are to preserve the sequence of the records and

update the index appropriately. Two broad classes of solutions to these problems are

static index techniques and dynamic index techniques.

Although the contents of a static index may change as we perform insertions and dele-

tions on the main file, the structure of the index docs not change. Typically the insertion

algorithm uses overflow areas. This method however, tends to lead to gradual loss of effi-

ciency for search and update operations, and periodic maintenance is required to restore

performance. Typically this involves running a standalone program that writes a new ver-

10



sion of the main file eliminating overflow lists. The index is rebuilt during the rewriting.

The IBM ISAM system uses static index structures [18J.

A dynamic index adapts as records arc inserted into and deleted from the main file. In

some sense, maintenance of efficiency is an integral part of the insert and delete algo-

rithms. There is no need to run a separate maintenance program periodically. Dynamie

indexing methods are characterized by the splitting and joining of nodes in the index tree.

The IBM VSAM system uses dynamic indexing.

Both static and dynamic indexes are useful depending on the type of application. We will

compare their efficiency out the following operations:

1. Searching for a record with a given key

2. Inserting a new record

3. Deleting a record with a given key.

2.2 Static Indexes

One approach to organize a tree in a static index structures is to keep its structure fixed

and to deal with insertions by means of overflow lists at the leaves.

2.2.] Organization of the index

A static index can be regarded as a series of fixed size. The lowest-level table in-

dexes the main file itself, the next highest level indexes the lowest level, and so on. Fig-

ure 2.1 shows a small example file with two levels of indexing. A level I index entry

holds the highest key value in a three-record section of the main file together with a

pointer to the section. A typical entry is

42, <pointer to the section with 42 as its highest key>

The choice of three for the size of the main file section is arbitrary here. In practice it is

likely to be related to the size of physical and logical records. For example, if the storage

device can transfer up to 1024 bytes in one access and logical records are 80 bytes long,

each main file section will probably contain 12 records.

11



42 106

19 32 42 79 88 106

Fl~~
6 15 19 24 28 32 35 41 42 68 74 79 82 83 88 95 101 106

Figure 2.1 File with two level index

Thus a complete section can be read in one disc access. The index holds the highest key

value in each three record section of the level I index. Again, the choice of three here for

section size is arbitrary. Given particular file characteristics and properties of the storage

media, it is possible to calculate the number of index levels and the total space they oc-

cupy.

To see why do we index a section by it's highest rather than its lowest key; let us follow

the retrieval of the record with key 28 from Figure 2.1. We begin at the top of the tree

with the level 2 index. We select the smallest index entry with key greater than or equal to

the target key. In this select 42. The associated pointer points to the level I section that

contains the following entries:

19---)

32---)

42---)

Using the same selection criteria, we follow the pointer associated with the entry 32 in the

level I index. The pointer gives us the address of the section in the main file containing

24

28
32

When we search this, we find thc rccord with key 28. If we had becn looking for a record

with key 29 instead, the search would fail whcn key 32 was cncountcrcd.

.\
12



By holding the highest rather than lowest key in the index, we avoid an extra eomparison

at each index level during a search operation. This is because the pointer to the lowest

value and the key of the largest value together defines a'search subspace. For example,

the pointer associated with entry 32 in the level I index points to the seetion starting with

24. Any record with a key in the range of 24 through 32 will be in that seetion. If we hold

the lowest key, we would have to look at the next index entry to establish the upper bound

on the subspace.

2.2.2 Insertions

Next, let us see the way in which the file and indexes change when insertions are made

into the main file. We will insert records with keys 7, 33, and 18. These insertions will

eause overflow conditions that must be resolved.

Insert 7.

42 106

19 32 42 79 88 106

6 7 15 24 28 32 35 41 42 68 74 79 82 83 88 95 101 106.

1
19

Figure 2.2 File with overflow

When we insert a record with key 7, the index structure leads us to the first section of

three records in the main file. This is where the record with key 7 would be if it were in

the file. To preserve the record sequence, the new record must be inserted after the one

with key 6. Therefore, the record with key 19 is 1110veoout of the main file seetion and

into an overflow area. Figure 2.2 shows the new configuration.

t3



We assume that there is space at the end of cach scction of rccords in the main file or a

pointer to a list of records that havc bccn movcd out of thc section. Observe that sequen-

tial processing of the file slowed by the need to make an access to the overflow area.

Between records with keys 15 and 24. However, access to an arbitrary record need not be

slowed if we modify the level I index. Suppose that in addition to holding the highest key

in either the main file section or its overflow list, it also holds the highest key in the main

file section alone. With this information we can tell whether to look for a particular record

in the main file or in the overflow area. In the casc of our example the level I index entry

for the first main file section is now

Index

15.119~_fi_: ,
7
15 ------~ 19

The entry indicates that 15 is the highest key in the section and that 19 is the highest key

when the overflow list is taken into account. To go directly from the level I index entry to

the list. However, in subsequent diagrams we will show the key values in the level I in-

dex entries but omit pointers to overflow lists to prevent the diagrams from becoming

cluttered.

Insert 33.

19 32 42 79 88 106

6 7 15 24 28 32 33 35 41 68 74 79 82 83 88 95 101 106

1 1
19 42

Figure 2.3 File with overflow

14



Key 33 lies between the ranges of the records stored in the sccond and third threc-record

sections of the main file. Examination of the level I index indicates that if the record with

key 33 were already in the file it would be in the third section; its key is greater than the

largest key recorded for the second scction. Hence thc ncw rccord is inserted into the third

section; Figure 2.3 shows thc new configuration. Although the two overflow lists are

separate in the diagrams, thcre is no rcason why they should not be stored interleaved in

the same file.

Insert 18.

42 106

19 32 42 79 88 106

FJ 1 ~~
6 7 15 24 28 32 33 35 41 68 74 79 82 83 88 95 101 106

1 1
18 42

1
19

Figure 2.4 Overflow chain

Key 18 is lower than the highest key associated with thc first file section (19) but higher

than the last key in the main file section (15). The new record is thereforc put directly into

the overflow list. Figure 2.4 shows the new configuration. Although sequential accessing

of the file may not bc slowcd furthcr as a result of this insel1ion, a retrieval of record with

key 19 is likely to take longer than bcforc.

15 ,.



2.2.3 Physical Organization of Overflow Area

Above, we discussed in abstract terms how insertions into the main file might be handled.

How might an overflow scheme be implemented? One possibility is to write the initial

sequential file cylinder by cylinder on a disc, leaving a number of tracks ffee on eaeh

cylinder. Records overflowing from sectors in a cylinder would be placed in the spare

tracks in the same cylinder, that is, in a cylinder overflow area. In this way no disc head

movement would be required when following a pointer from main file. If overflows are

confined to such areas, sequential processing is reasonably fast. However, what happens

if there are enough insertions in one part of the file to exhaust a particular cylinder over-

flow area? Such clustered insertions with a small range of key values compared with the

key range of the file as a whole are a problem for indexed sequential file organizations. In

a static organization, such as described above, they will result in long overflow lists. One

solution to provide a number of spare cylinders that can be used by overflows from any

cylinder. However, if these have to be used, both sequential and direct processing of the

file begins to require time-consuming disc head movements. Performance degrades rap-

idly.

A weakness of the static organization is its potential degradation of performanee as inser-

tions are made. In a typical application we would expect that there would be more retriev-

als than insertions or deletions, so it is important that they be as efficient as possible. In a

static organization maintenance programs may have to be run periodically to restore per-

formance levels. During these runs the file is likely to be inaccessible. In contrast, dy-

namic indexes, which we discuss next, may gradually change shape in order to preserve

efficiency. Compared with static indexes, more work may be done when a record is in-

serted or deleted, but there is no need for separate periodic maintenance [18].

2.3 Dynamic Indexes

Many dynamic indexes are implemented as trees. We consider four eommon tree struc-

tures and compare them in terms:

• Depth (minimum for given number of records)

• Ease of maintenance

• Maximum order
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The four tree types are binary, AVL, multi-way, and B-trees. We adhere to the convention

of depicting a tree with the root uppermost and regard the root as the top of the tree.

2.3.1 Binary Trees

Binary trees suffer from two disadvantages compared with other trees: long retrieval

times and effort needed to maintain efficient access. Binary trees have a branching factor

of two, that is, each node has at most two immediate descendents (children). Conse-

quently, the minimum height of a tree containing N records is LIOg2NJ+ I. For example, a

tree of 100 records has at least seven levels. If a tree is held on secondary storage, then

there tends to be a proportional relationship between the numbers of node reads and the

number of physical seeks. It is therefore desirable to have short trees to minimize the

number of physical accesses. Because of the small branching factor, binary trees tend to

be tall. For best performance the tree should be balanced in the sense that the sum of the

lengths of the paths from the root to the nodes is minimized. After an insertion or a dele-

tion the tree may have to be rebalanced. The operations required to balance an arbitrary

tree are relatively complex.

2.3.2 AVLTrees

AVL trees, devised by Adel'son- Vel'skii and Landis [3], arc restricted growth binary

trees. They were invented as a solution to the balancing problem encountered with normal

binary trees. An AVL tree is not necessarily perfectly balanced. In a perfectly balanced

binary tree the number of nodes in the two sub trees of an arbitrary node differ by at most

I. The balancing operations arc simpler than those for ordinary binary tree, but AVL trees

still have comparatively long search times. Bounds have been established for the height of

an AVL tree containing N records as follows:

log2(N+ I) ~ height ~ 1.4404 log2(N+2)- 0.328

Considering again a tree with 100 records, we have

6.658211 ~ height ~9.282961

The search problem persists because we still have tall trees.
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2.3.3 MuItiway Trees

Multiway Trees are a generalization of binary trees. Instead of containing a record and

two pointers, as in a binary tree, a node contains R records and R+ I pointers. This allevi-

ates the long retrieval times found with binary trees. The increase in the branching factor

typically makes the tree shorter than the corresponding binary tree for the same number of

records. However, complex balancing operations may be required as records are inserted

and deleted.

2.3.4 B-trees

B-trees were devised by Bayer and McCreight [5]. They have neither the retrieval nor the

maintenance problems of binary trees because they are multiway trees with efficient self-

balancing operations.

B-trees are balanced multi way trees. A node of the tree may contain several records and

pointers to "children". We usc term "child" to refer to the immediate descendent of a

node; hence" siblings" refers to nodes with the same parent. The operations of retrieval,

insertion, and deletion are guaranteed efficient even in the worst case. B-tree defin,ition

We follow Knuth [13] rather than Bayer and McCreight and define a B-tree of order M to

be a tree with the following properties:

I. No node has more than M children.

2. Every node, except for the root and terminal nodes, has at least rM/2l children.
3. The root, unless the tree only has one node, has at least two children.

4. All terminal nodes appear on the same level, that is, they are at the same distance

from the root.

5. A non-terminal node with k children contains K - I records. A terminal node contains

at least rM/2l- 1 records and at most M - I records.

We arc considering index structures: a record in the tree will therefore consist of a key

and a pointer to the main file. We can speak of a B-tree of order 8 (M=8), a B-tree of 197

(M= 197), and so on. The integer M imposes bounds on the "bushiness" of the tree. While

the root and terminal nodes are special cases, normal nodes have between rM/2l and M
children and rM/2l- I and M - I records. For example, a normal node in a tree of order'

18
(



11 has at least 6 and not more than 11 children. The lower bound on the node size ensures

that the tree does not get too tall and thin, since this results in slow searches. The upper

bound on the node size ensures that the searches of an individual node will be fast. When

implementing the tree, for example, as a file of records, the upper bound allows us to de-

fine an appropriate record type. The lower bound ensures that each node is at least half

full and therefore that file space is used efficiently.

The definition above only determines the structure of a B-tree; to be useful there must be

some ordering of the records in the tree. In what follows we will make the following as-

sumptions:

I. Within a node of K - I records, records are numbered RI. Rz R3 ....••.... Rk _ I and

pointers to children are numbered po.PI. P2 ••...••.•.• Pk_ I.Thus a typical no&~may be

depicted as follows:

I .

2. Records in the sub tree rooted in Pohave keys less than the key of record Rl. Records

in the sub tree rooted in Pk- I have keys greater than the key of record Rk_ I. Records

in the sub tree rooted in P;(O<I<K-1)have keys greater than the key of record Ri.

(.I. )

II__ ~

( . e . )

~~

( . r. v.)

tl~
( • a . b. ) ( . ~. h . ) ( • 11 • ) (.s.u.) (. y . )

Figure 2.5 Example of B-tree

Figure 2.5 shows an example B-tree. In this and the subsequent examples we will assume

that the keys of the records in the tree are single characters.

