DERIVATION OF SCIENTIFIC LAWS
THROUGH ANALYSIS OF PROCESSES AND
THE CORRESPONDING EQUATIONS

MOHAMMAD ISMAT KADIR
ROLL NO. 9405023F, SESSION 1993-94-95

A THESIS SUBMITTED TO THE DEPARTMENT OF COMPUTER
SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE
- REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN
ENGINEERING (COMPUTER SCIENCE AND ENGINEERING)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY
DHAKA, BANGLADESH -
SEPTEMBER, 1999

LT

L TR .

DERIVATION OF SCIENTIFIC LAWS THROUGH ANALYSIS OF
PROCESSES AND THE CORRESPONDING EQUATIONS

Mohammad Ismat Kadir
Roll no. 9405023F, Session 1993-94-95

Examination held on: September 08, 1999
Approved as to style and contents by:

Gl

Dr. Chowdhury Mofizur Rahman : Chairman & Supervisor
Assistant Professor,

Department of Computer Science and Engineering,
BUET, Dhaka, Bangladesh.

2. / _
Professor M., Kaykobad Member
- Head,
Department of Computer Science and Engineering,

BUET, Dhaka, Bangladesh.

3/M Szsyoon R .

Dr. Muhammad Masroor Ali ‘ Member
Assistant Professor,

Department of Computer Science and Engineering,
BUET, Dhaka, Bangladesh.

4, : :
Dr. A. B. M. Harun - ur Rashid Member (External)
Assistant Professor,

Department of Electrical and Electronic Engineering,

BUET, Dhaka, Bangladesh.

ACKNOWLEDGEMENT

The author wishes to express his heart-felt gratitude and strong devotion to Dr. Chowdhury
Mofizur Rahman, who has supervised the thesis and spent a lot of time in directing the author to
the successful completion of the work. Without his constant guidance and help, the thesis would

not probably come into being.

The author also expresses his gratefulness and deep sense of gratitude to Professor M. Kaykobad,
Head, Computer Science and Engineering department, BUET, Dhaka, who has inspired the author

in many ways to do the work.

The author wishes to thank specially Jan. M. Zytkow, who sent a large number of research papers

to the author and gave valuable suggestions.

fi.0995

(Mohammad ismat Kadir)

ABSTRACT

A system has been developed to decompose complex composite equations derived from an
automated discovery system into the basic laws. Al discovery systems, like BACON,
FAHRENHEIT, and ABACUS, produce algebraic equations that describe numeric data. Since
physical situations in an experiment may differ in countless ways, such discovery systems have to
discover equations for each of the situations individually. If there is a combination of processes in
an experiment, we may have a complex and composite equation. To have a knowledge about the
elementary interactions, we decompose the regularities or equations from a BACON-like
discovery system into simpler expressions, each of which is associated with a simple situation or
process. For example, there may be one battery and one resistor in a circuit, or there may be two or
more batteries and two or more resistors in series. From the governing equation of the two circuits
as obtained from a BACON-like system, the developed system will be able to generate Ohm’s law
and the law of equivalent resistance of a number of resistances in series. The system uses the
equation from a BACON-like system as the search engine. It uses the parse tree of the equation to
find a satisfactory match with the process decomposition tree. The system utilizes the dynamic
database structure of PROLOG programming language to represent and store the trees. It
transforms the equation into a form compatible with the physical processes they describe so that
equations can be decomposed into pieces useful in model generation . We use a number of
operators - more are proposed to deal with the decomposability of equations. It implementing the

system, the operators are added to guide the search.

TABLE OF CONTENTS

Acknowledgement i
Abstract ii
Table of contents it
List of figures : vi
1 Introduction 1
1.1 What is an Al discovery system ' 1
1.2 Important features of a machine discoverer 2
1.3 Present state-of-the art of Al discovery systems 3
1.4 Automated discovery of empirical laws 4
1.5 Why discovery of elementary interactions .6
1.6 Outcome of the thesis 10
2 Present Al Discovery Systems 11
2.1 . Forms of discovery | 11
2.1.1 Theory-driven discovery — AM 11
2.1.2 Data—driven discovery 13
2.1.2.1 Discovering Empirical laws using BACON 13
2.12.1.1 A sample protocol 14
2.1.2.1.2 BACON’s representation 16
2.1.2.1.3 Production system of BACON - 17

with special reference to BACON.3

2.12.1.4 A Summary of BACON’s discovery 20

iii

2.2

2.3

2.1.2.15

BACON at work

2.1.2.2 Automated discovery using FAHRENHEIT

21221

2.1.222

2.1.2.23

21224

21225

21226
2.1.3 Clustering

Discovery of equations

Set up experiment

Empirical space

Regularities

Exploration of numerical space
Boundary search

Generalization of empirical regularities

2.2.1 Model-fitting and evaluation

2.2.2 The search space of the equation generator

2.2.2.1 Equation generation search

2.2.2.2 The search driver

2.2.2.3 User control over search

ABACUS: Integrating quantitative and qualitative discovery

2.3.1 The ABACUS approach to quantitative discovery

2.3.2 Discovering bivariate equations in ABACUS

2.3.2.1 Variable dependency and proportionality graph

2.3.2.2 Equation formation — a search for constancy

2.3.2.3 Domain-ind :pendent constraints

2.3.2.4 Recognizing the goal

2.3.2.5 Search

2.3.2.5.1

Proportionality graph search

iv

21

21

21

22

23

23

26

27

28

28

28

31

33

33

34

36

36

37

38

40

40

41

41

42

2.3.25.2 Suspension search

3. Development of the System
3.1 Equations and situations
3.1.1 Correspondence between situations and equations
3.2 The developed system
3.2.1 Representing processes and equations
3.2.2 Input and output
3.2.3 Equation transformation search
3.2.4 'Tree matching search
3.2.5 Operator selection
3.3 The system with two case studies
3.3.1 Case I: Water temperature problem
3.3.2 Case II: Electrical circuit problem
4. Discussion and Conclusion
4.1 Evaluation of the system
4.1.1 Example 1
4.1.2 Example 2
4.2 Further development
43 Conclusion
References

Appendix : Program Listing

44

45

45
45
48
49
49
53
54
56
56
58

60
61
61
61
62
63

64

65

69

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 2.1

Figure 2.2

Figure 2.3
Figure 2.4

Figure 2.5

Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11
Figure 3.1

Figure 3.2

LIST OF FIGURES

BACON discovering the ideal gas law

Thermal equilibrium for (a) two samples of water

(b) water and a piece of ice that melts completely,

(c ywater and a piece of ice that melts partially

Moving down an inclined plane, (a) sliding, (b) rolling.
Two circuits: (a) one battery and one resistor, (b) two
batteries and two resistors

Three regularities separated by boundaries

The intermediate state to discover some

regularities and their boundaries

The final state of knowledge

Sample data and three equations with similar goodness of fit
The search space, generati¢.n of variables, generation of equations
and model — fitting

Generation of new variables and equations

ABACUS analysis of graph example

Proportionality graph |

Proportionality graph search for ideal gas law
Proportionality graph search path for ideal gas law

Partial suspension search for conservation of momentum
Process diagram for figure 1.2a

Overview of system input and process

vi

25

25

25

30

32

35

37

39

42

43

45

49

50

Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 4.1
Figure 4.2

Figure 4.3

Process decomposition treel

Process decomposition tree2

Equation parse tree for Black’s equation
Example of transformation grammar rule

Results of matching, (a) partial match, (b) mismatch reduction schema

Parse tree for ideal gas law

Process decomposition tre¢ for Black’s experiment

Parse tree for Black’s law

vii

51

51

52

53

55

61

62

63

e @N’T"f’f
Seal "?,...,...,

Chai)ter 1

26

Introduction

1.1 What is an Al discovery system

Learning is defined as the process by which an entity acquires knowledge. It usually occurs that
knowledge is already possessed by some number of other entities. These may serve as teachers.
Discovery is a restricted form of learning in which one entity acquires knowledge without the help
of a teacher. Sometimes it happens that there is no one in the world who has the knowledge we

seek. In that case, the kind of action we have to take is called scientific discovery.

[n machine learning, we typically distinguish between (1) learning as aéquiring new knowledge in
the form of concepts, taxonomies, regularities, and the like, and (2) learning as performance
improvement and skill acquisition. Discovery applies to lcarning things that exist, such as the
moons of Jupiter or the laws of nature. So we confront discovery with learning in the first sense, of
acquisition of objective knowledge. A discoverer must be autonomous in learning something.
Whether a person or a computer system, a dis :overer must be equipped with its own autonomously

applicable repertoire of techniques and values. Take concept learning as an example. An

unbounded number of predicates can be defined by the primitives of any language, but only some -

make useful concepts. A teacher who understands a concept can prepare a collection of examples
and describe them by suitable attributes, while a discoverer must use its own strategies for data
collection and its own judgement about relevant attributes.

The notion of autonomy requires few explanations. Kepler, for example, discovered his laws from
data collected by Tycho de Brahe [31]. So neither the data collection strategies nor the attributes
were his own. However, his discovery was autonomous in many ways. First, Brahe’s data came
without a guarantee that their exploration would lead to any discovery. Kepler picked them
without assurance that he would be successful. Second, Kepler used his ideas of patterns in data —
generated and evaluated many patterns before he made his discoveries. Third, autonomy best

applies to the whole historical process of discovery, less to a small episode. Great discoveries were

A frgn
LR srf;‘

¢
e J.'.‘..?...,.-.)“”
\. -

X

;
Z)

usually made possible by the contribution of many people over a long time. Uncountable
observations, many attributes, and many hypotheses on planetary motion were considered before
Kepler. So when autonomy is concerned, we consider the whole scientific community as a

collection of discoverer.

Discoveries are not limited to ‘natural’ phenomena. Anything that exists but are not explored can
be the subject of a discovery. For instance, we can use a discovery system to discover the_
computational complexity of an algorithm. As another example, consider heuristics. Heuristics are
useful when they improve the behavior of a program. If cost is one of the dimensions in a domain,

the least-cost heuristic is, as a rule, discovered and various other heuristics can be invented.

1.2 Important features of a machine discoverer

The number of discovery systems has been growing considerably in the last decade. The majority
of work on machine discovery focussed on the reconstruction of the scientific method. Recent
developments on machine discovéry confirms the old thesis [18] that discovery is problem solving
and that it can be carried out by computer programs. Although discoveries are abundant in
everyday life, the focus on scientific discovery has drawn the main concem. Everyday concepts
notoriously elude formalism, while scientific formalism has historically proved to lead to
spectacular results of scientific reasoning and knowledge representation. A typical scientific
phenomenon can be studied in a compact domain that is limited to a few cdncepts yet rich in
knowledge representable in a farmal way. The continued concentration on the scientific method is
expected to lead to a practical success in the future. The widespread use of computers and data-

acquisition equipments by scientists permits rapid installation of a successful discovery system.

Machine discovery is no different from applications of computers in modemn science. Scientists
develop new methods to match increasingly sophisticated problems. Then, whole scientific
communities learn and apply those methods. The future of successful machine disco{fery systems
is similar. Modern science and the automation of discovery lead to a diminishing distinction

between the normative systems and established scientific practice.

1.3 Present state-of-the-art of Al discovery systems

During the last two decades, miny computer programs have been constructed that simulate various
aspects of scientific discovery. The earlier systems concentrated on qualitative and quantitative

regularities, discovery of intrinsic concepts etc.[10] [28] [2]. Most machine discoverers get their

data in a simulation, for instance BACON [11]. A still larger group of systems work on fixed, .

externally provided data.

Discovery in mathematics has attracted plenty of interest, but progress has been slow. Early work
on discovery in the theory of numbers was originated by the AM system [13]. EURISKO [14], an
extension to AM played an important role in rediscovering some useful concepts. GRAFFITI, a
program developed by Fajtlowicz [31]has produced numerous interesting conjectures in graph

theory.

Recently, very fast theorem-provers have been developed for geometry, allowing us to apply an
automated search to propose and then prove or disprove hypotheses in large hypothesis spaces in

geometry .

Discovery in databases had a tremendous progress durinhg the last decade. It is aimed at the
automated exploration of large amounts of tabular data, collected in databases. The task is limited
to discovery from the prearranged data. Left out are automation of experiment and the feedback
between theory formation and experimentation strategies. Results in knowledge discovery in
databases (KDD) have been described in several collection of papers, tyljically conference

proceedings [21] [25] [23][33] énd many iﬁdividual papers.

The growth of discovery systems has accelerated in the last decade. Several abilities lacking in
carly discovery systems have been introduced, such as the ability to consider empirical context of a
law [19], the ability to design experiments [9], and the ability to represent objects, states and

processes [20].

The search for regularities in a multidimensional space of numerical parameters was studied in
1981, in BACON project, whose results were summarized in [12]. Although BACON was capable
of rediscovering a large number of laws of physics and chemistry, it had the limitation that all the
datapoints need have a single regularity. Otherwise the algorithm could not work well. Then came

the FAHRENHEIT system [30], which successfully discovered complete theories of numerical

spaces, even if there had been a number of partial regularities in the dataset. In addition,
FAHRENHEIT could discover knowledge about special points such as maxima and
discontinuities. Several other systems, including ABACUS [2] and IDS [20] made various
improvements over BACON. As for example, the ABACUS system is able to discover multiple’
mathematical equations for numeric data and derives explicit, logic-style description stating

preconditions for the application of the equations.

Discovery systems so far stated use modules that find mathematical equations from a sequence of
data. However, in science, the discovery of empirical equations is treated as an intermediate step
towards more fundamental knowledge. The deeper goal is to develop theories of elementary
interactions in the world, and the hidden micro-structures of things and processes. Equation
transformation and their interpretation form a search space explored by GALILEO [29].
Knowledge of structure and interaction between the components of a system give the real model of

situations.

