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ABSTRACT

Although logarithmic number system {LNS) has been used considerably
in many fields, the storage of numbers in computer memory under LNS
format is still not specified, so commercial use of LNS processor
is not generally seen. In spite of many unsolved problems, there
are interests on LNS processors due to its fast multiplication,
division and some arithmetic operations.

This thesis establishes IEEE floating point (FLP) numbers into
logarithmic numbers in such a way that the conversion accuracy is
high and the process needs a small size of ROM. Both IEEE single
and double precision numbers are considered . At first base numbers
are generated and suitable correction factor is added to generate
the correct LNS number. Anti-conversion is also done in a similar
process.

An attempt is made to increase the accuracy by using the non-linear
correction factor which in fact tries with new values of correction

factors to reduce the wvalue of conversion error. Although
non_linear - non_linear conversion technique increased accuracy

(table 4-6), its effectiveness is largely dependent on mantissa

length (ML). A higher bit configuration leads to lesser accumulated
error. Conversion and anti-conversion using an offset value was
also done that produced the best result.

ROM size of 212 Kbits (RAL 12 ML 23) produced MCE of 1.07462E-08
and ROM size of 2528 Mbits (RAL 25 ML 52) produced MCE. less than
the truncation error of double precision floating point number
(2.22E-16) . Simulated results of conversion and accumulated errors
are given in article 4.4. LNS numbers obtained from this process is
used in several arithmetic processing and their respective errors
are also calculated.
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CHAPTER 1

AN INTRODUCTION TO THE LOGARITHMIC NUMBER SYSTEM

1.1 Introduction

The logarithmic number system (LNS) can draw considerable attention
in favour of its use in digital computer due to .its faster
processing capability for many arithmetic operations. The use of
LNS in decimal system is frequent and-many arithmetic operations
such as multiplication, division, square-root, power etc. are
frequently done by using logarithmic number. Due to its faster
processing capability, study [1;2,3,10,18] has been done so that
LNS can replace the established floating point { FLP ) number
system as a general use in digital computer. Considerable studies
have been done recently in the various field of applications e.gq.
digital signal processing, fast Fourier transformation etc. that
uses LNS [4,5]. The main advantage of using the LNS in a digital
computer 1is evident from the fact that complicated and time
consuming multiplication and division processes can be replaced by
simple addition and subtraction. In a digital computer, real
numbers are represented in floéting point (FLP} format and here the
main problem becomes to find a suitable method to convert FLP
number into LNS number. format and vice-versa which is fast enough

with no loss or little loss of accuracy.

Various research papers have been published on logarithmic number
system and prototype processor has been fabricated that directly
deals with logarithmic number [6]. Hybrid type of processors [3]
has been proposed that deals with both FLP and LNS numbers. The



processor depicted in [3] uses FLP numbers for addition and
subtraction and LNS numbers for multiplication and division

intensive arithmetic operations.

An alternate design [1,6] is to coﬁvert all the floating point
numbers into logarithmic numbers and ‘to perform arithmetic
operations { inclﬁding addition and subtraction } in logarithmié
number system. Once the arithmetic'operatiqn'is completed, the

resultant LNS number is converted back into FLP number system.
The organization of the thesis is as follows

Chapter 1 focuses on the contents of each chapter and the object of
this thesis. It discusses arithmetic operations in LNS in general.
Here data representation in FLP format and a possible way of data

representation in LNS format are shown [3].

Chapter 2 deals with the basic conversion teéhnique of data into
LNS format. A discussion on how the error develops and several
other methods of conversion are given here. An analysis of
.different possible formats of LNS data representation and a
comparison of these formats with those of IEEE std. 754-1985 are
presented in this chapter. '

Chapter 3 discusses method of conversion using linear correction
factor and presents hardware models for 32 bits and 64 bits of
representation for both the ways of data conversion. Simulation
model programs with linear correction factors are discussed.
Different ROM configurations with their corresponding conversion
errors are given and methods of reducing the ROM size are
discussed. A mathematical model proving the validity of simulation
results is presented here. A model only with ROM and without any
multiplier is also cited at the last article of this chapter.

Various graphs are added to illustrate the experimental findings.



Chapter 4 concentrates on simulation model programs'that apply
various correction factors to achieve the minimum value of the
maximum conversion error. This chapter shows the effect of non-
linear conversion factor. It also shows the effect of non-linear

correction factor on errors and compares the result with the

errors those have been produced by applying linear correction

factor. Arithmetic processing, accumulated errors for format

conversion and several other processing results are also discussed."

Chapter 5 discusses addition and subtraction of LNS number. Table
censtruction technique using Taylor’s series first order
approximation is also described here. In the article 5.3 the

processing involving denormalized numbers 1s alsco discussed.

Chapter 6 discusses the various sources of error during FLP to LNS
and LNS to FLP conversion. Discussion about speed improvement with
reasonable assumptions are given in article 6.2. Application of
LNS number in the field of evaluating trigonometrical identities,
geometric co-ordinate transformation and - fast Fourier

transformation are also given.

Chapter 7 is the last chapter which contains conclusion and

suggestions for further research.

[

1.2 Objective of the thesis

This thesis has manifold purposes. As the interest in favour of
using LNS is increasing day by day, general properties of LNS and
various mathematical operations in this number system shall be

studied.

At present the numbers inside the memory of a computer system are
stored in a fixed point or floating point representation. So

suitable methods for converting numbers into LNS format shall be

3
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studied. This includes hardware methods [2] so that a vefy fast
conversion can be accomplished or use of a ROM I1,3,10,18] so that
much longer word length can be converted. Special attention has'
been paid to the conversion technique that uses a ROM due to the
fact that the packing density of ROM chips are generally

increasing with further reduction of access time.

Accuracy calculation for 32 bits and 64 bits conversion of FLP
numbers into LNS numbers and vice versa shall be studied. Suitable
-ROM configuration shall be determined to achieve a prestated
accuracy level. Partial correction shall be done by adding a
suitable correction factor and hence the effect of the

multiplicand bit length over the accuracy shall be studied.

A trial and error method shall be used to determine the new wvalue
of the correction factor so that the error can be minimized to the
smallest possible value. This method of minimizing the value of the
maximum conversion error is termed as non-linear correction factor

methed.

The way of evaluating mathematical functions shall be explained.
It is also an objective to calculate the speed improvement for
elementary mathematical operations. The possibility of using LNS
system in the gecmetric coordinate transformation and fast Fourier
transformation shall be included as a part of this thesis work.

1.3 Arithmetic operation in LNS

In the LNS system a number x can be represented as

where both x and Ex can be a positive or negative number. The radix

point of Ex can be varied so that the number represented by x under

4.



LNS can have a wide range with high accuracy.

If we assume 3 numbers x, v and z all represented in LNS and z is

the result of the arithmetic operations on x and y then

multiplication and division processes can be implemented by binary

adder and subtractor respectively, and an XOR gate to decide the |

sign of the operation so if we allocate Sz as the sign of the

result 2z then the following can be summarized.

1) Multiplication

sign(x) @ sign{y)

2 =X *vy, Ez Ex + Ey, Sz

2} Division

i}
i

z =x /vy, E2 = Ex - By, Sz = sign(x) @ sign(y)
Addition and subtraction of two numbers represented in LNS is
more difficult to perform. These two operations can be expressed

by the following mathematical relationship

3) Addition

zZ = X + Yy, Ez

Ex + Fa(v), v = Ex - Ey

X »= vy, Fa(v) log,( 1 + rV )
4) Subtraction

zZ =X - Yy, Ez Ex + Fb(v), v = EXx - Ey

X »>= y, Fb{(v) log,( 1 - rVv )

Square or square-root calculations are very simple in LNS system
and can be performed by mere left or right shifting. Log, and logi,
operations can be done by dividing with the respective-constants
[3]. Evaluation of exponents and power can be made with some

prespecified steps[3].

As it can now be seen that the addition and subtraction processes

5



are not very convenient in LNS system and development of a suitable
process for faster addition and subtraction of two LNS number is
still a major obstacle in the development c¢f LNS arithmetic

processing system.

During the addition and subtraction processes we see that the
‘exponent is either increased or decreased depending on the value of
Ex and Ey and the correspohding Fa(v) or Fb{v) is derived from a
ROM look-up table. '

Once the ©basic four operations { addition, subtraction,
multiplication and division ) procedures .are set under LNS
environment, it can alsc perform many cther mathematical cperations

like square root or squaring in an elegant way.

1.4 Floating point data format

IEEE .std. 754-1985 specifies single and double format of fleoating
point representation with their extensions [7]. Single format 32
bits floating-poiﬁt number comprises a 23 bits mantissa field, a 8
bit exponent field and a sign bit and for double format 64 bits
flecating peint number comprises a 52 bits mantissa, a 11 bits
exponent field and a sign bit. The mantissa is always normalized
and the leading 1 is not stored so that it remains as a hidden bit
and the mantissa is effectively extended by one bit more. The
"exponent is biased by 127 for single precision and is biased by
1023 for double precisicn floating point format so their actual
exponent (e} values are e-127 and e-1023 respectively. Therefore

for 32 bits representation a real number N can be represented by
N = (_l)s * 2(e~12'7) * (l.m‘)

where s represents the sign bit and m represents the mantissa and

e is the exponent (0 < e < 255). For example the number N = 22.625

6,



is represented by
N = 0-10000011-011C¢1Cc10000000000000000
Non-zero floating point numbers in the 32 bit format have magnitude

ranging from 2% * (1.0) to 27 * (2 - 2°%) i.e. from 1.18 * 107
to 3.40 * 10°° approximately.

01 8 9 31
S e m
1 8 23
e . m value name
255 not 0 none NaN (not a number)
255 0 (-1}**infinity |infinity
1..254 any (-1)s*2° Normalized number
127 4 (1.“1)
.0 10 , (-1)3*0- Zero _
0 " |not 0 (-1)5*27128% (0. m) |Denormalized number

Fig. 1-1 : IEEE standard 754-1985 (data type-single precision)



01 . 11 12 63 !

s e m
1 11 52
e m value ' name

2047 ' not 0 none NaN (not a number)

2047 0 (-1)%*infinity infinity

1l..20486 any (-1)5%2¢°1°83% (1. m) | Normalized number

0 0 (-1)°*0 Zero

0 not 0 {-1)5%271%2% (0 .m) {Denormalized number

' Figure 1-2 : IEEE standard 754-1985 (data type-double precision)

1.5 Logarithmic number system

_ A..proposal for logarithmic number system (LNS) representation
follows the same floating point data format with different
interpretation for each section. The left most bit still represents
the sign bit s. The e portion defined as the exponent in the
floating point data format, indicates the integer bits of the base
two logarithm number representation.'The portion e can also be
coded as 8 bit- excess 127 code with the actual value computed as
e - 127. The mantissa'! portion M is interpreted as the fraction
portion of this 32 bit word of e and M with binary point located

'When an FLP number represented in IEEE format is changed to
LNS format only the mantissa is changed. This change can be
marked by changing the small letter m to its capital form M
indicating that the same number N has been changed from FLP
format to LNS format. ' : :



. between bit 8 and bit 9. The non-zero number x is actually coded as
N = (_l)s * 2(8-127) + O.M

The basic difference between the LNS and the FLP representation is
that the M portion in LNS is the exponent to the base 2, while in
FLP it is the binary number with the hidden bit 1. The normalized
hidden bit 1 will make the FLP to LNS and LNS to FLP conversion
very simple. The non-zerco and non-negative data range covered by
this 32 bit LNS data format is from 2712+ "2 tgo 2127 + (1 - 27-23)

i.e. from:1.18 * 107 to 3.40 * 10°* approximately.



CHAPTER 2

CONVERSION TECHNIQUE AND LOGARITHMIC NUMBER SYSTEM

2.1 Basic conversion technique

The base 2 format . of a real number can be converted to its
approximate logarithmic number as described in ({8]. Here we
represent the fixed form representaﬁion of the logarithm to the
base 2 of a number N by lg(N) and the approximate logarithm of the
same number by lgA(N) then the approximate logarithm of the number

N can be calculated as given below.

1) The characteristics of 1gA(N) is equal to the number of bits

--between the left most 1 ( the most significant ™ bit )} and the =
radix point, thus 3. for the numbers 8 through 15 and 5 for the
numbers 32 through 63.

2) The approximate ‘fraction of lgA(N) 1is formed by the bits
following the left most 1-bit of N.

The necessary conversion can be implemented by using a shift
register R and a counter C { fig. 2-1 ) in which the exponent value
can be evaluated from the contents of the C once the conversion

operation is completed and R contains the approximate fraction (8].

The binary'number whose base two logarithm is to be calculated is

loaded into the register R. The counter C is always initialized

10



c ' SHIFT LEFT

Fig. 2-1 : Basic circuit for LNS conversion using
a register R and a counter C

with the register length of R and is decremented by 1 with each
left shift of R. If k is the initial position of the left most 1

bit in R, then after making necessary left shifts when the left

most 1 bit is exited from R, the contents of the counter register ..

C gives the value of the exponent of the base two logarithm number

and the approximéte fraction is available in the register R.

A few numbers N and their related 1gA(N) are given in table 2-1.

Table 2-1 : Approximate lbgarithm representation
of binary numbers

N (binarvy) N_(decimal) - 1gA(N)
00001000 8 , 11.00
00001001 - 9 11.001
00011000 24 . 100.1000
11111110 254 111.1111110

11111111 : 255 ‘ 111.1111111

11



Thus for the number N = 110110.101 the approximate logarithm is
1gA(N) = 101.10110101. This approximate method gives wus '

considerable error as shown below.

N = 110110.101 = 54.625
1gA(N) = 101.10110101 = 2579799125 .= 52 .23812646

So the error equals to { 54.625 - 52.23812646 ) 2.38687354 which
has been produced due to the approximate logarithmic representation
of the binary number N. Of course the error produced is large and
cannot be accepted for most of the computing applications. The
conversion error produced in term of the exponent error can be

.calculated as follows

N = number to be converted
then X In{N)/1ln(2.0}
A. floor (X)

the error can be calculated by the expression

- (x-ay - (N _
error = (X-A) - (2A 1.0)

The first term X-A calculates the fractional part of the exponent.

25-771489469  mharefore

So if we are investigating N = 54.625 then N =
X-A = 5.771489469 - 5.0 = 0.771489469. While calculating the
second portion, we assume that the number N is loaded into a
register having. integer and fracticnal parts. We then begin
shifting the whole register to right until the l.s.b. of the
integer part is 1 and all of its other bits are zero. The

N
- 1.0

bits configuration of the fractional part gives us
2A
and it is clear that the total no of right shifts necessary is

equal to A. This gives us the maximum value of error = 0.0860529

12



when X - A = 0.5360529. .
A list is given below for further clarification.

Number (N) X-A error (as exponent)
32.0 0.0 0.0
32.8 0.03562%91 0.01062391
40.0 0.3215280595 0.071928095
46.4 0.5360529 0.0860529
54.625 0.771489469 " 0.064458219
56.0 0.807354922 0.057354922
. 64.0 0.0 0.0

Therefore the total conversion error produced in representing
54.625 becomes 54.625 - 25771489469 - 0.064458229) _ 5 386873537 as we have

seen above.

A reasonable amount of correction can be achieved by dividing the

whole range of the fraction portion of number into several -

divisions and applying necessary correction factor(s].

2.2 Common conversion techniques

Methods that convert a non-LNS number into LNS number and vice-

versa can be broadly classified into two groups :-

a) Techniques that apply complex hardware devices for conversion

are known as hardware conversion technique.

b) Techniques that employ either firmware based data/instruction or
a complete software based method are known as software method.

13



The hardware method uses programmable logic array ( PLA ) [2]
to generate precise logarithmic conversion. Although this method is
accurate for small word size but is unsuitable for word size of 32
bits and higher. The bit requirement of the PLA can be reduced by
‘arranging the same magnitude of errors in one group i.e. by
differential grouping arrangement [2]. This method is fastér than

the software method.

An alternate approach is to use a ROM look-up table [3] to
convert the mantissa which is particularly promising due to the
recent advancement in packing density and reduced access time. Here
we have considered our binary data in IEEE floating point format
and used a ROM look-up table for data conversion. The sign bit and
the'exponent portion of the FLP number does not change during the"
conversion process’ but. the mantissa is converted according to the
ROM look-up table.

While converting FLP numbers into LNS numbers the mantissa of the
'FLP number is divided into two portions, the first portion consists
of the most significant bits (msb) and the other portion consists
of the remaining least éignificant bits (1lsb). The msb bortion-
decides the base vélue of the logarithm number and the remaining
portion decides the correction factor that is to be added with the
base value of the logarithm number to get the corrected logarithm

value of the mantissa of the floating-point number.

The output of the ROM can be divided into two portions or two
separate ROMs of which the first ROM is for the base value and the

second ROM for the correction value can be used.

To calculate the correction factor the second portion of the ROM
output is multiplied with the 1sb portion of the mantissa
(multiplier) of the FLP number. The length of the multiplication
process can be_reduced by increasing the ROM address bits which
means the reduction of the multiplier bits.

14



A reduction in multiplication process increases the accuracy but
requires a larger ROM size. If the multiplier bits are zerc then
the logarithmic conversion is exact and the first portion of the
ROM output exactly represents the LNS value. In this way a large
number of points are available ( e.g. 1024 points if address bits
are 10 ) which gives the exact logarithmic conversion value. As the
ROM output value is limited so there will be always some truncation

error even the multiplier value is zero.

Another method uses high capacity ROM only and converts FLP to LNS
and vice—versa'without any correction factor. This method although
much faster but less accurate than other method and requires high
capacity ROM. This will be investigated at a latter stage (in
chapter 3). ' '

2.3 IEEE std. 754 - 1985 and Logarithmic Number System

Although the concept and use of LNS is common, there is no
standard that clearly specifies the LNS number format as the IEEE
std. 754-1985 does for FLP number system. '

A real value x <can be represented in a sign/logarithm
representation X by

x = Y% . (-1)°

of which X is composed of two parts: X, that has F bits after the
radix point which 1is n-1 bit representation of the base r
logarithm of the absolute value of X and s is the sign bit, 0 when
X 1s positive and 1 when x is negative. Numbers when represented

in this fashion can never represent zero, denormalized wvalues,
infinities or NaN.

IEEE std. 754 completeiy defines the location of the sign bit,

15



width of the exponent and mantissa portien, method of
representation of the exponent but for LNS there is disagreement

whether sign should be on the left or right of the word,

disagreement on the representation of X; whether it should be ..

represented in one’s complement, two’'s complement or offset

binary, disagreement about the representation of zero.

In this article some proposed LNS number formats [9] and its
denormalized representation shall be discussed so that very small

numbers can be represented.

Different formats of LNS numbers as proposed in [9] have four
layers. In all layers the sign bit s is placed‘on the right most
bit, utilize 2’'s complement binary to encode the signed fixed
point value for X, and use base r=2. The width of the exponent and
mantissa are kept identical to the IEEE suggestidns. IEEE std. 754
does not provide any layer but proposal for various layers exists
in LNS system to meet individual udemaﬁd or ap?lication

requirement.

Among the four layers, layer 0 does not provide the representation
for zero, denormalized values, infinities or NaNs. Underflow and
zero in layer 0 are represented with the smallest X; value. if a4;
is the smallést normalized X, permitted in layer 1 then in the
single precision system 4, = -128.0 and so the worst possible
error is 2718 Overflow is treated by the largest
a, = 127.9999998808 ( 127 + 1 - 273 ).

Layer 1 treats the minimum X, value { -128.0 for single precision
system ) as an exact representation for zero so the X, value that
represents the minimum positive value is &; = 4, + 2°F. For a single
precision system a, = -127.9999998808 and the worst possible error
due to underflow is 271 Layer 1 does not represent denormalized

values, infinities or NaN. Overflow is treated as in layer 0.
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Denormalized values in LNS system is represented in layer 2. The
smallest possible X, is still used to represent 0 which is 27,
The smallest normalized value is represented by X, = a, which is
-127.0 in a single precision system. Denormalized values are
represented by aﬁy values between 0 ( 2% and 2% so
X, = -127.9999992847 1is a denormalized value. Layer 2 does not
represents infinities and NaNs and so overflow is treated as in

layer 0.

