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ABSTRACT

Although logarithmic number system (LNS) has been used considerably
in many fields, the storage of numbers in computer memory under LNS
format is still not specified, so commercial use of LNS processor
is not generally seen. In spite of many unsolved problems, there
are interests on LNS processors due to its fast multiplication,
division and some arithmetic operations.

This thesis establishes IEEE floating point (FLP) numbers into
logarithmic numbers in such a way that the conversion accuracy is
high and the process needs a small size of ROM. Both IEEE single
and double pre~ision numbers are considered . At first base numbers
are generated and suitable correction factor is added to generate
the correct LNS number. Anti-conversion is also done in a similar
process.

An attempt is made to increase the accuracy by using the non-linear
correction factor which in fact tries with new values of correction
factors to reduce the value of conversion error. Although
non_linear - non_linear conversion technique increased accuracy
(table 4-6), its effectiveness is largely dependent on mantissa
length (ML) . A higher bit configuration leads to lesser accumulated
error. Conversion and .anti-conversion using an offset value was
also done that produced the best result.

ROM size of 212 Kbits (RAL 12 ML 23) produced MCE of 1.07462E-08
and ROM size of 2528 Mbits (RAL 25 ML 52) produced MCE. less than
the truncation. error of double precision floating point number
(2.22E-16). Simulated results of conversion and accumulated errors
are given in article 4.4. LNS numbers obtained from this process is
used in several arithmetic processing and their respective errors
are also calculated.
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AN INTRODUCTION TO THE LOGARITHMIC NUMBER SYSTEM

1.1 Introduction

The logarithmic number system (LNS) can draw considerable attention
in favour of its use in digital computer due to. its faster
processing capability for many arithmetic operations. The use of
LNS in decimal system is frequent and many arithmetic operations
such as multiplication, division, square-root, power etc. are
frequently done by using logarithmic number. Due to its faster
processing capability, study [1;2,3,10,18] has been done so that
LNS can replace the established floating point (FLP) number
system as a general use in digital computer. Considerable studies
have been done recently in the various field of applications e.g.
digital signal processing, fast Fourier transformation etc. that
uses LNS [4,5]. The main advantage of using the LNS in a digital
computer is evident from the fact 'that complicated and time
consuming multiplication and division processes can be replaced by
simple addition and subtraction. In a digital computer, real
numbers are represented in floating point (FLP) format and here the
main problem becomes to find a suitable method to convert FLP
number into LNS number. format and vice-versa which is fast enough
with no loss or little loss of accuracy.

Various research papers have been published on logarithmic number
system and prototype processor has been fabricated that directly
deals with logarithmic number [6]. Hybrid type of processors [3]
has been proposed that deals with both FLP and LNS numbers. The
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processor depicted in [3] uses FLP numbers for
subtraction and LNS numbers for multiplication
intensive arithmetic operations.

addition and
and division

An alternate design [1,6] is to convert all the floating point
numbers into logarithmic numbers and to perform arithmetic
operations ( including addition and subtraction ) in logarithmic
number system. Once the arithmetic operation is completed, the
resultant LNS number is converted back into FLP number system.

The organization of the thesis is as follows

Chapter 1 focuses on the contents of each chapter and the object of
this thesis. It discusses arithmetic operations in LNS in general.
Here data representation in FLP format and a possible way of data
representation in LNS format are shown [3]

Chapter 2 deals with the basic conversion technique of data into
LNS format. A discussion on how the error develops and several
other methods of conversion are given here. An analysis of
different possible formats of LNS data representation and a
comparison of these formats with those of IEEE std. 754-1985 are
presented in this chapter.

Chapter 3 discusses method of conversion using linear correction
factor and presents hardware models for 32 bits and 64 bits of
representation for both the ways of data conversion. Simulation
model programs with linear correction factors are discussed.
Different ROM configurations with their corresponding conversion
errors are given and methods of reducing the ROM size are
discussed. A mathematical model proving the validity of simulation
results is presented here. A model only with ROM and without any
multiplier is also cited at the last article of this chapter.
Various graphs are added to illustrate the experimental findings.
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Chapter 4 concentrates on simulation model programs that apply
various correction factors to achieve the minimum value of the
maximum conversion error. This chapter shows the effect of non-
linear conversion factor. It also shows the ~ffect of non-linear
correction factor on errors and compares the" result with the
errors those have been produced by applying linear correction
factor. Arithmetic processing, accumulated errors for format
conversion and several other processing results are also discussed.

Chapter 5 discusses addition and subtraction of LNS number. Table
construction technique using Taylor's series first order
approximation is also described here. In the article 5.3 the
processing involving denormalized numbers is also discussed.

Chapter 6 discusses the various sources of error during FLP to LNS
and LNS to FLP conversion. Discussion about speed improvement with
reasonable assumptions are given in article 6.2. Application of
LNS number in the field of evaluating trigonometrical identities,
geometric co-ordinate transformation and. fast Fourier
transformation are also given.

Chapter 7 is
suggestions fox

the last chapter
further research.

which contains conclusion and

1.2 Objective of the thesis

This thesis has manifold purposes. As the interest in favour of
using LNS is increasing day by day, general properties of LNS and
various mathematical operations in this number system shall be
studied.

At present the numbers inside the memory of a
stored in a fixed point or floating point
suitable methods for converting numbers into

3

computer system are
representation. So
LNS format shall be



studied. This includes hardware methods [2] so that a very fast
conversion can be accomplished or use of a ROM [1,3,10,18] so that
much longer word length can be converted. Special attention has
been paid to the conversion technique that uses a ROM due to the
fact that the packing density of ROM chips are generally
increasing with further reduction of access time.

Accuracy calculation for 32 bits and 64 bits conversion of FLP
numbers into LNS numbers and vice versa shall be studied. Suitable
ROM configuration shall be determined to achieve a prestated
accuracy level. Partial correction shall be done by adding a
suitable correction factor and hence the effect of the
multiplicand bit length over the accuracy shall be studied.

A trial and error method shall be used to determine the new value
of the correction factor so that the error can be minimized to the
smallest possible value. This method of minimizing the value of the
maximum conversion error is termed as non-linear correction factor
method.

The way of evaluating mathematical functions shall be explained.

It is also an objective to calculate the speed improvement for
elementary mathematical operations. The possibility of using LNS
system in the geometric coordinate transformation and fast Fourier
transformation shall be included as a part of this thesis work.

1.3 Arithmetic operation in LNS

In the LNS system a number x can be represented as

where both x and Ex can be a positive or negative number. The radix
point of Ex can be varied so that the number represented by x under
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LNS can have a wide range with high accuracy.

If we assume 3 numbers x, y and z all represented in LNS and z is
the result of the arithmetic operations on x and y then
multiplication and division processes can be implemented by binary
adder and subtractor respectively, and an XOR gate to decide the
sign of the operation. so if we allocate Sz as the sign of the
result z then the following can be summarized.

1) Multiplication
z ; X * y, Ez ; Ex + Ey, Sz ; sign(x) @ sign(y)

2) Division
z ; X I y, Ez ; Ex - Ey, Sz ; sign(x) @ sign(y)

Addition and subtraction of two numbers represented in LNS is
more difficult to perform. These two operations can be expressed
by the following mathematical relationship

3) Addition
z ; X + y, Ez ; Ex + Fa (v), v ; Ex - Ey
x >; y, Fa (v) logr ( 1 + r-v )

4) Subtraction
z ; X - y, Ez ; Ex + Fb (v), v ; Ex - Ey
x >; y, Fb (v) ; logr ( 1 - r-V )

Square or square-root calculations are very simple in LNS system
and can be performed by mere left or right shifting. Loge and log"
operations can be done by dividing with the respective constants
[3]. Evaluation of exponents and power can be made with some
prespecified steps[3].

As it can now be seen that the addition and subtraction processes
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are not very convenient in LNS system and development of a suitable
process for faster addition and subtraction of two LNS number is
still a major obstacle in the development of LNS arithmetic
processing system.

During the addition and subtraction processes we see that the
exponent is either increased or decreased depending on the value of
Ex and Ey and the corresponding Fa(v) or Fb(v) is derived from a
ROM look-up table.

Once the basic four operations addition, subtraction,
multiplication and division procedures ,are set under LNS
environment, it can also perform many other mathematical operations
like square root or squaring in an elegant way.

1.4 Floating point data format

IEEE std. 754-1985 specifies single and double format of floating
point representation with their extensions (7]. Single format 32
bits floating point number comprises a 23 bits mantissa field, a 8
bit exponent field and a sign bit and for double format.64 bits
floating point number comprises a 52 bits mantissa, a 11 bits
exponent field and a sign .bit. The mantissa is always. normalized
and the leading 1 is not stored so that it remains as a hidden bit
and the mantissa is effectively extended by one bit more. The

.exponent is biased by 127 for single precision and is biased by
1023 for double precision floating point format so their actual
exponent (e) values are e-127 and e-1023 respectively. Therefore
for 32 bits representation a real number N can be represented by

N = (-1) s * 2Ie-127) * (1. m)

where s represents the sign bit and m represents the mantissa and
e is the exponent (0 < e < 255), For example the number N = 22.625

6



is represented by

N = 0-10000011-01101010000000000000000

Non-zero floating point numbers in the 32 bit format have magnitude
ranging from 2-126* (1.0) to 2'27* (2 - 2-23) i.e. from 1.18 * 10-38
to 3.40 * 1038 approximately.

G e

1 8

o 1
m

23

8 9 31

e m value .name
255 not 0 none NaN (not a number)
255 0 (-l)"*infinity infinity
1. .254 any (_1)"*20- Normalized number

127*(10m)
0 0 . (-1)"*0 Zero
0 not 0 (-1)"*2-126*(0.m) Denormalized number

Fig. 1-1- IEEE standard 754-1985 (data type-single precision)
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o 1 11 12 63 .

G e m _

1 11 52

e m value name
2047 not 0 none NaN (not a number)
2047 0 (-l)"*infinity infinity
1. .2046 any (_1)5*2e-1023* (lorn) Normalized number
0 0 (-1)5*0 Zero
0 not 0 (_1)"*2-1022*(O.m) Denormalized number

Figure 1-2 IEEE standard 754-1985 (data type-double precision)

1.5 Logarithmic number system

A proposal for logarithmic number system (LNS) representation
follows the same floating point data' format with different
interpretation for each section. The left most bit still represents
the sign bit s. -The e portion defined as the exponent in the
floating point data format, indicates the integer bits of the base
two logarithm number representation. The portion e can also be
coded as 8 bit- excess 127 code with the actual value computed as
e - 127. The mantissa' portion M is interpreted as the fraction
portion of this 32 bit word of e and M with binary point located

'When an FLP number represented in IEEE format is changed to
LNS format only the mantissa is changed. This change can be
marked by changing the small letter m to its capital form M
indicating that the same number N has been changed from FLP
format to LNS format.

8



between bit 8 and bit 9. The non-zero number x is actually coded as

N = (_I)" * 2(0-127) +O.M

The basic difference between the LNS and the FLP representation is
that the M portion in LNS is the exponent to the base 2, while in
FLP it is the binary number with the hidden bit 1. The normalized
hidden bit 1 will. make the FLP to LNS and LNS to FLP conversion
very simple. The non-zero and non-negative data range covered by
this 32 bit LNS data format is from 2 (-126 + 2'-231 to 2'27 + (1 - 2'.231

i.e. from 1.18 * 10-38 to 3.40 * 10" approximately.
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CHAPTER 2

CONVERSION TECHNIOUE AND LOGARITHMIC NUMBER SYSTEM

2.1 Basic conversion technique

The base 2 format of a real number can be converted to its
approximate logarithmic number as described in [8]. Here we
represent the fixed form representation of the logarithm to the
base 2 ofa number N by 19(N) and the approximate logarithm of the
same number by 19A(N) then the approximate logarithm of the number
N can be calculated as given below.

1) The characteristics of 19A(N) is equal to the number of bits
between the left most 1 ( the most significant"bit and the
radix point, thus 3,for the numbers 8 through 15 and 5 for the
numbers 32 through 63.

2) The approximate fraction of 19A (N) is formed by the bits
following the left most 1-bit of N.

The necessary conversion can be, implemented by using a shift
register R and a counter C ( fig. 2-1 ) in which the exponent value
can be evaluated from the contents of the C once the conversion
operation is completed and R contains the approximate fraction [8].

The binary number whose base two
loaded into the register R. The

logarithm is to be calculated is
counter C is always initialized

10



Fig. 2-1

c

R

Basic circuit for LNS conversion using
a register R and a counter C

SHIFT LEFT

'.

with the register length of R and is decremented by i with each
left shift of R. If k is the initial position of the left most 1
bit in R, then after making necessary left shifts when the left
most 1 bit is exited from R, the contents of the counter register
C gives the value of the exponent of the base two logarithm-number
and the approximate fraction is available in the register R.

A few numbers N and their related 19A(N) are given in table 2-1.

Table 2-1 Approximate loga~ithm representation
of binary numbers

N (binary)

00001000
00001001

00011000

11111110

11111111

N (decimal)

8

9

24

254

255

11

19A(N)

11.00
11.001

100.1000

111.1111110

111.1111111



Thus for the number N =110110.101 the approximate logarithm is
19A (N) = 101.10110101. This approximate method gives us
considerable error as shown below.

N = 110110.101 = 54.625
19A(N) = 101.10110101 = 25.70703125= 52.23812646

So the error equals to ( 54.625 - 52.23812646 ) 2.38687354 which
has been produced due to the approximate logarithmic representation
of the binary number N. Of course the error produced is large and
cannot be accepted for most of the computing applications. The
conversion error produced in term of the exponent error can be
calculated as follows :

then
N = number to be converted
X = In(N)/ln(2.0)
A = floor (X)

the error can be calculated by the expression

error N= (X-A) ~ (-- - 1.0)
2A

The first term X-A calculates the fractional part of the exponent.
So if we are investigating N = 54.625 then N = 25.771489469.Therefore
X-A = 5.771489469 - 5.0 = 0.771489469. While calculating the
second portion, we assume that the number N is loaded into a
register having integer and fractional parts. We then begin
shifting the whole register to right until the 1.s.b. of the
integer part is 1 and all of its other bits are zero. The

N
bits configuration of the fractional part gives us ---- - 1.0

2A

and it is clear that the total no of right shifts necessary is
equal to A. This gives us the maximum value of error =0.0860529

12



when X - A = 0.5360529.
A list is given below for further clarification.

Number (N) X-A error (as exponent)
32.0 0.0 0.0
32.8 0.03562391 0.01062391
40.0 0.321928095 0.071928095
46.4 0.5360529 0.0860529
54.625 0.771489469 0.064458219
56.0 0.807354922 0.057354922
64.0 0.0 0.0

Therefore the total conversion error produced in representing
54.625 becomes 54.625 - 2(5.771489469-a.a64458219} =.2.386873537 as we have
seen above.

A reasonable
whole range
divisions and

amount of correction can be achieved by dividing the
of the fraction portion of number into several
applying necessary correction factor[8] .

2.2 Common conversion techniques

Methods that convert a non-LNS number into LNS number and vice-
versa can be broadly classified into two groups

a) Techniques that apply complex hardware devices for conversion
are known as hardware conversion technique.

b) Techniques that employ either firmware based data/instruction or
a complete software based method are known as software method.

13
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The hardware method uses programmable logic array (PLA) [2]
to generate precise logarithmic conversion. Although this method is
accurate for small word size but is unsuitable for word size of 32
bits and higher. The bit requirement of the PLA can be reduced by
.arranging the same magnitude of errors in one group i.e. by
differential grouping arrangement [2]. This method is faster than
the software method.

An alternate approach is to use a ROM look-up table [3] to
convert the mantissa which is particularly promising due to the
recent advancement in packing density and reduced access time. Here
we have considered our binary data in IEEE floating point format
and used a ROM look-up table for data conversion. The sign bit and
the exponent portion of the FLP number does not change during the
conversion process but. the mantissa is converted according to the
ROM look-up table.

While converting FLP numbers into LNS numbers the mantissa of the
FLP number is divided into two portions, the first portion consists
of the most significant bits (msb) and the other portion consists
of the remaining least significant bits (lsb). The msb portion
dec.ides the base value of the logarithm number and the remaining
portion decides the correction factor that is to be added with the
base value of the logarithm number to get the corrected logarithm
value of the mantissa of the floating-point number.

The output of the ROM can be divided into two portions or two
separate ROMs of which the first ROM is for the base value and the
second ROM for the correction value can be used.

To calculate the correction factor the second portion of the ROM
output is multiplied with the. lsb portion of the mantissa
(multiplier) of the FLP number. The length of the multiplication
process can be reduced by increasing the ROM address bits which
means the reduction of the multiplier bits.

14



A reduction in multiplication process increases the accuracy but
requires a larger ROM size. If the multiplier bits are zero then
the logarithmic conversion is exact and the first portion of the
ROM output exactly represents the LNS value. In this way a large
number of points are available ( e.g. 1024 points if address bits
are 10 )-which gives the exact logarithmic conversion value. As the
ROM output value is limited so there will be always some truncation
error even the multiplier value is zero.

Another method uses high capacity ROM only and converts FLP to LNS
and vice-versa without any correction factor. This method although
much faster but less accurate than other method and requires high
capacity ROM. This will be investigated at a latter stage (in
chapter 3) .

2.3 IEEE std. 754 - 1985 and Logarithmic Number System

Although the
standard that
std. 754-1985

concept and use of LNS is common, there is no
clearly specifies the LNS number format as the IEEE
does for FLP number system.

A real value x can be represented in a sign/logarithm
representation X by

x = rXl • (_1).

of which X is composed of two parts: Xl that has F bits after the
radix point which is n-l bit representation of the base r
logarithm of the absolute value of X and s is the sign bit, 0 when
x is positive and 1 when x is negative. Numbers when represented
in this fashion can never represent zero, denormalized values,
infinities or NaN.

IEEE std. 754 completely defines the location of the sign bit,
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width of the exponent and mantissa portion, method of
representation of the exponent but for LNS there is disagreement
whether sign should be on the left or right of the word,
disagreement on the representation of Xl whether it should be
represented in one's complement, two's complement or offset
binary, disagreement about the representation of zero.

In this article some proposed LNS number formats [9] and its
denormalized representation shall be discussed so that very small
numbers can be represented.

Different formats of LNS numbers as proposed in [9] have four
layers. In all layers the sign bit s is placed on the right most
bit, utilize 2's complement binary to encode the signed fixed
point value for Xl and use base r=2. The width of the-exponent and
mantissa are kept identical to the IEEE suggestions. IEEE std. 754
does not provide any layer but proposal for various layers exists
in LNS system to meet individual demand or application
requirement.

