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Abstract

This thesis deals with rectangular drawings of planar graphs. Rectangular drawings have

numerous practical applications in different fields of science and technology. A rectangular

drawing of a plane graph G, that is a planar graph G with a fixed embedding, is a drawing

of G such that each vertex is drawn as a point, each edge is drawn as a horizontal or a

vertica1line segment, and the contour of each face is drawn as a rectangle. A planar graph

G is said to have a rectangular drawing if G has a rectangular drawing for at least one of its

planar embeddings. No necessary and sufficient condition is known for a planar graph to

have rectangular drawing. In this thesis we establish a necessary and sufficient condition

for the existence of a rectangular drawing of a planar graph G for the case where G is a

subdivision of a 3-connected cubic planar graph. We also give a linear-time algorithm to

determine whether G has a rectangular drawing or not, and to find a rectangular drawing

of G if it exists.



Chapter 1

Introd uction

The visualization of complex conceptual structures is a key component of support tools

for many applications in science and engineering. A graph, which consists of a set of

vertices and a set of edges, is used to model conceptual structures containing information.

Graphs are used to represent any conceptual structure that can be modeled as objects and

relationship between those objects. Thus graph drawing, that is visualization of graphs,

finds its applications in many information visualization systems. We will see some of its

applications here.

Graphs are used to represent entity-relationship diagram for modeling data of a

database sytem; an entity is represented as a vertex of a graph and a relationship between

two entities x and y are represented as an edge between x and y. In a graph representing

an entity-relationship diagram vertices are drawn as boxes, and edges are drawn as chains

of horizontal and vertical line segments. Fig. 1.1 shows an entity-relationship diagram

where texts corresponding to entities are written inside boxes. If a diagram is small then

one can draw. it by hand, but if a diagram is large then it is difficult to draw it by hand.

In this case we need algorithms for automatic drawing of that diagram.

Graphs are also used in computer networking to describe hierarchies and intercOliilec-

1
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Book

An Entity-Relationship Diagram

Figure 1.1: An example of an Entity-Relationship Diagram.

Introduction

tions of components in computer networks; each component is represented as a vertex in

a graph and the connection between a component a and a component b is represented by

an edge from a and b. These graphs are typically drawn as diagrams with texts at the

vertices and the line segment joining the vertices as edges. Fig. 1.2 represents a di~gram

of a computer network. System administrators use such diagrams for understanding,

monitoring and controlling operations of computer networks.

We now consider another example from [R99]. The graph in Fig. 1.3(a) represents

the components and connections of an electronic cicuit. In this example, a and bare

electronic components and the curved line between them is the connection between the

components a and b. The representaion in Fig. 1.3(a) is clumsy and difficult to trace out.

I\Ioreover, in this representation one cannot lay the circuit on a PCB because of edge

crossings. But the representation in Fig. 1.3(b) looks better and it is easily traceable.

The representation in Fig. 1.3(b) can be used for desired PCB layout ofthe circuit, since

-
there is no edge crossings in this representation. Thus the objective of graph drawing is

I I' I" ' ,
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Figure 1.2: A diagram of a computer network.

to obtain a nice representation of graph such that the graph and its contents are easily

understandable. Moreover, the drawing should satisfy some criteria that arises from the

application point of view.

(a) An Electronic Circuit

b

I
a

(b) Desired PCB Layout

b

Figure 1.3: An example of a graph drawing in circuit schematics.

Automatic graph drawings have numerous applications not only in database system,

computer networks and in PCB layout, but also in VLSI f1oorplanning, information sys-



4 Introduction

terns, computer architecture, circuit schematics, architectural floorplanning, etc.

In this chapter we provide the necessary background and objective for this study on

graph drawing. In Section 1.1 we give a historical background of the development of the

field of graph drawing from [R99). In Section 1.2 we introduce some conventional drawing

styles from [R99]. In Section 1.3 we discuss some drawing ae.sthetics based on which a

drawing is evaluated. In Section 1.4 we illustrate the applications of rectangular drawing.

In Section 1.5 we explain the objective of this thesis, and we summarize our results in

Section 1.6.

1.1 Historical Background

The first need for graph drawing algorithms arose inlate 1960's, when the large number

of elements in increasing complex circuit designs made hand-writing too complicated.

Algorithms were developed to aid circuit design, an overview can be found in the book of

Lengaur [L90]. The field of graph drawing with the objective of producing aesthetically

pleasing pictures became of interest in the late 1980's [CON85, TBB88]. The reason for

this was the realization that in engineering and in production process, information about

the processes is an important resource for management and control. Thus, information

managers needed some efficient tools to help them to present information easily. Graph

drawing is such a tool.

This field has been flourished intensively in the last two decades. Progress in com-

putational geometry, topological graph theory etc. influenced this field considerably. A

comprehensive bibliography in [DETT94] shows that an intensive work is being done in
C

the lasi two decades.
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1.2 DrawingConventions

5

In this section we introduce some conventional drawing styles. A drawing convention of

a real-life application can be very complex and can involve many details of the drawing.

Standard drawing conventions, which are widely used, are given below.

1.2.1 Planar Drawings

A drawing of a graph is planar if no two edges intersect in the drawing. Fig. 1.4(a)

shows a planar drawing and Fig. 1.4(b) shows a non-planar drawing of the same graph.

Unfortunately not all graphs admit planar drawings. It is an interesting problem to find a

planar drawing of a graph, if the graph admits such a drawing. The graph, which admits

a planar drawing, is called a planar graph. A plane graph is a planar graph with a fixed

planar embedding.

Since all graphs do not admit planar drawings, it is needed to test whether the given

graph is planar or not to find a planar drawing of the given graph. If the graph is planar,

then one needs to find a planar representation of the graph which is a data structure

representing adjacency lists: lists in which the edges incident to a vertex are ordered, all

clockwise or counterclockwise, according to the planar representation. Kuratowski [K30J

gave the first complete characterization of planar graphs. But this characterization does

not lead to an efficient algorithm in order to test planarity. Linear-time algorithms for

planarity testing were developed later [HT74, BL76, CNA085, M92].

1.2.2 Polyline Drawings

A polyline drawing is drawing of a graph in which each edge of the graph is represented

by a polyline chain. A polyline drawing of a graph is shown in Fig. 1.5(a). The point
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d

Figure 1.4: (a) A planar drawing and (b) a non-planar drawing of the same graph.

at which an edge changes its direction is called a bend. Polyline drawings provide great

flexibility since they can approximate drawings with curved edges. However, edges with

more than two or three bends may be difficult for the eye to follow.

1.2.3 Straight Line Drawings

A straight line drawing is a drawing of a graph in which each edge of the graph is repre-

sented as a straight-line segment. A straight line drawing of a graph is shown in Fig. 1.5(b).

It is a special case of polyline drawing shown in Fig. 1.5(a) where the edges are drawn

without bends.

It is proved that every planar graph has a straight line representation [W36, F48, S57].

Many works have been published on straight line drawings of planar graphs [DETT94].

1.2.4 Orthogonal Drawings

An orthogonal drawing of a plane graph is a drawing with the given embedding in which

each vertex is mapped to a point, each edge is drawn as a sequence of alternate horizontal

and vertical line segments. A bend is defined to be a point where an edge changes its

direction in a drawing. Fig. 1.6(a) is an orthogonal drawing with six bends. To obtain an
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(a)
(b)

7

Figure 1.5: (a) A polyline drawing and (b) a straight-line drawing.

orthogonal drawing of a plane graph with the minimum number of bends is a challenging

problem [GT97, T87, RNN99].

In an orthogonal drawing each vertex is mapped to a point. Therefore, if a graph

has vertices of degree more than four then it has no orthogonal drawing as at most four

edges can be incident to a vertex in an orthogonal drawing. A box-orthogonal drawing

of a graph is a drawing such that each vertex is drawn as a rectangle, called a box, and

each edge is drawn as a sequence of alternate horizontal or vertical line segments. The

drawing in Fig. 1.6(b) is an example of a box-orthogonal drawing. Every plane graph

has a box-orthogonal drawing. Several results are known for box-orthogonal drawings

[BK94, PT98, R99J.

1.2.5 RectangularDrawings

A rectangular drawing of a plane graph is a drawing of graph in which each vertex is

drawn as a point, each edge is drawn as a horizontal or vertical line segment without edge

crossings and each face is drawn as a rectangle. A rectangular drawing of a plane graph is

a special case of orthogonal drawing in which there is no bend and each face of the graph

is drawn as a rectangle. The drawing in Fig.1.7(a) is an example of rectangular dra';"'i~~'.
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(a) (b)
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Figure 1.6: (a) An orthogonal drawing and (b) a box-orthogonal drawing.

A planar graph is said to have a rectangular drawing if it has a rectangular drawing for

at least one of its planar embeddings.

A box-rectangular drawing of a graph is a drawing such that each vertex is drawn as

a box, and the contour of each face is drawn as a rectangle. The drawing in fig. 1.7(b)

is an example of a box-rectangular drawing. Unfortunately not every plane graph has

a box-rectangular drawing. Some works on box-rectangular drawings are done in [R99,

RNNOOb, HOO].

(a) (b)

Figure 1.7: (a) A rectangular drawing and (b) a box-rectangular drawing.
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1.2.6 Grid drawings
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A drawing of a graph in which vertices and bends are located at grid points of an integer

grid is called a grid drawing. The drawings in Fig. 1.8(a) and in Fig. 1.8(b) are two

examples of grid drawings. It is a very challenging problem to draw a plane graph on

a grid of the minimum size. In recent years, several works [FPP90, CN98, RNN98] are

devoted to this field.