It is not always possible to determine the order of a tree by looking at it. The tree of Fig-

ure 2.5 must be at least order 3 because some non-root nodes have three children. At the
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same time it must be less than order 5 because some nodes have only two children. It is

therefore a tree of order 3 or order 4.

2.3.4.1 B-tree terminology

We will term adjacent siblings two nodes that have the same parent and are pointed to

by adjacent pointers in the parent. Thus in the tree of Figure 2.5 (.n.) and (.s.u.) are adja-

cent siblings, whereas (.n.) and (.y.) are not adjacent siblings. Adjacent siblings are

pointed to by Pj - I and Pj (for some i). We will term record Rj the separating record for

two siblings. Thus in the tree of Figure 2.5 adjacent siblings (.s.u.) and (.y.) are separated

by record with key v.

2.3.4.2 Searching B-trees

When searching for a record with a given key, we start by examining the root node. We

search the node for the required record. If the record is not found, comparisons with the

keys in the node will identify the pointer to the sub tree that may contain the record. If the

selected pointer is null, then we are at the lowest level in the tree and the record we are

searching for is not present in the tree. If the pointer is not null, then we read the node

pointed to, that is, the root node of the sub tree, and repeat the operation. Algorithm 2.1

contains a pseudo-code algorithm for the search.

2.3.4.3 Performance of the B-tree search algorithm

Assume the B-tree is of order M and that it contains N records. Consider the null pointers

in the terminal nodes. An in order traversal of a B-tree will altcmate between null pointers

and records and will start and finish with a null pointer. There are therefore N+ 1 null

pointers and a tree containing N records. From the definition of the tree, all the null point-

ers are at the same level; assume this is level h where the root is considered to be level 1.

Thus in Figure 2.5, null pointers are at level 3. The worst case when searching the tree

will require h node reads: one at level 1 through h. We can derive an expression.for h in

temlS of Nand M as follows:

At level 2 the minimum number of records is 2

At level 3 the minimum number of nodes is 2X IM/2l

At level h+ I the minilllulll number of nodes is 2X IM/2l h.1
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(The null pointers in the terminal nodes might be regarded as pointers to nodes at a non-

existent level h+ 1).

(* In the algorithm

Found: a flag to indicate if the record has been found

K : key of record being searched for

P : holds a pointer to a node

N : record count

*)

Found ~ false

read root

repeat

N~ number of records in current node

case

K=key of record in current node: found~true

K<key(R1)

K<key(RN)

otherwise

endcase

If P not null

then read node pointed to by P

until Found or P is null

:P~Po

:P~PN

: P~PI-l(for some i where

key(R,- 1)<K < key(Ri)

Algorithm 2.1 B-tree search algorithm

We know that there are N+! null pointers, and therefore

N:+-l;:> 2X IM/2l h-,

which yields h<= I+Iog fM/2l [(N+ I)/2]

This gives us an upper bound on the height of a tree of order M containing N records and

hence an upper bound on the number of node reads during a retrieval. The minimum

number of node reads is clearly one. This is the case where the record being searched for

is found in the root.
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Tree balancing operations arc required in two cases when performing insertions or dele-

tions on a B-tree. In the insertion operation a node can overflow because the definition of

the tree imposes an upper bound on the node size. We can resolve overflow by redistrib-

uting records in the existing nodes or by splitting the overlarge node. When deleting, on

the other hand, we may have node underflow because a node may become smaller than

the lower bound on node size. Underflow can be resolved either by redistribution or by

concatenation of two nodes [18].

2.3.4.4 B-tree insertion

New records are always inserted into a terminal node. In our diagrammatic representation

of a tree, every null pointer represents an insertion point where new record might go.

Before
( •.. A ••• )

~
( B ... C t () •.. E)

After
( ••. A t F ••. )

I_I __ +
(B ... C) (D ... E)

Figure 2.6 B-tree node split

In Figure 2.5, for example, records with keys greater than I but less than r would be in-

serted in the node containing n: to the len of n if less than n and to the right if greater than

n. To determine the appropriate insertion point for a particular new record, the insertion

algorithm starts by searching for the new record as it were already in the tree. The search

algorithm will bring us to the appropriate point in a terminal node.

As stated earlier, a problem with inserting records is that nodes can overflow because

there is an upper bound to the size of a node. What if the node into which we have in-

serted a record now exceeds thc maximum sizc') The situation can be resolved using re-

distribution or splitting. Here, we consider how a node might split. On overflow, the

node is split into three pm1s. The middle record is passed upward and into the parent,

leaving two children behind where there was one before. Suppose that the order of B-tree
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is M. The largest number of records allowable in a node is therefore M - I. Splitting an

overfull node with M records can be depicted as follows:

RrM/21

PrM/21 RrM/2l+ J

Figure 2.6 shows how a pointer to one of the two children is inserted into the p.arent in

addition to a record. As usual, lower case letters here represents records. Uppercase letters

represent pointers F is a pointer to a newly allocated node.

Splitting may propagate up the tree because the parent into which we inserted a record

may have been at its maximum size. Therefore it will also split. If it becomes necessary

for the root of the tree to split, then a new root is created that has just two children. This is

a valid node beeause of third property ofa B-tree. If the root splits, then the tree grows by

a level. This is the only way that a B-tree grows a level. We can regard the terminal nodes

as being the fixed level of a tree that grows up or down only at the top (root). Note that no

explicit balancing operations are required in the insertion algorithm.

Algorithm 2.2 contains a pseudo-code algorithm for the insertion of a new record.

(* In the algorithm
In-rec : the record to be inserted into the tree
Finished : a flag to indicated if insertion has finished
Found: a flag to indicate if record has been found in the tree
P : holds a pointer to a node
TOOBIG: an oversize node
N : record count

*)

(* Search tree for In-rec forming stack of node address. *)
Found ~ false
read root
repeat

N~ number of records in current node
case
key ( in-rec) = key of record in current node :Found ~ true

key (in-rec ) < key(R,) : P ~ Po
key (in-rec ) > key(RN) : P ~ PN
otherwise : P ~ PI _, ( for'

some i, where key (R I_,) < key (in-rec) < key(RI»
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endcase
if P not null

then push on to stack address of current node
read node pointed to by P

until found or P is null
if found
then report record with key = key (In-rec) already in tree

else (* insert In-rec into tree *)
P +-nil
Finished +- false
repeat if current node is not full

then put In-rec and P in current node
Finished +- true

else copy current node to TOOBIG
insert In-rec and pinto TOO BIG
In-rec +- center record of TOOBIG
current node +- 1SI half of TOOBIG
get space for new node. assign address to P
new node +- 2nd half of TOOBIG
if stack not empty
then pop of stack

read node pointed to
else (*tree grows*)

get space for new node
new node +- pointer to old root, In-rec and P
Finished +- true

until finished

Algorithm 2.2 B-tree insertion algorithm

The insertion algorithm assumes the existence of a stack and a temporary node, called

TOOBIG, in main memory. This node has room for one niore record and one more

pointer than the maximum node allowed in the B-tree. It is used as temporary working

space when a node splits.

The inseliion algorithm starts by searching for the record to be inserted. This is done in

order to bring us to the appropriate terminal node in the tree. During the search, whenever

we move from a parent node to one of its children, we push the address of the parent node

onto the stack. Later, this will enable us to move from a node to its parent by unstaeking

an address. The stack mechanism is adequate because only nodes we were interested in
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are the direct ancestors of the terminal node where we start insertions. Use of the stack

means there is no need for any node to contain a pointer to its parent.

An insertion of a record into the current node can have two possible results. The insertion

may occur without any maintenance operations being required, or it may cause overflow.

Casel: 11011overflow illsertioll. The current node is not full. In this ease we insert the rec-

ord. We also insert an appropriate pointer so that the number of pointers in the node is

still one greater than the number of records. The algorithm terminates.

Case 2: overflow illsertioll. The current node is full. In this case we copy it into overlarge

node TOOBIG, which has room for one more record and one more pointer than the

maximum allowed in a tree node. We then put the records and pointers in TOOBIG back

in the tree to effect the splitting operation. The ccnter record is identified; if M is even,

arbitrary choice is made between the two central records. Records and pointers to the left

of the center record are put back in the current node, the remainder of which is cleared.

Records and pointers to the right of the center record are put in a new node.

The center record and a pointer to the newly allocated node now have to be inserted into

the parent of the current node. The algorithm therefore iterates until at some level.no fur-

ther splitting is needed. If the root has to split, the new root will contain, in addition to the

record and pointer passed up from below, a pointer to the old root [18].

Consider the tree of Figure 2.5 and the successive insertion records with keys m, j, p and

d. We will assume the tree to bc of order 3. It follows that the largest node can hold two

records and three pointers and that the smallest nodc can hold one record and two point-

ers. TOOBIG can hold three records and four pointers.

/llsert 1/1. This is a simple insertion.

~ (,[ll_) __ ~

~__ I'S ~'S~
(.a.b.) (.g.h.) (.m.n.) (.s.u.) (.y.)

Figure 2.7 B-tree of Figure 2.5 after inserting m
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The key is greater than I but less than r, so the record goes into the node with n. Because

there is enough room in this node for a new record, the insertion algorithm finishes. Fig-

ure 2.7 shows the new tree.

Insert j. The record with key j should go in the node currently containing g and h. How-

ever, this node is at its maximum size, so records g, h, and j are put into the TOOBIG

node. The middle record (h) is then inserted into the parent node. The remaining records

form two children where there was one child before.

____ (fl[)
~ -----~

( • e . ) (. r. v.)

(. a. b.) (. g. h .) (. m. n.) ( . s. u . ) (. y .)

TOO BIG = (g.h.j.)

(a)

( • y .)( . s . u . )( . m. n . )

( . r. v .)

(. I. )

11-__ ~

(.g.) (.j.)

~
( . e. h .)

I-------~

(. a. b . )

I
(b)

Figure 2.8 B-tree of Figure 2.9 after inserting j
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Figure 2.8(a) shows the intermediate step and Figure 2.8(b) the final result of inserting a

record with key j into the tree of Figure 2.7.

Insert p. When we insert a record with key p into the final tree of Figure 2.8, we find that

the splitting operation occurs at two levels.

Initially the record is put in TOOBIG with records m and n (see Figure 2.9a) when this

splits, record n is passed up to be inserted into the parent. However, the parent is already

full, so TOOBIG is split, record r is passed up to the root. The final tree is shown in Fig-

ure 2.9(c)

(.0 (.g.) (.j.) (. m.n.) (. S. D .) ( . y.)

. e. h.)

TOO BIG = (. m . n . p. )

(0)

(.I .)

1_1 __ -.

(. r. v. )

. ( • 0 • b .) (. g .) (.j .)

(b)

(. p.) (. S. D.) (.y.)
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(.3. b.) (. g.) (.j.) (.m.) (. p.) (. s. n.)

(C)

(.y.)

Figure 2.9 B-tree of Figure 2.8 after inserting p

Illsert d. The insertion of final record into our tree causes splitting to occur all the way up

to the root and the tree to grow one level.

(.I.r.)

r III r
(.e.h.) (.n.) (.v.)

r-l~rl rl
(.3. b .) ( • g .) (.j.) (.m.) (. p.) (. s. ".) (.y.)

TOO BIG ~ (. 3 . b . d .)

(3)

(. c. II .)

(.I. r .)

11

TOO"f-J lS~l~~"'------].)
(.3.) (. d .) (.g.) (.j.) (. m .) (. Jl .) (. s . 11.) (. y.)

(b)
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'1'00111(; = (. C • I • r. )

l + 'l~
~)~ ~'S~'~

(. a.) (. d .) (. g.) (. j .) (. m.) (. p.) (. s. u .) (. y.)

(c)

(.I.)

~

I j
~

(.c.) (.r.)

)
.b.) .h.) .n.) (.v.)

l ~l ~t~)
( . a . ) ( . d .) (. g . ) ( . j .) (. 111 • ) ( • p .) ( . s . u .) ( . y . )

(d)

Figure 2.10 B-tree of Figure 2.9 after inserting d

Initially record d goes into TOOBIG together with records a and b (see Figure 2. lOa

When TOO BIG splits, record b is passed up to the parent. However, because the parent is

already full, its contcnts arc copicd with rccord b into TOO BIG (scc Figure 2.1Ob). When

TOOBIG splits again, record e is passed up to the root. Becausc the root is already full,

TOOBIG is set up again containing the old root and record e (sec Figure 2.10c). When

TOOBIG splits for the final time a new root is creatcd and the tree grows by a level. Fig-

ure 2.1O(d) shows the final tree.

