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Abstract

Complex accessing structures like indexes are a major aspect of centralized databases.
The support for these structures is the most important part of the database
management systems (DBMS). The reason for providing indexes is to obtain fast and
efficient access to data. Most of the centralized database management systems use B-
tree or other types of index structures. But in distributed databases no index structure
is used to obtain fast and efficient access to the data. Therefore efficient access is the
major problem in distributed databases. We proposed a distributed index model,
which is a data structure based index comprising of two types of index structures:
Global Index (GI) and Local Index (LI). GI is created and maintained by distributed
database component (DDB) and LI is created and maintained by local database
compbnent (DB) of a distributed database management system. B-tree was used to
implement both GI and LI. A simulation program tested the proposed model and

found satisfactory results.
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Chépter 1

INTRODUCTION

1.1 Database and ﬁBMS

Database is a collection of related data in a specific structure of any organization or cor-
poration. Underlying structure of a database is the concept of a data model, a collection of
tools for describing data, data relationships, data semantics, and consistency constraints.
The various data modcls, such as object-based logical models, record —based logical

models, and physical data models have been used.

Relational data model is a record-Based data model and is used in déscribing data at the
conceptual and view levels. In this model databasc structured in a fixed format records of
several types. Each record type defines a fixed number of attributes and each attribute is
usually of fixed length. The use of fixed length record simplifies the physical-level im-
plementation of the database. This makes the relational data model most popular data
model. A relational database consists of tables, each of which is assigned a unique name.

A Tow in a table represents a relationship among a set of values [17].

Although databases come in a variety of sizes, almost any collection of data can become
quite unwieldy as it receives and stores more and more data over time. Computers make it
possible to harness large data collections efficiently using a Database Management Sys-
tem (DBMS). A DBMS is a program, or collection of programs, that allows any number
~ of users to access data, modify it (if necessary), and construct simple and complex re-
quests to obtain and work with selected records. Data management tasks of DBMS fall
into onc of three gencral categorics: |

- Entering data into thc database

- Reordering the records in the database

- Obtaining subsets of the data

Actually, there are lots of tasks anybody can perform with a DBMS, including creating

and designing the databasc itself. A DBMS’s biggest asset is its ability to provide ex-



tremely quick access and retrieval from large database. To determine the positions of the

specific rccords in a databasc, DBMS use a special technique called index.

1.2 Indexing

An index for a data file in the database system works in much the same way as a catalog
for a book in a library. If we are looking for a book by a particular author, we look in the
author catalog, and a card in the catalog tells us where to find the book. To assist us in
searching the catalog, the library kecps cards in alphabetic order, so we do not have to
check every to find the one we want. To gain fast access to the records in a data file, we
can use an index structure. Each index structure is associated with a particular search key
(one or more attributes of the data). Just like a library catalog, an index stores the values
of the search keys in sorted order, and associates with each search key the records in the

data file that contain that search key. A data file may have several indices, on different

“search keys.

Indexing is a data structure based technique for accessing records in a file, It is a data
structure technique in the sense that a search of a data structure yields the required ad-
dress. In this technique a main file of records is supplemented by one or more indexes,
Indexes may be the part of the main file or be separate files, and may be created and de-
stroyed as required without affecting the main file. When changes are made to the main
file, appropriate update operations must be carried out on any indexes to that file. There
are two main types of indexes such as static index and dynamic index. We claborately

discussed both of these types and their various ways of implementations in the Chapter 2.

1.3 B, B, and B' Trees

Instead of binary trees multiway trees can be used for implementing better dynamic in-
dexes. Multiway Trees are a generalization of binary trees. Instead of containing a record
and two pointers, as in a binary tree, a node contains R records and R+1 pointers. This
alleviates the long retricval times found with binary trecs. The increase in the branching
factor typically makes the tree shortcr than the corresponding binary tree for the same
number of records. However, complex balancing operations may be requircd as records

are inserted and deleted [18].



B-trees were devised by Bayer and McCreight [5]. They have neither the retrieval nor the

maintenance problems of binary trecs because they arc multiway trecs with efficient self-

balancing operations.

B-trees are balanced multiway trees. A node of the tree may contain several records and
pointers to “children”. Wec use term “child” to refer to the immediate descendent of a
node; hence “ siblings™ refers to nodcs with the same parent. The operations of retrieval,

insertion, and deletion are guaranteed efficient cven in the worst case.

A number of variations on the B-tree data structure have been devised. Typically, each is
designed to overcome some of the deficiencics of the B-tree. We considered two such

variations: B*-trees, which arise from a suggestion by Bayer and McCreight [5], and B*-
trees, which were suggested by Knuth [13].

The B -trec performs searches in the same way as the B-tree, cxcept that there are differ-
ent operation of a B-tree more efficient by reducing the number of occasions when a node
had to be split. If the node into which we need to insert a record is full, we might in cer-
tain circumstances be able to solve the overflow problem by local redistribution of rec-

ords rather than by splitting the nodes.

Knuth proposed a variation on B trees that for clarity Comer designed the B'-tree. Rec-
ords in a B-tree are held only in the terminal nodcs of the tree. The terminal nodes are
linked together to facilitatc sequential proccssing of the records and termed the sequence
set. Non-terminal nodes are indcxes to lower levels in a similar way to that of.B trees.
Nodes in the index levels contain only key values and tree pointers. There is no need for
the terminal nodes tree pointer fields. Thus terminal nodes have a different structure from

non-terminal nodes. We discussed B, B”, and B" trees and their numerous algorithms in
the Chapter 2.

We did a simulation program for constructing and using B, B", and B" trees for database
indexing based on the available structures and algorithms. This program gencrates ran-
dom data to insert, search, and delcte. Performance of each trec is measured in terms of -

tumber of comparisons, number of nodes, number of splits and the height of the tree re-



quired. The results of the simulation program were recorded and plotted separately. We

showed these results in the Chapter 3.

1.4 Distributed Database

In recent years, distributed databases have become an important area of information proc-
essing, and it is easy to foresee that their importance will rapidly grow. There are both
organizational and technological reasons for this trend: distributed databases eliminate
many of the shortcomings of tentralized databases and fit more naturally in the decen-
tralized structures of many organizations. A distributed database is a collection of data,
which belong logically to the same system but are spread over the sites of a computer
network. Each site of a network has autonomous processing capability and can perform
local applications. Each site also participates in the execution of at least one global appli-
cation, which requires accessing data at several sites using a communication subsystem.
The global schema defines all the data, which is contained in the distributed database as if
the database were not distributed at all. Each global relation can be split into several non-
overlapping portions, which are called fragments. Fragments are logical portions of

global relation, which are physically located at onc or scveral sites of the network [7]. We

discussed distributed database in details in the Chapter 4.
1.5 Finding records in a Distributed Database

At present distributed databases are inefficient in locating records since it is not using any
global index structure. Distributed Database Management Systcms collect the pertaining
fragments from different sitcs and reconstruct the data file as if it were not fragmented.
After reconstruction every record is read and checked Ol.lC by one to identify the desired
record. Alternatively, Distributed Database Management Systems can search the record in
every fragments one after another. In both of these cases lot of extra works need to be
done to find a record. To eliminate these cxtra works’during searching a rccord an effi-

cient index structure can be used.



1.6 Proposed Distributed Index

Most of the centralized database management systems use B-tree or other types of index
structures. But in distributed databases no index structure is used to obtain fast and effi-
cient access to the data. Beeause it is very difficult to build and maintain such structures
and because it is not convenient to navigate at a record level in distributed databases.
Therefore, efficient access is the main problem in distributed databases. To provide effi-
cient access to the data we proposed a distributed index concept. Distributed index is also

a data structure based index comprising of two types of index structures. One is Global

Index (GI) and the other is Local Index (LI).

GI is created and maintained by distributed database componcnt (DDB) of distributed
database management systems (DDBMS). LI is created and maintained by local database
management component (DB) of DDBMS. We preferred B-tree for implementing both GI
and LI of distributed index. For every site there is a Loca} Index (LI), which has been cre-
ated, updated and used independently. Like other local database management components
LI enjoys autonomy in each site. There must be a single global index (GI) for a distrib-
uted index. GI is created, updated and used based on local indexes. All the local indexes
are perfectly mapped with the global indexes. When a record is searched in a distributed
database, Gl used first to determine which LI needs to be used to find the data. After se-
lecting the right LI it is used to access records in the corrésponding sitc. The records in a
GI node are different from that of a L1. LI holds the index value and the pointer/address
of the concern record in the data file. But GI rccord holds the minimum and maximum
index values of a local index and the pointer/address of that local index. We explained the

proposed distributed index structures and its algorithms in Chapter 5.

We developed the second simulation program for constructing and using the proposed

distributed index. We showed the results of the program in Chapter 6.

We proposed and examined the structurc and algorithms for distributed index considering

simpie distributed databases. Complex distributed databases will certainly require extra

efforts for indexing,.



Chapter 2
DATABASE INDEXING

2.1 Introduction

Many queries reference only a small proportion of the records in a data file. For example,
the query “Find all accounts at the Perryridge branch” references only a fraction of the
account records in the Account data file. It is inefficient for the database systems to have
to read every record and to check the branch name ficld for the name “Perryridge”. We
need database systems should be able to locate these records directly and for this we need

to keep additional structure i. €. index structure, associated with the data file.

Indexing is a data structure based technique for accessing records in a file. It is a data
structure technique in the sensc that a search of a data structure yields the required ad-
dress. In this technique a main file of rccords is supplcmcnted by one or more indexes.
Indexes may be the part of the main- file or be separate files, and may be created and de-
stroyed as required without affecting the main file. When changes are made to the main

file, appropriate update operations must be carried out on any indexcs to that file.

Index files can be compared with the index or table of contents of a book. Consider the
index of a book. It consists of a number of entrics, each of which is a pair:

Topic, page number(s)

Book indexes are usually arranged alphabetically, which makes it casy to find a particular
topic and hence the pages on which it arc mentioned. An index file is like a book index.
Index files typically contain records of the following form:

Key value, pointer(s) to the main file

The pointers reference records in the main file that have the particular key vaiue. Here we
will discuss using data structure techniques rather than computational techniques to solve
the file accessing problem. We consider the efficiency of the data structures and the op-
crations required to maintain optimum efficiency. It is important to remember that when'
we discuss "records " in an indcx, for example in a node of a scarch tree, we mean rccords

of the form shown above :dthcr than records of the main file,



Although indexes to scquential files arc common, non-scquential files can also be in-
dexed. A sequential filc is typically in sequence only with respect to one key. For exam-
ple, a file of insurance records ordered by policy number would be non-sequential with

respect to a second key such as name of policyholder.

Without data structures, processing records with respect to a key other than the one by
which the file is sequenced is likely to be inefficicnt. Consider the file of insurance rec-
ords. To find a record when given the name of the policyholder, we would probably have
to perform a linear scarch through the file. If we need a list of policyholders according to

date of birth, we would probably have to perform a sort operation.

Except in certain books, topics in the body of a book do not normally appear in alphabeti-
cal order. Books can therefore be regarded as non-scquential from the point of view of
topic. Indexes help to locate topics. In the remainder of this chapter we consider index
organization in the context of indexed sequential ﬁics.

A sequential file is one in which records can be accessed in sequential order, which is
usually primary key order. An indexed sequential file is sequential file supbl’emented by
an index structure. The purpose of the index is to speed up access to a particular record.
Normally the index is effective only when the file is being indexed is stored on a direct-

access device. Un-indexed scquential files on the other hand, could rcasonably be stored

on serial devices.

There are alternatives to indexing as a technique for achieving fast access to sequential
files, but they tend to be comparatively slow or restrictive, A binary scarch is one possi-
bility, but it requires that for a given I it must be possible to compute the address of the
Tth record in the file. If scquencing is implemented by pointers rather than physical adja-
cency, this may not be feasible. Even if it is possible to compute the address, performance
of a binary search algorithm is not impressive. Suppose that there are M logical records in’
a file and that they arc packed N to a physical record. The avcrage number of physical

accesses required to find a record using a binary scarch is about (logd M/NT)- 1.



The way we organize an index file will depend on the operations we wish to perform via
key field. Possible operations include retrieval of individual records and processing of all
records in the key order. If the index is used only to locate a record with a particular value
of a key, then hashing may be suitable way of organizing it. However, if the index is the
means of accomplishing both sequential processing and fast individual record access, then
a tree structure 1s a better choice. This is because sequential processing is accomplished
by simple tree traversal and the nature of the tree also allows a particular rccord to be lo-

cated quickly. The indexes we examine here are bascd on trees.

Because the main file is sequenced, it may not be necessary for the index to have an entry
for each record. Figure 2.1 shows a sequential file with a two level index. Level 1 of the
index holds an entry for cach three-record section of the main file. In a similar way, level
2 indexes level 1. It may be sufficient for an index to a sequential file simply to identify
the part of the main file containing the desired record. The final part of a search operation
can then be a simple linear or binary search of the identified section. Typically this will
be a search in main memory, of a physical record retrieved from the file. Consider the
book analogy. The table of contents acts as an index in our sense of term. The file (book)
is in sequence by the key being indexed (chapter and section numbers). Section numbers
in the body of the text may be long (for example, p.q.r.s.t). In the table of contents, how-
ever, entries may be limited to p.q.r, leaving the reader to interpolate to find more precise

sub headings. Thus while there is still a search space, it has been reduced through the use

of the index.

Indexed sequential organization is straightforward apart from the problem of inserting
new records into the file. The problems are to preserve the sequence of the records and

update the index appropriately. Two broad classes of solutions to these problems are

static index techniques and dynamic index tcchniqucs.

Although the contents of a static index may changc as we perform insertions and dele-
tions on the main file, the structure of the index docs not change. Typically the insertion
algorithm uses overflow areas. This method however, tcnds to lead to gradual loss of effi-
ciency for search and update operations, and periodic maintenance is required to restore

performance. Typically this involves running a standalone program that writes a new ver-

10



sion of the main file eliminating overflow lists. The index is rebuilt during the rewriting.