Among the four layers, Layer 0 does not provide the
for zero, denormalized values, infinities or NaNs.
zero in layer 0 are represented with the smallest
is the smallest normalized Xl permitted in layer
single precision system "0 = -128.0 and so the
error is 2-128• Overflow is treated by
"1 = 127.9999998808 ( 127 + 1 - 2-23 ).

representation
Underflow and

Xl value. if "1

i then in the
worst possible
the largest

Layer 1 treats the minimum Xl value ( -128.0 for single precision
system ) as an exact representation for zero so the Xl value that
represents the minimum positive value is ", = "0 + 2-F• For a single
precision system ", = -127.9999998808 and the worst possible error
due to underflow is 2-12'- Layer 1 does not represent denormalized
values, infinities or NaN. Overflow is treated as in layer O.
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Denormalized values in LNS system is represented in layer 2. The
smallest possible Xl is still used to represent 0 which is 2-128•

The smallest normalized value is represented by Xl = ~2 which is
-127.0 in a single precision system. Denormalized values are
represented by any values between 0 2-128.0) and 2-127.0 so

Xl = -127.9999992847 is a denormalized value. Layer 2 does not
represents infinities and NaNs and so overflow is treated as in

layer O.

Layer 3 is enhanced by the representation of NaNs and infinities.
The smallest normalized number in layer 3 is twice the size of the

smallest normalized value in layer 2 so ~3 = ~2 + 1.

In IEEE 754 the 223 denormalized points are between 0 and 2-126•
This concept is also applied while evaluating LNS denormalized

numbers but the numbers are represented between 0 and 2-127 and
hence the lowest possible value that can be represented in FLP and
LNS denormalized form are nearly same 1.4013E-45 vs.

4. 8565E-46) .

The process of evaluating the denormalized value begins with the
evaluation of Xd which equals to Xl + 1. If it is found that
-127.0 < Xl < -128.0 then the value of the denormalized number is
evaluated by the expression 2Xd - 2-127.0• The subtrahend is constant
( 2-127 .0) but Xd = f (Xl) = Xl + 1. So this maps each denormalized
representation into a. unique encoding in the range of the bit.
pattern reserved for the denormalized values, known as the

forbidden zone . ~o " Xl < ~2' Therefore a value of
Xl = -127.9999992847 is treated as a denormalized value and its
magnitude is evaluated by 2{-127.9999992847 + 1.0) - 2- 127.0 = 2. 91695E-45.
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CHAPTER 3

CONVERSION USING LINEAR CORRECTION FACTOR

3.1 Techniques for transferring FLP to LNS format and vice-versa

As the arithmetic operands are first stored in the FLP format, our
main concern is to transfer FLP numbers into LNS format before
doing the arithmetic operations and once the arithmetic operations
are completed the data from LNS format is to be converted back to
the FLP format. Both the operations should be made fast and
accurate enough. To demonstrate what happens during conversion we
have selected two ROMs each having a capacity of 524288 bits
[214*(23+9)=16 Kwords] with 14 address lines and the output word
length is 32 bits long. The output bits are divided into two
portions, the first 14 bits give the base value ( logarithm or
anti-logarithm) and the remaining.9 bits gives us the value of the
correction factor (~lgm in table 3-1 and ~m in table 3-2). The
correction factor takes the role of multiplicand during the
multiplication process. The first 14 bits from 23 bits mantissa is
selected to generate the base logarithm number and the remaining 9
bits are used as the multiplier to generate the total value of
correction factor (known as add_factor' in simulation model program
m_lgm.c and 19m_m.c). Correction factor is the product of
multiplier and multiplicand that is to be added with the base
value. While transferring the LNS number to FLP number the same
process is adopted but with the ~econd ROM. Correction process is

'add factor is the total value of additions that is to be
made with-the base values. This is also a variable mentioned in
simulation program. Variables or expressions used in simulation
programs whenever mentioned in the text, is mentioned in italics
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simple because always positive correction factors are added to the
base number in both the cases .

.3.2 32 bits transformation analysis

Tables 3-1 and 3-2 together with their associated calculations in
sheets 3-1 and 3-2 respectively show the transformation of FLP
number to LNS number and from LNS number to FLP number when the
numbers are represented in 32 bits format. Table 3-1 and sheet 3-1
give the details for FLP to LNS conversion. Various segments have
been selected in column 1 so that the value of m = 0.1977539063 is
the initial value of segment no. 3240. Total number of segments are
determined by the length of the bits covered in the ROM. So when
ROM bit length is selected as 14 as in this case, total no. of
segments become (214) 16384 ranging from 0 to 16383. 'Similarly
m " 0.9998168946 is the initial value of segment no. 16381. Column
2 is the binary representation of column 1 showing the address
generated which corresponds to the first 14 bits of the mantissa of
the floating point number. In the third column 19{m) represents the
base 2 logarithm of the first columns and their corresponding
binary representation. The FLP number is stored in IEEE format so
the hidden 1 is added with m. The values represented in t>lgm
.(column 4) represents the correction factor for adding each bit to
the base number. The number t>lgm is very small so only 'last
significant 12 out of 32 bit configuration needs to be saved. All
of its other preceding bits are zero and need not to be saved.
Column 5 gives us the binary representation of six random numbers
generated. These numbers are stored in a 23 bit mantissa as per
IEEE single precision number system. Only the least significant 12
bits are mentioned. The complete bit pattern can be found by
cascading the corresponding bit pattern in column 2. For example
the first element of column 6 is 010-111111111 so the complete bit
pattern generated is 00000000000010111111111. This also implies
that the mantissa of' the random number we are investigating is
1.182896259E-04 as can be seen in sheet 3-1. Column 6 gives us the

19



bit pattern that we have produced after converting the value of
column 5 by using the ROM table data as available in column 3 and
4. Here we also like to mention that Ig(m) means that log base 2
of m is calculated through a computer with maximum possible
precision (m is enclosed in parenthesis) whereas Igm is calculated
through ROM table ( m is not enclosed in parenthesis). Column 7
gives us the difference between the bit pattern of Ig(m) and Igm.
This is more explained in sheet 3-1. The average loss of bits is
less than 1 because it is seen that in many cases there is no error
i.e. no bit has been dropped.

For 32 bits LNS to FLP conversion the reverse process is adopted as
shown in table 3-2 and'sheet 3-3. The numbers are assumed existing
in LNS format and are given in column 1 under Igm. Column 2
represents the address produced against each value of Igm and their
corresponding representation in binary. Only first 14 bits are
mentioned and all the other following bits are zero. In the third
column antilg(lgm) represents the base 2 antilogarithm value of
the column 1. The value of bm indicates the correction factor each
bit that is to be added with the value of antilg(lgm) under column
3 for each bit increment of the address generated for the value
under investigation. For example the value under investigation is
0.0001449584962 which has produced the address of
00000000000010011000000 so we have to multiply 0.8263832031E-07 by
(2' + 2') and have to add the product with the base value of
0.00008461627. As we can see that the multiplicand bit is
represented by a bit configuration of relatively smaller size
( only by 9 bits) still the conversion accuracy is relatively high
(this excludes the truncation error) Here we also see that the
average loss of bits is less than one because it is seen that such
case exists where no bits has been dropped.

A block diagram showing the details of conversion and anti-
conversion is given in fig. 3-1.
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Table 3-1
m to log2m conversion data table (RAL 14 ML 23)

m laddress of m
I

19(m) = 10g,(1.0 + m)/10g,(2.0)
first 14 bits

0.0 00000000000000 0.0 0---------------------0
0.6103515625E-05 001 8.805242111E-05 00000000000001011100010
1.2207031250E-04 010 1.760994828E-04 00000000000010111000101
1.8310546880E-04 011 2.641411570E-04 00000000000100010100111
2.4414062510E-04 00000000000100 3.521774731E-04 00000000000101110001010

I I
0.1977539063 00110010101000 0.26033152 01000010101001010001011
0.1978149415 001 0.26040503 01000010101010011110011
0.1978759766 010 0.26047854 01000010101011101011100
0.1979370118 011 0.26055205 01000010101100111000101
0.1979980469 00110010101100 0.26062556 01000010101110000101101

I I
0.400390625 01100110100000 0.48582931 01111100010111110100111
0.4004516602 001 0.4858921863 01111100011000110110111
0.4005126953 010 0.4859550611 01111100011001111000110
0.4005737305 011 0.48601793 01111100011010111010101
0.4006347656 01100110100100 0.48608080 01111100011011111100101

I I
0.6005859375 10011001110000 0.67860014 10101101101110001011110
0.6006469727 001 0.67865515 10101101101111000101100
0.6007080078 010 0.67871016 10101101101111111111001
0.600769043 011 0.67876517 10101101110000111000110
0.6008300781 10011001110100 0.67882018 10101101110001110010100

I I
0.80078125 11001101000000 0.84862294 11011001001111110101101
0.8008422852 001 0.84867184 11011001010000101000111
0.8009033203 010 0.84872073 11011001010001011100001
0.8009643555 011 0.84876963 11011001010010001111011
0.8010253906 11001101000100 0.84881852 11011001010011000010101

I I
0.9997558594 11111111111100 0.99982388 11111111111101000111010
0.9998168946 11111111111101 0.9998679113 11111111111101110101011
0.9998779297 11111111111110 0.99991194 11111111111110100011101
0.9999389649 11111111111111 0.9999559718 11111111111111010001110

cent.
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Table 3-1 (cent.)

lI.lgm*E-07 ls 12 ef 32
I

address
I
19m

I
Error

generated

1.71977385 001011100010
1.719669174 001011100010
1.719563949 001011100010 010-111111111 00000000000100010100110 nil
1.719459299 001011100010

I I I
1.435742188 001001101000
1.435742188 001001101000 001-100000000 01000010101011000101000 nil
1.435742188 001001101000
1.435742188 001001101000

.

I I I
1.228125 001000001111
1.227929688 001000001111 001-110000000 01111100011001101000010 nil
1.227929688 001000001111
1.227929688 001000001111

I I I
1.074414063 000111001101 000-000001111 10101101101110001101011 1 bit
1.074414063 000111001101
1.074414063 000111001101
1.074414063 000111001101

I I I
0.955078125 000110011010
0.954882812 000110011010
0.955078125 000110011010 010-000001100 11011001010001011101011 1 bit
0.954882812 000110011010

I I I
0.859986328 000101110001
0.859935546 000101110001 101-000100000 11111111111101111000010 1 bit
0.859996093 000101110001
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Table 3-2
log2m to m conversion data table (RAL 14 ML 23)

19m
I
address of I

antilg (lgm) = 21gm _ 1.0
19m

0.0 00000000000000 0.0 o----------------~----o
0.00006103515625 001 0.00004230724 00000000000000101100010
0.0001220703125 010 0.00008461627 00000000000001011000101
0.0001831054688 011 0.00012692709 00000000000010000101000
0.0002441406251 00000000000100 0.0001692397 00000000000010110001011

I I
0.1977539063 00110010101000 0.146911368 00100101100110111111101
0.1978149415 001 0.146959891 00100101100111110010100
0.1978759766 010 0.147008416 00100101101000100101011
0.1979370118 011 -0.147056942 00100101101001011000011
0.1979980469 00110010101100 0.147105471 00100101101010001011010

I I
0.400390625 01100110100000 0.319865230 01010001111000101011000
0.4004516602 001 0.319921070 01010001111001100101100
0.4005126953 010 0.319976912 01010001111010100000000
0.4005737305 011 0.320032757 01010001111011011010101
0..4006347656 01100110100100 0.320088604 01010001111100010101001

I I
0.6005859375 10011001110000 0.516332286 10000100001011100101101
0.6006469727 001 0.516396438 10000100001100101000111
0.6007080078 010 0.516460539 10000100001101101100001
0.600769043 011 0.516524750 10000100001110101111011
0.6008300781 10011001110100 0.51658891 10000100001111110010101

I I
0.80078125 11001101000000 0.742044225 10111101111101101001110
0.8008422852 001 0.742117926 10111101111110110111000
0.8009033203 010 0.74219630 10111110000000000100010
0.8009643555 011 0.742265338 10111110000001010001100
0.8010253906 11001101000100 0.742339048 10111110000010011110111

I I
0.999755859 11111111111100 0.999661577 11111111111010011101001
0.999816894 11111111111101 0.999746178 11111111111011110101110
0.999877929 111111111-11110 0.999830781 11111111111101001110100
0.999938964 11111111111111 0.999915389 11111111111110100111010

cant.
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Table 3-2 (cant.)

Ll.m*E-07 ls 12 of 32 I
address

I
antilglgrn Ierror

generated
0.8263132813 000101100010
0.8263482422 000101100010
0.8263832031 000101100010 010-011000000 00000000000001101001001 1 bit
0.8264181641 000101100010

.

I I I
0.94771484 000110010111 000-100000001 00100101100111011001001 nil
0.94775391 000110010111
0.94777344 000110010111
0.94783203 000110010111

I I I
1.090625 000111010100
1.09066406 000111010100
1.09072265 000111010100 010-000010100 01010001111010100010010 nil
1.09076172 000111010100

I I I
1.25296875 001000011010
1.25197265 001000011001 001-100100000 10000110001101001110110 1.bit
1.25412109 001000011010
1.253125 001000011010

I I I
1.43947265 001001101010 000-001000001 10000100001101001110110 nil
1.43953125 001001101010
1.43960937 001001101010
1.43964844 001001101010

I I I
1.65236328 001011000101 100-110000000 11111111111011011111001 1 bit
1.65240234 001011000101
1.6525 001011000101
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Sheet 3-1

1) value investigating m = 1.82986259E-04
addr~ssgenerated 0000 0000 0000 1011 1111 111

delta 19m 0000 0000 0000 0000 0000 0010 1110 0010
multiplier 1 1111 1111
add factor 0000 0000 0000 0101 1100 001
base 19m 0000 0000 0000 1011 1000 101

19m 0000 0000 0001 0001 0100 110
19 (m) 2.639692048E-04 0000 000"00001 0001 0100 110

(no error, 19m and 19(m) both have same bit pattern)

2) value investigating m = 0.1978454591
address generated 0011 0010 1010 0110 0000 000

delta 19m 0000 0000 0000 0000 0000 0010 0110 1000
1 0000 0000

add factor 0000 0000 0000 0010 0110 1000 0000 0000
base 19m 0100 0010 1010 1001 1110 011

19m 0100 0010 1010 1100 0100 111
19(m) = 0.26044179 0100 0010 1010 1100 0100 111 (no error)

3) value investigating m = 0.400497436
address generated 0110 0110 1000.0111 0000 000

delta 19m 0009 0000 0000 0000 0000 0010 0000 1111
1 1000 0000

add factor 0000 0000 0000 0011 0001 0110 1000 0000
base 19m 0111 1100 0110 0011 0110 111

19m 0111 1100 0110 0110 1000 010
19(m) = 0.48593934 0111 1100 0110 0110 1000 010 (no error)

4) value investigating m = 0.6005877
address generated 1001 1001 1100 0000 0001 111

delta 19m 0000 0000 0000 0000 0000 0001 1100 1101
0 0000 1111

add factor 0000 0000 0000 0000 0001 1011 0000 0011
base 19m 1010 1101 1011 1000 1011 110

19m 1010 1101 1011 1000 1101 011
19(m) = 0.67860175 1010 1101 1011 1000 1101 100 (error on last bit)

5) value investigating m = 0.8009047508
address generated 1100 1101 0000 1000 0001 100

delta 19m 0000 0000 0000 0000 0000 0001 1001 1010
0 0000 1100

add factor 0000 0000 0000 0000 0001 0011 0011 1000
base 19m 1101 1001 0100 0101 1100 001

19m 1101 1001 0100 0101 1101 010
19(m) = 0.8487218796 1101 1001 0100 0101 1101 011 "(error on last bit)

The last calculation is dropped to avoid mere repetition.
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Sheet 3-2

1} value investigating 19m = 0.0001449584962
address generated 0000 0000 0000 1001 1000 000

delta m 0000 0000 0000 0000 0000 0001 0110 0010
0 1100 0000

add factor 0000 0000 0000 0001 0000 1001 1000 0000
base antilglgm 0000 0000 0000 0101 1000 101

antilglgm 0000 0000 0000 0110 1001 001
antilg (lgm) = 1.0048262E-04 = 0000 0000 0000 0110 1001 010 (on last bit)

2} value investigating 19m = 0.1977845
address generated 0011 0010 1010 0010 0000 001

delta m 00000000 0000 0000 0000 0001 1001 0111
1 0000 0001

add factor 0000 0000 0000 0001 1001 1000 1001 0111
base antilglgm 0010 0101 1001 1011 1111 101

antilglgm 0010 0101 1001 1101 1001 001
antilg (lgm) = 0,1469356.9 0010 0101 1001 1101 1001 001 (no error)

3} value investigating 19m = 0.400515
address generated 0110 0110 1000 1000 0010 100

delta m 0000 0000 0000 0000 0000 0001 1101 0100
0 0001 0100

add factor 0000 0000'0000 0000 0010 0100 1001 0000
base antilglgm 0101 0001 1110 1010 0000 000

antilglgm 0101 0001 1110 1010 0010 010
antilg(lgm) = 0,3199790206 0101 0001 1110 1010 0010 010 (no error)

4} value investigating 19m = 0,6006813049
address generated 1001 1001 1100 0110 0100 000

delta m 0000 0000 0000 0000 0000 0010 0001 1001
1 0010 0000

add factor 0000 0000 0000 0010 0101 1100 0010 0000
base antilglgm 1000 0100 0011 0010 1000 111

antilglgm 1000 0100 0011 0100 1110 101
antilg (lgm) = 0,5164325245 1000 0100 0011 0100 1110 110 (on last bit)

5) value investigating 19m = 0.8007889986
address generated 1100 1101 0000 0000 1000 001

delta m 0000 0000 0000 0000 0000 0010 0110 1010
0 0100 0001

add factor 0000 0000 0000 0000 1001 1100 1110 1010
base antilglgm 1011 1101 1111 0110 1001 110

antilglgm 1011 1101 1111 0111 0011 100
antilg(lgm) = 0,7420535816 1011 1101 1111 0111 0011 100 ( no error)

6) value investigating 19m = 0.9998016357
address generated 1111 1111 1111 0011 0000 000

delta m 0000 0000 0000 0000 0000 0010 1100 0000
1 1000 0000

add factor 0000 0000 0000 0100 0010 0111 1000 0000
base antilglgm 1111 1111 1110 1001 1101 001

antilglgm 1111 1111 1110 1101 1111 100
antilg (lgm) = 0,9997250276 1111 1111 1110 1101 1111 101 ( on last bit)
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(~ITH DETAILS OF FLP TO LNS AND LNS TO FLP CONVERSION)
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3.3 simulation model program

We have also written a software routine as given in the listing of
program m_lgm.c ( the listing of all programs those are mentioned
here are given in the Appendix to process the FLP to LNS
conversion of numbers under simulation environment. Numbers can be
represented by any mantissa bit length ( defined as ML in the
program but we have done exhaustive checking up to 64 bits
length. To find the add_factor we have multiplied the individual
bits ( ML - RAL no of bits ) by the suitable multiplying factor
( mul_factor ) and finally accumulating the result as shown in the
function lin_int_values() of m_lgm.c.