Perfomlance of the insertion algorithm: The bcst case for the insertion algorithm is when

there is room for the new record in the initial node. In this case we have to read h nodes
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(where h is the height of the tree) and write one node. The worst case is illustrated by our

last example. If the tree split all the way up to the root, then h+ I new nodes are created

(where h is the height of the tree before insertion). That is, we must read h nodes and

write 2h+ I nodes. Knuth [13] reports that the average number of nodes split during an

insertion is 1/(1M/2l- I), where M is the order of the tree. Thus as M increases, the aver-

age number of node splits decreases. For example, if M is 10, the expected number of

splits per insertion is 0.25. This drops to .02 when M is 10I. The minimum and maximum

number of node reads are both h. This is because insertion is always initially into a termi-

nal node. The minimum number of node writes is one when, as in the case of our first ex-

ample, the record ean be inserted in a lowest level .node. The maximum number of node

writes is 2h+ 1, which occurs when the root splits and the tree grows a level. An alterna-

tive to splitting as a means of resolving an overlarge node is to redistribute records in a

local area of the tree. If an adjacent sibling of the overlarge node has spare room, records

can be moved from one node to the other. Naturally, the ordering of records in the tree

must be preserved. We have not, however, included redistribution in the insertion algo-
rithm.

2.3.4.5 B-tree deletions

As in the insert operation, we always start the delete operation at the lowest level of the

tree. If the record we need to delete is not in a terminal node, then we replace it by a copy

of its successor that is the record with the next highest key. The successor will be at the

lowest level. We then delete the successor record. A problem with deletions is that after a

record has been removed from a node we may have underflow; the node may be smaller

than the minimum size. This situation can be resolved by means of redistribution or con-

catenation.

Redistribution is possible when an adjacent sibling of the node with underflow has rec-

ords to spare: that is it contains more than the minimum number of records. Redistribu-

tion is possible involves moving records among the adjacent siblings and parent; .thus the

structure of the tree is not changed. Concatenation, which is performed when redistribu-

tion is not possible, involves the merging of nodes and is the complement of the splitting

process we saw with insertions. If concatenation is performed, the structure of the tree is
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changes. Changes may propagate all the way to the root. In the extreme case, the root

node is removed and the shrinks by one level [18].

(*In this algorithm
Finished : a flag that indicates if deletion has finished
TWOBNODE: an oversize node that is about 50% larger than a normal node
A-sibling : an adjacent sibling node.
Out-rec : the record to be deleted from the tree.

*)
search tree for Out-rec forming stack of node addresses
Found ~ false
read root
repeat

N+- number of records in current node
case

key ( in-rec) = key of record in current node: Found +- true
key (in-rec ) < key(R;) : P +- Po
key (in-rec ) > key(RN) : P +- PN
otherwise : P +- Pi _I ( for some i

where key (R j _ I) < key (in-rec) < key (Rj»

endcase
ifP not null

then push on to stack address of current node
read node pointed to by P

until found or P is null
if found

if Out-rec is not in terminal node
then search for successor record of Out-rec at terminal level (stacking node

addresses)
copy successor over Out-rec
terminal node successor now becomes the Out-rec

(* remove record and adjust tree *)
Finished~ false
repeat

remove Out-rec (record Rj) and pointer Pj

if current node is or is not too small
then Finished~ true

else if redistribution possible (* an A-sibling> minimum *)
then (* redistribute *)

copy "best" A-sibling, intermediate parent record, and
current (too small) node into TWOBNODE
copy records and pointers from TWOBNODE to "best"
A-sibling, parent, and current node so A-sibling and
current node are roughly equal size.
Finished~ true
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else (* concatenate with appropriate A-sibling *)
choose best A-sibling to concatenate with
put in the leftmost of the current node and A-sibling the
contents of both nodes and the intermediate record from.
the parent

discard rightmost of the two nodes
intermediate record in parent now becomes Out-ree

until finished
if no records in root

then (* tree shrinks *)
new root is the node pointed to by the current root
discard old root

Algorithm 2.3 B-tree deletion algorithm

Algorithm 2.3 contains a pseudo-code algorithm for the deletion of a record from B-tree.

The deletion algorithm starts by searching for the record to be deleted. The deletion algo-

rithm starts by searching for the record to be deleted. As with the insertion algorithm,

node addresses arc put on a stack during the search to make it simple to move from a

node to its parent later. If the record is not in a temlinal node, then we can not delete it

directly. Instead, we move to its successor. Because of the structure of a B-tree, the suc-

cessor of any record will be at the lowest level and will be in a terminal node. The redun-

dant lowest level record is then deleted. Thus in all cases deletion involves removing a

record from a terminal node. The successor of record Rj is the first record in the sub tree

pointed to by Pi. It can be located by moving down the Po pointers in that sub tree until the

lowest level is reached.

In addition to removing the record from the current node, we also remove one of the adja-

cent pointers. In this way the number of records in the node will still be one less than the

number of pointers. We choose, arbitrarily, to delete the pointer following the deleted re-

cord. If the new node size is not below the minimum, the algorithm terminates.

We can deal with underflow either by redistribution or by concatenation. Usually a too-

small node can be resolved by redistributing records in a local area of the tree. Redistri-

bution is possible if either adjacent sibling contains more than minimum number of rec-

ords. Redistribution involves nloving records from the selected adjacent sibling through

the parent to the too-small node, one of its adjacent siblings, and a record from the parent.

IfM, the order of the tree, is odd, then the capacity ofTWOBNODE must be
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(1.5M - 1.5) records and (1.5M- 0.5) pointers.

If M is even, then the capacity must be

(1.5M - 2) records and (1.5M - I) pointers.

Redistribution involves bringing into TWOBNODE the contents of the too-small node,

one of its adjacent siblings, and the appropriate separating record from the parent. These

records and pointers are then redistributed in a way similar to the splitting of TOOBIG in

the insertion algorithm. The central record from TWOBNODE is the one written back to

the parent. The left and right halves remaining are written back to the two siblings.

Given a choice of sibling nodes to use, we might reasonably choose to use the one that

will cause the new sizes of the two sibling nodes to be closest to 75% full. They would

then be as far as possible from the two size bounds. We could thus hope to minimize the

possibility; assuming insertions and deletions to be equally likely, of future expensive

Splitting, concatenation, or redistribution operations. To avoid additional node reads when

deciding which to use, parent nodes could hold, together with each pointer to a child, a

count of the number of records the child contains. However, while this would speed up

the delete operation, maintaining the counts would be a considerable overhead in the in-

sert operation.

Redistribution is not possible if the too small node does not have an adjacent sibling node

that is more than minimally full. In this case we have to use concatenation. We merge the

too-small node with one of its adjacent siblings and the appropriate separating record

from the parent. The resulting node replaces one of the concatenated nodes that are then

discarded.

If we examine the properties of the B-tree, we sec that concatenation is possible only in

relatively rare circumstances. If M, the order of the tree, is odd, then the concatenation is

possible only ifan adjacent sibling is minimally full, that is, contains (M - I )/2 records. If

the siblings were larger than this, the node would exceed the maximum size after con-

catenation. IfM is even, then concatenation is possible only if a sibling is minimally full

or contains one record over the minimum. We arc unlikely, therefore, to have a choice

between siblings with which to concatenate. However if there is such a choice, we could

again choose the sibling that results in the size of the new node being furthest from the .. "

two extremes.

Concatenation of two childrcn removes a record from the parent; the separating record

that is used in forming the new node has to be dcleted from the parent node. If the parent

node becomes too small by this dcletion, then the problem of resolving a too-small node
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has to be at the next level up. In the most extreme case, concatenation takes place all the

way up the tree. It may be that we remove the only record in the root, leaving just a

pointer. In this case we can discard the root; the node pointed to by the pointer becomes

the new root. This is thc only way in which the height of a tree can decrease.

(. m.)

~-.-c.-r-. j-. ) 1 1 .(. q. t.)

r~~~~l~
( .a. b.J( d . e.) (. g. b .) (. j. k. I.) (. n. o. p. ) (. r. s.) ( . u.v. w. x.)

Figure 2.11 Example of B- tree

Consider the tree of Figure 2.11 and the successive deletion of records with keys j, m, r,

h, and b. We will assume the tree of order 5; it follows that the largest node can hold four

records and five pointers and smallest node two records and three pointers. TWOBNODE

can hold six records and seven pointers.

Delete j. The first deletion is a simple one from the lowest level of the tree. The tree after

deletion is shown in Figure. 2.12.

( . m • )

~-. -c .-r.-i.-)-_I 1----.(.q. t.)
r~~~~'l~
(.a . b.) (d. e.) (. g. h . J(. k. I.) (. n .0. p.) ( . r. s.) ( . n.v. w. x.)

Figure 2.12 B- tree of Figure 2.11 after deleting j

Delete 11/. In this case the record to be deleted is not at the lowest level in the tree, so we

replace it with a copy of its successor (the record with key n) and then delete the lowest

level successor.
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( • n . )

~__ 11_~1
• T

(.c.LL)

~.-J~~
( .3 • b.) (d. e . ) (. g . h . )(. k. I. ) ( . 0 • p. ) ( . r. s.) ( . u .v . w. X.)

Figure 2.13 B- tree of Figure 2.12 after deleting m

The resulting tree shown in Figure 2.13.

Delete r. Deletion of record r. Deletion of record r makes the resulting node too small.

However, we can resolve the situation without altering the structure of the tree by redis-

tributing records, because one of the adjacent siblings is more than minimally full. Rec-

ords in the two adjacent siblings, into TWOBNODE and redistributed. Figure 2.14(a)

shows the tree after the initial deletion and also shows the contents of TWOBNODE. Fig-

ure 2.14(b) shows the tree after redistribution.

( . n . )

.~_I_I_.-
(.q.t.)

rl~
( .3 . b.) (d. c. ) (. g. h . )(. k . I. ) ( .0. p. ) ( . s. ) (. u .v. w. X.)

(3)

TWOBNODE = ( . S • t . U • v . W • X .)

( • n . )

.-_11_-.-

~-p~~~l~
( .3 •b.) (d. e .) (. g . h.) (. k . I. ) ( . 0 . p. )

(b)

(.s.t.) (.v.w.x.)

Figure 2.14 B- tree of Figure 2.13 after deleting r
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Delete II. When we delete the record with key h, the resulting node is again too small.

However, in this case we can not resolve it using redistribution because neither adjacent

sibling has records to spare. We therefore use concatenation. Records and pointers from

the too-small node and the separating rccord from the parent are inserted into an adjacent

sibling .The too-small node is then discarded.

( • n • )

(~~C.-r.-i.-) --_I 1 (~q. u .)

~)~~ ~l~
( .a . b.) (d. e .) (. g • ) (. k . I.) ( . 0 . p. )

too small 21 0
Choose arbitrarily to concatenate with right LJ
hand side.

(.s.l.) (.v.w.x.)

(.n.)

11 __ +

r-pt~
(. a. b.) (. d • e.) (. g . i. k . I.) (.0. p.)

(b)

(.s.l.) (. v •w. x .)

Figure 2.15 B- tree of Figure 2.14 after deleting h

Figure 2.15(a) shows the tree after the deletion and shows the choice adjacent sibling.

Figure 2.15(b) shows the tree after concatenation.

Delete b. When record with key b is deleted from the tree of Figure 2.15(b) , we have

underflow. This is resolved using concatenation. However, in this case, removing a record

from the parent causes it in tum to becomc too small. The too small node can not be re-

solved using redistribution because its only sibling is minimally full. Therefore, concate-

nation takes place at this level, too.
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(. q . U .)

(. n .)+~__ II __ ~
(.f.)

(. a. c. d. c.) (. g . i. k . I.) (.0. p.)

(a)

. )

(.s.l.)

(.f. n . q • U • )

(. v . w. x.)

( . a . c . d • e .) ( • g • I . k . I. ) ( . 0 • p . )

( . a . C • d . e.) ( . g • I . k. I. ) ( . 0 • p • )

(c)

( b)

(.s.l.) (.v.w.x.)

(.f. n . q . U • )

(.s.l.) (.v.w.x.)-

Figure 2.16 B-tree of Figure 2.15 after deleting b
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The result is shown in Figure 2.16(b). Note now, however, that bringing a record down

from the root causes the root to contain no records. It can therefore be removed; thus the

final tree is shown in Figure 2.16(c).