Layer 3 is enhanced by the representation of NaNs and infinities.
The smallest normalized number in layer 3 is twice the size of the
smallest normalized value in layer 2 so 4; = 4; + 1.

In IEEE 754 the 2?* denormalized points are between 0 and 27%.
This concept 1is also applied while evaluating LNS denormalized
numbers but the numbers are represented between 0 and 27?7 and
hence the lowest possible value that can be represented in FLP and
LNS denormalized form are nearly same ( 1.4013E-45 vs.

4 .8565E-46) .

The process of evaluating the denormalized value begins with the
evaluation of X; which equals to X, + 1. If it is found that
-127.0 < X, < -128.0 then the value of the denormalized number is

evaluated by the expression 2% - 27*7-°. The subtrahend is constant

{ 2779 put Xy = £(X;) = X, + 1. So this maps each denormalized
representation into a unique encoding in the range of the bit’
pattern reserved for the denormalized values, known as the
forkbidden Zone A, s X, < A,. Therefore a value of
X, = -127.9999992847 is treated as a denormalized value and its
magnitude is evaluated by 2127999992847 «+ .00 _ 5- 127.0 = 2 91695E-45.
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CHAPTER 3

CONVERSION USING LINEAR CORRECTION FACTOR

3.1 Techniques for transferring FLP to LNS format and vice-versa

As the arithmetic operands are first stored in the FLP format, our
main concern is to transfer FLP numbers into LNS format before
doing the arithmetic operations and once the arithmetic operations
are completed the data from LNS format is to be converted back to
the FLP format. Both the operations should be madé fast and
accurate enough. To demonstrate what happens during conversion we
have selected two ROMs ea‘ch having a capacity of 524288 bits
[21%(23+9) =16 Kwords] with 14 address lines and the output word
length is 32 bits long. The output bits are divided into two
portions, the first 14 bits give the base value ( logarithm or
anti-logarithm ) and the remaining 9 bits giVes us the value of the
correction factor (algm in table 3-1 and am in table 3-2). The
correction factor takes the role of multiplicand during the
multiplication process. The first 14 bits from 23 bits mantissa is
selected to generate the base logarithm number and the remaining 9
bits are used as the multiplier to generate the total value of
correction factor {(known as add rfactor’ in simulation model program
m_lgm.c and lgm_m.c). Correction factor is the product of
multiplier and multiplicand that is to be added with the base

value. While transferring the LNS number to FLP number the same ..

process 1s adopted but with the second ROM. Correction process is

2a3dd_factor is the total value of additions that is to be
made with the base values. This is also a variable mentioned in
simulation program. Variables or expressions used in simulation
programs whenever mentioned in the text, is mentioned in italics
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simple because always positive correction factors are added to the

pase number in both the cases.
'3.2 32 bits transformation analysis

Tables 3-1 and 3-2 togethér‘with their assoclated calculations in
sheets 3-1 and 3-2 respectively show the transformation of FLP
number to LNS number and from LNS number to FLP number when the
numbers are represented in 32 bits format. Table 3-1 and sheet 3-1
give the details for FLP to LNS conversion. Various segments have
been selected in column 1 so that the value of m = 0.1977539063 is
the initial value of segment no. 3240. Total number of segments are
determined by the length of the bits covered in the ROM. So when
ROM bit length is selected as 14 as in this case, total no. of
segments become (2™) 16384 ranging from 0 to 16383. Similarly
m = 0.9998168946 is the initial value of segment no. 16381. Column

2 is the binary representation of column 1 showing the address .

generated which corresponds to the first 14 bits of the mantissa of

the flbatihg point number. In the third column lg{(m) represents the

base 2 logarithm of the first columns and their corresponding

binary representation. The FLP number is stored in IEEE format so
the hidden 1 is added with m: The values represented in algm
(column 4) represents the correction factor for adding each bit to
ﬁhe base number. The number algm is very small so only ‘last
significant 12 out of 32 bit configuration needs to be saved. All
of its other preceding bits are zero and need not to be saved.

Column 5 gives us the binary representation of six random numbers

generated. These numbers are stored in-a 23 bit mantissa as per

IEEE single precision number system. Only the least significant 12
bits are menticned. The complete bit pattern can be found by
cascading the corresponding bit pattern in column 2. For example
the first element of column 6 is 010-111111111 so the complete bit
pattérn generated is 00000000000010111111111. Thié also implies
that the mantissa of the random number we are investigaﬁing is

1.182896259E-04 as can be seen in sheet 3-1. Column 6 gives us the
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bit pattern that we have produced after converting the wvalue of
coluhn 5 by using the ROM table data as available in column 3 and
4. Here we also like toc mention that 1lg{m) means that log base 2
of m 1is calculéted through a computer with maximum possible
precision (m is enclosed in parenthesis) whereas lgm is calculated
through ROM table ( m is not enclosed in parenthesis). Column 7
gives us the difference between the bit pattern of lg(m) and lgm.
‘This is more explained in sheet 3-1. The average loss of bits is
less than 1 because it is seen that in many cases there is no error

i.e. no bit has been dropped.

For 32 bits LNS to FLP conversion the reverse process is adopted as
shown in table 3-2 and sheet 3-3. The numbers are assumed existing
in ILNS format and are given in column 1 under lgm. Column 2
represents the address preduced against each value of 1gm and their
corresponding representation in binary. Only first 14 bits are
mentioned and all the other following bits are zerc. In the third
column antilg(lgm) represents the base 2 antilogarithm value of
the column 1. The value of am indicates the correction factor each
bit that is to be added with the value of antilg(lgm) under column
3 for each bit increment of the address generated for the wvalue
under investigation. For example the value under investigation is
0.0001449584962 which has produced the address of
000000000Q000010011000000 so we have to multiply 0.8263832031E-07 by
(2° + 27) and have to add the product with the base value of
0.00008461627. As we can see that the multiplicand bit 1is
represented by a bit configuration of relatively smaller size
( only by 9 bits) still the conversion accuracy 1is relativély high
{(this excludes the truncation error). Here we also see that the
average loss of bits is less than one because it is seen that such

case exlists where no bits has been dropped.

A block diagram showing the details of conversion and anti-

conversion is given in fig. 3-1.

20



m to log,m conversion data table (RAL 14

Table 3-1

ML 23)

m address of m lg{m) = log,(1.0 + m)/log.{2.0)
first 14 bits
0.0 Q0000000000C0C0O|0.0 O----emmr e == - 0
0.6103515625E-05 001|8.805242111E-05 000000000000010111C0C10
1.2207031250E-04 010(1.760994828E-04 00000000000010111000101
1.8310546880E-04 011(2.641411570E-04 00000000000100010100111
2.4414062510E-04({00000000000100|3.521774731E-04 Q0000000000101110001010
|
0.1977539063 00110010101000;0.26033152 01000010101001010001011
0.1978149415 001{0.26040503 01000010101010011110011
0.1978759766 010|0.26047854 01000010101011101011100
0.1979370118 011|0.26055205 01000010101100111000101
0.1979980469 00110010101100|0.26062556 01000010101110000101101
I
0.400390625 01100110100000(0.48582931 01111100010111110100111
0.4004516602 001|0.4858921863 01111100011000110110111
0.4005126953 01C|0.4859550611 01111100011001111000110C
0.4005737305 01110.48601793 01111100011010111010101
0.400634765%6 01100110100100;0.48608080 01111100011011111100101
|
0.6005859375 10011001110000|0.67860014 10101101101110001011110
0.6006469727 001(0.67865515 10101101101111000101100
0.6007080078 010(0.67871016 10101101101111111111001
0.600765043 011|0.67876517 10101101110000111000110
0.6008300781 10011001110100|0.67882018 10101101110001110010100
|
0.80078125 11001101000000|0.84862294 11011001001111110101101
0.8008422852 001(0.84867184 110110010100001L01000111
0.80089033203 010{0.84872073 110110010100010111000C01
0.B009643555 011]0.84876963 110110010100100011110C11
0.80102533906 11001101000100}0.84881852 110110010100110000101C1
|
0.9997558594 11111111111100|0.99982388 11111111111101000111010
0.999816894¢ 11111111111101]0.9998679113 11111111111101110101011
0.9958779297 11111111111110{0.99991194 11111111111110100011101
0.9999389649 111111111131111(0.9999559718 11111111111111010001110
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Table 3-1 (cont.)

algm*E-07

1s 12 of 32

" address
generated

1lgm Error

e

.71977385

.719663174
.719563949
.713459299

001011100010
001011100010
c01c11100010
001011100010

010-111111111

00000000000100010100110 |nii

I

e e

.435742188
.435742188
.435742188
.435742188

001001101000
001001101000
001001101000

001001101000V

£01-100000000

01000010101011000101000|nil

[y

.228125

.227929688
.227929688
.227929688

001000001111
001000001111
¢01000001111
001000001111

001-1100C0000

01111100011001101000010 |nil

FHRP B

.074414G63
.074414063
.074414063
.074414063

000111001101
00Cc11100110C1
000111001101
000111001101

000-000001111

10101101101110001101011|1 bit

[« =N ele]

.955078125
.954882812
.955078125
.5954882812

000110011010
000110011010
000110011010
000110011010

010-000001100

11011001010001011101011 |1 bit

oo

.859986328
.859935546
.859596093

000101110001
000101110001
000101110001

101-000100000

11111111111101111000010|1 bit
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Table 3-2

log,m to m cenversion data table (RAL 14 ML 23)

lgm address of antilg(lgm) = 2% - 1.0
1gm :
0.0 00000C00C0Q00CO|0.0 O---m-mrmmmmm e - 0
0.00006103515625 001|0.00004230724 (C0000Q0C00C0000101100C010
10.0001220703125 010]|0.00008461627 (000000Q00000C1011000101L
0.0001831054688 011)|0.0001265270% 0Q0000000000010000101000
0.0002441406251 (0000Q000000100|0.0001692387 00000000000010110001011
0.1977538%063 0011001010100010.146311368 00100101100110111111101
0.1978149415 00110.1463859891 00100101100111110010100
0.1878759766 010|0.147008416 00100101101000100101011
0.1979370118 011(0.147056942 00100101101001011000011
0.1979980469 0011001010C1100|C.147105471 Q0100101101010001011010
|
0.40035%0625 01100110100000(0.315865230 01010001111000101011000
0.4004516602 00110.3138521070 01010001111001100101100
0.4005126953 010)0.31939763912 01010001111010100000000
0.4005737305 011{0.320032757 01010001111011011C1C101
0.4006347656 01100110100100(0.320088604 010:10001111100010101001
|
0.6005859375 10011001110000|0.51633228¢6 10000100001011100101101
0.6006469727 001(0.516396438 100001000011001010001112
0.6007080078 010(0.5164605389 100001C0001101101100001
0.600769043 011]|10.516524750 1000010000111010€1121011
0.6008300781 10011001110100|0.51658891 100001000011111100101¢C1
|
0.80078125 1100110100000010.742044225 101111011111011010011190
0.8008422852 001{0.742117926 101111011111101101110Q00
0.8009033203 010i0.74219630 10111110000000000100010
0.8009643555 011{0.742265338 10111110000001010001100
0.801025390¢6 11001101000100;0.742339048 10111110000010011110111
|
0.55975585% 11113111111100|0.99%661577 11111111111010011101001
0.5998168594 11111111111101|0.959746178 11111111111011110101110Q
0.589987792% 111111111131110|0.999830781 11111111111101001110100
0.5999938%964 11111111111111(0.959915383% 11111111111110100111010
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Table 3-2 {cont.)

address

AmM*E~07 l1s 12 of 32 antilglgm error
generated :
0.8263132813 000101100C10
0.8263482422 000101100C10 .
0.8263832031 £000101100010/010-011000000|00000000000001101001001|1 bit
0.8264181641 000101100010
| | | |
0.,94771484 000110010111|000-100000001/00100101100111011001¢C01 |nil
0.94775391 00011C¢010111
0.94777344 000110010111
(0.94783203 00011¢010111
_ |
1.090625 000111010200
1.09066406 000111010100
1.09072265 000111010100|010-000010100!0101000111101010001001C nil
1.09076172 000111010100
l | ;
1.25296875 001000011010
1.25197265 0010000110011001-100100000(1000011000110100111011¢j1 bit
1.25412109 0£10¢001101¢0C
1.253125 0Cl10¢001101¢0C
| | ]
1.43947265 001001101010 |000-001C00001|10000100001101001110110| nil
1.43953125 001001101010
1.43960937 001001101010
1.43964844 001001101010
| | |
1.65236328 001011000101 |100-1100000C00 11111111111011¢11111001|1 bit
1.65240234 001011000101 :
1.6525 ' 0Cl0110C0101
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Sheet 3-1

m = 1.82986259E-04 .
0000 Q000 Q000 1011 1111 111

1) value investigating
address generated

| T I |

delta lgm 0000 0000 Q000 00QO0 0000 0010 1110 0O01O0
multiplier 1 11131 11113
add_factor ‘ = 0000 0000 0000 0101 1100 Q01
base lgm = D000 0000 00CQ 10131 1060 1C1

1gm = 0000 0000 00G1 0001 0100 110

lg(m} = 2.63969204BE-04 0000 0Q00 0001 Q001 0100 110
(no error, lgm and lg(m) both have same bit pattern}

m = 0.1978454591

2) value investigating ]
0011 0010 1010 0110 0000 Q0O -

address generated

delta lgm = 0000 0000 0000 0000 0000 0010 0110 1000

1 0Q00 0000

add_factor = 0000 0Q00 Q00O 0010 0110 1000 0000 000O0
base 1lgm = 0100 0010 1010 1001 1110 011
lgm = 0100 0010 1010 1100 0100 111

lg(m) = 0.26044179 0100 0010 1010 1100 0100 111 {(no error)

m = 0.400497436
0110 0110 1000 .,0111 000QQ QOQOQ

3) value investigating
address generated

It

delta 1lgm = 000¢ 0000 0000 0000 0000 0010 0000 1111

: 1 1000 0000

add_factor = 0000 0000 0000 0011 0001 0110 1000 0000
base lgm = 0111 1300 0110 0011 Q110 111
lgm = 0111 1100 0110 0110 1000 010

lg(m) = 0.48592934 = 0111 1100 0110 0110 1000 010 (no error)

4) wvalue investigating m = 0.€6005877
address generated = 1001 1001 1100 0000 0001 111
delta lgm 000Q 0000 0000 0O00C 0000 0CO1 1100 1101
¢ 0000 1111
0000 0000 0000 Q000 0001 1011 0000 0011
1010 1101 1011 1000 1011 110
1010 1101 1011 1000 1101 9011
1010 1101 1011 1000 1101 100 (error on last bit)

add factor
base lgm
lgm
lgim) = 0.67860175

I

m = 0.8009047508
1100 1101 0000 1000 0001 100
OOOOIOOOO 0000 0000 0000 0001 1001 1010
0 Q000 1100
0000 0000 0000 0000 Q001 0011 0011 1000
1101 1001 0100 0101 1100 001
1101 1001 0100 Q101 1101 010
1101 1001 0100 0101 1101 011 {(error on last bit)

5) wvalue investigating
address generated
delta lgm

[ |

add_factor
base lgm
1gm
lg(m) = 0.84B7218B796

T |

The last calculation is dropped to avoid mere repetition.
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1}

2)

3)

4)

&)

Sheet 3-2

value investigaking
address generated
delta m

add factor
base antilglgm
antilglgm
antilg(lgm} = 1.0048262E-04
value investigating
address generated
delta m

add_factor
base antilglgm
antilglgm
antilg(lgm) = 0.14693569
value investigating
address generated
delta m

add_factor
base antilglgm

antilglgm
antilg{lgm)} = 0.3195750206
value investigating
address generated

delta m

add factor
base antilglgm

antilglgm
antilg(lgm} = 0.5164325245
value investigating
address generated

delta m

add_factor
base antilglgm
antilglgm ‘
antilg{lgm} = 0.7420535816
value investigating
address generated
delta m

add_factor
base antilglgm
antilglgm

antilg(lgm} = 0.9997250276

= lgm = 0.0001445584562

= Q000 0000 0000 1001 1000 000

= €000 0000 0000 CQ00 Q000 0001 €110 0010
¢ 1160 Q0G0

= 0000 Q000 0000 0001 QQO00 1001 1000 0QCO

= 0000 _0G0Q 0000 01G1 1000 101

= Q000 0000 0000 0110 1001 001

= 0000 0C00 0000 €110 1001 010 {(on last bit)

= 1lgm = 0.1977845

= 0011 0010 1010 0010 0000 001

= 0000 0000 Q000 0Q00 0000 0001 10C1 0111
1 0000 0001

= 0000 0000 QCQCO00 00C1 1001 1000 10C1 0111

= 0010 0101 1001 1011 1111 101

= 0010 0101 1001 11¢1 1001 001

= 0010 0101 1001 1101 1001 001 {(no error)

= lgm = 0.400515

= 0110 0110 1000 1000 0010 100

= 0000 0000 0COO0 0000 0000 0001 1101 010Q
0 0001 01G0O

= 0000 0000 0000 0000 0010 0100 1001 Q0CO

= 01¢1 0001 1110 101¢ 0000 Q00

= 01¢1 0001 1110 1019 0010 010

= 0101 0001 1110 1010 0010 €10 (no error}

= lgm = 0.6006813049

= 1001 1001 1100 01190 01Q0 €00

= 0000 0000 0000 Q00O 0000 0010 0001 1001

) 1 0010 QQGQO

= 0000 0000 Q000 0O01¢ 0101 1100 G010 QCGO

= 1000 0100 0011 Q019 1000 111

= 1000 0100 0011 01QQ 1110 101

= 1000 0100 0011 0100 1110 110 {(on last bit)

= 1lgm = 0.8007889986

= 1100 1101 0000 Q0CO 1000 CO1

= 0000 QOQC 00QO0 0000 0000 CO10 0110 1¢10

) 0 0100 0001

= Q000 CO00C¢ 0000 Q000 1001 11C€0 21110 1010

= 1011 1101 1111 Q1190 1001 11¢

= 1011 1101 1111 Q111 Q011 10Q¢ .

= 1011 1101 1111 Q111 0011 100 ( no error)

= 1lgm = 0.99%8016357

= 1111 1111 1111 9011 00CO CQC

= Q000 0000 00D0 Q000 00QO 0010 1100 0000
1 1000 0000

= Q000 0000 0000 0100 0010 ©111 1000 00O0O0

= 1111 1111 111¢ 1001 11¢1 0Q1

= 1111 1111 111¢ 1101 1111 100

= 1111 1111 1110 1101 1111
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3.3 Simulation model program

We have also written a software routine as given in the listing of
program m_lgm.c ( the listing of all programs those are menticned
here are given in the Appendix ) 'to process the FLP to LNS
conversion of numbers under simulation environment. Numbers can be
represented by any mantissa bit length ( defined as ML in the
program ) but we have done exhaustive checking up to 64 bits
length. To find the add factor we have multiplied the individual
bits ( ML - RAL no of bits ) by the suitable multiplying factor
( mul factor ) and finally accumulating the result as shown in the

function lin int values() of m_lgm.c.

The program runs through external number of loops as decided by the
ROM size .as may be stated under the definition RAL. On éach
éxternal loop the prégram calculates the higher log base 2 value by
new.lgm and the lower log base 2 wvalue by old.lgm. Next the
variable difference is calculated which must be added for each bit
of increment. The old m is incremented by one bit value each time
in the function lin int values() to cover all possible number
configuration from 0.0 to 1.0. To calculate the intermediate log
base 2 values each bit is treated separatrely to simulate the
hardware multiplication effect instead of adding the whole value of

correction at one time.