The program runs through external number of loops as decided by the
ROM size as may be stated under the definition RAL. On each
external loop the program calculates the higher log base 2 value by
new.lgm and the lower log base 2 value by old.lgm. Next the
variable difference is calculated which must be added for each bit
of increment. The old m is incremented by one bit value each time
in the function lin_int_values() to cover all possible number
configuration from 0.0 to 1.0. To calculate the intermediate log
base 2 values each bit is treated separately to simulate the
hardware multiplication effect instead of adding the whole value of
correction at one time.

To calculate the add_factor it is necessary to multiply the second
portion of the binary representation of old_m ( first portion is
covered by RAL ) with ~lgm so the second portion is treated as the
integer and as the multiplier in the multiplication process.

Next error is calculated and max con error (MCE)is replaced by
error if it is found higher than the max con error. The whole
process is repeated until t~e most exterior loop is exhausted.

A typical value of 2.50E-13 was achieved for 64 bits FLP to LNS
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conversion with 1 Mbytes of ROM ( RAL 20 ). The other results are
also stimulating e.g. when RAL and ML values were set for 12 and 23
( for 32 bit configuration) respectively, the MCE was reported
1.07E-08 which occurred at input value of m = 0.000122070312. Error
pattern can be seen in graph 3-1.

We have also studied the effect of ROM output bits length ( choice
2 .of m_lgm.c ) for FLP to LNS conversion. When we set RAL 12, ML 23
and DL 20, MCE was reported to 1.09471E-08 but when DL was set to
30 or higher the MCE reduces to its minimum value as expected.
Table 3-3 gives us the value of other MCEs for various DL settings.

Table 3-3 Effect of multiplicand bit
(m-lgm conversion, RAL 12

length
ML 23)

on MCE

RAL = 12 ML 23

DL MCE ill ROM size (in Kbits)

10 4.53295E-07 0.00244140625 132
20 1.09471E-08 0.0008554458681 172
30 1.07461E-08 0.0001220703125 212
40 1.07461E-08 0.0001220703125 252
50 1.07461E-08 0.0001220703125 292

The effect of correction factor bit length can be visualized when
compared the simulation results with our hardware model. If we set
RAL 14 and ML 23 (in m_lgm.c) we get the maximum
error (MCE) = 6.71766 * 10-10 at m = 3.0517578 * 10-5
convert the above value of m by table 3-1 where the
factor is represented by only 9 bits we get
( 4.402687511-4.398822784 )*10-5 = 3.864727 * 10-8

conversion
but if we
correction
the MCE

The LNS to FLP conversion is also done by a software routine
19m_m.c which is similar to m_lgm.c and as listed in the Appendix.
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m to Igm and Igm to m conversion error graph when
linear correction factor is applied (RAL 12 ML 23)
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graph 3-1 : Both way conversion error pattern (32 bit)
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A typical value of MCE = -1.09428E-13 was achieved for 64 bits
LNS to FLP conversion with 1 Mbytes of ROM (RAL 20). The other
results are also stimulating e.g. when RAL and ML values are set
for 12 and 23 respectively, the absolute max_con_error was reported
-7.16E-09 occurred at input value of m = 0.9998779296875 ( error
pattern in graph 3-1 ). Fast locating the max con error is achieved
by executing the choice 7 of 19m_m.c which traces down the numbers
starting from 1.0 instead of 0.0.

We have also studied the effect of ROM output bits length ( choice
2 or 8 of 19m_m.c ) for LNS to FLP conversion as shown in
table 3-4. When we set RAL 12, ML 23 and DL 10 MCE was reported
to 3.44519E-07 but when DL was set to 30 or higher the MCE reduces
to its minimum value as expected. Here we also like to mention that
as the max_con_error for LNS to FLP conversion is determined by the
expression error = antilg_old_lgm - (old_m + add_factor) and as it
is found to be negative, a lower value of add_factor can give us a
better value of max_con_error, It may be noted here that a slightly
better value has been achieved for DL 20. Table 3-4 gives us the
value of other max_con_errors for various DL settings.

Table 3-4 : Effect of multiplicand bit
( 19m-m conversion, RAL 12

length on MCE
ML 23

RAL 12 ML 23

DL MCE 19m ROM size (in Kbits)

10 3.44593E-07 1.0 132
20 -7.15789E-09 0.9998779296875 172
30 -7.15857E-09 0.9998779296875 212
40 -7.15857E-09 0.9998779296875 252
50 -7.15857E-09 0.9998779296875 292
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3.4 64 bits transformation analysis

The scope of transformation of floating point numbers into 64 bits
logarithm numbers is the transformation of 52 bits mantissa of a
floating point number into a logarithm number having a 52 bits
mantissa. We have done 64 bits transformation ina way similar to
32 bits transformation as shown in table 3-5.

As the magnitude of the multiplicand is very small and we have
taken the least significant 40 bits of its 90 bits configuration,
a final 50 bits SHR operation has become necessary to adjust the
result. The details of multiplication ( Booth recorded multiplier
scheme) result for row no 2 and 6 are also attached in sheet 3-3
and sheet 3-4.

It has been found that when 6 random numbers are generated and
their base two logarithm numbers are calculated the typical error
lies between 2.65E-10 and 9.10E-13. While simulating the situation
with m_lgm.c ( RAL 14 ML 40 DL 38 ) the MCE was reported to be
equals to 6.7176 * 10-10 at m = 3.0517578125 * 10-5 which is higher
than 2.65 * 10-10 as may be expected. When we converted the above
mentioned value of minto 19m by table 3-5 we got an error equals
to (4.40268711 - 4.402621055) * 10-5 = 6.6456 * 10-10 which is well
compatible with the simulation result. It should be also
mentioned here that the typical error for 32 bits conversion
process ( table 3-1 and table 3-2 ) can be reasonably approximated
to ((2-23/2 + 2-24/2 )/2) 4.47 * 10-'.
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Table 3-5
m to lo~m conversion data table (RAL = 14 ML = 52)
n address Iglnl AlqJI

<-50 bits-) (- L,.S, 10 of 90 bits -)

0,0 00000000000000 0,0 3,203328!19!-l6 0(- -)0
0,00006103515625 001 0,00008805212111 J.20313J!!51-16
0,00012207031250 010 0,00017609948280 3,202937!191-16 0101110001010001100000011100100000111101
0,00018310516880 011 0,0002611!115700 3,2027!2522E-16
0,0002l!1!062510 100 0,0003521774731 0(- -)0

j j

I
.

0,1977539063 00110010101000 0,2603315186
0,19781!9415 001 0,2601050336 2,671160121-16 0(- -)0 0100110100010101000100001111000101010000
0,1978719767 010 0,260178515
0,1979370119 011 0,2605520525
O.l979980m

j
100 0.2606255563
j

0,100390.625 01100110100000 0,1858293087
0,4001516602 001 0,1858921863
0,1005126951 010 0,1859550612
0,1005737306 011 0,4860179331 2,2871711181-16]0(- -)0 0100000111101100011000000100010101001101
0,1006347658 100 0,1860808028

0,6005819375 10011001110000 0,6786001391
0,6006469727 001 0,6786551523
0,6007080078 010 0,6787101635 2.00121911-16 0(- -)0 0011100110101110011001001001000101010101
0,6007690lJ 011 0,6787651726
0,6008300781 100 0,6788201796 .

0,80078125 11001101000000 0,8186229101 I
0,8008122852 001 0,8186718379 1.778822481-16 0(- -)0 0011001101000101011001001010100111010010
0,8009033201 010 0,8187207338
0,8009613116 011 0,8487696279
0,8010253908 100 0,8188185205

0,9997558191 11111111111100 0,999823879 1.6018857211-16 0(- -)0 0010111000101011110101001001010011000010
0,9998168916 101 0,999867911J
0,9998779297 110 0,9999119122
0,9999389649 III 0,9999559718
1.0 1.0
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Yable 3-5 Icont.I

11111111111101000111011101011000

I

1111111111110000000000110000000000000000000000000000 0,999824008

'{alue of n address produced 19(nl
under study

10,0001226067513 0000000000001000000010010000000000000000000000000000 0,00001768733075 0000DOOOOOO010111001011101110001

! j•
I

0,1978165863 0011001010100100001000000010000000000000000000000000 0,2601073399 01000010101010100000111000110000

I
0,4006042174 0110011010001110000000000000000000000000000000000000jO,1860193676 j011111000110110110111 01100111 010

I
0,6007232666 1001100111001001000000000000000000000000100000000000 0,678723917 101011011100000011011 0011011111 0

I
,,

1110110010100010000101111010100010,8008732796 1101110100000101000001000000000000000000000000000000 0,848696668

l
j

•

I' "'" •.,
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Table 3-5 (cant.)

19l1 ( from ROMI Error The first
discrepancy noted

0001001000il11010100 0000000000001011100101110111000011111000111111110110 i.51Hl on 32nd bit

10000010010001000110 0100001010101010000011100011000000010110100110011001 9.19&-11 on J3rd bit

I
i,
•

on J2nd bit

on 31st bit

on 32nd bit

on lOth bit

00010101010111110001 011111000110110110111011001110110011100011110110 2, 65&-10

00111011101010010011 1010110111000000110110011011110101000010000000000000 2,21&-10

----- -------------,--
J

01001000101111110101 110110010100010000101111010100010100100010100001 1, 52&-10

00011101100110101011 1111111111110100011101110101100000011100100110101011 9,09&-131
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Sheet 3-3

Example for row 2

address = 0011001010100100001000000010000000000000000000000000

value of m 0.1978168563
19(m) = 0.2604073399

= 0100001010101010000011100011000010000010010001000110

multiplicand "lJ.lgm 101001101000101010001000011110001010100
multiplier • 100001000000010000000000000000000000000

----------------'I---~-----------
I 00000000000000000000000000000000000000 I 00000000000000000000000000000000000000
)1.1111.11111111.1.011001011101010111011110 I 0001110101100 2' 6 complement of

I 000000000000010011010001010100010000111110001010100 multiplicand

11111110110010111010101.1101111000011.1011 01100
)00000100110 10001010100010000 11110001011 0100

I 000000 lOa 11010110001000100110000000100 1100000 1010 1000000000000000000000000000
50 SHRI 100000000.000000000010011010110001.0'00100 final shifted product

base 19m
add_factor

19m

19(m)
19m

0100001010101001111001110111111100000110100110011001 value at the beginning of the segment)
00000000000000000010011010110001000100 total correction to be added )

~ 0100001010101010000011100011000000010110100110011001

= 0100001010101010000011100011000010000010010001000110
0100001010101010000011100011000000010110100110011001

0<-

Absolute error = 2A-34
2A-43

->01101011101010101101

+ 2A-35 + 2A-37 + 2A-39 + 2A-40 + 2A-41 +
+ 2A-45 + 2A-47 + 2A-49 + 2A-50 + 2A-52

9.7222781E-11
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Sheet 3-4

Example for row 6

address 1111111111110000000000110000000000000000000000000000

value of m 0.9997560382
19(m) = 0.999824008

= 1111111111110100011101110101100000011101100110101011

multiplicand •. II.1gm 100101110001010111101010010010100110000

multiplier. 100000000110000000000000000000000000000

---------------1---------------
I 00000000000000000000000000000000000000 I 00000000000000000000000000000000000000
11111111111110100011101010000101011011011011010000 :2's complement ot
1 00000000001011100010101111010100 10010 11 00110000 mul tiplicand

I 0000000000100010101000001101111101101.1 j 11100100000000000000000000000000000000
50 SHRI 100000000000000000000001000101010000011 final shifted product

base 19m
add_factor

1111111111110100011101010010111000010000100110101011 value at the beginning of the segment)

00000000000000000000001000101010000011 total c:orr~c:tion to be added)

19m = 1111111111110100011101110101100000011100100110101011

19 (m)

19m
1111111111110100011101110101100000011101100110101011
1111111111110100011101110101100000011100100110101011

0<- ->01000000000000

Absolute error 2-40

= 9.094947018E-13
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To bring down the conversion error to the level of the 64 bitFLP
truncation error ( 2.22E-16) we have selected a ROM with 25

I address Imultiplier base value 1multiplicand
<- 25 ->1<- 27 -> ROM <- 52 ->1<- 27 ->

225* 79
bits

Fig 3-2 A typical ROM configuration for 52 bit one end
conversion ( RAL 25 ML 52 )

address lines and having 79 output bits as shown in fig. 3-2. By
using the choice 1 of m_lgm.c and choice 7 of 19m_m.c we can find
out a configuration such that the conversion error shall not exceed
that of the truncation error of 64 bit floating point numbers.
Graphs 3-2 and 3-3 shows the error pattern for 64 bit FLP - LNS and
LNS - FLP conversion.

The ROM capacity needed for each ROM/(block of ROM) is 2528 Mbits.
Two such capacity of ROM are necessary for FLP to LNS conversion
and a third one is necessary for LNS to FLP conversion. So the
total capacity of ROM necessary (2528 * 3)/8 = 948 Mbytes.

We have also studied the effect of ROM output bits length for 64
bits FLP to LNS and vice versa conversion. Table 3-6 and table 3-7

19m_m.c

show us the effect of ROM output bit lengths
error produced. Table 3-6 is for FLP to LNS
and table 3-7 for LNS to FLP ( choice 7 of
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m to Igm conversIon error graph

RAL 25 ML 52

maximum conversion error
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Igm to m conversion error graph
RAl 25 ML 52

maximum conversion error
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Table 3-6 Effect of multiplicand bit length on MCE
(m-lgm conversion, RAL 25 ML 52)

RAL = 25 ML3 = 52

DL MCE ill ROM size (Mbits)

10 3.84038E-ll 0.00000002980i322388 1984
20 5.68176E-14 0.000010192394256529 2304
30 1.89122E-16 0.000003532841219567. 2624
40 1.60198E-16 0.000000169312773132 2944
50 1.60171E-16 0.000000014901161194 3262

Table 3-7 Effect of multiplicand bit length on MCE
(lgm-m conversion, RAL 25 ML 52)

RAL = 25 ML 52

DL MCE 19m ROM size (Mbits)

10 4.55594E-ll 1.0 1984
20 2.79499E-14 0.999999999956344254 2304
30 -2.68882E-16 0.999999985564500093 2654
40 -2.68882E-16 0.999999985564500093 2944
50 -2.68882E-16 0.999999985564500093 3264

3 While preparing tables 3-6 and 3-7, ML was set to 40
instead of 52. This saves huge computing time with little or no
loss of accuracy. If ML is decreased while keeping RAL constant,
the value of correction factor increases but multiplier decreases
thus keeping the product (multiplier * multiplicand) constant.
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While executing the simulation program for 64 bits analysis we took
the help. of data file for temporarily storage of data so that
searches throughout the whole segment can be done which requires
considerable long period of time.

3.5 Reduction of ROM size

We also like to mention here the several possibilities which can
be used to reduce t.he amount of ROM.

Firstly some registers those contain fixed value of differences and
these can be used instead of various difference values for each
segment. If we observe table 3-5 we can conclude that the value of
difference varies little with segment number and hence an
intermediate or other suitable value of difference is loaded into
a register. It can reduce the ROM requirement by 33% with little
loss of accuracy.

For example the range 0.0-1.0 can be divided into various numbers
(numbers those are powers of 2) Several registers can be
selected accordingly e..g. if we divide 0.0 - 1.0 in four ranges
namely 0.0-0.125, 0.125-0.5, 0.5-0.75 and 0.75-1.0, we have to
select four registers those will contain a suitable value of
difference for that segment. Selection can be done through a 2 to
4 decoder using the first two bits of the address generated.

This mode of selection not only decreases a significant amount of
ROM size but also decreases the overall conversion time. If the
difference value is embedded in the ROM, multiplication can begin
only after accessing the ROM but the use of registers can allow
the beginning of the multiplication process in parallel to the ROM
access as the value of the multiplier is composed of the second
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portion of the address generated and the multiplicand is already
available in one of the registers. Thus the delay of conversion
due to the use of multiplication can be avoided.

Embedding of differences values in registers decreases overall
accuracy but as the range of accuracy may vary according to
requirement we have also investigated the maximum conversion error
as given below. Here correction factor may have different values
e.g. value of the first segment or value of the last segment. In
our simulation we accepted the correction factor applicable to the
mid-segment i.e. at the middle of the each range.

RAL ; 12 ML; 23

TOTAL REGISTER
64
32

16

maximum conversion error
2.667E-06
5.2949E-06
1.03189E-05

ill

0.000244140625
0.000244140625
0.000244140625

It is worthy to mention here that if the difference values are kept
in the ROM, MCE becomes 1.07E-08 at.m ; 0.000122

Secondly use of limited multiplication may reduce ROM size without
significant loss of accuracy. In fig. 3-1 the multiplicand bit
length can be reduced to a lower value say 16 if the accuracy limit
does not fall below the pre-specified requirement. This process
also reduces ROM and also reduces overall conversion time.

3.6 Development of a mathematical model

So far we have seen that the MCEs occur approximately at the
middle of each segment and the absolute value of the MCE is the
largest in the first segment (segment 0) for FLP to LNS
conversion. While converting LNS to FLP number system we may
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observe that although MCEs have occurred at the middle of the each
segment its absolute maximum value is in the highest segment
( segment no. 2~ - 1).

The occurrence of the MCEs at the middle of the each segment is
natural. The FLP to LNS conversion curve is a convex curve and on
the other hand the LNS to FLP conversion curve is a concave one
with maximum deviation approximately at the middle. So the MCE
always occurs at a point close to the segment mid value with a
positive value for FLP to LNS conversion and a negative value for
LNS to FLP conversion.

To prepare the mathematical model for the above analysis, we
proceed as follows :

We can calculate the FLP to LNS conversion error by

error

In(1.0 + C*i + m)
i ; 0,1,2 .. (2~-1) ]

In2

[ In implies loge and i implies ith segment ]
and C ; CONSTANT ; 1/2~, the value of m cannot exceed the range of
each segment value so that 0.0 s m s,C. Here old_lgm gives us the
base value of log base 2 of the starting value of each segment.
Therefore

old 19m ; In(l + C*i)/ln2

differencei
FACTOR
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ln (1 + C* (i + 1)] - ln (1 + C* i)
2 (ML- RAL)* ln2

To calculate the add factor we have to calculate the integer value
(multiplier) returned from m. The process is described fully in

article 3.3.

The integer value I becomes

m
I ;

C

2 (ML- RAL)

replacing C by 1/2RAL, we get
I ; m * 2ML

As add factor; I * di, hence add factor becomes
add factor ; d. * m * 2ML,

ln (1 + C* (i + 1)] - ln (1 + C* i)
add factor ; ------------------- * m * 2M\-2 (ML- RAL)* ln2

ln [1 + C* (i+1)] - ln (1 + C*i)
; ---------------~--- * m * 2RAL

ln2
so (3.1) becomes

error 1n(1<'*i..",)
ln2

[_l_n~(_l_<,_*_i~) + l!:l[1<'*~(~_'_+_1~)~1~-l,n(.1<'"*,,i .) 2RAL 1 (3 2)
ln2 ln2 '7Il*.. •

differentiating error with respect to m and setting the result to
zero, we get
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d(error) a 1

dm ln2*{l+C*i+m)

In[l+C*(i+l)]-ln(l+C*i)_ 2RAL* _
ln2

1
0; ------- 2RAL*[ln[l + C*(i+l)] - In(l + C*i)]

1 + C*i + m

,1 ; 2RAL * [In[1+C * (i+1) ]-In (1+C*i)]..(3 .3)
l+C*i+m

This gives us the expression of m in terms of segment no. i. If

i ; a ( first segment) the expression reduces to,

1

1 + m

In
C

1 + C )
C * 2RAL ; 1 ]

Upon expanding In(l + C) and neglecting the terms containing the

powers of C, we get

1
---:;::1-

1 + m

C

2

As C*m s C2, the expreassion further reduces to

Cm ;
2

As the error pattern is same for each segment it can be concluded
that the MCE occurs at the mid point of each segment. Evaluation
of m for various values if i from equation (3.3) also confirms the
above as given in table 3-8.
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Table 3-8 Location of MCE in any segment during
m - 19m conversion (RAL 12 ML 23) .