The IBM ISAM system uses static index structures [18].

A dynamic index adapts as records arc inserted into and deleted from the main file. In
some sense, maintenance of efficiency is an integral part of the insert and delete algo-
rithms. There is no need to run a separate maintenance program periodically. Dynamic
indexing methods are characterized by the splitting and joining of nodes in the index tree.
The IBM VSAM system uses dynamic indexing.
Both static and dynamic indexes are useful depending on the type of application. We will
compare their efficiency out the following operations:

I Searching for a record with a given key

2. Inserting a new rccord

3. Deleting a record with a given key.

2.2 Static Indexes

One approach to organize a tree in a static index structures is to keep its structure fixed

and to deal with insertions by means of overflow lists at the leaves.

2.2.1 Organization of the index

A static index can be regarded as a scries of fixed size. The lowest-level table in-
dexes the main file itself, the next highest level indcxes the lowest level, and so on. Fig-
ure 2.1 shows a small example file with two levels of indexing. A level 1 index entry

holds the highest key value in a threc-record scction of the main file together with a

pointer to the section. A typical entry is
42, <pointer to the scetion with 42 as its highest key>

The choice of three for the size of the main file section is arbitrary here. In practice it is
likely to be related to the size of physical and logical records. For cxample, if the storage

device can transfer up to 1024 bytes in onc access and logical records are 80 bytes long,

each main file section will probably contain 12 records. -



7

19 32 42 79 88 106

el

6 15 19 24 28 32 35 41 42 68 74 79 82 83 88 95 101 106

Figure 2.1 File with two level index

Thus a complete section can be read in one disc access. The index holds the highest key
value in each three record section of the level 1 index. Agaln the choice ofthree here for
section size is arbitrary. Given particular file characteristics and properties of the storage
media, it is possible to calculate the number of index levels and the total space they oc-
cupy.

To see why do we index a section by it’s highest rather than its lowest key; let us follow
the retrieval of the record with key 28 from Figure 2.1. We begin at the top of the tree
with the level 2 index. We select the smallest index entry with kcy greater than or equal to

the target key. In this sclect 42. The associated pointer points to the level 1 section that

contains the following entries:
19—
32>
42—
Using the same selcction criteria, we follow the pointer associated with the cntry 32 in the

level 1 index. The pointer gives us the address of the section in the main file containing
24

28
32

When we search this, we find the record with key 28. If we had been looking for a record

with key 29 instead, the search would fail when key 32 was encountered.



By holding the highest rather than lowest key in the index, we avoid an extra comparison
at each index level during a scarch operation. This is because the pointer to the lowest
value and the key of the largest value together defines a scarch subspace. For example,
the pointer associated with entry 32 in the level 1 index points to the section starting with
24, Any record with a key in the range of 24 through 32 will be in that section, If \;ve hold
the lowest key, we would have to look at the next index entry to establish the upper bound

on the subspace.

2.2.2 Insertions

Next, let us see the way in which the file and indexes change when insertions are made
into the main file. We will insert records with keys 7, 33, and 18. These insertions will
cause overflow conditions that must be resolved.

Insert 7.

42 106

|

v
19 32 42 79 88 106

l v
6 7 15 24 28 32 35 41 42 68 74 79 82 83 88 95 101 196

l

19

Figure 2.2 File with overflow

When we insert a record with key 7, the index structure Icads us to the first section of
three records in the main file. This is where the record with key 7 would be if it were in
the file. To prescrve the record scquence, the new record must be inserted aﬁer.the one
with key 6. Therefore, the record with key 19 is moved out of the main file section and

mto an overflow area. Figure 2.2 shows the new configuration.

13



We assume that there is space at the end of cach scction of records in the main file or a
pointer to a list of records that have been moved out of the section. Observe that sequen-
tial processing of the ﬁl;: slowed by the need to make an access to the overflow area.
Between records with keys 15 and 24. However, access to an arbitrary record need not be
| slowed if we modify the level | index. Supposc that in addition to holding the highest key
in either the main file section or its overflow list, it also holds the highest key in the main
file section alone. With this information we can tell whether to look for a particular record
in the main file or in the overflow arca. In the case of our example the level 1 index entry
for the first main file section is now
Index

15.‘ 19
’ Main file

6
7

5 ‘ — 19

The entry indicates that 15 is the highest key in the section and that 19 is the highest key
when the overflow list is taken into account. To go directly from the level 1 index entry to
the list. However, in subsequent diagrams we will show the key values in the level 1 in-

dex entries but omit pointers to overflow lists to prevent the diagrams from becoming

cluttered.
Insert 33.

‘42 IIO6
19 32 42 79 88 106
6 7 15 24 28 32 33 35 41 68 74 79 82 83 88 95 101 106

l

19 - 42

Figure 2.3 File with overflow



Key 33 lies between the ranges of the records stored in the sccond and third three-record
sections of the main file. Examination of the level | index indicates that if the record with
key 33 were already in the file it would be in the third section; its key is greater than the
largest key recorded for the second section, Hence the new record is inserted into the third
section; Figure 2.3 shows the new configuration. Although the two overflow lists are

separate in the diagrams, there is no rcason why they should not be stored interleaved in

42 106
19 32 42 79 88 166

5

6 7 15 24 28 32 33 35 41 68 74 79 82 83 88 95 101 106

the same file.

Insert 18,

18 . 42

19

Figure 2.4 Overflow chain

Key 18 is lower than the highest key associated with the first file section (19) but higher
than the last key in the main file section (15). The new record is therefore put directly into
the overflow list. Figure 2.4 shows the new configuration. Although sequential accessing
of the file may not be slowed further as a result of this insertion, a retrieval of record with

key 19 is likely to take longer than before.



223 Physical Organization of Overflow Area

Above, we discussed in abstract terms how insertions into the main file might be handled.
How might an overflow scheme be implemented? One possibility is to write the initial
sequential file cylinder by cylinder on a disc, Icaving a number of tracks free on ecach
cylinder. Records overflowing from sectors in a cylinder would be placed in the spare
tracks in the same cylinder, that is, in a cylinder overflow arca. In this way no disc head
movement would be required when following a pointer from main file. If overflows are
confined to such areas, sequential processing is reasonably fast. However, what happens
if there are enough insertions in one part of the file to exhaust a particular cylinder over-
flow area? Such clustered insertions with a small range of key values compared with the
key range of the file as a whole are a problem for indexed scquential file organizations. In
a static organization, such as described above, they will result in long overflow lists. One
solution to provide a number of sparc cylinders that can bc used by overflows from any
cylinder. However, if these have to be used, both sequential and direct processing of the
file begins to require time-consuming disc head movements. Performance degrades rap-
idly.

A weakness of the static organization is its potential degradation of performance as inser-
tions are made. In a typical application we would expect that there would be more retriev-
als than insertions or deletions, so it is important that they be as cfficient as possible. In a
static organization maintenance programs may have to be run periodically to restore per-
formance levels. During these runs the file is likely to be inaccessible. In contrast, dy-
namic indexes, which we discuss next, may gradually change shape in order to preserve
efficiency. Compared with static indexes, morc work may bc donc when a rccord is in-

serted or deleted, but there is no need for separate periodic maintenance [18].

2.3 Dynamic Indexes

Many dynamic indexes are implemented as trces. We consider four common tree struc-
tures and compare them in terms:

* Depth (minimum for given number of records)

¢ Ease of maintenance ' '

o  Maximum order



The four tree types are binary, AVL, multi-way, and B-trees. We adhere to the convention

of depicting a tree with the root uppermost and regard the root as the top of the tree.

2.3.1 Binary Trees

Binary trees suffer from two disadvantages compared with other trees: long retrieval
times and effort needed to maintain cfficient access. Binary trecs have a branching factor
of two, that is, each node has at most two immediate descendents (children). Conse-
quently, the minimum height of a tree containing N records is Llogz N+ 1. For cxample, a
tree of 100 records has at least seven levels. If a tree is held on secondary storage, then
there tends to be a proportional relationship between the numbers of node reads and the
number of physical seeks. It is thercfore desirable to have short trees to minimize the
number of physical accesses. Because of the small branching factor, binary trees tend to
be tall. For best performance the tree should be balanced in the sense that the sum of the
lengths of the paths from the root to the nodes is minimized. After an insertion or a dele-

tion the tree may have to be rebalanced. The operations required to balance an arbitrary

tree are relatively complex.

2.3.2 AVL Trees

AVL trees, devised by Adel’son- Vel’skii and Landis [3), are restricted growth binary
trees. They were invented as a solution to the balancing problem encountered with normal
binary trees. An AVL trec is not necessarily perfectly balanced. In a perfectly balanced
binary trec the number of nodes in the two sub trecs of an arbitrary node differ by at most
1. The balancing operations arc simpler than thosc for ordinary binary tree, but AVL trees
still have comparatively long search times. Bounds have been established for the height of

an AVL tree containing N records as follows:
loga(N+1} < height < 1.4404 loga(N+2)- 0.328
Considering again a trec with 100 records, we have

6.658211< height <9.282961

The search problem persists because we still have tall trees.
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233 Multiway Trees

Multiway Trees are a generalization of binary trees. Instead of containing a record and
two pointers, as in'a binary tree, a node contains R records and R+1 pointers. This allevi-
ates the long retricval times found with binary trees. The increase in the branching factor
typically makes the tree shorter than the corresponding binary tree for the same number of

records. However, complex balaneing operations may be required as records are inserted
and deleted.

234 B-trees

B-trees were devised by Bayer and McCreight [5]. They have neither the retrieval nor the

maintenance problems of binary trecs because they are multiway trees with efficient self-

balancing operations.

B-trees are balanced multiway trees. A nodc of the tree may contain several records and
pointers to “children”. We use term “child” to refer to the immediate descendent of a
node; hence “ siblings” refers to nodes with the same parent. The operations of retrieval,

msertion, and deletion are guaranteed efficient even in the worst case. B-tree definition

We follow Knuth [13] rather than Bayer and McCreight and definc a B-tree of order M to

be a tree with the following propertics:
1. No node has more than M children.
Every node, except for the root and terminal nodes, has at teast [ M/2 | children.

The root, unless the tree only has onc node, has at Icast two children.

Sl

All terminal nodes appear on the same level, that is, they are at the same distance

from the root.
5. A non-terminal node with k children contains K — | rccords. A terminal node contains
at least| M/2 - I records and at most M — 1 rccords.
We are considcring index structures: a record in the tree will thercfore consist of a key
and a pointer to the main file. We can spcak of a B-tree of order 8 (M=8), a B-trce of 197
(M=197), and so on. The integer M imposes bounds on the “bushiness” of the tree. While
the root and terminal nodes are special cases, normal nodes have between [ M/2 ] and M

children and [M/21- 1 and M - 1 rccords. For example, a normal node in a tree of order



11 has at least 6 and not more than 11 children. The fower bound on the node size ensures
that the trce does not get too tall and thin, since this results in slow searches. The upper
bound on the node size ensures that the searches of an individual node will be fast. When
implementing the tree, for example, as a file of rccords, the upper bound allows us to de-

fine an appropriate record type. The lower bound ensures that cach node is at least half

full and therefore that file space is used efficiently.
The definition above only determines the structure of a B-tree; to be useful there must be

some ordering of the records in the tree. In what follows we will make the following as-

sumptions:
1. Within a node of K — | records, rccords are numbered R, R:Rs.......... Ry -1 and
pointers to children are numbcred Py Py Ps........... P« - + Thus a typical node may be

depicted as follows:

Py R, I Ry, Py

2. Records in the sub tree rooted in Py have keys less than the key of record R; Records
in the sub tree rooted in Py _; have keys greater than the key of record Ry _ ;. Records

in the sub tree rooted in Pio<1<k-1yhave keys greater than the key of record R,

{(.a.b.) (.g.h,) (.n.}) (.s.u.) (.v.)

Figure 2.5 Example of B-tree

Figure 2.5 shows an example B-tree. In this and the subscquent examples we will assume
that the keys of the records in the tree are single characters.
It is not always possible to determine the order of a trec by looking at it. The tree of Fig-

ure 2.5 must be at lcast order 3 because some non-root nodes have three children. At the
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same time it must be less than order 5 because some nodes have only two children. It is

therefore a tree of order 3 or order 4.

23441 B-tree terminology

We will term adjacent siblings two nodes that have ll.w samc parent and are pointed to
by adjacent pointers in the parent. Thus in the tree of Figure 2.5 (.n.) and (.s.u.) are adja-
cent siblings, whereas (.n.) and (.y.) are not adjacent siblings. Adjacent siblings are
pointed to by P;_, and P; (for some i). We will term record R; the separating record for

two siblings. Thus in the tree of Figure 2.5 adjacent siblings (.s.u.) and (.y.) are separated
by record with key v.

2.34.2 Searching B-trees

When searching for a record with a given key, we start by examining the root node. We
search the node for the required record. If the record is not found, comparisons with the
keys in the node will identify the pointer to the sub trec that may contain the record. If the
selected pointer is null, then we are at the lowest level in the tree and the record we are
searching for is nof present in the tree. If the pointer is not null, then we read the node

pointed to, that is, the root node of the sub tree, and rcpeat the operation. Algorithm 2.1

contains a pseudo-code algorithm for the search.

2.34.3 Performance of the B-tree search algorithm

Assume the B-tree is of order M and that it contains N records. Consider the null pointers
in the terminal nodes. An in order traversal of a B-trec will alternate between null pointers
and records and will start and finish with a null pointer. There are therefore N+1 null
pointers and a tree containing N records. From the definition of the tree, all the null point-
ers are at the same level; assume this is level h where the root is considered to be level 1.
Thus in Figure 2.5, null pointers arc at level 3. The worst casc when searching the tree
will require h node reads: one at level 1 through h. We can derive an expression _for h in
terms of N and M as follows:

At level 2 the minimum number of records is 2

At level 3 the minimum number of nodcs is 2X i_M/2—|

At level h+1 the minimum number of nodes is 2X [ M/2 ™!
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(The null pointers in the terminal nodes might be regarded as pointers to nodes at a non-

existent level h+1).