To calculate the add factor it is necessary to multiply the second
portion of the binary representation of old m ( first portion is
covered by RAL ) with algm so the second portion is treated as the

integer and as the multiplier in the multiplication process.

Next error 1is calculated and max con error (MCE)is replaced by
error if it is found higher than the max con_error. The whole

process is repeated until the most exterior loop is exhausted.

A typical value of 2.50E-13 was achieved for 64 bits FLP to LNS
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conversion with 1 Mbytes of ROM ( RAL 20 ). The other results are -
also stimulating e.g. when RAL and ML values were set for 12 and 23.
{ for 32 bit configuration ) respectiveiy, the MCE was reported
1.07E-08 which occurred at input value of m = 0.000122070312. Error

pattern can be seen in graph 3-1.

We have also studied the effect of ROM output bits length ( choice
2 of m_lgm.c } for FLP to LNS conversion. When we set RAL 12, ML 23
and DL 20, MCE was reported to 1.09471E-08 but when DL was set tO
30 or higher the MCE reduces to its minimum value as expected.

Table 3-3 gives us the value of other MCEs for various DL settings.

Table 3-3 : Effect of multiplicand bit length on MCE
(m-lgm conversion, RAL 12 ML 23)°

DL ' MCER m ROM size (in Kbits)
10 4.53295E-07  0.00244140625 132
20 1.09471E-08 0.0008554458681 172
30 1.07461E-08 0.0001220703125 212
40 1.07461E-08 0.0001220703125 252
50. 1.07461E-08 0.0001220703125 292

The effect of correction factor bit length can be visualized when
compared the simulation results with our hardware model. If we set
RAL 14 and ML 23 (in m _lgm.c} we get the maximum conversion
error (MCE) = 6.71766 * 107*° at m = 3.0517578 * 10° but if we
convert the above value of m by table 3-1 where the correction
factor 1is represented by only 9 bits we get the MCE
{ 4.402687511-4.398822784 )*107° = 3.864727 * 10°®

The LNS to FLP conversion is also done by a software routine

lgm m.c which is similar to m_lgm.c and as listed in the Appendix.
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m to Igm and igm to m conversion error graph when
linear correction factor is applied (RAL 12 ML 23)

maximum conversion error

1.5E-08
-~ Series 1 + Series 2

1.0E-08

/

5.0E-0¢

0.0E+90

-5.0E-02

-1.0E-08 : ' : : : ' : '
0 500 1000 1500 2000 2500 3000 3500 4000 4500
segment no.

series 1 for m to igm conversion
serles 2 for lgm to m conversion

graph 3-1 : Both way conversion error pattern (32 bit)
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A typical value of MCE = _1.09428E-13 was achieved for 64 bits
" LNS to FLP conversion with 1 Mbytes of ROM ( RAL 20 ). The other
results are also stimulating e.g. when RAL and ML values are set
for 12 and 23 respectively, the absolute max_con error was reported
-7.16E-09 occurred at input value of m = 0.9998779296875 ( error
pattern in graph 3-1 ). Fast locating the max con _error is achieved
by executing the choice 7 of 1gm_m.c which traces down the numbers

starting from 1.0 instead of 0.0.

We have also studied the effect of ROM ocutput bits length ( choice
2 or 8 of 1lgm m.c ) for LNS to FLP conversion as shown in
table 3-4. When we set RAL 12, ML 23 and DL 10 MCE was reported
to 3.44519E-07 but when DL was set to 30 or higher the MCE reduces
to its minimum value as expected. Here we also like to mention that
as the max con_error for LNS to FLP conversion is determined by the
expression error = antilg;old;lgm - (old m + add_factor) and as it
is found to be negative, a lower value of add factor can give us a
better value of max_con error, It may be noted here that a slightly
better value has been achieved for DL 20. Table 3-4 gives us the

value of other max con errors for various DL settings.

Table 3-4 : Effect of multiplicand bit length on MCE
( 1lgm-m conversion, RAL 12 ML 23 )

RAL = 12 ML = 23

DL MCE lam ROM size (in Kbits)
i0 » 3.44593E-07 1.0 132

20 -7.15789E-09 0.9998779296875 172

30 ' ~7.15857E-09 0.9998779296875 212

40 -7.15857E-09 0.9998779296875 252

50 -7.15857E-03 0.9998779256875 292
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3.4 64 bits transformation analysis

The scope of transformation of fleoating point numbers into 64 bits

logarithm numbers is the transformation of 52 bits mantissa of a
floaﬁing point number into a logarithm number having a 52 bits
mantigsa. We have done 64 bits transformation in a way similar to

32 bits transformation as shown in table 3-5.

As the magnitude of the multiplicand is very small and we have
taken the least significant 40 bits of its 90 bits configufation,
a final 50 bits SHR operation has become necessary to adjust the
result. The details of multiplication ( Booth recorded multiplier
gscheme ) result for row no 2 and 6 are also attached in sheet 3-3
and sheet 3-4.

It has been found that when 6 random numbers are generated and

their base two logarithm numbers are calculated the typical error

lies between 2.65E-10 and 9.10E-13. While simulating.the situation
with m lgm.¢ {( RAL 14 . ML 40 DL 38 ) the MCE was reported to be
equals to 6.7176 * 10°*° at m = 3.0517578125 * 10 which is higher
than 2.65 * 107 as may be expected. When we converted the above
mentioned value of m into lgm by table 3-5 we got an error equals
to (4.40268711 - 4.4026210755) * 10°° = 6.6456 * 107'® which is well
compatible with the simulation result. . It should be also
mentioned here that the typical error .for 32 bits conversion
process ( table 3-1 and table 3-2 ) can be reasonably approximated
to ((2723/2 + 272/2 )/2) 4.47 * 10°. '
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Table 3-5
m to log;m conversion data table

(RAL = 14 ML = 52)

B address l4{u) A : .
¢-50 bits->|¢- L.8. 40 of 90 bits -
¢.0 0000000000000049.0 3,2031284198-1610¢- >0
¢.00006103515625 0119.00008805242111 3. 20313 3445816

0.00012207031250
0.0001831054688¢
0.000244146€2510

010
011
100

0.0001760534828¢
0.00026414: 15706
0.0003521774731

3.2019374498-16
3, 2027425228-16

0¢-

0101110001616¢01100660011100100000121201

0.1977539063
0.1578149413

109110010101600
0110, 2604050336

=
—

0.2603315186

2.674460128-16 10¢-

-0 |0100116100010202000300001111060101010000

6.1978739747 01010, 260478543

0.1979370119 011:0.2603520525

0.1975980471 100:0,2606255563

0.400390825 011001101900000. 4858293087

0.4004516602 00110, 4858921863

0.4005:26334 01010. 4853550612

0.4005737306 01110.4860179334  (2.287T1T44488-1610¢-  ->0{0100000111101100911000000100010101601101
0.4006347658 10010, 4860808028

J

0.6005839375  |200110011100000.6786001391

0.6006469727 001:0,6786551523

0.6007080078 010]0.8787101635  (2.00121948-16 0¢-  ->0;00111001101011106110010010010001010£0101
0.500769043 011|0.6787651726

0.6008300781 100{0.6788201795

0.80078125 1100110100000 |0, 8486229404

0.8008422857 001)0.843671837% | 1.778822488-16 (0¢-  ->0|0011001101000101012002001010100111010810
0.8003033204 016:0.8437207338

0.8009643336 01110.8487696279

0.8010253908 10070.8488183203

0.3397558534  [11111111118100(0. 995823879 1.601885724E-1610¢-  -»070010111009101011110101001001010011600020
0.9398168946 107 10. 9958679113

0.9998779297 11010.5955119422

0.9999:89649 111{0.9999539718

L0

1.0
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Table 3-5 (cont. )

value of @
under study

gddress produced

1gia}

0.0001226067543

UUUUOUUUUBbGIOOGGGGOIUG10000000000GGGGGGGGUUGOGOOOGG

0.60001768733075

00000000000010111001011101110001

1

0.1978165863

3011001010100100001000000010000889000900000000095000

0.2604073399

|

01000020201010160060111000110990

04005042474

011061161000111600000000006000000020000609000000000¢

0.4680493676

B11110001 101101101 1101100111019

I

0.8007231666

1001100111061061600066000000000030000006100666000000

0.676723817

10101108210000001101100110111110

0.800873279

110111610000016160000100000090096¢006000000000000000

0.843696668

11011001010002000610111102010001

0.9997560382

1111111111110600000000110000606600006000000000000000

0.993§24008

111111111111010001 1161110102000
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Table 3-5 {cont.)

lqu { from ROM

Brrar

The first
discrepancy noted

00010010001111910100 10060000996001011106102£201110000111110003 1118140140 1. 57811

on 32nd bit

J

10066C1001000200011010190091010101012909911100011900000010110100110011001 9. 798-11

on 33rd hit

0001010:010111110001 (0111116012011011011101100111011001 1100011110110 {2, 658-10

on 3nd hit

00111011101910019011 |1010110111000000110110011011110101699210000000000000 2, 278-10

o1 Jist bit

01001000101111110101 110110010100010000101113010160010100100010200001 |1, 528-10

on 32nd hit

00011201100110101011 |111111111111915091110111010£100009911100200110101011 |$,09E-13

on 40tk hit

35




Sheet 3-3

Example for row 2

address = 00110010101001000OiObOO00010000000000000000OOOOOOOOO

0.1978168563
0.2604073399
010000101010101000001110001lO00010000010010001000110

value of m

l

lg{m)

It

multiplicand = algm = [0100110100010101000100001111000101¢100
multiplier = |00001000008010000000000000000000000000
| .

{0000000000000000C0CE0C0CCE000000000000|0000000000000000000000000000000000000C
|11111111111111611001611101010111011110[0002110101100 . 2'g complement of
|6ee0CO00Ce0001001101000101010001000011]110001010100 maultiplicand
}11111101100101110101011101111000011101{C1100
|00000100110100010101000100001111000101]6100

|GBGGUU100llU10110001000100110000000100|10000010101000GGGGGDDDDDDDDDOOOOOOOOOO

50 SHA| |oooooooqnnn000000010011010110001doo100 final shifted product
base -lgm = 0100001010101001111001110111111100000110100110011C01 { value at the beginning of the segment }
add_factor = 00000000000000000010611010110004000100 { total correction ro be added )

lgm = 0100001010101010000011100011000000€10110100110012001

01000Ol010101010000011100011000010000010010001000110
0100001010101010000011100011000000010110100110011001

I

l1g{m)
lgm

O=- -»01101011101010101101

2%°-34 + 27-35 4+ 2%-37 + 27-39 '+ 2%-40 + 27-41 +
2%-43 + 2°-45 4+ 27-47 + 27-49 + 27-50 + 27-52

Absolute error

9.7222781E-11
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Sheet 3-4

‘Example for row 6

address = 11111111111100000000001100000000000000OOOOOOODOOOOOO

0.9997560382

0.999824008
11111111111101000111011101011000000111011001101C1011

value of m
1g(m)

multiplicand =« algm = |00101110601010111101€1001061610011000¢C
multiplier = {0000000011000000000000000C0C0CCC0O0000D
{

1
| 06000000000000000000000000000000000000{ 6000000000000000060C0CCCCO000CCTO0N000
111111111111101000111010100001010110110]101101000¢ 2's complement of
|60000000001011100010101111010100100101|00110000 mulitiplicand

|GGGGO000001000101010000011011111011011{11100100000000000000000000000000000000
50 SHR| §00000000000000000000001000101010000011 final shifted produckt

111:1111111114100011101010010111000010000100116101011 { value atr the beginning of the segment )
0Geod999900000000000001000101010000011 { total correction tG be added )

base lgm
add_tfactor

lgm = 1111111111110100011101110101100000011100100110101911

11111111111101000111011101011000000111011G6C110101011
1111111111110100011101110101100000011100100110101011

1g (m)
lgm

O<- . ->01000000000000

2 -40
9.054947018E-13

Absolute error
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To bring down the conversion error to the level of the 64 bit FLP

truncation error ( 2.22E-16) we have selected a ROM with 25

|address |multiplier base value |multiplicand]
<- 25 ->|<- 27 -> ROM - <- 52 ->|<- 27 -5
2%5¢79
bits

Fig 3-2 : A typical ROM configuration for 52 bit one end
conversion ( RAL 25 ML 52 }

address lines and having 79 output bits as shown in fig. 3-2. By
using the choice 1 of m _lgm.c and choice 7 of lgm_m.c we can find
out a configuration such that the conversion error shall not exceed
that of the truncation error of 64 bit floating point numbers.
Graphs 3-2 and 3-3 shows the error pattern for 64 bit FLP - LNS and

LNS - FLP conversion.

The ROM capacity needed for each ROM/{block of ROM) is 2528 Mbits.
Two such capacity of ROM are necessary for FLP to LNS conversion
and a third one is necessary for LNS to FLP conversion. So the

total capacity of ROM necessary = (2528 * 3}/8 = 948 Mbytes.

We have also studied the effect of ROM cutput bits length for 64
bits FLP to LNS and vice versa conversion. Table 3-6 and table 3-7
show us the effect of ROM output bit lengths on maximum conversion
error produced. Table 3-6 is for FLP to LNS ( choice 1 of m_lgm.c )

and table 3-7 for LNS to FLP ( choice 7 of lgm m.c } conversion.
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m to Igm conversion error graph

RAL 25 ML 52

mMaximum conversion error
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lgm to m conversion error graph
RAL 25 ML 52

maximum conversion error
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Table 3-6 : Effect of multiplicand bit length on MCE
(m-lgm conversion, RAL 25 ML 52)

RAL = 25 ML?® = 52
DL CE m ROM size (Mbits)
10 3.84038E-11 0.000000029802322388 1984
20 5.68176E-14 0.000010192394256529 2304
30° 1.89122E-16 0.000003532841219567 2624
40 1.60198E-16 0.000000169312773132 2944
50 1.60171E-16 0.000000014901161194 3262

Table 3-7 : Effect of multiplicand bit length on MCE
(lLgm-m conversion, RAL 25 ML 52)

RAL = 25 ML = 52

DL MCE lam ROM size (Mbits}
10 4.55594E-11 1.0 1984
20 2.79499E-14 0.999999999956344254 2304
30 -2.68882E-16 0.999999985564500093 2654
40 7 -2.68882E-16 0.999999985564500093 2944
50 -2.68882E-16 0

.999999985564500093 3264

> while preparing tables 3-6 and 3-7, ML was set to 40
instead of 52. This saves huge computing time with little or no
loss of accuracy. If ML is decreased while keeping RAL constant,
the value of correction factor increases but multiplier decreases
thus keeping the product {multiplier * multiplicand) constant.

€
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While executing the simulation program for 64 bits analysis we took
the. help of data file for temporarily storage of data so that
searches throughout the whole segment can be done which requires

considerable long perieod of time.

3.5 Reduction of ROM size

We alsc like to mention here the several possibilities which can

be used to reduce the amcunt of ROM.

Firstly some registers those contain fixed value of differences and
these can be used instead of various difference values for each
segment. If we observe table 3-5 we can conclude that the value of
difference varies 1little with segment number and hence an
intermediate or other suitable value of difference is loaded into
a register. It can reduce the ROM requirement by 33% with little

loss of accuracy.

For example the range 0.0-1.0 can be divided into various numbers
(numbers. those are powers of 2). Several registers can be
selected accordingly e.g. if we divide 0.0 - 1.0 in four ranges
namely 0.0-0.125, 0.125-0.5, 0.5-0.75 and 0.75-1.0, we have to
select four registers those will contain a suitable value of
difference for that segment. Selection can be done through a 2 to

4 decoder using the first two bits of the address generated.

This mode of selection not only decreases a significant amount of
ROM size but also decreases the overall conversion time. If the
difference value is embedded in the ROM, multiplication can begin
only after accessing the ROM but the use of registers can allow
the beginning of the multiplication process in parallel to the ROM

access as the value of the multiplier is composed of the second
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portion of the address generated and the multiplicand is already
available in one of the registers. Thus the delay of conversion

due to the use of multiplication can be avoided.

Embedding of differences values in registers decreases overall
accuracy but as the range of accuracy may vary according to
requirement we have also investigated the maximum conversion error
as ‘given below. Here correction factor may have different values
e.g. value of the first segment or value of the last segment. In
our simulation we accepted the correction factor applicable to the

mid-segment i.e. at the middle of the each range.

RAL = 12 ML = 23

. TOTAL _REGISTER maximum conversion error m

64 2.667E-06 0.000244140625
32 5.2949E-06 0.000244140625
16 1.03189E-05 0.000244140625

It is worthy to mention here that if the difference values are kept
in the ROM, MCE becomes 1.07E-08 at m = 0.000122

Secondly. use of limited multiplication may reduce ROM size without
significant loss of accuracy. In fig. 3-1 the multiplicand bit
length can be reduced to a lower value say 16 if the aecuracy limit
does not fall below the pre-specified requirement. This process °

also reduces ROM and also reduces overall conversion time.

3.6 Development of a mathematical model

So far we have seen that the MCEs occur approximately at the
middle of each segment and the absolute value of the MCE is the
largest in the first segment (segment 0) for FLP to LNS

conversion. While converting LNS to FLP number system we may
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observe that although MCEs have occurred at the middle of the each
segment its absolute maximum value is in the highest segment

( segment no. 2" - 1).

The occurrence of the MCEs at the middle of the each segment is
natural. The FLP to LNS conversion curve is a convex curve and on
the other hand the LNS to FLP conversion curve 1is a concave one
with maximum deviation approximately at the middle. So the MCE
always occurs at a point close to the segment mid wvalue with a
positive value for FLP to LNS conversion and a negative value for

INS to FLP conversion.

To prepare the mathematical model for the above analysis, we

proceed as follows

We can calculate the FLP to LNS conversion error by
error = 1g _old m- (old_lgm + add_factor)..(3.l)

In{l1.0 + C*1i + m)
where 1lg old m = [ 1i=0,1,2 .. (21} 1
1n2

[ In implies log. and i implies ith segment ]

and C = CONSTANT = 1/2*, the value of m cannot exceed the range of
each segment value so that 0.0 = m = C. Here old_ligm gives us the
base value of log base 2 of the starting value of each segment.

Therefore

old Igm = 1ln(1 + C*i)/1ln2

old 1lgmy,,, - old_lgm;
difference; = d; =

FACTOR
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Inf{l + C*{(1i + 1)] - 1n(1.+ C*i)

o 2ML - RAL % ]p2

To calculate the add factor we have to calculate the integer wvalue
(multiplier) returned from m. The process is described fully in

article 3.3.

The integer value I becomes

2(I'1L - RAL)

replacing C by 1/2™L, we get
I =m * 2"

As add factor = I * 4;, hence add;factor becomes

add factor = d; * m * 2%

In[l + C*{1i + 1)] - 1n(1 + C*i)
* m * M

add factor =
- - 200 - R & 102

In[l + C*¥{i+1)] - 1In(l + C*i)
- * m * 2RAL

in2
so (3.1) becomes
error - In(l+C+im) _ [ln(l+C*i) L In[l+4C¥(i+1}] —1n(i+C*i) m2RAL] L (3.2)
Inz in2 In2

differentiating error with respect to m and setting the result to

zero, we dget
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d(error) 0 1 1n[1+C* (i41)1-1n(1+C*1)

1+C*i+m

- oRALyx
dm 1n2* {1+C*i+m) ) 1n2
l .
Q0 = - - 2RALx [In[1 + C* (i+1)] - In{l + C*1)]
1 + C*1 +m _ _
1 = 2Mx[In[1+C*(i+1)]-1n(1+C*i)]..(3.3)

This gives us the expression of m in terms of segment no. i, If
i = 0 ( first segment ) the expression reduces to
1 In ( 1 + C )

= ' [ ¢ * 2L o 1 ]
1 +m C '

Upon expanding 1ln{l + C) and neglecting the terms containing the

powers of C, we get

As C*m = C?, the expreassion further reduces toc

<
m= 3

As the error pattern is same for each segment it can be concluded
that the MCE occurs at the mid point of each segment. Evaluation
of m for various values if i from equation (3.3) also confirms the

above as given in table 3-8.
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Table 3-8 : Location of MCE in ahy gsegment during
m - lgm conversion (RAL 12 ML 23).