1.4 Automated Discovery of Empirical Laws

Empirical scientists discover numerical regularities or equations from experimental data. They are
confronted with the real-world data to make sense of it. They make hypotheses, and in order to
validate them, they design and execute experiments. Scientific discovery has inspired a number of
computer models. Langley et al. {12] present a model of data-driven scientific discovery that has
been implemented as a program called BACON, named after Sir Francis Bacon, an early

philosopher of science.

BACON begins with a set of variables for a problem. For example, in the study of the behavior of
gases, some variables are P, the pressure on the gas, V, the volume of the gas, n, the amount of gas
in moles, and T, the temperature of the gas. Physicists have long known a law, called the ideal gas
law, that relates these variables. BACON is able to derive this law on its own. First, BACON holds
the variables n and T constant, performing experiments at different pressures P, P,, and Ps.
BACON notices that as the pressure increases, the volume V decreases. Therefore, it creates a
theoretical term PV. This term is constant. BACON systematically moves on to vary the other
variables. It tries an experiment with different values of T, and finds that PV changes. The two

terms are linearly related with an intercept of 0, so BACON creates a new term PV/ T . Finally,

BACON varies the term n and finds another linear relationship between n and PV /T. For all
values of n, P, V, and T, PV/nT = 8.32. This is, in fact, ideal gas law. Figure 1.1 shows BACON's

reasoning in a tabular format.

N T P v PV PVIT PV/nT
] 1300 100 24.96

1 300 200 12.48

1 300 300 8.32 2496

i 310 2579.2

1 320 2662.4 8.32

2 320 : 16.64

3 320 24.96 8.32

Figurel.1: BACON Discovering the Ideal Gas Law

BACON has been used to discover a wide variety of scientific laws, such as Kepler’s third law,
Ohm’s law, the conservation of momentum, and Joule’s law. The heuristics BACON uses to
discover the ideal gas law include noting constancies, finding linear relations, and defining
theoretical terms. Other heuristics allow BACON to postulate intrinsic properties of objects and to
reason by analogy. For example, if BACON finds a regularity in one set of parameters, it will

attempt to generate the same regularity in a similar set of parameters. Since BACON’s discovery

procedure is state-space search, these heuristics allow it to reach solutions while visiting only a

portion of the search space. In the gas example, BACON comes up with the ideal gas law using a

minimal number of experiments.

Besides BACON, FAHRENHEIT, ABACUS and some other empirical discoverers use modules
that find mathematical equations in two variables from a sequence of data. FAHRENHEIT defines
the problem of empirical search for knowledge in a multi-dimensional space. It autonomously
explores multi-dimensional numerical spaces, accumulating knowledge with the purpose of
reaching a complete theory. ABACUS integrates both the qualitative and the quantitative

approach of discovering numerical laws. It formulates equations that bind subsets of observed

data, and derives explicit, logic-style descriptions stating the preconditions for. the application of

these equations.

A better understanding of the science of scientific discovery may lead one day to programs that
display true creativity. Much more work mu i be done in areas of science that BACON does not
model, such as determining what data to gather, choosing (or creating) instruments to measure the

data, and using analogies to previously understood phenomena.

1.5 Why Discovery of Eleméntary Interactions

Al discovery systems, so far stated, produce 'algebraic equations that describe numerical data.
Algebraic equations discovered by such systems give a quantitative interpretation of the different
laws of nature. However, scientific knowledge exceeds a set of separate laws — it applies to an
infinite variety of physical situations, and different situations are usually deseribed by different
equations. Established empirical discovery systems discover equations for each such situation

individuaily. But the problem is, even simple physical situations can be varied in countless way.

For example, figure 1.2 illustrates three possible versions of an experiment conducted by Joseph
Black in the eighteenth century, in which two liquids are combined and their temperature is
measured at equilibrium. Figure 1.3 depicts two versions of a simple mechanical experiment, and
figure 1.4 shows two simple electric circuits. One can always add more wires, resistors, or
transistors and can reconfigure them to produce other electric circuits. The number of

modifications for each domain is clearly unbounded.

Should one apply an empirical system case by, case to discover the corresponding equations for
each different situation? This would result in an unbounded set of equations rather than in the
parsimonious theories that we associate with modern physics and chemistry. Furthermore, if the
discovered laws are limited to individual experimental situations, they will not allow for transfer of
knowledge. One might try to reduce the number of laws discovered to a rﬂanageab]e size by
discovering equations experirientally for simple situations and then deducing equations for
complex situations. However, in most cases, the equations that describe different situations are
either independent or mutually inconsistent since they describe different phenomena and predict

different behavior.

sample | © sample 2

=

m

sample | sample 2

initial state

(b

sample 1 sample 2

experimenter’s action

m+ m,

U

final state

(a) (c)

Figure 1.2 : Thermal equilibrium for (a) two samples of water, (b) water and a piece of ice that

melts completely, (c) water and a piece of ice that melts partialiy.

v process 1: v increases
process 2: h decreases

h
v>0
h=0
()
v=0
h>0
w=0 process l: v increases
process 2; h decreases
process 3: w increases
h
v>0
h=0
w>0

(b)

Figure 1.3 : Moving down an inclined plane: (a) sliding, (b) rolling.

Figure 1.4: Two circuits: (a) one battery and one resistor, (b) two batteries and two resistors.

BACON, FAHRENHEIT, ABACUS and similar other systems are successful in generating
equations for individual physical situations, but they do not capture the way in which science deals
with a multitude of physical configurations to produce simple, finite theories that can be applied to
an infinite number of situations. Science deals with the complexity of physical situations by a
combination of two steps. In the first step, regularities are decomposed into simpler expressions,
each of which is associated with a particularly simple situation or process. In the second step, the

simple expressions are recombined to form equations that model complex situations.

So we are tempted to a discovery system that transforms equations generated by any of the
aforesaid system into a form compatible with the structure of physical processes they describe, so

that equations can be decomposed into pieces useful in model generation.

1.6 Outcome of the thesis

The thesis is aimed at developing a computer program to decompose a complex composite
equation derived from an empirical autonomous discoverer like BACON, FAHRENHEIT or
ABACUS and thus to deduce the basic laws governing simple physical situations. With this end in
view, we incorporate, in our system, ideas on qualitative process representation, quantitative
theory and the transformation of mathematical formulas. It transforms equations generated by a
BACON-like system into a form compatible with the physical processes they describe, so that
equations can be decomposed into pieces useful in model generation. The outcome of our work is
expected to find excellent application areas in constructing mathematical models for an integrated
scientific process, given a description in terms of elementary objects and processes. An integrated
scientific process is a combination of simple situations. Through an expert diséovery system, like
this, equations for the simple situations will be deduced from the equation .of the integrated

process, as obtained from a BACON-like system.

The dynamic database structure of Turbo Prolog is used to store and retrieve the integrated
scientific process and the composite equation. A number of operators are implemented. The
resulting program shows excellent results in some specific domain. The program is tested in cases
of ideal gas law, Black’s experiment, and simple electrical circuits, Tﬂus we can treat the
developed system as an integrated scientific engine to decompose complex equations into the

basic laws.

10

Chapter 2

Present Al Discovery Systems

2.1 Forms of Discovery

There are three main avenues in Al discovery systems. They are:
* Theory-driven discovery
¢ Data-driven discovery

e Clustering. '

These are described in the following subsections.

2.1.1 Theory- driven Discovery- AM

AM [13] is a program by Lenat that discovers concepts in clementary mathematics and set theory.
An extension of AM is EURISKO [14].

AM has two inputs:

* A description of some concepts of set theory (in LISP form), e.g., set union, set intersection,
the empty set.

* Information on how to perform mathematics, ¢.g., functions.

¥

Given the above information, AM discovers:

Integers
W it is possible to count the elements of a set and this is an image of the counting function — the

integers— interesting set in its own right.

s

Addition
M the union of two adjacent sets and their counting function.

Multiplication i

W having discovered addition and multiplication as set-theoretic operations more effective

descriptions are supplied by hand.
Prime Number
W factorization of numbers and numbers with only one factor are discovered.
Golbach’s conjecture
® even numbers can be written as the sum of 2 primes, e.g., 28=17+11.
Maximally divisible numbers
B numbers with as many factors as possible. A number k is maximally divisible if k has more
factors than any integer less than k, e.g., 12 hassix divisors 1,2, 3,4, 6, 12..
How does AM work?
AM employs many general- purpose Al techniques:
* A frame based representation of mathematical concepts.
*AM can create new concepts (slots) and fill in their values. For example, the AM concept
learner for prime numbers may have slots like name, definition, examples etc.
¢ Heuristic based search,
*AM uses 250 heuristics that represent hints about activities that might lead to interesting

discoveries.

* Heuristics as to how to employ functions to create new concepts, generalizations etc.

* Hypothesis and test based search. Genera*2-and- test is used to form hypothesis oh the basis of
a small number of examples and then to test the hypothesis on a large set to see if they still
appear to hold.)

e Apgenda control of discovery process. When the heuristics suggest a task, it is placed on a
central agenda, along with the reason that it was suggested and the strength with which it was

suggested.
2.1.2 Data-driven discovery

There are a number of discovery systems, which are confronted with data from the real world and

explore the numerical regularity among the data points. The vast majority of these systems use a

combination of three searches. They occur in spaces of (1) terms of increasing complexity, (2) -

pairs of terms, or more generally tuples of terms, and (3) equations for pairs (tuples) of terms. The
equations are a product of search (3), which typically uses least square fitting applied to a limited
number of potynomial models. Search (1) tra ;sforms the initial variables to log (x), exp (x), x x y
and the like. New terms are combined by search (2) in pairs and passed on to search (3) that
combines them into equations and fits the best values of numerical parameters in those equations.
Some equation finders have reached very high level of quality. Their main advantage over humans
is breadth of scarch and unbiased evaluation of many equations. BACON and FAHRENHEIT play
the pioneering role in the@e types of exploration of experimental data. So we will deal with these

two systems here.

2.1.2.1 Discovering Empirical Laws Using BACON

Langley er al[12] translated theories about information processing into running computer
programs. This had led to a sequence of computer programs collectively called BACON. The
BACON systems (versions 1 through 6) are named after Francis Bacon, because they incorporate
many of his ideas on the nature of scientific reasoning. The successive versions of BACON share a
common approach to discovery, as well a: a common representation of data and laws, The
differences among the various systems lie in the discovery heuristics that each uses in its search for

empirical laws.
BACON.1 is the simplest of the systems and thus the easiest to describe and to understand.

BACON.1 uses a general representation and a few heuristics to discover an impressive range of

empirical laws. The system is general in the sense that the basic methods of BACON make no

13

reference to the semantic meaning of the data on which they operate and make no special
assumptions about the structure of the data. We have striven for generality in BACON because we
wish to explore the role in scientific discovery of heuristics that may be relevant over a wide range
of scientific disciplines and hence may contribute to our basic understanding of discovery
wherever it may occur. Having clarified our bias toward general mechanisms, let us consider an
example of how one might employ such mechanisms to discover an empirical law.

\

2.1.2.1.1 A Sample Protocol

In 1618, Johannes Kepler discovered his third law of planetary motion: the cube of a planet’s
distance from the Sun is proportional to the square of its period. This law can be restated as D*/P?

= C, where D is the distance, P is the period, and C is a constant.

How might one discover such a law? Here is a sample protocol that draws on three very simple

heuristics:
* [fthe values of a term are constant, then infer that the term always has that value.
¢ If the values of two numerical terms increasc together, then consider their ratio.

¢ Ifthe values of one term increase as those of another decrease, then consider their product.

The value of these heuristics can best be seen in their operation. The three planets considered
below, A, B, C, obey a version of Kepler’s law where the constant is 1. The discoverer must begin
by gathering some data, selecting different values for the nominal variable (planet), and obtaining

the values of the numerical terms (D and P):

When planet is A
What is P? Answer: 1.0
What is D? Answer: 1.0

When planet is B

What is P? Answer: 8.0 | »
What is D? Answer: 4.0

14 - ‘hex\

When planet is C
What is P? Answer: 27.0
What is D? Answer: 9.0

D increases with P.
So I'l consider their ratio. 7
Pll define Term-1 as the ratio of D and P [D/?].

Here the second heuristic has been applied. The distance and the period have been observed to
increase together, so the new concept Term-1 has been defined as their ratio. Next, the values of

/
this new term are calculated.

WhenDis: 1.0 40 9.0
and P is; 1.0 8.0 27.0
Term-1is: 1.0 0.5 0.333

D increases as Term-1 decreases.
So I’l] consider their product.
I’1l define Term-2 as the product of D and Term-1[D(D/P) = D¥/P].

When D is: 1.0 40 9.0
and P is; 1.0 8.0 270
Term-2 is: 1.0 2.0 3.0

Term-1 increases as Term-2 decreases.
So I’ll consider their product.
IIt define Term-3 as the product of Term-1 and Term-2[(D/P)(D*/P) = D*/P?).

By this point, the third heuristic has been applied twice. Two more concepts have been defined:
Term-2 as D’/P and Term-3 as D*/P2. Since the latter of these is the most recently formed, we next
examine its values:

When Dis: 1.0 4.9 9.0

and P is: 1.0 80 270

Tem3iss 10 10 1.0

Term-3 hz"is the constant vatue 1.0.