(a) (b)

Figure 1.8: Examples of grid drawings.

1.2.7 Visibility Representation

The visibility representation of a plane graph is a representation where each vertex is

mapped to a horizontal line and each edge is drawn as a vertical line segment. Fig. 1.9(b)

illustrates visibility representation of a plane graph in Fig. 1.9(a).

1.3 Drawing aesthetics

Aesthetics specify graphic properties of the drawing which are used to achieve readability.

Actu3.lly the degree of readability of a drawing can be evaluated based on the value of

these properties. We now mention some common aesthetics.
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Figure 1.9: Illustration of a visibility representation.

Crossings: Every crossing between edges bears the potential of confusion. Therefore,

the total number of edge crossings should be kept small.

Bends: A bend is a point where an edge changes its direction. Bends cause difficulties in

implementations of VLSI circuits or PCB layouts of electronic circuits. Therefore,

the minimization of both the total number of bends and the number of bends per

edge is important.

Area: If a drawing takes a large area, it may be out of viewing area. Then we must de-

crease resolution or use more pages that may make the drawing unreadable. There-

fore, drawings should take small area.

But it is difficult to achieve the optimum value of the above drawing properties. Garey

and Johnson showed that the problem of minimizing the number of crossings of a graph

is NP-complete [GJ83j. To determine whether a graph can be embedded in a grid of a

given size is also NP-complete [KL84J. Garg and Tamassia proved the NP-cornpleteness

of the problem of determining the minimum number of bends for orthogonal drawings

[GT95].
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1.4 Applications of Rectangular Drawings
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Major applications of Rectangular graph drawing are in VLSI floorplanning [KK84, L90,

RNN98, RNNOOa,RNNOOb,TTSS91] and in architectural floorplanning [MKIOO].Here

we will illustrate how rectangular drawing can be used in VLSI floorplanning problem

[RNNOOaJ.In a VLSI floorplanning problem, the interconnection among modules is usu-

ally represented by a planar embedding of a planar graph, every inner face of which is

triangulated. Fig. 1.10(a) illustrates such an interconnection graph of 17 modules. The

dual-like graph of an interconnection graph is a cubic graph in which every vertex has de-

gree 3 [190, RNNOOb].Fig. 1.10(b) illustrates a dual-like graph of the graph in Fig. 1.10(a),

that has 17 inner faces. Inserting four vertices a, b, c and d of degree 2 in appropriate

edges on the outer face contour of the dual-like graph as illustrated in Fig. 1.1O(c), one

wishes to find a rectangular drawing of the resulting graph as illustrated in Fig. 1.1O(d).

If there is a rectangular drawing, it yields a floorplan of the interconnection graph. Each

vertex of degree 2 is a corner of the rectangle corresponding to outer rectangle.

1.5 Objective of this Thesis

In this section we introduce the objective of this thesis after mentioning some previous

results.

A rectangular dmwing of a planar graph G is a drawing of G on the plane in which each

vertex is drawn as a point, each edge is drawn as a horizontal or a vertical line segment

without edge-crossings, and the contour of each face is drawn as a rectangle. Rectangular

graph drawing has attracted much attention due to its applications in VLSI floorplan-

ning [KK84, L90, RL'IN98,RNNOOa,RL'INOOb,TTSS91] and architectural floorplanning

[MKIOO].
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(b)
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Figure 1.10: (a) Interconnection graph, (b) dual-like graph, (c) Insertion of four corners,
- .

and (d) rectangular drawing.
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Not every planar graph has a rectangular drawing. Thomassen [T84] obtained a

necessary and sufficient condition for a plane graph, i.e, a planar graph with a fixed

embedding, to have a rectangular drawing, where four vertices of degree two on the outer

face is designated as corners for a rectangular drawing. Linear-time algorithms are given

in [B888, H93, KH97, RNN98] to obtain a rectangular drawing of such a plane graph.

Rahman et. al. [Rt'lNOOa]gave a necessary and sufficient condition for a plane graph G

to have a rectangular drawing, where no vertex is designated as a corner and developed

a linear-time algorithm to find a rectangular drawing of G if it exists.

Determining whether a planar graph has a rectangular drawing is not a trivial prob-

lem, since a planar graph may have an exponential number of planar embeddings. In

Fig. 1.11 four different planar embeddings of the same planar graph are shown. Among

the four planar embeddings only the embedding in Fig. 1.11(a) has a rectangular drawing

as illustrated in Fig. 1.11(e).

In this thesis we concentrate our attention only on rectangular drawings for planar

graphs. Unfortunately no necessary and sufficient condition is known for a planar graph to

have a rectangular drawing. 8ince determining whether a planar graph has a rectangular

drawing is a difficult problem, we give our attention on rectangular drawing for a particular

class of planar graphs that are subdivisions of 3-connected cubic planar graphs. Thus the

objectives of this thesis are as follows:

• To establish a necessary and sufficient condition for a subdivision of a 3-connected

cubic planar graph to have a rectangular drawing .

• To give an efficient algorithm to determine whether a subdivision of a 3-connected

cubic planar graph satisfies the condition .

• To give an efficient algorithm to find a rectangular drawing of the graph, if it exists.
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(c)
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Figure 1.11: Four different planar embeddings of the same graph are shown in (a), (b),

(c), and (d)j only (a) has a rectangular drawing as shown in (e).



Introduction 15

Type of drawing Characterization

Time Reference
Thomassen

[T84] O(n) [R.NN98]
man, 0

& Nishizeki [IU'l"NOOaJO(n) (RNNOOa]

Ours O(n) Ours

Table 1.1: Characterization for rectangular drawings

Classes of graphs Time Reference

Plane graph with designated corners O(n) [RNN98J

Plane graph without designated corners O(n) [RNNOOaJ

Subdivisions of 3-connected cubic planar graphs O(n) Ours

Table 1.2: Algorithms for rectangular drawings

1.6 Summary

In this thesis we establish a necessary and sufficient condition for a subdivision of a

3-connected cubic planar graph to have a rectangular drawing. We also develop a linear-

time algorithm to determine whether a graph satisfies the condition or not. Our results

together with some previous results are listed in Table 1.1.

We also develop a linear-time algorithm to obtain a rectangular drawing of a subdi-

vision of a 3-connected cubic planar graph, if it exists. Our results together with some

previous results are listed in Table 1.2.

The rest of this thesis is organised as follows. Chapter 2 gives preliminaries. Chapter

3 deals with rectangular drawings of subdivisions of 3-connected cubic planar graphs.
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Finally we give our conclusion in Chapter 4.

Introduction



Chapter 2

Preliminaries

In this chapter we give definitions of some basic terms used in graph theory and algorithm

theory. Definitions that are not included in this chapter will be introduced later on as

they are needed. .In Section 2.1 we give some definitions and graph-theoretical terms

used throughout the thesis. In Section 2.2 we define some terms related to planar graphs

and plane graphs, and in Section 2.3 we introduce, the notion of time complexity of an

algorithm.

2.1 Basic Terminology

In this section we give some definitions and graph-theoretical terms used throughout the

remainder of this thesis. For readers interested in graph theory we refer to [W96J.

2.1.1 Graphs and Subgraphs

A graph can be defined as a structure (V, E) which consists of a finite set of vertices V

and a finite set of edges E; each edge is an unordered pair of distinct vertices. A graph G

is said to be a simple graph if G has no "multiple edges" or "loops". Multiple edges join

17

"
; •• f



18 Preliminaries

the same pair of vertices, while a loop joins a vertex to itself. Let G be connected simple

graph with n vertices and m edges. We denote the set of vertices of G by V(G) and the

set of edges by E(G). The graph G in Fig. 2.1 has ten vertices and thirteen edges. Here

for graph G, V(G) = {Vl,V2,... ,V10}and E(G) == {el,e2, ...,e13}.

Vl
el v2 e2 v]

e3 e8

v4
e4

v7

e9 ell

v8 en v9
el3 vlO

Figure 2.1: A graph with ten vertices and thirteen edges.

We denote an edge between two vertices 11. and v of G by (11., v) or simply by uv. If

uv E E, then we call two vertices 11. and v are adjacent, and edge uv is incident to vertices

11. and v. The degree of a vertex v is the number of vertices adjacent to v in G and is

denoted by d(v). In Fig. 2.1, d(V4) = 3, since three edges e3,e4,e9 are incident to V4 and

d(V3) = 2 as two edges e2, es are incident to vertex V3. We denote the maximum degree

of graph G by fl(G) or simply fl. In Fig. 2.1, fl(G) = 3 since some vertices of G have

degree three and no vertex of G has degree greater than three.

A subgraph of a graph G = (V, E) is a graph G' = (V', E') such that V' ~ V and

E' ~ E; we then write G' ~ G. Fig. 2.2 depicts a subgraph of G in Fig. 2.1.