RAL 12 ML 23

.
segment. no (i) m

0 1.220858291E-04
1 1.220146858E-04
2 1.220264856E-04

115 1.220443059E-04

4095 1.219975490E-04

no In which the MCE occurs.We next try to find out the segment
Let us replace m by C/2 in
simplification, we get

equation (3.2) and after

error =
In( 1+ C +Cd)

2
in

1:. * _l_n~(_l_+_C_*_i~)
2 In2

1:. * in [ 1 +C * (i +1 ) ] (3 4)
2 In2 • . •

Upon differentiating with respect to i and setting the result to

zero, we get

C
o =

ln2*(1+C/2+C*i)

1

2
*

C

ln2*(1+C*i)

1

2
*

C

ln2* [(l+C)+C*i]

Upon rearranging and simplification it becomes

4

2 + C + C*i
=

2 + C + 2C*i

1 + C + 2c*i

which further reduces to
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2C * i = a or i = a

Which confirms that for FLP to LNS conversion the MCE always
occurs at the first segment.

To figure
conversion

out the necessary conditions during
let us first define the conversion error

LNS
by

to FLP

2 (C*i + 19m1 - 1.0 [ a " 19m " C ]

old m

differencei

2C*i - 1. a

2C*(h11 - 1. a ]
di =

[ 2C*i - 1. a ]
2ML - RAL

integer value returned from 19m is therefore

19m * 2
ML

-
RAL

r
C

r 19m * 2ML

add_factor = rdi * 19m * 2ML

= [ 2c* (i*l) . _ 2C*i ] * 19m * 2RAL
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Therefore equation (3.5) becomes

d(error) 0
= 2(C*i+lgm)*ln2 _ 2C*(i+ll*2RAL + 2C*i*2RAL

dlgm

2 (C"i + 19m) * In2 = 2c"(i+1) +R _ 2C*i+R

which finally gives us

19m =
In[2C'(i'1)'RAL - 2C•i'RAL] - In(ln(2.0))

In2

This gives us the expression of 19m in terms of segment no i. Any
selection of 0 sis 2~ will give us the value of 19m which is
approximately half of the length of each segment. This has been
verified for various ranges of C and a table like table 3-8 can be
formed easily. So this can be concluded that for LNS to FLP
conversion the MCEs also occur approximately at the middle of-each
segment. So we can continue our expedition by replacing 19m by C/2
in equation (3.6), differentiating it with respect to i; setting
the result to zero and solving for i yield an impossible result

2C * ( i + 1 )

This happens due to the fact that LNS to FLP conversion error vs.
segment no. curve ( graph 3-3 ) does produce more minimum values if
the segment nos are allowed to increase ( it may be mentioned here
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that for FLP to LNS conversion a theoretical value of i .lower than
zero satisfies the error expression ( 3.2 with m replaced by C/2 )
and produces a lesser error ) so we replace the 19m by C/2 in
equation (3.6) and get

C

error = 2C-i * [2 2 -1] -

and finally

error
C

+ 2C>i * [ 2 2 - ; ] > > ( 3 > 9 )

As C is very small the second portion of (3.9) reduces to 1/2 *2C
>i.

So the error expression reduces to

error +

Whose magnitude continuously decreases as i increases. Therefore
for LNS to FLp. conversion the absolute magnitude of the largest
value of the MCE occurs at the highest segment value.

3.7 Use of 1Mbyte of ROM for direct conversion

This concept uses 1 Mbytes of ROM (although other configuration can
be used) for FLP to LNS and LNS to FLP conversion without using a
multiplier for determining the correction factor. Base 2 logarithm
of numbers 0.0 to 1.00 with an increment of 1/220 which equals to
9.536743164E-07 are stored in the ROM. While simulating ( choice 5
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of m_lgm.c ) for error calculation only the mid-values between two
addresses are considered because any other value within this range
will produce lesser error. Thus the maximum error produced is
6.88E-07 at m = 0.000000476837158. The choice 5 of 19m_m.c is
simulated for calculating LNS to FLP conversion and. the maximum
error produced is 6.6103633578E-07 at 19m = 0.999999523162842.
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CHAPTER 4

NON-LINEAR CONVERSION AND ERROR ANALYSIS

4.1 Non-linear correction factor

We have modified the basic conversion technique of. converting FLP
numbers into base 2 logarithm number system as described in the
choice 1 of m_lgm.c but the scope in choice 3 has been extended
by including the possibility of improving the maximum conversion
errOr. This improvement is done in the optimum_difference error()
procedure by applying a search procedure which resembles binary
search technique.

We did not apply pure binary search technique because searches at
both directions may be felt necessary particularly at the beginning
of the search procedure. However by guessing the.right direction of
search we have also applied binary search technique which yielded
the identical results.

A significant improvement has been noted e.g. maximum conversion
error has been reduced to 7.39E-09 from 1.07E-08 for 32 bits
configuration with 4 Kbytes of ROM ( RAL 12 ML 23 ) while FLP to
LNS conversion is done.

The non-linear search is done in the optimum_difference_error ()
procedure. The procedure tries to reduce the maximum conversion
error for each segment ( each block of ROM is a segment ) . At first
ideal difference is calculated for which the max con error turns to
zero but it produces
select the optimum
segment. difference

new values of max con error in the segment.
value of correction factor here known

searches in both directions are made
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allowing left_search and right_search as ALLOWED. If a search in
any direction ( left or right ) produces an error higher than the
present max_con_error search in that direction is made prohibited
by setting it NOT_ALLOWED. When searches in both direction produces
higher error than the present max_con_error, the while loop is
exited.

The Pseudo-code for optimum_difference_error() is given below.

/* Pseudo-code for optimum difference errorO */
/* for mx to Igmx conversion- */ -
/* segment.max can error and segment.difference for the segment is already
/* calculated bylinear search technique */

right search = left search <--ALLOWED
calculate ideal difference /* find ideal differenceO */

/* as explained in article 4.1 */ - -
high end difference = ideal difference /* U.L. in fig. 4-2 */
mid difference = ideal difference
low-end difference = segment.difference /* L.L. in fig. 4-2 */
calculate- temp new can error at ideal difference

/* temp new can error is the temporarY value of the MCE in the segment */
if fabs<temp new can erron > segment.max con error

- - - and temp new con error < 0.0
right search < --NOT ALLOWED - - -
left search < --ALLOWED

else print error message and exit
/* now swing to lower side because any search to higher side will produce more
/* error so right search is set to NOT ALLOWED */
/* henceforth all tried new values of difference (.."gm) is ideal difference
/* Here trials are made to find the best value of difference so that the
/* absolute value of MCE in the segment is minimum. Therefore without
/* increasing the number of variables by introducing a new name, the previous
/* ideal difference is used */
ideal difference = (mid difference + low end difference) * 0.5- - - -

while ( right search = ALLOWED or left search = ALLOWED)
if ( right search) -
ideal difference < -- (mid difference + high end difference) * 0.5
calculate right new con -error - -

if (left search)- - -
ideal difference <-- <low end difference + mid difference) * 0.5
calculate left new can error - -

if right_new _con_error or left_new _con_error < segment.max _con_error
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segment.max can error < .. min{right new can error, left new can error}
segment.difference < .. ideal difference - - - -
left_search = right_search <-:.ALLOWED

else right search = left search = NOT ALLOWED
/* end of opfimum_difference_erroro */-

Fig 4-1 : Pseudo-code for optimum_difference _error ()

To illustrate the matter further we can proceed as follows. Let us
set RAL 3 and ML 8 so that we can throughout study the first
segment out of total .eight segments and can find out how .the
optimum_difference_error () procedure finds out the minimum value of
the max con error iriany segment.

When the program starts executing the instructions of the
optimum_difference_error () procedure the global variable difference

( ~lgm ) is already assigned with a value of 0.005310156295072 and
the segment.max_con_error is assigned with the corresponding value
of 0.00250034. This error occurs at the middle of the first segment
at the value of old m = 0.0625 and this also equals to segment.m

( segment.m indicates the value of m at which the MCE oCcours ).
Left search and right search are assigned with ALLOWED so that
searches to both higher and lower sides can be made if found
necessary.

In the. procedure optimum_difference_error () our intention is to
find. a new value of the global variable difference so that the
segment.max_con_error turns to its minimum possible value. To find
the minimum value let us set the present value of error as zero
( if the absolute value of the max con error turn to zero for every
input value it is the most desirable condition but it cannot be
zero for every input value, so let us set it to zero for one value

54



and try the result for other input values). So calculate the value
of ideal difference so that MCE at the present value of
segment.m turns to zero) from the equation4

ideal difference = (log(l.O+segment.m)/10g(2.0)-lgm)/divisor

As the error is determined from
( old_lgm + add factor ) we can
value of error = - 0.0050006811

from which we get
ideal difference = 0.005466427578,
the equationS error = 19~old_m -

see from the table 4-1 that a new

the value of the

has been produced at another value of old m but the error has
turned to

Table 4-1 The first swing during non-linear search

ideal difference new m old m 19_old_m error- -
0.005466427578 0.125 0.00390625 0.005624549194 0.000158121616

0.03125 0.000662698736

0.0625 0.0
0.08746284125

0.09375 -0.00191124492

0.125 -0.0050006811
0,16992500014

zero for old m = 0.0625 at the middle of the segment under
study) as expected. As the value of the error is negative, it is
clear that any further increase of the variable difference will

4 ideal difference is calculated through the procedure
find ideal_dlfference() so segment.m has been replaced by m.

S error in find_ideal_difference() is calculated through the
procedure get_error(). Here the more known form of the equation
of the error is mentioned.
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increase the absolute value of the error i.e. a search for a
different value towards high must be not made so we accordingly
set right_search = NOT ALLOWED in the expression if ( fabs (

temp_new_con_error ) > segmen t. max_con_error && temp_new con error

< 0.0 ) right_search NOT ALLOWED. So the lower limit ( L.L. ) is
set by the segment.difference and the upper limit ( U.L. is set
by the ideal_difference. Now execution begins from if ( left search

) and swing is made to the left direction. All left and right

0.0053 0.0057
,--- - - - - -: -- - - - - - - - ;- -------4; - ------- -; --- - -- - -2: ---8---6- :- -7- - -)- -: -- ---- -5-: ----- --1-; - -- - - - - - - :----I! - -x---:
L.L~O. 005310156295072 (0.002500]4) (1) 0.005388291937 (-0. 00250034) U_L.•O. 005466427578 ('-0.0050006)

(2) 0.005349224115 (0.001926459429) ()) 0.005368758025 (-0. 0018752 5S4)

{4} 0.005329690:205 (0.002:203698275) (5) 0.005378524981 (-0.002187798)

(6) 0.00535899107 (0 . 00179541868)

(7) 0.005363874548 (0. 001731993436)

(8) 0.0('15354107593 (0.001858963851)

Fig 4-2 left and right swings in the non-linear conversion

swings are shown in the fig. 4-2. Here the MCEs (max_con_errors)
are given inside the parenthesis together with difference ( Algm )
and search no., so it is clear that on the search no 7 ,the minimum
value of the max con error = 0.001731993436 is achieved at the
value of difference = 0.005363874548. Two more searches 9 and 10
not shown) are also further made for the values difference

0.005366316287 and 0.005361432809 but as they produce errors higher
than 0.001731993436. Therefore the searches in the first segment is
completed and the searches for the other segments are continued. So
it is clear that the procedure optimum_difference_error() has,find
out a new value of difference 0.005363874548 instead of

segment.max_con_error = 0.001731993436
0.005310156295072) that produces a lesser value of

instead of 0.00250034)

The error pattern when linear and non-linear correction factors are
applied are given in graph no 4-1 and 4-2.
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Once the searches in one segment finishes, similar searches for
the other segments in this fashion continues through all the
segments.

The non-linear correction for LNS to FLP conversion has done by
choice 3 of 19m_m.c as listed in the Appendix. Here we have also
noted significant improvement e.g. maximum conversion error has
been reduced to 4.9E-09 from -7.15E-09. for 32 bits configuration
with 4 Kbytes of ROM ( RAL 12 ML 23 ).

Linear and non-linear error curve for 32 bit FLP to LNS conversion
is given in graph 4-3 and that of LNS to FLP conversion is given in
graph 4-4 respectively.
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linear and non_linear error pattern
In the first 8flgment for RAL 12 ML 2S
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linear and non_linear error pattern
In the first aegment for RAL 12 ML 23

for Igm to m conversion ( aegment no 0 )
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m to Igm conversion error graph
AAL 12ML 23

maximum conversion error
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Igm to m conversion error graph
RAL 12 Ml23

maximum conversion error
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4.2 Arithmetic processing

We have decided to cite.a multiplication procedure by LNS number
system which will clearly depict the conversion, processing and
anti-conversion process. Let us select two numbers x and y as

x = 0.7061309815 and y
z x * y = 8.708718911

12.3330078125 so that

We assume that the numbers are represented in a computer system by
IEEE format so they will be

x 0-01111110-01101001100010100000000
Y = 0-10000010-10001010101010000000000
z = 0-10000010-00010110101011011101001

Our first job is to convert these FLP numbers into the
corresponding LNS numbers. To accomplish this we run choice 4 of
m_lgm.c ( which is the interactive version of m_lgm.c ) and get the
ROM contents of the address bits 011010011000 ( the first 12 bits
corresponds to count = 1688 ). The contents of the ROM is as given
below.

m initial
0.412109375
0.412109375

19_m_initial difference
0.4978518369511178 1.2178078307E-07
0.4978518369511178 1.2178259231E-07.

The first line gives the values for linear conversion and the
second line gives the data for non-linear conversion. So the LNS
.value of the mantissa of the FLP number x becomes

0.4978518369511178 + 1.2178259231E-07 * 1280 0.4980077187

Here we multiply the difference with the value of the remaining 11
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bits ( 10100000000 =1280 ) and add the product with the base 19m
value which is available under the column 19_m_ini tial. So the
representation of x after converting it to LNS format FLP
representation in small letter and LNS representation in capital
letter ) becomes

x = 0-01111110-01111111011111010110111

We next convert y into LNS format. The contents of the ROM for this
conversion is

m initial
0.54150390625
0.54150390625

19_m_initial
0.624338545312985
0.624338545312985

difference

1.1155925875E-07
1.1156077703E-07

After following the above mentioned procedure, we get the
.arithmetic expression of 0.624338545312985 + 1.1156077703E-07 *
1024 = 0.6244527835 and thus y becomes

Y 0-10000010-10011111110111000010001

After converting both the numbers into LNS format we have to add
them because the multiplication procedure is now replaced by
addition. Now'we have to subtract 127 from both the exponents of X
and Y and to add them. The extraction of the hidden Is are not
necessary [3] because these hidden Is in the mantissa of the FLP
numbers make the conversion easier as 2.0 (e - 127) * 1.m in FLP is
equals to 2.0 (e - 127. O.M) in LNS system . So we get

X 0-11111111-01111111011111010110111
Y = 0-00000011-10011111110111000010001

z = X + Y = 0-00000011-00011111010110011001000

Now we have the result in LNS format. Our next job is to convert Z
into FLP format. We run the interactive version of 19m_m.c { which
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is choice 4 of 19m_m.c ) and get the following ROM chunk ..

19m_initial
0.122314453125
0.122314453125

antilg_lgm_initial
0.0884796633448476
0.0884796633448476

difference
8.994823118E-08
8.994692308E-08

If we follow the linear difference we get the expression of
0.0884796633448476 + 8.994823118E-08 * 1224 = 0.08858975998 and

z = 0-00000011-00010110101011011101000 or
z = 8.70871808

If we follow the non-linear difference we get the expression of
0.0884796633448476 + 8.994692308E-08 * 1224 = 0.08858975838 and

z 0-00000011-00010110101011011101000
z 0-10000010-00010110101011011101000
z = 8.70871808

in IEEE format )

We get the same result because the difference cannot be represented
within the limited 23 bit mantissa format but obviously 2 .0 3.0 *
1.08858975998 is not equal to 2.03.0 * 1.08858975838.

We have also converted and reconverted a single number e.g. m =
1.0001438856125. The selection of m is intentional so that we can
work in the ROM area containing maximum conversion error. Applying
linear correction factor we get 19m = 0.0 + 1.719616603E-07 * 1207
= 2.07557724E-04 and by applying non- linear correction factor we
get 19m = 0.0 + 1.7196526776E-07 * 1207 = 2.075620782E-04. Now
2.0'.07557724E-04= 1.000143878 and 2.0 2.075620782=1.000143881 and the
result obtained by non-linear conversion closes to the actual value
of 1.0001438856125 but when represented in a 23-bit mantissa both
19ms are to be represented under the same bit configuration and
hence the difference cannot be stored for further processing.
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Next we shall evaluate yX by using LNS system. As we have clearly
described the conversion process from ROM, here the' converted
values in IEEE format shall be shown without giving any further
details of addition process.

Let y = 4.125, x = 0.796875 so that yX = 3.093256701

Let us first represent the real values of x and y in IEEE format,
so that

.y = 0-10000001-00001000000000000000000
x = 0-01111110-10011000000000000000000

Next we convert y into 19y by using ROM look-up table. We already
know that changing FLP .to LNS value or vice versa shall only bring
changes in the mantissa, so we get

Y' 19y = 0-10000001-00001011010111010110100

However it is again necessary to calculate the base 2 logarithm of
Y' [3] and hence it is necessary to convert Y' into 19Y'. We know
that the ROM can only accurately convert a number to its base 2
logarithm value if the number is represented in FLP format. The
conversion is done by a software routine as outlined in [3]. It is
not also difficult to visualize the conversion technique by
writing 19y = 2.04439401627 = 1.00000101101011101011010 * 21.0so
that the number Y' is represented in real number format shall be

Y' = 0-00000001-00000101101011101011010

We next convert x and Y' to their respective log base 2 and get

X' = 19x
Y" 19Y' =

0-01111110-10101100001001000001000
0-00000001-00001000000110101011111
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Now it is necessary to add X' and Y" to get X' + Y"

X' =

Yll =

X'+Y"

0-11111111-10101100001001000001000
0-00000001-00001000000110101011111

0-00000000-10110100001111101100111

Now it is necessary to find the antilogarithm of X' + Y". Through
the ROM that converts LNS to FLP, we get

z = 2.0 (X' + Y") 0-00000000-10100001000011000110010

To find yX, it is again necessary to get the antilogarithm of z.
We take care of the fact that to find the antilogarithm of any
number we must represent the number in LNS format and then access
the ROM.