15

Finally, the first heuristic applies, for the new concept Term-3 (defined as D*/P?) has the constant
value 1.0 for all three planets. The statement that this term is constant across planets is equivalent
to Kepler’s third law of planetary motion, and the above protocol is a plausible trace of how one

might discover this law.
2.1.2.1.2 BACON’s Representation

The above protocol was actually generated by the BACON.] program. The program represents its
data in terms of data clusters. A data cluster is a set of attribute-value pairs linked to a common
node; it represents a series of observations that have occurred together. The program knows about
two types of terms or attributes: independent and dependent. 1t has control over independent
attributes, it can vary their values and request the corresponding values of the dependent attributes.
In the above example, the values of the independent term were the names of planets; the values of
the dependent terms were the distances and periods of those planets. Thus in the Keplerian
example, there are three primitive attributes: the planet being observed, the planet’s distance D
from the sun and the period P. However, much of BACON’s power comes from its ability to
define higher-level (theoretical) attributes in terms of more: primitive ones. Thus the clusters also
contain the values of three nonprimitive attributes: Term-1 (defined as D/P), Term-2 (defined as
D2/P), and Term-3 (defined as D3/P2). Since these terms include dependent terms in their
definitions and thus cannot be manipulated by experiment or observation, they are considered
dependent.

BACON is implemented in the production-system language PRISM. In turn, PRISM is
implemented in LISP, a list-processing language wicfely used in artificiat intelligence research. A
production-system program has two main components: a set. of condition-action rules, or
productions, and a dynamic working memory. A production system operates in cycles. On every
cycle, the conditions of each production are matched against the current state of the working
memory. From the rules that match successfully, one is selected for application. When a
production is applied, its actions affect the state of the working memory, making new productions
match. This process continues until no rules are matched or until a stop command is encountered.
When two or more rules match, BACON prefers the rule-that matches against elements that have
been added to memory most recently. This leads the system to pursue possibilities in a depth-first

manncr.

16

2.1.2.1.3 Production System of BACON — with special reference to BACON.3

As other versions of BACON, BACON.3[10] has seven major sets of productions:

.
A set for gathering directly observable data; ,

A set to detect regularities in the data generated by the first and fourth sets;

A set that calculates the values of theoretical terms;

A set that checks for loops by comparing new theoretical terms to existing ones;
A set for noting related theoretical terms and ignoring their differences;

A set to collapse clusters with identical conditions;

S T e

A set for discovering irrelevant variables and ignoring their values.

1. Gathering Data

The first set of 17 productions is responsible for gathering directly observable data. Of these
productions, 7 are responsible for gathering information from the user about the task to be
considered. This information consists of the names of all variables, along with suggested values for
those variables under the system’s control. Oncé this information has been gathered, the remaining

10 productions gather data through a standard factorial design.
2. Discovering Regularities

The second set of 16 productions is responsible for noting regularities in the data coliectcd by the
first set. These rules can temporarily interrupt the data gathering productions while pursuing their
own goals. The system’s regularity detectors ~.an be divided into a set of constancy detectors and a
set of trend detectors. Its basic constancy detector is a general version of the traditional inductive

inference rule. It may be paraphrased as:

If a dependent variable has the same value
across a number of descriptive clusters at level I

then create a cluster at level I+ 1 in which the variable has the value.

After this heuristic has fired, the rule for finding conditions is aprlied; it s nearly as simple and

17

may be stated as:

If you have just created a descriptive cluster at level L+1
based on a number of cluster at level L,
and an independent variable has the same value for all those lower level clusters,

then add that variable and its value as a condition on the new cluster.

BACON.3’s trend detectors operate only on numerical data. Some of these notice monotonic
!]

trends between variables, such as:

If the values of the dependent variable v1 increase as the values
of the variable v2 increase in a number of descriptive clusters at level L,
then propose a monotonic increasing relation between vi and v2 at level L,

and calculate the slope of vl with respect to v2.

This heuristic and a similar one for noticing monotonic decreasing relations work in conjunction
with other trend detectors that further analyze the data.

3. Calculating Theoretical Values

Once a theoretical term has been defined at a given level, 3 additional productions calculate the
values of this term for the clusters at that level. Once these values have been calculated, they are
fairly enough for the regularity detectors and new levels of description may be created or more

complex theoretical terms may be defined.

4.-Noting Redundant Theoretical Terms

Before calculating the values of a new theoretical term, BACON must make sure that the term is

not equivalent to an existing concept. If a redundant term’s values were calculated, then

mathematically valid but empirically uninteresting relationships (e.g., x/x = 1) could be detected.

Accordingly, a fourth set of 22 product.ons decomposes new terms into their primitive
components. If the definition of a new variable is identical to an existing definition, the term is

rejected and other relations are considered.

For example, during its rediscovery of the gas law, BACON finds that the pressure, volume and

the temperature are linearly related when the number of moles is unity. The slope of this line is

18

8.32 and the intercept is 0; accordingly two new terms are defined, the slope,,,; and the
intercept,, | . The definition of the first of these is PV/T, while the definition of the second is PV -
8.32T.

5. Ignoring Differences

Suppose BACON has defined two intercept concepts, as in the above example. The values of the
first, intercept,,; are 0 when the number of moles is 1, while the values of the second,
intercept;y > are 0 when the number of moles is 2. One would like BACON to generalize at this
point, stating that the intercept of all lines relating the pressure-volume to the temperature is 0,
regardless of the number of moles. However, because the two intercepts are different terms, the

constancy detector described above cannot be applied.

BACON’s solution to this problem is to note that the definitions of the two intercepté differ only
by a constant coefficient, and to define an abstraction of the two which ignores this difference.

The single production responsible for this may be stated as:

If you have a level L slope or intercept of the variable v1
with respect to the variable v2 with a parameter pl,
and you have a second level L slope or intercept
relating these variables with a different parameter p2,
then define an abstraéted slope or intercept of the v

with respect to the v2 at level L+ 1.

6. Collapsing Clusters

When a constancy is noted, a higher level description is created and conditions are found for it.
Later, if a constancy is observed on a different variable, a separate cluster is specified. If the two
clusters have identical conditions, they are combined into a single structure; only 3 productions are
devoted to this process. Once this has happened to a number of cluster pairs, the values of the

dependent terms can be compared and regular ities may emerge.

19

t

For exampte, suppose BACON.3 has run experiments with a pendulum at various locations and
found that Galileo’s pendulum law, PY/L = K, holds at each location. In this equation, P is the
period of the pendulum and L is the length of the support. However, suppose that the value of K
differs at each location. Now, imagine that BACON.3 drops a set of objects at each location, and
finds that the acceleration of these objects also differs according to the location. Upon combining
the information acquired at identical locations, a regularity is detected. Since the acceleration
increases as the P/L increases, the product +-PY/L is considered, where a is the acceleration; the

value of this term is constant regardless of the location.
7. Handling Irrelevant Variables

To deal with situations involving irrelevant variables, BACON.3 draws on a set of 8 productions.
The most important of these notes clusters in which the level of description for a variable’s value
is two more than the level at which that variable was defined; this implies that the variable most

recently varied has had no ¢ffect on the dependent values. The rule may be paraphrased as:

If a descriptive cluster at level L has Just been created . ~
to explain some clusters at level L — I,
~in which the values of the dependent variable vI were constant,
and the level of vl is L - 2, _
and the values of the independent vc riable v2 differ in the level L — [clusters,

then stop varying the values of v2 since they are irrelevant,

2.1.2.1.4 A Summary of BACON’s Discovery

In summary, BACON gathers data in a systematic fashion, varying one term at a time and
observing its effects, If a variable has no effects, it is marked as irrelevant and its manipulation is
abandoned. If one variable does influence another, a new theoretical term is defined, incorporating
both the independent and the dependeht variables. If the term has not been considered before, its
values are computed and examined. When these values are constant, BACON creates a new,
higher level description which it treats as data on that level. The new cluster may be combined
with others if it has identical conditions. When the values of the new term are not constant, it is

used to define a more complex term and the process repeats. In addition, the search for useful

20

theoretical terms and constancies occur anew at each level of description. Taken together, these

heuristics make BACON a powerful and efficient discovery system.
2.1.2.1.5 BACON at work

The mechanisms described above enable BACON to rediscover a number of laws from the history

of physics. These are given in Table 2.1.

Boyle's law PV =k,
Kepler’s third law D’/P =k,
Galileo’s law ‘ D/T? = k;
Ohm’s law IL=-r1+V
Coulomb’s law qlqy’kd2 =k,
Ideal gas law PV/T =k; |

Table 2.1: Physical laws discovered by BACON.

2.1.2.2 Automated Discovery using FAHRENHEIT

FAHRENHEIT [30] is the computer system that autonomously discovers empirical theories. Each
theory, in the form of a system of empirical equations, is discovered in interaction with a particular
setup experiment. FAHRENHEIT uses robotic equipment to make experiments. It can empirically

investigate any setup experiment with which - has been interfaced through robotic hardware.

2.1.2.2.1 Setup experiment

FAHRENHEIT captures the interaction between a discovery system and a setup experiment.
There are two meanings of an experiment. In the first meaning, an experiment is a particular
configuration of hardware. In the second meaning, an experiment is a single cycle of interaction
_ between the experimenter and the empirical system, which consists in controlling a particular
combination of values of some variables, and measuring the response of the empirical system in

terms of some variables.

21

Investigating an empirical system S, scientists apply manipulators such as heaters and burettes to
create the states of S which hold the desired values of the control variables. Then they use sensors
such as thermometers and p” -meters to measure responses of S in terms of variables such as
temperature and p" . Each experiment s;etup includes a finite, typically small, number of control
and dependent variables. To set a control variable at a desired value or to measure the actual value
of a dependent variable can be a complex task, requiring many simple actions of sensors and
manipulators. The interaction of a discoverer with a setup experiment is two-wayv, when
measurements are preceded by manipulations. But when the control actions are not possible or not

used, the interaction is one-way and the only variables are those observed.

2.1.2.2.2 Empirical space

Consider M control variables x;, Xa,-+, x) and N dependent variables v, v,,----, yn. Each variable
%, 1 = 1,2, -, M is limited in scope to a set of values X; . Each variablé yi, i=1,2,-,N is limited in
scope to a set of values Y;. When it does not matter whether a variable is control or measured, we
will use the notation z or z;, i = 1,--, M + N, and the corresponding sets of values: Z and Z;. The
values of all variables form a Cartesian product E of M + N dimensions. Each Z; is a segment of

real numbers between a minimum and a maximum value.
t

The values of each variable carry empirical error. In each set of values Z, the pairs of vulues are
not distinguishable if they differ by less than g; . The values of & can vary over Z;. The values of

error can be determined in the course of experimentation.

In order to make experiments, an autonomous explorer must be able to control the values of all
control variables in E and be able to measure the values of all dependent variables. Experiments
are the only way for obtaining information about E. Each experiment consists of enforcing a value
for each independent variable x;, i = 1,2,--M, and of reading the values of y;, j = 1, 2, -, N from
the measuring instruments. The meaningful differences in values of x;, i = 1, -~- ,N are not smaller

than error &;.

22

2.1.2.2.3 Regularities

We concentrate primarily on knowledge expressed by equations, but it is useful to view them in
the broader perspective of all regularities. A regulafity holds in E if some tuples in E do not occur
in any experiment. They are logi;::a]ly possible, but physically impossible. We can learn about what
is feasible and what is not by repeated experimentation. Some outcomes occur repeatedly, while

others may never happen.

Those events in E, which physically occur , ma'y form patterns, which can be described in variouns
languages, for instance in the form of logic statements or mathematical equations. Each Zoncrete
pattern may have a limited range of applicability, outside of which other patterns apply. Therefore
the regularities take on the form:
Pattern P ho]ds in range R

Equations are suitable for highly repeatable functional relations for numerical attributes. They
typically allow deterministic predictions, excluding all except one of logically possible values.
Equations are also useful in cxpressing quas.-functional relationships when the actual values are
spread within a limited variance; for instance, the dependence between human age, weight and
height. FAHRENHEIT discovers knowledge in the form of equations that hold in topologically
coherent regions in a numerical spacé, It also secks equations as bouﬁdary descriptions of those

regions.

2.1.2.2.4 Exploration of empirical space

The task of an autonomous empirical discoverer is to generate as complete a theory of E as

possible. The theory should be empirically adequate to the data, as much as possible, preferably |
within empirical crror. The theory may include regularities between control variables and
dependent variables or regularities between dependent variables. The theory may include boundary
conditions for each regularity, which are typically regularities on control variables, but can also

involve dependent variables.

. As an example, depicted in Figure 2.1, consider a space of two independent variables x; and x;
(and one dependent variable y, not shown for simplicity). Regularities R, R;, and R; cover the
whole range X, x-X, of x; and x; . Regularities are divided by boundaries B, B, and B; . Figure

2.1 can be interpreted as a phase diagram, for instance, for water. Under this interpretation, Ry, R,

23

and R; are state equations for ice, water and steam; the boundaries capture knowledge about the
conditions for melting/freezing and evaporation/condensation; while B indicates the triple point of

water in which steam, water and ice are in equilibrium.

All facts obtained by experiments, and all p.eces of the discovered knowledge are added to the
regularity-network, right after they are discovered. The network grows from the initial empty state
to the complete theory of empirical s;iace.

Figure 2.2 and 2.3 show an instance of a reg-net and its growth. In figure 2.3, each of the three
state equations from figure 2.1 is represented by a node. The areas in which the equations hold are
described by nodes By, B,, and B, , which represent boundary equations. The boundaries are
expressed in terms of independent variables x; and x, . The regularity network that represents the
complete knowledge of the phase space in figlllre 2.1 has been depicted in figure2.3. Figure 2.2
illustrates an intermediate state of the discovery process, after one regularity (R,) and its

boundaries have been found.