2.1.2 Connectivity

A graph G is connected if for every pair {u, v} of distinct vertices there is a path from 11. to

v. A graph which is not connected is called disconnected graph. A connected component
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Figure 2.2: An example of a subgraph G' of graph G.

of a graph is a maximal connected subgraph. The connectivity K(G) of a graph G is

the minimum number of vertices whose removal together with all edges adjacent to them

results in a disconnected graph or a single vertex graph. We say that G is k-connected if

K(G) ~ k. The graph in Fig. 2.3(a) is an example of a connected graph. The graph in

Fig. 2.3(b) is a biconnected graph, since removal of at least two vertices from the graph

results in a disconnected graph. The graph in Fig. 2.3(c) is a triconnected graph. But

the graph in Fig. 2.3(d) is a disconnected graph as there is no path from VI to V6. This

graph has two connected components HI and H2•

A pair {x, y} of vertices of a biconnected graph G = (V, E) is a sepamtion pair if there

exist two subgraphs G~ = (VI, ED and G; = (V2,ED satisfying the following conditions

(a) and (b):

(a) V=ltlUVi, ltlnVi={x,y};

(b) E = E~ UE~, E~ nE~ =!P, IE;I ~ 2, IE~1~ 2.

For a separation pair {x,y}, G1 = (Vl,E~+ (x,y)) and G2 = (Vi,E~ + (x,y)) are called

split gmphs. The new edges (x, y) added to G1 and G2 are called virtual edges. The graph

in Fig. 2.4(a) is a biconnected graph with separation pair {x, y} and Fig. 2.4(b) shows

the split graphs due to this separation pair.
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(a)

(c)
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• . V I H2,_ ~ I

- - I--------
(d)

Figure 2.3: (a) A connected graph, (b) a biconnected graph, (c) a triconnected graph and

(d) a disconnected graph.
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Figure 2.4: (a) A biconnected graph with separation pair {x, y} and (b) split graphs G1

and G2 for the separation pair {x, y}.
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2.1.3 Cycles and Trees
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In a graph G an alternating sequence of vertices and edges, which has the beginning

and ending with the same vertex, and in which each edge is incident to two vertices

immediately preceding and following it, is called a cycle.

A tree is a connected graph without any cycle. Fig. 2.5 is an example of a tree. The

vertices in a tree are usually called nodes. A rooted tree is a tree in which one of the nodes

is distinguished from the others. The distinguished node is called the root of the tree.

The root of a tree is generally drawn at the top. In Fig. 2.5 the root is VI' Every node V

other than the root is connected by an edge to some other node u. u is called the parent

of v. We also called v is the child of u. A lea/is a node which has no children. In Fig. 2.5

node V2 is a child of node VI, and nodes vs, V6, Vr, VB and Vg are leaf nodes.

\'9

Figure 2.5: A tree.

2.2 Planar Graphs

In this section we give definitions of some terms related to planar graphs and plane graphs.

For readers interested in planar graphs we refer to [NC88].
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2.2.1 Planar Graphs and Plane Graphs

A graph is planar if it can be embedded in the plane so that no two edges intersect

geometrically except at a vertex to which they are both incident. A planar graph may'have

an exponential number of embeddings. Fig. 2.6 shows three different planar embeddings

of the same planar graph.

g

l

m

k

c

h

Figure 2.6: Three different planar embeddings of the same graph.

A plane graph is a planar graph with a fixed planar embedding. A plane graph divides

the plane into connected regions called faces. We refer the contour of a face as a clockwise

cycle formed by the edges on the boundary of the face. We denote the contour of the

outer face of graph G by Co( G). A cycle of a plane graph is called a facial cycle if it is

the boundary of a face f and is denoted by Ct. Faces of a plane graph G are shown in

Fig. 2.7.
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face
face

G

face

face
CcJG)
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Figure 2.7: A plane graph G and its faces.

For a connected plane graph G with n vertices, m edges and f faces, Euler in 1750

found the following formula:

n-m+f=2

This can be shown by an induction over m (see for example [NC88]).

An edge of G, which is incident to exactly one vertex of a simple cycle C and located

outside C, is called a leg of the cycle C. The vertex of C to which a leg is incident is

called a leg-vertex of C. A simple cycle C in G is called a I-legged cycle of G if C has

exactly I legs in G. In Fig. 2.8 C1 is a I-legged cycle, C2 and C3 are 2-legged cycles, and

C4, C5 and C6 are 3-1eggedcycles.

As mentioned earlier a planar graph may have an exponential number of planar em-

beddings. Therefore, one of the major problems is to find the required planar embedding

of the. graph. Here we will give a brief layout of a linear-time algorithm to find a planar

embedding of a planar graph making a specific face as the outer face. For more details of

this algorithm we refer to [NC88]..
2.2.2 Finding Planar Embedding

We first define some terms and concepts and then present the algorithm for finding the

specific planar embedding.
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G

Figure 2.8: Examples of 1-,2- and 3-legged cycles.

Preliminaries

Let G = (V,E) be a graph with vertex set V and edge set E. A graph is represented

by a set of n lists, called "adjacency lists" j the list Adj (v) for vertex v E V contains all

the neighbours of v. For each v E V an actual drawing of a planar graph G determines,

within a cyclic permutation, the order of v's neighbours embedded around v. Embedding

a planar graph G means constructing adjacency lists of G such that, in each Adj(v), all

the neighbours of v appear in clockwise order with respect to an actual drawing. Such a

set Adj of adjacency lists is called embedding of G. An example is illustrated in Fig. 2.9(d)

which is an embedding of a graph G in Fig. 2.9(a).

The st-numbering plays a crucial role in the embedding algorithm. A numbering of

the vertices of G by 1,2, ... , n is called an st-numbering if the two vertices" I" and" n"

are necessarily adjacent and each j of the other vertices is adjacent to two vertices i and

k such that i < j < k. The vertex" I" is called the source and is denoted by s, while the

vertex "n" is called a sink and is denoted by t. Fig. 2.9(a) illustrates an st-numbering of

a graph. Every 2-connected graph G has an st-numbering, and a linear-time algorithm

for finding an st-numbering of a graph is given by Even and Tarjan [ET76].

Froin now on for the embedding algorithm we refer to the vertices of G by their st-
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(d)

Figure 2.9: Illustration of: (a) st-numbered graph G, (b) G4, (c) bush form B4, and (d)

adjacency lists of embedded G.
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numbers. Let Gk = (Vk, Ek) be the subgraph induced by the vertices Vk = {1, 2, ... ,k}. If

k < n then there must exist an edge of G with one end in "'k and the other in V - Vk•

Let G~ be the graph formed by adding to Gk all these edges, in which the ends in V - Vk

of added edges are kept separate. These edges are called virtual edges, and their ends

in V - "'k are called virtual vertices and labelled as their counterparts in G, but they

are kept separate. Thus there may be several virtual vertices with the same label, each

with exactly one entering edge. Let Bk be an embedding of G~ such that all the virtual

vertices are placed on the outer face. Bk is called a bush form of G~. The virtual vertices

are usually placed on a horizontal line. G, Gk, and Bk are illustrated in Fig. 2.9. Every

planar graph G has a bush form Bk for 1 :<::; k :<::; n.

An upward digraph Du is defined to be a digraph obtained from G by assigning a

direction to every edge so that it goes from the larger end to the smaller. An upward

embedding Au of G is an embedding of the digraph Du• In an embedding of an undirected

graph G, a vertex v appears in list Adj(w) and w appears in list Adj(v) for every edge

(v, w). However in an upward embedding Au of G, the head w appears in adjacency list

Au(v) but the tail v does not appear in A,.(w) for every directed edge (v,w). Fig. 2.10

depicts an upward digraph Du and an upward embedding Au for the graph G in Fig. 2.9(a).

I 0

2

3

4

5

6

(3) (b)

Figure 2.10: Illustration of: (a) upward digraph Du, and (b) upward embedding Au for a

graph G in Fig. 2.9(a).
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We use a special data structure" PQ-tree" to represent Bk. A PQ-tree consists of

"P-nodes", "Q-nodes" and "leaves". A P-node represents a cut-vertex of Bk, so the sons

of a P-node can be permuted arbitrarily. A Q-node represents a 2-connected component

of Gk, and the sons of a Q-node are allowed only to reverse(fIip over). A leaf indicates a

virtual vertex of Bk. In an illustration of a PQ-tree, a P-node is drawn by a circle and a

Q-node by a rectangle. A bush form Bk and a PQ-tree representing Bk are illustrated in

Fig. 2.11.

(a) (b)

Figure 2.11: Illustration of: (a) bush form Bk, and (b) PQ-tree.

For any bush form Bk of subgraph Gk of a planar graph G, there exists a sequence

of permutations and reversions to make all the virtual vertices labelled" k + I" occupy

cOilsecutive positions on the horizontal line. Booth and Lueker [BL76] showed that these

permutations and reversions can be found by repeatedly applying the nine transformation

rules called the template matchings [NC88] to the PQ-tree. A leaf labelled" k + I" is said

to be pertinent in a PQ-tree corresponding to Bk. The pertinent subtree is the minimal

subtree of a PQ-tree containing all the pertinent leaves. A node of a PQ-tree is said to

be full if all the leaves among its descendants are pertinent.

Now we present a linear-time embedding algorithm EMBED [CNA085]. The algo-

rithm EMBED runs in two phases: in the first phase procedure UPWARD-EMBED(G)

determines an upward embedding Au of a planar graph Gj in the second phase procedure

ENTIRE-EMBED constructs an entire embedding Adj of G from Au.
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procedure UPWARD-EMBED(G);

{G is a given planar graph}

begin

Choose an edge (u, v) of the face which is to be embedded as outer face.