2.3.4.6 Performance of the deletion algorithm.

The best case of the deletion algorithm is illustrated by first example, that is, when the

record to be deleted is at the lowest level. In this case we have to read h nodes (where h is

the height of the tree) and write one node (to put back thc modified node). The worst

case, according to Bayer and McCreight [5], occurs when concatenation occurs at all but

the first two nodes in the path from the root to the lowest-level deletion node, the child of

the root has underflow, and the root itself is modified. In this case, 2h - I nodes are read

and h+ I nodes are written. However, because the majority of records are at the lowest

level, Bayer and McCreight report that on average during a delete operation the number

of node reads is less than h+I+I/K and the number of node writes is less than 4+2/k,

where kof M/2l- I.

A number of variations on the B-tree data structure have been devised. Typically, each is

designed to overcome some of the deficiencies of the B-tree. In the next two sections we

consider two such variations: B*-trees, which arise from a suggestion by Bayer and

McCreight [5], and B"-trees, which werc suggested by Knuth [13].

2.3.5 *B -trees

The B'-tree performs searches in the same way as the B-tree, except that there are differ-

ent operation ofa B-trce more efficient by reducing the number of occasions when a node

had to be split. If the node into which we need to insert a record is full, we might in cer-

tain
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(.I.m • n . p .)

(a)

TOO BIG = ( . I • m • n • 0 • p . q . r . S • t • U • Y .)

( . r . t. u . y .)

1
(. ? . n . q . ? . )111~-l

(.I.m.) ( . 0 . p. )

(b)

Figure 2.17 Node splitting in B* -tree

( . r. t . U • Y .)

circumstances are able to solve the overflow problem by local redistribution of records

rather than by splitting the nodes. Here we consider three possible techniques for redis-

tributing records: right-only, right-or-Ieft, and right and left. The names are derived from

the adjacent sibling nodes involved.

Right-only redistribution. The right-only redistribution process is similar to the redistri-

bution in the B-tree deletion algorithm of Algorithm 2.3. The proposed algorithm exam-

ines the right sibling of the node that is too full (or the left sibling if there is no right one).

Redistribution is possible if the sibling node is not full. Thus we must split a node only if

the sibling is full. When we do split, we distribute records from the two adjacent siblings

(one full, one overfull) into three nodes: the two siblings and a new node. One effect of

this splitting strategy is that three nodes will now be at least two-thirds full instead of at

least half-full, as in a B-tree .

. Right-or-Ieft redistributioll. Right-or-Ieft redistribution is similar to right-only redistribu-

tion except when the right sibling is full. In this case, the left sibling is ehecked for possi-
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ble redistribution. Nodes are split only when both siblings are full. Again, we d~stribute

records from two full nodes into three nodes. Right-or-left distribution postpones node

splitting, so the resulting tree will contain nodes that are, on the average, fuller than with

the right- only technique.

Right-alld-left redistributiolls. We could further than the right-or-Ieft redistribution. At

the time a node is split in the right-or-left technique we are likely to have copies of the

three nodes and the two parent records in main memory. These are the originally full

node, its right and left siblings, and the separating records in the parent node. At this point

we could redistribute three nodes into four. With this algorithm the lower bound on node

size would in most cases be raised to three-quarters full. However, not every node has

two siblings, so the split routines involving the right or left sibling only would have to be

employed occasionally.

Table 2.1 Redistribution costs

Required Disc I/O

Right-only redistribution

Right-or-Ieft Redistribution

Right-and-left redistribution

Best Case

r r w w

r r w w

r r w w

Worst Case

rrwww

rrrwww

rrrwwww

We can compare the expected performance characteristics of the three possible re distri-

bution technique based on the number of reads and writes required on the B*-tree

File under the following three assumptions. First, we assume that all nodes required will

be available in main memory. Second, we assume that the necessary preconditions for the

technique have been satisfied. For example, in the case of the right-and-left technique, we

assume that the node has both a right and left sibling. Third, we assume that each tech-

nique has a roughly equal probability of propagating splits up the tree. Thus, in this com-

parison we examine only the local effect of the three redistribution techniques on the sib-

ling nodes. That is, we do not include rewriting the parent node in our matrices, as it is a
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constant. Table 2.1 presents the number of reads ( r ) and ( w ) required for the three tech-

mques.

The best case for each technique is when the right sibling is not full. Two nodes are read

and then written back. The worst case for the right-or-Ieft technique, for example, is when

the right sibling is full and thus the left sibling must be read. The left sibling is full, so we

have to split and write three nodes. Recall for comparison that a split-on-overflow strat-

egy results in a " r w WOO case with nodes at least half full. What, then are the advantages

of local redistribution? There are two. First, the nodes are used more efficiently with a

minimum capacity ofL(2M-2)/3J records in the case of the first two techniques and L(3M-

3)/4J records in the third case. Second, with redistribution, splitting does not propagate up

the tree. Note, however, that the range of node size in a B*-tree is smaller than that in a

B-tree of the same order. If the tree is volatile, there may consequently be more occasions

on which underflow or overflow has to be resolved.

With these redistribution assumptions and the analysis above, the right-only redistribution

technique seems preferable. The right-only technique is simple and gives the advantages

of redistribution with little I/O overhead. Therefore, our further discussion will assume a

right-only redistribution algorithm.

For an example ofa case where node-splitting is necessary, assume that we have a B'-tree

of order 5. With the three nodes depicted in Figure 2.17(a). An attempt to insert a record

with key 0 into the B*-tree will result in a merging and splitting sequence that transforms

the tree in Figure 2.l7(a) into the trce in Figure 2.l7(b).

The root node has no siblings. What happens if it nceds to split? As before, the central

record will become the new root and the rcmaining parts of the old root will form the first

level of the tree. However, to ensure that these children are not smaller than the new

minimum size we defined above, the upper bound on the root has to be modified. For a

B'-tree of order M the upper bound of the root node will now be 2L(2M-2)/3J records.

When the roots splits, it will leave two nodes each containing L(2M-2)13J records. Thus

we now have a tree with two different node capacities (root node and other nodes).
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Knuth [13] teoned the tree that results from these modifications a SO-tree of order M has

the following properties:

1. No node apart from the root has more than M children.

2. Every node, except for the root and the terminal nodes, has at least L(2M-2)/3J +
children.

3. The root unless the tree has only one node, has at least two children and at most

2L(2M-2)/3J + 1 children.

4. All the teoninal nodes appear on the same levc1, that is, they are the same distance

from the root.

5. A teoninal node with K children contains K - I records. A teoninal contains at least

L(2M-2)/3J records and at most M - I records.

Table 2.2 Maximum and minimum node sizes

M =20 M=21 M",;22

S-tree (order M)

Minimum records (root)

Maximum records (root) M -I 19 20 21
Minimum records (non-root) I(M - 2)/2l 9 10 10
Maximum records (non-root) M - 1 19 20 21

0

S -tree (order M)

Minimum records (root)

Maximum records (root) 2L(2M-2)/3J 24 26 28

Minimum records (non-root) L(2M-2)/3J 12 13 14
Maximum records (non-root) M - I 19 20 21

Table 2.2 shows maximum and minimum node sizes for root and non-root nodes. The

Figurers for a S-tree and a B'-tree are given for trees of order 20, 21, and 22.
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Deletions. What we do if a deletion leaves a node too small? As in the case of a B-tree,

we can locally redistributes records if an adjacent sibling has records to spare. If there is

no such sibling we must concatenate. Note that only concatenation normally allowable is

of three nodes into two. (The exception is when the only two children of the root are con-

catenated and the tree shrinks a level.). What happens, however, if we are dealing with a

node at one end of a tree level? Such a node has only one adjacent sibling. See for in-

stance, node X in Figure 2.l8(a) or (b). We know that node W is minimally full; other-

wise redistribution would have been possible. However, we can not necessarily concate-

nate Y, W, and X. If Y is not minimally full, the result will be too large to fit into two

nodes. One solution is to redistribute a single record so that W is now too small and X is

minimally full. Now we have an instance of the more general case. Redistribution can be

tried; ifit turns out that Y is minimally full, then Y, X, and W can be concatenated.

Comparison with B-tree. The height (h) of a B*-tree of order M containing N records is

given in the following expression:

h:S I + log(2M_1)/3 [(N+ I)/2]

Searching a B*-tree is faster on average than searching a B-tree for a particular Nand M

due to the higher average branching factor. However, B-trees are better for applications

where insertions and deletions are more common than searches. B*-trees are thus better

when searching is the most common tree operation.

2.3.6 +B -trees

Knuth proposed a variation on B trees that for clarity Comer designed the B+-tree. Rec-

ords in a B+-tree are held only in the terminal nodes of the tree. The terminal nodes are

linked are together to facilitate sequential processing of the records and termed the se-

quence set. Non-terminal nodes are indexes to lower levels in a similar way to the struc-

ture of Figure 2.1. Nodes in the index levels contain only key values and tree pointers.

There is no need for terminal nodes tree pointer fields. Thus terminal nodes have a differ-

ent structure from non-terminal nodes. In fact there is no reason why the index part of the

tree should not be stored on a different device than terminal nodes.
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( . r. )

(I n .. 11 v .. 1 Ix .. J)

(. v .) index levels

(ia.. llb .. J) ~ (ie.. llg .. 11h.. J) ~(II .. Iln .. 1) ~(Ir .. 1Is.. J) ~

Sequence set

Figure 2.19 Example of B+-tree

Figure 2.19 shows a B+-tree. To make distinction clear, index records in the tree are

shown thus:

[key ... ]

and keys are shown as dingle letters. The records in tree are those of the B-tree of Figure

2.5 . The records were inserted into the B+-tree in arbitrary order; thus the index structure

shown is one of many possibilities.

Recall that terminal nodes contain records and index level nodes contain only keys. In

addition, for efficiency, node capacity is likely to be a function of the physical record

size. Therefore it is likely to be a function of the physical record size. Therefore it is

likely that the order of a B+-tree index will be different from the capacity of the terminal

nodes in its sequence set. Suppose, for example, that physical records are 512 bytes long

that index records are composed of an 8-byte key and a four byte pointer to the file being

indexed, andthat internal tree pointers occupy 2 bytes. We can pack 42 index records in a

512 bytes terminal node and leave 8 bytes for pointer to the next terminal node. In.the in-

dex levels we can have 50 eight-byte keys and 51 tree pointers in each 512- byte node and

have 10 bytes free in which to store the number of records elllTently in the node. The

properties of a B+-tree of order M are as follows:

1. The root node has 0, 2, or rM/2l through M children.

2. All nodes except the root and terminal nodes have at least rM/2l and not more than M

children.
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3. All terminal nodes appear at the same level; that is, they are the same distance from

the root.

4. A terminal node with K children contains K - I keys.

5. Terminal nodes represents the sequence set of the data file and are linked together.

2.3.6.1 Insertions

If the node splits when we insert a record into a terminal node of a B+-tree, we put a

copy of the key of the central record in TOOBIG into the index. We then divide all

the records in TOOBIG between the old node and a new node. Thus the central record

will also be in one of the two halves after splitting. If an index node has to split, the

algorithm is the same as for a conventional B-tree and the central record is passed up

to the parent. Figure 2.20 shows the evolution ofB+-tree. It is thc only one of the pos-

sible ways in which the tree of Figure 2.19 might have evolved. For this example we

assume that terminal nodes can hold two or three records and index node one or two

keys.

Evolution of B+-tree

(I a .•Il r ••11u••J)

(a)

(. r .)

~~
(la .. lln .. I)--. (Ir .. llu .. l)

(b)

( la .. lle .. lln .. 1 )

(c)

( Ir..1Is.. llu ..1)
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( I' .. lle ..1

T'
( I I.. I In .. I) -. (I r.. I Is .. I I u.. I )

(d)

(I a .. J le .. I) ---. ( II. . I In .. I ) -. (I r .. I Is .. )) -. (I u.. II v .. I )

(e)

Figure 2.20 Evolution of B+ Tree

Figure 2.20(a) shows the tree after only three records have been inserted. Insertion of

a record with key n causes the tenninal node to split in two and the key r to be passed

into the index. It is the first key in the index. This is shown in Figure 2.20(b). Figure

2.20 (c) shows the tree after records with keys e and s have been inserted. Insertion of

a record with key I causes another terminal node to split, and a second key to be in-

serted into the index. This shown in Figure 2.20(d). Finally, insertion ofa record with

key v causes a terminal node to split, a key to be inserted into the index, and the root

of the index to split. Now we have two index levels, as shown in Figure 2.20 (e).

2.3.6.2 Deletions

When a record is deletcd from thc B+-trcc and no distribution or concatenation is

needed, no changes need be made to the index. Even if the key of the record to be de-

leted appears in the index, it can be left as a separator.

46



( . r. )

(.u.)