The conversion from FLP to LNS can be done by another software
routine [3]. The procedure is rather simple. To convert into the
LNS format we insert the hidden bit and adjust the exponent
Therefore, after converting z into LNS format, we get

z' 0-00000001-10100001000011000110010

The final conversion of z' to 2.Oz' gives the value of

2z' = 0-00000001-10001011111011011010001
= 3.093189478

Obviously y-X can be calculated by first finding out yX and then
inverting the result.
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4.3 Effect of non-linear correction factor on Error

Non-linear conversion minimizes the absolute magnitude of the
maximum conversion error [ MCE ] in any segment. Once the absolute
magnitude is decreased, the average value of conversion errors
decreases for any input value. We have studied a few evenly spaced
numbers for FLP to LNS conversion in one segment and the results
are shown in Table 4-2. While converting these numbers from its FLP
format to LNS format we used the following ROM contents vide
choice 4 of m 19m.c ).

RAL = 12 ML 23

m ini~ial 19_m_initial difference max con error
4.8828125E-04 7.042690112466E-04 1.7187774587E-07 +1.07358E-08
4.8828125E-04 7.042690112466E-04 1.7188134980E-07 -7.38087E-09

Table' 4-2 m to 19m1inear and non-linear conversion error
for RAL 12 ML 23

RAL 12 ML 23

m , 19m error(segment no ,,2) 19(m)

linear non-linear linear non-linear

4.8840045398-04 7. 044408966E~04 7.04440e898-04 1.0444089268-04 7.600008-12 4.00001":-12

5.2165985118-04 7.52399847]8-04 7.523941801B-04 7.5239578928-04 5.067208-09 -4. 05BlI~-09

S.866289138E-04 8.4607947658-04 8.4606815168-04 8.4607112488- 04 1.032498-08 7.35178-09

6.3204765328-04 9,1156396418-04 9.1155357288-04 9.1155791918-04 1.039198-08 6.04568-09

6.7996978768-04 9.8065565928-04 9.8064842668-04 9. 8065422178 -04 7.23260E-09 1.43758-09

7.3230266578-04 1.056102718-03 1.0561027578- 03 1.0561101348 03 1.30000E-ll -7.3640E-09

As we see that in most of the cases the error produced
when linear correction factor has been employed but

is higher
there is

instance that the use of non-linear correction factor has increased
the absolute value of error. This is expected because when we

linear correction factor.

select a new value of difference,
absolute of the MCE and
less than that produced

pay no
during

we concentrate
notice in keeping

on reducing the
the error value

Thus we
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see that the average value of non-linear conversion error becomes
4.37848E-09 ( negative values are added as positive errors which
is lesser than the average value of linear correction error which
is 5.5062E-09.

We have also reconverted all .these LNS numbers into the FLP
format. While making the LNS to FLP conversion we have used the
following ROM contents choice 4 of 19m_m.c ). We used the 19m
values previously achieved in FLP to LNS conversion and by using
non-linear correction factor.

RAL = 12 ML 23

difference max con error

4.88281250E-04
4.88281250E-04

7.32421875E-04
7.32421875E-04

9.76556250E-04
9.76556250E-04

3.385080526823E-04
3.385080526823E-04

5.078050469876E-04
5.078050469876E-04

6.771306930664E-04
6.771306930664E-04

8.266454800E-08 -3.58117E-09
8.266334583E-08 +2.46205E-09

8.267853812E-08 -3.58177E-09
8.267733575E-08 +2.46247E-09

8.269253062E-08 -3.58238E-09
8.269132803E-08 +2.46289E-09

Table 4-3 19m to m linear and non-linear conversion error

19m 19m m",2'g'~_1.O m (from ROM) error
(neglecting

truncation) linear non-linear linear non-linear

7.0444089268-04 7.04.407692&-04 4..88377428-04 4..8837887288-04 4..8837669878-04 -1.45288-09 7,2138-10

7.52]9578928-04 1.5232982648-04 5.2161129£-04 5.216123629&- 04 5.2161216218-04 -1.0829B-09 -8.821B-I0

8,4607112488-04 8.4602832798- 04 5.86594128-04 5.8659769388-04 5.865965488-04 -].57388-09 -2.4288-09

9.1155791918-04 9.114742279E-0( 6.3198548-04 6.3198821128-04 6.319864053£-04 -2.8112B-09 -1.00538-09

9 . 8065422178- 04 9,8061561588-04 6.7994211'-04 6.7994223918.04 6.799421982E-04 -2.3918-09 -1.982E-I0

1.0561101348-03 1.0560750968-03 7.32283468-04 7.322866118-04 7.3228580898-04 -3.1518-09 -2.34898-09

From table 4-3 we see that if we apply non-linear correction factor
for LNS to FLP conversion, we get the minimum conversion error as
expected. The error calculations given in table 4-2 and 4-3 do not
consider truncation error. Truncation error develops due to the
fact that when we convert a FLP number into a LNS number, the
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converted number cannot exactly represented by a limited number of
storage bits. Conversion error that takes the effect of truncation
error is shown in table 4-6.

We have further. delved into the matter and reconverted all these
numbers into the FLP format. We used the 19m values
achieved in FLP to LNS conversion and by using
correction factor.

previously
non-linear

Table 4-4: Partial compensation effect using non linear
.correction factor during 19m-m conversion

RAL 12 ML 23
m value returned using correction Error produced

(segment no. 2) factor

linear non-linear linear non-linear
4. B84004593E-04

, 4.883788782E-04 4.8837669B7E-04 2.ISBllE-OB 2.37606E-08
5.21659BSl1E-04 S.216123629E-04 5.216121621E-D4 4.748B1E-OB 4.76890E-08
5.866289139E-04 5.86597693BE-04 5.865965480E-04 3.12201E-08 3.23689E-Oa
6.320476532E-04 6.319882112E-04 6.319864053E-04 5.94420E-08 6.12479E-OB
6.799697876E-04 6.799422391E-04 6.799421982E-04 2.754BSE-OB 2.75B94E-08
7.323026657E-04 7.322866110E-04 7.3228580B9E-04 1.60547E-08 1.6B56BE-OB

From the table 4-4 we see that if we apply. non-linear correction
factor for FLP to LNS conversion and then apply linear correction
factor for LNS to FLP conversion we get minimum conversion errors
in all the cases. Although only LNS to FLP conversion by applying
non-linear. correction .factor will give a less average value of
conversion error but if the values are already converted from FLP
to LNS, then linear correction factor will compensate some portion
of the error which is already made during FLP to LNS conversion
since it has a higher value of correction factor.

••
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4.4 Accumulated error

Conversion error can be defined as an error that equals to the
difference of the double precision calculation in the computer,
system in use minus the result obtained from the algorithm we
have developed. So if we have randomly generate a FLP number x and
first convert it to the LNS system then reconverted it back to FLP
format and suppose after conversion and reconversion the new number
is x', then the conversion error = x - x'

We have converted mantissas of 10000 FLP numbers into LNS numbers
by randomly generating. FLP numbers ( between 0.0 and 1.0 ) and
reconverted them back into their previous FLP format with the help
of data previously generated and stored in hard disk. Accumulated
errors for such conversion have been calculated and the summarized
result is given below in table no. 4-5 and 4-6. The first table
i.e. table no. 4-5 gives us one way

Table 4-5 One way accumulated error, m-lgm or 19m-m conversion

RAL 12 ML 23
accumulated error

conversion linear non-linear
m - 19m 3.56E-05 1.713E-05
19m -.m -3.423E-05 -1.641E-05
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. Table 4-6 Accumulated error for m-lgm and 19m-m conversion

RAL 12 ML 23
conversion

m - 19m 19m - m accumulated error

linear linear 6.17806E-04
linear non-linear 6.36292E-04
non-linear linear 5.98879E-04
non~linear non-linear 6.18523E-04

conversion error. The one way accumulated error produced for RAL 12
and ML 23 was found to be compatible with the figures given in the
graphs 4-1 and 4-2. This also indicates that the accumulated error
generated while using linear correction factor is approximately
twice larger than the accumulated error generated while using non-
linear correction factor. The difference in accumulated error is
not negligible when one way conversion is considered.

The next table i.e. table 4-6 gives us the accumulated error when.
a FLP number x is first converted into LNS number and then
reconverted back into FLP number again. Various combinations of
conversion techniques have been used as shown in the table 4-6.
Here the accumulated error is higher than that of Table 4-5 due to
the truncation error for internal storing of 23 bit format after
conversion. It can be mentioned here that if we convert mantissa of
a FLP number into the correspondingLNS number a~d store it in a 23
bit format, then only du~ to the limited storage bit capacity the
truncation error can be as high as 2-23 = 1.1921E-07.
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4.5 Accumulated error for multiplication, squaring and division

Conversion error as defined in article 4.4 has been also calculated
for multiplication and other operations for 10000 operations on
randomly generated numbers. Conversion data for 23 bit mantissa
length and 12 bit ROM length has been generated and stored in a
hard disk. Their summarized result is given below:

Table 4-7: Accumulated error for multiplication

RAL 12 ML 23
conversion accumulated

error
linear linear 9.84775E-04

non-linear linear 9.35826E-04
non-linear non linear 9.63621E-04

linear linear (with offset) 9.34800E-04

Here we see that the accumulated error is higher than the both way
conversion Table 4-6 accumulated error due to the
multiplication effect. Accumulated error for linear-non linear is
disregarded because it has already the highest accumulated error in
table 4-6. Accumulated error with offset means that the factor
(segment.max_cbn_errorj2.0 is subtracted from the individual
number conversion error during m-lgm conversion and added during
19m-m conversion.

While converting numbers we noted that a significant part of the
accumulated error is contributed by the truncation error produced
due to the limited storage bit length. As this error always
reduces the number while storing, we can increase the value of the
correction factor ( ~m ) so that the new higher value of correction
factor will produce a higher value of x' while performing LNS-FLP
conversion thus producing less conversion error. A lesser
conversion error during one conversion process will eventually
reduce the total accumulated error. A selection of compensation

72



factor of 1.000165 can reduce the accumulated conversion error by
more than 100 times as may be seen from the graphs 4-5 and 4-6 for
non linear-linear conversion. The whole process means that we have
to multiply the correction. factor only during LNS-FLP
conversion) by 1.000165 and to perform all operations with the
augmented value of the correction factor. Numerical examples show
that the value of CF varies from segment to segment but a uniform
selection of CF ~ 1.000165 produced the best result for non linear-
linear conversion.

Graph 4 -5 shows accumulated errors during multiplications for
various selection of correction factors and the effect of offset on
the other hand graph 4-6 shows the effect of compensating and
offset factor for various combinations.
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The pseudo code for performing multiplication is given below.

/* Pseudo code for multiplication */

generate mx and my between 0.0 and 1.0 {* generate two randomso *{
com product = (1.0 + mx) * (1.0 + my) {* product of two FLPnumbers *{
binJnX[MU <-- mx {* via in_binaryo *{
bin my[MU < .. my t* via in binaryo *{
rom mx <-- long returned by RAL bit configuration {* equ integero *{
rom=my <-- long returned by RAL bit configuration {* equJntegero *{

for bin mx[MU
open m - Igm conversion data file ("a:m Ig????dat") and read
segment value as pointed by rom mx T* m Igm dataO *{

calculate mX linear {* converto *{ - -
calculate mX- non linear {* converto *{

- -

for bin my[MU
if ( rom my < > rom mx)
open m - Igm conversion data file ("a:m Ig????dat") and read
segment value as pointed by rom my-

calculate mY linear -
calculate mY-non linear

- -

mZ lin linear <-- (mX linear + mY linear)
if (mZ-lin linear ~ 1.0) -
lin carry-= 1.0
mZ lin linear. = 1.0
mZ non lin non linear <-- (mX non linear + mY non linear)
if (mz non -lin non linear ~ 1.0> - --- - - -
non lin carry = 1.0
mZ non lin non linear -= 1.0.

- -

bin_mZ[MU <-- mZ_linJinear
for bin mZ[MU {* as got from mZ lin linear *{
romji7ZJinear <-- long returned by RAL bit configuration
open Igm - m conversion data file ("a:lg m????dat") and read
segment value as pointed by rom m[linear .

calculate mz lin linear - -
if (lin carry ;;;,1-:-0)
lin lIn product = (1.0 + mz lin lin! * 210

else~lin-lin product = (1.0 + mz-lin lin!
error =-com product - lin lin product
lin lin acc error + = error -
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for bin mZlMUI"as got from mZ non lin non linear "I
rom mZ non linear <-- long returned by RAt bit configuration
if ( rom mz non linear < > rom mZ linear)

open 19m - m conversion data file ("a:lg m????dat") and read
segment value as pointed by rom mZ non linear

calculate mz non lin non linear - - -
if ( non lin carry ;;;,1-:-0) -
non lin non lin product = (1.0 + mz non lin non linear) " 210

else non lin non lin product = (1.0 +-mz non lin non IinearJ
error = com-product - non lin non lin producf - -
non lin non lin acc error ;- = error -

Fig 4-3 : Pseudo-code for multiplication

A table is given below showing the accumulated error for performing
squaring operation on 10000 randomly generated numbers.

Table 4-8: Accumulated error for squaring

RAL 12 ML 23
conversion accumulated error

linear linear 2.82925E-03
non-linear linear 2.77373E-03
non-linear non-linear 2.80248E-03

A table is also given next showing the accumulated error for
performing 10000 divisions on randomly generated numbers.

Table 4-9: Accumulated error for division

RAL 12 ML 23
conversion accumulated error

linear linear 4.00242E-04
non-linear linear 4.03167E-04
non-linear non-linear 4.15061E-04
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CHAPTER 5

ADDITION SUBTRACTION IN LNS AND DENORMALIZED NUMBER

5.1 Addition and subtraction of long word length in LNS.

Addition and subtraction of long words e.g. 64 bits are feasible by
using ROM and a multiplier as may be seen in table 3-5 but
multiplication using a large no of bits may slow down the system.
A proposal of using Taylor's series [10] uses lesser ROM but also
slows down the system due to several access to ROM for logarithmic
and anti- logarithmic conversion.

When two real numbers x and yare added the processor receives
19x and 19y as the augend and addend. The augend is augmented by
19( 1 + 2r) where r = min{(lgx - 19y) , (lgy - 19x)} when x and y
are represented within. a small range, a small ROM look-up table
can be constructed that accepts r as the input and returns Ig( 1
+ 2r) as output. If the address input to the ROM is small, the ROM
can have 2 laddress bits} words. The volume of ROM can be further
reduced by noting that when the value of r grows to higher numbers
not all the least significant bits of rhave any effect on f(r) =

19( 1 + 2r) and as some of the 1. s. bits of r can be dropped, the
size of the ROM table can be significantly reduced [1].

The proposal [10] uses Taylor's series approximation to reduce the
f(r) table. Lewis has partitioned the binary representation of r
into several parts which has F fractional bits as shown in fig. 5-1
in which ri represents the integer portion and rh+r1+re
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...2 1 0 -1 -2 .. Pl Pl-l ... Pe pe-l

~ ri rh r, re -1

Fig 5-1 Division of r bits for evaluating Taylor,s
series first order approximation.

represents the fractional part and rt = ri +rh•

The Taylor's series approximation for constructing the f(r) table
can be done by implementing the series by [10]

f(r)

where

df( rt)--- =dr

while constructing the reduced f(r) table the least significant
portion re is completely neglected. The hardware structure is
given in fig. 5-2 shall realize equation 3.6 of [10] as given
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multiply

Fig 5-2 Taylor's series approximation hardware

df (rt)
above. The design uses two look-up tables for f(rt) and ---- and

dr
a multiplier to get the Taylor's series approximation of f(r).

Multiplier less hardware is also described in [10] that converts
r, into 19 (r,) and another log base 2 conversion of df (rt)/dr
replaces the multiplier by an adder. An antilogarithm table is
still necessary but the logarithm table necessary for
19[df(rt)/dr] can be eliminated because

The error calculation has been determined by the second order
approximation of the Taylor's series which includes the effect of
re and subtracting the second order approximation from the first
order approximation and limiting the error to 2-F the limiting
value has been calculated to [ 4.36 of 10 ]
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where PI is an integer that indicates mantissa bit position of r
such that PesPI and PI(O ( fractional bit position indicates zero).
The limiting value of Pe is given by the expression [4.39 of 10]

Pe = L-F - ri - 5J

Analysis in [10] shows that for a 22 bit mantissa conversion while
the error is less than 2"22 = 2.384E-07 requires a ROM table of
2660 Kbits of total size which is much smaller than the ROM size
as may be found necessary after applying the memory reduction
technique described in. [1].

It has been also shown in [15] that the memory requirement of [10]
can be further reduced by 25%.

5.2 Simulation of Taylor's series approximation

Taylor's series approximation. as depicted in [10] with a
multiplier has been simulated in a model program. IEEE single
precision number system has been selected so the PRECISION is set
to 23. To make fto zero all the 23 bits of its mantissa should be
zero and as

fa
and fs

log (1.0 + 2"rt)/log(2.0)
log (1.a - 2~rt)flog (2.0)

a value of r equals to or greater than 23.5 will set it to zero.
This can be seen in the flow charts (fig.5-3 and fig.5-4) that r is
to be stored in a 28 bit storage length. The integer portion i.e.
23 can be fully represented by a 5 bit configuration so ri takes
the value of 4 as per 3.5 of [10] and fig. 5-1. Fig 5-1 indicates
that the integer portion of ri is counted from 0,1,2 so a 5 bit
configuration of ri gives the value of ri = 4. Once ri is settled to
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Fig 5-3 : Flow chart for logarithMic addition(usin, Tavlor's s.ri.s first order approxiMation)
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Fig 5-4 : Flow chart for logarithMic subtraction( using tavlor's strits first ord,r approxiMation)
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4, PL becomes 14 as per 4.36 of [10] and article 5.1. PE is set to
the last limit i.e. to 23 and re is completely neglected.

While evaluating the addition of two numbers rt is stored in a 5
+ 13 = 18 bit format. ~lthough PL has been fixed to 14 we reduced
it to 13 and still found the error limit as acceptable. The ROMs
necessary for calculating fa_rt and dfa_rt with their input address
bits of 18 and 17 respectively. The address bits of dfa_rt ROM has
been reduced by one because dfa'rt = 2"rtj(1+2"rt)turns to zero ( for
16 bit representation at a value of rt = 15.0 which can be
represented by a 4 bit integer instead of 5 bits. From table 5-1
the above mentioned conclusion can also be derived.