Considering u as s and vast assign st-numbers to all the vertices of G;

Construct a PQ-tree corresponding to G~;

for v := 2 to n

do begin

{reduction step}

apply the template matchings to the PQ-tree, ignoring the direction indicators

in it , so that the leaves labelled v occupy consecutive positions;

{vertex addition step}

let II,h, ...,Ik be the leaves labelled v and direction indicators

scanned in this order;

delete h,12, ... ,Ik from the PQ-tree and store them in Au(v);

if root r of the pertinent subtree is not full

then begin

add in indicator v, directed from Ik to h, to the PQ-tree as a son of

root r at an arbitrary position among the sons;

replace all the full sons of r by a new P-node

end

else

replace the pertinent subtree by a new P-nodej

add to the PQ-tree all the virtual edges adjacent to v as the sons of the P-node

end;
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{correction step}

for v := n down to 1

do for eacil element x in' Au (v)

do if x is a direction indicator

then begin

delete x from Au(v)j

let w be the label of Xj

i/the direction of indicator x is

opposite to that of Au (v)

then reverse list Au (w) j

end

end;

procedure ENTIRE-EMBEDj

begin

copy the upward embedding Au to the lists Adj j

mark every vertex "new" j

T:=~j

DFS(t)j

end;

procedure DFS(Y)j

begin

mark vertex y "old" j

for each vertex v E Au (y)

do begin

insert vertex y to the top of Au (v) j

29
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i/ v is marked" new"

then begin

add edge (y, v) to T;

DFS(v);

end

end

end.,

2.3 Complexity of Algorithms

Preliminaries

In this section we introduce some terminologies related to complexity of algorithms. For

details we refer [CLR90].

The most widely accepted complexity measure for an algorithm is the running time

which is expressed by the number of operations it performs before producing the final

answer. The number of operations required by an algorithm is not the same for all

problem instances. Thus, we consider all inputs of a given size together, and we define

the complexity of the algorithm for that input size to be the worst case behavior of the

algorithm on any of these inputs. Then running time is a function of size n of input.

Let /(n) and g(n) be the functions from the positive integers to the positive reals,

then we write f(n) = O(g(n)) if there exists positive constants Cl and C2 such that

f(n) ~ clg(n) + C2 for all n. Thus the running time of an algorithm may be bounded

from above and for /(n) it can be said that "it takes time O(g(n))".

An algorithm is said to be polynomial if its complexity is bounded by a polynomial of

the size of a problem instance. Examples of such complexities are O(nlog(n)), 0(n5), etc.

The remaining algorithms are usually referred as exponential or non-polynomial. 0(2n),
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O(n!), etc. are some examples of exponential or non-polynomial algorithms.

31

When the running time of an algorithm is bounded by O(n), we call it a linear-time

algorithm.

c
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Chapter 3

Rectangular Drawings of Planar

Graphs

In this chapter we consider rectangular drawings of planar graphs. Rectangular drawing

of a planar graph G is a planar embedding where each vertex is drawn as a point, each

edge is drawn as a horizontal or a vertical line segment without edge-crossings, and the

contour of each face is drawn as a rectangle. Determining whether a planar graph has a

rectangular drawing is not a trivial problem, since a planar graph may have an exponential

number of planar embeddings. In Figure 3.1 three different planar embedings of the same

planar graph are shown. Among the three planar embeddings only the embedding in

Figure 3.1(a) has a rectangular drawing as illustrated in Figure 3.1(d).

In this chapter we establish a necessary and sufficient condition for the existence of a

rectangular drawing of a planar graph G for the case where G is a subdivision of a 3-

connected cubic planar graph. We also give a linear-time algorithm to determine whether

G has a rectangular drawing or not and to find a rectangular drawing of G if it exists.

To the best of our knowledge, no necessary and sufficient condition is known for planar

graphs to have a rectangular drawing.

32
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The rest of the chapter is organised as follows. Section 3.1 gives some definitions and

presents preliminary results. Section 3.2 presents a characterization for subdivisions of

a 3-connected cubic planar graph G to have rectangular drawings. Section 3.3 presents

the algorithm to obtain the rectangular drawing of G if it exists. Finally, Section 3.4

concludes with discussions. Partial result of this thesis has been presented in [RGNOO].
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I

a

(c)

Figure 3.1: Three different planar embeddings of the same graph are shown in (a), (b),

and (c); only (a) has a rectangular drawing as shown in (d).

3.1 Preliminaries

In this section we give some definitions and present preliminary results.
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Let G be a connected simple graph. We denote the set of vertices of G by V(G), and

the set of edges of G by E(G). For a subgraph G' of G we denote by G - G' the subgraph

of G induced by the vertices V(G) - V(G').

For a simple cycle C in a plane graph G, we define the plane subgraph of G inside

C (including C) as the inner subgraph G;(C) of C and the plane subgraph of G outside

C (including C) as the outer subgraph Go(C) of C. An edge or G which is incident to

exactly one vertex of a simple cycle C and located inside C is called an inner adjacent

edge of C. An edge of G which is incident to exactly one vertex of a simple cycleC and

located outside C is called a leg of the cycle. The vertex of C to which a leg is incident

is called a leg-vertex of C. A simple cycle C in G is called a k-Iegged cycle of G if C has

exactly k legs in G. A k-Iegged cycle C is a minimal k-Iegged cycle if G;(C) does not

contain any other k-Iegged cycle of G. Similarly a k-Iegged cycle C is a maximal k-Iegged

cycle if G - Gi (C) contains a cycle and Gi( C) is not contained in any other k-Iegged cycle

C' of G such that G - Gi(C') contains a cycle. We say that cycles C and C' in a plane

graph G are independent if G;(C) and G;(C') have no common vertex. A set S of cycles

is independent if any pair of cycles in S are independent.

Let {VI,V2, ... ,Vp-I,Vp}, P:::: 3, be a set of three or more consecutive vertices on the

contour of any cycle C such that the degrees of the first vertex VI and the last vertex vp

are exactly three and the degrees of all intermediate vertices V2, V3, ... , Vp-l are two. Then

we call the path induced by {V2, V3, ... , vp-d a chain of G, and we call vertices VI and vp

the ends of the chain. A vertex of degree 2 in G is contained in exactly one chain.

Subdividing an edge (u, v) of a graph G is the operation of deleting the edge (u, v)

and adding a path u, WI, W2, ... , Wk, v through new vertices WI, W2, ... , Wk of degree 2. A

graph G' is said to be a subdivision of a graph G if G' is obtained from G by subdividing

some of the edges of G.
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A rectangular drawing of a plane graph G is a drawing of G such that each edge is

drawn as a horizontal or a vertical line segment, and each face is drawn as a rectangle.

A planar graph is said to have a rectangular drawing if it has a rectangular drawing for

at least one of its planar embeddings. The following results on rectangular drawings of

plane graphs are known.

Lemma 3.1.1 {RNNOOa} Let G be a plane graph with vertices of degree 2 or 9 such that

four or more vertices on Co(G) have degree 2. Then G has a rectangular drawing if and

only if G satisfies the following four conditions:

(1) G has no 1-legged cycle;

(2) every 2-legged cycle in G contains at least two vertices of degree 2 on Co(G);

(9) every 9-legged cycle in G contains at least one vertex of degree 2 on Co(G); and

(4) if an independent set S of cycles in G consists of C2 2-legged cycles and C3 9-legged

cycles, then 2c2 + C3 ~4 .

Furthermore one can check in linear time whether G satisfies the condition above, and if

G does then one can find a rectangular drawing of G in linear time. -

Although the results above for plane graphs are known, it is difficult to determine

whether a planar graph has a rectangular drawing or not, since a planar graph has an

exponential number of planar embeddings. We thus consider a class of planar graphs which

are the subdivision of a 3-connected cubic planar graph G. The following properties for

such a planar graph are known.

Lemma 3.1.2 {Ne88} Let G be a subdivision of a 9-connected cubic planar graph. Then

there is exactly one embedding ofG for each face embedded as the outer face. Furthermore,
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for any two planar embeddings rand r' of G, any facial cycle inf is embedded as a facial

cycle in f' and vice-versa .•

Lemma 3.1.3 [Ne88} Let G be a subdivision of a 3-connected cubic planar graph. Then

for any separation pair {u, v} in G, at least one of the connected components of G - {u, v}

is a path .•

Let G be a subdivision of a 3-connected cubic planar graph. By Lemma 3.1.1 and

Lemma 3.1.2 one can determine whether G has a rectangular drawing in O(n2) time. In

the next section we obtain a necessary and sufficient condition for G to have a rectangular

drawing. Our characterization leads to a linear-time algorithm to determine whether G

has a rectangular drawing and to find a rectangular drawing of G if one exists.

Before going to the next section for giving the characterization, we observe the following

properties of subdivisions of 3-connected cubic planar graphs which will be useful in

establishing the characterization.

Lemma 3.1.4 Let G be a subdivision of a 3-connected cubic planar graph. Then G has

no i-legged cycle in any planar embedding of G.

Proof. Assume that C is a I-legged cycle in G and that u is the only leg-vertex of

C. Then removal of vertex u will make the graph disconneted which contradicts the

assumption that G is a subdivision of a 3-connected cubic planar graph. Q.e.'D.

Lemma 3.1.5 Let G be a subdivision of a 3-connected cubic planar graph and let r be a
planar embedding of G. Then for any 2-legged cycle C in r, there is exactly one chain on

Co(r) which is not in G;(C) ofr. Furthermore Go(C) - C is a chain.