(la .. IIb .. 1) ~ (lg .. 11 h.. 1) ~( II .. IIn .. 1) ~ (lr .. lls .. 1) ~

Figure 2.21 B+-tree of Figure 2.19 after deleting e

(I u .. 11v .. lIx .. J)

Figure 2.21 shows the tree of Figure 2.19 after the deletion of record with key e.

Deletions that result in redistribution of records cause changes in the content but not

the structure of the index levels.

( . r. )

(. v .)

~~
(la .. lib .. J) ~ (lg .. 11 h•. J) ~(II .. lin .. 1) ~ (lr .. 11u .. I) ~

Figure 2.22 B+-tree of Figure 2.21 after deleting s

( I v •• 11 x •• J)

Figure 2.22 shows the tree of Figure 2.21 after the deletion of record with key s.

Finally deletions that result in concatenation of terminal nodes also cause dele-

tions from the index levels.
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(.I.)

IIr--+

( . r . )

(. v .)

I

~

( I a .. 1 I b.• 1 I h.• I) -4( 11..1 I n•. 1 ) -4 (I r .. 1 I u .• 1 ) -4

Figure 2.23 B+-tree of Figure2.22 after deleting g

<I v•• 1 I x•. 1 )

Figure 2.23 shows the effect of deleting a record with key g from the tree of Figure

2.22.

2.3.6.3 Comparison with B-tree

All searches in a B+-tree have to go down to the terminal nodes. However, because

the index levels hold only keys rather than complete index records, searching time is

comparable with a B-tree holding the same number of records. Sequential processing

in a conventional B-tree is more complex than traversing a linked list and may also

require that more than one node be held in main memory simultaneously. In a B+-

tree, getting the next record in sequence requires at most one node read. B+-trees are

therefore good in applications in which both direct and sequential processing are re-

quired.

2.4 Comparison of Static and Dynamic Indexes:

Held and Stonebraker compared the properties of static index structures typified by

ISAM with those of dynamic structures typified by B-trees and VSAM. They suggest

that while a dynamic structure is easier to reorganize, there is a price to pay for this

and that the costs are threefold.

First, there may be pointers into the B-tree from other files. For example. the B-

tree may be the main file with index files pointing into it. Certain operations on a B-
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tree may require a record to bc moved from one node to another. Such movements are

likely to require changes to the pointers to the records that are moved. Thus the insert

and delete operations on the B-tree may have hidden overheads.

Second, there may be concurrency problems in multi-user systems. One user may try

to access a B-tree while another is updating it. The problem of locking out nodes is

trivial.

Finally, B-trees need explicit pointers in non-leaf nodes because nodes can be split

dynamically. A B-tree node can therefore hold fewer records than a node of the same total

size that does not require such pointers. The branching factor is therefore smaller and the

height of the tree likely to be greater than that of a static structure holding the same num-

ber of records. Operations such as search, insert, and delete will therefore tend to take

longer than they would for a static index to a file with no overflows.
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Chapter 3

EXPERIMENTAL RESULT ON PERFORMANCE STUDY OF
B, B*,AND B+ TREES

3.1 Introduction

In chapter 2 we have discussed index techniques and their uses in the databases. Indices

are associated with the main data file. They facilitate the Database Management Systems

to access records in the data file faster and in a random fashion. There are different types

of index structures and algorithms. Each has some advantages and disadvantages over

others. One structure may be suitable in one context but may not be suitable in another

context. We focused our discussion on dynamic index. B, B.' and B+ trees are often used

for implementing dynamic index. We have developed a simulation program to see the

performance of these trees in different context. We have shown the results of the program

in this chapter.

3.2 Simulation Program

In this thesis, we did a simulation program for constructing and using B, B.' and B+ trees

for database indexing. This program generates random data to insert, search and delete.

Every time, before the execution, the program can take how many records need to be in-

serted, searched and deleted. It can select either B or B. or B' tree and the order of the

tree. Performance of each tree is measured in terms of number of comparisons, number of

nodes, number of splits and the height of the tree required. At first, each tree was con-

structed with an adequate number of records to make it matured enough. Performance

statistics were also kept during the construction. Insert, search and delete algorithms were

tested only on the matured trees. Performance statistics were kept during each test. To get

a good and reliable statistics for a particular test the program wcrc exccuted a large num-

ber times. The results of these executions were recorded and plotted separately.
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3.3 Results

Figure 3.J: No. of Comparisons required with no. of records for constructing B, Sf"', B+Trees

Figure 3.1 shows the number of comparison required with the number of records for con-

structing B, B\ B' Trees. Number of comparisons increases with the number records in

each tree. B, B' have the same performance in this regard and B+ has the worst perform-

ance in this regard.

'-;
1;g 15000

No 01 ,.cord. 10 conol'vel

• ~.-
-- ••• - ft •••••

_D'_o .•

Figure 3.2: No. of Nodes required with no. of records for constructing B, B*. B+Trees

Figure 3.2 shows the number of nodes required with the number of records for construct-

ing B, Bo., B+ Trees. B-tree and B' tree have the same pcrformance in this regard. B+ tree

is the worst sincc it nccds the highcst numbcr of nodcs.
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Figure 3.3: Height required with no. of records for constructing B, B', B+Trees

Figure 3.3 shows the height of the tree required with the number of records for con-

structing B, B', B+ Trees. B+tree has higher tree height than B tree and B" tree for a large

number of records. For all the trees height increases as the number of records increases .

. -lI

Figure 3.4: No. of splits required ",'ith no. of records for constructing B. B., B+Trees

Figure 3.4 shows thc numbcr of splits rcquircd with the numbcr of records for construct-

ing B, B', B+Trees. B tree and B' tree require the same number of splits. B+ is the worst

since it needs the maximum numbcr of splits. For all the trees, number of splits increases

as the number of records increases.
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Figure 3.5: No. of comparisons required with no. of records for inserting in B, B+, B+Trees

Figure 3.5 shows the number of comparisons required with the number of records for in-

serting in B, B+,B+Trees. B tree is the best since it needs the lowest number of compari-

sons. B+ tree has average performance. R" tree has the worst performance it requires the

largest number of comparisons than the other trees.
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Figure 3.6: No. of Nodes required with no. of records for inserting in 8. B*, B+Trees

Figure 3.6 shows the number of nodes required with the number of records for inserting

in B, B+,B+Trees. B+tree needs few nodes for inserting any number of records. B tree has

average performance in this regard. B' tree always needs more nodes than the other trees

for inserting any number of records.

53



No. of splits.lnsert

• • I • I • I • • • • • • • • • • • • • • •• +- • .• • I • • •

mgBgBBBBBBBfl9&BBBBBBBBBBBB84&8m
x. )(~)(-)(. )C..M,X X. x,X )(. K-)(- )C.)(.)(. X,x. X-X 'K. )(,)(. X, X")I;-)C-)( - l(- X-X

.000

"00

6000

~ ''''''a.
'" ,"00~
0
ci ''''''z
''''''
'000

o .
'0000 '0000

~ 8-no,of splits

-)(- B.-no.of splits

---+-- B+-no.of splits

30000 .0000 50000 eOOOll

Number of records to
Insert

''''''0 '0000 -
Figure 3.7: No. of splits required with no. of records for inserting in B, B', B' Trees

Figure 3.7 shows the number of splits required with the number of records for inserting in

B, B', B'Trees. B' trcc necds fcw splits for inserting any number of records. B tree needs

more splits than B' tree for inserting records. B' tree is the worst in this respect because it

requires a large number of splits for inserting records.
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Figure 3.8: The height of the tree required with no. of records for inserting in B, B', B'Trees

Figure 3.8 shows the height of the tree required with the number of records for inserting

in B, B', B+ trees. B' tree always needs a small height for inserting records and B' tree

needs the maximum height for inserting records.
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Figure 3.9: The no. of comparison required with the order of the tree for B, B', B+Trees

Figure 3.9 shows the number of comparisons required with the order of the tree for B, B',

B+ trees. Number of comparisons increases for all trees as order of the tree increases. B

tree needs a small number of comparisons than B' and B+ trees for any order. B' and B+

trees have the same performance in this regard.
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Figure 3.10: The no. of nodes required with the order of the tree for B. If. n+ Trees

Figure 3.10 shows the number of nodes required with the order of the tree for B, B', B+

trees. B' is the best since it needs few nodes for any order. B has average performance. Bt
.

is the worst since it needs the highest number of nodes for any order.
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Figure 3,11: The height of the tree required with the order of lhe tree for B, B', B+Trees

Figure 3.11 shows the height of the tree required with the order of the tree for B, B', B+

trees. B' tree is the best since its height is the minimum for ~ny order. B has average per-

formance. B+ tree is the worst since its height is the maximum' for any order. For all trees

height decreases as order increases.

'500

'000

3500

3000.
~ 2500

'0
20000

Z
1500

1000 ,,,,,, i
i, ,

--B-no_of ~plils

•• B'.no.of splils
-.-B".no. of nodes

o rd er

Figure 3.12: The no. of splits required with the order of the tree for B, B*, B+Trees

Figure 3.12 shows the number of splits required with the order of the tree for B, B', B+

trees. B' tree is the best since it needs the minimum number of splits for any order. B has

average performance. B+ tree is the worst since it needs the maximum number of splits
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for any order. For all trees number of splits decreases as order increases
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Figure 3.13: The no. of comparisons required with the no. of records searched in B. n*, B+Trees

Figure 3.13 shows the number of comparisons rcquired with the number of records

searched in B, B', B+trecs. B tree is the best since it nccds few comparisons for any num-

ber of record searching. B' tree has average pcrformance. B+ tree has the worst perform-

ance since it needs more comparisons for any number of record searching.
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3.4 Conclusion

Theoretically, B trees are better for applications where insertions and deletions are com-

mon than searches. B' trecs are bettcr when scarching is thc common trcc operations. Ac-

cording to our statistics B trees nced the same height, splits and nodcs as B'trees in some

cases. We also found some cases in which B trees need more of height, splits and nodes

than B' trees. But B trees always need less comparisons than B'trees. B+ trees need more

height, splits, nodes and comparisons than Band B' trees. But B+ trees are acceptable and

good in applications in which both direct and sequential processing is required. This is

because of using both a tree and a sequence set in B+trees.
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Chapter 4

DISTRIBUTED DATABASE

4.1 Introduction

In recent years, distributed databases have become an important area of information proc-

essing, and it is easy to foresee that their importance will rapidly grow. There are both

organizational and technological reasons for this trend: distributed databases eliminate

many of the shortcomings of centralized databases and fit more naturally in the decen-

tralized structures of many organizations.

4.2 Distributed Database

A distributed database is a collection of data, which belong logically to the same system

but are spread over the sites of a computer network.

For example, consider a bank that has three branches at different locations. At eaeh

branch, a computer controls the teller terminals of the braneh and the account database of

the branch. Each computer with its local account database at one branch constitutes one

site of the distributed database, computers are connected by a communication network.

During normal operations the applications which are requcsted from the terminals of a

branch need only to access the database of that branch. These applications are completely

executed by the computer of the branch where they are issued, and will therefore be

called local applications. An example of a local application is a debit or a credit applica-

tion performed on an account stored at the same branch at which the application is re-

quested. Some applications are called global applications or distributed applications. A

typical global application is a transfer of funds from an account of one branch to an ae-

count of another branch. This application requires updating the databases at two different

branches.

Therefore, a distributcd database is a collection of data distributed over different comput-

ers of a computer network. Each site of a network has autonomous processing capability
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and can pcrfoml local applications. Each site also participates in the execution of at least

one global application, which requires accessing data at several sites using a communica-

tion subsystem [7]. Figure 4.1 shows a typical Distributed Database.

Computer I

Database "

Computer I

Communication
Network

T

T

Database ).

Database I

{'ollllllltcr I

Figure 4.1: A typical example of Distributed Database
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4.3 Distributed Database Management Systems (DDBMS)
A distributed database management system supports the creation and maintenance of dis-

tributed databases.

Several commercially available distributed systems were developed by the ve,ndors of

centralized database management systems[2][14][23]. They contain additional compo-

nents, which extend the capabilities of centralized database management systems. They

contain additional components, which extend the capabilities of centralized DBMSs by

supporting communication and cooperation between several instances of DBMSs, which

are installed at different sites of a computer network. The software components which are

typically necessary for building a distributed database in this case arc:

1. The database management component (DB)

2. The data communication component (DC)

3. The data dictionary (DO), which is extended to represent information about the distri-

bution of data in the network.

4. The distributed database component (DDB)

These components are connected as shown in Figure 4.2 for a two-site network.