(* In the algorithm

Found: a flag to indicate if the record has been found

K : key of record being searched for
P : holds a pointer to a node
N : record count

*)

Found — false

read root

repeat

N— number of records in current node

case

K=key of record in current node: found—>true

K<key(R)) PPy
K<key(Ry) PPy
otherwise ' : P—P;- 1{for somei where

key(R;- 1)<K< key(Ri)
endcase

If P not null

then read node pointed to by P

until Found or P is null

Algorithm 2.1 B-tree search algorithm

We know that there are N+ null pointers, and therefore
N+122X [ M2 1™
which yields h<=1+log rvn1[(N+1)/2]
This gives us an upper bound on the height of a trce of order M containing N records and
hence an upper bound on the number of node reads during a retrieval. The minimum

number of node reads is clearly onc. This is the case where the record being scarched for

is found in the root.
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Tree balancing opcrations are required in two cases when performing inscrtions or dele-
tions on a B-tree. In the insertion opcration a node can overflow because the definition of
the tree imposes an upper bound on the node size. We can resolve overflow by redistrib-
uting records in the existing nodes or by splitting the overlarge node. When deleting, on
the other hand , we may have node underflow because a node may become smaller than

the lower bound on node size. Underflow can be resolved either by redistribution or by

concatenation of two nodes [18].

2344 B-tree insertion
New records are always inserted into a terminal node. In our diagrammatic representation

of a tree, every null pointer represents an insertion point where new record might go.

Before

(B...CtD .. .E)
Alter

(...AtF..)

Figure 2.6 B-tree node split
In Figure 2.5, for example, records with kcys greater than | but less than r would be in-
scrted in the node containing n: to the left of n if less than n and to the right if greater than
n. To determine the appropriate insertion point for a particular new record, the insertion
algorithm starts by searching for the new record as it were already in the tree. The search
algorithm will bring us to the appropriate point in a terminal node.

As stated earlicr, a problem with inserting records is that nodes can overflow because
therc is an upper bound to the size of a node. What if the node into which we have in-
serted a record now exceeds the maximum size? The situation can be resolved using re-
distribution or splitting, Here, we consider how a node might split. On overflow, the
node is split into threc parts. The middle record is passed upward and into the parent,

leaving two children behind where there was one before. Suppose that the order of B-tree
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is M. The largest number of records allowable in a node is therefore M - 1. Splitting an

overfull node with M records can be depicted as follows:

Rrmrz

Po [ Ry | .. | Rimnl.; Prvnt. Prvel | Rimals Rm | Py

Figure 2.6 shows how a pointer to onc of the two children is inserted into the parent in
addition to a record. As usual, lower case letters here represents records. Uppercase letters

represent pointers F is a pointer to a newly allocated node.

Splitting may propagate up the tree because the parent into which we inserted a record
may have been at its maximum size. Therefore it will also ‘split. If it becomes necessary
for the root of the tree to split, then a new root is created that has just two children. This is
a valid node because of third property of a B-trec. If the root splits, then the tree grows by
a level. This is the only way that a B-tree grows a level. We can regard the terminal nodes
as being the fixed level of a tree that grows up or down only at the top (root). Note that no

explicit balancing operations are required in the insertion algorithm.

Algorithm 2.2 contains a pseudo-code algorithm for the insertion of a new record.

(* In the algorithm
In-rec : the record to be inserted into the tree
Finished : a flag to indicated if insertion has finished
Found : a flag to indicate if record has been found in the tree
P : holds a pointer to a node
TOOBIG: an oversize node
N : record count

*)

(* Search tree for In-rec forming stack of node address. *)
Found « false

read root
repeat
N« number of records in current node
case
key (in-rec) = key of record in current node  :Found « true
key {in-rec } < key(R) P« Py
key (in-rec ) > key(Ry) P« Py
otherwise P« P (for

some i, where key (R;_) < key (in-rec) < key(R;))
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endcase
if P not null
then push on to stack address of current node
read node pointed to by P

untii found or P is null
if found

then report record with key = key (In-rec) already in tree
else (* insert In-rec into tree *)

P «nil
Finished < false
repeat if current node is not full
then put In-rec and P in current node
Finished « true
else copy current node to TOOBIG
insert In-rec and p into TOOBIG
In-rec « center record of TOOBIG
current node < 1* half of TOOBIG
get space for new node. assign address to P
new node < 2" half of TOOBIG
if stack not empty
then pop of stack
read node pointed to
else (*tree grows*)
get space for new node
new node < pointer to old root, In-rec and P
Finished « true

until finished

Algorithm 2.2 B-tree insertion algorithm

The insertion algorithm assumes the existence of a stack and a temporary node, called
TOOBIG, in main memory. This node has room for onc morc rccord and one more

pointer than the maximum node allowed in the B-tree. It is used as temporary working

spacc when a nodc splits,

The insertion algorithm starts by searching for the record to be inserted. This is done in
order to bring us to the appropriate terminal node in the tree. During the search, whenever
we move from a parent node to onc of its children, we push the address of the parent node
onto the stack. Later, this will cnable us to move from a node to its parent by unstacking

an address. The stack mechanism is adequate because only nodes we were intercested in
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are the direct ancestors of the terminal node where we start insertions. Use of the stack
means there is no need for any node to contain a pointer to its parent.
An insertion of a record into the current node can have two possible results. The insertion

may occur without any maintenance operations being required, or it may cause overflow.

Casel: non overflow insertion. The current node is not full. In this case we insert the rec-
ord. We also insert an appropriate pointer so that the number of pointers in the node is
still one greater than the number of records. The algorithm terminates.

Case 2: overflow insertion. The current node is full. In this case we copy it iﬁto overlarge
node TOOBIG, which has room for one more record and one more pointer than the
maximum allowed in a tree node. We then put the records and pointers in TOOBIG back
in the t-ree to effect the splitting operation. The center record is identified; if M is even,
arbitrary choice is made between the two central records. Records and pointers to the left
of the center record are put back in the current node, the remainder of which is cleared.

Records and pointers to the right of the center record are put in a new node.

The center record and a pointer to the newly allocated node now have to be inserted into
the parent of the current node. The algorithm therefore iterates until at some level no fur-
ther splitting is needed. 1f the root has to split, the new root will contain, in addition to the

record and pointer passed up from below, a pointer to the old root [18].

Consider the tree of Figure 2.5 and the successive insertion records with keys m, j, p and
d. We will assume the tree to be of order 3. It follows that the largest node can hold two

records and three pointers and that the smallest node can hold one record and two point-
ers. TOOBIG can hold three records and four pointers.

Insert m. This is a simple insertion.

v

e

{(.a.b.) (.g.h.) (.m.n.) (.5.u.) (.

(H’—

Figure 2.7 B-tree of Figure 2.5 after inserting m
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The key is greater than | but less than r, so the record gocs into the node with n. Because

there is enough room in this node for a new record, the insertion algorithm finishes. Fig-

ure 2.7 shows the new tree.

Insert j. The record with key j should go in the node currently containing g and h. How-

ever, this node is at its maximum size, so records g, h, and j are put into the TOOBIG

node. The middle record (h) is then inserted into the parent node. The remaining records

form two children where there was one child before.

([ l)

(‘.e.) .o Gerav)
(.a.b.) (.g.h.) (.m.n.) (.5.u.) (.y.)-
' TOOBIG = (g.h.j.)
(a)
L)
| |
(e[l)
(.a.b.) {.m.n.) (.5.u.) (.v.)
(b)

Figure 2.8 B-tree of Figure 2.9 after inserting j
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Figure 2.8(a) shows the intermediate step and Figure 2.8(b) the final result of inserting a
record with key j into the tree of Figure 2.7.

Insert p. When we insert a record with key p into the final tree of Figure 2.8, we find that

the splitting operation occurs at two levels. |
Initially the record is put in TOOBIG with records m and n (see Figure 2.9a) when this
splits, record n is passed up to be inserted into the parent. However, the parent is already

full, so TOOBIG is split, record r is passed up to the root. The final trec is shown in Fig-
ure 2.9(c)

(l-ll)

(eh)

—l ﬁ%ﬁ

(-2 (.m.n.) (.s.u.)

TOOBIG=(m.n.p.)

(a}

Te.h.) (.r.v.)

TOOBIG n.r.v.

| 1%

(.a.b)) g (i) (m})  (p) (su) (y)

(b)
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(.1,

-~ o

vi)

A 4
(e )
' l Vol
{-a.b.) (-g.) ¢j) (p) (su)
(c)

(.y.)

Figure 2.9 B-tree of Figure 2.8 after inserting p

Insert d. The insertion of final record into our tree causes splitting to occur all the way up

to the root and the tree to grow one level.

.l.r.)
' I
( e.h) (.v.)
(.a.b.) (.g.) ¢j) (.p) (.su) (.y)
TOOBIG=(.a.b.d))
{(a)
tLl.r.)
|| L
v
(.c.h))
TOOBIG= (.b.c. h) .n.) (.v.
(a.} (dJy (g) @Gamy (pJ) (.s.u.) (.v)
(b)
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TOOBIG=(,e.l.r.)

(b. h) (nJ (v
e I e i
(.a.) (.d)) (g (i) (m.)) {p) (s.ul) y.

{c)

(.1.)
I & ¢
(.e.) ' (.r.)

{WJ XWJ sz (v.)

Lt

) Gmly Cp)(esou) (Ly.)

()

Figure 2.10 B-tree of Figure 2.9 after inserting d

Initially record d goes into TOOBIG together with records a and b (see Figure 2.10a
When TOOBIG splits, record b is passed up to the parcht; However, because the parent is
already full, its contents arc copied with record b into TOOBIG (sec Figure 2.10b). When
TOOBIG splits again, record e is passed up to the root. Because the root is already full,
TOOBIG is set up again containing the old root and record ¢ (see Figure 2.10¢). When
TOOBIG splits for the final time a new root is created and the tree grows by a level. Fig-
ure 2.10(d) shows the final tree.

Performance of the insertion algorithm: The best case for the inscrtion algorithm is when

there is room for the new record in the initial node. In this case we have to read h nodes
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(where h is the height of the tree) and write one node. The worst case is illustrated by our
last example. If the tree split all the way up to the root, then h+1 new nodes are created
(where h is the height of the tree before inscrtion). That is, we must read h nodes and
write 2h+1 nodes. Knuth [13] reports that the average number of nodes split during an
insertion is 1/( M/2] - 1), where M is the order of the tree. Thus as M increases, the aver-
age number of node splits decreases. For example, if M is 10, the expected number of
splits per insertion is 0.25. This drops to .02 when M is 101, The minimum and maximum
number of node reads are both h. This is because insertion is always initially into a termi-
nal node. The minimum number of node writes is one when, as in the case of our first ex-
ample, the record can be inserted in a lowest level node. The maximum number of node
writes is 2h+1, which occurs when the root splits and the trec grows a level. An alterna-
tive to splitting as a means of resolving an overlarge node is to redistribute records in a
local area of the trec. If an adjacent sibling of the overlarge node has spare room, records
can be moved from one node to the other. Naturally, the ordering of records in the tree

must be preserved. We have not, however, included redistribution in the insertion algo-

rithm.

2.34.5 B-tree deletions

As in the insert operation, we always start the delcte operation at the lowest level of the
tree. If the record we need to delete is not in a terminal node, then we replace it by a copy
of its successor that is the rccord with the next highest key. The successor will be at the
lowest level. We then delete the successor record. A problem with deletions is that after a
record has been removed from a node we may havce underflow: the node may be smaller

than the minimum size. This situation can be resolved by means of redistribution or con-

catenation.

Redistribution is possiblc when an adjacent sibling of the nodc with underflow has rec-
ords to sparc: that is it contains more than the minimum number of records. Redistribu-
tion is possible involves moving records among the adjaccent siblings and parent; thus the
strueture of the tree is not changed. Concatenation, which is performed when redistribu-
tion is not possible, involves the merging of nodes and is the complement of the splitting

process we saw with inscrtions. If concatenation is performed, the structure of the tree is
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changes. Changes may propagate all the way to the root. In the extreme case, the root

node is removed and the shrinks by one level [18].

(*In this algorithm

Finished : a flag that indicates if deletion has finished

TWOBNODE: an oversize node that is about 50% larger than a normal node
A-sibling : an adjacent sibling node.

Out-rec : the record to be deleted from the tree.

*)
search tree for Out-rec forming stack of node addresses
Found — false

read root
repeat
N< number of records in current node
case
key ( in-rec) = key of record in current node : Found <« true
key (in-rec ) < key(R;) P« Py
key (in-rec ) > key(Ry) P« Py
otherwise : P« P;_;(for somei
where key (R.) <key (in-rec) < key (R)))
endcase
if P not null
then push on to stack address of current node
read node pointed to by P
until found or P is null
if found

if Out-rec is not in terminal node

then search for successor record of Out-rec at termmal level (stacking node
addresses)
copy successor over Qut-rec
terminal node successor now becomes the Out-rec

(* remove record and adjust tree *)
Finished— false
repeat
remove Qut-rec (record R;) and pointer P;
if current node is or is not too small
then Finished— true
else if redistribution possible (* an A-sibling > minimum *)
then (* redistribute *)
copy "best" A-sibling , intermediate parent record, and
current (too small) node into TWOBNODE
copy records and pointers from TWOBNODE to "best"
A-sibling, parent, and current node so A-sibling and
current node arc roughly equal size.
Finished— truc
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else (* concatenate with appropriate A-sibling *)
choose best A-sibling to concatenate with
put in the leftmost of the current node and A-sibling the

contents of both nodes and the intermediate record from -
the parent

discard rightmost of the two nodes

intermediate record in parent now becomes Qut-rec
until finished

if no records in root
then (* tree shrinks *)

new root is the node pointed to by the current root
discard old root

Algorithm 2.3 B-tree deletion algorithm

Algorithm 2.3 contains a pseudo-code algorithm for the deletion of a record from B-tree.
The deletion algorithm starts by searching for the record to be deleted. The deletion algo-
rithm starts by searching for the record to be deleted. As with the insertion algorithm,
node addresses are put on a stack during the search to make it simple to move from a
node to its parent later. If the record is not in a terminal node, then we can not delete it
directly. Instead, we move to its successor. Because of the structure of a B-tree, the suc-
cessor of any record will be at the lowest level and will be in a terminal node. The redun-
dant lowest level record is then deleted. Thus in all cases deletion involves removing a
record from a terminal node. The successor of record R; is the first record in the sub tree
pointed to by P; It can be located by moving down the Py pointers in that sub tree until the
lowest level is reached.