Reg-net can include nodes of higher dimensionality, which represent equations in more than two
variables. Those nodes are produced by combination of several 2-D nodes. Each k-dimensional

- regularity node is a structure consisting of the following entries:

1. k-dimensional pattern (an equation or a dataset)
2. pointersto (k— 1) — dimensional regularity nodes (boundaries)
3. pointers to regularity nodes in k+1 dimensions

or pointer io the list of variables yet fo be considered

After constructing the regularity network, FAHRENHEIT tries to find the regularity in two
dimensions. A search for bivariate patterns becomes an active goal when enough data have been
collected for two variables. In typical experiments, one of the variables is control and one
dependent, while the data about a boundary typically include .two control variables. When data
come from observation, both variables are dependent/ measured. Typically the error is linked to
dependent variables, but also possible are situations in which no error is known, or error is known

for each of the variables.

The Equation Finder (EF) module of FAHRENHEIT differs from other equation finding

mechanisms in several ways. It uses experimental error in a systematic, statistically sound manner.

24

It has been implemented with a particular concern towards a broad scope of equations it can detect,

modularity of design and flexibility of control. It will be discussed in detail in section 2.2.
X2 .

R;

Regularity R, :33
B Re gularity

B, B
Regularity ¢
R/
P X

Figure 2.1: Three regularities separated by boundaries.

lower limit on R,

Figure 2.2: The intermediate st: te to discover some regularities and their boundaries.

’

!
o
lower Iimit on R,

Figure 2.3; The final state of knowledge.

25

2.1.2.2.5 Boundary Search

After a pattern P has been detected, the full range in which P holds is still not known. For a given
pattern P in E, a boundary of P is each hyper-surface such that pattern P holds on one side of the
surface, while it is not satisfied on the other side. A boundary of P has dimensionality one less than
the range of P. For a bivariate pattern, the range is one-dimensional and the boundaries are two

points: the upper and the lower boundary.

When the search for the upper boundary for the pattern P(x,y) is selected, new data must be
collected ‘and confronted with P(x,y), until the boundary is found. The search splits into two
phases. In the first phase the data collection follows a sequence: x i,y = x; + x_increment, where
increment is larger than the error of x, and such that a smail number of experiments suffice to

cover the range of x. The search follows the algorithm:

]

X =x-max ; x-max is the largest value known to satisfy P(x,y)
LOOP |
x: =x+ x_increment
GET y by experiment or from lower level pattern generated for x
IF Px,y) ; if pattern P is satisfied by data (x y)
THEN add (x y) to the DATA schema associated with regularity P(x,y)
ELSE create a SEEDS schema of the t) e DATA
add (x y) to the SEEDS schema
RETURN from LOOP
END LOOP

After the first piece of data has been found that contradicts pattern P, the linear search terminates.
It is followed by the binary search aimed at narrowing the gap between the known points which

satisfy the pattern and those which do not, until the difference is not larger than the crror for x:

26

x!:
x2:

max value which satisfies P(x,y)

min value which does not satisfy P(x,y)
LOOP UNTIL /xé-x] /<=error_of x AND RETURN (x1 +x2)/2: as the boundary value
x: = (xl+x2)72 |
GET y by experiment or from lower level pattern generated for x
IF P(x, V) '
THEN add (x y) to the DATA schema associated with regularity P(x,y)
AND xl-:=x
ELSE add (x y) to the SEEDS schema
AND x2:=x
END LOOP

The search returns x, such that P(x, y) is satisfied for x =~ x4 — e/2, while not satisfied by

X=Xyt el2.
The search for the lower boundary follows the analogous schema.

The boundary search works in the same way for patterns of any dimension. For multi-dimensional
patterns, however, instead of single experiments, the values of parameters in the patterns are
determined as numerical values of coefficients in equations discovered for the smaller number of
dimensions. A pattern may include not only an equation in k variables, but also its boundaries, in

the form of equations in k — 1 variables.

2.1.2.2.6 Generalization of empirical regularities

After a k-dimensional regularity has been detected, one of the goals is to expand the regularity to
k+1 dimensions. FAHRENHEIT uses BACON’s generalization mechanism [11] and expands it
from regularities to boundaries and all types of patterns discovered in data. The search in (k+1)-th
dimension follows the same steps as discovery of regularities in one dimension. As in'BACON,
role of facts, obtained at the lowest level by direct experiments, is played at (k+1)-th level by

parameter values for patterns discovered at k-th dimension.

Generalization to a control variable x, starts from data collection. A sequence of values of x, is

generated according to the schema analogous for every dimension: X;j = Xpix H{(i — 1) % I, i =

27

1,2,-- where I, is the increment of x, , and xi,;, is a default initial value, such as room temperature
or normal atmospheric pressure. All other control variables which have not yet been varied are
kept constant. For each value of x, , the whole k — | dimensional search is repeated. If successful,

it creates a k — 1 dimensional reg-net similar to the original network.

2.1.3 Clustering

In inductive learning, a program learns to classify objects based on the labelings provided by a
teacher. In clustering, no class labelings are provided. The program must discover for itself the

natural classes that exist for the objects, in addition to a method for classifying instances.

AUTOCLASS [1] is one program that accepts a number of training cases and hypothesizes a set of
classes. For any given case, the program provides a set of probabilities that bredict into which
class(es) the case is likely to fa-ii. In one application, AUTOCLASS found meaningful new classes
of stars from their infrared spectral data. This was an instance of true discovery by computer, since
the facts it discovered were previously unknown to astronomy.' AUTOCLASS uses statistical

Bayesian reasoning for its operation.

2.2 Discovery of Equations

All empirical discoverers use modules that find mathematical equations in two variables from a.

sequence of data. A measuremént error is associated with each experimental data point, and that all
knowledge derived from experimental data cagries corresponding errors. Systems like BACON,
IDS[19} and ABACUS [2] disregarded or oversimbliﬁed error analysis or error propagation. The
equation finder (EF) module of FAHRENHEIT handles experimzntal error in a statistically sound

manner. The equation finder will now be discussed in the following subsections.

2.2.1 Model fitting and evaluation

Input to equatién finder consists of N numeric data points (x;, ¥, 6;), i = 1,2,...,N, where x; are the
values of the independent variable x, y; are the values of the dependent variable y, o; represents the
uncertainty of y; (scientists call it error, for statisticians it is deviation, while the term noise is

often used in Al). Output is a list of acceptable models.

28

-~

Chi-square fitting, known also as weighted least-squares, is used to fit given numeric data points
(xi. yi, 0i) to a finite number-of models. Model is a function template y = fl(x, a,,..., a4) (for
example, y = a,+a,x+asx’) whose parameters’ values a, ..., a, are determined by the requirement
 that the value of i

2= Z[y ath ("vav"-’“«)y M)
i=1

T,

i

is minimal. The value of % is the sum of squares of deviations of data points (x;, y;) from the
model, weighted by errors o;, so that measurements which are more precise carry greater weight.

At the minimum of 12, its derivative with respect to the g all vanish,

iy, - f(x,,a,,...,a,) . F(x;,a,5.000,50a,)

2
i=1 g aaj

i

=0, (2)

forj=1,....9

In general, ihe set (2) of equations is non-linear and not easy to solve. For a polynomial model,
however, the set (2) can be solved by algebraic or matrix operations, producing efficiently a
unique solution.

Standard deviations of parameters a,,....,a, at ‘he values that minimize 12 are calculated according

to the formula for error propagation :
2
¥ (Oa,
7, = Z[_jJ 62, j=lewqg Q)

It is to note here that a; j=1,...,q are solutions of equation (2), therefore they are functions of x;, y;,
;.

Sometimes, there is a need for the removal of so'me parameters. From Figure 2.4 , it is obvious that
there may be three models for the plotted data: y = a;+asxt+asx’, y= by+byx+byx® + bsx’, and y=
crtext+eax? +cy/x; by and ¢4 are "zero-valued™ lbq' < T b;’|C4| < e Note that
(i) there is no visible difference between the first two models; (ii) the data does not prefer any of
the models, all have the same goodness of fit defined by (1), but y = a|+azx-+-a_-;x2 is the simplest.
Higher degree polynomials will always be created, it is important to eliminate those which are

unnecessary.

29

L

Figure 2.4: Sample data and 3 equations with similar goodness of fit

For the best fit to each model, we have to calculate the value of ¥* according té equation (1), and
assign the probability Q = Q(x", N - q) (N - q is the number of degrees of freedom in the data left
after the fit) that this %’ value has not been reached by chance. A small value of) means that the
discrepancy between the data (x;, y;, 6;) and tt2 model y = f(x, a,..., a5) is unlikely to be a chance
fluctuation. The threshold of acceptance is defined using the probability Q: all models for which
Q is smaller than some minimum value Q;, , are rejected. The best models are those with the

largest values of Q.

30

2.2.2 The Search Space of the Equatica Generator

The class of polynomial models is too narrow for many applications. To extend the scope of
detectable functions, the equation finder uses data transformations, combined with application of

polynomial model fitters to the transformed data (figure 2.5). For each pair of variables x',y', and

the error ¢’ of ¥, Equation Generation Search (left hand side of figure 2.5) creates new variables

by applying a number of transformation rules, initially to the original variables x and y,

x> x'=1,(x) | “)

r

2-ﬂ, 5)

(x,y,0) > (y',0") = (y'(x,),

and then the transformed variables. We note that each time y is used in a transformation, the

associated ¢ is also transformed according to (5). Each new term is simplified and then compared

against all the previous terms to ensure its uniqueness.

The default ;et of transformations includés logarithm, exponent, inverse, square root,
multiplication, and division. Adding new transformation rules is simple. Only the transformation
formula must be provided; the formula for errolr transformation is automatically developed by the
module that calculates analytical 'derivatives. For example, the inverse and multiplication

transformations are defined by

name; . INVERSE PRODUCT

parameters: (p) {(rq
formula: (/ 1p) *pq)
application condition: p=0 | -

31

transform t modet fitters

simplify constant
remove repetitions | linear (e.g. y=a+bx)
y

L L_ >y

generate equation search

L
generate || € transform |q'h degree polynomial
variable 44— simplify
search

— remove repetitions

y logy 1y (11 flinear (e.g.

Y A — oty
logx 4 / / / >

. B
ST

\ q" degree polynomial

generate
variable
search

Figure 2.5: The search space: generation of variables, generation of equations,
and model fitting.

32

2.2.2.1 Equation Generation Search

For each possible combination of variables x’ and y’, and for each polynomial up to the maximum
user-specified degree, the operator Generate New Equations proposes a polynomial equation y' =
f(x', ay,..., a4), which is then solved for y, if possible. If this seems a new equation, the Model

Fitter finds the best values for the parameters a, ..., a,, and then evaluates the model.

2.2.2.2 The Search Driver

The search driver coordinates the search in the spaces of variables and equations (Figure 2.5). The

system applies the Generate New Variable operator to extend the space of .variables, and the "

Generate New Equation operator to generate, fit, and evaluate equations.

The search starts from the two original variables: x and y (upper left part of Figure 2.5). The
application of the Generate New Equation o zrator leads to a constant model y =a, linear model y
= a + bx, and other polynomials up to the predefined maximum polynomial degree (upper right
part of Figure 2.5). If none of the models passes the evaluation, the Generate New Variable

operator is applied repeatedly (lower left part of Figure 2.5).

If we consider only three transformations: logarithm, inverse, and multiplication, then the new

variables would be;

1 1
logx, —, xy, logy, —
x . ¥

Now, using the original and new variables, the Generate New Equation search applies to each
combination of x-type and y- type' variables would form a large number of models (lower left part
of Figure 2.5). For example, if maximum polynomial degree is 1, then the following new

equations will be generated:

y=a+ — y = ae . y=a+blogx
x
Yy = ! y—axb = 1 y—£1_+b_
a + bx Y a+ blog x X x?
x z a + blog x
y:——— y:ae'r y:
a + bx X
33

D

Still none: of the models is acceptable, the Generate New Variable search applies again. This

operator, for the same three transformations, would generate the following new variables:

1 log x y
log(logx) log x xlogx xylogx ylogx -

X

log(log) 1 ylogy logy xylogy xlogy x

logy y
xly 0 log(xy) L logxxlogy logx logy
Xy ¥y X

It is noticeable that the number of variables grows rapidly.

Figure 2.6 demonstrates the creation of new variables and equations from another perspective. It

depicts the backtrace of actions needed to generate the equation

_ (a+bx2+cx4)/x

Yy =€

This equation can be generated at depth two in the Generate New Variables search (the original

variables x and y are at depth zero).

The search terminates when an acceptable model is found or at the predefined maximum search

depth.

2.2.2.3 User control over search

The user can change the maximum depth of both searches, that is, the maximum polynomial

degree and the maximum transformation search depth. The user can also specify which
transformation rules are to be considered. Another parameter controls the minimum search depth.
It can force the equation finding module to continue the search even if an acceptable model was
found. This option is particularly useful when the user is not satisfied with any of the models

already found and wants to deepen the search,

34

{ x, 1/x logx,...

[Y, 1/y,logy,....xy,xfy,y/x }

Select terms
‘ I X x, logy
Select transformations
X—x’ P R— transform terms | — p| (x, logy) = x-logy
P E—— simplify term —P
term contains y? —
o E— new term ?
— term defined for all data ? p Y =07
select polynomial
h 4 h 4
[X =x] [y'=a+bx’+cx'2] [y’=xlogy I
o' = lﬁ -o
oy
Transform equation - simplify
[xlogy =a+ bx* + ¢cx’ o' = (xy)o

&

Simplify equation ——————

Solve fory —P
New equation ? >

h 4

(a + bx

v tyrx

Figure 2.6: Generation of new variables and equations - example for
the equation, y=e

{a+bx?+ex®)ix

35

2.3 ABACUS: Integrating Quantitative and Qualitative Discovery

Most research on inductive learning has been concerned with qualitative learning that induces
conceptual, logic-style descriptions from some given facts. In contrast, quantitative learning deals
with discovering numerical laws that characterizes empirical laws. ABACUSJ[2] attempts to
integrate both types of learning by comtining ne;vly developed heuristics for formulating

equations with the previously developed concept learners.