T T T

""'-1/
DB DC DDB

Local database I

Local database2

DD

DD

DB DC

DDB

Site I

Site 2

T T T

Figurc 4.2: Softwarc Componcnts of Distributcd Databasc Managcmcnt Systcms
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4.4 Reference Architecture for Distributed Databases

Global Schema
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; ••• Sile Independent
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Figure 4.3: Reference Architecture of Distributed Database

Figure 4.3 shows refercnce architecture for a distributed database. This reference archi-

tecture is not explicitly implemented in all distributed dalabases; however, its levels arc

conceptually relevant in order to understand the organization of any distributed database.
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At the top level of Figure is the global schema. The global schema defines all the data,

which is contained in the distributed databasc as if the database were not distributed at all.

For this reason, the global sehcma can bc defincd cxactly in the same way as in a non-

distributed database. However, the data model, which is used for the definition of a global

schema, should be convenient for the dcfinition of the mapping to the other levels of the

distributed database. We will use the relational model for this purpose. Using this model,

the global schema consists of the definition of a set of global relations.

Each global relation can be split into several non-overlapping portions, which arc called

fragments. There arc several ways in which to perform the splitting operation. The map-

ping between global relations and fragments is defined in the fragmentation schema. This

mapping is one to many; i.e., several fragments are corresponds to one fragment. Frag-

ments are indicated by a global relation name with an index (fragment index); for exam-

ple, Rj indicates the ith fragment of global relation R.

Fragments are logical portions of global relations, which are physically located at one or

several sites of the network. The allocation schema defines at which site(s) a fragment is

located. Note that the type of mapping defined in the allocation schema determines

whether the distributed database is redundant or non-redundant; in the former case the

mapping is one to many, while in the latter case the mapping is one to one. All the frag-

ments, which correspond to the same global relation R and arc located at the same site j

constitute the physical image of global relation R at site j. There is therefore a one to one

mapping between a physical image and a pair <global relation, site>; physical images can

be indicated by a global relation name and a site index. To distinguish them from frag-

ments, we will use a superscript; for example, Rj indicates the physical image of the

global relation R at site j. In figure 4.4 , a global relation R is split into four fragments arc

allocated RI, Rz, R3 & ~. These four fragments are allocated redundantly at the three

sites ofa computer network, thus building three physical images RI, RZ, R3.

We will refer to a copy of a fragment at a given site, and denote it using the global rela-

tion name and two indexes. For example, (he notation R\ indicates the copy of fragment

Rz that is located at site 3. Finally, note that two physical images can be identical. In this

case we will say that a physical image is a copy or another physical image. In figure 4.4.

RI is a copy of R2
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Figure 4.4 : Fragments and physical images for a global relation

Let us now go back to the reference architecture of figure 4.3. We have already described

the relationships between the objects at the three top levels of this architecture. These

three levels are independent; therefore they do not depend on the data model of the local

DBMSs. At a lower level, it is necessary to map the physical images to the objects, which

are manipulated by the local DBMSs. This mapping is called a local mapping schema and

depends on the type of local DBMS; therefore in a heterogeneous system we have differ-

ent types of local mappings at di fferent sites.
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This architecture provides a very general conceptual framework for understanding dis-

tributed databases. Thc thrce most important objectivcs, which motivate thc features of

this architecture, are the separation of data fragmcntation and allocation, the control of

redundancy, and the indcpendence from local DBMSs.

4.5 Types of data fragmentation

The decomposition of global relations into fragments can be performed by applying two

different types offragmentation: horizontal fragmentation and vertical fragmentation.

In all types of fragmentation, a fragment can be defined by an expression in a relational

language, which takes global relations as operands and produces the fragment as result.

For example, if a global relation contains data about employces, a fragment which con-

tains only data about employees who work at department D I can be obviously defined by

a selection operation on the global relation. Thcre are, however, some rules, which must

be followed when defining fragments:

Completeness condition: All the data of the global relation must be mapped into the

fragments; i. e., it must not happen that a data item, which belongs to a global relation,

does not belong to any fragment.

Reconstruction condition: It must always be to rcconstruct each global relation from its

fragments. The necessity of this condition is obvious: in fact, only fragments are stored in

the distributed database, and global relation has to be built through this reconstruction op-

eration if necessary.

Disjoint ness condition: It is convenient that fragmcnts be disjoint, so that the replication

of data can be controlled cxplicitly at the allocation levcl. However, this condition is use-

ful mainly with horizontal fragmentation, while for vertical fragmentation we will some-

timcs allow this condition to bc violatcd.

4.5.1 Horizontal Fragmentation

Horizontal fragmentation consists of pal1itioning the tuplcs of a global relation into sub-

sets; this is clearly uscful in distributed databascs, where cach subset can contain data,
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which have common geographical properties. It can be defined by expressing each frag-

ment as a selection operation on the global relation. For example, let a global relation be

SUPPLIER (SNUM, NAME, CITY)

Then the horizontal fragmentation can be defined in the following way:

SUPPLIER! = SLClTY~"SF"SUPPLIER

SUPPLIER2 = SLClTy~"LA" SUPPLIER

The above fragmentation satisfies the completeness condition if "SF" and "LA" are the

only possible values of the CITY attribute; otherwise we would not know to which frag-

ment the tuples with other CITY values belong.

The reconstruction condition is easily verified, because it is always possible to reconstruct

the SUPPLIER global relation through the following operation:

SUPPLIER = SUPPLIER I UN SUPPLIER2

The disjoint ness condition is clearly verified.

We will call the predicate, which is used in the selection operation, which defines a frag-

ment, its qualification. For instance, in the above example the qualifications are:

q I :CITY= "SF"

q2 :CITY= "LA"

We can generalize from the above example that in order to satisfy the completeness con-

dition, the set of qualifications of all fragments must be complete, at least with respect to

the set of allowed values. The reconstruction condition is always satisfied through the

union operation, and the disjoint ness condition requires that qualifications be mutually

exclusive.

4.5.2 Vertical Fragmentation

The vertical fragmentation of a global rclation is the subdivision of its attributes into

groups; fragments arc obtained by projecting the global relation over each group. This can
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be useful in distributed databases where each group of attributes can contain data, which

have common geographical properties. The fragmentation is correct if each attribute is

mapped into at least one attribute of the fragments; moreover, it must be possible to re-

construct the original relation by joining the fragments together. Consider, for example, a

global relation

EMP (EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM)

A vertical fragmentation of this relation can be defined as

EMPI = pJ EMPNUM. NAME. MGRNUM. DEPTNUM EMP

EMP2 = pJ EMPNUM. SAL. TAX. EMP

This fragmentation could, for instance, reflect an organization in which salaries and taxes

are managed separately. The reconstruction of relation EMP can be obtained as

EMP = EMPI JNEMPNUM=EMPNUM EMP2

4.6 Finding records in a Distributed Database

At present distributed databases arc inefficient in locating records since it is not using any

global index structure. For example, if we have a book data file in a distributed database,

the single book data file should bc fragmented into several data files and these fragments

should be allocated in different sites of the distributed database. Name of the original

non-fragmented data file and the names of the fragments will be stored in the fragmenta-

tion schema. And the information regarding the allocation of fragments to the sites will be

stored in the allocation schema. When a query is searching a book by a particular author it

will refer the non-fragmented data file. The fragmentation schema will tell the number

and the names of the fragments of the data file. And the allocation schema will tell about

the sites where to get the said fragments. Using these information Distributed Database

Management Systems collect the pertaining fragments from different sites and reconstruct

the data file as if it were not fragmented. After reconstruction every record will be read

one after and the author name will be checked against a particular author to identify the
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desired record. Reconstruction may not produce ordered file even if the fragments are or-

dered themselves. Query optimization techniqucs and cfficicnt acccss strategy may ex-

clude one or more fragments, still, there will be fragments that are used in the reconstruc-

tion but don't contain the record being searched. Alternatively, Distributed Database

Management Systems can scarch thc record in every fragments one after another. In both

of these cases lot of extra works need to be done to find a record. To eliminate these extra

works during searching a record an efficient index structure can be used.
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Chapter 5

PROPOSED DISTRIBUTED INDEX
5.1 Introduction

The reason for providing indexes is to obtain fast and efficient acccss to data. Indexing is

a data structure based technique for accessing records in a file. Indexes are often tree-

structured because search operations are efficient and sequential processing is normally

easy in this structure. A B-tree is a multi-way tree with bounds on the node size. The B-

tree organization is particularly suitable because the search, insert, and delete operations

are guaranteed efficient even in the worst case. Most of the centralized database manage-

ment systems use B-tree or other types of index structures. But in distributed databases no

index structure is used to obtain fast and cfficicnt access to thc data. Because it is very

difficult to build and maintain such structures and because it is not convenient to navigate

at a record level in distributed databases. Therefore, efficient access is the main problem

in distributed databases.

5.2 Distributed Index Architecture

To provide efficient access to the data we proposed a distributed index concept. Distrib-

uted index is also a data structure based indcx comprising of two types of index struc-

tures. One is Global Index (GI) and the other is Local Index (LI). Figure 5.1 shows the

proposed distributed structure:

GI is created and maintained by distributed database component (DDB) of distributed

database management systems (DDBMS). LI is creatcd and maintained by local database

management component (DB) of DDBMS. Our study shows that B-tree is most suitable

index structure even in the worst casco For this reason we preferred B-tree for imple-

menting both GI and LI of distributed index. LI has been implemented by B-tree as it was

stated by Bayer and McCreight [5]. All the algorithms like searching, delete and insert

algorithms for LI were used without any modification. Moreover, we used two algo-

rithms, one of these algorithms finds the minimum index value in the B-tree and the other

algorithm finds the maximum index value in the B-tree .. Algorithm 5.1 and 5.2 contain
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the pseudo-code algorithm for finding above mentioned minimum and maximum values

respectively. In LI we stored these two index values along with the tree address in a spe-

cial record shown in the figure 5.2.

Global Index

Local Index
at Site I

Local Index
at Site2

Local Index
at Site3

Local Index
at Siten

Figure 5.1: Architecture of Distributed Index

For every site there is a Local Index (LI), which has been created, updated and used inde-

pendently. Like other local database management components LI enjoys autonomy in

each site. There must be a single global index (GI) for a distributed index. GI is created,

updated and used based on local indexes. All the local indexes are perfectly mapped with

the global indexes. When a record is searched in a distributed database, GI used first to

determine which LI needs to be used to find the data. After selecting the right LI it is used

to acccss records in thc corresponding site. In this way. distributed index ensures efficient

access to the data in a distributed database. If a record is inserted, deleted or updated in a

site special record in the site is modified properly. After any modification in LI above

mentioned algorithms arc always used to find the new minimum and maximum index

values in the modified B-trec. The ncw minimum and maximum arc checked against thc

storcd (old) minimum and maximum values. If old and ncw minimum arc not same or old

and ncw maximum arc not same, LI overwritcs the ncw values in the spccial rccord, and
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the local database management component passes this changed record to the distributed

database managemcnt componcnt to modify thc GI accordingly.

Site address of B-tree Minimum index value Maximum index value
(LI)

Figure 5.2 Special record in LI

Find Minimum (treeRoot, min)

{

currentNode = trecRoot

leftChild =currcntNode.P(O)

min=currentNode.R(O)

While (IeftChild != Null)

currentNode = leftChild

leftChild =currentNode.P(O)

min= currentNode R(O)

return min

Algorithm 5.1: Find minimum index value in a B-tree

Find Maximum ( tree Root, max)

{ currentNode = treeRoot

norec = currcntNodc.rcc

rightChild = currentNodc.P(norcc)

max = currentNode.R(norec-l)

While (rightChild != Null)

currcntNodc = rightChiid

norec = currcntNodc.rcc

\
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max = currentNode R(norec-I)

return max

}

Algorithm 5.2: Find maximum index value in a B-tree

Proposed Global Index (GI) is almost a B trcc in its structure and logic. Traditional B-tree

definition is also adopted here. But the records in a GI node are different from that of a B

tree. B tree holds the index value and the pointer/address of the concern record in the data

file. But GI record holds the minimum and maximum index values of a local index (origi-

nal B-tree in a site) and the pointer/address of that local index. In a B-tree, if a single in-

dex value points more than onc records in the data file, the B-tree record keeps the index

value and a pointer to a bucket that points all the concern records in the data file. Simi-

larly, if a range of minimum and maximum index values refers more than one local index

in different sites, the GI record keeps the index range and a pointer to a bucket that refers

all the concern local indexes in different sites. We did not consider this complex situation

in this thesis work. We have developed and tested algorithms for the simple case where

an index range always refers a single local index in a single site. Search, insert and delete

algorithms for GI is different from those of B-tree. We have proposed these algorithms

and tested their effectiveness.