RAL 12 ML 23
segment- no (i) m
0 1.220858291E-04
1 1.220146858E-04
2 1.220264856E-04 .
115 ‘ .~ 1.220443059E-04
4095 1.219975490E-04

We next try to find out the segment no in which the MCE occurs.
let us replace m by /2 in equation {(3.2) and after

simplification, we  get

ln(l+%+C*i)

error = - -%**

In[lsCe(itl)]
= .. (3.4)

in2

In(1+C*1)
in2

1
=%
2

Upon differentiating with respect to i and setting the result to

zero, we get

C 1 C 1
0 = - * - - %
2

ln2* (1+C/2+C*1) 2 In2* (1+C*1i)

c

In2* [ (1+C) +C*1i]
Upon rearranging and simplification it becomes

4 2 + C + 2C*i

2 + C + C*1i 1 + C + 2C*i -

which further reduces to
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2C * 1 = 0D or 1 =20

Which confirms that for FLP to LNS conversion the MCE always

occurs at the first segment .,

To figure out the necessary conditions during LNS to

conversion let us first define the conversion error by

error = antilg old lgm - (old_m + add_factor)..(3.5)

antilg old lgm = 2°4-19" - 1.0

= o+ lgm | 9 g { 0= lgmsC ]

old m = 2% - 1.0

[ 2C‘(i+l) - 1.0 ] _ [ 2C*i_ 1.0 ]

difference; = 4d; =
2ML—R.AL

2CHisl) | o0

21"'111 -‘R.AL
integer value returred from lgm is therefore

lgm * 2Y--RAC

I =
C
I = 1lgm * 2%
C*iisl) _ oC*i :
add factor = Id; = * lgm * 2™
- 2ML - RAL .
[ 206 L 20 ] % lgm x 2
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Therefore equation (3.5) becomes

error = 2o _ 1 0 - [26F - 1.0 4+ 2CE W algmr2RAE - 2SIk ] gm*2RA]

error = 2(Crizlgmy _ oCxi _ Ci+1)y]am#2RAL + 2C*ix]1gmx2RAL,  (3.6)

d{error) 0
= 2[C*i+lg‘m)*ln2 _ 2C'(i+l)*2RAL + 2C*i*2RAL

dlgm
2(C*i + lgm) 1n2 = 2C*(i+1)+R _ 2C*i+R
which finally gives us

In[2C* 4+ RAL _ pC*i-RALT - Tn(1n(2.0))
in2

Igm = - Cx1..(3.7)

This gives us the expression of lgm in terms of segment no i. Any
selection of 0 s 1 = 2™ will give us the value of lgm which is’
approximately half of the length of each segment. This has been
verified for various ranges of C and a table like table 3-8 can be
formed easily. So this can be concluded that . for LNS to FLP
conversion the MCEs alsc occur approximately at the middle of -each
segment. So we can continue our expedition by replacing lgm by C/2
"in equation (3.6), differentiatihg it with respect to i, setting

the result to zero and solving for i yield an impossible result

2C*(i4-].)=2c*i

This happens due to the fact that LNS to FLP conversion error vs.
segment no. curve gréph 3-3 ) does produce more minimum values if

the segment nos are allowed to increase ( it may be mentioned here
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that for FLP to LNS conversion a theoretical value of i .lower than
zero satisfies the error expression ( 3.2 with m replaced by C/2 )
and produces a lesser error ) so we replace the 1gm by C/2 in

equation (3.6) and get

. £ 2Cx(i+1) 2€*i
error = 2°7ix(22-1] - 5 = ..(3.8)
and finally
Cx{i*l) ) £
error = -2 . + 2“”*[22-=%]..(3.9)

As C is very small the second portion of (3.9) reduces to 1/2%2°%.

So the error expression reduces to

L Ce(irl) 9Cxd

error =
2 2

Whose magnitude continuously decreases as 1 increases. Therefore
for LNS to FLP conversion the absolute magnitude of the largest

value of the MCE occurs at the highest segment value.

3.7 Use of 1lMbyte of ROM for direct conversion

This concept uses 1 Mbytes of ROM (although other configuration can
be used) for FLP to LNS and ILNS to FLP conversion without using a
multiplier for determining the correction factor. Base 2 logarithm
of numbers 0.0 to 1.00 with an increment of 1/2%° which equals to
9.536743164E-07 are stored in the ROM. While simulating ( choice 5
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of m _lgm.c ) for error calculation only the mid-values between two
addresses are considered because any'other value within this range
will produce lesser error. Thus the wmaximum error produced is
6.88E-07 at m = 0.000000476837158. The choice 5 of lgm m.c is
gsimulated for calculating LNS to FLP conversion and . the maximum
error produced is 6.6103633578E-07 at lgm = 0.999995523162842.
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CHAPTER 4

NON-LINEAR CONVERSION AND ERROR ANALYSIS

4.1 Non-linear correction factor

We have modified the basic conversion technique of converting FLP
numbers into base 2 logarithm number system as described in the
choice 1 of m_lgm.c but the scope in choice 3 has been extended
by including the possibility of improving the maximum conversion
error. This improvement is done in the optimum difference error ()
procedure by applying a search procedure which resembles binary

search technique.

We did not apply pure binary search technique because searches at
both directions may be felt necessary particularly at the beginning
of the search procedure. However by guessing the.right direction of
search we have also applied binary search technique which yielded

the identical results.

A significant improvement has been noted e.g. maximum conversion
.error has been reduced to 7.39E-09 from 1.07E-08 for 32 bits
configuration with 4 Kbytes of ROM ( RAL 12 ML 23 ) while FLP to

LNS conversion is done.

The non-linear search is done in the optimum difference error()
procedure. The procedure tries to reduce the maximum conversion
error for each segment ( each block of ROM is a segment ). At first
ideal difference is calculéted for which the max _con error turns. to
. zero but it produces new values of max con_error in the segment. To
select the optimum value of correction factor ( here known as

segment.difference ) searches in both directions are made by
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allowing left search and right search as ALLOWED. If a search in
any direction { left or right ) produces an error higher than the
present max con_€rror eeérch in that direction is made prohibited
by setting it NOT_ALLOWED. When searches in both direction produces
higher error than the present max con_error, the while loop 1is

exited.
The Pseudo-code for optimum difference error () is given below.

/* Pseudo-code for optimum_difference_error() */

/* for mx to Igmx conversion */

/* segment.max_con_error and segment.difference for the segment is alreadv
/* calculated by linear search technique */

right search = left_search <-- - ALLOWED. .

calculate ideal difference /* find _ideal difference) */
/* as explained in article 4.1 */

high_end _difference = ideal_difference /* U.L.in fig. 4-2 */

mid_difference = ideal_difference

low_end difference = segment.difference /* L.L. in fig. 4-2 */

calculate temp new _con_error at ideal_difference
/* temp _new con_error is the temporary vaiue of the MCE in the segment */

if fabs(temp new con_error) > segment.max_con_error

and temp_new con_error < 0.0
right search <-- NOT ALLOWED
left search <-- ALLOWED
else print error message and exit

/* now swing to lower side because any search to hlgher side will produce more
/* error so right_search is set to NOT_ALLOWED */
/* henceforth all tried new values of difference (slgm) is ideal difference
/* Here trials are made to find the best vaiue of difference so that the
/* absolute value of MCE in the segment is minimum. Therefore without
/* increasing the number of variables by introducing a new name, the previous
/* ideal difference is used */

ideal difference = (mid_difference + low_end_ difference) * 0.5

while ( right_search = ALLOWED or left_search = ALLOWED)

if (right_search)
ideal difference <-- (mid_difference + high_end difference) * 0.5
calculate right new _ con_error :

if (left search)
ideal difference <- (!ow end difference + mid_difference) * 0.5
calculate left hew con _error

if right new _con error or left_ new _con_error < segment.max_con_error
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segment.max_con_error <-- min{right_new _con_error, left new _con_error}
segment.difference <--ideal _difference
left search = right_search <-- ALLOWED
else right_search = left search = NOT_ALLOWED
/* end of optimum _difference_error() */

Fig 4-1 : Pseudo-code for optimum difference error(}

To-illustrate the mattef further we can proceed as follows. Let us
get RAL_3 and ML 8 so that we can throughout study the first
segment out of total ‘eight segments and can find out how the
optimum difference error() procedure finds out the minimum value of

the max con_error in any segment.

When the program starts executing ther instructions of the
optimum_difference_error()procedﬁretjueglobal variable difference
( Algm ) is already assigned with a value of 0.005310156295072 and
the segment.max con error is assigned with the corresponding value
of 0.00250034. This error occurs at the middle of the first segment
at the value of old m = 0.0625 and this also equals to segment .m
{ segment.m indicates the value of m at which the MCE ocdcours ).
Left search and right search are assigned with ALLOWED so that
searches to both higher and lower sgides can be made if found

necessary.

In the procedure optimum difference error () our intention is to
find .a new value of the global variable difference so that the
segment.max_con_error turns to its minimum possible value. To find

the minimum value let us set the present value of error as zero

( if the absolute value of the max con error turn to zero for every ..

input value it is the most desirable condition but it cannot be

zero for every input value, so let us set it to zero for one value
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and try the result for other input values). So calculate the value
of i1deal difference ( so that MCE at the present value of

segment.m turns to zero ) from the equation®
ideal difference = (log(l.0+segment.m)/log(2.0)-1gm)/divisor

from which we get the value of the
ideal difference = 0.005466427578. As the error is determined from
the equation® error = lg.old m - ( old lgm + add_factor ) we can
see from the table 4-1 that a new value of error = - 0.0050006811
has been produced at another value of old m but the error has

turned to

Table 4-1 : The first swing during non-linear search

ideal difference |{new m |old m lg cld m error
0.005466427578 0.125 6.00390625 0.005624549194 0.000158121616
'0.03125 0.000662698736

0.0625 ' ' 0.0
- 0.08746284125

0.09375 _ - | -0.00191124492

0.125 "-0.0050006811
0.16952500014

zero for old m = 0.0625 ( at the middle of the segment under
study ) as expected. As the value of the error is negative, it is

clear that any further increase of the variable difference will

* ideal difference is calculated through the procedure

find ideal difference() so segment.m has been replaced by m.

* error in find ideal difference() is calculated through the
procedure get error(). Here the more known form of the equation
of the error is mentioned.
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increase the absolute value of the error i.e. a searéh for a
different value towards high must be not made so we accordingly
set right search = NOT ALLOWED in the expression if ( fabs
temp new _con_error ) > segment.max_con_error && temp_new_con_error

< 0.0 ) right_search = NOT_ALLOWED. So the lower limit ( L.L. ) is-.
set by the segment.difference and the upper limit ( U.L. ) is set
by the ideal difference. Now execution begins from if ( left_sgearch

) and swing is made to the left direction. All left and right

0.0057
R Rt Immmmemm-- fmmmm———— di--mmmmm- - Pmmmm - Fr---B---6-;--T---3--pmmmem S-i------- l-t-mmmemo-- I e ]
L.L=0.005310156295072(C.00250034) (1)0.005388251937 (-0, 00250034) U.L=0.005466427578(-0.0050006)

(210.005349224115{0.001926459429) (3)0.CD5368758025(-0.001B752554)
(4)}0,005329690205(0.002203688275) {510.005378524981{-0.0D02187798)
(6)0.00535899107(0.00179547868)
{7)0.005363874548(0.001731993436}
(8)0.005354107593(0.001858963851)

Fig 4-2 : left and right swings in the non-linear conversgion

swings are shown in the fig. 4-2. Here the MCEs (max con errors)

are given inside the parenthesis together with difference { algm )

énd search no., so it is clear that on the search no 7 .the minimum
value of the max con error = 0.001731993436 is achieved at the
value of difference = 0.005363874548. Two more searches 9 and 10 {

not shown ) are also further made for the values difference =

0.005366316287 and 0.005361432809 but as they produce errors higher
than 0.001731993436. Therefore the searches in the first segment is.
completed and the searches for the other segments are continued. So
it is clear that the procedure optimum_difference_error() has .find
out a new value of difference = 0.005363874548 ( instead of
0.005310156295072) that produces a lesser . value of
segment.max con_error = 0.001731993436 ( instead of 0.00250034)

The error pattern when linear and non-linear correction factors are

applied are given in graph no 4-1 and 4-2.
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Once the gearcheg in one segment finishes, similar searches for

the other segments in this fashion continues through all the

gsegments.

The non-linear correction for LNS to FLD conversion has done by
choice 3 of 1lgm m.c as listed in the Appendix . Here we have also
~noted significant improvemenﬁ e.g. maximum convergsion error has
been reduced to 4.9E-09 from -7.15E-09. for 32 biﬁs configuration
with 4 Kbytes of ROM ( RAL 12 ML 23 ). '

Linear and non-linear error curve for 32 bit FLP to LNS conversion

is given in graph 4-3 and that of LNS to FLP conversion is given in

graph 4-4 respectively.
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linear and non_linear error pattern
in the first segment for RAL 12 ML 23
for m to Igm conversion ( segment no 0 )

maximum conversion arror
1.8E-08 [ ——rrmm e

5.0E00| - - ........ .

vl

-50E-oo
—"‘.Sodos1+8 . . .

1.8E-04{- - - - - -

series 1 when linear correction factor applied
sories 2 when non_linear correction factor applied

graph 4-1 : linear and non_linear error pattern in a segment for m to
Igm conversion

58



linear and non_linear error pattern
in the first segment for RAL 12 ML 23
for igm to m conversion ( segment no 0)

maximum oonversion error

3.0E-09
= Serigs 1 1+ Serles 2

X R T A S S N S

= e e S A EEL EEE CER SRR

0.0E+
“1.0E-00] - -
-2.0E-09

BOEOO) - -2 - - N A

-4.0E-09 . ' ; m : e : : .
e i igiiaagd
w (=) O o o o N - o o o o~ -
value of igm

series 1 when lnear comection tactor applied
aeries 2 when non_finear correction tactor applied -
graph 4-2 : linear and non_linear error pattern in a segment for
' Igm to m conversion '
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m to Igm conversion error graph
' RAL 12 ML 23

maximum conversion efror

1.5E-08
| = Serles 1 + Series 2

1.0E-08

5.0E-09

0.0E+00

B.OE00| - - - s

-1.0E-08 . - . . : : : .
0O 500 1000 1500 2000 2500 SO00 3500 4000 4500
segment no.

serles 1 for iinear correction factor

serles 2 for non-iinear correction factor .

graph 43 : m to Igm linear and non_linear conversion error pattern
( RAL 12 ML 23 )
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igm to m conversion error graph
RAL 12 ML 23 |

maximum conversion arror

6.0E-00

 4.0E-00

2.0E-08| - -~
0.0E+00 ; . —~ , f
' . . -~ Series 1
) ) ) X ) + | + Series 2
-2.0E-09} - - - - - SRR R Feeeeiooo.s

-4_-.0E—09

-6.0E-09

-8.0E-09 : . : .
0 500 1000 1500 2000 2500 3000 3500 4000

segment no.

gserles 1 for inear cormrection factor -
gseries 2 for non-linear correction factor

graph 4-4 : igm to m linear and non_linear conversion error pattern
( RAL 12 ML 23)
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4.2 Arithmetic processing

We have decided to cite a multiplication procedure by LNS number
system .which will clearly depict the conversion, processing and

anti-conversion process. Let us select two numbers x and y as

0.7061309815 and y = 12.3330078125 so that
zZ =X *y = 8.708718911

»
1

We assume that the numbers are represented in a computer system by

IEEE format so they will be

0-01111110-01101001100010100000000

> o=
= 0-10000010-10001010101010000000000
z = 0-10000010-00010110101011011101001

Our ~ first job 1is to convert these FLP numbers into the
corresponding LNS numbers. To accomplish this we run choice 4 of
m_lgm.c { which is the interactive version of m lgm.c ) and get the
ROM contents of the address bits 011010011000 ( the first 12 bits

corresponds to count = 1688 ). The contents of the ROM is as given
below.

m initial lg m initial difference

0.412109375 0.4578518369511178 1.2178078307E-07

0.412109375 0.4978518369511178 1.2178259231E-07 .
The first 1line gives the values for linear conversion and the
second line gives the data for non-linear conversion. So the LNS
.value of the mantissa of the FLP number x becomes

0.4978518369511178 + 1.2178259231E-07 * 1280 = 0.4980077187

Here we multiply the difference with the value of the remaining 11
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&84 9¢

bits {( 10100000000 =.1280 ) and add the product with the base lgm

value which is available under the column ig;m_initial. So the

- representation of x éf;er converting it to LNS format ( FLP

representation in small letter and LNS representation in capital

letter ) becomes
X =0-01111110-011112111011111010110111

We next convert y into LNS format. The contents of the ROM for this

conversion is
m initial lg m initial difference
0.54150390625 0.624338545312985 1.1155925875E-07

0.54150390625 0.62433854531298%5 1.1156077703E-07 .

After following the above mentioned procedure, we get the

‘arithmetic expression of 0.624338545312985 + 1.1156077703E-07 *

1024 = 0.6244527835 and thus y becomes
Y = 0-10000010-10011111110111000010001

After converting both the numbers into LNS format we have to add

them because the multiplication procedure is now replaced by

addition. Now we have to subtract 127 from both the exponents of X
and Y and to add them. The extraction of the hidden 1s are not
necessary[3] because these hidden 1s in the mantissa of the FLP
numbers make the conversion easier as 2.0 "7 * 1.m in FLP is

equals to 2.0 - 127+ oM {5 ING system . So we get

X
Y

Il

O—11111111—01111111011111010110111
0-00000011-10011111110111000010001

Z =X+ Y= 0-00000011-00011111010110011001000

Now we have the result in LNS format. Our next job is to convert Z

into FLP format. We run the interactive version of lgm m.c¢ ( which
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is choice 4 of lgm m.c ) and get the following ROM chunk. .

Igm initial antilg lgm initial difference
0.122314453125 0.088479663344847¢6 8.994823118E-08
0.122314453125 0.0884796633448476 8.994692308E-08

If we follow the linear difference we get the expression of

0.0884796633448476 + B.994823118E-08 * 1224 = 0.08858975998 and

0-00000011-00010110101011011101000 or
8.70871808

N
Il

N
If

If we follow the non-linear difference we get the expression of

0.0884796633448476 + B.994692308E-08 * 1224 = 0.08858975838 and

0-00000011-00010110101011011101000

S
‘2 = 0-10000010-00010110101011011101000 ( in IEEE format )
zZ = 8.70871808

We get the same result because the difference cannot be represented
within the limited 23 bit mantissa format but obviously 2 .0 3°.*
1.08858975998 is not equal to 2.0 *° * 1,08858975838.