Table 5-1dfa_rt for various values of rt

rt dfa_rt
1.220703E-04 0.4990788

0.1 0.4826782552

15.0 3.051664683E-05

To calculate the total ROM necessary for addition process we
proceeded as follows: It has been stated earlier that if rtexceeds
23.5 fa_rt turns to zero when represented in a 23 bit format. rt is
itself represented by. a 5 bit integer part and a 13 bit mantissa
part. So it is clear that a bit configuration of 10111-,
1000000000000 is the maximum limit of the rt. So the ROM necessary
for building fa_rt equals to 217+215+214+213+2'2= 188 Kwords. Any bit
configuration higher than 23.5 do not need a output from ROM
( output is zero ). So ROM contents for those configurations are
not necessary. As explained above dfa...:rtturns to zero when rt
becomes 15.0. As 15.0 can be represented by 4 bits in the integer
portion the maximum. upper level of bit configuration of
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1111-0000000000000 is to be taken care. So the ROM necessary for
building dfa_r, is 2'6+2"'+214+213 = 120 Kwords. It is tcibe mentioned
here that both fa r, and dfa rt shall turn to zero for any higher- -
bit configuration than their maximum limit. So if rt > R_LIMIT, the
sum of the two numbers becomes to equal to the larger of the two
numbers as shown in fig. 5-3.

Therefore to complete the addition process total ROM necessary are
(188+120) 308 Kwords.

To perform the subtraction process rt is again stored in a 18 bit
format. As we see that both fs_rt and dfs_r, are less t.han -1.0
when rt becomes less than 1.0 else it is less than zero. So two
sets of fs_rt and dfs_rt ROMs have been selected. The first one is
set for 2-23 s rt s 1.o and the seccind ROM is set for 1.0 < rt S

23.5 (fig. 5-4). The first set has an address lines of 13 bits and
the second set has an address line of 18 bits. Total ROM necessary
for subtraction process is ( 8*2 + 180*2 ) 376 Kwords.

Therefore to perform both addition and subtraction process total
ROM necessary is ( 308 + 376 ) 684 Kwords.

While simulating Taylor's series approximation we found that the
error produced during addition and subtraction process is always
less than the error produced when a bit is dropped/added at the
lease significant position of the higher number of the pair once
the boundary conditions are met. For further clarification we like

.to process two numbers
A = 80100.0 and
B = 80090.0

The representation of A in IEEE format is
A = 0-10001111-00111000111001000000000

If one bit is added at the least significant position then
A'= 0-10001111-00111000111001000000001
A'= 80100.0078
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Therefore the error produced is A' - A = 0.0078. So an error of
IO.0078 is acceptable. When the Taylor's series is simulated with
PL = 13 error produced was -6.46E-03 for the addition process.
Subtraction requires higher setting of PL to guarantee minimum
error condition. Error generated was also checked with very large
random number pairs and the maximum error produced was found
within the allowed limit.

If we use ROM tables of ( 5+ 23 ) 28 bits wide address bus with
input range varies between 0.0 and 23.5, then for only addition,
two ROM tables with combined capacity df ( 188 * 2 ) 376 Mwords
are needed.

We have also studied the ROM requirement for other bit
configuration of the IEEE number system. The result is summarized
in a tabular form as given below. The ROM size is necessary for
both addition and subtraction

Accuracy level ROM size
2-20 512 Kwords
2-23 608 Kwords
2-30 45 Mwords

While calculating R_LIMIT in our model program,
that far < 2-PRECISION.So

we first noted

fa r = < 2 -PRECISION

ln (1.0 + 2-r) < 2-PRECISION* ln2

1.0 + 2-r < exp(2-PRECISION* ln2)

2-r < exp (2-PRECISION.•ln2) - 1.0

-r log 2 (exp (2-PRECISION* ln2) - 1.0)
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In(exp(2-PRECISION* In2) - 1.0)
r = ---------------- In2

Therefore R LIMIT = r = -

5.3 Denormalized number

In (exp (2-PRECISION* In2)
In2

- 1.0)

IEEE std. 754 allows the use of very small numbers in the
denormalized form (fig. 1-1 and fig. 1-2) so that in the single
precession representation the largest positive denormalized number
is 1.175494211E-38 (which is just below the smallest positive
normalized number of 1.175494491E-38) and the smallest positive
denormalized number is 1.401298464E-45. This thesis also includes
the way of converting FLP denormalized numbers by using the same
ROM table used for normalized number conversion but we do not try
to specify the special LNS format for denormalized number because
the details of representing denormalized numbers under LNS is
still unspecified.

A single precision denormalized FLP number x can be expressed by

x = (_1)8 * 2-126 * (O.m) where m is the mantissa

The above number x can also be represented by

x (_1)8 * 2-126 * 2-1 * (lorn)

which can be converted into a LNS number by the
used for converting normalized FLP numbers. The
be processed separately with the exponent of the
get the final result.

same ROM that was
port ion 2-126 can
LNS/FLP ~umber to

An algorithm is given next (fig 5-5) for LNS multiplication when
denormalized FLP numbers are involved. All examples mentioned in
this algorithm follows next.
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/* multiplication algorithm involving denormalized FLPnumbers */
ex = exponent of x in FLP
mx = mantissa of x in FLP
Ex = exponent of x in LNS
Mx = mantissa of x in LNS .
/* ey, my, Ey, My have the similar meaning for number y */

case 1: /* one number say x is normalized and the other numbery is denormalized
FLPnumber. convert the denormalized number y into a normalized number by
hiding the -126 of its exponentso that the number can be converted into a LNS
number by using the ROMlook- up table */

(1) do
SHLmy with left most bit to carry
decrement ey .

until ( carry = 1 )
(2) Mx <-- log base 2 of mx /* by ROMtable */

My <-- log base 2 of my /* by ROMtable */
Z <-- X + Y /* add two LNSmJmbers X and Y to produce Z */

(3) z <-- Z /* convert LNSnumber into FLPnumber by ROMtable */
(4) if ( ez is negative) /* example 1 */

carry <-- 1
SHRmz with carry
increment ez

(5) while ( ez is not equal to zero)
SHRmz
increment ez

END.
/* z now represents x*y in denormalized form */
(6) else if ( ez is positive) /* example 2 */

increment ez /* increment of ez = adding (-126+127) */
END.

/* i. now represents x*y in normalized form */

case 2: /* both x any yare denormalized numbers */ .
UNDERFLOW/* product is'too small */
END.

Fig 5-5 : M~ltiplication algorithm for denormalized FLP numbers

The following examples associated with multiplication algorithm
show error free operation of the algorithm.
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The examples given here are associated with article 5.3. The
numbers represented by an alphabet can have two forms namely, FLP
and LNS among which small letter representation is for FLP and
capital letter representation is for LNS.

example 1

let x = 0.7061309815 = 0-01111110-01101001100010100000000
Y 7.714181677E-39 = 0-00000000-10101000000000000000000

therefore z = x*y = 5.447222679E-39

(1) Y 0-11111111-01010000000000000000000
(2) X = 0-11111111-01111111011111010110111

Y 0-11111111-01100100011011101110101

Z 0-11111110-11100011111011000101100
(3) z = 0-11111110-11011010100001010001111
(4) z = 0-11111111-11101101010000101000111
(5) z = 0-00000000-01110110101000010100011 = 5.447221278E-39

example 2

let x = 2.764898077E+38 = 0-11111110-10100000000001000000000
Y = 7.714181677E-39 = 0-00000000-10101000000000000000000

therefore z = x*y = 2.132892608

(1) Y

(2) X

0-11111111-01010000000000000000000
0-01111111-10110011010100111001000

2.13289237

Y 0-11111111-01100100011011101110101

Z = 0-01111111-00010111110000100111101 (Z = X + Y )
(3) z = 0-01111111-00010001000000101001111
(6) z 0-10000000-00010001000000101001111
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CHAPTER 6

SOURCES OF ERROR AND APPLICATION OF LNS PROCESSOR

6.1 Various sources of error

When we convert a number x represented in IEEE floating-point
format first into LNS format and then reconvert it back into its
previous FLP format with the help of ROM tables, we do not get
back the original number x but get a new number x'. Although for
single number conversion the conversion error (x x') is very
small and negligible but this conversion error can be accumulated
for arithmetic processing that requires large numbers for
conversion and anti-conversion.

Here we shall discuss about the error generated at the various
stages of conversion and anti-conversion. There are four major
sources of error generation and those occurs at two stages namely
(1) x' to 19x conversion and (2) 19x to x conversion. Among four
sources of errors two are contributed at stage (1) and these two
sources are (a) conversion error from m to 19m that generates due
to the storing 6lgm in limited storage bit length in ROM and (b)
truncation error that develops when we store the 6lgm value in a
limited storage bit length (ML). The stage (2) contributes the
other two sources of error and these two sources are (e) conversion
error from 19m to m that generates due to the storing 6m in limited
storage bit length in ROM and (d) truncation error that develops
when we store the reconverted value of m in a limited storage bit
length (ML).

Thus the algebraic sum of (a), (b), (c) and (d) produces the net
error for one FLP to LNS to FLP conversion process.
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To clarify the matter further we illustrate the whole process with
an example. This example has been generated selecting RAL 12 and ML
23.

Let m = 4.884004593E-04 be the mantissa of the number generated.
While generating this random number we face no truncation error as
this number can be represented fully within a 23 bit format. Thus
the binary representation of m should be

m = 4.884004593E-04 = 00000000001000000000001

without any truncation error. The value of 6lgm (correction factor)
is equal to 1.718813489E-07. So the value of 19m becomes

19m base value of 19(m) + 6lgm * multiplier
= 7.042690112466E-04 + 1.718813489E-07*1
= 7.04440926E-04

Now we are in stage (1) and error (a) is already generated. This
error is generated due to the multiplicand bit length. The more the
multiplicand bit length, the more preciously the value of 6lgm can
be. represented thus producing lesser error from source (a).

The number 19m = 7.04440926E-04 must be stored in a 23 bit format
so the storage bit configuration becomes

19m --> 00000000001011100010101

which means that we have actually stored a number whose magnitude
is lesser than 7.04440926E-04 and in fact the value of 19m actually
represented is 7.04407692E-04. This is the truncation error due to
the limited storage bit length as mentioned in (b).
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Now we have to convert 19m value represented in LNS format to m
value in FLP format. Errors those may be contributed in stage (1)
have been accumulated and our next job is to calculate the total
error that may be accumulated at stage (2)

We next perform the LNS to FLP conversion process. The value of
6m = 8.2664548E-08. So the value of m' becomes

m' = base value of antilg(lgm) + 6m * multiplier
m' = 3.385080526823E-04 + 8.2664548E-08*1813
m' 4.883788728E-04

.Now we are stage (2).and error (c) has been generated. The type of
this error can be compared with that produced in (a).

The value of m' as stored in a 23 bit format gives us the exact
value of m' and here the error at source (d) has been generated. If
we store m' in a 23 bit format, then

m' = 00000000001000000000000
4.8828125125E-04

so the conversion error is

m - m' = (4.884004593 - 4.8828125125) * E-04
= 1.192093E-07

Therefore for 10000 random numbers generated the accumulated error
can be as high as 1.1921E-07*10000 = 0.0011921. This result is well
compatible with table 4-6.

Other sources of error can be due to the limited representation of
the base values of m and 19(m) which we have neglected during our
simulation process.
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6.2 Speed improvement

The most important point of. switching to LNS system over the
present established form of FLP system is its speed improvement. As
the LNS operations are done mainly in addition/subtraction a very
fast adder is the most desirable criterion of a viable LNS
processor.

Unit gate delay ( " ) of 3 nanosecond (ns) is achievable with
readily available commercial TTL chips [11] so the total add time
for the 32 bit adder is 24 ns [12]. Using commercial available
technology the achievement of 12 ns CLA add time [1] has been also
reported which is the outcome of using faster ISL ( Integrated
Schottky Logic) that gives us unit gate delay of 1.5 ns[l].

For speed improvement a fast ROM is essential. TTL ROM has a
typical access time of 150 ns [11] which is not fast enough. ISL
ROM gives us a delay of 20 ns [1] so that a 32 bit multiplication
speed improvement in LNS system is approximately (200 : 20+10+20)
4 : 1. A division process is 5-10 times slower than
multiplication even on coprocessors. As LNS multiplication and
division process takes the same period of time 20 : 1 speed
improvement is expected under LNS system. For square and square-
roots an improvement of 20 : 1 has been reported [1].

6.3 Application

Evaluation of trigonometrical functions are also well suited under
LNS environment. Bounded elementary functions e.g. sine, cose etc.
can be expressed in the form of an infinite power series. So we can
express

e3 e5 e7

sine ; e - + --
3! 5! 7!
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that always converges for a s e s 90°. Once e in radians) is
calculated e5, e7 and others can be obtained by merely shifting the
bits. The divisor integers can be stored in the ROM table [12,13]
to perform the division process.

As LNS system can perform multiplication/division oriented
arithmetic operations much better than the FLP number system it has
significant advantage over other in multiplier intensive geometric
coordinate transformation and digital signal processing.

In geometric coordinate transformation scaling ( changing the size
of an image ) and rotation is done extensively [14]. If we like to
rotate a line between origin and a point P,(X

"
y,) by an.angle e so

that the new location of the lines is from the origin to a new
point P2(X2'Y2). To rotate the line to its new location we must have
to calculate the length of the line segment and sine and cosine of
the angle e to form the rotation matrix [14].

The length of a line segment having end points between (0,0) and
(x,y) can be calculated by

L = ( x2 + y2 )1/2

and the angles

sine = y / L.
cose = x / L

The operations like calculating the. length L can be done faster by
using LNS number system. To calculate L we proceed as follows.

At first convert x and y into LNS number system. x2 and y2 can be
made by merely shifting x and y by one bit to left. x2 and y2 are
passed through the antilogarithm process and added to the floating

94

••



point adder/subtractor unit to get x2 + y2. A further access to ROM
gives us the log base 2 of x2 + y2 and a shift right by one bit
gives us the required length L in LNS system. To get the answer in
FLP system a further conversion from LNS to FLP is necessary.

Once the length L and sine and cosines of the angle e have been
calculated the rotation matrix can be constructed and it is post-
multiplied with the point P(x,y) which gives us the location of the
new coordinates of P.

Suppose we wish to rotate the point P(3,2) counter clockwise by an
angle of 30 degrees. Then the rotation matrix will be

0.866 0.5

-0.5 0.866

and the rotated point will be P(l.098, 2.232) as per

0.866 0.5
I 3 2 I

-0.5 0.866
= I 1.098 2.232 I

In scaling transformation [14] we usually post multiply a point
P,=[x" y,] by the transformation matrix. If the transformation
matrix is an unit matrix then there is no change in the size of the
image but the transformation matrix

0.5 0
T

o 1

will shrink the x co-ordinates to one-half of their original sizes.
Similarly the transformation matrix
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0 1
:~?,

will make all x coordinates twice as large as the old value.

Matrix multiplication is well suited under LNS environment and if
desired the conversion of the elements of the matrix can be done
during DMA transfer further enhancing the performance.

The well known complex FFT algorithm is often used in most of the
digital signal processing area to do digital filtering or frequency
spectrum analysis. The FFT is implemented by recursive application
of the "butterfly" equation [16].

Xm_1 [p]

Xm_1 [p]

+ W'NXm-l[q] ,

+ W\Xm_1 [q] .

where W\ is the appropriate power of
Xm-1[p], Xm[p-1], Xm-1[q], Xm[q-1] are

wi. e. Wr
N

= e-j2TTr/N

all complex numbers.
and

The most difficult for implementing the FFT is that instead of
real multiplication, complex multiplication are to be performed. A
complex multiplication such as Wr

NXm_1 [q] can be decomposed into four
real multiplications and two real additions which is well suited
under LNS system. It has been shown, [3] that it takes up to eight
pipeline cycles to complete one butterfly cycle and the performance
improvement is 10:6 [3].

The LNS can also minimize computations when the transformation is
done as per the Cooley-Tukey FFT algorithm described in [17]. The
Cooley-Tukey algorithm can be considered as a method of factoring
N x N matrix by n nos. N x N matrices in such a way that the new
matrices reduces nos o'f complex multiplications and additions by
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suitably bringing zero terms in the factored matrices. As an
example if a 4-point complex exponential Wok matrix is partitioned
into two factored matrices then a total 4 nos of complex
multiplications and 8 complex additions are to be performed for
each factored matrix. Each complex multiplication requires 4 nos.
of multiplications and 2 nos. of additions. According to our
multiplication addition speed gain ratio of 4:1, an overall speed
improvement of 2.5:1 is expected.
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS

7.1 Conclusions

So far we have seen that conversion from FLP to LNS and vice-versa
can be done with reasonable size of ROM, the size of which depends
on the prestated accuracy. The higher the accuracy, the bigger the
ROM is necessary. For example 16 Kwords (512 kbits, word size = 32
bit) of ROM is sufficient for one way conversion if the accuracy
level is approximately 6.0E-08. This is applicable for 32 bit word
length. The requirement of ROM is very high (2528 Mbits, fig. 3-2)
when 64 bit word length is considered and the accuracy is equal to
the truncation error of 64 bit word length (2.22E-16).

The conversion from FLP to LNS numbers and vice-versa is
straightforward. The absolute value of maximum conversion error
produced is encouraging in both way conversion. A single number
conversion time may be adequate but for numbers represented by
large mantissa, the time to find out the maximum conversion error
of all segments is prohibitively large, however search in only one
segment is necessary to find. the maximum conversion error. A
shortcut method exists that will only calculate error at the
mid-points of each segment ( as well as the difference ) which is
also linear maximum conversion error for that segment "but for
non-linear technique larger search time is necessary than linear
method. However once difference ( algm or am ) for all the segments
are generated conversion and anti-conversion can be done with many
choices ( table 4-6 ).
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The concept of non-linear correction is to find out a new value of
difference so that it will reduce the absolute. magnitude of MCE in
any segment. While doing this it has been found that a new value
of difference can produce the optimum value of MCE so that its
average magnitude is always less than that of the linear correction
method. In linear correction method the error always lies on one
side e.g. linear correction error for FLP to LNS conversion is
always positive so it always lies over the horizontal axis .in the
error graph but non-linear correction factor difference
produces both positive and negative error.

Shifting of error curve in the upper or lower direction by half of
its maximum value has been done by adding or subtracting an offset
value. This method gives the lowest accumulated error ( table 4-7 )
but requires one more adder and one more subtractor and the size of
the ROM have to be increased by at least 25% due to the storing of
segment. max_con_error. The difference of accumulated error obtained
by offset and that obtained by non_linear linear method is
negligible as may be seen in graphs 4-5 and 4-6. Non linear
linear does not require additional hardware and increment of ROM
size is not necessary. However long search time is necessary to
find out the non-linear value of difference ( atleast for am) .

The non linear - non linear correction may not be found effective.- -
when the ROM is large and the multiplication is performed on
numbers represented by fewer number' of bits. However when the
multiplication plays a much more significant part in the addition
process ( this means a small value of RAL and comparatively larger
value of ML ) non-linear conversion can improve overall conversion
process accuracy. The selection of non-linear correction gives us
more choice and hence the error produced in each conversion may be
selected in such a way that they can be compensating at least
partially. It has been found in table 4-4 and 4-6 that while
converting LNS to FLP, the use of linear correction factor has some
self compensating effect. The self compensating effect may further
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be increased by pre-multiplying the difference by a suitable
compensation factor ( CF ) and then performing the multiplication
process. In general the use of linear and non-linear correction
factor in each stage may lead us to many combinations so that the
best choice can be selected.