Proof. If the legs of 2-legged cycle C is not on Co(r), then the leg-vertices VI, V2 of C

is not in Co(r). Then {VI, V2} would be a separation pair in a graph G' obtained from
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G by replacing each chain with an edge, a contradiction to the assumption that G is a

subdivision of a 3-connected cubic planar graph. Therefore the legs of C is on Co(r) and

G - Gi(C) is a chain. Clearly only that chain on Co(r) is not in G;(C). Q.£.V.

Lemma 3.1.6 Let G be a subdivision of a 9-connected cubic planar graph and let r be a
planar embedding of G. Then for any chain Vc on Co(r), there is a 2-legged cycle C in r

such that G;(C) contains all vertices of G except the vertices on Vc.

Proof. Let Vl, V2, ... , Vk-l, Vk, k 2: 3, be a path on Co(r) where V2, V3, ... , Vk-l is a chain

Vc. Then Co(G - Vc) is a cycle C in r where (Vl, V2) and (Vk-l, Vk) are the only 2 legs of

C. Therefore C is a 2-legged cycle in r and Gi( C) contains all vertices of G except the

vertices on Vc. Q.£.V.

Lemma 3.1.7 Let G be a subdivision of a 9-connected cubic planar graph and let r be a

planar embedding of G. Then no pair of 2-legged cycles in r are independent.

Proof. Assume that r has a pair of 2-legged cycles Cl and C2 which are independent.

G;(Cl) and Gi(C2) has no common vertex. Since Cl is a 2-legged cycle, the leg-vertices

Vl and V2 of Cl are on Co(r). Then {Vl,V2} would be a separation pair of a graph G'

obtained from G by replacing each chain with an edge, a contradiction to the assumption

that G is a subdivision of a 3-connected cubic planar graph. Therefore, no pair of 2-legged

cycles in r are independent. Q.£.V.

3.2 Characterization of Planar Graphs with Rectan-

gular Drawings

In this section we give a necessary and sufficient condition for a planar graph G to have

a rectangular drawing. We will show that .the necessary and sufficient condition can be
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u.
J

I,
verified in linear time considering any planar embedding of G. To establish 'our necessary'.' . . I

and sufficient condition we need the following lemmas. I

,

Lemma 3.2.1 Let G be a subdivision 01 a 9-connected cubic planar grapA and let C be,
a cycle in G. Assume that in a planar embedding r of G, Gi(C) contairJ a face f and

I
I.

that f is made the outer lace 01 a new planar embedding r' 01G. Then Gi(C) in r will

be Go(C) in r' and vice-versa.

Proof. We only show that Gi(C) in r will be G.(C) in r/, since the proof for the other
. . !

claim is similar.

Assume that Ul, U2, ... , u,. (r?: 3 ) be the vertices on the contour of fact f and Vb V2,

. I
.... , Vg (q ?: 3) be the vertices on the cycle C in a planar embedding r of G.1There are the

following three cases to consider. I

Case 1: G has It path Uz, Wj, W2, ••. , wP' Vk, where wi, 1 ~ j ~ p, is in Gi(C) in r.

. Since G is a connected graph, there is a path (Vk, Wl, ... , Wi, Wi; ... , W), u/).where no
,

other vericesexcept Vk and u, are on the contour of face f or on the cYcleic.

(a) (b)

Figure 3.2: Illustration of (a) r and (b) r' for Case 1 of the proof of Lemma 3.2.1
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Let r' be a new planar embedding of G where I is embedded as the outer cycle. Since

I is the outer. cycle in r', Ul is in Go(C) in r'. If any of the vertices WI, W2, •.. , wp is in

Gi(C) in f' then the path (Vk, WI, ... , Wi, Wj, •.. , wp, ut} will have edge crossing in r' as

illustrated in Figure 3.2(b) since none of the vertices WI, W2, .•. , Wp are on C. This is a

contradiction to our assumption that r' is a planar embedding of G.

Case 2: All the legs of cycle Ct are inner adjacent edges of cycle C in r of G.

Let Ct be a k-legged cycle in r where each of the legs of Ct is an inner adjacent edge

of cycle C. Then there are k faces 11, 12, ..., Ik in Gi(C) other than I as illustrated in

Figure 3.3(a). The contour of each of these faces contains an edge on the contour of I,
two legs of Ct and some edges of C.

(a) (b)

Figure 3.3: Illustration of (a) r and (b) r' for Case 2 of the proof of Lemma 3.2.1

Let f' be a new planar embedding of G where I is embedded as the outer cycle. Since

I is the outer face in fI, the edges on the contour of I is in Go(C). By Lemma 3.1.2 each

face of r is a face of r' and hence in r' the contour offaces ft, 12, ... , Ik will be in Go(C)

as illustrated in Figure 3.3(b). Thus Gi(C) in r becomes Go(C) in r'.
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Case 3: Some of the legs of cycle C, are legs of cycle C and the rest of the legs of C,

are on C in r of G.

In this case G; (C) contains only one face l' other than f, and the contour of l' contains

exactly one edge of the contour of f. This is illustrated in Figure 3.4(a).

(a) (b)

Figure 3.4: Illustration of (a) r and (b) r' for Case 3 of the proof of Lemma 3.2.1

Let r' be a new planar embedding of G where f is embedded as the outer cycle. By

Lemma 3.1.2 each face of r is a face of r' and hence face l' in r will be a face l' in r' as

illustrated in Figure 3.4(b). Clearly l'will be in Go(C) of r' as illustarted in Figure 3.4(b).

Thus G;(C) in r becomes Go(C) in r'. Q.e.D.

Lemma 3.2.2 Let G be a subdivision of a 3-connected cubic planar graph. Let C be k-

legged cycle in a planar embedding r 0] G. Assume that G; (C) in r contains a face f and

that f is made outer face of a new planar embedding r' of G. Then legs of C in r will be

inner adjacent edges of C in r' and inner adjacent edges of C in r will be legs of C in r'.

Proof. Let edge (u, v) be a leg of cycle C in r where u is on C and v is in Go(C) of r.

According to Lemma 3.2.1 v will be in G;(C) of r', but u remains on C. So clearly edge

(u, v) will be inner adjacent edge of C in r/.
The proof for the other claim is similar. Q.e .D.
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Lemma 3.2.3 Let G be a subdivision of a 3-connected cubic planar graph and let C be a

k-Iegged cycle in a planar embedding r of G. Assume that there.is a face f in r which is

in Go(C) and that f is made outer face of a new planar embedding r' of G. Then G;(C)

in r will also be G;(C) in r'.

Proof. Assume that UI, U2, ... , U. (r ~ 3 ) be the vertices on the contour of face f and

VI, V2, ••• , Vq (q ~ 3) be the vertices on the cycle C in a planar embedding r of G. Since

G is connected, there is a path from any vertex on the contour of f to any vertex on C.

Let P be a path from u; to Vi which contains any vertex neither on the contour of face f

nor on C except u; and Vi' Since f is not in G;(C), P will be in both Go(Cf) and Go(C).

Let r' be a new planar embedding of G where f is embedded as the outer cycle. Then

path P will be in G;(Cf) of r'. If any vertex on P is in G;(C) of r', then r would not

be a planar embedding of G. Clearly P will be in Go(C) of r'. Therefore, G;(C) in r

remains G;(C) in r' and hence legs of C will be unchanged in r'. Q.e.D.

One can easily show that there exists a 3-legged cycle in any planar embedding of a

subdivision of a 3-connected cubic planar graph [RNNOOaJ.We now have the following

lemmas.

Lemma 3.2.4 Let G be a subdivision of a 3-connected cubic planar graph and r be a

planar embedding of G. Assume that G - G;(C) in r is a tree for any 3-legged cycle C.

Then G - G;(C') is a tree for any 3-legged cycle C' in any planar embedding of G.

Proof. Assume that G - G;(C) in r is a tree for any 3-legged cycle C in r. Let r' be

a new planar embedding of G and G - G;(C') contains a cycle for a 3-legged cycle'C' in

r'. Then we have the following two cases to consider. \

Case 1. G;(C') of r' contains Co(r).
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G' in f' can be one of two types. G' does not contain any edge ofG.(f') (see Fig. 3.5(a))

and G' contains at least an edge of G.(f') (see Fig. 3.5(b)).

(a) (b)

//
C

Figure 3.5: Illustration of G' and Gil in f' for the proof of Lemma 3.2.4

We first consider the case where G' does not contain any edge of G.(f'). From the

Fig. 3.5(a) one can observe that legs of G' are inner adjacent edges of another cycle Gil

in f'. Let f be a face in G;(G') of f' which is the outer face of f. Then according to

Lemma 3.2.1 Gil will be in G;(G') of f. Since f is also in G;(G") of f', according to

Lemma 3.2.2 inner adjacent edges of Gil in f' will be legs of Gil in f. Since Gil has three

inner adjacent edges in f', Gil is a 3-legged cycle in f, and furthermore the cycle G' will

be in G.(G") in f by Lemma 3.2.1. Hence, G - Gi(G") is not a tree in f which is a

contradiction to our assumption that G - G;(G) in f is a tree for any 3-legged cycle G in

f.

We now consider the case where G' contains at least an edge on G.(f'). In that case

f' will have another 3-legged cycle G" as illustrated in Fig. 3.5(b) and G - G;(G") is not

a tree in f'. Let f be a face in G;(G') of f' which is the outer face of f. Then clearly

f is in G.(G") of f'. According to Lemma 3.2.3 G;(G") in f' will be G;(G") in f. Since
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Gj(C") is same in both embedding, G - G;(C") is also same in both rand r'. Therefore,

G -:-G;(C") is not a tree in r which is a contradiction to our assumption that G - Gj(C)

in r is a tree for any Soleggedcycle C in r.