We have also converted and reconverted a single number e.g. m =
1.0001438856125. The selection of m is intentional so that we can
work in the ROM area containing maximum conversion error. Applying
linear correction factor we get lgm = 0.0 + 1.719616603E-07 * 1207
= 2.07557724E-04 and by applying non- linear correction factor we
get lgm = 0.0 + 1.719652é776E—O7 * 1207 = 2.075620782E-04. Now
2,02 97557724804 = 1,000143878 and 2.0 2075620782 _ 3 000143881 and the
"result obtained by non-linear conversion closes to the actual value
of 1.0001438856125 but when represented in a 23-bit mantissa both
lgms are to be represented under the same bit configuration and

hence the difference cannot be stored for further processing.
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Next we shall evaluate y* by using LNS system. As we have clearly
described the conversion process from ROM, here the converted
values in IEEE format shall be shown without giving any further

details of addition process.
Let ¥y = 4.125, x = 0.796875 so that y* = 3.093256701

Let us first represent the real values of x and y in IEEE format,
so that

0-10000001-00001000000000000000000 -
OF01111110—10011000000000000000000

® o=
1l i

Next we convert y into 1gy by using ROM look-up table. We already
know that changing FLP to LNS value or vice versa shall only bring

changes in the mantissa, so we get
Y’ = 1lgy = 0-10000001-00001011010111010110100

However it is again necessary to calculate the base 2 logarithm of
Y! [3] and hence it is necessary to convert Y’ into 1lgY’. We know
that the ROM can only accurately convert a number to its base 2
logarithm value if the number ié represented in FLP format. The
conversion is done by a software routine as outlined in [3]. It is
not also difficult to visualize the conversion technique by
writing 1lgy = 2.04439401627 = 1.00000101101011101011010 * 2*° so
that the number Y’ is represented in real number format shall be

Y’ = 0-00000001-00000101101011101011010
We next convert x and Y’ to their respective log base 2 and get

X' = 1lgx
Y" = 1gy’

0-01111110-10101100001001000001000
0-00000001-00001000000110101011111
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Now it 1s necessary to add X’ and Y" to get X' + Y"

X' = 0-11111111-10101100001001000001000
y"r o= 0-00000001-00001000000110101011111
X'+Y¥Y" = 0-00000000-3101101000012111101100111

Now it is necessary to find the antilogarithm of X’ + Y". Through
the ROM that converts LNS to FLP, we get

z = 2.0% ¥ - 0-00000000-10100001000011000110010

To find y*, it is again necessary to get the antilogarithm of =z.
We take care of the fact that to find the antilogarithm of any
number we must represent the number in LNS format and then access
the ROM.

The conversion from FLP to LNS can be done by another software
routine [3]. The procedure is rather simple. To convert into the
LNS format we insert the hidden bit and adjust the exponent

Therefore, after converting z into LNS format, we gét
z' = 0-00000001-101000010600011000110010
The final conversion of z‘ to 2.0* gives the value of

2% = 0-00000001-10001011111011011010001
= 3.093189478

Obviously y™ can be calculated by first finding out y* and then

inverting the result.
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4.3 Effect of non-linear correction factor on Error

Non-linear conversion minimizes the absolute magnitude of the
maximum conversion error [ MCE ] in any segment. Once the absolute
magnitude is decreased, the average value of conversion errors
decreases for any input value. We have studied a few evenly spaced
numbers for FLP to LNS conversion in one segment and the results
are shown in Table 4-2. While converting these numbers from its FLP
format to LNS format we used the following ROM contents ( vide -

choice 4 of m lgm.c ).

RAL = 12 ML = 23

‘m_inidial lg m initial difference max_con_error
4.8828125E-04 7.042690112466E-04 1.7187774587E-07 +1.07358E-08

4.8828125E-04 7.042690112466E-04 1.7188134980E-07 -7.38087E-09

Table 4-2 : m to lgm linear and non-linear conversion error
for RAL 12 ML 23

RAL 12 ML 23

m pE ] error
{gegment no =2} 1gim)

linear non-linear linear non-linear

.00008B-12

-

.88400453%E-04

~

.04440B966E-04 7.04440889E-04

~a

.044409926E-04

~

.60000E-12

-

w
-~

.216598511E-04

-

.52193B8473E-04 7.523947801E-04 .521957892E-04

L]

.Q6720E-09

-

.Q5B1E-09

wn

.866289138E-04

@

.460784765E-04 B.460681516E-04

-

-4607112488-04

[

.03249E-08

-

.3517E-09

L

.320476532E-04

[

+115639647B-04 9.115535728E-04

0

.1155791I91E-04

[

.Q3915E-08

[

.0456B-09

@

.799697876E-04

w

-BDE55E592E-04 9.806404266E-C4

“

.B0E542217E-04

-

.2326QE-09

.

-4375E-09

~

.323025657E-D4 1.05610277E-03 1.056102757E-03 1.056110134E-03

-

-30000E-11 -7.3640E-0%

As we see that in most of the cases the error produced is higher
when linear correction factor has been employed but there is
inétance that the use of non-linear correction factor has increased
the absolute value of error. This 1is expected because when we
select a new value of difference, we concentrate on reducing the
absolute of the MCE and pay no notice in.keéping the error value

less than that produced during linear correction factor. Thus we
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see that the average value of non-linear conversion error becomes
4.37848E-09 ( negative values are added as positive errors ) which
is lesser than the average value of linear correction error which

is 5.5062E-09.

We have also reconverted all these LNS numbers inte the FLP

format. While making the LNS to FLP conversion we have used the

following ROM contents ( choice 4 of lgm m.c ). We used the lgm

values previously achieved in FLP to LNS conversion and by using

non-linear correcticn factor.

RAL = 12 ML = 23

lgm _initial antilg lgm initial difference max_con_error

4.88281250E-04 3.385080526823E-04 B8.266454800E-08 -3.58117E-09
4.88281250E-04 3.385080526823E-04 ' B.266334583E-08 +2.46205E-09
7.32421875E-04 5.078050469876E-04 B.267B53812E-08 -3.58177E-09 -
7.32421875E-04 5.078050469876E-04 8.267733575E-08 +2.46247E-09
9.76556250E-04 6.771306930664E-04 8.269253062E-08 —3.58238E—09.
9.76556250E-04 6.771306930664E-04 8.269132803E-08 +2.46289E-09

Table 4-3

lgm

to m linear and non-linear conversion error

1gm

igm
{neglecting
Erencation)

m=2%-1_0

m (from ROM)

error

linear

non-1linear linear

non-linear

7.044408926E-04

7.04407692E-04

4.3837742E-04

-

.8837BB72BE-04

4.BBI7665B7E-04

-1.452BE-09

7.213E-10

7.523557851E-04

7.523298264E-04

5.2161128E-04

L]

-216123629E-04

5.216121621E-04

-1.0829EB-09

-8.821E-10

B,460711248E-04

B.460283279E-04

5.8659412B-04

w

.BE59769318E-04

5.86596548E-04

-3.5738E-09

~2.428E-09

9.1155791%91E-04

5.114742273E-04 |

6,319854E-04

-

.319882117B-04

6.319864053E-04

-2.8112R-0%

-1.0053E-09

9.806542217E-04

9.806156158E-04

6.79942E-04

&

.795942231591E-04

6.799421982E-04

-2.391E-09%

-1,982ZE-10

1.056110134E-03

1.056075096E-03

7.3228346E-04

-1

L122B6611E-04

#.322858069E-04

-3.1518-0%

-2,3483B8-0%

From table 4-3 we see that if we apply non-linear correction factor
for LNS to FLP.conversion, we get the minimum conversion error as
expected. The error calculations given in table 4-2 and 4-3 do not
consider truncation error. Truncation error develops due to the
fact that when we convert a FLP number into a LNS number, the
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converted number cannot exactly represented by a limited number of
storage bits. Conversion error that takes the effect of truncation

error is shown in table 4-6.

We have further delved into the matter and reconverted all these
numbers into the FLP format. We used the 1lgm values previously
achieved in FLP to LNS conversion and by using non-linear

correction factor.

Table 4-4: Partial compensation effect using non linear

.correction factor during lgm-m conversion

RAL 12 ML 23

m ' value retuirned using correction Error preduced
(segment no. 2} factor
linear non-linear linear non-linear
4.884004593E-04  4.,8837B87B2E-04 .BB3766987E-04 .lSBllE-dB 2.37606E-08
5.216598511E-04 .216123629E-04 .216121621E-04 .74882E-08 4.76890E-08
'5.866239139E*04 .B65976938E-04 .B65965480E-04 .12201E-08 3.23689E-08
6.320476532E-04 .319882112E-04 .319864053E-04 .94420E-08 6,12473E-08
'6.799697876E-04 -799422331E-04 .799421982E-04 . 75485E-08 2.75894E-08
7.323026657E-04 .322866110E-04 .32285808B9E-04 .60547E-08 1.68B568E-08

From the table 4-4 we see that if we apply non-linear éorrection
factor for FLP to LNS conversion and then apply linear correction
factor for LNS to FLP conversion we get minimum conversion errors
in all the cases. Although only LNS to FLP conversion by applying
non-linearicorrection'factor will give a less average value of
conversion error but if the values are already converted from FLP
to LNS, then linear correction factor will compensate gsome portion
of the error which is already made during FLP to LNS conversion

since it has a higher value of correction factor.
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4.4 Accumulated error

Conversion error can be defined as an error that equals to the
difference of the double precision calculation in the computer
system in use minus éhe result obtained'from the algorithm we
have developed. So if we have randomly generate a FLP number x and
first convert it to the LNS system then reconverted it back to FLP
format and suppose after conversion and reconversion the new number

is x', then the conversion error = x - x'

We have converted mantissas of 10000 FLP numbers into LNS numbers
' by randomly generating‘FLP numbers ( between 0.0 and 1.0 ) and
reconverted them back into their pfevious FLP format with the help
of data préviously generated and stored in hard disk. Accumulated
errors for such conversion have been calculated and the summarized
result is given below in table no. 4-5 and 4-6. The first table

i.e. table no. 4-5 gives us one way

Table 4-5 : One way accumulated error, m-lgm or lgm-m conversion

RAL 12 ML 23

accumulated error
conversion ' linear non-linear
m - lgm 3.56E-05 1.713E-05
lgm -.m -3.423E-05 -1.641E-05
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, Table 4-6 : Accumulated error for m-lgm and lgm-m conversion

RAL 12 ML 23
conversion
m - lgm 1gm - m accumulated error
linear linear 6.17806E-04
linear non-linear 6.36292E-04
non-linear linear 5.98879E-04
non-linear non-linear 6.18523E-04

conversion error. The one way accumulated error produced for RAL 12
and ML 23 was found to be compatible with the figures given in the
graphs 4-1 and 4-2. This also indicates that the accumulated error
generated while using linear correction factor is approximately
twice larger than the accumulated error generated while using non-
linear correction factor. The difference in accumulated error is

not negligible when one way conversion is considered.

The next table i.e. table 4-6 gives us the accumulated error when .
a FLP number x 1s first converted into LNS number and then
reconverted back into FLP number again. Various combinations of
conversion techniques have been used as shown in the table 4-6.
Here the accumulated error is higher than that of Table 4-5 due to
the truncation error for internal storing of 23 bit format after
conversion. It can be mentioned here that if we convert mantigsa of
a FLP number into the corresponding LNS number and store it in a 23
bit format, then only dué. to the limited storage bit capacity the

truncation error can be as high as 2% = 1.1921E-07.
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4.5 Accumulated error for multiplication, squaring and division

Conversion error as defined in article 4.4 has been also calculated
for multiplication and other operations for 10000 operations on
randomly generated numbers. Conversion data for 23 bit mantissa
length and 12 bit ROM length has been generated and stored in a

hard disk. Their summarized result is given below:

Table 4-7: Accumulated error for multiplication

RAL 12 ML 23
conversion accumulated
' error
linear ‘ linear 9.84775E-04
non-linear ) linear 9.35826E-04
- non-linear , non_ linear 9.63621E-04
linear linear {with offset) . 9.34800E-04

Here we see that the accumulated error is higher than the both waf
conversion ( Table 4-6 ) accumulated error due to the
multiplication effect. Accumulated error for linear-non linear is
disregarded because it has already the highest accumulated error in
table 4-6. Accumulated error with offset means that the factor
( segment.max_con_error/2.0 ) is subtracted from the individual
'number conversion error during m-lgm conversion and added during

“lgm-m conversion.

While converting numbers we noted that a significant part of the
accumulated error is contributed by the truncation error produced
due to the limited storage bit length. As this error always
reduces the number while storing, we can increase the value of the
correction factor ( am ) so that the néw higher value of correction
factor will produce a higher value of x’ while performing LNS-FLP
conversion thus producing 1less conversion error. A lesser
conversion error during one conversion process will eventually

reduce the total accumulated error. A selection of compensation
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factor of 1.000165 can reduce the accumulated conversion error By
more than 100 times as may be seen from the graphs 4-5 and 4-6 for
non_linear—liﬁear conversion. The whole process means that we have
to multiply the correétionj factor ( 'only during LNS-FLP
cbnversion')‘ by 1.000165 and to perform all operations with the
augmented value of the correction facﬁor.'Numerical examples show
that the value of CF varies from segment to segment but a uniform
selection of CF = 1.000165 produced the best result for non linear-

linear conversion.

Graph 4-5 shows accumulated errors during multiplications for
various selection of correction factors and the effect of offset on
the other hand graph 4-6 shows the effect of compensating and

offset factor for various combinations.
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Accumulated error
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Accumulated error
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The pseudo code for performing multiplication is given below.

/* Pseudo code for multiplication */

generate mx and my between 0.0 and 1.0 /* generate two randoms( */
com _product = (1.0 + mx) * (1.0 + my) /* product of two FLP numbers */
bin mximMu  <--mx /[* via in_binary( */

bin my[MLI <--my /[*viain_binary( */

rom_mx <-- long returned by RAL bit configuration /* equ_integer(} */
rom mv <-- long returned by RAL bit configuration /* equ integer( */

for bin_mxtmLi
open m - lgm conversion data file ("a:m_ig????. dat“) and read
segment value as pointed by rom mx *m _lgm data( */
calculate mx linear /* convert( */
calculate mX _non linear [* convert() ™/

for bin_myiMu
if (rom my <> rom_mx) :
open m - Igm conversion data file ("a:m_Ig????7.dat"} and read
segment value as pointed by rom my
caiculate my linear
caiculate mY non linear

mZ lin linear <--1( mx linear + my linear)
if ( mz " lin linear = 1. 0)
lin carry = 1.0
mz lin linear -= 1.0
mZ _non lin_non linear <--{mx_non finear + mY non_linear)
if (mZ non Im non linear = 1 0
non rrn carry = 1.0
mZ _non lin_non linear -= 1 0

bin mzZiML <--mZ lin _linear
for bin_mziML /* as got from mZ lin linear */
rom mz ' linear <-long returned by RAL bit configuration
open Igm - m conversion data file ("a:lg_m????.dat" and read
segment value as pointed by rom mz linear
calculate mz_fin _linear
if Cin_carry = 1.0)
lin_fin_product = (1.0 + mz iin_lin) * 2*°
else-fin I.'n _product = (1.0 + mz_ Irn lin
error = com_product - lin_lin product
lin lin_acc _error + = error

~ bin_mZzIMLI <-- mZ_non_lin_non_linear
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for bin_mZiMLi 1*as got from mZ_non _lin_non_linear */

rom mz non linear <--long returned by RAL bit conﬂguratlon

if (rom mz non linear <> rom_mZ linear)

open lgm - m conversion data file ( "a: g m????. dat” and read

- segment value as pointed by rom_mZ_non_ linear
calculate mz_non lin_non linear
if (non_lin_carry = 1. .0)

non Im non_lin_product = (1.0 + mz_non _fin_non Imear) * 0
else non Iin non lin product = (1.0 + mz non_lin_non linean
error = com _product non _lin_non lin _product
non_lin_non_lin_acc_error + = error :

Fig 4-3 : Pseudo-code for multiplication

A table is given below showing the accumulated error for performing

squaring operation on 10000 randomly generated numbers.

Table 4-8: Accumulated error for squaring

RATL, 12 ML 23
conversion 1 accumulated error
linear linear 2.82925E-03
non-linear linear 2.77373E-03
non-1linear non-linear 2.80248E-03

A table is also given next showing the accumulated error for

performing 10000 divisions on randomly generated numbers.

Table 4-9: Accumulated error for division

RAL, 12 ML 23
' conversion | accumulated error
linear linear 4.00242E-04
non-linear linear 4.03167E-04
non-linear non-linear 4.15061E-04
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CHAPTER 5

ADDITION SUBTRACTION IN LNS ANﬁ DENORMALIZED NUMBER

5.1 Addition and subtraction of long word length in LNS.

Addition and subtraction of long words e.g. 64 bits are feasible by
using ROM and a multiplier as may be seen in table 3-5 but
multiplicétion using a large no of bits may slow down the system.

A proposal of using Taylor’s series [10] uses lesser ROM but also

slows down the system due to several access to ROM for logarithmic

and anti- logarithmic conversion.

When two real numbers x and y are added the processor receives:

lgx and lgy as the augend and addend. The augend is augmented by
1g{ 1 + 2} where r = min{(lgx - lgy), (lgy - lgx}} when x and y
are represented within' a small range, a small ROM.look-up table
can be constructed that accepts r as the input and returns lg( 1
+ 2¥) as output. If the address input to the ROM is small, the ROM
can have 2 (sddress bitst yords. The volume of ROM can be further
reduced by noting that when the wvalue of r grows to higher numbers
not all the least gignificant bits of r have any effect on f(r) =
1g( 1 + 2°) and as some of the 1. s. bits of r can be dropped, the
size df.the ROM table can be significantly reduced [1].

The proposal [10] uses Taylor's series approximation to reduce the
f(r) table. Lewis has partitioned the binary representation of r
into geveral parts which has F fractional bits as shown in fig. 5-1

in which r; represents the integer porticn and ry+r +r,
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Fig -5-1 : Division of r bits for evaluating Taylor,s
series first order approximation.

represents the fractional part and r, = r;+r;,.

The Taylor’s series approximation for constructing the f{r) table

can be done by implementing the series by [10]

df{r,)
f(ry = f(r,) + r;*———..(3.6 of {10])
dr
where
df(r,) _ 27Tt
dr - 1 + 2%t

"while constructing the reduced f(r) table the least significant
portion r. is completely neglected. The hardware structure is

given in fig. 5-2 shall realize equation 3.6 of [10] as given
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f(r,) df (r,) /dr

multiply

adder

|

£ (r)

Fig 5-2 : Taylor’s series approximation hardware

df(r.)
and

above. The design uses two look-up tables for f{r,) and
dr

a multiplier to get the Taylor’s series approximation of f(r}.

Multiplier less hardware is also described in [10] that converts
r, into 1lg{(r,) and another log base 2 conversion of df(r,)/dr -
replaces the multiplier by an adder. Bn antilogarithm table is
still necessary but the logarithm table necessary for

lg[df (r,) /dr] can be eliminated because
1g[ df (r.)/dr] = r, - 1g( 1 + 2%).

The error calculation has been determined bf the second order
approximation of the Taylor’s series which includes the effect of
r, and subtracting the second order approximation from the first
order approximation and limiting the error to 2°F the limiting

value has been calculated to [ 4.36 of 10 ]

P, = L(-F-r;-1)/2]
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where P, is an integer that indicates mantissa bit position of r
such that P_<P, and P,{0 ( fractional bit position indicates zero ).

The limiting value of P, is given by the expression [4.39 of 10]

Analysis in {10] shows that for a 22 bit mantissa conversion while
the error is less than 2% = 2.384E-07 requires a ROM table of
2660 Kbits of total size which is much smaller than the ROM size

as may.be found necessary after applying the memory reduction'.

technique described in. [1].

It has been also shown in [15] that the‘memory requirement of [10]

can be further reduced by 25%.

5.2 Simulation of Taylor’s geries approximation

Taylor’s series 'approximation' as depicted in [10] with a
multiplier hés been simulated in a model program. IEEE single
precision number system has been selected so the PRECISION is set
to 23. To make f to zero all the 23 bits of its mantissa should be

zero and as

fa

.and fs

log (1.0 + 27) /log(2.0)
log (1.0 - 2°7) /log(2.0)

a value of r equals to or greater than 23.5 will set it to zero.
This can be seen in the flow charts (fig.5-3 and fig.5-4) that r is
to be stored in a 28 bit storage length. The integer portion i.e.
23 can be fully represented by a 5 bit configuration so r; takes
the value of 4 as per 3.5 of [10] and fig. 5-1. Fig 5—1,indicates
that the integer portion of'ri is counted from 0,1,2 .. -so a 5 bit
configﬁration of r; gives the value of r; = 4. Once r; is settled to
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Fig 9-3 : Flow chart for logarithmic addition
(using Taylor's ;erios first order approximation)
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Fig 59-4 : Flow chart for logarithmic subtraction:

¢ using Taylor’s series first order appreximation )
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4, PL becomes 14 as per 4.36 of [10] and article 5.1. PE is set to
the last limit i.e. to 23 and r, is completely neglected.