The application of non-linear correction factor obviously reduces
total conversion error for one way conversion as we have seen in
table 4-5. While we converted x into log2x and then reconvert log2x
into .x, we noted in table 4-6 that non-linear conversion still
reduces the accumulated error~ The accumulated error difference has
increased in table 4-7 due to the multiplication effect.

The embedding of correction factors in different registers can be
very effective in reducing the size of ROM when some lower level of
accuracy is acceptable as we have seen in article 3.5. This method
also reduces conversion time that makes the overall process much
faster. Limited multiplication can be also promising as explained
in the same article. In fact tables 3-1,3-2 and 3-5 all have been
generated on limited multiplication mode which requires smaller ROM
sizes. ROM conversion tables may also lead to some ROM reduction.
Table 3-1,3-2 indicates that m-Ig(m) and 19m-antilg(lgm) have the
same bit at the msb position. Therefore the msb from 19(m) in table
3-1 and from antilg(lgm) in table 3-2 can be dropped.

The accuracy of the conversion depends on the storage bit capacity
and due to this reason the accuracy as achieved by using limited
hardware multiplier ( table 3-1 and table 3-2 ) is much less than
software simulation results. The ROM acc~ss time can also become a
major stumbling block in developing LNS system. Typical TTL devices
are not fast enough for LNS to FLP and FLP to LNS conversion but
much faster devices of ISL family can make the LNS processor a
practical device. An alternate choice can ECL family chips which
can give a unit gate delay of less than 1 ns [12:13].
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The complete contents of the ROM for any value of RAL and ML can be
printed out at any time. We do not include the complete contents to
avoid excessive volume.

While we progressed through our work we have noted that the Turbo
C compiler ver. '2.0 from Borland does produce unreliable log2m - m
conversion results when the value of log2m is very small (e.g. RAL
26 ML 40). This produced lot of trouble in evaluating the correct
results but we continued.

7.2 Suggestions for further research

The result of any arithmetic operation (e.g.
multiplication/division) using random. numbers of double precision
FLP number and the corresponding converted LNS numbers is to be
studied. This may be convenlently done by generating necessary data
for all segments and first storing them on a hard disk and then
recalling the data for the particular' segment for which the random
number has been generated. In this thesis data have been generated
and tested through arithmetic simulation up to 23 bit mantissa
length IEEE single precision FLP number and noted that
generation of necessary of data for higher mantissa length
requires very long time. Therefore access to a very fast computing
system is essential.

As we have mentioned in article 4.4 that accumulation of truncation
error contributes a large portion of the accumulated error.
Therefore, suitable method is to be investigated that reduces the
effect of truncation error. Use of CF as explained in article 4.5
can reduce the effect of truncation error but it should be
carefully investigated that after pre-multiplying the difference by
the CF ( whose value is very close to unity ) how much improvement
is achievable when the augmented difference is stored in a limited
bit storage. The effect of truncation can be minimized by storing
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19m in a longer bit sequence. As may be seen in article 4.2, the
numbers 2.07557724E-04 and 2.075620782E-04 have different storage
bit value beginning from 26th bit ,position which means that 19m
obtained after applying non_linear correction factor can return a
higher value of multiplier which can also lead to partial
compensation.

Memory requirement for 64 bit conversion is very high. A suitable
method is to be invented so that the memory requirement reduces to
an acceptable level.

While doing addition'and subtraction using LNS numbers, although
we have found that Taylor's first order approximation greatly
reduces memory requirement, still the memory requirement is large
particularly when the accuracy level is less than IEEE single
precision number system. Further study is necessary so that
logarithmic addition and subtraction can be done with smaller size
memory without reducing the accuracy level.

Interleaved memory interpolators that uses a ROM [18]' shows an
arithmetic un'it with worst case relative error better than the
worst case relative error of single precision FLP number.
should be further studied for performing ,LNS addition
subtraction with a small ROM size.
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APPENDIX

PROGRAMS

This Appendix lists two programs i.e. m_lgm.c and 19m_m.c those
are mentioned in the text of the preceding chapters. A large number
of other programs have been also written but not mentioned in this
Appendix for the sake of volume.
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m.,
19m;
old;

/* converts FLP numbers to LNS numbers. The FLP number is assumed to
represented in IEEE format of which the representation of the mantissa
portion is controlled by the ML. To convert FLP mantissa to its
corresponding LNS mantissa help of a ROM table should be taken, no of
address bits of which are indicated by the RAL .. TO perform the FLP to
LNS conversion using linear correction factor we have to set the RAL
for ROM portion of the mantissa and the ML to represent the mantissa

portion of the floating point number. If we want to limit the
multiplicand bit length DL should be set accordingly, otherwise a
setting between 32-42 is adequate. The effect of the multiplicand bit
length can be observed by selecting the second choice from the main
menu. Linear search may not produce the op.timum value of maximum
conversion error in each segment so the third choice should be selected
to find the absolute value of the MCE in each segment by non linear
method. Selection 4 will produce the same result of 3 except that the
search in any segment ( count no. represents the segment no. ) can be
done selectively. Selection 5 represents simulation with ROM without
any multiplication for correction. Selection 6 to quit the program.
*/
#include <stdio.h>
#include <conio.h>
#include <math.h>

#define RAL 20 /* msb covered in the ROM,max. value=31 */
#define ML 35 /* maximum length of binary bits */
#define DL 40 /* multiplicand bit length */
#define HIGH VALUE 7 /* limits no of choices */
#define MAXVAL (unsigned 10ng)pow(2.0, (double)RAL)
#define CONSTANT 1.0/pow(2.0, (double)RAL)
#define FACTOR CONSTANT/pow(2.0, (double) (ML - RAL))
#define DIVIDEND pow(2.0, (double) (ML - RAL))
#define MULTIPLIER pow(2.0, (double) (ML - RAL - 1))
#define ALLOWED 1
#define NOT ALLOWED °

struct {
double m initial;
double 19 m initial;
double difference;
float max_con_error;
double m;

}'segment;
struct {

double
double
} new,

i,.

° .,int choice, disp count
unsigned long count;
double difference = 0.0, ideal difference,
double max con error = 0.0;
char bin_m[ML+1T, bin_difference [DL+1] ;

void basic_difference error();
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;,

{
puts (UII);

puts (n1 - Linear difference without the effect of DL setting n);
puts (n2 - Linear difference with DL setting effectiven);
puts (n3 - Simulation with non-iinear correction factorn);
puts (n4 - Interactive version n);
puts (ns - Simulation with ROM without multiplicationn) ;
puts (n6 - Quitn);
puts (n7 - Only mid values - a short cut attemptn);
puts ("II) ;
printf(r'%s","Press the key of choice ... II);
Bcanf ("%d",&choice);
switch (choice)
(

do

void mid value error();
double modify difference ( double value );
void lin int values (double new m, double old m, double old 19m);
void non-lin-int values (double-new m, double-old m, double-old 19m);
void optImum-difference error (); - - -
void find binary ( char-*ptr, double value, int n) ;
void rom_only() ;

main ()
{

case 1 :
case 2 : clrscr ();

disp_count = 0;
max_con_error = 0.0;
old.m = old.lgm = 0.0;
increment = CONSTANT;
for ( count = 0; count < MAXVAL; count++ )

basic difference error();
break;

case 3 : old.m = old.lgm = 0.0;
increment = CONSTANT;
printf (n\nm ini tial 19m initial n) ;
printf (n dIfference max con error\n\nn) ;
for (.count = 0; count < MAXVAL; -count++ )
{
basic difference error ();
optimum difference error ();} - -
break;

case 4 : printf (nEnter count no: n);
scanf ("%ld",&count) i
increment = CONSTANT * (count + 1);
old.m = increment - CONSTANT;
old.lgm = log ( 1.0 + old.m)/log(2.0);
printf(n\nm initial 19m initial n);
printf(n difference ~ax con error\n\nn);
for ( ; count < MAXVAL count++)- -
(

basic difference error() ;
optimum difference error() ;} - -

break;

107



}
void basic difference_error ()
(

case 5 rom only() ;
break; .

case 6 break;
case 7 mid value_error();

bre~k;
default: puts ("Bad choice");

break;
/* end of switch */

if ( choice >= 1 && choice '<= HIGH VALUE) continue;
printf ("Only 1 through %d are permitted\n" ,HIGH_VALUE) ;

} while ( choice != 6 );

segment.m initial = old.m;
segment.lg m initial = old.lgm;
neW.ffi = increment;
new.lgm '= log(1.0 + new.m)/log(2.0);
difference = (new.lgm - old.lgm)/DIVIDEND;
if ( choice == 2 )
difference = modify difference ( difference);
segment.difference ~ difference;
if ( choice == 3 i i choice == 4 )

non lin int values (new.m, old.m, old.lgm);
else lin int values (new.m, old.m, old~lgm);

old.ffi = new.mj -
old.lgm = new.lgm;
increment += CONSTANT;

}
void mid_value_error ()
(

unsigned long mul factor = MULTIPLIER;
double mid m, high value, low value, 19 mid m, add factor;
double error, max con error =-0.0, temp=max=con_error = 0.0;

increment = CONSTANT;
old.m = old.lgm = 0.0;
clrscr ();
for ( count = 0; count
(

< MAXVAL; count++ )

/* now

segment.m initiai ~ old.m;
segment.lg_m_initial = old.lgm;
new.rn = increment;
new.lgm = log(1.0 + new.m)/log(2.0);
difference = (new.lgm - old.lgm)/DIVIDEND;
mid m = (old.m + new.m)/2.0;
19 mid m = log(1.0 + mid m)/log(2.0);
add factor = difference * mul factor;
temp max con error = 19 mid m-- (old.lgm + add~factor);
if (-temp max con error-> max con error)( - - - - -

max con error = temp max con error;
gotoxy(B,S); - - -
printf("Max. error =%Eoccurred at %18.18f", max_con_error,mid_m) ;} .

check higher and lower side to confirm that no other value */
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}
disp count++i
if (-disp count == 500) (
gotoxy(20-;3) ;
printf("%10.10f",mid m);
disp_count ~ 0; -}

/* higher or lower than the middle value produces higher error */
/* first checking the lower side */

low value = mid m - FACTOR; .
19 mid m = 10g(1.0 + low value)/log(2.0);
add factor -= difference;
error = 19_mid_m ~ ( old.lgm + add_factor);
if ( error > temp max con error )(

gotoxy(B,7); - - -
printf("Max. error =%E",temp max con error);
gotoxy(B, B); - - -
printf ("Error produced at lower side =%E", error) ;

}
/* now checking the higher side */

high value = mid m + FACTOR;
19_mId_m = 10g(1~0 + high_value)/10g(2.0);
add factor += 2.0*difference;
error = 19 mid m - ( old.lgm + add factor);
if ( error-> temp_max_con_error ) T

gotoxy(B, 7);
printf("Max. error =%E",temp max con error);
gotoxy(B,B); - - -
printf ("Error produced at higher side =%E", error) ;

old.m =new.m;
old.lgm = new.lgm;
increment += CONSTANT;

}
}
double modify difference ( double value )
/* stores a real number < 1.0 in a n-bit binary field and
/* recalculates its real value based on its n-bit length
{

*/
*/

int modify count ~ 0, no left shift = 0;
double addend = 0.5; - -
char *cptr;
cptr = &bin difference [0];

/* find the first occurrence of '1' and discard all the leading 'O's */
while ( value <= 0.5 ) {

value += value;
no_left_shift++; }

while ( modify count < DL
{ -
value += value;
if ( value >= 1.0 ){

*cptr = '1';
value -= 1.0; }

else *cptr = '0';
cptr++.i
modify count++;} -
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*cptr = '\xO';
/* recalculate the value of difference based on storage bit length */

cptr = &bin difference [0];
value 0.0;
do {

if ( *cptr == '1' ) {
value += addend;
addend *~ 0.5; }

else addend *~ 0.5;
cptr++;

} while ( *cptr != '\xO');
/* make necessary right shifts i.e. division */

value = value / pow(2.0, (double) (no_left_shift));
return ( value );

}
void lin int value.s (double new m, double
/* generate all values those can be fully
/* ML within one segment
(

old m, double old 19m)
represented by *7

*/
double 19 old m, mul factor, error 0.0, add factor
char *cptr;.- -
while (old m < new m)( - -

old m +~ FACTOR;
19 old m ~ log(1.0 + old m)/log(2.0);
find bInary ( &bin m[O] ,-old m, ML );
cptr-= &bin m[RAL]; -
mul factor ~ MULTIPLIER;
do T

0.0;

if (*cptr == '1') add factor += difference * mul factor;
*cptr++;
mul factor = mul factor/2.0;

} while (*cptr != '\xO');
if (add_factor 0.0 Ii old_m == 1.0)

.add factor = difference * DIVIDEND;
error-= 19 old m - (old 19m + add factor) ;
if ( error-> max con error) -( - -

1000 )

%-lS.lSf and above with error=%-E" ,old_m, error) ;

error; .

error =%Eoccurred at %18.18f", max_con_error, at_m) ;

0.0;

max con error =
atjii = old_m;,
gotoxy(S,5) ;

printf ("Max.
)
disp count++;
if (-disp count{ -

gotoxy (S',7) ;
printf ("scanning
disp_count = 0;

}
add factor} -

}
double get error (double m, double log2m, double differ) ;
/* function local to n'on lin int values function *.j
void non_lin int values (double new_m, double old_m, double
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float error, temp_max_con_error= 0.0;
double at_m;

while ( old m < new_m)
{

}

old m += FACTOR;
error = get_error (old_m, old_Igm, segment.difference);
if ( fabs(error) > temp_max_con_error) {
temp max con error = error;
at_m-= oId_m;

}
segment.max con error = temp max con error;
segment.m =-at_m; - - -
printf ("%15.l5f %15.l5f %15.l5f %+E\n",segment.m_initial,

segment.lg_m_initial,segment.difference,segment.max_con_error)} .
double find ideal difference ( double m );
/* function-Iocal-to optimum difference error function */
void optimum difference.error () -
/* calculates the new value of segment.difference that produces */
/* the lowest absolute value of the segment.max con error */{ - -

J

float error, temp new con error = 0.0;
float left new con error,-right new con error;
double temp new seg m; - - -
double old m, old 19m, new m;
double low-end difference,-mid difference, high end difference;
double left ideal difference, right ideal difference;
double left-new seg m, right new seg m; -
unsigned char left_search,rIght::::search;

left search = right search = ALLOWED;
old m = segment.m initial;
old-lgm = log( 1.0 + old m )/log(2.0);.
new::::m= old_m + CONSTANT;

ideal difference = find ideal difference ( segment.m );

while (old m < new m){ - -
old m += FACTOR;

error = get_error (old_m, old_lgm, ideal_difference);
if ( fabs (error) > fabs (temp_new_con_error) ){.
temp new con error = error;
temp-new-seg-m = old m; }
} /* While (old m < new m) */
if ( fabs(temp new con error) < segment.max con error) {

/* here ideal difference-cannot produce a value of-temp max con error */
/* that is less than segment. max con erro. In fact the -value or the */
/* ideal difference is the higher side limit in the search procedure * /

putS("ERROR"); exit(O); }

low end difference = segment. difference;
mid-difference = ideal difference;
high_end_difference = Ideal difference;

III



left new can error = segment.max can error;
right_new_con_error = segment.max_con_error;
if ( fabs(temp_new_con_error) > segment.max_con_error &&

temp new can error < 0.0 ) right search = NOT ALLOWED;
else - - {-. - -
puts ("Algorithm don't consider such situation for swing.");
exit (0); }

while (left search == ALLOWED : I right_search == ALLOWED)
{

if ( right search )
{

temp_new_con_error = 0.0;
ideal difference = (mid difference + high end_difference)/2.0;
right-ideal difference ~ ideal difference;
old m-= segment.m initial; -
old-lgm = log (1.0 + old m)/log(2.0);
new-m old m + CONSTANT;

while ( old m < new m
{

old m += FACTOR;
error = get error (old m, old 19m, ideal difference);
if ( fabs(error) > fabs(temp_new_con_error)) {

temp_new_con_error = error;
temp new seg m = old m; }} /* whIle */ - -

right new can error = temp new can error;
right-new-seg-m = temp new-seg-m; -
} / * if (-right search -) *T -
if ( left search ){ -

temp new can error = 0.0;
ideal difference = (low end difference + mid difference)/2.0;
left Ideal difference = ideal difference;
old m = segment.m initial; -
old-lgm = log( 1.0 + old m )/log( 2.0 );
new-m old m + CONSTANT;

while ( old m < new m
{

old m += FACTOR;
error = get_error (old m, old Igm, ideal difference);
if ( fabs(error) > fabs(temp new can error)) {

temp_new_con_error = error; - -
temp new seg m = old m; }

} /* while *7 - -
left new con error = temp new con error;
left=new=seg=m = temp_new=seg-m; -

} /* if left_search() */ -

if (fabs(left_new_con_error) >= segment.max can error
&& left new can error < O. 0-) r

right search = NOT_ALLOWED; -
left search ALLOWED;
mid difference = left ideal difference' }

else if (fabs(left_new_con~error) < f~bs(right_new_con error)
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} /*

&& fabs(left new con error) < fabs(segment.max con error)) {
segment.difference = left_ideal_difference; - -
segment.maX_COll_error = left_new_con_errori
segment.m = left_new_seg_m;
left search = right search = ALLOWED;
high=end_difference-= mid_difference;
mid difference = left ideal difference; }

else-if (fabs(right new con error) < fabs(left new con error)
&& fabs(right_new~con~error) < fabs(segment.max_con_error)) {

segment.difference = right ideal difference;
segment.max_con_error = right_neW_Coll_errori
segment.m = right_new~seg_m;
left search = right search = ALLOWED;
low end difference ~ mid difference;
mid-difference = right ideal difference; }

else-if (fabs (right new con error) > fabs(segment.max con error)
&& fabs(left_new~con~error) > fabs(segment.max_con~error)) {

right search = NOT ALLOWED;
left search = NOT ALLOWED; }

else - { -
puts("we don't consider such situation in flow-control");
exit (0); }

} /* while ( right_search I i left_search == ALLOWED) */
printf ("%-lS.lSf %-lS.lSf %-lS.lSf %+E\n\n",segment.m initial,
segment.lg m initial,segment.difference,segment.max-con error);
putch (,\a' ); - - -
optimum_difference_error */

double find ideal difference ( double m )
/* calculates a new value of difference that turn the */
/* segment.max con error into zero as calculated in */
/* the non lin-int-values function */{ - -

int divisor = 0, add_factor;
double 19m;
char *cptr;

add factor = (long)pow (2.0, (double) (ML - RAL)) /2.0;
find_binary (bin_m, m, ML);
cptr &bin m[RAL] ;
do { -

if ( *cptr == '1' ) divisor += add_factor;
*cptr++i
add factor = add factor/2.0;