In addition to removing the record from the current node, we also remove one of the adja-
cent pointers. In this way the number of records in the node will still be one less than the
number of pointers. We choosc, arbitrarily, to delete the pointer following the deleted re-
cord. If the new node size is not below the minimum, the algorithm terminates.

We can deal with underflow cither by redistribution or by concatenation. Usually a too-
small node can be resolved by redistributing records in a local area of the tree. Redistri-
bution is possible if cither adjacent sibling contains more than minimum number of rec-
ords. Redistribution involves moving rccords from the selected adjacent sibling through
the parent to the too-small node, one of its adjacent siblings, and a record from the parent.

If M, the order of the tree, is odd, then the capacity-of TWOBNODE must be
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(1.5M ] 1.5) records and (1.5M- 0.5) pointers.
If M is even, then the capacity must be

(1.5M - 2) records and (1.5M — 1) pointers. _
Redistribution involves bringing into TWOBNODE the contents of the too-small node,
one of its adjacent siblings, and the appropriate separating record from the parent. These
records and pointers are then redistributed in a way similar to the splitting of TOOBIG in
the insertion algorithm. The central record from TWOBNODE is the one written back to
the parent. The left and right halves remaining arc written back to the two siblings.
Given a choice of sibling nodes to use, we might reasonably choose to use the one that
will cause the new sizes of the two sibling nodes to be closest to 75% full. They would
then be as far as possible from the two size bounds. We could thus hope to minimize the
possibility, assuming insertions and deletions to be cqually likely, of future expensive
splitting, concatenation, or redistribution operations. To avoid additional node reads when
deciding which to use, parent nodes could hold, together with cach pointer to a child, a
count of the number of records the child contains, Howcver, while this would speed up
the delete operation, maintaining the counts would be a considerable overhead in the in-
sert operation.
Redistribution is not possible if the too small node does not have an adjacent sibling node
that is more than minimally full. In this case we have to usc concatenation. We merge the
too-small node with one of its adjacent siblings and the appropriate separating record

from the parent. The resulting node rcplaces one of the concatenated nodes that are then
discarded.

If we examine the properties of the B-tree, we see that concatcnation is possible only in
relatively rare circumstances. If M, the order of the tree, is odd, then the concatenation is
possible only if an adjacent sibling is minimally full, that is, contains (M - 1)/2 records. If
the siblings were larger than this, the node would exceed the maximum size after con-
catenation. If M is even, then concatenation is possible only if a sibling 1s minimally full
or contains onc record over the minimum. We are unlikely, therefore, to have a choice

between siblings with which to concatenate. However if there is such a choice, we could

again choose the sibling that results in the size of the new node being furthest from the . -

two extremes.

Concatenation of two children removes a record from the parent; the separating record

that is used in forming the new node has to be deleted from the parent node. If the parent

node becomes too small by this deletion, then the problem of resolving a too-small node -
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has to be at the next level up. In the most extreme case, concatenation takes place all the
way up the tree. It may be that we remove the only record in the root, leaving just a
pointer. In this case we can discard the root; the node pointed to by the pointer becomes
the new root. This is the only way in which the height of a tree can decrease.

(.m.)

|
v

(.c.f.i.) +(.q.t.)

i

(a.b)(d.e.} (g.h.) (§Lk.L)(.n.o.p.} (.r.s) (-u.v.w.x.)

Figure 2.11 Example of B- tree

Consider the tree of Figure 2.11 and the successive deletion of records with keys j, m, 1,
h, and b. We will assumc the tree of order 5; it follows that the largest node can hold four
records and five pointers and smallest node two records and three pointers. TWOBNODE

can hold six records and seven pointers.

Delete j. The first deletion is a simple one from the lowest level of the tree. The tree after

deletion is shown in Figure. 2.12.

| |
;v | v

(.c.f.i.) (.q.t.)

I Al |

(a.b) (d.e.) (g.h.)(k.L) (.n.o.p) (.r.s) (.u.v.w.x)

Figure 2.12 B- tree of Figure 2.11 after deleting j

Delete m. In this case the record to be deleted is not at the lowest level in the tree, so we

replace it with a copy of its successor (the record with key n) and then delete the lowest

level successor.
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(.c.f.i.) (.q.t.)

T e

(a.b) (d.e.) (g.h)(Kk.L) (.o.p.) (.r.s.) (.u.wv.w.x)

Figure 2.13 B- tree of Figure 2.12 after deleting m

The resulting tree shown in Figure 2.13.

Delete r. Deletion of record r. Deletion of record r makes the resulting node too small.
However, we can resolve the situation without altering the structure of the tree by redis-
tributing records, because one of the adjacent siblings is more than minimally full. Rec-
ords 1n the two adjacent siblings, into TWOBNODE and redistributed. Figure 2.14(a)
shows the tree after the initial deletion and also shows the contents of TWOBNODE. Fig-

ure 2.14(b) shows the tree after redistribution.

{(.n.)

|
; B

(.c.f.i.) (.q.t.)

I T S !

(.a.b) (d.e.) (g.h.)(Kk.L) {.0.p.) (.s.) (.u.v.w.x)

(a)

TWOBNODE =(.s.t.u.v.w.x.)

(‘n-’)
v
(:J‘f_l) (.+ L)
(.a.b.) (d.e.) (g.h){k.L){.0.p.) (.5.L) (w.wx)
(b

Figure 2.14 B- tree of Figure 2.13 after deleting r
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Delete . When we delete the record with key h, the resulting node is again too small.
However, in this case we can not resolve it using redistribution because neither adjacent
sibling has records to spare. We therefore use concatenation. Records and pointers from

the too-small node and the separating rccord from the parent are inserted into an adjacent

sibling .The too-small node is then discarded.

(|-"-i)
ljr\_l: (|.+q.u}.)
(ab)(de)(g) G(k.L) (op) (.s.L) (.v.w.x)

too small ﬁ
Choose arbitrarily to concatenate with right

hand side.
(ini)
c f\)1 (|.q.u.)
(.a.b.} (.d.e)) (g.i.k.1) {(.o.p.) (.s.t.) (v.w,.x.,)
(b}

Figure 2.15 B- tree of Figure 2.14 after deleting h

Figure 2.15(a) shows the trce after the deletion and shows the choice adjacent sibling.

Figure 2.15(b) shows the trec after concatenation.

Delete b. When record with key b is deleted from the trec of Figure 2.15(b) , we have
underflow. This is resolved using concatenation. However, in this case, removing a record
from the parent causes it in turn to become too small. The too small node can not be re-

solved using redistribution because its only sibling is minimally full. Therefore, concate-

nation takes place at this level, too.
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v
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Lol

(.a.c.d.e) (.g.l1.k.1.) (.0.p.) (.s.t.) (.v.w.x.)

v

(b)

.f.n.q.u.)

(-a.c.d.e.) (.g.l.k.l.) (.0.p.) (.s.t.) (.v.ow.x.)~

(c)

Figure 2.16 B-trce of Figure 2.15 after deleting b
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The result is shown in Figure 2.16(b). Notc now, however, that bringing a record down
from the root causes the root to contain no records. It can therefore be removed; thus the

final tree is shown in Figure 2.16(c).

2.34.6 Performance of the deletion algorithm.

The best case of the deletion algorithm is illustrated by first example, that is, when the
record to be deleted 1s at the lowcest level. In this case we have to read h nodes (where h is
the height of the tree) and write one node (to put back thc modified node). The worst
case, according to Bayer and McCreight [5], occurs when concatenation occurs at all but
the first two nodes in the path from the root to the lowest-level deletion node, the child of
the root has underflow, and the root itsclf is modified. In this case, 2h - 1 nodes are read
and h+1 nodes are written. However, because the majority of records are at the lowest
level, Bayer and McCreight report that on average during a delete operation the number

of node reads is less than h+1+1/K and the number of node writes is less than 4+2/k,
where k=/ M/2] - 1.

A number of variations on the B-tree data structure have been devised. Typically, each is
designed to overcome some of the deficiencies of the B-tree. In the next two sections we
consider two such variations: B*-trees, which arise from a suggestion by Bayer and

McCreight [5], and B'-trees, which were sugpested by Knuth [13].

2.3.5 B'-trees

The B'-tree performs searches in the same way as the B-tree, except that there are differ-
ent operation of a B-tree more efficient by reducing the number of occasions when a node

had to be split. If the node into which we nced to insert a record is full, we might in cer-

tain
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(b)
Figure 2.17 Node splitting in B* -tree

circumstances are able to solve the overflow problem by local redistribution of records
rather than by splitting the nodes. Here we consider three possible techniques for redis-

tributing records: right-only, right-or-left, and right and left. The names are derived from

the adjacent sibling nodes involved.

Right-only redistribution. The right-only redistribution process is similar to the redistri-
bution in the B-tree deletion algorithm of Algorithm 2.3. The proposed algorithm exam-
ines the right sibling of the node that is too full (or the left sibling if there is no right one).
Redistribution is possiblc if the sibling node is not full. Thus we must split a node only if
the sibling is full. When we do split, we distribute records from the two adjacent siblings
(one full, one overfull) into threc nodes: the two siblings and a new node. One effect of

this splitting strategy is that three nodes will now be at least two-thirds full instead of at

least half-full, as in a B-tree.

" Right-or-left redistribution. Right-or-left redistribution is similar to right-only redistribu-

tion except when the right sibling is full. In this casc, the left sibling is checked for possi-
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ble redistribution. Nodes are split only when both siblings are full. Again, we distribute
records from two full nodes into three nodes. Right-or-left distribution postpones node

splitting, so the resulting trec will eontain nodes that are, on the average, fuller than with

the night- only technique.

Right-and-left redistributions. We could further than the right-or-left redistribution. At
the time a node is split in the right-or-left technique we are likely to have copies of the
three nodes and the two parent records in main memory. These are the originally full
node, its right and left siblings, and the scparating records in the parent node. At this point
we could redistribute three nodes into four. With this algorithm the lower bound on node
size would in most cases be raised to threc-quarters full. However, not every node has

two siblings, so the split routines involving the right or left sibling only would have to be

employed occasionally.

Table 2.1 Redistribution costs

Required Disc 1/0 Best Case Worst Case
Right-only redistribution ITTww rrwww
Right-or-left Redistribution rrww Frrrwww
Right-and-left redistribution rr w w FrTrwwww

We can compare the expected performance charactceristics of the three possible re distri-

bution technique based on the number of rcads and writes required on the B*-tree

File under the following threc assumptions. First, we assume that all nodcs required will
be available in main memory. Second, we assume that the necessary preconditions for the
technique have been satisfied. For example, in the case of the right-and-left technique, we
assume that the node has both a right and lcfi sibling. Third, we assume that each tech-
nique has a roughly cqual probability of propagating splits up the tree. Thus, in this com-
parison we examine only the local effect of the three redistribution techniques on the sib-

ling nodes. That is, we do not include rewriting the parent node in our matrices, as it is a
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constant. Table 2.1 presents the number of reads ( r ) and ( w ) required for the three tech-

niques.

The best case for each technique is when the right sibling is not full. Two nodes are read
and then written back. The worst casc for the right-or-lcft technique, for example, is when
the right sibling is full and thus the left sibling must be read. The left sibling is full, so we
have to split and write three nodes. Recall for comparison that a split-on-overflow strat-
egy results in a " r w w" case with nodes at least half full. What, then are the advantages
of local redistribution? There arc two. First, the nodes arc used more efficiently with a
minimum capacity of|_(2M-2)/3J records in the case of the first two techniques and | (3M-
3)/4] records in the third case. Sceond, with redistribution, splitting does not propagate up
the tree. Note, however, that the range of node size in a B*-tree is smaller than that in a
B-tree of the same order. If the tree is volatile, there may consequently be more occasions

on which underflow or overflow has to be resolved.

With these redistribution assumptions and the analysis above, the right-only redistribution
technique seems preferable. The right-only technique is simple and gives the advantages

of redistribution with little /O overhead. Therefore, our further discussion will assume a

right-only redistribution algorithm.

For an example of a case where node-splitting is necessary, assume that we have a B -tree
of order 5. With the three nodes depicted in Figure 2.17(a). An attempt to insert a record

with key o into the B*-tree will result in a merging and splitting sequence that transforms

the tree in Figure 2.17(a) into the tree in Figure 2.17(b).

The root node has no siblings. What happcns if it nceds to split? As before, the central

record will becomc the new root and the remaining parts of the old root will form the first
level of the tree. However, to ensure that thesc children are not smaller than the new
minimum size we defined above, the upper bound on the root has to be modified. For a
B'-tree of order M the upper bound of the root node will now be 2 (2M-2)/3] records.
When the roots splits, it will leave two nodes each containing | (2M-2)/3] records. Thus

we now have a tree with two different node capacitics (root node and other nodes).
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Knuth [13] termed the tree that results from these modifications a B -tree of order M has

the following properties:

1. No node apart from the root has morc than M children.

2. Every node, except for the root and the terminal nodes, has at least L(2M-2)/3J + 1

children.

3. The root unless the tree has only one node, has at least two children and at most

2L (2M-2)/3] +1 children.

4. All the terminal nodes appear on the same level, that is, they are the same distance

from the root.

5. A terminal node with K children contains K - | records. A terminal contains at least

L(2M-2)/3J records and at most M - | records.