2.3.1 The ABACUS Approach to Quantitative Discovery

There are many strategies to derive an equatioq or set of equations summarizing the behaviour of
some physical process. In choosing a particular strategy, one must weigh the gains from the use of
that strategy against the losses. The approach taken in ABACUS \has been to satisfy as many
criteria from our list for quantitative discovery as possiblé, and to reduce the user supplied

information to a minimum.

The ABACUS method of quantitative discovery consists of two steps. First, the equation discovery
module analyzes the original empirical data and attempts to derive equations summarizing the
observed behaviour. If more than one equatio. is required to describe the observations, the data are
divided into disjoint subsets, and equations are determined for each subset. The second step passes
the resulting subsets to the precondition generation module. This module derives a logic-style
description for each subset. Such a description is used as a precondition for each equation. The
result is a series of if-then rules in which the 'if part' states the precondition for applying the rule in
the 'then part'.

The equation learning module searches for the i)est equation to describe the given data. If a single
- equation holds for all events, the learning task is complete. Sometimes several classes ¢f events
can be described by one expression that evaluates to different values. When this occurs, a number
of classes are formed, one for each value of the expression. The following example is used to

illustrate the general algorithm used in ABACUS.

36

232 Discovering Bivariate Equations in ABACUS

ABACUS depicts quantitative discovery as a search through the space of possible equations. This
search process mathematicaily combines variables to form new terms. Before describing the search
algorithm, we discuss how thg nodes are formed, the constraints to the search and how goal is
fixed.

Suppose the system is given the data depicted in Figure 2.7(a). Observed values for x and y are
read in and the equation discovery module is invoked. As there are only two variables, the space of
possible equations is small. The best equat.on found, which describes 70% of data is x* =y
(Equation formation technique is illustrated in Section 2.3.2). Events covered by the equation are

put in a class associated with this equation.

F
¥
(a) A
25 |
20 T
15
10 [
.
I O |
N I — 1 >
5 10 15 20 25 30
(b) Rule A: IF | x =0.10,...,5.10]
THEN x'=y
Rule B: IF | x = 5.10,....,30.00]

THEN x+y=30.00

Figure 2.7: ABACUS analysis of graph example.

37

The equation discovery module is invoked again to analyze the remaining events. This time,
x +y = 30 is found to hold for all events and a class set is created for these events. Because all
observations are accounted for, the equation discovery step is completed and the precondition
module is called. This module searches for pr(;perties of the data which distinguish between the
two classes. The results are represented in Figure 2.7 (b). They state that when x is below 5, the

equation is y = x’, and when x is between 5 and 30, the equation x +y =30 holds.

2.3.2.1 Variable Dependency and Proportionality Graph

At the heart of quantitative discovery is the concept that one variable's values may be dependent in
some way upon the values of another variable. BACON looked for monotonic relationships in the
data to create new hypotheses; i.e., the relationship between two constants are held taking all other
variables to be constant. There are two problems with such a strict definition. First, for a given set
of data, it is not always possible to observe changing values of x and y while holding all other
variables constant. Second, we must allow for inaccuracies and errors in experimental data. As a
result, we are interested in the degree with which x is proportional to y rather than detecting if x
exhibits a monotonic relationship to y for all of the data. With this in mind, we say that x is
qualitatively proportional to y if, for a given percentage of the events (user specifiable), the values
of x rise when the values of y rise while certain specified variables are held constant. Similarly, x
and y are inversely qualitatively proportional if x decreases as y rises for a majority of the events
under the same conditions. There are then four assertions possible as the result of a qualitative

proportionality me¢asurement:

Prop” (x,y) - x andy are qualitatively proportional to a user-specifiable degree

Prop’(x,y) - xandy are inversely qualitatively proportional to a user-specifiable
degree

Prop? (x,y) - insufficient data to determine if x and y are related

Norel (x,y) - x and y are not related

To make a qualitative proportionality assertion about variables x and y, ABACUS looks for
general trends in the data. Since it is not always possible to hold all other variables constant, an
exclusion set is defined to be the set of attributes which do not need to be held constant and is

constructed by the program and the user. The user must recognize which variables simply cannot

38

~

iy

or should not be held constant, Similarly, when measuring the proportionality between variables x
and y, the program recognizes that, if x is a program generated variable composed of user defined
variables v and w, then v and w should be removed from the set of variables which must be held
constant. The proportionality criterion has a margin of tolerance, allowing a moderate degree of
noise and a limited amount of conflicting proportionalities. Conflicting proportionalities occur

when some of the data indicates Prop” (x, y) and some indicates Prop'(x, y).
R !

From these proportionality assertions we may construct an undirected graph, called a
proportionality graph. The nodes of the graph will represent variables, and the edges will indicate

the presence of a qualitative proportionality relation between their incident vertices (Figure 2.8).

We will construct edges for Prop” (x, y) and Prop™ (x, y) relationships, and Prop’ (x,y) will be ‘

treated as Norel. In Figure 2.8, a is proportional (+ or-) to b, but not to ¢ .

Figure 2.8: Proportionality graph
In the search algorithm, we will be concened with cycles in these graphs. Cycles will refer to

maximal cycles in a graph, i.¢., cycles that are not subset of some other cycle. In figure 2.8, there is

only one maximal cycle {abef}.

39

s

2.3.2.2 Equation Formation - A Search For Constancy

The existence for qualitative proportionalities between variables suggests the possibility of causal
or other relationships between them. For example, if we know that the value of x always goes
down when the value of y goes up, then the relation xy = constant might be binding these

variables. This may be generalized to a rule:
If Prop (x, y) then create a variable equal to xy

Such a variable is more likely to take on a constant value than x or y independently. Expanding on

this concept, the foliowing heuristics are formulated:

If Prop” (x, y) then
Generate a variable equal to a quotient relation between x and y'

(enerate a variable equal to difference relations between x and y

If Prop™ (x, y) then
Generate a variable equal to a product relation between x and y

Generate a variable equal to sum relations between x and y

With these heuristics in mind, search in quantitative discovery involves the continual combination
of variables which are qualitatively proportional to form new variables in the hope of finding a

variable which takes on a constant value.

2.3.2.3 Domain - independent Constraints

Severa] domain-independent constraints are used to limit the large search spabe associated with
quantitative learning, These are divided into three categories:

¢ Units compatibility rule

s Redundancy detection

¢ Tautology detection

For a detailed discussion of these constraints, see [2].

40

2.3.2.4 Recognizing the Goal

Because a valid equation may describe only a subset of events, recognizing whén a good equation
has been found and when to terminate search is not as easy as it would be otherwise. There are
three types of goal nodes recognized by the system. The first type corresponds to a term that
describes all events, i.e., one that evaluates to the same value for every event. Such a goal is easily

recognized and search terminates when one is discovered.

The second type of goal node is based on the notion of a nominal subgroup of events and also
causes immediate cessation of the search process. A nominal subgroup is defined to be a set of
events that are equal on all nominal attributes. If a term is found which evaluates to a single value
for a nominal subgroup, search terminates on the assumption that an equation of significance has
been found. ,
The third type of goal node does not halt the search algorithm. As each new variable is created, its
degree of constancy is measured, and the variable having the largest degree of constancy is stored.
The degree of constancy is defined to be the percentage of the data for which the function
evaluates to a single value within a percentage range of uncertainty modifiable by the user. If
search exceeds the allowed limit, the term having the highest degree of constancy is returned. If its
constancy is greater than a user modifiable threshold, the resulting equation is reported. Otherwise,

the program states that no formula could be found.
2.3.2.5 Search

ABACUS discovers equations by searching through the space of possible terms which relate the
user supplied variables. ABACUS uses a combination of two search algorithms. The first
algorithm, proportionality graph search, uses the graphical nature of the proportionality assertions
to guide the search path and discriminate against irrelevant variables. The second algorithm,
suspension search, enables the program to reduce the number of terms being examined by
removing those that do not look promising until all othier possibilities have been exhausted. We
will examine the search by two examples: one is the ideal gas law, as discoverea by BACON, and

another is the law of conservation of momentum:

Lild =8.32 (i)
NT
myv, 4+ m,v, =mv, +m,v, (ii)

41

2.3.2.5.1 Proportionality graph search

The proportionality graph search technique directs its search to the interrelations of variables .
forming a cycle and avoids variables that are not contained in a cycle. The algorithm consists of

the repeated application of the following steps:

1. Form a proportionality graph for the current set of variables, both those
provided by the user and those generated by the program. Exclude all edges
which occurred in previously generated graphs.

~2. Extract the cycles (maximal cycles) and represent each cycle by the set of
nodes it contains.

3. Search each cycle in a depth-first manner for a depth given by the cardinality
of the set.

The process repeats until a suitable relation is found up to a maximum of K times. The default
search depth, K, is 4, since powers greater than 4 are seldom seen in the natural sciences.
For each graph, the cycle sets are sorted in decreasing order under the assumption that the largest .

cycles will prove to be the most promising.

(a)
(b) Cycle Sets:
{PVI(PNY(PT)(VN)(VTI(N T}
(Y V)}
{(NM)}

Figure 2.9: Proportionality graplh search for the ideal gas law (PV/NT =832).

2 .t

A cycle (e.g {V, N, P, T})is searched in a depth-first manner by first removing two nodes that are
proportional and combining them according to the equation formation heuristics to form new terms
(e.g., V/N). The remaining nodes (e.g., {P,T}) are then tested one at a time against these terms to
form new terms. For the set {P, Ti and the current node V/N, P would be tested against V/N to
possibly create new terms such as PV/N, If backtracking occurred, then T would be tested against
V/N. This process repeats until all combinations have been exhausted. Because nodes are removed
from the cycle set as search progresses, powers of variables are not possible after the first round of

search,

As an example of this search technique, a sample proportionality graph is shown in Figure 2.9(a)
for the ideal gas law. A total of six attributes were initially provided by .the user. The irrelevant
variable mass, M, is independent of pressure, volume and temperature, but is proportional to the
number of moles of gas present. A similar situation exists for variable Y.

The three cycles of the graph are given in Figure 2.9(b), where solitary edges are simply treated as
a cycle having only one edge. Figure 2.10 shows the search tree resulting from the above strategy

applied to the example.
D, @ O O

V/N

PV/NT

Figure 2.10: Proportionality graph search path for ideal gas law example.

43

2.3.2.5.2 Suspension search

To avoid the problem caused by repeated application of proportionality graph search, ABACUS
uses oniy one iteration of the algorithm. 1f no law is found, then the program employs a technique
called suspension search. This algorithm is able to remove nodes from consideration, yet allows
their return should they be needed. Suspension search begins by normal breadth- first search. But
whenever each level is created, all nodes on that level are divided into active nodes and suspended

nodes. Suspended nodes are those whose constancy is less than a low threshold.

Search then proceeds on to the next level, where only the active nodes of previous levels are
visible to the search algorithm. Since suspended nodes are ignored, fewer nodes are involved in the
search at any one time. Therefore, search may be allowed to explore deeper than it could
otherwise. A second search depth limit is defined, called the filler depth, which cites a limit
shallower than absolute search depth. Search may proceed beyond the filler depth, but only active
nodes are allowed. Suspended nodes beyond the limit are permanently discarded.

The suspension search may be summarized as:

FUNCTION Suspension(active_ancestor nodes,active_nodes,suspended_nodes, environment)
o [Ifthe search depth limit has been reached '

then return true if the best constancy found is greater than threshold else return false
» If new active or suspended nodes can be created from the current list of active nodes

then return true if one of these has a constancy of 100% |

or return true if acall to Suspension using the new nodes returns true

e [fthe filler depth has been reached

then save the environment and retumn false
» Ifnew active or suspended nodes are created from the current list of suspended nodes

then return true if one of these has a consistency of 100%

otherwise save the environment
and return true if a call to Suspension using the new nodes returns true

s Save the environment and return false

44

!

A partial suspension search is given in Figure 2.11 for the example involving the discovery of the

law of conservation of momenmum.

DOOO®OE @
CORCPRCHICY

Come)) (ommn DCrmn

e e e e e e e m 2 J e depth

suspended

node

.
Figure 2.1 1: Partial suspension search tree for conservation of momentum

!
Combining the proportionality graph search algorithm with the suspension search algorithm favors

quick discovery of laws _which'are composed solely of multiplication and division while still being
~ adept at discovering more complicated equations in a reasonable amount of time. As cycles in the
first pass can never be larger than the number of given attributes, the depth- first search of the first
phase is not deep for most problems, thus cre .ting variables which would normally be created for

more complicated examples anyway.

45

—-N

Chapter 3

Development of the system

3.1 Equations and Situations

To understand the decomposition of quantifative regularities into simple expressions and their
recombination into models, one must first understand the relationship between equations and

physical situations. This will be described now.

3.1.1 Correspondence between Situations and Equations

Let us first examine some examples in which we compare physical situations and the
corresponding equations. Consider a process in which two samples of water at different initial
temperatures are combined and eventually reach thermal equilibrium (Figure 1.2a). The
experimental space is spanned by four independent variables under the experimenter's control: two
initial temperatures, t, and t;, and two masses m; and m,. The outcome is the final temperature ti.