} while ( *cptr != '\xO');
19m = log( 1.0 + ( m - FACTOR*divisor ))/log(2.0);
ideal_difference = ( log( 1.0 + m )/log(2.0) - 19m)/divisor;
return ( ideal difference );

double get_error (double m,double log2m,double differ)
/* accepts a real value 0.0 < m < 1.0 and calculates its base */
/* 2 logarithm value, correction factor is added with the base */
/* logarithm value and the error is calculated */
{

.,.
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static double temp 19m;
double multiplier,-deviation, add factor = 0.0;
char *cptr;

difference = differ;
temp 19m = log(1.0+ m)/log(2.0);
find-binary(bin m, m, ML);
cptr -= &bin_m [RAL] ; .
multiplier = MULTIPLIER;
do {

if ( *cptr == '1')
add factor += difference * multiplier;

*cptr++i
multiplier = multiplier/2.0;

} while ( *cptr != '\xO');
if ( add factor == 0.0 I I m == 1.0)
add factor = difference * DIVIDEND;
deviation = temp 19m -(16g2m + add factor);
return ( deviation ); -

void find binary (char *ptr, double value, int n)
/* accepts a real value < 1.0 and generates */
/* its n-bit binary representation */
{

int in count = 0;
while (in count < n){ -

value += value;
if (value >= 1.0) {
*ptr = ' l' i
value -= 1.0; }

else
*ptr = I 0' ;

ptr++i
in_count++;

}
*ptr = '\xO';

void rom only ()
/* simulation of FLP to LNS conversion using only ROM */
/* the ROM capacity is to be determined by RAL */
/* neglect the values of ML and DL */
(

int C=Oi
double increment = 1.0/pow(2.0, (double)RAL);
double m = 0.0, next_ill, mid_value; ,
double error, max con error = 0.0, at ill;

double 19_m, 19_next_m, 19_mid_value;-

clrscr ();
do
{

next m = rn + increment;
mid value = (m + next_m)/2.0;
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}

19 next m = log(l + next m)!log(2.0);.
19=mid_value = log( 1.0 + mid value) ! log(2.0);
error = 19 next m - 19 mid value;
if ( error-> max_con_error-) {
max con error = error;
at m = mid value;
gotoxy(S, 5);

printf ("Max. error =%Eoccurred at %18.18f", max_con_error I at _m);

%18.18f and above with error =%EIT,
mid_value, error) ;

}
+ increment;
(m<l.O);

c = 0;
m = ill

while

C++i
if (c == 5000) {
gotoxy(S, 7);
printf("scanning

}
}
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/* converts LNS numbers to FLP numbers. The LNS number is assumed to
represented in IEEE format of which the representation of the mantissa
portion is controlled by ML. To convert LNS mantissa to its
corresponding FLP mantissa we take the help of a ROM table, no of
address bits of which are indicated by the RAL . To perform the LNS to
FLP conversion using linear correction factor we have to set the RAL
for ROM portion of the mantissa and the ML to represent the mantissa
portion of the floating point number. If we want to limit the

multiplicand bit length DL should be set accordingly, otherwise a
setting between 32-42 is adequate. The effect of the multiplicand bit
length can be observed by selecting the second choice from the main
menu. Linear search may not produce the optimum value of maximum
conversion error in each segment so the third choice should be selected
to find the absolute value of the MCE in each segment produced by
non_linear method. Selection 4 will produce the same result of 3 except
that the search in any segment ( count no. represents the segment no.)
can be done selectively. Selection 5 represents simulation with ROM
without any multiplication for correction. Selection 6 to quit the
program. */
#include <stdio.h>
#include <conio.h>
#include <math.h>
#define RAL 25 /* msb covered in the ROM */
#define ML 37 /* maximum length of binary bits */
#define DL 40 /* multiplicand bit length */
#define HIGH VALUE 8 /* limits no of choices */
#define MAXVAL (unsigned long)pow(2.0, (double)RAL)
#define CONSTANT 1.0/pow(2.0, (double)RAL)
#define FACTOR CONSTANT/pow(2.0, (double)(ML - RAL))
#define DIVIDEND pow(2.0, (double)(ML - RAL))
#define MULTIPLIER pow(2.0, (double)( ML - RAL -1))
#define"ALLOWED 1
#define NOT ALLOWED a
struct {

double 19m initial;
double antIlg_lgm_initial;
double difference;
float max con error;
double 19rn; -
} segment;

static struct {
double 19m;
double m;
} new,old;

int choice, disp count = 0;
unsigned long count;
double difference = 0.0, ideal_difference, increment, at_Igm;
double max con error = 0.0;
char bin_lgm[ML+l], bin_difference [DL+l];
void basic_difference_error() ;
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void reverse basic difference error();
double modify difference ( double value );
void lin int values .( double new 19m, double old 19m, double old m );
void reverse-int values (double new 19m,double old 19m,double old m) ;
void non lin-int-values (double new-Igm,double old-Igm,double old=m);
void optImum=difference_error(); - -
void find binary ( char *ptr, double value, int n );
void rom_only();

main ()
{

do (
puts (1111) j

puts("1 - Linear difference without the effect of DL setting");
puts("2 - Linear difference with DL setting effective");
puts("3 - Simulation with non-linear correction factor");
putS("4 - Interactive version");
puts("5 - Simulation with ROM without multiplication");
puts("6 - Quit");

/* In fact selection 7 and 8 do the same function of items 1 and 2
respectively but instead of starting from the lowest segment ( no
a ) number, selection 7 and 8 begins from the highest segment

no. to accelerate the process of finding the max. conversion error */

Linear difference with DL setting
11) ;of choice ...

- Linear difference without the effect of DL setting
(1-0)");

effective (1-0)");

putS("7

puts ("8 -
putS("11) ;
printf ("Press the key
scanf("%d",&choice) ;
switch ( choice )
(

case 1 :
case 2 : clrscr();

max con error O.Oj
old~lgm-= old.m = 0.0;
increment = CONSTANT;
for ( count = 0; count < MAXVAL; count++)
basic difference error();
break; -

case 3 : old.lgm = old.m = 0.0;
increment = CONSTANT;
printf ("\nRAL = %d", RAL) ;
printf (" ML = %d\n", ML) ;
printf("\nlgm initial antilg 19m initial "I;
printf (" difference max_con--,error\n\n") ;
for ( count =0; count < MAXVAL; count++)
(
basic difference error ();
optimum difference error();} - -
break; .

case 4 : printf ( "Enter count no: ");
scanf ("%ld", &count);
increment = CONSTANT * ( count + 1);
old.lgm = increment - CONSTANT;
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}

old.m = pow(2.0, old.lgm) - 1.0;
printf ("\nlgm_initi",l antilg_lgm_initial") ;
printf ("difference max_con_error\n\n") ;
for ( ; count < MAXVAL; count++ )
(
basic difference error();
optimum difference error();} - -
break;

case 5 : rom only();
break;-

case 6 break;
case 7 :.
case 8 : clrscr();

max con e-rror 0 . 0 ;
old~lgm-= old.m = 1.0;
increment = 1.0 - CONSTANT;
reverse basic difference error();
break; - - -

default: puts ("Bad choice");
break;

} /* end of switch */
if ( choice >= 1 && choice <= HIGH VALUE) continue;
printf( "Only 1 through %d are permitted" ,HIGH VALUE);
while ( choice != 6 );

void basic difference_error()
(

}
(Oid reverse_basic_difference_error()

segment.lgm initial = old.lgm;
segment.antilg 19m initial = old.m;
new.lgm = increment;
new.m = pow(2.0,new.lgm) - 1.0;
difference = (new.m - old.m)/DIVIDEND;
if ( choice == 2 ) difference = modify difference ( difference );
segment. difference = difference; -
if ( choice == 3 I I choice == 4)

non lin int values ( new.lgm, old.lgm, old.m);
else -lin=int=values ( new.lgm, old.lgm, old.m);
old.lgm = new.lgm;
old.m = new. ill;

increment += CONSTANT;

(difference) ;

(
new.lgm = increment;
new.m = pow(2.0,new.lgm) - 1.0;
difference=(old.m - new.m)/DIVIDEND;
if ( choice ==8 ) difference = modify difference
reverse_int_values (new.lgm, old.lgm, new.m);
old.lgm = new.lgm;
old.m = neW.ill;

clrscr ();
for (count = MAXVAL - 1; (count >= 0) && (count < MAXVAL); count--)
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}

increment
}

CONSTANT;

{

}

double modify difference ( double value )
/* stores a real value < 1.0 in a n-bit binary field and

recalculates its real value based on its n bit length */

int modify count = '0, no left shift =0,
double addend = 0.5;
char *cptr;

cptr = &bin difference [0],
/* find the first occurrence of '1' and discard the leading 'a's */

while ( value < 0.5 )
{
value += value;
no left shift++;} - -
while ( modify count < DL )
{ -

value += value;
if ( value >= 1.0 {

*cptr = '1';
value -= 1.0; }

else *cptr = '0';
cptr++;
modify count++;} -

*cptr = '\XO'i
/* recalculate the value of the difference based on storage bit length .
*/

cptr = &bin difference [0],
value = 0.07 .
do {

if ( *cptr == '1' ) {
value += addend,
addend *= 0.5, }
else addend *= 0.5;

cptr++i
} while ( *cptr !- '\xO' );

/* make necessary right shift i.e. division */
value = value / pow( 2.0, (double) (no_left_shift));
return ( value );

void lin int values ( double new_lgm, double old_lgm, double old_m)
{

double antilg old 19m, mul factor, error = 0.0, add factor = 0.0;char *cptr, - - -
while (old 19m < new 19m)( - -

old 19m += FACTOR;
antIlg_old_lgm - pow(2.0,old_lgm) - 1.0,
find binary(&bin 19m[O], old 19m, ML);
cptr-= &bin_lgm[RAL], -
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mul factor = MULTIPLIER;
do T

if (*cptr == '1') add factor += difference * mul factor;
*cptr++;
mul factor = mul factor/2.0;

} whiTe (*cptr != '\xO');
if (add factor == 0.0 I I old 19m == 1.0)
add factor = difference * DIVIDEND;

error-= antilg old 19m - (old m + add factor);
if ( fabs(error) >-fabs(max_con_error) ) {
max con error = error;
at 19m ~ old 19m;
gotoxy(8, 5) ;-
printf("Max. error ='E occurred at '18.18f",

max_con_error,at_1gm); }
disp count++;
if (-disp count == 5000 ) {
gotoxy(S, 7) ;
printf ("scanning '18 .18f and above with error='E", old 19m,error) ;

dispcount = 0; } -
add factor =0.0;
}

void reverse int_values (double new_lgm, double old_lgm, double new_m)
{

double antilg old 19m, mul factor, error = 0.0, add factor = 0.0;
char *cptr; - - -
while (old 19m > new 19m){ - -
old 19m -= FACTOR;
antIIg old 19m = pow(2.0,old 19m) - 1.0;
find bInary(&bin Igm[Ol, old-lgm, ML);
cptr-= &bin Igm[RALl ; -
mul factor ~ MULTIPLIER;
do T

if (*cptr == '1') add factor += difference * mul factor;
*cptr++;
mul factor = mul factor/2.0;

} while (*cptr != '\xO');
if (add factor == 0.0 I I old 19m == 0.0) add factor = 0.0;
error =-antilg old 19m - (new m + add factor);
if ( fabs(error) >-fabs(max_con_error) ) {
max con error = error;
at 19m ~ old 19m;
gotoxy (8,5) ;-

printf("Max.error ='E oc=red at '18.18f",max_con_error,at_lgm);}
disp count++;
if (-disp count == 5000 ) (
gotoxy(B,7); .
printf ("scanning '15 .15f and below with error=.'E",old 19m, error) ;

disp_count = O;} -
add factor = 0.0;} -
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double get error ( double 19m, double anti 19m, double differ );
void non lin int values (double new 19m,double old 19m,double old_m){ - - - - -

float error, temp_max_con_error = 0.0;
double at_lgm;

}

while ( old 19m < new 19m){ - _.

old 19m += FACTOR;
error = get_error ( old_lgm, old_m, segment.difference);
if ( fabs(error) > fabs(temp_max_con_error)) {

temp max con error = error;
at_lgm =-old=lgm;

}
segment.max_con_error = temp_max_con_error;
segment.lgm = at 19m;
printf ("%15 .15f %15.15f %15. 15f %+E\n", segment. 19m_initial,
segment.antilg 19m initial,

segment.difference, segment.max_con_error);
}

double find ideal difference ( double 19m );
void optimum_difference_error()
(

float error, temp new con error = 0.0;
float left new con error,-right new con error;
double temp new seg 19m; - - -
double old Igm,-old-m, new 19m;
double low-end difference,-mid difference, high end difference;
double left ideal difference, right ideal difference;
double left-new seg 19m, right new seg 19m;
unsigned char left search, right search;

left search = right search = ALLOWED;
old Igm = segment.lgm initial;
old-m .= pow(2.0, old Igm) - 1.0;
new=lgm = old_lgm + CONSTANT;

ideal difference = find_ideal_difference ( segment.lgm );

while (old 19m < new_lgm){ -
old 19m += FACTOR;
error = get error ( old 19m, old m, ideal difference);
if ( fabs(error) > fabs(temp_new=con_error)) {

temp new con error = error;
temp=new=seg=lgm = old_lgm; }

} /* while (old 19m < new 19m) */
if ( fabs(temp_new_con_error) < fabs(segment.max_con_error)) (

puts ("ERROR") ;
exi t (0);}

if ( fabs(temp_new_con_error) > fabs(segment.max con error)
&& temp new con error> 0.0 left search = NOT_ALLOWED;else - -( -
puts ("Algorithm don't consider such situation for swing.");
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'exit (01; )
low end difference = ideal difference;
mid-difference ='ideal difference;
high end difference = segment.difference;
left-new-con error = segment.max can error;
right_new_con_error = segment.max_con_error;
while (left search == ALLOWED i I ~ight_search -- ALLOWED)
{

if ( right search{ -

temp_new_con_error 0.0;
id~al difference = (mid difference + high end differencel/2.0;
right-ideal difference ~ ideal difference; -
old 19m = segment ..lgm initial;-
old-m = pow(2.0, old 19m) - 1.0;
new=lgm = old_lgm + CONSTANT;

while ( old_lgm < new_lgm
{

old Igm += FACTOR;
error = get_error ( old_lgm, old_m, ideal_difference );
if ( fabs(error) > fabs(temp_new_con_errorl) {

temp new con error = error;
temp-new-seg-lgm = old 19m;

} 1* while *7 - -
right new con error = temp new can error;
right-new-seg-1gm = temp new seg 19m;
} I*if (right_search )*1- -
if ( left search )
{

temp new con error = 0.0;
ideal difference = (low end difference + mid differencel/2.0;
left Ideal difference =-ideal difference;
old 19m = segment.lgm initial;
old-m = pow(2.0, old 19m) - 1.0;
new=lgm = old_lgm + CONSTANT;

while ( old 19m < new 19m ){ -,.-

old 19m += FACTOR;
error = get error ( old 19m, old m, ideal difference 1;
if ( fabs(error) > fabs(temp_new=con_error)) {

temp new con error = error;
temp-new-seg-lgm = old 19m; }

} 1* while *7 - -
left new con -error = temp new con error;
left-new-seg-lgm = temp new seg 19m;
} 1* if -left search () *1 - -

if (fabs(right_new_con_error) >= segment.max_con error
&& right_new_con_error > 0.0 ) r

left search = NOT ALLOWED;
right search = ALLOWED;
mid dIfference = right_ideal_difference; }
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else if (fabs(left new con error) < fabs(right new con error)
&& fabs(left new-con-error) < fabs(segment.max con error)) {

segment.difference = Ieft_ideal_difference; - -
segment.max con.error = left new con error;
segment.lgm-= left new seg 19m; - -
high_end_difference = mid_difference;
mid difference = left ideal difference;
left_search = right search ~ ALLOWED; }

else if (fabs(right new con error) < fabs(left new con error)
&& fabs (right new- con- error) < fabs (segment .max con error) ){

segment.difference-= rIght_ideal_difference; - -
segment.max_con_error = right_new_con_error;
segment.lgm = right new seg 19m;
low end difference ~ mid difference;
mid-difference = right ideal difference;
left search = right search =-ALLOWED; }

else if (fabs (right new con error) > fabs(segment.max con error)
&& fabs (left new- con- error) > fabs (segment. max con- error)) {

right search ~ NOT ALLOWED; - -
left search = NOT ALLOWED;

else {-
puts ("we don't consider such situation in flow-control");
exi t (0); }

} /* while ( right_search I i left_search == ALLOWED) */
printf("%15.15f %15.15f %15.15f %+E\n\n",segment.lgm_initial,

segment.antilg_lgm_initial,segment.difference,

putch(' \a');
} /* optimum_difference_error */

double find ideal difference ( double 19m )
/* calculates a new value of difference that turn the

segment.max_con_error into zero */
{

int divisor = 0, add_factor;
double anti 19m;
char *cptr;-
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static double temp m;
double multiplier,-deviation, add factor 0.0;
char *cptr;

int in count = 0;
while (in count < n){ -

value += value;
if (value >= 1.0)
*ptr = ' l' ;
value -= 1.0;

else
*ptr = ' 0 I ;

ptr++;
in_count++i

}
*ptr = '\xO';

difference = differ;
temp m = pow(2.0, 19m) - 1.0;
find-binary ( bin 19m, 19m, ML );
cptr-= &bin_lgm[RAL1;
multiplier = MULTIPLIER;
do { ,

if ( *cptr == '1')
add factor += difference * multiplier;

*cptr++;
multiplier = multiplier/2.0;

} while ( *cptr != '\xO');
if ( add_factor == 0.0 I I 19m == 1.0)
add factor = difference * DIVIDEND;

deviation = temp m - (anti 19m + add factor);
return ( deviation ); - -

void find_binary (char *ptr, double value, int n)
/* accepts a real value < 1.0 and generates its n-bit

binary representation */

}
void rom_only ()
/* simulation of LNS to FLP conversion using ROM table */
/* ROM capacity to be determined by RAL */
/* neglect ML and DIFFERENCE_FACTOR */

"

, \
!

(
int c = 0;
double 19m = 0.0, next 19m, mid value;
double error, max con error = O~O, at 19m;
double antilg 19m~ antilg next 19m, antilg mid value;- - - - -

19m + increment;

increment = 1.0/pow(2.0, (double)RAL);
clrscr ();
do
{
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}

mid value (lgm + next 19m)/2.0;
antIlg next 19m = pow( 2.0, next 19m) - 1.0;
antilg-mid value = pow( 2.0, mid-value) - 1.0;
error ~ antilg_next~lgm - antilg=mid_value;
if ( fabs(error) > fabs(max_con_error) )( .
max con error = error;
at Igm ~.mid value;
gotoxy(8, 5) ;-
printf("Max. error =%E occurred at %18.l8f",

max_coll_error,at_lgm) ;

%18.l8f and above with error =%E",
mid_value, error) ;

)
increment;
<1.0);

C++i
if (c == 1000) (
gotoxy(8,7) ;
printf ("scanning

c = 0;
19m = 19m +
while ( 19m}

}

'I
\' ,

<,.
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