Table 2.2 Maximum and minimum node sizes

=20 =21 M=22

B-tree (order M)

Minimum records (root) 1 1 1 1
Maximum records (root) M- 19 20 2]
Minimum records (non-root) [(M - 2)21 9 10 10
Maximum records (non-root) M-1 19 20 21
B-tree (order M)

Minimum records (root) ] 1 1 1
Maximum records (root) 2Lem-2y3] 24 26 28
Minimum records (non-root) L (2M-2y/3] 12 13 14
Maximum records (non-root) M-1 19 20 21

Table 2.2 shows maximum and minimum node sizes for root and non-root nodes. The

Figurers for a B-trec and a B*-tree are given for trecs of order 20, 21, and 22.
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Deletions. What we do if a deletion Icaves a node too small? As in the case of a B-tree, -

we can locally redistributes records if an adjaccnt sibling has records to spare. If there is
no such sibling we must concatcnate. Note that only concatenation normally allowable is
of three nodes into two. (The exception is when the only two children of the root are con-
catenated and the tree shrinks a level.). What happens, however, if we are dealing with a
node at one end of a tree level? Such a node has only one adjacent sibling, See for in-
stance, node X in Figure 2.18(a) or (b). We know that node W is minimally full; other-
wise redistribution would have been possible. However, we can not necessarily concate-
nate V, W, and X. If V is not minimally full, the result will be too large to fit into two
nodes. One solution is to redistribute a single record so that W is now too small and X is
minimally full. Now we have an instance of the more gencral case. Redistribution can be

tried, if it turns out that V is minimally full, then V, X, and W can be concatenated.

Comparison with B-tree. The height (h) of a B*-trce of order M containing N records is
given in the following expression:

h <1+ Tlogam.- s [((N+1)/2]
Searching a B*-tree is faster on average than scarching a B-tree for a particular N and M
due to the higher average branching factor. However, B-trees are better for applications
where insertions and deletions are more common than searches. B*-trees are thus better

- when searching is the most common tree operation.

2.3.6 B” -trees

Knuth proposcd a variation on B trees that for clarity Comer designed the B'-tree. Rec-
ords in a B'-tree are held only in the terminal nodes of the tree. The terminal nodes are
linked are tégether to facilitate sequential processing of the records and termed the se-
quence set. Non-terminal nodes are indexcs to lower levels in a similar way to the struc-
ture of Figure 2.1. Nodes in the index levels contain only key values and tree pointers.
There is no need for terminal nodes trec pointer ficlds. Thus terminal nodes have a differ-
ent structure from non-terminal nodes. In fact there is no rcason why the index part of the

tree should not be stored on a different device than terminal nodes.

43



| l

(.e.I\) .v.) index levels
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Sequence sct
Figure 2.19 Example of B*-tree

Figure 2.19 shows a B'-tree. To make distinction clear, index records in the tree are

shown thus:
[key...]
and keys are shown as dingle letters. The rccords in trec are those of the B-tree of Figure

2.5 . The records were inserted into the B*-tree in arbitrary order; thus the index structure

shown is one of many possibilities.

Recall that terminal nodes contain records and index level nodes contain only keys. In
addition, for efficicncy, node capacity is likcly to be a function of the physical record
size. Therefore it is likely to be a function of the physical record size. Therefore it is
likely that the order of a B'-tree index will be different from the capacity of the terminal
nodes in its sequence set. Suppose, for example, that physical records are 512 bytes long
that index records are composed of an 8-byte key and a four byte pointer to the file being
indexed, and that internal tree pointers occupy 2 bytes. We can pack 42 index records in a
512 bytes terminal node and Icave 8 bytcs for pointer to the next terminal node. In-the in-
dex levels we can have 50 eight-byte keys and 51 trec pointers in cach 512- byte node and
have 10 bytes free in which to store the number of records currently in the node. The
properties of a B'-tree of order M arc as follows:

1. The root node has 0, 2, or{ M/2] through M children.

2. All nodes cxcept the root and terminal nodes have at least [ M/2 ] and not more than M

children.
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3. All terminal nodes appear at the same level; that is, they arc the same distance from
the root.

4. A terminal node with K children contains K - 1 keys.

5. Terminal nodes represents the sequence set of the data file and are linked together.

2.3.6.1 Insertions

If the node splits when we insert a record into a tcrminal node of a B*-tree, we put a
copy of the key of the central record in TOOBIG into the index. We then divide all
the records in TOOBIG between the old node and a new node. Thus the central record
will also be in one of the two hal;fes after splitting. If an index node has to split, the
algorithm is the same as for a conventional B-tree and the central record is passed up
to the parent. Figure 2.20 shows thc cvolution of B*-tree. It is the only one of the pos-
sible ways in which the tree of Figure 2.19 might have evolved. For this example we
assume that terminal nodes can hold two or three records and index node one or two

keys.

Evolution of B'-tree -

([a..)§r..][u..D
(a)

(fa.fle.ffn.y Clred s o] [u..])

(c)

45



(a.Jle..}) —»  ([L..]1In..]) = ([r..][s..]}) (Ju..][v..])
(e}

Figure 2.20 Evolution of B' Tree

Figure 2.20(a) shows the tree after only three records have been inserted. Insertion of
a record with key n causes the terminal node to split in two and the key r to bé passed
into the index. It is the first key in the index. This is shown in Figure 2.20(b). Figure
2.20 (c) shows the tree after records with keys e and s have been inserted. Insertion of
a record with key | causes another terminal node to spht, and a second key to be in-
serted into the index. This shown in Figure 2.20(d) . Finally, insertion of a record with
key v causes a terminal node to split, a key to be inscrted into the index, and the root

of thc index to split. Now we have two index levels, as shown in Figure 2.20 (e).

23.6.2  Deletions

When a record is deleted from the B+-tree and no distribution or concatenation is
needed, no changes need be made to the index. Even if the key of the record to be de-

leted appears in the index, it can be left as a separator.
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Figure 2.21 B'-tree of Figure 2.19 after deleting e

Figure 2.21 shows the tree of Figure 2.19 after the deletion of record with key e.
Deletions that result in redistribution of records cause changes in the content but not

the structure of the index levels.

!

.) (.v.)

- \1 ¢ H_l

({a..Iib..D—> (g [h.]) >0 f) = (rJlu..]) > (lv..dlx..])

- <

Figure 2.22 B+-tree of Figure 2.21 after deleting s
Figure 2.22 shows the trec of Figure 2.21 after the deletion of record with key s.

Finally dcletions that result in concatenation of terminal nodes also cause dele-

tions from the index levels.

47



Iy p! v |

(la..l Ib..] |h..|)—)(||..| |n..|)—)(|r..||u..|)—) (| v..||x..|)

Figure 2.23 B+-tree of Figure2.22 after deleting g

Figure 2.23 shows the cffect of deleting a record with key g from the tree of Figure
2.22.

2.3.6.3 Comparison with B-tree

All searches in a B+-tree have to go down to the terminal nodes. However, because
the index levels hold only keys rather than complete index records, searching time is
comparable with a B-tree holding the same number of records. Sequential processing
in a conventional B-tree is more complex than traversing a linked list and may also
require that more than one node be held in main memory simultancously. In a B+-
tree, getting the next record in sequence requires at most onc node read. B+-trees are

therefore good in applications in which both dircet and sequential processing are re-

quired.

2.4 Comparison of Static and Dynamic Indexes :

Held and Stonebraker compared the propertics of static index structures typificd by
ISAM with those of dynamie structures typificd by B-trees and VSAM. They suggest
that while a dynamic structure is easier to reorganize, there is a price to pay for this

and that the costs are threefold.

First, there may be pointers into the B-tree from other files. For cxample, the B-

trec may be the main file with index files pointing into it. Certain operations on a B-
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tree may require a record to be moved from onc node to another. Such movements are
likely to require changes to the pointers to the records that are moved. Thus the insert

and delete operations on the B-trce may have hidden overheads.

Second, there may be concurrency problems in multi-user systems. One user may try

to access a B-tree while another is updating it. The problem of locking out nodes is

trivial.

Finally, B-trees need explicit pointers in non-leaf nodes because nodes can be split
dynamically. A B-tree node can therefore hold fewer records than a node of the same total
size that does not require such pointers. The branching factor is therefore smaller and the
height of the trec likely to be greater than that of a static structure holding the same num-
ber of records. Operations such as search, insert, and delete will therefore tend to take

longer than they would for a static index to a file with no overflows.
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Chapter 3

EXPERIMENTAL RESULT ON PERFORMANCE STUDY OF
B, B AND B* TREES

3.1 Introduction

In chapter 2 we have discussed index techniques and their uses in the databases. Indices
are associated with the main data file. They facilitate the Database Management Systems
to access records in the data file faster and in a random fashion. There are different types
of index structures and algorithms. Each has some advantages and disadvantages over
others. One structure may be suitable in onc context but may not be suitable in another
context. We focused our discussion on dynamic index. B, B™ and B trees are often used
for implementing dynamic index. We have developed a simulation program to see the

performance of these trees in different context. We have shown the results of the program

in this chapter.
3.2 Simulation Program

In this thesis, we did a simulation program for constructing and using B, B™ and B trees
for database indexing. This program generatcs random data to insert, search and delete.
Every time, before the cxecution, the program can take how many records need to be in-
serted, searched and deleted. 1t can sclect cither B or B' or B tree and the order of the
tree. Performance of each tree is measured in terms of number of comparisons, number of
nodes, number of splits and the height of the trec required. At first, cach tree was con-
structed with an adequate number of records to make it matured enough. Performance
statistics were also kept during the construction. Insert, search and delete algorithms were
tested only on the matured trees. Performance statistics were kept during each test. To get
a good and reliable statistics for a particular test the program were cxecuted a farge num-

ber times. The results of these executions were recorded and plotted separately.
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3.3 Results

comparison
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Figure 3.1: No. of Comparisons required with no. of records for constructing B, B™, B* Trees

Figure 3.1 shows the number of comparison required with the number of records for con-
structing B, B™, B' Trees. Number of comparisons increascs with the number records in

each tree. B, B have the same performance in this regard and B" has the worst perform-

ance in this regard.

na.of nodes

Mo of records ta conatryct

Figure 3.2: No. of Nodes required with no. of records for constructing B, B', B* Trees

Figure 3.2 shows the number of nodes rcquired with the number of records for construct-
ing B, B™, B" Trees. B-trec and B trec have the same performance in this regard. B tree

is the worst since it needs the highest number of nodcs.
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Figure 3.3: Height required with no. of records for constructing B, B°, B Trees
Figure 3.3 shows the height of the tree required with the number of records for con-

structing B, B”, B” Trees. B' tree has higher tree height than B tree and B” tree for a large

number of records. For all the trees height increascs as the number of records increases.
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Figure 3.4: No, of splits required with no. of records for constructing B, B, B* Trees

Figure 3.4 shows the number of splits required with the number of records for construct-
ing B, B', B Trees. B tree and B’ tree require the same number of splits. B' is the worst

since it needs the maximum number of splits. For all the trees, number of splits increases

as the number of records increases.
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Figure 3.5: No. of comparisons rcquired with no. of records for inserting in B, B', B Trees

Figure 3.5 shows the number of comparisons required with the number of records for in-
serting in B, B", B* Trees. B trec is the best since it needs the lowest number of compari-
sons. B tree has average performance. B” tree has the worst performance it requires the

largest number of comparisons than the other trees.
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Figure 3.6: No. of Nodes required with no. of records for inserting in B, B", B* Trees

Figure 3.6 shows the number of nodes required with the number of records for inscrting
in B, B, B" Trees. B tree needs few nodes for mserting any number of rccords. B trec has

average performance in this regard. B' tree always needs more nodes than the other trees

for inserting any number of records.
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Figure 3.7: No. of splits required with no. of records for inserting in B, B', B* Trees

Figure 3.7 shows the number of splits required with the number of records for inserting in
B, BY, B* Trees. B tree needs few splits for iserting any number of records. B tree needs
more splits than B” tree for inserting records. B” trec is the worst in this respect because it

requires a large number of splits for inserting records.
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Figure 3.8: The height of the tree required with no. of records for inserting in B, B', B* Trees

Figure 3.8 shows the height of the tree required with the number of records for inserting

. * * . - . .
in B, B, B” trees. B tree always nceds a small height for inserting records and B” trec

needs the maximum height for inserting records.
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Figure 3.9: The no. of comparison required with the order of the tree for B, B', B* Trees

Figure 3.9 shows the number of comparisons required with the order of the trec for B, B’

El

+ . . .
B trces. Number of comparisons increases for all trees as order of the trec increases. B
. L] " -
tree needs a small number of comparisons than B™ and B” trees for any order. B and B*

trees have the same performance in this regard.
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Figure 3.10: The no. ol nodes required with the order of the tree for B, B, B* T'rees

Figure 3.10 shows the number of nodes required with the order of the tree for B, B, B
trees. B is the best since it needs few nodes for any order. B has average performance. B"

is the worst since it needs the highest number of nodes for any order,
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Figure 3.11: The height of the tree required with the order of the tree for B, B', B* Trees

Figure 3.11 shows the height of the tree required with the order of the tree for B, BY, B
trees. B” tree is the best since its height is the minimum for any order. B has average per-

formance. B tree is the worst since its height is the maximum for any order. For all trees
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Figure 3.12: The no. of splits required with the order of the tree for B, B', B* Trees

Figure 3.12 shows the number of splits required with the order of the tree for B, B, B
trees. B” tree is the best since it needs the minimum number of splits for any order. B has

average performance. B” tree is the worst since it needs the maximum number of splits
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for any order. For all trees number of splits decreases as order increases
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Figure 3.13: The no. of comparisons required with the no. of records scarched in B, B, B' Trees

Figurc 3.13 shows the number of comparisons required with the number of records

searched in B, B', B" trees. B tree is the best since it needs few comparisons for any num-
- L

ber of record searching. B’ tree has average performance. B tree has the worst perform-

ance since it needs more comparisons for any numiber of record scarching,
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3.4 Conclusion

Theoretically, B trecs are better for applications where insertions and deletions are com-
mon than scarches. B trecs are better when searching is thc common trec opcrations. Ac-
cording to our statistics B trees need the same height, splits and nodes as B trees in some
cases. We also found some cases in which B trees need more of height, splits and nodes
than B’ trees. But B trees always need less comparisons than B trees. B* trees need more
height, splits, nodes and comparisons than B and B trees. But B* trees are acceptable and
good 1in applications in which both dircct and sequential processing is required. This is

because of using both a tree and a scquence set in B* trees.
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Chapter 4

DISTRIBUTED DATABASE

4.1 Introduction

In recent years, distributed databases have become an importarit area of information proc-
essing, and it is easy to foresce that their importance will rapidly grow. There are both
organizational and technological rcasons for this trend: distributed databases eliminate

many of the shortcomings of centralized databases and fit more naturally in the decen-

tralized structures of many organizations.