Case 2. Go(C') in r' contains Co(r).

Let f be a face in Go(C') of r' which is the outer face of r. According to Lemma 3.2.3

Gj(C') in r' will be Gj(C') in r. Since G;(C') is same in both embedding, G - G;(C')

is also same in both r and r'. Therefore, G - Gj(C') is not a tree in r which is a

contradiction to our assumption that G - G;(C) in r is a tree for any Soleggedcycle C in

r. Q.E.D.

Theorem 3.2.5 Let G be a subdivision of a 3-connected cubic planar graph and r be a

planar embedding of G. Assume that G - Gj(C) in r is a tree for any 3-legged cyle C.

Then G has a rectangular drawing if and only if there is a face f in r such that facial
cycle C, of f satisfies the following conditions:

{1J C, conatins at least four vertices of degree 2;

(2) C, has at least two chains;

(3J if C, has exactly two chains, then they are non-consecutive and each chain contains
at least two vertices of degree two.

Proof: Necessity

Assume that G has a rectangular drawing for its planar embedding A. Let C be the

outer facial cycle of A.

Since G has a rectangular drawing and the four corner vertices of a rectangular drawing

must be of degree 2, C contains at least four vertices of degree 2.

Since C conatins at least four vertices of degree 2, there are chains on C. According

to Lemma 3.1.5 for any 2-legged cycle C' in A, there is exactly one chain on Co(A) which
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is not in Gj(C') of >.. Since G has a rectangular drawing, every 2-legged cycle C' in >.

contains at least two vertices of degree 2 on Co(>'). Therefore, C has at least two chains.

If C has exactly two chains, they must be non-consecutive; otherwise>' would have a

3-leggedcycle containing no vertex of degree 2 on C as drawn by thick lines in Fig. 3.6, con-

trary to the assumption that G has a rectangular drawing for >.. According to Lemma 3.1.6

for any chain Ve on Co(>")' there is a 2-legged cycle C' in >.such that G;(C') contains all

vertices of G except the vertices on Ve. Since G has a rectangular drawing, every 2-legged

cycle C' in >. contains at least two vertices of degree 2 on Co(>'). Therefore, if C has

exactly two chains, then each chain contains at least two vertices of degree two.

Figure 3.6: Exactly two consecutive chains on outer facial cycle.

Therefore, if G has a rectangular drawing for its planar embedding >.,then C satisfies

the conditions of Theorem 3.2.5. According to Lemma 3.1.2, C is a facial cycle in any

planar embedding of G. Therefore, if G has a rectangular drawing, then there is a face f

such that Cf in r satisfies the conditions of Theorem 3.2.5.

Sufficiency

We give a constructive proof for the sufficiency of Theorem 3.2.5.

Assume that r has a face f such that Cf satisfies the conditions of Theorem 3.2.5.

We find a new embedding r' of G where Cf is embedded as the outer cycle. By

Condition(l) in Theorem 3.2.5 Cf in r' contains at least four vertices of degree 2. It
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is sufficient to prove that f' satisfies the conditions in Lemma 3.1.1 for a rectangular

drawing.

According to Lemma 3.1.4, there is no I-legged cycle in f'. Thus f' satisfies the

Condition (1) in Lemma 3.1.1.

We now show that f' satisfies Condititon (2) in Lemma 3.1.1. By Condition (2) in

Theorem 3.2.5 Cf has at least two chains and hence have the following two cases to

consider.

Case 1. Cf has exactly two chains.

According to Lemma 3.1.6 for any chain Yo on Co(f'), there is a 2-legged cycle C in

f' such that G;(C) contains all vertices of G except the vertices on Yo. Since Cf has

exactly two chains, f' has exactly two 2-legged cycles. Again according to Condition (3)

of Theorem 3.2.5 if Cf has exactly two chains, each of the chain contains at least two

vertices of degree 2. Therefore, each 2-legged cycle contains at least two vertices of degree

2 on Cf.

Case 2. Cf has more than two chains.

According to Lemma 3.1.6 for any chain Yo on Co(f'), there is a 2-legged cycle C in f'

such that Gj(C) contains all vertices of G except the vertices on Yo. Therefore, if number

of chains on Cf is n (n ::::3), then one can observe that each 2-legged cycle contains n-I

chains on Cf that means each 2-legged cycle contains at least two vertices of degree 2.

Thus f' satisfies Condition (2) of Lemma 3.1.1.

We next show that f' satisfies Condition (3) in Lemma 3.1.1. Since G - G;(C) in f is

a tree for any 3-legged cyle C, according to Lemma 3.2.4 G -Gj(C') in f' is a tree for any

3-legged cycle C' in f'. Let C be a 3-legged cycle in fl. One can observe that G - G;(C)

in f' contains only one vertex of degree three on Cf and let r be the vertex. Let u, v be

the leg vertices of Con Cf. Let PI be the path from u to r and P2 be the path from v to
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ron Cf. By Condition (2) in Theorem 3.2.5 Cf has at least two chains. If none of PI and

P2 contains chain, then Cf has at least two chains which is contained in C. If only one

of PI and P2 contains chain, then Cf has at least one chain which is contained in C. If

both of PI and P2 contain chain, then these two chains are consective. By Condition (3)

in Theorem 3.2.5 if Cf has exactly two chains then they are non-consecutive. In such a

case Cf has at least three chains at least one of which is contained in C. Therefore, each

3-legged cycle in f' contains at least one vertex of degree 2. Thus f' satisfies Condition

(3) in Lemma 3.1.1.

We finally show that f' satisfies Condition (4) in Lemma 3.1.1. Since G - G;(C) in f

is a tree for any 3-legged cyle C, according to Lemma 3.2.4 G - G;(C') in f' is a tree for

any 3-legged cycle C' in f'. Let C and C' are two different 3-legged cycles in f'. Then

each of G - G;(C) and G - G;(C') contains exactly one vertex of degree 3. Since G is a

subdivision of 3-connected cubic planar graph, G has at least four vertices of degree 3,

and hence G;(C) and G;(C') has common vertices. Therefore, there is no independent

3-legged cycle in f'. That is Ca = O. According to Lemma 3.1.7, neither f nor f' has a

pair of independent 2-legged cycles, and hence C2 = O. Therefore 2C2 + Ca = 0 that means

2C2 + Ca ~ 4 in f'. Thus f' satisfies the condition (4) of Lemma 3.1.1. Q.£ .'D.

From now on we assume that G has a 3-legged cycle C such that G - G;(C) contains

a cycle.

Lemma 3.2.6 Let G be a subdivision of a .'I-connected cubic planar graph. Let C be a

k-legged cycle in a planar embedding f of G such that C does not contain any edge on

Co(r) and G - G;(C) contains a cycle. Assume that G;(C) in f contains a face f and

that f is made the outer face of a new planar embedding r' of G. Then in f' the G;(C)

contains a new k-legged cycle C'. Furthermore C' contains any edge neither on C nor on

the contour of f.
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Proof. Let C be a k-legged cycle in r such that C does not contain any edge on Co(r)

and G - G;(C) contains a cycle and let f be a face in G;(C) of r. Then there are k faces

f1, h. ..., ft in Go(C) containing edges of C. The edges of the face boundaries of ft, h.

..., ft each of which is neither on C nor a leg of C forms a cycle C'. Clearly f is in G; (C').

(a) (b)

Figure 3.7: Illustration of (a) r and (b) r' for the proof of Lemma 3.2.6

Let r' be a new planar embedding of G where f is embedded as the outer cycle. By

Lemma 3.1.2 each faces of r is a face of r' and by Lemma 3.2.1 Go(C) in r is G;(C) in r'.

Then C' is a k-legged cycle in r' as illustrated in Figure 3.7(b). Since f is also in G;(C')

of r, according to Lemma 3.2.2 legs of C' in ~( are inner adjacent edges of C' in r'. So

C' is a new k-legged cycle in the sense that legs of C' in r' are different from the legs of

C' in f. One can observe that C' contains any edge neither on C nor on the boundary of

f. Q.c.'D.

Lemma 3.2.7 Let G be a subdivision of a 3-connected cubic planar graph. Let C be a

k-Iegged cycle (k ~ 3) in a planar embedding r of G such that G -G;(C) contains a cycle

and C contains at least an edge on Co(r). Assume that G;(C) in r contains a face f

and that f is made the outer face of a new planar embedding r' of G. Then in r' the
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Gi(C) contains a k-legged cycle C' which was also a k-legged cycle in r. FUrthermoreC'

contains any edge neither on C nor on the conto'ur 011.

Proof. Let C be a k-legged cycle (k ~ 3) in r such that G - Gi(C) contains a cycle

and C contains at least an edge on Co(r) and let 1be a face in Gi(C) of r. Then there

are k faces !I, 12, ..., Ik in Go(C) containing edges of C. Among these faces k - 1 faces

11,12, ..., Ik-l are inner adjacent faces of r and the remaining face"ik is the outer face of

Gin r as illustrated in Figure 3.8(a). The edges of the face boundaries of 11, 12, ... , !k
each of which is neither on C nor a leg of C forms a k-legged cycle C' as illustrated by

shaded cycle in Figure 3.8(a). Clearly C' is in Go(b').