5.3 Distributed Index searching (GI searching)

When searching for a record with a given key value we stal1 scarching in global index

first to find out the right local index. We start searching the global index by examining

the root node. We search the node for the record whose minimum index value and maxi-

mum index value represents the range in which the search key falls. When we find such a

record we get the pointer/location of the local index in thc record. Using that

pointer/location we start searching in the local index for a record with the search key. The

result of this search in the local index is reported to the global index.
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If the record with the right range is not found in thc global index, comparisons of mini-

mum index values and maximum index values in the node with the search key will find

out the pointer to the sub-tree that may contain thc record. We rcad the node pointed to

and repeat the operations. If the pointer is null we report that the rccord we are searching

for is not present in the distributed database. Algorithm 5.3 contains the pseudo-code al-

gorithm for scarching rccord in a GJ.

Search GI (Glroot, scarchKcy)

currentNode = Glroot

found= False

while (currentNode != null)

norec = currentNode.rec

for ( i=O; i<norcc; i++)

currentRecord = currentNode. R(i)

if (search Key < currentRccord.min

currcntNode =cun'cntNode.P(i)

clsci f (currcntRecord.min";searchKcy ";currentRccord.max)

Search in the LI pointed by currcntRecord.P

scarch LI (L1, scarchKey, found)

elscif (i= (norec - I))

currcntNode=currcnt Nodc. P(nOI'Cc)

if (currcntNodc == null)

found = False

if (found)
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return (record)

Algorithm 5.3: Algorithm for searching in Global Index of a Distributed Database

5.4 GI insertion

Insertion algorithm in GI is almost same as that of B-tree. Insertion algorithm of B-tree

compares the key value of the record needs to be inserted with the key values of the rec-

ords in different node. Insertion algorithm of Gl does the same thing by using either the

minimum values or maximum values for comparison. This would certainly return the cor-

rect insertion point in a terminal node. Only constraint is that if the algorithm is using the

minimum values for comparison it has to use the minimum values always. In this thesis

work we use minimum values. The algorithm solves thc overflow problem in a node in

the same way as it is solved in B-tree insertion algorithm.

InsertGI (GIroot, inRec)

{

found = false

currentNode = Glroot

repeat

{N=currentNode.norec

currentRecord=current Node. R(0)

case

inRec.min = currentRecord. min: found = true

inRec.min < currcntRccord. min: P = currcntNodc.P(O)

inrec.min > currcntNodc.R(N). min: I' = currcntNodc.P(N)

otherwise

P = currentNode.P(i - I) for some i where

Currel1tNode.R(i- I).m;11 < ;I1Ree.m;n<eurreI11Node.R(i).min
endcase

If P not null then push onto stack address of currentNode

CurrentNode = I'

"'.'
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} until (found) or (P = null)

if (found) then the reeord is already in the tree

else

P = null

Finished = false

Repeat

if eurrentNode is not full then put inRee and P in eurrentNode

Finished = true

else copy currentNode to TOOBIG

insert inRec and Pinto TOOBIG

inRec = center record of TOOBIG

currentNode = 151 half of TOO BIG

Get space for newNode, assign address to P

newNode = 2nd half of TOO BIG

If stack not empty then pop to stack and read node pointed to

else

get space for new node

newNode = pointer to oldRoot, inree and P

Finished = True

}

until Finished

Algorithm 5.4: Algorithm for inserting reeords in Global Index of a Distributed Da-

tabase
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5.5 GI deletion

Deletion algorithm in GI is almost same as that of B-trcc. Deletion algorithm of B-tree

like insertion algorithm comparcs thc key valuc of thc records needs to be deleted with

the key values of the records in different nodes to find out the right record and pointer to

delete. Deletion algorithm of GI does the same thing by comparing either the minimum

values or maximum values. In this thesis wc compare minimum values. Like B-tree dele-

tion algorithm if the rccord we need to dclete is not in a terminal node this algorithm finds

its successor in a tcrminal nodc and swaps thcsc two rccords and then delctes the record

and the pointer from the terminal node. Undcrflow problem in anode is solved by this al-

gorithm in the same way as it is solved in a B-tree deletion algorithm. Algorithm 5.5

contains the pseudo-code algorithm for deleting from a GI.

DeleteGI (Glroot, outRec)

found = false

currentNode = Glroot

repeat

N = currentNode.norec

CurrcntRecord = currentNodc.R(O)

case

outRec.min = currcntRccord. min: found = truc

outRec.min < currentRccord. min: P = currcntNodc.P(O)

outRec.min > currentNode.R(N). min: P = currentNode.P(N)

otherwise

P = currentNode.P(i - I) for some i where

CurrcntNodc.R(i ~ 1).min < outRcc.min <currcntNodc.R(i).min

endcase

if P not null then push onto stack the addrcss of currcntNode

CurrentNode = P

} until (found) or P is not null

if (found)
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{ if outRec is not in terminal node

{then search for successor record of outRec at tem1inallevel (stacking

node addresses)

copy successor over outRec

terminal node successor now becomes the outRec

}

Finished = false

repeat

{remove outRec and pointer P

if currentNode is not root or is not too small then finished = True

e1seif redistribution possible then

{ copy "best" A-sibling, intermediate parent-record, and currentNode into

TWOBNODE

copy records and pointer from TWOBNODE to "best" A-sibling, parent,

and currcntNodc so A-sibling and currcntNodc are roughly equalize

Finished = True

else

{ choose best A-sibling to concatenate with put in the leftmost of the

currentNode and A-sibling the contents of both nodes and the

intermediatc record from thc parent discard rightmost ofthc two nodes

intermediate record in parent now becomes outRec.

until finished

if no records in root

then { new root is the node pointed to by the current root

discard oldroot}

}

Algorithm 5.5: Algorithm for deleting record from Global Index of a Distributed

Database
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Chapter 6

EXPERIMENTAL RESULT OF PROPOSED DISTRIBUTED

INDEX

6.1 Introduction

We discussed our proposed distributed index structure for distributed database in chapter

5. Our proposed structure will be effective on simple non-overlapping distributed data-

bases only. To show the effectiveness and correctness of our proposed distributed index

structure we have developed a simulation program. The results from the program are

shown in this chapter.

6.2 Simulation Program

Developed simulation program can take a simple non-overlapping distributed relation as

input. For each site it creates a local index of the records in that site. Based on these local

indices from all sites the program creates the global index. Using the global and local in-

dices the program can search, insert, and delete records in the distributed relation effi-

ciently.

6.3 Results

We considered a simple non-overlapping distributed bank database, which has a global
relation account as follows:

ACCOUNT (ACCNUM, ACCNAME, CUSTNUM, OPENDATE, BALANCE)

Wherc thc attributc ACCNUM is any valid account number, the attributc ACCNAME is

any valid account name, the attribute CUSTNUM is any valid customcr number, the at-

tribute OPENDA TE is the opening date of the account and the attribute BALANCE is the

balance amount of the account. The account table is necessary to be indexed by

ACCNUM. Let the bank has several branches and the distributed site is maintained in

every branch.

ACCOUNTschcma has bccn fragmcnted into 10 Ji'agmcnts as follows:
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ACCOUNT] = SLool$ ACCNUM 5 100ACCOUNT

ACCOUNT2 = SLIOI$ ACCNUM 5200ACCOUNT

ACCOUNT] = SL2015ACCNUM, 31111ACCOUNT

ACCOUNT4 = SL]ol $ ACCNUM $ 400ACCOUNT

ACCOUNTs = SL4015 ACCNUM 5SODACCOUNT

ACCOUNT 6= SL5015 ACCNUM 5600ACCOUNT

ACCOUNT 7= SL6015 ACCNUM 5700ACCOUNT

ACCOUNT8= SL701$ ACCNUM 5800ACCOUNT

ACCOUNT9= SLSOl5ACCNUM $900ACCOUNT

ACCOUNTlo= SL 901$ ACCNUM $ 1000ACCOUNT

Each of the above fragments is allocated in a different site, i.e., there are ten sites and site

i holds the fragment ACCOUNT; Local Database management system at each site cre-

ates an index on each fragment by ACCNUM using the Algorithm 2.2 and assuming the

B Tree of order 3. We call these indexes Local Indexes (LI). Using Algorithm 5.1 and

5.2, local system creates the special record in each site. These special records and local

indexes at site 1, site 2 and so on are shown in the Figure 6.1 to 6.10 respectively. Each

local system passes the special record to the global database management component to

construct the Global Index (GI). Construction of GI is nothing but inserting each special

record in the proposed B Tree of order 3 using the Algorithm 5.4. Figure 6.11 shows GI

step by step.

I 003 - 091 I site 1

(a) Special record at site:

•
(r03Op

t
• (rOI2~

•
r050p •

.---J*004r. .--1023~
(*040*)

~0601:69*~

~~
(*003*) (*009*) (*017*) (*027*) (*034*) (*045*) (*057*) (*061*) (*080*091*)

(b) B-Iree of order 3.1 site: I

Figore 6.1: Loeallndex (localB Tree) at sile I
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1105-189 1 site 2

(a) Special record al sile: 2

(* I05*) (*110*) (*120*) (* 125*) (* 135*) (* 145*)

(b) B - Tree of order 3 al site: 2

(* 160*) (* 170*) (* 189*)

Figure 6.2: Local Index (local B Tree) at site 2

1 201-300 I Site3

(a) Special record al site: 3

«(235j,) _+--~ - ,.

(*201*) (*210*) (*222*) (*230*) (*241 *) (*252*) (*261 *) (*289*) (*300*)

(b) B - Tree of order 3 at site: 3

Figure 6.3: Local Index (Iocalll Tree) at site 3
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I 306 - 380 I site 4

(a) Special record at site: 4

(*306*) (*311*) (*320*) (*327*) (*333*) (*340*) (*350*) (*360*) (*370*380*)

(b) B - Tree of order 3 at site: 4

Figure 6.4: Local Index (local B Tree) at site 4

I 402 - 493 I site 5

(a) Special record at site: 5

(*402*) (*412*) (*420*) (*430*) (*440*) (*460*) (*470*) (*480*) (*490*493*)

(a) B Tree of order 3 at site: 5

Figure 6.5: Local Index (1ocal B Tree) at site 5
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1501 - 598 l_s_ite_6 ~

(a) Special record at site: 6

(*527*) (*535*)(*512*)(*501*)

(t538~j> _
f--~ •

• <r520~ .--J562~

r'''S r""S Sf Pi~
(*550~*) (*570*) (*580*) (*590*598*)

(a) B Tree of order 3 al sile: 6

Figure 6.6: Local Index (local B Tree) al site 6

1601-691 1 site 7

(a) Special record al sile: 7

(*601*) (*610*) (*620*) (*630*) (*640*) (*650*) (*665*) (*689*691*)

(a) B Tree of order 3 at site: 7

Figure 6.7: Local Index (local B Tree) at sitc 7
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I 708 - 783 I site 8

(a) Special record at site: H

(*708*) (*713*) (*723*) (*730*) (*741*) (*750*)(*760*)(*770*) (*780*783*)

(a) B Tree of order 3 at site: 8

Figure 6.8: Local Iudex (local B Tree) at site 8

I 804 - 898 I site 9

(a) Special record at site: 9

(*804*) (*810*) (*820*) (*830*) (*840*) (*850*) (*860*) (*870*) (*880*) (*890*898*)

(a) B Tree of order 3 at site: 9

Figure 6.9: Local Index (local Il Tree) at site 9
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904 - 997 I site 10

(a) Special record at site: 10

(*980*997*)(*923*) (*935*)

(*910*930*)

.-_1 ~~I -- •

• __ ~«(903~ ~*920r,. ~*940r,.