4.2 Distributed Database

A distributed database is a collection of data, which belong logically to the same system

but are spread over the sites of a computer network.

For example, consider a bank that has three branches at different locations. At each
branch, a computer controls the teller terminals of the branch and the account database of
the branch. Each computer with its local account database at one branch constitutes one
site of the distributed database, computers arc connected by a communication network.
During normal operations the applications which are requested from the terminals of a
branch need only to access the database of that branch. These applications are compietely
executed by the computer of the branch where they arc issued, and will therefore be
called local applications. An example of a local application is a debit or a credit applica-
tion perforn;ned on an account stored at the samc branch at which the application is re- -
quested. Some applications arc called global applications or distributed applications.. A

typical global application is a transfer of funds from an account of one branch to an ac-

count of another branch. This application requires updating the databases at two different

branches.

Therefore, a distributed databasc is a collcction of data distributed over different comput-

ers of a computer network. Each site of a network has autonomous processing capability
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and can perform local applications. Each site also participates in the execution of at least
onc global application, which requires accessing data at several sitcs using a communica-

tion subsystem [7]. Figure 4.1 shows a typical Distributed Databasc.

_———

Databise 1

Computer 1

\—l

Computer |

Communication
Network

S

Database §

T

Computer |

Figure 4.1: A typical example of Distributed Databasc
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4.3 Distributed Database Management Systems (DDBMS)

A distributed database management system supports the creation and maintenance of dis-

tributed databases.

Several commercially available distributed systems were developed by the vendors of

centralized database management systems[2)[14][23]. They contain additional compo-

nents, which cxtend the capabilitics of centralized database management systems. They

contain additional components, which extend the capabilitics of centralized DBMSs by

supporting communication and cooperation between several instances of DBMSs, which

are installed at different sites of a computer network. The software components which are

typically necessary for building a distributed database in this case are:

1. The database management component (DB)

2. The data communication component (DC)

3. The data dictionary (DD), which is extended to represent information about the distri-

bution of data in the network.

4. The distributed database component (DDB)

These components are connected as shown in Figure 4.2 for a two-site network.

T T T
DB DC DDB
Local databasel .
DD
DD DDl
Local database2
DB DC

Site 1

Site 2

Figure 4.2: Software Components of Distributed Database Management Systems
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4.4 Reference Architecture for Distributed Databases

Global Schema

Fragmentation Schema
B Site Independent

- b L

Schema
Allocation Schema !
Local map- Local map- Local map- Other Local map-
ping ping ping Sitcs ping
Schema-1 Schema-2 Schema-3 Schema-N
DBMS of DBMS of DBMS of DBMS of
Site 1 Site 2 Site 3 Site N

Local Loecal - , Local -

Local* vl
Database Databasc ‘Database
Atsite ] - Atsite 2 Atsite 3

" Databage” "
AtSite N+

v

Figure 4.3: Reference Architecture of Distributed Database
Figurc 4.3 shows reference architecture for a distributed database. This reference archi-
tecture is not explicitlty implemented in all distributed databases: however, its levels are

conceptually relevant in order to understand the organization of any distributed databasc.
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At the top level of Figure is the global schema. The global schema defines all the data,
which is contained in the distributed database as if the database were not distributed at all.
For this reason, the global schema can be defined cxactly in the same way as in a non-
distributed database. However, the data model, which is used for the definition of a global
schema, should be convenient for the definition of the mapping to the other levels of the
distributed database. We will use the relational model for this purpose. Using this model,

the global schema consists of the definition of a set of global relations.

Each global relation can be split into scveral non-overlapping portions, which arc called
fragments. There are several ways in which to perform the splitting operation. The map-
ping between global relations and fragments is defined in the fragmentation schema. This
mapping 1is one to many; i.e., several fragments are corresponds to one fragment. Frag-
ments are indicated by a global relation name with an index (fragment index); for exam-

ple, R;indicates the ith fragment of global relation R.

Fragments are logical portions of global relations, which are physicaily located at one or
several sites of the network. The allocation schema defines at which site(s) a fragment is
located. Note that the type of mapping defined in the allocation sechema determines
whether the distributed database is redundant or non-redundant; in the former case the
mapping is one to many, while in the latter case the mapping is one to one. All the frag-
ments, which correspond to the same global relation R and are located at the same site |
constitute the physical image of global rclation R at site j. There is therefore a one to one
mapping between a physical image and a pair <global relation, site>; physical images can
be indicated by a global relation name and a site index. To distinguish them from frag-
ments, we will use a superscript; for example, R’ indicates the physical image of the
global relation R at site j. In figurc 4.4 , a global relation R is split into four. fragments are
allocated R, Rz, R; & Ry. These four fragments arc allocated redundantly at the three
sites of a computer network, thus building three physical images R', R%, R® .

We will refer to a copy of a fragment at a given site, and denote it using the global rela-
tion name and two indexes. For example, the notation R*, indicates the copy of fragment
R; that is located at sitc 3. Finally, note that two physical images can be identical. In this

case we will say that a physical image is a copy of anothcr physical image. In figure 4.4,

R'isa copy of R*.
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Figure 4.4 : Fragments and physical images for a global relation

Let us now go back to the reference architecture of figure 4.3. We have already described
the relationships between the objects at the three top levels of this architecture . These
three levels are independent; therefore they do not depend on the data model of the focal
DBMSs. At a lower level, it is neccssary to map the physical imagges to the objects, which
are manipulated by the local DBMSs. This mapping is called a local mapping schema and
depends on the type of local DBMS; therefore in a heterogencous system we have differ-

ent types of local mappings at different sites.
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This architecture provides a very general conceptual framework for understanding dis-
tributed databases. The three most important objectives, which motivate the features of
this architecture, arc the separation of data fragmentation and allocation, the control of

redundancy, and the independence from local DBMSs.
4.5 Types of data fragmentation

The decomposition of global relations into fragments can be performed by applying two
different types of fragmentation: horizontal fragmentation and vertical fragmentation.

In all types of fragmentation, a fragment can be defined by an expression in a relational
language, which takes global relations as operands and produces the fragment as result.
For example, if a global relation contains data about employces, a fragment which con-
tains only data about employees who work at department D1 can be obviously defined by
a selection operation on the global relation. There are, however, some rules, which must
be followed when defining fragments:

Completeness condition: All the data of the global relation must be mapped into the
fragments; 1. e., it must not happen that a data item, which belongs to a globatl relation,
does not belong to any fragment.

Reconstruction condition: It must always be to rcconstruct cach global relation from its
fragments. The necessity of this condition is obvious: in fact, only fragments are stored in
the distributed database, and global relation has to be built through this reconstruction op-
eration if necessary.

Disjoint ness condition: It is convenient that fragments be disjoint, so that the replication
of data can be controlled explicitly at the allocation lcvel. However, this condition is use-

ful mainly with horizontal fragmentation, while for vertical fragmentation we will some-

times allow this condition to bc violated.

4.5.1 Horizontal Fragmentation

Horizontal fragmentation consists of partitioning the tuples of a global relation into sub-

sets; this is clearly useful in distributed databascs, where cach subset can contain data,
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which have common geographical properties. It can be defined by expressing each frag-
ment as a selection operation on the global relation. For cxample, let a global relation be

SUPPLIER (SNUM, NAME, CITY)

Then the horizontal fragmentation can be defined in the following way:
SUPPLIER! = SLciry = »se» SUPPLIER
SUPPLIERZ2 = SL¢7y - «.a~ SUPPLIER

The above fragmentation satisfies the completeness condition if “SF” and “LA” are the
only possible values of the CITY attribute; otherwisec we would not know to which frag-

ment the tuples with other CITY values belong,

The reconstruction condition is easily verified, becausc it is always possible to reconstruct

the SUPPLIER global relation through the following opcration:
SUPPLIER = SUPPLIER 1 UN SUPPLIER2
The disjoint ness condition is clearly verified.

We will call the predicate, which is used in the selcction operation, which defines a frag-
ment, its qualification. For instance, in the above example the qualifications are:

ql :CITY=“SF”

q2 :CITY="“LA"

We can generalize from the above cxample that in order to satisfy the completeness con-
dition, the set of qualifications of all fragments must be complete, at lcast with respect to
the set of allowed values. The reconstruction condition is always satisficd through the

union operation, and the disjoint ness condition requires that qualifications be mutually

exclusive,
4.5.2 Vertical Fragmentation

The vertical fragmentation of a global relation is the subdivision of its attributes into

groups; fragments arc obtained by projecting the global relation over each group. This can

66



be useful in distributed databases where each group of attributes can contain data, which
have common geographical propertics. The fragmentation is correct if cach attribute is
mapped into at least one attribute of the fragments; morcover, it must be possible to re-
construct the original relation by joining the fragments together. Consider, for example, a

global relation

EMP (EMPNUM, NAME, SAL, TAX, MGRNUM, DEPTNUM)
A vertical fragmentation of this relation can be defined as

EMP1 = PJ empnuM. NAME. MGRNUM. DEPTNUM EMP
EMP2 = PJ pmpnum. saL. tax, EMP

This fragmentation could, for instance, reflect an organization in which salaries and taxes
are managed separately. The reconstruction of relation EMP can be obtained as

EMP = EMPI INemenum=emenum EMP2

4.6 Finding records in a Distributed Database

At present distributed databases are inefficient in locating records since it is not using any
global index structure. For cxample, if we have a book data file in a distributed databasc,
the single book data file should be fragmented into scveral data files and these fragments
should be allocated in different sites of the distributed databasc. Name of the original
non-fragmented data file and the names of the fragments will be stored in the fragmenta-
tion schema. And the information regarding the allocation of fragments to the sites will be
stored in the allocation schema. When a query is searching a book by a particular author it
will refer the non-fragmented data file. The fragmentation schema will tell the number
and the names of the fragments of the data file. And the allocation schema will tell about
the sites where to get the said fragments, Using thesc information Distributed Database
Management Systems collect the pertaining fragments from different sites and reconstruct
the data file as if it were not fragmented. After reconstruction every record will be read

one after and the author name will be checked against a particular author to identify the
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desired record. Reconstruction may not produce ordered file even if the fragments are or-
dered themselves. Query optimization techniques and cfficient access strategy may ex-
clude one or more fragments, still, there will be fragments that are used in the reconstruc-
tion but don’t contain the record being searched. Alternatively, Distributed Database
Management Systems can search the record in every fragments one after another. In both
of these cases lot of extra works need to be done to find a record. To eliminate these extra

works during searching a record an efficient index structure can be used.
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Chapter 5

PROPOSED DISTRIBUTED INDEX
5.1 Introduction

The reason for providing indexes is to obtain fast and efficient access to data. Indexing is
a data structure based technique for accessing records ‘in a file. Indexes are often tree-
structured because search operations are efficient and sequentia! processing is normally
easy in this structure. A B-tree is a multi-way tree with bounds on the node size. The B-
tree organization is particularly suitable because the search, insert, and delete operations
are guaranteed efficient even in the worst case. Most of the centralized database manage-
ment systems use B-tree or other types of index structures. But in distributed databases no
index structure is used to obtain fast and cfficient access to the data. Because it is very
difficult to build and maintain such structurcs and because it is not convenient to navigate

at a record level in distributed databases. Therefore, efficient access is the main problem

in distributed databases.

5.2 Distributed Index Architecture

To provide cfficicnt access to the data we proposed a distributed index concept. Distrib-
uted index is also a data structurc bascd index comprising of two types of index struc-

tures. One is Global Index (GI) and the other is Local Index (L1). Figure 5.1 shows the

proposed distributed structure:

GI is created and maintained by distributed databasc component {DDB) of distributed
database management systems (DDBMS). LI is crcated and maintained by local database
management component (DB) of DDBMS. Our study shows that B-tree is most suitable
index structure even in thc worst case. For this rcason we preferrcd B-tree for imple-
menting both GI and L1 of distributed index. L has been implemented by B-tree as it was
stated by Bayer and McCreight [5]. All the algorithms like searching, delete and insert
algorithms for LI were used without any modification. Morcover, we used two algo-
rithms, one of these algorithms finds the minimum index value in the B-tree and the other

algorithm finds the maximum index value in the B-tree. © Algorithm 5.1 and 5.2 contain
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the pseudo-code algorithm for finding above mentioned minimum and maximum values

respectively. In LI we stored these two index valucs along with the tree address in a spe-

cial record shown in the figure 5.2.

Global Index

Al

Local Index
at Site |

Local Index
at Site 2

Local Index
at Site 3

Local Index
at Site n

Figure 5.1: Architecture of Distributed Index

For cvery site there is a Local Index (LI), which has been crcated, updated and used inde-
pendently. Like other local database management components LI enjoys autonomy in
each site. There must be a single global index (G1) for a distributed index. GI is created,
updated and used based on local indexes. All the local indexes are perfectly mapped with
the global indexes. When a record is scarched in a distributed database, GI used first to
determine which L1 nceds to be used to find the data. After sclecting the right L1 it is used
to access records in the corresponding site. In this way. distributed index ensures efficient
access to the data in a distributed databasc. If a record is inserted, deleted or updated in a
site special record in the site is modified properly. After any modification in L1 above
mentioned algorithms are always used to find thc new minimum and maximum index
values in the modified B-tree. The new minimum and maximum are checked ag.znnst the
stored (old) minimum and maximum values. If old and new minimum are not same or old

and new maximum are not same, LI overwrites the new values in the special record, and
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the local database management component passes this changed record to the distributed

database management componcnt to modify the GI accordingly.