(a)

/
C

(b)

Figure 3.8: Illustration of (a) r and (b) r' for the proof of Lemma 3.2.7

Let f' be a new planar embedding of G where I is embedded as the outer cycle. By

Lemma 3.1.2 each faces of f is a face of f' and by Lemma 3.2.1 Go(C) in r is Gi(C) in f'.

Then C' is in Gi(C) off'. According to Lemma 3.2.2 legs of C in r will be inner adjacent

edges of C in r'. Clearly these inner adjacent edges are connected with the vertices on

C' in f'. According to Lemma 3.2.3, Gi(C') in f remains Gi(C') in r'. Thus the legs of

C' in r remain the legs of C' in f' as illustrated in Figure 3.8(b). So Gi(C) in r' contains
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a k-legged cycle C' of f. One can observe that C' contains any edge neither on C nor on

the boundary of f. Q.e.v.

We now have the following lemmas on the forbidden structures in a subdivision of a

3-connected cubic planar graph to have rectangular drawing.

Lemma 3.2.8 Let G be a subdivision of a 9-connected cubic planar graph and let C be a

3-1egged cycle in a planar embediing f of G such that G - G; (C) contains a cycle. Assume

that G;(C) in f contains a face F and that F is made the outer face of a new planar

embedding f' of G. Then G has no rectangular drawing for the planar embedding f'.

Proof. Let f' be a new planar embedding of the graph G where F is the outer face of

the graph G. If C does not contain any edge of Co(f), then according to Lemma 3.2.6

G;(C) contains a new 3-legged cycle in f'. If C contains at least an edge of Co(f), then

according to Lemma 3.2.7 G;(C) contains a 3-legged cycle of f in f'. In either case, as

the contour of F has no common edge with this 3-legged cycle, rectangular drawing of G

is not possible for f' according to Lemma 3.1.1. Q.e.v.

Lemma 3.2.9 Let G be a subdivision of a 3-connected cubic planar graph and let f is a

planar embedding of G and C be a 3-1egged cycle in f such that G - G;(C) contains a

cycle. If there is no face in f containing at least one edge of each of the maximal 3-1egged

cycle of G, then G has no rectangular drawing.

Proof. Let C be a 3-legged cycle in f such that G - Gi(C) conatins a cycle and f is

a face in Gi(C). Let f' be the new planar embedding of G where f is made outer face

of G. Then according to Lemma 3.2.8 G has no rectangular drawing for the embedding

f'. Therefore only the planar embeddings of G where each face outside of all maximal

3-legged cycle is embedded as an outer face may have rectangular drawings.
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Assume that f is a face in r which is outside of all maximal 3-legged cycle but does

not contain an edge from each of the maximal 3-legged cycle of G. If f is made outer

face of G then according to Lemma 3.2.3 for any 3-legged cycle C, G;(C) in r will also

be G;(C) in r'. Therefore the maximal 3-legged cycle having no edge on the contour of

f will not satisfy Condition (3) of Lemma 3.1.1, and hence G will not have a rectangular

drawing for this planar embedding. Therefore, if G has no face containing an edge of each

maximal 3-legged cycle, G has no rectangular drawing. Q.e.D.

We are now ready to prove the following lemma on characterization of subdivisions of

3-connected cubic planar graphs to have rectangular drawing.

Theorem 3.2.10 Let G be a subdivision of a 9-connected cubic planar graph and r be

a planar embedding of G. Assume that there exists a 9-legged cycle C' in r such that

G - G;(C') contains a cycle. Then G has a rectangular drawing if and only if r has a

facial cycle C such that C contains at least one edge of each maximal 9-legged cycle in r
and the following four conditions hold in r:

(1) C contains at least four vertices of degree 2;

(2) for any chain Yo on C, C - Yo must contain at least two vertices of degree 2;

(9) every 9-legged cycle C' for which G - Gj(C') contains a cycle in r contains at least

one vertex of degree 2 on C;

(4) if r has exactly one maximal 9-leggedcycle C' then C contains a chain Yosuch that

Yo is not on C' and does not contain any vertex at which legs of C' are incident;

and
.'.' .',

(5) if an independent set S of cycles in r consists of C3 9-legged cycles, then C3 :::;4 .
\,
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Proof: Necessity
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Assume that G has a rectangular drawing for its planar embedding >.. Let C be the

outer cycle of >.. Then there are the following two cases to consider.

Case 1: C and Co(r) are same.

In this case, by Lemma 3.1.2 >. and r are the same planar embedding of G. Since

>. has a rectangular drawing, >. satisfies the conditions in Lemma 3.1.1. Therefore C in

r contains at least an edge of each maximal 3-legged cycle and satisfies the following

conditions:

(i) C contains at least four vertices of degree 2. Thus r satisfies the condition (1) of

Theorem 3.2.10.

(ii) Every 2-legged cycle in r contains at least two vertices of degree 2 on C. According

to Lemma 3.1.6, for any chain Vc on Co(r), there is a 2-legged cycle C' in r such

that G;(C') contains all vertices of G except the vertices on Vc. Therefore for any

chain Vc, C - Vc must contain at least two vertices of degree 2. Thus r satisfies the

condition (2) of Theorem 3.2.10.

(iii) Every 3-legged cycle in r contains at least one vertex of degree 2 on C, that means

every 3-legged cycle C' for which G - G;(C') contains a cycle in r contains at least

one vertex of degree 2 on C. Thus r satisfies the condition (3) of Theorem 3.2.10.

(iv) Since r has a rectangular drawing, r contains more than one maximal 3-legged

cycle. Thus r satisfies the condition (4) of Theorem 3.2.10..

(v) If an independent set S of cycles in r consists of C2 2-legged cycles and C3 3-legged

cycles, then 2C2 + C3 ~ 4. According to Lemma 3.1.7, no pair of 2-legged cycles'~re

independent in r. Therfore C2 = 0, and hence C3 ~ 4. Thus r satisfies the condtt},on

(5) of Theorem 3.2.10.
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Case 2: C and Co(r) are different.
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According to Lemma 3.1.2, C is an inner facial cycle of r. Again according to

Lemma 3.2.8, if C is inside a 3-legged cycle C' in r such that G - Gj(C') contains a

cycle in r then G has no rectangular darwing for its planar embedding A. Since A has

a rectangular drawing, C is not inside any 3-legged cycle C' in r such that G - Gj(C')

contains a cycle in r. Since all the 3-legged cycles C' in r for which G - G;(C') contains

a cycle in r are outside C, according to Lemma 3.2.3 for any 3-legged cycle C' in r for

which G - G;(C') contains a cycle in r, G;(C') in A will also be G;(C') in r. Since A

has a rectangular drawing, according to Lemma 3.1.1 C in A contains at least an edge of

each maximal 3-legged cycles. Therfore C in r contains at least an edge of each maximal

3-legged cycles and also satisfies the conditions of Theorem 3.2.10 which can be shown in

the following way:

(i) Since C in A contains at least four vertices of degree 2, C in r contains at least four

vertices of degree 2. Thus r satisfies the condition (1) of Theorem 3.2.10.

(ii) Every 2-legged cycle in A contains at least two vertices of degree 2 on C. According

to Lemma 3.1.6, for any chain v" on Co(A), there is a 2-legged cycle C' in A such

that Gj(C') contains all vertices of G except the vertices on Ve. Therefore for any

chain v" on Co(A), C - v" must contain at least two vertices of degree 2 in A. Hence,

for any chain Ve on C in r, C - v" must contain at least two vertices of degree 2 in

r. Thus r satisfies the condition (2) of Theorem 3.2.10.

(iii) Every 3-legged cycle in A contains at least one vertex of degree 2 on C. And

according to Lemma 3.2.3 for any 3-legged cycle C' in oX for which G - G;(C')

contains a cycle in A, G;(C') in A will also be G;(C') in r. Therefore, every 3-1e'gged
i .

cycle in r for which G - G;(C') contains a cycle in r contains at least one vert~x of
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degree 2 on C. Thus r satisfies the condition (3) of Theorem 3.2.10.

53

(iv) We have to consider two cases.

Case 1: If r has more than one maximal 3-legged cycle.

Sincer does not contain exactly one maximal3-legged cycle, r satisfies the condition
(4) of Theorem 3.2.l().

Case 2: If r has exactly one maximal 3-legged cycle.

Let C' be a 3-legged cycle in A such that G - G;(C') contains a cycle in A. Since

C' contains at least an edge on C in A, A contains another 3-legged cycle C" and

G - G;(C") contains C'. Let r be a planar embedding where a face f in G;(C')

of A is embedded as outer face. According to Lemma 3.2.2, legs of C' in A will be

inner adjacent edges of C' in r. Therefore C' will be no longer a 3-legged cycle in

r. According to Lemma 3.2.3 G;(C") in A will be G;(C") in r. In such a case r
has exactly one maximal 3-legged cycle. Since every 3-legged cycle in A contains

at least one vertex of degree 2 on C, C' has a chain Vc on C in A which exists as

a chain on C in r also. One can observe that v" in r is not on C" and does not

contain any vertex on which legs of C' are incident. Thus r satisfies the condition

(4) of Theorem 3.2.10.

(v) If an independent set S of cycles in A consists of C2 2-legged cycles and C3 3-legged

cycles, then 2C2 + C3 ~ 4. According to Lemma 3.1.7, no pair of 2-legged cycles are

independent neither in A nor in r. Therfore both in A and r, C2 = 0, and hence

C3 ~ 4. Thus r satisfies the condition (5) of Theorem 3.2.10.