(*904*) (*907*) (*916*)

(a) B Tree of order 3 at site: 10

Figure 6.10: Local Index (local B Trcc) at site 10

{*(003-091,site I)*}

(a) Global Index after inserting the record coming from site I

1*(003 - 091, sitc 1)*( I05 -189. site 2)*:

(b) Global Index after inserting the record coming from site 2

(*(003 - 091, site 1)*( I05 -189, site 2)*(201-300, site 3)* 1
TOOBIG

(c) Global Index after inserting the record coming from site 3

~*(105 -189. sile 21_*_1 _

••• •••
{*(003-091,site 1)*1 {*(201-300,s;lc3)*:

(d) Glohallndex after splilting the TOOIlIG nnde

Figure 6.11 (Part I of 4): Glob,,1 Index after inserting records from site 1,2, and 3
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~*(105 -189, site 2~

{*(or)J - 091, site 1)* I {*(20 1-300, site 3)*(306-380, site 4)* I

(e) Global Index after inserting the record coming from site 4

.------J*(105 -189, site 2)jl~ _

•• ••{*(003 - 091, site 1)* I 1*(201-300, site 3)*(306-380, site 4)*(402-493, site 5)*}
TOOBIG

(I) Global Index after inserting the record coming from site 5

,-----J*( 105 -189, site 2)j(306-380, site 4)*~11 _

+ • •
{*(003 - 091, site I)*} 1*(201-300, site 3)*} I*(402-493, site 5)*}

(g) Globallnde. after splitting the TOOBIG node

.-J*(105 -189, site 2Jj(306;80, site 4Jti

{*(003-091,site I)*} {*(201-300, site 3)*} {*(402-493, site 5)*(501-598, site 6)*}

(h) Global Index after inserting thc record coming from sile 6

.-J*(105 -189, site 2f306-380, site 4lj: 1-

1*(003 - 091 , site I)*} 1*(20 1-300, site 3)* I 1*(402-493, site 5)*(501-598, site 6)*(601-691, site 7)*}
TOOBIG

(i) Global Index after inserting the record coming from site 7

TOOBIG

~., '"' -," .•i" 'TO';""' .","ii>" ,." •."i'Ii:
1

1*(003 - 091, site I )*} {*(20 1-300, site 3)*: I*(402-493, site 5)*} 1*(601-691, site 7)* I

U) Global Index after splitting TOOBIG node

Figure 6,II(Part 2 of 4): Global Index after inserting records from site 4, 5, 6 and 7
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.----J*(306-380, site 4)~

r*(I0S -189, sile 2)~ 1 (SOI-S98,sile 6)ji

{*(003- 091, sile I)*} 1*(201-300,site 3)*: :*(402-493, sile S)*:

(k) Global Index after splitting TOOBIG root

1*(601-691,sile 7)*}

r*(306-380, site 4)~

~*(IOS -189, sile 2)1 1(SOI-S9i site 6)j} l
:*(003 - 091, site 1)*: {*(201-300,site 3)*: :*(402-493, sile S)*: :*(601-691,site 7)*(708-783, site 8)*}

(I) Global Index after inserting the record coming from site 8

:*(306-380. site 4)*1
I I

.--J'II05 -189, site 2)1

l*(OOJ -091. site 1)*: :.(201-300. site 3).:

:*(501-598. site 6)*1

~ I_--l
{"'(402-4I)J. sile ;;)"': : *(60 1-69 I, site 7)"'(708-783. site 8)*(804-898. site 9)*1

TOOBlG

1m) Global Index after inserting the record coming from site 9

:*(306-380, site 4)r~_: _

(*(OOJ-09I.sitc 1)*1 :*(20 1-300. site J)*: r *(402-493. site 5)*: :*(60 1-691. site 7)"'} 1*(X04-898. site 9)*:

(n) Global Index "fter splitting TOOBIG node

Figure 6,II(P"rI3 o(4): Glub"llndex "fter insertin~ records from site 8 "nd 9
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.--J'306
0

380. sile4)'~

rJ''"'-,<0, ,," "I '1"' '"" ,,""1"""1"" ,," .,.,

1*(003 - 091. site 1)* I !*(lO 1-300. site 3)* I ("'(402.493. site 5)*1 l*(601-691. site 7).) {*(804.89 ,site 9)*(901-997, site IO).}

(0) Global Index after inserting the record coming from site 10

Figure 6.1I(Part 4 of 4): Global Index after inserting records from site 10

6.3.1 Searching account number 333

Every search would start from the root of the GI. The root node, in this case, has one rec-

ord. The minimum and maximum values of this record are 306 and 380 respectively. 333

belong to this range. The search in GI by the Algorithm 5.3 will return the site 4 for fur-

ther searching. Searching at site 4 by the Algorithm 2.1 will again start from the root of

the LI at site 4. Algorithm 2.1 will eventually find the record with the account number

333 in the local index.

6.3.2 Searching account number 489

Algorithm 5.3 will not find any record in the root of GI in which 489 belongs. The root

has only one record .. The minimum and maximum values of this record are 306 and 380

respectively. 489 is greater than both 306 and 380 . For this reason, Algorithm 5.3 will

start checking the right child node of the visited record in the root. The first record in this

node has the minimum value 501, which is larger than 489. So the search will proceed by

checking the left child node. The only one record of this child node has the minimum and

maximum values 402 and 493 respectively. 489 belongs to this range. Algorithm 5.3 will

return site 5 for further searching. Searching at site 5 using the Algorithm 2.1 will not find

any record for the account number 489. The answer of the search will be 'the account

number 489 does not exist in the databasc'.
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6.3.3 Searching account number 000

Algorithm 5.3 will start searching account number 000 at the root of the GI. The only re-

cord in the root has the minimum value 306 , which is larger than 000. For this reason, the

left child of the record will be checked. The only record in this child has the minimum

value 105, which is again larger than 000. So the search will proceed by checking the left

child of this record. The new child node has only one record with the minimum value

003, which is larger than 000. The search will try to check the descendant left child node.

But there is no left child node in this case. As a result, the search will be end at this point

without returning any site for further search. And the answer of the search is ' the account

number 000 does not exist in the database'.

6.3.4 Deleting account number 490

For deleting account number 490, it has to be searched first using the Algorithm 5.3 and

Algorithm2.1. The search will find the account at site 4. Using Algorithm 2.3 account

number 490 will be deleted from the LI at site 4. Algorithm 5.1and Algorithm 5.2 will

give the new minimum and maximum values at site 4. These are 402 and 493 respec-

tively. Since they are same as the old minimum and maximum values, the delete algo-

rithm has nothing to do in GI. The delete will be simply complete at this stage. Figure

6.12 shows the LI and Gl after deleting the account number 490.

I 402-493 I Site 5

(a) Special reeord at site: 5 after delelin~ the accouut uumber 490

(f435f).••--- --~+
.•• cr415~ r*462~

~*410L. ~*425~ r50*~ ;*472S7~

(*402*) (*412*) (*420*) (*430*) (*440*) (*460*) (*470*) (*480*) (*493*)

(b) Local Iudex (BTree of order 3) at site: 5 after deletiug the account number 490

88

,-,
./; '"\
"', !



.-J(306.3~O, site 4)'~

fJ('"'-(<0. ,(" "I )'., ...,,""r"i'" ,,"" ~I__ ,

1*(003- 091. site I)*l {*(201-300,site 3)*: {*(402-493. site 5)*l {*(601.691. site 7)*1 j*(804.898. site 9).(901~997.site IO)*}

(c) Global Index (Proposed B Tree or order 3) aner deleting the account 490

Figure 6.12: Local Index at site 5 and the Global Index aner deleting the account 490

6.3.5 Deleting account number 380

Algorithm 5.3 and 2, I will find the account at site 4, Algorithm 2.3 will delete the ae.

count from the LI at site 4. Algorithm 5.1 and 5.2 will give the new range of the L1,

which are 306 to 370, Before deleting the account (with the account number 380) the

range was 306 to 380. Since the range has been changed it has to be reflected in the GI.

Algorithm 5.3will find a record in the GI with the range 306 to 380 and the site address as

site 4. Using the Algorithm 5.5 this record will be deleted first. After that the Algorithm

5.4 will insert a record in the GI with the range 306 to 370 and the site address site 4. Fig-

ure 6,13 shows the LI and GI after deleting the account number 380.

1306 - 370 1site 4

(a) Special record at site: 4 aner deleting the account number 380

(*306*) (*311*) (*320*) (*327*) (*333*) (*340*) (*350*) (*360*) (*370*)

(b) Local Index (8. Tree or order 3) at site: 4 after deleting the account number 380
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~(306-370, sile4)~

r"WH",' '''''] '1"'"'' .,,,''1'''"i'''''''"' ,
{"'(003 - 091, site 1)* l {*(20 1-300. site 3)*: l*(402-493. site 5 )*l {*(60 1-691. site 7)*1 {*(804-898. site 9)*(901 ~997, site 10)*1

(c) Global Index (I'roposed B Tree of order 3) after deleting 380

Figure 6.13: Local Index at site 4 and tbe Global Index after deleting the account 380

6.3.6 Inserting the account number 697 at site 7

Algorithm 2,2 will insert the account number 697 at site 7. Algorithm 5,1 and 5,2 will

give the new range of the LI at site 7, The range has been changed to 601- 697 from 601-

691. The change needs to be reflected in the GI. Algorithm 5,3 will first find a record in

the GI with old range and site address (601-691, site 7). Algorithm 5,5 will delete the rec-

ord from the GI. Algorithm 5.4 will insert a new record in the GI with the new range and

site address (601-697, site 7), Figure 6.14 shows the LI and GI after inserting the account

number 697 at site 7,

1601 - 697 I site 7

(a) Special record :tt sileo 7 :tfter insertin~ the account number 697

(*601 *j (*610*) (*620*) (*630*) (*640*) (*650*) (*665*) (*689*) (*697*)

(b) Locallnde, (B Tree of order 3) at site: 7 :tftcr inscrtin~ the account number 697
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r(306-370. site 4)~

~.n", .n,,,""I '1"""" ,,""'["""1" ,,""'~
1*(003 - 091, site I )"': 1*(20 J -300, site 3)*1 {*(402-49J, sile 5)*: {*(60 1-697. site 7)*1 :"'(804.898. site 9).(901-997. site IO}*1

(c) Global Index (Proposed B Tree of order 3) after inserting the account number 697

Figure 6.14: Local Index at site 7 and the Global Index after inserting the account number 697

6.3.7 GI after site 10 has been vanished

If all the records of a site, say site 10, have been deleted, the LI of the site is just a root

node without any record and children. And the special record is simply an empty record.

This situation needs to be reflected in the GI. For this, the Algorithm 5.3 will be used to

find the record of site lOin GI. And the Algorithm 5.5 will be used to delete the record

from GI. Figure 6.15 shows the GI after site 10 has been vanished.

r(306-370. sile4)*~

~.n""", •.,,"I '1'"',,,"'["~i"'"""'~
1*(003 - 091, site 1)"'l 1*(201-300. site 3)*: {*(402-493, site 5)*: :*(601-697. site 7)*l 1*(804-898. site 9)*l

Figure 6.15: Global Index (Proposed II Tree of order 3) after Local Index at site 10 has been vanished

6.3.8 GI after site 8 has been vanished

When the records of site 8 is required to be deleted from the GI. We use the Algorithm

5.3 to find the record and the Algorithni 5.5 to delete the record. Figure 6.16 shows the GI

after site 8 has been vanished.
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.---J(306-370, site 4)'~

rJ''"-''',,',."1 '1"''"' ,'".,I'"1'" ,","t
{"'(OO) -091. site 1)*1 {*(201-JOO. site 3)*1 1*(402-493. site 5)*1 {*(601.697. site 7)*)

Figure 6.16: Global Index (Proposed B Tree of order 3) after Local Index at site 8
has been vanished
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Chapter 7

CONCLUSION

Although most of the databases are relational database at present other types of database

like object oriented multimedia databases are now gaining popularity very much. Index

structures like B, B', B+ trees have proven performance on relational databases. Further

study and experiment are required to see the performance of these trees on other types of

databases. Actually, indexing in object orientcd and multimcdia databases introduces lot

of new problems. Thesc problems need to bc solved with introducing ncw concepts and

algorithms. We did not work on this issue in this thesis. But it is an interesting and de-

manding area to work under database rcsearch.

We proposed and examined the index algorithms for simple horizontally fragmented dis-

tributed databases. In fact, simple vcrtically fragmcntcd distributed databases do not need

to keep both LI and GI. In this case, the index-key would be cither in one fragment or in

more fragments and all the rccords (not with all the attributcs due to vertieal fragmenta-

tion) of the global relation will present in the fragment(s) and the LI in the fragment(s)

alone will serve the purpose. Complex distributed databases having derived or mixed or

both types of fragments will certainly require extra works to be done for indexing. More

complex index structure and algorithms can be proposed and tested to get acceptable re-

sults.

Since there is no existing model of distributed index, we could not compare the perfom1-

ance of our proposed model against any model. New models can be proposed and com-

pared with this model. This model proposed most. of its algorithms based on previous

works with minor variations. These variations do not have major performance effects.

Further study can be conducted to get better algorithms.

In this model (distributed index), we did not consider the effects of network and system

failure. But these are the important factors, which have serious effects on distributed da-

tabases as well as distributed index. FUJ1her study is required to improve the model to

sustain and perform well even in the presence of these failures.
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