While.evaluating the addition of two numbers r, is stored in a 5 '
+ 13 = 18 bit format. Although PL has been fixed to 14 we reduced
it to 13 and still found the error limit as acceptable. The ROMs
necegsary for calculating fa_r, and dfa_r, with their input address
bits of 18 and 17 respectively. The address bits of dfa r. ROM has
been reduced by one because dfa r, = 277/ (1+2"") turns to zero ( for
16 bit repregentation ) at a value of r, = 15.0 which can be
represented by a 4 bit integer instead of 5 bits. From table 5-1

the above mentioned conclusion can also be derived.

Table 5-1 : dfa_r, for various values of r,

r, dfa_r,
1.220703E-04 . 0.4990788
0.1 0.4826782552
15.0 3.051664683E-05

To calculate the total ROM necessary for addition process we
proceeded as follows: It has been stated earlier that if r. exceeds
23.5 fa_r, turns to zero when represented in a 23 bit format. r, is
itself represented by a 5 bit integer part and a 13 bit mantissa
part. So it 1s clear that a bit configuration of 10111-.
1000000000000 is the maximum limit of the r,. So the ROM necessary
for building fa _r, equals to 2174215,2144213,212 - 188 Kwords. Any bit
configuration higher than 23.5 do not need a output from ROM
( output is zero ). So ROM contents for those configurations are
not necessary. As explained above dfa r, turns to zero when r,
becomes 15.0. As 15.0 can be represented by 4 bits in the integer

portion the maximum wupper level of bit configuration of
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1111-0000000000000 is to be taken care. So the ROM necessary for
building dfa_r, is 2'+2%+2M+2" = 120 Kwords. It is to be mentioned
here that both fa_rt‘aﬁd dfé_rtshall turn to zero for any higher
bit configuration than their maximum limit. So if r, > R_LIMIT, the
sum of the two numbers becomes to equal to the larger of the two

numbers as shown in fig. 5-3.

Therefore to complete the addition process total ROM necessary are
(188+120) 308 Kwords.

To perform the subtraction process r, is again stored in a 18 bit
format. As we see that both fs_r, and dfs_r, are less than -1.0
when r, becomes less than 1.0 else it is less than zero. So two
sets of fs_r, and dfs_r, ROMs have been selected. The first one is
set for 245 < r. s 1.0 and the second ROM is set for 1.0 < re s ..
23.5 (fig. 5-4). The first set has an address lines of 13 bits and
the second set has an address line of 18 bits. Total ROM necessary

for subtraction process is { 8*2 + 180*2 ) 376 Kwords.

- Therefore to perform both addition and subtraction process total
ROM necessary is ( 308 + 376 )} 684 Kwords.

While simulating Taylor’s series approximation we found that the
error produced during addition and subtraction process is always
less thah the error produced when a bit is dropped/added at the
leaée significant position of the higher number of the pair once
the boundary conditions are met. For further clarification we like
"to process two numbers |

A 80100.0 and

B = 80090.0
The representation of A in IEEE format is

A =0-10001111-00111000111001000000000
If one bit is added at the least significant position then

A= 0-10001111-00111000111001000000001

A= 80100.0078
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Therefore the error produced is A’ - ‘A = 0.0078. So an error of '

+0.0078 is acceptable. When the Taylor’s series is simulated with
PL = 13 error produced was -6.46E-03 for the addition process.
Subtraction requires higher setting of PL to guarantee minimum
error condition. Error generated was also checked with very large
random number pairs and the maximum error produced was found

within the allowed limit.

If we use ROM tables of ( 5+ 23 ) 28 bits wide address bus with
input range varies between 0.0 and 23.5, then for only addition,
two ROM tables with combined capacity of ( 188 * 2 ) 376 Mwords

are needed.

We have also studied the ROM requirement for other bit

configuration of the IEEE humber,system. The result is summarized

in a tabular form as given below. The ROM size is necessary for '

both additicon and subtraction

Accuracy level ROM size
2-20 512 Kwords
272 ' ' 608 Kwords
230 45 Mwords
While calculating R_LIMiT in our model program, we first noted

that fa_r < 277, 5o

In(1.0 + 277)
1n2

< 2 -PRECISION

fa r =

In{1.0 + 277} « 5-PRECISION % 1p 2
1.0 + 277 < exp (2 PRECISION & 1p2)
2-r < exp(z-PRECISION * 11'12) - 1.0

-r = log,{exp (27 FFECISIN % 1n2}) - 1.0)
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1n{exp (2 FRECISIN x 1n2) - 1.0)
1n2

1ln(exp (27 FRECISION % 1n2) - 1.0)
1n2

Therefore R_LIMIT = r = -

5.3 Denormalized number

IEEE std. 754 allows the use of very small numbers in the
denormalized form (fig. 1-1 and fig. 1-2) so that in the single
precession representation the largest positive denormalized number
is 1.175494211E-38 (which is Jjust below the smallest positive
normalized number of 1.175494491E-38) and the smallest positive
denormalized number is‘1.401298464E-45. This thesis also includes
the way of converting FLP denormalized numbers by using the same
ROM table used for normalized number conversion but we do not try
to specify the special LNS format for denormalized number because
the details of representing denormalized numbers under LNS is

still unspecified.
A sihgle precision denormalized FLP number x can be expressed by
x = (-1)°% * 2712 % (0.m) where m is the mantissa
The abqve number x can also be représented by
x = (-1)% % 271 % 270 % (1.m)
which can be converted'into a LNS numbér by the same ROM that was
used for converting normalized FLP numbers. The portion 27**¢ can

be processed separately with the exponent of the LNS/FLPlpumber td
get the final result.

An algorithm is given next (fig 5-5) for LNS multiplication when
denormalized FLP numbers are involved. All examples mentioned in

this algorithm follows next.
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/* multiplication algorithm involving denormalized FLP numbers */
ex = exponent of X in FLP
= mantissa of x in FLP
Ex = exponent of x in LNS
Mx = mantissa of X in LNS - ‘
/* ey, my, Ey, My have the similar meaning for number y */

case 1: /* one number say X is hormalized and the other number-y is denormalized
FLP number. Convert the denormalized number y into a normalized number by
hiding the -126 of its exponent so that the number can be converted into a LNS
number by using the ROM look- up table */

(1) do
SHL my with left most b|t to carrv
decrement ey
until ( carry =
(2) Mx <--log base 2 of mx /* bv ROM table */
My <- log base 2 of my /* by ROM table */
Z <X + Y /* add two LNS numbers X and Y to produce Z */
(3) z <~ Z /* convert LNS number into FLP humber by ROM table */
(4 if ( ez is negative ) /* example 1 */
carry <-—-1
SHR mz with carry
increment ez '
5 while ( ez is not equal to zero)
SHR mz
increment ez
END.
/* Z2 now represents x*y in denormalized form */
(6) else if (ezis positive) /* example 2 */
increment ez /* increment of ez = adding (126+127) */
END. -
/* Z now represents X*y in normallzed form */

case 2: /* both X any y are denorma!ized numbers */ .
UNDERFLOW /* product is too smail */
END.

Fig 5-5 : Multiplication algorithm for denormalized FLP numbers

The following examples associated with multiplication algorithm
show error free pperation‘of the algorithm.

88



The examples given here are associated with article 5.3. The
numbers represented by an alphabet can have two. forms namely, FLP
and LNS among which small letter. representation is for FLP and

capital letter representation is for LNS.

example 1

let x = 0.7061309815
y = 7.714181677E-39

0-01111110-01101001100010100000000
0-00000000—10101000000000000000000

therefore z = x*y = 5.447222679E-39

(1) y = 0-11111111-01010000000000000000000
2} % =0-11111111-01111111011111010110111"°
'0-11111111-01100100011011101110101

e
I

= 0-11111110-11100011111011000101100
0-11111110-11011010100001010001111
= (-11111111-1110110Q010100600101000111
= 0-00000000-01110110101000010100011 = 5.447221278E-39

=
NN NN
H

. example 2

let x = 2.764898077E+38
y = 7.714181677E-39

0-11111110-10100000000001000000000
0-00000000-10101000000000000000000

therefore z = x*y = 2.132892608

(1) vy = 0—11111111—01010000000000000000000
(2) X = 0-01111111-10110011010100111001000
Y = 0-11111111-011006100011011101110101

4 = 0—01111111-00010111110000100111101 (Z =X+ Y)
(3) 0-01111111-00010001000000101001111
(6) z = 0-10000000-00010001000000101001111 = 2.13289237

N
Il
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CHAPTER 6

SOURCES OF ERROR AND APPLICATION OF LNS PROCESSOR

- 6.1 Various sourceg of error

When we convert a number x represented in IEEE floating-point
format first into LNS format and then reconvert it back into its
previous FLP format with the help of ROM tables, we do not get
béck the original number x but get a new number x'. Although for
single number conversion the conversion error (x - x') is very
small and negligible but this conversion error can be accumulated
for "arithmetic processing  that -requires large numbers for

conversion and anti-conversion.

Here we shall discuss about the error generated at the various
stages of conversion and anti-conversion. There are four major

sources of error generation and those occurs at two stages namely

(1} x to lgx conversion and (2) lgx to x conversion. Among four

sources of errors two are contributed at stage (1) and these two
sources are (a) conversion error from m to 1lgm that generates due
to the storing algm in limited storage bit length in ROM and (b)
truncation error that develbps when we store the algm value in a
limited storage bit length (ML). The stage (2) contributes the
other two sources of error and these two sources are (c) conversion
error from lgm to m that generates due to the storing am in limited
storage bit length in ROM and (d} truncation error that develops
when we store the reconverted value of m in a limited storage bit
length (ML) .

Thus the'algebraic sum of (a), (b), (c) and (d) produces the net

error for one FLP to LNS to FLP conversion process.
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To clarify the matter further we illustrate the whole process with
an example. This examplé has been generated selecting RAL 12 and ML
23. '

Let m = 4.884004593E-04 be the mantissa of the number generated.
While generating this random number we face no truncation error as
this number can be represented fully within a 23 bit format. Thus

the binary representation of m should be
m = 4.884004593E-04 = 00000000001000000000001

without any truncation error. The value of algm {(correction factor)
.18 equal to 1.718813489E-07. So the value of lgm becomes

lgm = base value of lg(m) + algm * multiplier
7.042690112466E-04 + ;.718813489E—07*1
7.04440926E-04 '

I

Now we are in stage (1) and error (a) is already generated. This
error is generated due to the multiplicand bit length. The more the
multiplicand bit length, the more preciously the value of algm can

be. represented thus producing lesser error from source (a).

The number lgm = 7.04440926E-04 must be stored in a 23 bit format

so the storage bit configuration becomes
1gm --> 00000000001011100010101

which means that we have actually stored a number whose magnitude
is lesser than 7.04440926E-04 and in fact the value of lgm actually
represented is 7.04407692E-04. This is the truncation error due to

the limited storage bit length as mentioned in (b).
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Now we have to convert lgm value represented in LNS format to m
value in FLP format. Errors those may be contributed in stage (1)
have been accumulated and our next job is to calculate the total

error that may be accumulated at stage (2).

We next perform the LNS to FLP conversion process. The value of
Am = 8.2664548E-08. So the value of m’ becomes

m’ = base value of antilg(lgm) + am * multiplier
m’ = 3.385080526823E-04 + 8.2664548E-08*1813
m’ = 4.883788728E—04

Now we are stage (2).and error (¢) has been generated. The type of

this error can be compared with that produced in (a).

The value of m’ as stored in a 23 bit format gives us the exact
value of m’ and here the error at source {d) has been generated. If

we store m'’ in a 23 bit format, then

00000000001000000000000
4.,8828125125E-04

mf

il

. 80 the conversion error is

m - m' (4.884004593 - 4.8828125125) * E-04

1.192093E-07

Therefore for 10000 random numbers generated the accumulated error
can be as high as 1.1921E-07%10000 = 0.0011921. This result is well
compatible with table 4-6.

Other sources of error can be due to the limited representation of

the base values of m and lg(m) which we have neglected during our

simulation process.
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6.2 Speed improvement

The most important point of switching to LNS system over the
pfesent established form of FLP system is its speed improvement. As
the LNS operations are done mainly in addition/subtraction a very
fagt adder is the most desirable criterion of a, viable LNS

processor.

Unit gate delay ( a ) of 3 nanosecond (ns) is achievable with
readily available commercial TTL chips [11] so the total add time
for the 32 bit adder is 24 ns [12]. Using commercial available
technology the achievement of 12 ns CLA add time [1] has been also
reported which is the outcome of using faster ISL ( Integrated

Schottky Logic) that gives us unit gate delay of 1.5 ns[1].

For speed improvemént a fast ROM is essential. TTL ROM has a
typical access time of 150 ns [11] which is not fast enough. ISL
ROM gives us a delay of 20 ns [1] so that a 32 bit multiplication
speed improvement in LNS system is approximately (200 : 20+10+20)
4 : 1. A division - process 1is 5-10 times slower than
multiplication even on coprocessors. As LNS multiplication and
division process takes the same period of time 20 : 1 speed
improvement is expected under LNS system. For sguare and square-

roots an improvement of 20 : 1 has been reported [1].

6.3 Application

Evaluation of trigonometrical functions are also well suited under
LNS environment. Bounded elementary functions e.g. sine, cose etc.
can be expressed in the form of an infinite power series. So we can

express

973 o5 o7
+
31 51 71
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that always converges for 0 = @ = 90°. Once e ( in radians ) is
calculated e°, o’ and others can be obtained by merely shifting the
bits. The divisor integers can be stored in the ROM table [12,13]

to perform the division process.

As LNS gsystem can perform multiplication/division ‘oriented
arithmetic operations much better than the FLP number system it has
significant advantage over other in multiplier intensive geometric

coordinate transformation and digital signal processing.

In geometric coordinate transformation scaling ( changing the size
of an image ) and rotation is done extensively [14]. If we like to
rotate a line between origin and a point P,(x,,v,} by an angle e so
that the new location of the lines is from the origin to a new
point P,{x,,y,}. To rotate the line to its new location we must have
to calculate the length of the line segment.and sine and cosine of

the angle e to form the rotation matrix [14].

The length of a line segment having end points between (0,0) and

(x,y) can be calculated by
L = (x2+yz )1/2
and the angles

sine

I
Ko
~ ~
o

cose

The operations like calculating the. length L can be done faster by
using LNS number system. To calculate L we proceed as follows.

At first convert x and y into LNS number system. x? and y? can be
made by merely shifting x and y by one bit to left. x* and y? are
passed through the antilogarithm process and added to the floating
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point adder/subtractor unit to get x* + y®. A further access to ROM
gives us the log base 2 of x? + y°® and a shift right by one bit
gives us the required length L in LNS system. To get the answer in

FLP system a further conversion from LNS to FLP is necessary.

Once the length L and sine and cosines of the angle 6 have been
calculated the rotation matrix can be constructed and it i1s post-
multiplied with the point P(x,y} which gives us the location of the

new coordinates of P. -

Suppose we wish to rotate the point P(3,2) counter clockwise by an

angle of 30 degrees. Then the rotation matrix will be

‘ 0.866 0.5

0.5 0.866
and the rotated point will be P(1.098, 2.232) as per

0.866 0.5 ,
= | 1.098 2.232 |
-0.5 0.866

In scaling transformation [14] we usually post multiply a point
P,=[x,, y;] by the transformation matrix. If the transformation
matrix is an unit matrix then there is no change in the size of the

image but the transformation matrix

will shrink the x co-ordinates to one-half of their original sizes. -

Similarly the transformation matrix
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will make all x coordinates twice as large as the old value.

Matrix multiplication is well suited under LNS environment and if
desired the conversion of the elements of the matrix can be done

during DMA transfer further enhancing the performance.

The well known compiex FFT algorithm is often used in most of the
digital signal processing area to do digital filtering or frequency
spectrum analysis. The FFT is implemented by recursive application

of the "butterfly”" equation t16].

X.lpl = X, 0pl + WX, [al,
Xplal = Xp,[pl + WX, (ql.

‘where WY, is the appropriate power of W i.e. W = e/ gand

Xm-1{pl, Xm(p-1], Xm-1[qg], Xm[g-1] are all complex numbers.

The most difficult for implementing the FFT is that instead of
real multiplication, complex multiplication are to be performed. A
complex multiplication such as W°X..,[lq] can be decomposed into four
real multiplications and two real additions which is well suited
under LNS gystem. It has been shown [31 that it takes up to eight
pipéline cycles to complete one butterfly cycle and the performance

improvement is 10:6 [3].

The LNS can also minimize computations when the transformation is

done as per the Cooley-Tukey FFT algorithm described in [171. The

Cooley-Tukey algorithm can be considered as a method of factoring --

N x N matrix by n nos. N x N matrices in such a way that the new

matrices reduces nos of complex multiplications and additions by
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suitably bringing- zero terms in the factored matrices. As an
example if a 4-point complex exponential W™ matrix is partitioned
into two factored matrices then a total 4 nos of complex
multiplications and 8 complex additions are to be performed for
each factored matrix. Each complex multiplication requires 4 nos.
of multiplications and 2 nos. of additions. According to our
multiplication addition speed gain ratio of 4:1, an overall speed

improvement of 2.5:1 is expected.
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CHAPTER 7

CONCLUSIONS AND SUGGESTIONS

7.1 Conclusions

So far we have seen that conversion from fLP to LNS and vice-versa
can be done with reasonable size of ROM, the size of which depends
on the prestated accuracy. The higher the accuracy, the bigger the
ROM is necessary. For example 16 Kwords (512 kbits, word size = 32
bit). of ROM is sufficient for one way conversion if the acCuracy
level is approximateiy 6.0E-08. This is applicable for 32 bit word
length. The requirement of ROM is very high (2528 Mbits, fig. 3-2)
when 64 bit word length is considered and the accuracy is equal to

the truncation error of 64 bit word length (2.22E-16).

The conversion from FLP to LNS numbers and vice-versa is
straightforward. The absolute value of maximum conversion error
produced is encouraging in both way conversion. A single number
conversion time may'be adequate but for numbers represented by
large mantissa, the time to find out the maximum conversion error
of all segments is prohibitively largée, however search in only one
segment is necessary to find. the maximum conversion error. A
shortcut method exists that will only calculate error at the
mid-points of each segment { as well as the difference ) which is
also linear maximum conversion error for that segment but for
non-linear technique larger search time is necessary than linear
method. However once difference ( algm or am ) for all the segments
are dgenerated conversion and anti-conversion can be done with many
choices ( table 4-6 ).
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The concept of non-linear correction is to find out a new value of
difference so that it will reduce the absolute magnitude éf MCE in
any segment. While doing this it has been found that a new value
of difference can produce the optimum value of MCE so that its
average magnitude is always less than that of the linear correction
method. In linear correction method the error always lies on one
side e.g. linear correction error for FLP to LNS conversion is
always positive so it always lies over the horizontal axis in the
error graph but non-linear correction factor ( difference )

produces both positive and negative error.

Shifting of error curve in the upper or lower direction by half of
its maximum value has been done by adding or subtracting an offset
value. This method gives the lowest accumulated error ( table 4-7 )
but reQuires one more adder and one more subtractor and the size of
the ROM have to be increased by at least 25% due to the storing of
segment .max_con_errcor. The difference of accumulated error obtained
by offset and that obtained by non linear - linear method is
negligible as may be seen in graphs 4-5 and 4-6. Non linear -
linear does not require additional hardware and increment of ROM
size 1is not necessary. However long'séarch time 1s necessary to

find out the non-linear value of difference { atleast for am).