Black's equation for this process can be discovered by a BACON-like system, usually in the form:

mt, +m,i
r, =0 T (a)
m, +m,
Now we replace the water in the first sample by a small piece of ice at the melting temperature t;.
The ice melts entirely in the water from the second sample(Figure 1.2b). This process is described

by the equation:

mit +mdl, —mc
[f: 11 2%2 1%y (lb)

m +m,

ot
~
L e
i
"4».",-::/ "
N
. L

where ¢, is the latent heat of the melting ice. Still another experiment, with a larger piece of ice

that melts partially (Figure 1.2 c), leads to the pair of equations

m,=m +(mt, —myt,) and 1, =t (1¢)

where my; is the final mass of ice. Many similar experiments are possible, in which ice is dropped
into a glass of scotch, a piece of potassium is dropped into water, water is poured over dry ice, and

so forth. Each time the outcome is described by a different equation.

Other phenomena can also be varied in uncountable ways, but the same principle of composability
applies.'Consider a body sliding down an inclined plane, as shown in figure 1.3a. If the initial
velocity is zero and the difference in height is h, then the equation that describes a class of such

experiments is

v’ =ch (2a)

where v is the final velocity and ¢; is a constant. Now suppose that another body is on the
downward iJath but this time it rolls without slippage, as in figure 1.3b. The equation here will

differ, assuming the form
vi=c,h : 2b)

in which ¢, is another constant, ¢, = 5¢,/7. Her it is less clear what new expressions are added to

equation 2a, but when we rewrite 2a and 2b as

mgh =mv* /2 (2d")
and
mgh=mv’ /2+mv’ /5 (2"

we can attribute the expression mgh to the change of altitude, mv?/2 to the process of sliding, and ,

mv’/5 to the process of rolling,
The correspondence of physical components and equation parts applies not only to processes but

also to state descriptions, as in the following example of electric circuits. Consider the simple

circuit shown in figure 1.4a, which is described by the equation

47

E=IR+1Ir (3a)

where E is the electromotive power of the battery, r is the internal resistance of the battery, and R
characterizes the resistor. By adding more elements to the circuit, as depicted in figure 1.4b, the

equation becomes

E+E =IR+1Ir+ IR + Ir, (3h)

where additional expressions E, and Ir; correspond to an additional battery, and IR, corresponds to

the added resistor.

We have seen in these simple examples how science deals with the complexity of physical
situations by combining analysis with synthesis. Scientists decompose laws into simple
expressions that correspond to and are interpreted by the generic physical components of the
situation, These expressions are clementary “mits of recombination, that is, building blocks from
which complexes of equations that describe complex physical situations are recombined into
models. This process allows the scientist to transfer knowledge extracted by analyzing simple
situations to synthesize descriptions of complex situations. In most real-world situations, one must
apply a combination of basic laws to generate an adequate description. However, the number of
e]emenfary components is small as compared with the total set of physical situations, and a small

number of elementary expressions lets one build a limitless number of models.

3.2 The Developed System

Our system decomposes equations like the law of equation (1a) into simpler expressions. The
‘system's input consists Qf an equation that d¢ scribes a particular physical process P, along with a
description of P in which the measured variables are attached to the appropriate elements in P. The
system transforms equations until they can be interpreted by fitting a given equation and the
corresponding process description. Under a satisfactory fit, all expressions that occur in the final

form of the equation are assigned to the corresponding elements of the process description.

48

3.2.1 Representing Processes and Equations

The thermal process depicted in figure 1.2a can be represented in a proceés diagram (Figure 3.1) as
a combination of the processes of heating and cooling, one process for each sample, coupled by
energy transfer between both processes. The process diagram in figure3.1 repreéents a particular
understanding of the actual process. Each elementary process is associated with a particular change

in a particular object. |

warming
ml
i x
l
1
)
)
1
1
1
i internal
1
1
s i energy
© transfer
| cooling

Figure 3.1: Process diagram for figure 1.2a

3.2.2 Input and Output

Figure 3.2 reviews the system’s input and basic algorithm. In preparation for the main search
procedure, the system represents the process diagram by a process decomposition tree like those in
figures 3.3 and 3.4, and it represents the equation by a parse tree like the one in figure 3.5. A
process decomposition tree offers a simplified representation of the process diagram sufficient to
guide equation transformation.

One process diagram may be represented by several process decomposition trees, each providing a
different perspective on the same process. For instance, figures 3.3 and 3.4 depict two different
_ trees for the process diagram of 3.2. In figure 3.3, the process is decomposed into the initial and
final states, which in turn decompose into elementary states. In figure 3.4, the same process is
decofnposed into two elementary subprocesses, which in turn decompose into their initial and final
states. When several process decomposition irees are possible, we can operate with any of them,

resulting in different possible equation decompositions.

.

49

Process diagram - obtained by observation and measurement
decomposition

Process decomposition tree

?

l matching
Equation parse tree transformed until it matches
the process decomposition tree
parsing

Equation - obtained from a BACON-like system

Figure 3.2 : Overview of the system's input (bold) and processing (italics).

30

process

x

initial state finat state
initial statel initial state2 final statel final state2

Figure 3.3: Process decomposition tree ! for the process diagram in figure 3.1
process
process| process2

N\ PN

initial statel initial state2 final statel final state2

Figure 3.4: Process decomposition tree2 for the process in figure 3.1

51

tf - /

ml . tl m2 12

Figure 3.5: Equation parse tree for the equation tf = (m1t1+m2t2)/(m1+m2).

The fitting procedure produces a mapping between the subtrees in the process decomposition tree
and subtrees (expressions) in the equation parse tree. Before the search for a fit, the system is told
what quantities represent measurements in each state. For instance, it is told that t; and m, describe
the initial state 1, but it does not know that :heir product mit; is a meaningful state description.
Many expressions that are built from m; and t; are potential candidates, such as t,, m,, t;/m;, and
tim,>. As a result of the fitting procedure, the system is able to identify the most appropriate
expression, namely mt;, without explicit search through the space of candidate expressions. As a
result of the matching procedure, the system also infers that, for the internal nodes "initial state”
and "final state” in figure 3.3, the concatenation of complex thermatl states is reflected by addition
of the quantities that describe elementary states, giving the expression m;t; + maty. Using the tree
of figure 3.4 leads the system to determine expresssions corresponding to the processes of heating

and cooling: mt; - myt; and mat; - mat; .

52

3.2.3 Equation Transformation Searc.

To transform the input equation to an interpretable form, the equation transformation search
" method plays the principal role. It changes the equation to a form that matches the process
decomposition tree. We use a variety of transformation grammar rules (operators) to modify the
parse tree, Most of these are typical operations on algebraic expressions, which are represented in
if-then form. Figure 3.6 illustrates two such rules that can be recognized as standard algebraic
transformations, |

(a+tb) c¢c—alc+blcand a=blc —»ac=b.

If the current equation or one of its parts matches the IF part of a transformation rule, it can be

transformed into the structure shown in the THEN part.

Equation transformation search proceeds by applying transformation rules, which act as search
operators, until it establishes a complete match with the process decomposition tree or when no
improvement can be made to a partial m.ich. It is implemented as depth-first search with
backtracking, guided by the degree of match. Two other search methods work as subroutines. The
first is the Match method, which tries to determine the degree of match between a given form of

the equation and the process decomposition tree.

/ | \ +
/ + \ c — /. /
a c b ¢
/ \/ — ; N
/ \c a/ \
Figure 3.6: Examples of transformation grammar rules.

53

The second submethod, Operator Selection, uses the guidance provided by a partial match to select
operators that should be applied by Transform. Operators are heuristically selected to reduce the

mismatch between the equation and the process decomposition tree.

3.2.4 Tree Matching Search

The matching procedure uses the equation parse tree as its search tree, implementing a depth-first
traversal of that tree with backpropagation of results. Matching starts from the leaves of the
equation parse tree, {Jvhere either single variables or constants are stored. A variable matches all the
leaves in the process decomposition tree that are described by that variable. For instance, m;
matches initial state 1 and final state|, because m; describes each of them, but m, matches neither
initial state2 nor final state2, because m; does not belong to the description of these states. As a
result, matching at the leaf m, returns the list of two elements, including both initial statel and

final statel.

After all children of a particular node are considered, the results are backpropagated to the parent
node. Internal nodes of the equation parse tree represent arithmetic operations. Depending on the
arithmetic operation, one of two different list operations is applied to the lists returned from the
children of a given internal node to produce the result at that node. For addition, subtraction and
equality, the union is applied to the results obtained for children, whereas for multiplication and
division, it is their intersection. Backpropagation stops and returns failure of the match at any node
at which an empty set has been reached. When the backpropagation reaches the root of the
equation, a list of physical states has been attached to each node of the equation tree that are

possible candidates for the interpretation of that node.

54

i process

initial state fina state

step 1 . S \

¢ initial state] | initial state2 ¢ final state] final state2

/\/ .::>/\ b

/\

hi z

Figure 3.7. Results of matching: (a) partial match; (b} mismatch reductién schema for (a).

55

The next cycle of backpropagation extends the partial matches as far as possible. If the root is
reached, a complete match has been detected; otherwise the backpropagation stops at a particular
node when no match holds for the subtree starting at this node. If the search cannot find a total
match, it uses a consistent partial match to guide operafor selection for the next step of equation

transformation.

3.2.5 Operator Selection

A partial match between an equation and a process decomposition tree helps us select an
appropriate operator for continued equation transformation. As a result of matching the equation in
figure in 3.5 and the tree in figure 3.3, the system detects a partial match between the initial state
and the expression myt; + myt; , as illustrated in figure 3.7(i). Other elements of the equation in
figure 3.5 do not match the tree in figure 3.3. This partial match lets the system schematically
characterize the desired transformation of the equation presented in figure 3.7(ii). This
transformation schema, called a mismatch reduction schema, is input to the search method for
selecting the relevant operator transformations. This method tries to identify the rules in the
transformational grammar, such as those depicted in figure3.6, that satisfy the mismatch reduction.

schema.

3.3 The system with two case studies

The system developed is coded in Turbo Prolog with a large number of predicates. But if we look
into the depth of it , we will find that it consists of a few subsections or modules. The modules are
for process tree input , parse tree input , to find the result at the internal parse nodes, to input
matches at the leaves i.e., the correspondence of the parse leaves to the nodes of the process
decomposition tree, to find the matches at the internal parse nodes, accumulation of the result and
process nodes at these internal parse nodes in a declarable form and then if not declarable, use of
some operators in the state- space search technique to reach a goal. The operators, as has already
been mentioned are equation transformation rules from algebra. In our-system, we have

incorporated nine most useful transformation rules. These are:

1. a=blc > b= ac

56

2. b=ac — a=blk

7 3. (ay+aytayt - +an)fc=a)fc +ae+ e + an/c
4. (ajtaptazt o +an)* ¢ = a;fc +ay*c+ e +an*c
5. a=b — b=a-

6. ateg —aifec<ca

7. Transpositionrole:a+b=c+d > a—-c=d- b, elc.

8. ab /fed = a*(b/cd)

hed

ab/cd = (ab/c)/d

Many other transformation rules can be applied. But the above ones cover a vast majority of

decompositions.

Process'decomposition tree and equation parse tree cannot easily be handied in Prolog, because
tree representation cannot be done easily. We can represent rees through lists, but althouéh Prolog
support list structure, we have to define the iength of how far we will move using list of lists. So
we had rather represented trees through the dynamic database structure of Turbo Prolog. We used

three databases for this purpose. These are:

Process_tree_children_no(N ,R,S,L,M)
Process_tree child no(N,R,S,X,D)
Process leaf(N,R,S)

We use similar dynamic databases for the parse tree. Here N refers to the level of a node of a tree,
R represents the string or name of that node, S is the number of being child of its parent node, L is
the list of children of that node and X is the I-th child. As with this process tree predicates or

database predicates, there are similar parse tree predicates.

57

After inputting the process decomposition tree and parse tree of equations, we find the same’
branch nodes of the process tree and have the results at the internal nodes of the parse tree. Then
the process tree nodes that matches the leaves of the parse tree are inputted. Then process tree’
. nodes matched at internal nodes of the parse tree are obtained. As has already been stated, for an
additive or subtractive node, the result will be the union of the sets of matching process nodes at

the child nodes of that particular node. For division and multiplication, it will be the intersection.

After having the matches at all nodes of parse tree, we seek for the result. If any node matches a
single process node or nodes of the same branch, then we conclude that the equation at that root
process node is the parse result at the parse node concerned. If no such node or set of nodes can be
obtained, then search through operators is done using depth-first search strategy. Using an
operator, the whole equation parse tree is modified and the dynamic database is also modified.
Then again we search for a solution. If solut un at all nodes of the process tree is found, then we

terminate the search.

Now let us illustrate the method of decomposition through two case studies.

3.3.1 Case l: Water temperature problem

Now let us illustrate the system using the water temperature case mentioned carlier. We will use
the process decomposition tree having a process P comprised of two subprocesses, is (initial state)
and fs (final state). We will input the parse tree of the equation, tf= (mltl +-m2t2)/(m] + m2).

Matching at the leaves will then start by inputting the following correspondences:

1. tf—fs

2. ml—>is,fs
3. tl > is

4. m2 o is, fs
5. 2515 -

After matching at the leaves, matching at the internal nodes of the parse tree is done. At this stage,
we get *is” at ‘m1tl’, “is” at m2t2, ‘is” at ‘m1t1+m2t2’, “is’ at *(m1t1+m2t2)/(m1+m2)’,but ‘is’ and

‘fs” at ‘ml+m2’. Since these two are not of same branch, operator search occurs.

58

The first operator now matches and the equation reduces to:
mltl+m2t2 = tiim1+m2)

Now again we do not get a single process node at ‘m1+m2°. So, again we make operator search.

Now operator 3 matches and the equation again reduces to:
mlt] + m2t2 = m1tf +m2tf

Now all the parse tree nodes match single process nodes. So the goal succeeds and we get the

decomposed equations:
‘st mltl+m2t2, mitl, m2t2

157, mltfHtm2tf, mltf, m2tf

Then a second level search attempts to drop first any of the expressions m1tl, m212, m1tf, m2tf

using the operator a + € —» a, if & << a. But since no such conclusions can be made, the operator

fails.