Sufficiency

We give a constructive proof for the sufficiency of Theorem 3.2.10.

\,
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Assume that r has a facial cycle C such that C contains at least an edge of each

maximal 3-legged cycle and r satisfies the condition of Theorem 3.2.10.

We find a new embedding r' of G where C is embedded as the outer cycle. Then C in

r' contains at least four vertices of degree 2.

According to Lemma 3.1.4, there is no I-legged cycle in fl. Thus r' satisfies the

condition (1) of Lemma 3.1.1.

Since in r for any chain v;, on C, C - v;, contains at least two vertices of degree 2, in

r' for those chain v;, on C, C - v;, contains at least two vertices of degree 2. According to

Lemma 3.1.5, for any 2-legged cycle C' in r', there is exactly one chain on Co(r') which is

not in G;(C') of r' and Go(C') - C is a chain. Therfore every 2-legged cycle in r' contains
at least two vertices of degree 2. Thus r' satisfies the condition (2) of Lemma 3.1.1.

Now we show that r' satisfies the condition (3) of Lemma 3.1.1. For this we have to

consider the following two cases.

Case 1: If r has more than one maximal3-legged cycle.

According to Lemma 3.2.3, for any 3-legged cycle C' in r for which G -G;(C') contains

a cycle, G;(C') in r will also be G;(C') in fl. Therefore, every 3-legged cycle C' in r' for
which G - G;(C') contains a cycle contains at least a vertex: of degree 2 on C. It can be

easily shown that every 3-legged cycle C" in r' for which G - G;(C") is a tree contains at

least a vertex of degree 2 on C. Therefore each 3-legged cycle contains at least one vertex

of degree 2 on C in r'. Thus r' satisfies the condition (3) of Lemma 3.1.1.

Case 2: If r has exactly one maximal 3-legged cycle.
Let C' be the maximal3-legged cycle in r. According to Lemma 3.2.3, G;(C') in r will

also be G;(C') in r'. r' also contains another maximal 3-legged cycle C" as illustrated
,"

in Fig 3.9. Since there is a chain v;, on C in r such that v;, is not on C' and does\not

contain any vertex: at which legs of C' are incident, C" contains Vcon C in r'. Therefore
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each 3-legged cycle contains at least one vertex of degree 2 on e in r'. Thus r' satisfies

the condition (3) of Lemma 3.1.1.

c

(a) (b)

Figure 3.9: Illustration of e" for the proof of sufficiency of Theorem 3.2.10

If an independent set S of cycles in r consists of Ca 3-legged cycles, then Ca ::s; 4.

According to Lemma 3.1.7, neither r nor r' has independent 2-legged cycle. Therfore
C2 = 0 that means 2C2 + Ca ::s;4 in r'. Thus r' satisfies the condition (5) of Lemma 3.1.1.

Since r' satisfies the conditons of Lemma 3.1.1, r' has a rectangular drawing D. Hence

D is the rectangular drawing of G.

Lemma 3.2.11 Let G be a subdivision of a :i-connected cubic planar graph. At most

three faces of G can contain an edge of each maximal :i-leggedcycle.

Proof. Let e be a maximal3-legged cycle. Then there are exactly three faces in Go(C)

which contains an edge ofe. Hence, only these three faces may contain an edge of each
of the maximal 3-legged cycle, since such a face must contain an edge on e and will be
in Go(C) to contain edges of other maximal3-legged cycles. Q.e.'D.

Corollary 3.2.12 Let G be a subdivision of a :i-connected cubic planar graph and r be

a planar embedding of G. Assume that e is a maximal S-legged cycle in r and that fl,

h and fa are three faces outside e containing edges on e. Then G has a rectangular
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drawing if and only if any of rl, r2 and rs has a rectangular drawing where rl, r2 and

rs respectively are the planar embeddings of G taking fl, h and Is as the outer face.

Theorem 3.2.13 Let G be a subdivision of a 9-connected cubic planar graph. One can

determine in linear time whether G has a rectangular drawing or not.

Proof. Let r be a planar embedding of G. One can identify all the maximal 3-legged

cycle in r in linear time [RNNOOb].If there is no maximal 3-legged cycle then one can

determine in linear time whether there is a face in r that satisfies the conditions of

Theorem 3.2.5 and G has a rectangular drawing if such a face exists in r. Otherwise,

according to Lemma 3.2.11 there are only 3 faces II, hand fs in Go(Cm) each of which

contain edges of a maximal 3-legged cycle Cm. One can c1leck in linear time whether

r satisfies the conditions of Theorem 3.2.10 considering eac1l facial cycle corresponding

to face fl, h and Is- If any facial cycle coreesponding to face fl, f2 and Is satisfies

the conditions of Theorem 3.2.10, then G has a rectangular drawing. Therefore, one can

determine in linear time whether G has a rectangular drawing or not.

3.3 Rectangular Drawing Algorithm

Q.£.V.

In the previous sections we have established a necessary and sufficient condition for a

subdivision of a 3-connected graph to have rectangular drawing. We have also shown that

this necessary and sufficient condition can be checked in linear time. Nowwe will describe

our algorithm to determine a rectangular drawing of a subdivision of a 3-connected cubic

planar graph if it exists. This algorithm also checks whether a subdivision of a 3-connected

cubic planar graph has a rectangular drawing or not.

Algorithm Planar-Rectangular-Draw( G)

.'••
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begin

Let the given planar emebedding of graph G is r;
1 Identify all the maximal 3-legged cycles C in r;
2 ilno maximal 3-legged cycle exists then

begin

3 Find a face I in r which satisfies Theorem 3.2.5.

4 ilno such face exists then

G has no rectangular drawing;

5 else ila face I in r satisfies Theorem 3.2.5 then

begin
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6 Determine the planar embedding r' of G where I is embedded as the outer face;

7 Find r" by removing all inner vertices of degree 2 from r';

8 Determine rectangular drawing D' of r";

9 Determine rectangular drawing D of r' by inserting all removed vertices

of degree 2 in D'. (D is the rectangular drawing of G. )

end

end

10 else {maximal 3-legged cycle exists}

begin

let Cm be one of the maximal 3-legged cycles;

11 Find the three faces il,12 and la in G.(Cm) which contains edges of Cm;
12 Considering each of III 12, and fa in r as C check whether C satisfies

the condition of Theorem 3.2.10;

13 ilC satisfies the condition of Theorem 3.2.10 then

. begin !t
I
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14 Determine the planar embedding r' of G where C is embedded as outer face;

15 Find r" by removing all inner vertices of degree 2 from r';
16 Determine rectangular drawing D' of r";

17 Determine rectangular drawing D of f' by inserting all removed vertices

of degree 2 in D'. (D is the rectangular drawing of G. )

end

else

G has no rectangular drawing;

end.,

end.

Theorem 3.3.1 Algorithm Planar-Rectangv.lar-Draw finds a rectangular drawing of a

subdivision of a $-connected cubic planar graph G in linear time if it exists.

Proof. Using a method similar to the method in [RNNOOb],one can find all 3-legged

cycles in G in linear time in Step 1 of the algorithm. If there is no maximal 3-legged cycle

then the algorithm executes Step 3 to Step 9, otherwise the algorithm executes Step 11

to Step 17. Step 3 takes linear time. Finding a planar embedding r' of G where a face fi

is embedded as outer face in Step 6 and in Step 14 takes linear time. r" in Step 7 and

in Step 15 can be found in linear time. By Lemma 3.1.1 rectangular drawing D' of r"
in Step 8 and in Step 16 can be obtained in linear time. In Step 9 and in Step 17, all

the inner vertices of degree 2 can be inserted in linear time. Therefore, the overall time

compleidty of the algorithm Planar-RectanguIar-Draw is linear.
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3.4 Conclusions
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In this chapter we have.established a necessary and sufficient condition for the existence

of a rectangular drawing of a planar graph G where G is a subdivision of a 3-connected

cubic planar graph. We also show that it is possible to determine in linear time whether

G has a rectangular drawing and find a rectangular drawing of G if it exists.

(,
I ".
, I

I
\ :'



Chapter 4

Conclusions

This thesis deals with the characterizatjon of subdivisions of 3-connected cubic planar

graphs to have rectangular drawings. We have established a necessary and sufficient con-

dition for subdivisions of a 3-connected cubic planar graph to have a rectangular drawing.

We have also presented a linear-time algorithm to determine whether a subdivision of

a 3-connected cubic planar graph has a rectangular drawing or not, and obtain such a

drawing of that graph, if it exists.

Wefirst summarize each chapter and its contributions. In Chapter 1we have introduced

different drawing conventions, different aspects of graph drawings and also described the

objectives of this work.

In Chapter 2 we have introduced some basic terminologies related to graphs and algo-

rithm theory which we have used in our work.

In Chapter 3 we have established a necessary and sufficient condition for a subdivision

of a 3-connected cubic planar graph to have a rectangular drawing. We have also given

a constructive proof which immediately produces a very simple linear-time algorithm to

obtain a rectangular drawing of such a graph, if it exists. (
l

As mentioned earlier, this thesis deals with rectangular drawings of planar grap~::

60



Conclusions

However, the following problems remained as future works:
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1. To establish a necessary and sufficient condition for a biconnected planar graph to

have a rectangular drawing.

2. To obtain an efficient algorithm to have a rectangular drawing of a biconnected

planar graph, if it exists.
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