(LI)

Site address of B-trec | Minimum index value

Maximum index value

Figure 5.2 Special record in LI

Find Minimum (trecRoot, min)

{
currentNode = treeRoot
leftChild =currentNode.P(0)
min=currentNode.R(0)
While (leftChild != Null)
{ currentNode = leftChild

leftChild =currentNode.P(0}

min= currentNode R(0)

}

return min

——

Algorithm 5.1: Find minimum index value in a B-tree

Find Maximum ( treeRoot, max)

{ currentNode = treeRoot
norec = currentNode.rec
rightChild = currentNode.P(norec)
max = currentNode.R(norec-1)

While (nightChild != Null)

RN

currentNode = rightChild

norec = currentNode.rec



max = currentNode R(norec-1)
H

return max

Algorithm 5.2: Find maximum index value in a B-tree

Proposed Global Index (GI) is almost a B tree in its structure and logic. Traditional B-tree
definition is also adopted here. But the records in a Gl node are different from that of a B
tree. B tree holds the index value and the pointer/address of the concern record in the data
file. But GI record holds the minimum and maximum index values of a local index (origi-
nal B-tree in a site) and the pointer/address of that local index. In a B-tree, if a single in-
dex value points more than one records in the data file, the B-tree record keeps the index
value and a pointer to a bucket that points all the concern records in the data file. Simi-
larly, if a range of minimum and maximum index values rcfers more than one local index
in different sites, the GI record keeps the index range and a pointer to a bucket that refers
all the concern local indexes in different sites. We did not consider this complex situatiqn
in this thesis work. We have developed and tested algorithms for the simple case where
an index range always refers a single local index in a single site. Search, insert and delete

algorithms for G] is different from those of B-tree. We have proposed these algorithms

and tested their effectiveness.

5.3 Distributed Index searching (GI searching)

When searching for a record with a given key value we start scarching in global index
first to find out the right local index. We start scarching the global index by examining
the root node. We search the node for the record whose minimum index value and maxi-
mum index value represents the range in which the scarch key falls. When we find such a
record we get the pointer/location of the local index in the record. Using that
pointer/location we start scarching in the local index for a record with the search key. The

result of this search in the local index is reported to the global index.
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If the record with the right range is not found in the global index, comparisons of mini-
mum index values and maximum index values in the node with the search key will find
out the pointer to the sub-tree that may contain the record. We read the node pointed to
and repeat the operations. [f the pointer is null we report that the record we are searching

for is not present in the distributed database. Algorithm 5.3 contains the pseudo-code al-

gorithm for searching record in a GI.
Search GI (Glroot, searchKey)

{ currentNode = Glroot

found= False

while (currentNode != null)
{
norec = currentNode.rec
for ( i=0; 1<norec; i++)
d
currentRecord = currentNode. R{1)
if (scarchKey < currentRecord.min
currentNode =currentNode.P(i)
clseif {currentRceord. min<searchKey <currentRecord.max)
$ Scarch in the LI pointed by currentRecord.P
search LI (LI, scarchKey, found)

b
elseif (i= (norcc - 1))

currentNode=currentNode.P(norec)

if (currentNode == null)

found = False

V
if (found)
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return (record)

Algorithm 5.3: Algorithm for searching in Global Index of a Distributed Database

5.4 GI insertion

Insertion algorithm in GI is almost same as that of B-trce. Insertion algorithm of B-tree
compares the key value of the record nceds to be inserted with the key values of the rec-
ords in different node. Insertion algorithm of GI does the same thing by using either the
minimum values or maximum values for comparison. This would certainly return the cor-
rect insertion point in a terminal node. Only constraint is that if the algorithm is using the
minimum values for comparison it has to usc the minimum values always. In this thesis
work we use minimum values. The algorithm solves the overflow problem in a node in

the same way as it is solved in B-trce insertion algorithm.

InsertGI (Glroot, inRec)
{
found = false
currentNode = Glroot
repcat
{ N=currentNode.norec
currentRecord=currentNode.R(0)
casc
inRec.min = currentRecord. min: found = true
inRec.min < currentRecord. min: P = currentNodc.P(0)
inrec.min > currentNode.R(N). min: P = currentNode.P(N)
otherwise
P = currentNode.P(i — 1) for some i where

CurrentNode.R(i ~ 1).min < inRec.min <currentNode.R(i).min

endcase

If P not null then push onto stack address of currentNode

CurrentNode =P
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t untif (found) or (P = null)
if (found) then the record is already in the tree

else

P = null
Finished = false

Repeat
{

if currentNode is not full then put inRec and P in currentNode

Finished = truc
else copy currentNode to TOOBIG
insert inRec and P into TOOBIG
inRec = center record of TOOBIG
currentNode = 1* half of TOOBIG
Get space for newNode, assign address to P
newNode = 2" half of TOOBIG
If stack not empty then pop to stack and read node pointed to
clse
get space for new node
ncwNode = pointer to oldRoot, inrec and P
Finished = True

}

until Finished

—_—

Algorithm 5.4: Algorithm for inserting records in Global Index of a Distributed Da-

tabase
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55 GI deletion

Deletion algorithm in Gl is almost same as that of B-tree. Deletion algorithm of B-tree
like insertion algorithm compares the key value of the records needs to be deleted with
the key values of the records in different nodes to find out the right record and pointer to
delete. Deletion algorithm of Gl does the same thing by comparing either the minimum
values or maximum values. In this thesis we compare minimum values, Like B-tree dele-
tion algorithm if the record we need to delete is not in a terminal node this algorithm finds
its successor in a terminal node and swaps these two records and then deletes the record
and the pointer from the terminal node. Underflow problem in anode is solved by this al-
gorithm in the same way as it is solved in a B-trec deletion algorithm. Algorithm 5.5

contains the pseudo-code algorithm for deleting from a GI.

DeleteGI (Glroot, outRec)
{

found = false

currentNode = Glroot

repeat
1
N = currentNode.norec
CurrentRecord = currentNode.R(0)
case '
outRec.min = currentRceord. min:  found = true
outRec.min < currentRecord. min: P = currcntNode.P(0)
outRec.min > currentNode.R(N). min: P = currentNode.P(N)
otherwise '
P = currentNode.P(i — 1) for some i where
CurrentNode.R(i — 1).min < outRec.min <currentNode R(1).min
endcase
if P not null then push onto stack the address of currentNode
CurrentNode = P
; until {(found} or P is not null
if (found)
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{ if outRec is not in terminal node
{then search for successor record. of outRec at terminal level (stacking
nodec addresses)
COpy successor over outRec
terminal node successor now becomes the outRec
}
Finished = false
repeat
{remove outRec and pointer P
if currentNode is not root or is not too small then finished = True
elseif redistribution possible then
{ copy “best” A-sibling, intermediate parent-record, and currentNode into
TWOBNODE
copy records and pointer from TWOBNODE to “best” A-sibling, parent,
and currentNode so A-sibling and currentNode are roughly equalize
Finished = True
}
else
{ choose best A-sibling to concatenate with put in the leftmost of the
currentNodce and A-sibling the contents of both nodes and the
intermediate record from the parent discard rightmost of the two nodes

intermediate record in parent now becomes outRec.

;

until finished
if no records in root
then { new root is the node pointed to by the current root

discard oldroot!}

——

Algorithm 5.5: Algorithm for deleting reeord from Global Index of a Distributed

Database
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Chapter 6

EXPERIMENTAL RESULT OF PROPOSED DISTRIBUTED
INDEX

6.1 Introduction

We discussed our proposed distributed index structure for distributed database in chapter
5. Our proposed structure will be effective on simple non-overlapping distributed data-
bases only. To show the effectiveness and correctness of our proposed distributed index

structure we have developed a simulation program. The results from the program are

shown in this chapter.
6.2 Simulation Program

Developed simulation program can take a simple non-overlapping distributed relation as
input. For each site it creates a local index of the records in that site. Based on these local
indices from all sites the program creates the global index. Using the global and local in-

dices the program can secarch, insert, and delete records in the distributed relation effi-

ciently.
6.3 Results

We considered a simple non-overlapping distributed bank database, which has a global
relation account as follows:

ACCOUNT (ACCNUM, ACCNAME, CUSTNUM. OPENDATE, BALANCE)

Where the attribute ACCNUM is any valid account number, the attribute ACCNAME is
any valid account name, the attribute CUSTNUM is any valid customer number, the at-
tribute OPENDATE is the opening date of the account and the attribute BALANCE is the
balance amount of the account. The account table is neeessary to be indexed by

ACCNUM. Let the bank has several branches and the distributed site is maintained in

every branch.
ACCOUNT schema has been fragmented into 10 fragments as follows:

78



ACCOUNT, = SLooj < acenum < 100 ACCOUNT
ACCOUNT;= SLipi< acenum <200 ACCOUNT
ACCOUNT;:= SLay < acenum = 300 ACCOUNT
ACCOUNT, = SLiy; < aceNuM <00 ACCOUNT
ACCOUNT;s = SLu4o1 < acenum < soo ACCOUNT
ACCOUNTs= SLso < acenuM <600 ACCOUNT
ACCOUNT; = SLggi < acenum < 700 ACCOUNT
ACCOUNTs= SL1y; < acenum < go0 ACCOUNT
ACCOUNT9= SLszgi < acenum <900 ACCOUNT
ACCOUNT 0= SL 901 < aconum < 1o ACCOUNT

Each of the above fragments is allocated in a different site, 1.e., there are ten sites and site
i holds the fragment ACCOUNT; Local Database management system at each site cre-
ates an index on each fragment by ACCNUM using the Algorithm 2.2 and assuming the
B Tree of order 3. We call these indexes Local Indexes (LI). Using Algorithm 5.1 and
5.2, local system creates the special record in cach site. These special records and local
indexes at site 1, site 2 and so on are shown in the Figurc 6.1 to 6.10 respectively. Each
local system passes the special record to the global database management component to
construct the Global Index (GI). Construction of GI is nothing but inserting each special

record in the proposed B Tree of order 3 using the Algorithm 5 4. Figure 6.11 shows GI
step by step.

[003-091  Tsitel |

{a) Special record at site: |

(r03ot?
(r()*?_) #‘OSO{) |
(*004 ) ( 023%) *040* {(*060*069*)

{*003*) {(*009*) (*017%) (*027*)  (*034%) (*045%) (*057*) (*061*) ("0B0*091*)

(b) B-tree of order 3 at site: 1

Figure 6.1: Local Index (local B Tree) at site 1
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L105-189  [site2 |

(a) Special record at site: 2

1‘I30D
v v

(;‘]]4“) ( 154 )
(]"107% ([IZT) (* 140[) (1I65‘[185’[)
{(*105*) (*110%) (*120%) (*125“‘) (*135*)  (*145%) (*160*) (*170*) (*189%)

(b} B - Tree of order 3 at site: 2

Fipure 6.2: Local Index (local B Tree) at site 2

(201300 [Site3 |

(a) Special record at site: 3

(#235%)

(rzzo (rzeo
(szl)—l j'zzo*) [250[) ( 270F290%)
(*201%) (*210%) (*222%) (*230%) (*241%) (*252%) (*261%) (*289%) (*300*)

{b) B - Tree of order 3 at site: 3

Figure 6.3: Local Index (local B Tree) at site 3

80



{300-380 | sitc4 |

(a) Special record at site: 4

{F3301)
(T3l5 (1'345
(r309|1 (I325El[337t) ( 355¥364%)
(*306%) (*311%) (*320%) (*327%) (*333%) (*340%) (*350*) (*360*) (*370*380%)

(b) B - Tree of order 3 at site: 4

Figure 6.4: Local Index (local B Tree) at site 4

[402-493  [site5s |

(a) Special record at site: 5

r435|
v v
(|*4]5 ) (I“4()2r)
7 * 4]0\)1 (*425"‘) (* 50* (F472F487%) .
(*402%) (*4]12%) (*420*) (*430%) (*440%) (*460*) (*470%) (*480*) (*490*493%)

(a) B Tree of order 3 at site: 5

Figure 6.5: Local Index (local B Tree) at site 5
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| 501 - 598 | sitc 6 ]

(a) Special record at site: 6

(?538%)
rszo rsﬁzr

v

M
(F5051) ( 530)Ll (*555 ( 575|‘5%'[)
"56él

(*501%) (*s512%) (*527*%) (*535*)  (*550%) (*570*)  (*580%) (*590*598%)

(a) B Tree of order 3 at site: 6

Figure 6.6: Local Index (local B Tree) at site 6

[601-691  [site7 ]

{a) Special record at site: 7

(r635ll

v v
(*612*) (Fo56)
([603[) (I623I) (*)46 (F670F)
(*601%) (*610%) (*620%) (*630%)  (*640%) (*650%) (*665%) (*689*691%)

{a) B Trec of order 3 at site: 7

Figure 6.7: Local Index (local B Tree) at site 7
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[ 708 - 783 [ sitc 8 |

(a) Special record at site: 8
(r735r

q*720r 1*755%

(*7:0*)|-¢ 1*725*‘%*745t ($767¢775%)

(*708*) {(*T13*) (*723%) (*730%) (*741%)  (*750%)(*760%)(*770*) (*780*783%)

{a} B Tree of order 3 at site: 8

Figure 6.8: Local Index (local B Tree) at site 8

[804-898  [site9 |

(a) Special record at site: 9

(8355
o0
(I EH_’;“‘\)_¢ (i“BSS*[ 875

([‘805% T*BZS% [847 ([8651) *885%)

(*804*)  (*810*)  (*820%) (*830%) (*840%) (*850%) (*B6O*) (*870*) (*880*) (*890*898*)

(a) B Tree of order 3 at site: 9

Figure 6.9: Local Index (local B Tree) at site 9
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904 - 997 site 10

(a) Special record at site: 10

("9I0“‘930'|")

| l_*
v v
(#903%) (¥920%) *940%)
v |_+ &__I |_+ v \_ir
(*904%*) (*907*) (*916*) (*923%) (*935%) (*980*997*)

(a) B Tree of order 3 at site: 10

Figure 6.10: Local Index (local B Trec) at site 10

{*{003 - 091, site 1)*}

() Global Index after inserting the record coming from site 1

1*(003 - 091, site 1)*(105 -189. site 2)*)

(b) Global Index after inserting the record coming from site 2

{003 - 091, sitc 1)*(105 —189, site 2)*(201-300, sitc 3)*}
TOOBIG

(c) Global Index after inserting the record coming from site 3

{r(105-189. sitc 2{*: _

§¥(003 - 091, site 1)*} 1*(201-3040, site 3)*)

(d) Global Index after splitting the TOOBIG node

Figure 6.11(Part 1 of 4); Global Index after inserting records from site 1,2, and 3
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j*(lOS - 189, site 21“‘}

1*(003 - 091, site])*) £*(201-300, site 3)*(306-380, sitc 4)*)

(e) Global Index after inserting the record coming from site 4

i“‘(]OS -189, site 2)‘|"}

1*(003 - 091, sitc 1)*} {*(201-300, sitc 3)*(306-380, site 4)*(402-493, sitc 5)*)
TOOBIG

(D) Global Index after inserting the record coming from site 5

1*(105 -1 89, sitc 2)¥(306-3 80, sitc 4)*}
{ " !