Now the transposition rule tries to succeed, and operator 6 makes transformations like:

mlt]l — mltf = m2tf — m2t2

But this transformation cannot yield a succe.sful decomposition, the rule fails, and the previous

goal that has been succeeded is the output of the system.

59 @

3.3.2 Case II: Electrical circuit problem

We know that if only one resistor R1 is in series with a battery having voltage E1 with current |
flowing, then from Ohm’s law, we get E1 = IR1. But if E1 and E2 are in additive series with two
resistances R1 and R2, then the equation obtained from a BACON-like system for the circuit will
be:

El + E2 =IR1 + IR2
Here we do not get the equation for the elementary interaction, i.e., Ohm’s law.

So we want to decompose the equation.

We will designate the process P as being composed of two subprocesses, P1 for battery E1 and
resistance R1 and P2 for battery E2 and resistor R2.
Match at the leaves will yield:

1. El - PI
2. E2-5P2
3. 1 5>PLP2
4. Rl - Pl
5. R2—-P2

Now we will have both P and P2 for ‘El + E2°, which are not of same branch. So operator search
starts. Since there are ‘+° sign, the operator search will seek either of its descendents is much
smaller than the other. Since no such conclusion can be made, transposition rule is tried, and the

equation reduces to:
El1-IR1=E2-1R2
Here the left side matches with P1 and the right side with P2.

Both of these matches are nothing but reflections of Ohm’s law for P1 and P2 respectively.

Thus for a wide variety of problems the developed system successfully decomposes equations

from a BACON-like system into the basic laws.

60

Chapter 4

Discussion and Conclusion

4.1 Evaluation of the system

The system developed successfully decomposes composite equations. Here we will illustrate two

examples of the decomposition of composite equations derived from a BACON-like system.
4.1.1 Example 1

Let us first take the case of ideal gas law. We know that the system BACON can successfully
discover this law [2]. But there may be a number of variations in the physical situations to describe
the law. In one arrangement, the temperature of the gas may remain constant. The pressure may be
constant in another experiment. So the process decomposition tree may be like figure 1.

Now the equation parse tree will be as follows:

PVT= k = /\
* *
P V n T

Figure 4.1: Parse tree for ideal gas law

The lists of process nodes corresponding to P, V, n, T and k are {p:}, {p1, p2}.{P1, P2}, {p>2}and

{p1, p2} respectively, where p; and p, refers to process] and process2 respectively.

We get { pi Jand {p; } respectively at the two nodes designated by *’, because these can be
obtained by the intersection of the sets or lists for their children. At the node designated by /’, wer
will get a null set of process tree nodes. So operator search transforms the equation as: PV = KnT.
And we get PV for process 1, where temperature is constant. '

This is an indication of Boyle’s law.

A second level of search transforms the equation into the form
P=KnT/V
At the node for T/V, we will get ‘process 2°,where pressure is held constant. This is a complete

indication of Charles’ law.

Thus Boyle’s law and Charles’ law can be deduced from the ideal gas law.

4.1.2 Example 2

Consider the case of Black’s experiment. Let us take two beakers containing m;and m; amount of
water at temperatures t; and t, respectively. The water in the two beakers are mixed and waited a

bit until, at equilibrium, the final temperature be t. Now the process decomposition tree for this

experiment will be:

process

initial state final state

|
| . |

initial statel, initial state2, fina!l statel, final state2,

myt, mzt; myt; Mty

Figure 4.2: Process decomposition tree for Black’s experiment

62

735°8F

The corresponding equation parse tree will be:

te=(m t; +mpt;) (my + my) =

+ /\
/\ m, m;
* *
my o om t

Figure 4.3: Parse trec for Black’s law

Now {initjal state} successfully matches up to (m; t, + myt;) . But the match does not reach the
root. To reach the root, we should use the operator : a = b/c — ac =b. Then, obviously, {final

state} will match (m, + mg) t;, yielding the basic laws of thermal equilibrium.

4.2 Further Development

The present program incorporates a large number of mathematical operators to guide the search.
Using the operator selection, we can have a huge database of relations. Still there are situations
where extensions to the present system can be made. These are outlined here. '

There may be discrepancies in the interpretation of processes and as such the process
decomposition tree may be faulty. A section of subprocesses in the experiment may be overlooked
or an extraneous portion of an experiment that has no significant impact can be included in the
process interpretation. So the system may not successfully deduce the basic laws. In these cases, a

system can be developed which will yield good results in such situations.

63

In developing the system, we use depth-first search with backtracking. Heuristic searches can be
incorporated to reach the goal at a minimal cost. Heuristic algorithms like A*¥, AQO* or steepest-

ascent hill-climbing can be used to guide the search to obtain an optimal solution.

We can take advantage of the finite differences to step forward to the components of differential
equations. Any expression of the form k (X, — x2), where x, and x; are two states relating to k, can
be replaced by a finite difference k Ax. When we take into account the case of infinitesimal
differences, it becomes kdx. When such infinitesimal differences are encountered, differential

equations may arise.

We have represented the process decomposition tree and the equation parse tree through the
dynamic database structure of Turbo Prolog. Use of this database and deletion and at the same
time update of the same during equation transformation require a large memory space, especially
large stack area Often it so occurs that stack overflows and the program can not.run. So computers
having high memory capacity happen to be required. This could be avoided, if some other

representation except the dynamic database could be implemented in the system.
Finally the decomposition process can be use/. in scientific model-building process.
4.3 Conclusion

The number of Al discovery systems has been growing considerably since the last decade. These
systems cover many areas of human discovery activity and are becoming useful as everyday tools
for scientists, providing labor-intensive, systematic and unbiased help. Two discovery processes
BACON and FAHRENHEIT play the most vital role in empirical discovery of scientific
equations. Equations derived from such systems are used to deduce the basic lawé in the present
program.

Equation transformations and their interpretations form the main search space.. There is a system
called GALILEQO [29], which also decompose composite equations to obtain the elementary
interactions, but we implement the system differently and add some useful operators to guide the
search. We use a database model for the implementation of the process tree and the equation parse
tree. A trajectory is formed from an initial st :ie, i,e, equation in the form discovered by BACON-—

like systems to a goal state which is an equivalent equation in interpretable form.

64

References

[1]

- [2]

(3]

(4]

[5]

(6]

[7]

[8]

9]

Cheeseman, P., Self, M., Kelly, J., Taylor, W.; Freeman, D. & Stutz, J. (1988).Bayesian
Classification, In: Proceedings of AAAI-88.

Falkenhainer, B. C. & Michalski , I.. S.(1986), Integrating quantitative and qualitative
discovery : the ABACUS system. Machine Learning 1, 367 - 401,

Fischer, D. H. (1987). Knowledge acquisition via incremental conceptual clustering,
Machine Learning, 2, 139 - 172.

Forbus, K. D.(1984). Qualitative Process Theory: Qualitative Reasoning about Physical
Systems. Cambridge, MA; MIT Press.

Gerwin, D. G. (1976). Information processing, data inference, and scientific generalization,

Behavioral Science, 19, 314 - 325,

Jankowski, A. & Zytkow, J. M. (1988). A methodology of multisearch systems. In: Z. Ras
& L. Saita (eds.), Methodologies for intelligent systems (vol. 3). New York : North Holland.

Knight , K. and Rich, E.(1991), Artificial Intelligence, 2" edition, Mc-Graw Hill Book
Company, New York.

Koehn, B. & Zytkow, J. M.(1986). Experimenting and Theorizing in Theory formation.

Proceedings of the international symposium on methodologies for intelligent systems
{pp.296-307). ACM-SIGART Press.

Kulkarni, D. & Simon, A. (1987), The processes of Scientific Discovery: the Strategy of

Experimentation. Carneggie- Mellon University.

[10] Langley, P. (1981). Data-driven discovery of physical laws. Cognitive Science, 5, 31 — 54.

65

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

Langley, P. W. & Zytkow, J. M. (1989). Data-driven approaches to empirical discovery,
Artificial Intelligence, 40, 283 - 314.

Langley. P., Bradshaw,G. L., Simon, A. and Zytkow, J. M.(1987), Scientific discovery:

Computational Explorations of the Creative Processes . Cambridge, MA: MIT press.

Lenat, D. (1976). AM: An Al approach to discovery in mathematics as heuristic search, Ph.
D. Thesis, Computer Science Department, Stanford University, Stanford, CA.

Lenat, D. (1983). EURISKO: A program that learns new heuristics and domain concepts,
Artificial Intelligence, 21, 61 - 98.

Lenat, D. and Brown, J., (1984). Why AM and EURISKO appear to work, Artificial
Intelligence, 23, 269 - 294.

Lewenstam, A. & Zytkow, J. M. (1989). Model-based science of ion-selective electrodes.

In: E. Pungor (Ed.), lon-selective Electrodes (Vol. 5). Oxford, England: Pergamon Press.

Moulet, M. (1992). ARC.2: Linear regression in ABACUS, In: Zytkow, J. M. (ed.),
Proceedings of ML-92 workshop on machine discovery, Aberdeen, UK, July 4, 137 - 146.

Newell, A. & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NI:

Prentice-Hall.

Nordhausen, B. and Langley, P. (1993). An integrated framework for empirical discovery,
Machine Learning, 12, 17 - 47.

Nordhausen, B. & Langley, P. (1990). A robust approach to numeric discovery. Proceedings
of the Seventh International Conference on Machine Learning, Morgan Kaufman
Publishers, Inc., Palo Alto, CA, 411 - 418.

Piatetsky - Shapiro, G. & Frawley, W. (eds.)(1991). Knowledge discovery in databases,
Menlo Park, CA: AAAI Press.

66

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Schaffer, C. (1993). Bivariate scientific function finding in a sampled, real-data testbed,
Machine Learning, 12, 167 - 183.

Wu. Y. and Wang, S. (1989). Discovering knowledge from observational data. In: Piatetski

- Shapiro, G. (ed.), Knowledge discovery in databases, [JCAI - 89 Workshop Proceedings,
Detroit, MI, 369 - 377.

Zembowicz, R. & Zytkow, J. M (1992). Discovery of equations: experimental evaluation of
convergence, Proceedings of 10™ national conference on Artificial Intelligence, the AAAI

Press, 70 - 75.

Zembowicz, R. & Zytkow, J. M. (1996). From Contingency Tables to various forms of
knowledge in databases. In: Advance:. in Knowledge Discovery and Data Mining. In: U.

Fayyad, G. Piatetsky - Shapiro, P. Smyth and R. Uthurusamy (eds.), AAAI Press.

Zytkow, J. M. (1993). Introduction: cognitive autonomy in machine discovery, Machine

Learning, 12, 7 - 16, Kluwer Academic Publishers, Boston.

Zytkow, J. M. & Jankowski, A.(1989). Hierarchical control and heuristics in multisearch
systems. In Z. Ras(Ed.), Methodologies for intelligent systems (vol. 4). New York.

Zytkow, J. M. & Zhu, Jieming (1991). Automated empirical discovery in-a numerical space.
Proceedings of the Third Annual Chinese Machine Learning Workshop. Harbin, Peoples
Republic of China.

Zytkow, J. M. (1990). Deriving law . through analysis of processes and equations. In:
Langley, P. & Shrager, J. (eds.). Computational models of discovery and theory formation.

Morgan Kaufman Publishers Inc., San Mateo, CA, 129 — 156.

Zytkow, J. M.(1996). Automated discovery of empirical laws. Fundamenta Informaticae,
27, IOS press, 299 - 318.

Zytkow, J. M. (1997). Creating a discoverer: automatic knowledge seeking agent. Zytkow,
J. M. (ed.). Kluwer Academic Publishers.

67

(32]

[33]

Zytkow, J. M., Zhu, J. & Hussam, A. (1990). Automated discovery in a chemistry
laboratory, Proceedings of the AAAI - 90, AAAI Press, 889 - 894,

Zytkow, J. M., & Zembowicz, R. (1993). Database exploration in search of regularities,

Journal of Intelligent Information Systems, 2, 39 - 81,

68

APPENDIX

PROGRAM LISTING

/***

THIS PROGRAM IS WRITTEN BY
MOHAMMAD ISMAT KADIR.