The non_linear - non_linear correction may not be found effective:

when the ROM 1is large and the multiplication is performed on

numbers represented by fewer number -of bits. However when the
multiplication plays a much more significant part in the addition
process ( this means a small value of RAL and comparatively larger
value of ML ) non-linear conversion can improve overall conversion
process accuracy. The selection of non-linear correction gives us
more choice and hence the error produced in each conversion may be
selected in such a way that they can be compensating at least
partially. It has been found in table 4-4 and 4-6 that while
converting LNS to FLP, the use of linear correction factor has some

self compensating effect. The self compensating effect may further
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be increaéed by pre-multiplying the difference by a suitable
compensation factor ( CF ) and then performing the multiplication
process. In general the use of linear and non-linear corfection
factor in each stage may lead us to many combinations so that the

best choice can be selected.

. The application of non—linear correction factor obviously reduces
total conversion error for one way conversion as we have seen in
table 4-5. While we converted x into log,x and then reconvert log,x
into x, we noted in table 4-6 that non-linear conversion still
reduces the accumulated error. The accumulated error difference has

increased in table 4-7 due to the multiplication effect.

The embedding of correction factors in different registers can be
very effective in reducing the size of ROM when some lower level of
accuracy is acceptable as we have seen in article 3.5. This method
also reduces conversion time that makes the overall process much
faster. Limited multiplication can be also promising as explained
in the same article. In fact tables 3-1,3-2 and 3-5 all have been
generated on limited multiplication mode which reduires smaller ROM
sizes. ROM conversion tables may also lead to some ROM reduction.
Table 3-1,3-2 indicates that m-1lg{m) and lgm-antilg(lgm} have the
same bit at the msb position. Therefore the msb from 1g(m) in table
3-1 and from antilg(lgm) in table 3-2 can be dropped.

The accuracy of the conversion depends on the storage bit capacity
and due to this reason the accuracy as achieved by using limited
‘hardware multiplier ( table 3-1 and tableé 3-2 ) is much less than
software simulation results. The ROM access time can also become a
major stumbling block in developing LNS system. Typical TTL devices
are not fast encugh for LNS to FLP and FLP to LNS conveérsion but
much faster devices of ISL famiiy can make the LNS processor a
practical device. An alternate choice can ECL family chips which

can give a unit gate delay of less than 1 ns [12,13].
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The complete contents of the ROM for any value of RAL and ML can be
printed out at any time. We do not include the complete contents to

avold excessive volume.

While we progressed through our work we have noted that the Turbo
C compiler ver. 2.0 from Borland does produce unreliable log,m - m
conversion results when the value of log,m is very small (e.g. RAL
26 ML 40). This produced lot of trouble in evaluating the correct

results but we continued.

7.2'Suggestions for further research

The result of -any - arithmetic . operation { e.g.
multiplication/division} using random numbers of double precision
FLP number and the corresponding converted LNS numbers is to be
~studied. This may be conveniently done by generating necessary data
for all segments and first storing them on a hard disk and then
recalling the data for the particular segment for which the random
number has been generated. In this thesis data have been generated
and tested through arithmetic simulation up to 23 bit mantissa
length ( IEEE single precision. FLP number ) and ‘noted that
generation of necessary of data for higher mantissa length
requires very long time. Therefore access to a very fast computing

system is essential.

As we have mentioned in article 4.4 that accumulation of truncation
error contributes a large portion of the accumulated error.
Therefore, suitable method is to be investigated that reduces the
effect of truncation error. Use of CF as explained in article 4.5
can reduce the effect of truncation error but it should be
carefully investigated that after pre-multiplying the difference by
the CF ( whose value is very close to unity ) how much improvement
is achievable when the augmented difference is stored in a limited

bit storage. The effect of truncation can be minimized by storing
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lgm in a longer bit sequence. As may be seen in article 4.2, the
numbers 2.07557724E-04 and 2.075620782E-04 have different storage
bit value beginning from 26th bit position which means that lgm
obtained after applying non_linear.corfection factor can return a
higher value of multiplier which can also lead to partial

compensation. - : ‘

Memory reguirement for 64 bit conversion is very high. A suitable
method is to be invented so that the memory requirement reduces to

an acceptable level.

While doing addition and subtraction hsing LNS numbers, although
we have found that Taylor’s first order approximation greatly
reduces memory reguirement, still the memory requirement is large
particularly when the accuracy level is less than IEEE single
ﬁrecision number system. Further study is necessary so that
logarithmic addition and subtraction can be done with smaller size

memory without reducing the accuracy level.

Interleaved memory interpolators that uses a ROM [18] "shows an
~arithmetic unit with worst case relative error better than the
worst case relative error of single pfecision FLP number. This
should be further studied for performing LNS addition and

subtraction with a small ROM size.
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APPENDTX
PROGRAMS
This Appendix lists two programs i.e. m_lgm.c and lgm m.c those

are mentioned in the text of the preceding chapters. A large number

of other programs have been also written but not mentioned in this

Appendix for the sake of volume.
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/* m_lgm.c */

/* converts FLP numbers to LNS numbers. The FLP number is assumed to
represented in IEEE format of which the representation of the mantissa
portion is controlled by the ML. To convert FLP mantissa to 1its
corresponding LNS mantissa help of a ROM table should be taken, no of
address bits of which are indicated by the RAL . To perform the FLP to
LNS conversion using linear correction factor we have to set the RAL
for ROM portion of the mantissa and the ML to represent the mantissa
portion of the floating point number. If we want to limit the
multiplicand bit length DL should be set accordingly, . otherwise a
setting between 32-42 is adequate. The effect of the wmultiplicand bit
length can be observed by selecting the second choice from the main
menu. Linear search may not produce the optimum value of maximum
conversion error in each segment so the third choice should be selected
to find the absolute value of the MCE in each segment by non linear
method. Selection 4 will produce the same result of 3 except that the
search in any segment ( count no. represents the segment no. ) can be
done selectively. Selection 5 represents simulation with ROM without
any multiplicatioh for correction. $Selection 6 to guit the program.
*/

#include <stdio.h>

#include <conio.h>

#include <math.h>

#define RAL 20 - /* msb covered in the ROM,max. value=31 */
#define ML 35 /* maximum length of binary bits */
#define DL 40 /* multiplicand bit length */

#define HIGH VALUE 7 /* limits no of choices */
#define MAXVAL (unsigned long)pow(2.0, (double)RAL)
#idefine CONSTANT 1.0/pow{2.0, (double)RAL)

#define FACTOR CONSTANT/pow(2.0, (double) (ML - RAL))
#define DIVIDEND pow{2.0, (double) (ML - RAL))
#idefine MULTIPLIER pow (2.0, {double) (ML - RAL - 1))
#idefine ALLOWED 1 .

#define NOT_ALLOWED 0

struct
double m_initialj;
double 1g m initial;
double difference;
float max_con_error;
~double m;

} segment;

struct |
double m;
double I1gm;
} new, old;

int choice, disp count = 0;

unsigned long count;

double difference = 0.0, ideal difference, increment, at m;
double max_con error = 0.0; B
char bin_m[ML+1], bin_difference[DL+1];

void basic_difference error();
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void mid value error();
double modlfy dlfference { double wvalue };

void lin_int_values {double new _m, double old m,
void non lin int _values {double new -~ m,
void optlmum “difference _error ();
- veid find binary ¢ char *ptr, double value,
void rom_only () ;
Tain()
do {
p'thS (un)‘.
puts ("1
puts ("2 -
puts ("3 - ]
puts ("4 - Interactive versgion");
puts ("5 - Simulation with ROM
puts ("6 - Quit");
puts ("7 - Only mid values - a short
puts (ll II);

printf("%s",
scanf ("%d", &chcice) ;
?witch {(choice)

case 1

case 2 clrscr{}; )
disp count = 0;
max con_error = 0.0;
old.m = old.1lgm = 0.0;
increment = CONSTANT;
for ( count = 0;
basic_difference error{();
break:

old.m = old.1lgm =
increment = CONSTANT;
printf ("\nm initial
printf (" difference
for { count = 0;

case 3 0.0;

basic_difference error {();

double old m,

"Press the key of ch01ce...

count < MAXVAL;

count < MAXVAL;

double old lgm) ;
double old lgm),

int n);

- Linear difference without the effect of DL setting "} ;
Linedr difference with DL setting effective");
Simulation with non-linear correction factor");

without multiplication");

cut attempt");

")

count++ )

l1gm initial ") ;
max_con_error\n\n") ;
count++ }

optimum_differenge_error ();

n)

max_con error\n\n")

break;

case 4 printf ("Enter count no: "“};
scanf ("%1ld", &count) ;
increment = CONSTANT * {count + 1);
old.m = increment - CONSTANT;
old.1lgm = log { 1.0 + old.m}/log(2.0);
printf ("\nm initial 1gm_initial
printf (" difference
for ( ; count < MAXVAL ; count++)

basic_difference_error();
optimum_ difference_error(};

break;
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case 5 : rom_only();
break;
case 6 : break;
case 7 : midﬂvalue_error();

break;
default: puts ("Bad choice"};
break; g

} /* end of switch */

if { choice >= 1 && choice ‘<= HIGH VALUE ) continue;

printf ("Only 1 through %d are permitted\n",HIGH VALUE);
} while ( choice != 6 );

}

void basic difference error ()

{

segment.m_initial = old.m;

segment.lg m_initial = old.lgm;

new.m = increment;

new.lgm = log{(l1.0 + new.m)/log(2.0) ;"

difference = (new.lgm - old.lgm)/DIVIDEND;

if. { choice == 2}

difference = modify difference ( dlfference)

segment .difference = difference;

if ( choice == 3 || choice == 4 )
non_lin int_ values {new.m, old.m, old.lgm);
else lin_int_values (new.m, old.m, old.lgm);

old.m = new.m;
old.lgm = new.lgm;
increment += CONSTANT;

void mid_value_error ()
unsigned long mul factor = MULTIPLIER;
double mid_m, high value, low value, 1lg ; mld _m, add factor;

double error, max con_error = 0.0, temp max_con_error = 0.0;

increment = CONSTANT;
old.m = old.lgm = 0.0;

clrscr () ; .

for { count = 0; count < MAXVAL; count++ )
segment.m initial = old.m;
segment.1lg m initial = old.lgm;
new.m = increment;
new.lgm = log{(1.0 + new.m)/log(2.0);
difference = (new.lgm - old. lgm)/DIVIDEND;
mid m = (old.m + new.m)/2.0;

lg mid m = log(1.0 + mld_m)/log(z.o);

add_factor = difference * mul_factor;

temp_max_con_error = 1lg mid m - (old.lgm + add factor);
%f ( temp_max_con_error > max_cCoOn_error } - '
max_con_error = temp_max Con_error;

gotoxy (8,5) ; )

printf ("Max. error =%E occurred at %18.18Bf", max_con_error,mid_m);

/* now check higher and lower side to confirm that no other value */
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/* higher or lower than the middle value produces higher error */
/* first checking the lower side */

low _value = mid m - FACTOR; .

lg mid m = log(1.0 + low value)/log(2.0);

add_factor -= difference;

error = 1lg mid m - ( old.lgm + add factor );

if ( error > temp_max_con_error ) {
gotoxy(8,7);

printf ("Max. error =%E",temp max_con_error) ;
gotoxy (8,8) ; : , .
printf ("Error produced at lower side =%E",error);

/* now checking the higher side */

high value = mid m + FACTOR;

lg mid m = log{(1.0 + high value)/log(2.0);

add_factor += 2.0*difference; .

error = lg mid m - ( old.lgm + add factor );

if ( error > temp_max con error )
gotoxy({8,7);
printf("Max. error =%E",temp_max con_error) ;
gotoxy(8,8);

| printf ("Error produced at higher side =%E",error) ;

disp count++;

if ( disp_count == 500} {

gotoxy{20,3);

printf ("%10.10f", mid m) ;

disp_count = 0; }

old.m = new.m;
old.lgm = new.lgm;
increment += CONSTANT;
}
}
double modify difference ( double value )

/* stores a real number < 1.0 in a n-bit binary field and */
/* recalculates its real value based on its n-bit length */

int modify count = 0, no_left shift = 0;
double addend = 0.5; -
char *cptr; '
. Cptr = &bin difference[0];
/* find the first occurrence of 1’ and discard all the leading ‘0’'s */

while ( value <= 0.5 ) |
value += value;
no left shift++; }

while ( modify count < DL )

value += value;
if ( value >= 1.0 ){
*cptr = '1';

[ el
=~ -

modify count++;
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*cptr = "A\x0’; -
/* recalculate the value of difference based on storage bit length */
cptr = &bin differencel0];

value = 0.0;
do {
if { *cptr == "1’ } {

value += addend;
addend *= 0.5; )}
else addend *= 0.5;
CpLr++;
} while ( *cptr 1= ’\x0’);
/* make necessary right shifts i.e. division */
value = value / pow (2.0, {double) {no_left shift)};
return ( value );

void lin_int_values {(double new_m, double old m, double old lgm)
/* generate all values those can be fully represented by */
/* ML within one segment */
{ double l1g_old m, mul_factor, error = 0.0, add factor = 0.0;
char *cptr; -
while (o0ld m < new m)

0ld m +=. FACTOR;

lg old m = log(1.0 + old m)/log{2.0);
find_binary ( &bin m{[0], old m, ML );
Ccptr = &bin m[RAL]; '
mul factor = MULTIPLIER;

do {

if (*cptr == "17) add_factor += difference * mul factor;
*cptr++;
mul_factor = mul factor/2.0;
} while (*cptr 1= "\x0');
if (add_factor == 0.0 || old m == 1.0)
.add_factor = difference * DIVIDEND;
error = lg _old_m - (old_lgm + add_factor);

if ( error > max _con_error )

max_con_error = error;-
at_m = old m;,;
gotoxy (8,5} ;
printf ("Max. error =%E occurred at $18.18f", max_con_error,at_m};

disp_count++; :
if ( disp_count == 1000 )

gotoxy (8,7} ;
printf("scanning %18.18f and above with error=%E",0ld m,error) ;
disp_count -= 0; '

add factor = 0.0;

double get _error (double m, double log2m, double differ);
/* function local to non_lin_int values function */
void non_lin_int_values (double new m, double old_m, double old lgm)
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float error,
double at_m;

while { old m < new m)

old m += FACTOR;

error get_error {old_m,
if { fabs(error)
temp max con error
at m old m;

error;

Segment .max_con_error
segment.m at m;
printf ("%15.15f %15.15f %15.1

old 1lgm,
> temp_max_

temp_max con error= (.0;

segment .difference});
con_error)

}

temp max_ comn_error;

5f $+E\n",segment.m initial,

segment.lg_m initial, segment.difference, segment, max_con_error);

double find ideal dlfference { double m };
/* function local to optimum_difference error function */

void optimum difference .error ()

/* calculates the new value of segment. difference that produces */

/* the lowest absolute value of the segment. max_con_error

float error,
float left new _con_error,
double temp new_seg _m;

double old_m, old_lgm, new_m;

temp new_con_ error
right new con error;

*/

0.0;

double low end dlfference, “mid _difference, high end difference;

double left ideal difference, right _ideal difference;
double left new seg m, right new_seg m;

unsigned char left_search, -right search;

left“search = right search = ALLOWED;

old m = segment.m initial;

old _lgm = log{ 1.0 + old m )/log(2.0);

new m = old m + CONSTANT;

ideal_difference

find_ideal_difference ( segment.m ) ;

while (o0ld m < new_m)
0ld m += FACTOR;
error = get_error (old m, old lgm ideal difference);
if ( fabs{error) > fabs(temp new con error)) {
temp new con _error = error;
temp_new_seg m = old_m; }
} /* while (old m < new m) */

if ( fabs{temp new con error)

/* here ideal difference cannot produce a value of temp max_con_error */ .-
/* that is less than segment.max con erro.

/* ideal_difference is the higher si
puts(“ERROR") exit(0);

low_end difference
mid_difference
high end difference

{

< segment.max con _error)

In fact the value of the
de limit in the search procedure

segment .difference;
ideal difference;
ideal_difference;
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left new_con_error = gegment.max_con_error;

right new con error = segment.maX con_error;
if ( fabs(temp new con error) > segment.maX_con_error &&
temp new _con_error < 0.0 ) ‘right search = NOT  ALLOWED;
else

puts ("Algorithm don’ t con81der such 51tuatlon for swing."):
exitc (0} ;
while (left search == ALLOWED || right_search == ALLOWED)

{

if { right search )

{

temp new con error = 0.0;
ideal dlfference = (mld dlfference + high end dlfference)/2.0;

rlght ideal_difference = ideal dlfference,
old m = segment.m initial;
. old _lgm = log (1. 0 + old m)/log 2.0);
new m = old m + CONSTANT;

while ( old_m < new_m )

old m += FACTOR;
error = get_error (old_m, old_lgm, ideal difference);

if ( fabs{error) > fabs(temp new con _error)) |
temp new con_error = error;
temp new seg m = old m; -}
} /* while */ -
rlght new_con_error = temp _new_con_error;

right new_seg m = temp new_seg m;
} /* 1if ( right search™) *]
if ( left_search )

temp new con error = 0.0;

ideal_difference = (low_ end difference + mid difference)/2.0;
left ideal _difference = ideal _difference;

old m = segment.m initial;

0ld_1lgm = log( 1.0 + old m }/log{ 2.0 );

new m = old m + CONSTANT; .

while ( old m < new_m )

{

old m += FACTOR;
error = get_error (old m, old lgm, ideal difference};

if { fabs(error) > fabs(temp new_con_error)) |
temp_new Con_error = error;
temp new seg m = old m; }
} /* while *7 -
left_new_con_error = temp_new_con_error;

left new _seg_m = temp new_seg m;
} /* if left _search() */

if (fabs{left_new_con_error) >= segment.max con_error

_ && left_new_con _error < 0.0 )} {
right_search = NOT ALLOWED
left _search = ALLOWED

mid_difference = left_ 1dea1 difference; }
else if (fabs{left new con error) < fabs(right_new_con_error)
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&& fabs(left new con_error) < fabs{segment.max_con error)) {
segment .difference = left ideal difference;
segment .max_con_error = left_new_con_error,
segment.m = left new seg m;
left search = rlght search = ALLOWED;
high end difference = mid difference;
mid difference = left ideal dlfference 1
else if (fabs (right_ new con error) < fabs(left new_con_error)
&& fabs{right new con error) < fabs{segment.max_con error)){
segment .difference = rlght ideal difference;
Segment .max_ con_error = rlght_new_con_error
segment.m = right new_seg m;
left search = rlght search = ALLOWED;
low end difference = mid _difference;
mid difference = rlght ideal difference; -  }
else 1f(fabs(r1ght new_con error) > fabs (segment.max con error)
&& fabs{left new con_error) > fabs(segment.max con 1_error) ) {
right_search = NOT ALLOWED;
left search = NOT ALLOWED; |}

else .
puts{"we don’t consider such situation in flow-control"};
exit (0); )}

} /* while ( right_ search |l left search == ALLOWED )} */

printf ("%15.15f %15.15f %15.15f %+E\n\n", segment. m _initial,
segment.lg m initial, segment.difference, segment. max con error),
putch({’'\a’};

} /* optimum difference error */

double find_ideal_difference ( double m ).