{*(003 - 091, sitc 1)*} {*(201-300, site 3)*} {*(402-493, sitc 5)*}

(g) Global Index after splitting the TOOBIG node

]*(105 ~189, site 2) (306-380, site 4)1}

1*%(003 — 091, site 1)*} {*(201 300, site 3)*} {*(402-493, site 5)*(501-598, site 6)*)

(h) Global Index after inserting the record coming from site 6

J1*(105 -189, site 21“(306-380, sile 4)“‘! '

{*(003 - 091, site 1)*! 1*(201-300, site 3)*}  {*(402-493, sitc 5)*(501-598, sitc 0y*(601-691, site 7)*}

TOOBIG

(i) Global Index after inserting the record coming from site 7

TOOBIG

f *(105 189, site 2)*(306-380, site 4)*(501-598, sitc ())*‘

1*¥(003 - 091, site 1)*! 1*(201-300, site 3y*]  1*%(402-493, sitc 5)* 1 {*601-691, site m*y

(j) Global Index after splitting TOOBIG node

Figure 6.11(Part 2 of 4): Global Index after inscerting records from site 4, 5, 6 and 7
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*(306-380, sitc 4)%}

1*(105 -189, site 2)[ {[‘(501 -598, site 6)*‘

1*(003 - 091, site 1)*} 1*(201-300, site 3)*} [*(402-493, sitc 5)*} {*(601-691, sitc 7)*}

(k) Global Index after splitting TOOBIG root
[*(306-380, sitc 4)*}
*(105 -189, site 2)* {F(501-598, site 6)*}

— l

1*¥(003 — 091, site 1)*} 1*¥(201-300, site 3)*! 1*(402-493. site 5)*]  {*(601-691. sitc TY*(708-783, sitc §)*)

(1) Global Index after inserting the record coming from site 8

{*(306-380, sitc 4)*}

3

I*(105 -189, site 2)* {*(501-598, silc 6)*}

.

'

1003 —091. site )*! PHZ01-300, site 3)*! PHA02-493 site 5)*1 1*(601-691, site 7Y"(708-783. site 8)*(304-898, site N*:

TOOBIG

(m) Global Index after inscrting the record coming from site 9

*(306-3R0, site 4)&

*(105 189, site 2)%} P FESOE-598] site 6)F(T08-743, site B+

{H003 — 091, site 1)*} *(201-300. sitc 3)*) 1*(402-493 site 5)*1 1HO01-691, site T)*! {*(804-398. sitc 9)y*}

(n) Global Index after splitting TOOBIG node

Figure 6.11(Part 3 of 4): Global Index after inserting records from site 8 and 9

g6
o



{['(306 -380, sitc 4) t

{*¥(105 189, site 2)* J%OI -598, site 6) I(TOS =781, site §)*}
{*(003 - 091, site 1)*}  {*(201-300_site 3)*}  §*(402-493_ silc 5¥¥F 1*=(601-691, site T)*} {*(804- BQJ site 9)*(901-997, site 10)*}

(0) Global Index after inserting the record coming from site 10

Figure 6.11(Part 4 of 4): Global Index after inserting records from site 10

6.3.1 Searching account number 333

Every search would start from the root of the GI. The root node, in this case, has one rec-
ord. The minimum and maximum values of this record are 306 and 380 respectively. 333
belong to this range. The search in Gl by the Algorithm 5.3 will return the site 4 for fur-
ther scarching. Searching at site 4 by the Algorithm 2.1 will again start from the root of

the LI at site 4. Algorithm 2.1 will eventually find the record with the account number

333 in the local index.

6.3.2 Searching account number 489

Algorithm 5.3 will not find any record in the root of G1 in which 489 belongs. The root
has only onc record. . The minimum and maximum values of this record are 306 and 380
respectively. 489 is greater than both 306 and 380 . For this reason, Algorithm 5.3 will
start checking the right child node of the visited record in the root. The first record in this
node has the minimum value 501, which is larger than 489. So the scarch will proceed by
checking the left child node. The only onc record of this child node has the minimum and
maximum values 402 and 493 respectively. 489 belongs to this range. Algorithm 5.3 will
return site 5 for further scarching. Searching at sitc 5 using the Algorithm 2.1 will not find
any record for the account number 489, The answer of the search will be ‘the account

number 489 does not exist in the database’.
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6.3.3 Searching account number 000

Algorithm 5.3 will start scarching account number 000 at the root of the GI. The only re-

cord in the root has the minimum value 306 , which is larger than 000. For this reason, the
left child of the record will be checked. The only record in this child has the minimum
value 105, which is again larger than 000. So the search will proceed by checking the left
child of this record. The new child node has only one record with the minimum value
003, which is larger than 000. The search will try to check the descendant left child node.
But there is no left child node in this casc. As a result, the scarch will be end at this point

without returning any site for further search. And the answer of the search is * the account

number 000 does not exist in the database’,

6.3.4 Deleting account number 490

For deleting account number 490, it has to be scarched first using the Algorithm 5.3 and
Algorithm2.1. The search will find the account at site 4. Using Algorithm 2.3 account
number 490 will be deletéd from the LI at site 4. Algorithm 5.1and Algorithm 5.2 will
give the new minimum and maximum values at site 4. These arc 402 and 493 respec-
tively. Since they are same as the old minimum and maximum values, the delete algo-

rithm has nothing to do in GI. The delete will be simply complete at this stage. Figure
6.12 shows the LI and GI after deleting the account number 490.

402-493 Site 5

(a) Special record at site: 5 after deleting the account number 490
(|"435i“)

v v

(|*415 } (I"‘4()2|‘
v H
(’ 410% ) ( 425|)j 1450 % ﬂ("‘47"2@7"“[)

(*402*) (*412%) (*420%) (*430%) (*440%) (*460*) (*470%) (*480%) (*493%)

{b) Local Index (B Tree of order 3) at site: 5 after deleting the acecount number 490



{[’(306-380. site 4)"

SH(105 189, site 2)*! “( 01-598, site 6)q(708-783, sitc §)4}

1¥(003 —091.site 1)*}  {*(201-300, sitc 3)*}  [*(402- 4‘)3 site 5)*} {H(601-691, site 7)*} {'(804 898, sitc 9)*(901-997, site 10)*}

(¢) Global Index (Proposed B Tree of order 3) after deleting the account 490

Figure 6.12: Local Index at site 5 and the Global Index after deleting the account 490

6.3.5 Deleting account number 380

Algorithm 5.3 and 2.1 will find the account at site 4. Algorithm 2.3 will delete the ac-
count from the LI at site 4. Algorithm 5.1 and 5.2 will give the new range of the LI,
which are 306 to 370. Before deleting the account (with the account number 380) the
range was 306 to 380. Since the range has been changed it has to be reflected in the GL
Algorithm 5.3will find a record in the GI with the range 306 to 380 and the site address as
site 4. Using the Algorithm 5.5 this record will be deleted first. After that the Algorithm
5.4 will insert a record in the GI with the range 306 to 370 and the site address site 4. Fig-
ure 6.13 shows the LI and GI after deleting the account number 380.

306 - 370 sitc 4

(a) Special record at site: 4 after deleting the account number 380

(*330{)
(TBISTj * (r‘145

1 ”S“iLl

(*306*) {(*311*) (*320%) (*327*) (*333*) (*340%) (*350*) (*360*} (*370%)

A

(b) Local Index (B - Tree of order 3) at site: 4 after deleting the account number 380
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{(306-370, site 4)[;

{*(105 -189, site 2)* WF(501-598, site 6)%(708-783, site 8)1}

v :
14003 - 091, site 1)*}  [™(201-300,sitc 3)*}  {*(402-493 sitc 5)*}  {*(601-691. site 7)*4 {*(804-898, site 9)*(901-997, sitc 10)*}

(c) Global Index (Proposed B Tree of order 3) after deleting 380

Figure 6.13: Local Index at site 4 and the Global Index after dcleting the account 380

6.3.6 Inserting the account number 697 at site 7

Algorithm 2.2 will insert the account number 697 at sitc 7. Algorithm 5.1 and 5.2 will
give the new range of the LI at site 7. The range has been changed to 601- 697 from 601-
691. The change needs to be reflected in the GI. Algorithm 5.3 will first find a record in
the GI with old range and site address (601-691, site 7). Algorithm 5.5 will delete the rec-
ord from the GI. Algorithm 5.4 will insert a new record in the GI with the new range and

site address (601-697, site 7). Figure 6.14 shows the LI and GI after Inserting the account
number 697 at site 7.

601 - 697 site 7

{(a) Special record at site: 7 after inserting the account number 697

(r635r)
v v
(*Glz*) ()5(){‘)
(’603}) (I‘(’)Z?]) (* 46* ( 670%1’])
(*601%) (*610*) (*620%) (*630*) (*640™) (*050%) (*665*) (*689%) (*697*)

(b) Local Index (B Tree of order 3) at site: 7 after inserting the account number 697
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{r(306-370. site 4)T}

(105 -189, site 2)*! ’|"(1501-598, site ())[(708-783. sitc B)¥)

{003 - 091, site F)*}  1%(201-300, site 3)*}  1%(402-493, sitc 5)*} | *(601-697. site * {*(804-898, sitc 9¥*(901-997, sitc 10)*}

(¢) Global Index (Proposcd B Tree of order 3) after inserting the account number 697

Figure 6.14: Local Index at site 7 and the Global Index after inserting the account number 697

6.3.7 _ G after site 10 has been vanished

If all the records of a site, say site 10, have been delcted, the LI of the site is just a root
node without any record and children. And the special record is simply an empty record.
This situation needs to be reflected in the GI. For this, the Algorithm 5.3 will be used to
find the record of site 10 in GI. And the Algorithm 5.5 will be used to delete the record
from GI. Figure 6.15 shows the GI after site 10 has been vanished.

TGO()—B?O, silc 4 *I !

(105 189, site 2)*} HF(S01-598, site 6)F(708-781, site B)*}

1003 - 091.site 1)®}  {*(201-300. site 3)*!  {*(402-403, sitc S¥*L EHO01-0697, site 7Y% {*(804-898, silc H*}

Figure 6.15: Global Index (Proposed B Tree of order 3) after Local Index at site 10 has been vanished

6.3.8 GI after site 8 has been vanished
When the records of site 8 is required to be deleted from the GI. We use the Algorithm
5.3 to find the record and the Algorithm 5.5 to delete the record. Figure 6.16 shows the GI

after site § has been vanished.
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I*(306-370, stic 4)*

{*(105 - 189, site 2)*! {*(501 398, site 6Y1(804-898, site 9)¥}

l 52

{003 - 091, site 1)™} {*(201-300. sitc 3)*}  |*(402-493. site S {*(601-697, site 7)*)

Figure 6.16: Global Index (Proposed B Tree of order 3) after Local Index at site 8
has been vanished
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Chapter 7

CONCLUSION

Although most of the databascs are relational database at present other types of database
like object oriented multimedia databases are now gaining popularity very much. Index
structures like B, B', B* trees have proven performance on relational databases. Further
study and experiment are required to see the performance of these trees on other types of
databases. Actually, indexing in object oriented and multimedia databases introduces lot
of new problems. These problems need to be solved with introducing new concepts and
algorithms. We did not work on this issuc in this thesis. But it is an interesting and de-

manding area to work under database research,

We proposed and examined the index algorithms for simple horizontatly frégmented dis-
tributed databases. In fact, simple vertically fragmented distributed databases do not need
to keep both LI and GI. In this case, the index-key would be cither in one fragment or in
more fragments and all the records (not with all the attributes due to vertical fragmenta-
tion) of the global relation will present in the fragment(s) and the LI in the fragment(s)
alone will serve the purpose. Complex distributed databases having derived or mixed or
both types of fragments will certainly require extra works to be done for indexing. More

complex index structure and algorithms can be proposed and tested to get acceptable re-

sults.

Since there is no existing model of distributed index, we could not comparc the perform-
ance of our proposed model against any model. New models can be proposed and com-
pared with this model. This model proposed most of its algorithms based on previous
works with minor variations. These variations do not have major performance cffects.

Further study can be conducted to get better algorithms.

In this model (distributed index), we did not consider the cffects of network and system
failure. But these are the important factors, which have serious cffects on distributed da-
tabases as well as distributed index. Further study is required to improve the model to

sustain and perform well cven in the presence of these failures.
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