/* calculates a new value of difference that turn the */
/* segment .max_con_error into zero as calculated in */
/* the nen _ 11n int values function */

int divisor = 0, add_factor;
double 1lgm;
char *cptr;

add factor = (long)pow(2.0, (double) (ML - RAL})/2.0;
find_binary (bin m, m, ML); .
cptr = &bin m[RAL] ;

do
if ( *cptr == ‘1’ ) divisor += add factor;
*CpLTr++; -
add_factor = add_factor/z.o;
while ( *cptr != ‘\x0’);
lgm = log( 1.0 + { m - FACTOR*divisor ))/log(2 0);
ideal difference = ( log{ 1.0 + m )/log(2.0) - lgm)/divisor;
return ( ideal difference );

)

double get_error {(double m,double log2m,double differ)

/* accepts a real value 0.0 < m < 1.0 and calculates its base * /
/* 2 logarithm value, correction factor is added with the base */
/* logarithm value and the error is calculated */
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static double temp lgm;
double multiplier, deviation, add_factor = 0.0;

char *cptr;

difference = differ;

temp_lgm = log (1.0 + m)/log({2.0);
find binary(bin_m, m, ML) ;

cptr = &bin m{RAL];

multiplier = MULTIPLIER;

do
if ( *¢ptr == '1°7)
add_factor += difference * multiplier;
*optr++;
multiplier = multiplier/2.0;
} while { *cptr != ‘\x0'); :
if { add_factor == 0.0 }| m == 1.0)

add_factor = difference * DIVIDEND;
deviation = temp_lgm -{lég2m + add_factor);
return { deviation };

)

void find binary (char *ptr, double value, int n)
/* accepts a real value < 1.0 and generates */
/* its n-bit binary representation */

int in_count = 0;
while (in_count < n)

value += value;
if (value »= 1.0) {

*ptr = '17;

value -= 1.0; }
else

*ptr = ‘0’ ;
PEr++;

in_count++;

*ptr = \x0’;

)

void rom_only () ,

/* simulation of FLP to LNS conversion using only ROM */
/* the ROM capacity is to be determined by RAL */

/* neglect the values of ML and DL */

int ec=0;

double increment = 1.0/pow(2.0, (double)RAL) ;
double m = 0.0, next m, mid _value; ‘
double error, max con _error = 0.0, at_m;

double 1g _m, lg_next m, 1lg mid value;

clrscr () ;
do

{

next m = m + increment;
mid_value = (m + next m)/2.0;
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lg next m = log(l + next m)/log{2.0);
1lg mid value = log{ 1.0 + mid value ) / log{2.0);
error = 1lg next m - lg mid value;
if ( error > max con_error ) {
max_con_error = error;
at_m = mid_value;
gotoxy(8,5) ;

printf ("Max. error =%E occurred at %¥18.18f", max con _error,at_m) ;

C++;
if (¢ == 5000} {
gotoxy(8,7);
printf ("scanning %18.18f and above with error =%E",
’ mid value,error);
¢ = 0; }
m = m + increment;
} while (m < 1.0 );
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/* lgm m.c */

/* converts LNS numbers to FLP numbers. The LNS number is assumed to
represented in IEEE format of which the representation of the mantissa
portion is controlled by ML. To convert LNS mantissa to its
corresponding FLP mantissa we take the help of a ROM table, no of
address bits of which are indicated by the RAL . To perform the LNS to

FLP conversion using linear correction factor we have to set. the RAL ..

for ROM portion of the mantissa and the ML to represent the mantissa
portion of the floating point number. If we want to 1limit the
multiplicand bit length DL should be set accordingly, otherwise a
setting between 32-42 is adequate. The effect of the multiplicand bit
length can be observed by selecting the second choice from the main
menu. Linear search may not produce the optimum value of maximum
conversion error in each segment so the third choice should be selected
to find the absolute value of the MCE in each segment produced by
non_linear method. Selection 4 will produce the same result of 3 except
that the search in any segment { count no. represents the segment no.)
can be done selectively. Selection 5 represents simulation with ROM
without any multiplication for correction. Selection 6 to quit the
program. */

#include <stdio.h>

#include <conio.h>

#include <math.hs>

#define RAL 25 /* msb covered in the ROM */
#define ML 37 /* maximum length of binary bits */
#define DL 40 - /* multiplicand bit length */

fidefine HIGH VALUE 8 /* limits no of choices */
#define MAXVAL (unsigned long)pow(2.0, (double)RAL)
#define CONSTANT 1.0/pow(2. 0,(double)RAL)

ffdefine FACTOR CONSTANT/pow (2.0, (double) (ML - RAL))
#define DIVIDEND pow(2.0, (double) (ML - RAL))
#define MULTIPLIER pow{2.0, (double) { ML - RAL -1))
#define” ALLOWED 1

#define NOT ALLOWED O

struct {
double 1gm initial;
double antilg_lgm_ 1n1t1a1
double difference;
float max_con_error;
double 1gm;
} segment;

static struct {
double 1lgm;
double m;
} new,old;

int choice, disp count = 0;

unsigned long count;

double difference = 0.0, ideal difference, increment, at lgm;
double max_con_error = 0.0;

char bin_lgm[ML+1}, bin difference[DL+1];

void basic_difference error();

116



void

reverse basic dlfference _error(};

double modify difference { double value );

void
void
void
void
void
void

lin int_values -{ double new_lgm, double old 1lgm, double old m );
reverse_int values (double new lgm,double old lgm,double old m);
non_lin_int values (double new lgm,double old lgm,double old m),
optimum_ difference error();

find binary ( char *ptr, double value, int n };

rom_only({};

main ()

do {
PUtS(""),‘ .
puts ("1l - Linear difference without the effect of DL setting");
puts ("2 - Linear difference with DL setting effective"};
puts ("3 - Simulation with non-linear correction factor");
puts{"4 - Interactive version");
puts ("5 - Simulation with ROM without multiplication");
puts ("6 - Quit");

/* In fact selection 7 and 8 do the same function of items 1 and 2
respectively but instead of starting from the lowest segment { no

0

} number, selection 7 and 8 begins from the highest segment
no. to accelerate the process of finding the max. conversion error */

puts ("7 - Linear dlfference without the effect of DL setting
(1-0)");
puts ("8 - Linear difference with DL setting effective (1-0)");
putS(" u)
prlntf("Press the key of ch01ce ") ;
scanf {"%d", &choice) ;
switch ( choice )
{
case 1
case 2 : clrscr(};
max con_error = 0.0;
cld.lgm = old.m = O.
increment = CONSTANT;

0;

for ( count = 0; count < MAXVAL; count++ )
basic_difference error();
break;

case 3 : old.lgm = old.m = 0.0;
increment = CONSTANT;
printf ("\nRAL = %d4",RAL) ;
printf{(" ML = %d\n",ML);
printf ("\nlgm initial - © antilg_lgm_initial ");
printf(" difference max_con_error\n\n") ;
for ( count =0; count < MAXVAL; count++)
basic difference error ();
optlmum difference error(),

break; - .

case 4 : printf{ "Enter count no: "};
scanf {"%1d", &count) ;
increment = CONSTANT * ( count + 1)};
old.lgm = increment - CONSTANT;
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old.m = pow(2.0, old.lgm) - 1.90;

printf ("\nlgm_initial antilg lgm_initial ");
printf (*difference max_con_error\n\n") ;

for ( ; count < MAXVAL; count++ }

basic_difference_error(};
optimum_difference_ error();

)

break;

case 5 : rom only();
break;

case 6 : break;

case 7 :°

case 8 clrscr{};

-max_con_error = 0.0;
old.lgm = old.m = 1.0;
increment = 1.0 - CONSTANT;
reverse_basic_difference error();
break;

default: puts{"Bad choice");
break;

} /* end of switech */ _

if ( choice »= 1 && choice <= HIGH VALUE ) continue;

printf({ "Only 1 through %d are permitted",HIGH VALUE);
} while ( choice != 6 );

J

void basic_difference error ()

segment.lgm_initial = old.lgm;
segment.antilg 1lgm initial = old.m;
new.lgm = increment;

new.m = pow(2.0,new.lgm) - 1.0;
difference = {(new.m - old.m)/DIVIDEND; o
if ( choice == 2 ) difference = modify difference ( difference );
segment .difference = difference;
if ( choice == 3 || choice == 4) g
non_lin_int_values { new.lgm, old.lgm, old.m);
else lin_int values { new.lgm, old.lgm, old.m);

'old.lgm = new.lgm;
old.m = new.m;
increment += CONSTANT;

void reverse_basic_difference error()

clrscr();
for (count = MAXVAL -~ 1; {count >= 0) && {(count < MAXVAL); count--) N

new.lgm = increment;

hew.m = pow(2.0,new.lgm) - 1.0;

difference=(0old.m - new.m)/DIVIDEND;

if ( choice == 8 ) difference = modify difference (difference);

reverse_int values (new.lgm, old.lgm, new.m);
0ld.lgm = new.lgm;
old.m = new.m;
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increment -= CONSTANT;

}

double modify difference ( double value )

/* stores a real value < 1.0 in a n-bit blnary field and
recalculates its real value based on its n bit length */

{

int modify count = 0, no_left shift =0;
double addend = 0.5;
char *cptr;

cptr = &bin difference[0];
/* find the first occurrence of ‘1’ and discard the leading '0's */
while ( value < 0.5)

value += value;
no_left shift++;

while ( modify count < DL )

{

value += value;
if { value >= 1.0 ) {

cCptr++;
modify count+s;

*cptr = ‘\x0’;
/* recalculate the value of the difference based on storage bit length
*/

cptr = &bin dlfference[o]

value = 0.0;
do {
if { *eptr == 71 ) {

value += addend;
addend *= 0.5; }
else addend *= 0.5;
Cptr++; '
} while ( *cptr = ‘\x0’ };
/* make necessary right_shift i.e. division */
value = value / pow( 2.0, (double) (no_left_shift));
return { value );

}

void lin int_values { double new;lgm, double old 1lgm, double old m)

double antilg old lgm, mul _factor, error = 0.0, add factor = 0.0;
char *cptr; .
while (old 1lgm < new_lgm)

old_1gm += FACTOR; ' :
antllg 0ld_1gm = pow(2.0,0ld 1lgm) - 1.0;

find binary(&bin lgm[0], old _lgm, ML);
cptr = &bin_1lgm[RAL] ;
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mul factor = MULTIPLIER; ' ' 'f
do { ' : , rq.

if (*cptr == '1') add_factor += difference * mul factor;
*optr++; ) ’
mul_factor = mul_factor/2.0;

} while (*cptr != "\x0');

if (add _factor == 0.0 || old lgm == 1.0)
add_factor = difference * DIVIDEND;
error = antilg_old lgm - {old m + add factor) ;
if ( fabs(error) > fabs{max _con_error) ) ({
max_con_error = error; '
at_lgm = old lgm;
"gotoxy (8,5} ;
printf ("Max. error =%E occurred at %¥18.18£f",

max_con_error,at_lgm); }

)

disp count++;
if ( disp_count == 5000 ) {
gotoxy (8,7);
prlntf("scannlng%le 18fandabovewutherror $E",0ld lgm,error};
disp_count = 0;
add_factor = 0.0;

void reverse_int_valueé (double new_lgm, double old_lgm, double new _m)

double antilg _old 1lgm, mul_factor, error = 0.0, add_factor = 0.0;
char *cptr; :
while (old_lgm > new_lgm)

old_lgm -= FACTOR;
antllg old 1lgm = pow(2 0,0ld_lgm) - 1.0;
flnd_blnary(&bln_lgm[o], old _lgm, ML} ;
c¢ptr = &bin 1gm[RAL];

mul factor = MULTIPLIER;

do |
if (*cptr == "17) add_factor += difference * mul factor;
*cptr++; )
mul factor = mul factor/2.0;
} while ({(*cptr != "\x0’);
if (add factor == 0.0 || old 1lgm == 0.0) add factor = 0.0;
error = antilg_old_lgm - (new_m + add_factor});
if ( fabs(error} > fabs(max con_error) )

max_Con_error = error;
at_lgm = old lgm;
gotoxy(8,5) ;

printf ("Max.error _%E occurred at %18.18f",max _con_error,at lgm) }

~ disp count++;

if ( disp_count == 5000 ) {
gotoxy (8,7); '
prlntf(“scannlng%ls 15f and below with error=%E",0ld_lgm,error} ;
disp count = 0; }
add_factor = 0.0;
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double get error .{ double lgm, double anti_lgm, double differ });
void non_lin_int values {(double new_lgm,double old lgm,double old_m}

float error, temp_max_con_error = 0.0;
double at 1gm;

while ( old lgm < new_lgm)

old 1lgm += FACTOR; :
error = get_error { old 1lgm, old m, segment.difference);

if ( fabs(error) > fabs({temp max_con error)) |{
temp_max_con_error = error;
“at_lgm = old lgm; )

} .
segment .max_con_error. = temp max_con_error;
segment.lgm = at lgm;
printf ("%15.15f %15.15f %15.15f %+E\n",segment.lgm_initial,
segment .antilg lgm initial,
segment .difference, segment.max con_error);

}

double find ideal difference ( double lgm ),
void optlmum difference _error ()

{

float error, temp _new con error = 0.0;
float left new_con_error, right new con _error;
double temp new_seg_lgm;

double old_lgm, old m, new_lgm;
double low end dlfference, “mid _difference, high_end difference;

double left ideal _difference, rlght ideal difference;
double left new _seg_lgm, right new _seg 1lgm;
unsigned char left search, rlght_search_

left search = right search = ALLOWED;

old_lgm = segment.lgm initial;

old m = pow(2.0, old 1gm} - 1.0;

new_lgm = old lgm + CONSTANT;

ideal_difference = find_ideal_difference ( segment.lgm )i
while (old lgm < new_lgm)

old _1gm += FACTOR;
error = get_error ( old 1lgm, old m, ideal_difference);

if ( fabs({error) »> fabs {temp . new_con _error))
temp_new_con_error = error;
temp_new seg _lgm = old lgm; }
/* while (old lgm < new_lgm) */

1f ( fabs(temp_new_con_error) < fabs(segment.max con error)) {
puts ("ERROR"} ;
exit (0);}

if ( fabs{temp_new_con_error) > fabs(segment.max_con_error)
&& temp _new con_error > 0.0 } left search = NOT ALLOWED;
else

puts ("Algorithm don’t consider such situation for swing."};
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exit (0); }
low_end_difference =

.mid difference ='ide

high_end difference
left new_con_error =
right _new con_error
while (left search =
if ( right_search

temp_new con_error
ideal difference =

ideal difference;

al _difference;

= segment .difference;
segment .max_con_error;
= segment.max con_error;

= ALLOWED || right_search == ALLOWED)

)

= 0.0;
(mid_difference + high end difference) /2.07;

right_ideal difference = ideal difference;
old _lgm = segment.lgm initial; .
old m = pow(2.0, old 1lgm) - 1.0;

new_lgm = old 1lgm + CONSTANT;

"while ( 0old 1gm < new_lgm )

{

old_lgm += FACTOR;
error = get _error ( old _1lgm, old m, ideal difference );

if ( fabs (eTrror)

> fabs(temp new con error)) {

temp new con error = error;
temp new seg lgm = old_lgm; }

} /* while */

rlght hew_con_error = temp_new _con_error;
right new seg lgm = temp new _seg_lgm;
} /* if { right search j */

if { left search )

{

temp_newﬁcon_error = 0.0;

ideal difference

= (low_end difference + mid difference) /2.0;

left_ideal difference = ideal difference;
0old 1gm = segment.lgm initial’;

old m = pow(2.0,

old Igm) - 1.0;

new lgm = old lgm + CONSTANT;

while ( old_lgm < new_lgm )

0ld_1lgm += FACTOR;
error = get_error { old_lgm, old m, ideal difference );

if fabs(error)

> fabs(temp new con error)) {

temp new con_error = error;
temp new_seg lgm = old_lgm; }

} /* while */
left _new_con_error
left new _seqg_ “lgm =

= temp_new_con_error;
temp new_seg_ 1gm;

} /* if left search() =*/

if (fabs{right_new_con_error) »= segment.max_con error

&&
left search = NO
right search =
mid_difference =

rlght new_con_error > 0. 0 )
T_ALLOWED;
ALLOWED
right_ideal_difference; }

122



else if (fabs(left new con error) < fabs(right_new con_error)
i && fabs(left new_ con error) < fabs (segment.max con error)){
. : . 'segment.difference = left ideal difference;
: segment.max_con_error = left _Ilew_Con_error;
segment.lgm = left new seg lgm;
high end difference = m1d difference;
mid difference = left ideal dlfference,
left search = right search = ALLOWED; }

else if (fabs{right_new_con_error) < fabs(left new con_error)
&& fabs{right new con error) < fabs(segment.max con_error)) {
segment .difference = right_ideal_difference;
segment.max_con_error = right new con_error;
segment.lgm = right new seg_ lgm;
low end difference = mid_difference;
mid difference = right idealndifference;
left search = right search = ALLOWED; }
else if{fabs(right new con error)} > fabs(segment maxXx CON_error)
&& fabs(left new con error) > fabs (segment.max con error)) {

- right search = NOT ALLOWED;
left search = NOT_ALLOWED; }
else
T ' - puts("we don’'t consider such situation in flow- control"),
exit (0); }

; } /* while ( right search || left search == ALLOWED ) */
A printf("%15.15f %15.15f %15.15f %+E\n\n",segment. lgm_initial,
; segment.antilg 1lgm initial,segment.difference,

P putch('\a’);
; } /* optimum difference error */

double find ideal_ difference ( double 1lgm )
/* calculates a new value of difference that turn the
segment .max_con_error into zero */

L

int divisor = 0, add_factor;
; double anti_lgm;
char *cptr; :

add factor = (1ong)pow(2 0, (double) (ML - RAL})/2.0;
find binary (bin _lgm, lgm, ML} ;
cptr = &bin 1gm[RAL],

: do {
! if ( *cptr == ‘1’ } divisor += add factor;
*cptr++;
. add_factor = add_factor/2.0;
_ while { *cptr I= "\x0);

' : _ anti_lgm = pow({ 2.0, (lgm - FACTOR*divisor )});
ideal_difference = ( pow( 2.0, 1lgm ) - anti_1lgm)/divisor;
return ideal difference };

}

double get_error (double 1lgm, double anti_lgm, double dlffer)

/* accepts a real value 0.0 < m < 1.0 and calculates its base
2 logarithm value, correction factor is added with the base
logarithm value and the error is calculated */

R R 2R
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}

static double temp_m;
double multiplier, deviation, add_factor = 0.0;
char *cptr; '

difference = differ;

temp_m = pow(2.0, 1lgm) - 1.0;
find_binary ( bin_lgm, 1lgm, ML );
cptr = &bin_lgm[RAL];

multiplier = MULTIPLIER;

do .
if { *cptr == ‘1)
add factor += difference * multiplier;
*Cptr4+;
multiplier = multiplier/2.0;
} while ({ *cptr != *\x0');
if ( add_factor == 0.0 || 1lgm == 1.0)

add_factor = difference * DIVIDEND;
deviation = temp _m - (anti_lgm + add_ factor);
return ( deviation );

}

void find_binary (char *ptr, double value, int n)
/* accepts a real value < 1.0 and generates its n-bit
binary representation */

int in_count = 0;
while (in_count < n}

value += value;
if (value >= 1.0) {

*ptr = !11';

value -= 1.0; |}
else

*ptr = 07y
PLr++;

in_count++;

} *ptr = "\x0"*;

void rom_only ()

/* simulation of LNS to FLP conversion using ROM table */
/* ROM capacity to be determined by RAL */

/* neglect ML and DIFFERENCE_FACTOR */

{
int ¢ = 0;
double lgm = 0.0, next_lgm, mid_value;
double error, max_con_error = 0.0, at_lgm;
double antilg_lgm, antilg_next_lgm, antilg_mid_value;

increment = 1.0/pow(2.0, (double)RAL);
clrscr();
do

{

next_lgn = lgm + increment;
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mid_ value = (lgm + next_lgm)/2.0; :
antilg next lgm = pow( 2.0, next_lgm) - 1.0;
antilg mid _value = pow( 2.0, mid value ) 1.0;
error = antllg next ~lgm - antllg mid value,
if ( fabs(error) > fabs(max_con_error) ) {
max_con_error = error;

at lgm =. mid_value;

gotoxy (8,5) ;

printf ("Max. error =%E occurred at %1B.1Bf",
} ' max_con_error,at_lgm) ;

C++;
if (¢ == 1000) {
gotoxy (8,7} ;
printf("scanning %18.18f and above with error =%E",
mid_value, error)
¢ = 0;
lgm = lgm + increment;
while ( lgm < 1.0 );
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