*i***/

/= DECLARATION SECTION =/

domains
root,child, roctp, head, element, X1, x, other=string
n,m,i,nn,mm, mp,3,3j, %k, kk,il=integer
list,new list,listp,tail,list2,list3,1listl, listb,
new, setl, set, set?2,newtail,lists? ash, rem, reml=string*

predicates
get process_tree
get child(integer, integer, string, integer,list)
testl{integer, integer, string, integer, string, list)

get _parse tree :

get childp(integer, integer, string, integer, integer, list)
test2{integer, integer, string, integer, integer, string, 1ist)
append list{string,list,list)
n_element (list, integer, string)

rept {list, integer, integer, integer)
reptp(list,integer,integer, integer, integer)

operator search

opl

opZ

op3

opd

op5

opb

op7

op8

op9

construct_slash list{integer,list)

loop({integer, integer, integer, integer, integer, 1list, string)
construct_star list(integer,list)
looping{integer, integer, integer, integer, integer, list, string}
looping2 (integer, integer, integer, integer, integer, list, string)
loop neg{integer, integer, integer, integer, integer, list, string)
looping neg{integer, integer, integer, integer, integer, list, string)
looping negZ{integer, integer, integer, integer, integer, list, string)

70

include child{integer,string,integer, integer,integer,integer,list, intege

r,

integer)

equal check({integer, integer, integer)
pull({string,list,1list)

retract next child(integer,list,integer, integer, integer)
delete next child{integer, string, integer}

comparel (list, integer, integer, integer, string, integer}
compareZ (list, integer, string, integer, integer, integer, string, integer)
response (string)

get _parse result

parse_tree result(integer, string, integer, integer)

store parse result(integer, integer, integer, string, string)

find result (integer,list, string, integer, integer,integer, integer, string)

match

matching leaf list(integer,string,integer,integer,list)
matching nodes list{integer,string, integer, integer,liist,list)
match internal (integer, string, integer, integer, integer, integer)
repit (integer, string, integer, integer,integer, integer, list)
internal match(integer, string, integer,integer, integer)
retract children(integer,string, integer, integer)

retract child{integer, string, integer, integer)

retract_result

deduct {list,list,list)

add(string,list,list)

retract_match

assertion

accumulation

accumulate (integer, string, integer, integer, list, integer, integer)
speak(integer, string, integer, integer, integer, integer)
length{list, integer)

union{list,list,list}

intersect{list,list,list})

append(list,list,list)

replace withi{list,string, integer, integer,list,list)

member {string, list)

correcting child(integer, integer, string, integer, integer, integer,list,int
eger, integer)

correcting childl {integer, integer, string, integer, list, integer, integer)
investigate nodel (integer,integer, string, string, string)
investigate node2(integer, integer, string, string, string)
investigate nodell{integer,integer, string, string, string)
investigate node2l (integer, integer, string, string, string)
investigate nodelZ{integer,integer, string, string, string)
investigate node22{integer, integer,string, string, string}
investigate nodel3{integer, integer,string, string, string)
investigate node23{integer, integer, string, string, string)

next investigate(integer,integer,string, integer, integer, integer)
next investigatel (integer, integer, string, integer, integer)

check (string) ' '

equal list(list,list)

whether same process oranch

same_branch({list, integer,integer)

find root{list,string)

71

same_branch check{string)
next check{string,list,list, integer, integer)
checkA(integer, string, integer, integer, integer, integer)

judge {string, integer, integer, integer, string, integer, integer, integer, inte
ger)
go

database

process leaf(integer, string,integer)

process_tree children no{integer,string,integer,list,integer)
process tree child no(lnteger strlng,lnteger string, integer)

same. process branch(strlng,llst)-

parse_leaf{integer,string, integer, integer)

parse_tree children no(integer,string, integer, integer,list, integer)
parse tree child no{integer, string,integer, integer, string, integer)
parse result(integer, integer, integer, string, string)

matching nodes(integer, string, integer, integer, 1ist)

matched leaf(string, list)

goal
go.

7* PROCESS TREE INPUT SECTION */

clauses

go:-
get process tree, .
whether same process branch,
get_parse tree,
get parse result,
match,
accumulation,
assertion,
operator search,
retract result,
retract _match,
gel_parse result,
match,
accumulation,
assertion.

get_process tree:-

makewindow(1,7,7, "PROCESS TREE INPUT",4,5,20,50),

72

write{"Enter the root of process tree:"),

readln (Root),

write{("Enter the children of the process tree root,
ll|'ROOt,"l :n)’

nl,get child({(1l,0,Root,1,[]).

get child{N,M,Root,S,List):-
readln (Child},
testl (N,M,Root,5,Child, List).

testl(N,M,Roo0t,S,Child,List) -
Child<>"", I,
MM=M+1,
assertz{process_tree child no(N, Rcot, 5,Child, MM}),
append_list {Child, List,New list),
get_child(N,MM,Root,S,New_list).
testl(N,M,Root,S,Child,List) : -
: M>0, !,
assertz(process_tree children_no(N,Root,S,List,M)},
NN=N+1,
MM=M+1,
rept (List,NN, 1,MM} .
testl (N,M,Root,S,Child,List}:-

|
.

asserta(process leaf (N,Root,8)).
rept (List, NN, MM, MM) .
rept (List,NN, I,MM):-
n_element (List, I, X),
Wwrite("Enter the children of the process tree root,
IIT'X’I‘II:H)’ .
nl,get child(NN,0,X,I,I[1},
II=1+1,
rept (List, NN, II,MM).

append list (Element, [], [Element]}.
append list (Element, [Head|Tail], [Head|Newtail]):-
append list{Element, Tail, Newtail).

n_element([Head| 1,1,X1}:-

|
’

X1l=Head.

n_element ([Head|{Taill,N,X1):-
NN=N-1,
n_element (Tail, NN, X1;.

/i PARSE TREE INPUT SECTION */

get parse tree:-

73

) makewindow(2,7,7," PARSE TREE INPUT
SECTION", 3,5,18,50),
write(" Enter the root of parse tree :"),
readin{Root},
write ("Enter the children of the parse tree
root, "",Root,"': "),
nl,get childpi{l,0,Root,1,1,[]}.-

get childp(N,M,Roct,S,K,List) -
readlni{Child),
test2(N,M,Root,S,K,Child, List}.

test2 (N,M, Root, S, K,Child,List) : -

Child<>"",!,

MM=M+1,
assertz(parse tree child no(N,Rcot,S5,K,Child,MM)),
append list(Child,List,New list),

get _childp(N,MM, Roct, 5,K,New list).

test2(N,M,Roo0t, S, K,Child,List) : -
M>0, t,
assertz{parse tree children nc(N,Rcot,5,K,List, M)},
NN=N+1,
MM=M+1,
reptp(List, S, NN, 1,MM).

test2(N,M, Root,5,K,Child, List):-

|
.

asserta(parse leaf (N,Root,S5,K)}.
reptp(L,K,N,M, M) :=-!.
reptp(L,K,N,I,M}:-

n_element (L, I,X),

write("Enter the children of the parse tree
root' III’X’ l'll:“)’

nl,get childp(N,0,X,I,K,[]),

I1=1I+1,

reptp(L,K,N,II,M).

JoREdK Rk ko kkkk THTS SECTION USES THE OPERATOR SEARCH

**********#*****/

operator_search:-
. opl.

cperator search:-
opZ.

operatcor search:-
op3,

operater search:-
op4d.

cperator search:-
op5.

operator search:-
opb.

operator_search:-
op7.

operator search:-

74

cp8.
operator_search:-

cpS.
cperator search.

/****+ 0Pl makes use of the operation, a=b/c gives ac=b,****%/

opl:-
parse_tree children no(N,"=",S,1,List,2),
parse tree child i.of(N,"=",5,1,A,2),
parse tree child no(N,"=",5,1,"/",1),
NN=N+1,
parse_tree child no(NN,"/",1 S,C,Z)
parse tree child no(NN,"/",1,5,B,1),

N1=NN+1,

|

retract child(N,"=",35,1),

retract_children(N, "=",5,1),

retract child(NN,"/",1,8),

retract children({NN,"/",1,3},
asserta(parse tree child nc(N,"=",5,1,B,1)},
asserta(parse tree child no(N,"=",8,1,"*", 2},
asserta(parse_tree_children no(N,"=",S,1,[B,"*"],2)),
asserta(parse_tree children neo(NN,"*", 2,1, [A,C],2)),
asserta(parse tree child no(NN,"*",2,1,8,1}),
asserta(parse tree “child _no(NN,"*",2,1,C, 2))
investigate nodel(NN N1l,A,B,C).

opl:-
parse_tree_children no(N,"=",5,1,List, 2},
parse_tree child no(N,"=",5,1,4,1),
parse tree child no(N,"=",3,1,"/", 2},
NN=N+1, h
parse tree child no(NN,"/",2,5,C,2
parse_tree child nc (NN, "/",2,5,B
N1=NN+1,
retract_child(N,"=",3,1),
retract children(N,"=",S,1),
retract_child(NN,"/",2,5),
retract chiidren(NN,™"/",2,3},
asserta{parse tree Chlld no(N S5,1,B, 1)),
asserta({parse tree “child _no{N,"=",5,1,"*",2}),
asserta(parse_tree_chlldrenuno(N," ", 5,1, [B,""],2)),
asserta(parse_tree_children nco{(NN,"*",2,1,[3,C]1,2)),
asserta(parse_tree child no{(NN,"*",2,1,A,1})),
asserta(parse tree child no(NN,"*",2,1,C,2)}),
investigate nodeZ2(NN,N1,A,B,C). '

}y
}

r I

correcting child(NN,N1,A,J,J1,J7,A1,K,K):-

KZz=K-1,

asserta(parse tree chlldren no(Nl A,J,dJ1, Al KZ2)).
correcting child(NN,N1,R,J,J1, JJ,Al,K,I1):

n_element (Al, I1,H),K2=K- L

asserta(parse tree child | no(Nl,A,J,J1,H,I1)}),

next 1nvest1gate(NN Nl1,H,I11,J,3J),

IT=I1+1,

correcting child(I4,N1,A,J,J1,JJ,A1,K,TT) .

75

next investigate(NN,N1,H,I1,J,JJ):-
N=NN+1,NZ2=N1+1,
parse_tree children no(N,H,I11,JJ,Hl,KZ2),!,
retract children(N,H,T11,JJ),
retract child(N,H,I1,JJ),
K=K2+1,
correcting child(N,N2,H,I1,J,1I1,H]1,K,1).

next investigate (NN,N1,H,I1,J,JJ):-

B N=NN+1,N2=N1+1,

parse leaf(N,H,I1,JJ),!,
retract (parse leaf(N,H,I1,JJ}},
asserta(parse_leaf (N2,H, I1,J))

investigate ncdel (NN,N1,A,B,C):-
investigate nodell (NN,N1,A,B,C},
investigate nodel?(NN,N1,A,B,C},
investigate nodel3(NN,N1,A,B;C).

investigate nodell(NN,N1,A,B,C):-
parse_ leaf (NN A, 2,1},!,
retract (parse leaf(NNW,A,2,1)},
asserta{parse leaf (N1, A,1,2}}.

investigate nodell(NN,N1,A,B,C):-
parse tree children no({NN,A,2,1,A1,K2),
retract child(NN,A,2,1},
retract children{NN,A,2,1),K=K2+1,
correcting child(NN,N1,A,1,2,2,A1,K,1).

investigate nedelZ(NN,N1,A,B,C):~
parse leaf(N1,B,1,1),!,
retract {parse leaf(N1,B,1,1)),
asserta(parse leaf (NN,B,1,1)).

investigate nodelZ (NN,N1,A,B,C):-
parse tree children no(N1,E,1,1,B1,K1),
retract_child(N1,B, 1,1},
retract children(N1,B,1,1),K=K1i+1,
correcting c¢hild({Nl,NN,B,1,1,1,B1,K,1}.

investigate nodel3(NN,N1,A,B,C):~
parse leaf(N1,C,Z2,1),!,
retract (parse_leaf(N1,C,2,1)),
asserta(parse leaf(N1,C,2,2)).

investigate nodel3(NN,N1,A,B,C):-
parse tree children no(N1,C,2z,1,Cl1,K3),
retract_child(Nl,C,g,l),
retract children(WN1,C,2,1),K=K3+1,
correcting child(N1,N1,C,2,2,2,C1,K,1).

investigate nodeZ(NN,N1,A,B,C):-

76

investigate node2l (NN,N1,A,B,C),
' investigate nodeZ2(NN,N1,A,B,C),

investigate nodeZ3(NN,N1,A,B,C}.
investigate node2l (NN,N1,A,B,C):-

parse leaf(NN,A,1,1),!,

retract (parse leaf (NN,A,1,1}),

asserta(parse leaf(Nl,&,1,2)).

investigatemnode2l(NN,Nl,A,B,C):—
parse tree children no(NN,A,1,1,A1,K2),
retract child(NN,A, 1,1},
retract children(NN,A,1,1},K=K2+1,
correcting child(NN,N1,3,1,2,1,A1,K,1}.
investigate nodeZZ2 (NN,N1,RA,B,C):-
parse leaf(N1,B,1,2),!,
retract(parse leaf (N1, B, I,
asserta(parse leaf (NN,B,1,

I

2)
2)

—

investigate node2Z (NN,Ni,RA,B,C):-
parse tree childrea no(N1,B,1,2,B1,K1),
retract child(N1,E,1,2),
retract children(N1,B, 1,2}, K=K1+1,
correcting child(N1,NN,B,1,1,1,B1,K,1}.
investigate node23(NN,N1,RA,B,C):-
parse leaf(N1,C,2,2),!,
retract (parse leaf(N1,C,2,2)),
asserta(parse leaf(N1,C,2,2)).

investigate node23(NN,N1,A,B,C):-
parse tree children no(N1,C,2,2,C1,K3),
retract child(Nl,C, 2,2},
retract children(N1,C,2,2),K=K3+1,
correcting child(N1,N1,C,2,2,2,C1,K,1}.

frExkakALsd op? makes use of the operation
dk kg dck kkokkkk ko ko kkdkkhok ko dkkokk kok ok

LR R R S - B8 o & Yok y/c gives
a/c+b/C+C/C+ _________ *******************/
opZ: -
parse tree children no(N,"/",S5,T, ["+",C],2),
NN=N+1, '
parse_tree_children no(NN, "+",1,8,List, M), !,
M1=M+1, '

construct slash 1ist(M,Listslash),NM=N-1,
parse_tree child no(NM,R,K,U,"/", 1),
retract(parse tree child no(NM,R,K,U0,"/",I)},
asserta(parse tree child no(NM,R,K,U,"+", 1)},
parse_tree_children no(NM,R,K,U,LL, MM},
retract(parse_tree_children no(NM,R, K, U,LL,MM)},
replace with(LL,"+",I,1,[],KK},
asserta{parse_tree_children no(NM,R, K, U, KK, MM)},
asserta({parse_tree children no(N,"+",5,T,Listslash,M)),
lcop(1,M1,N,5,T,Listslash,C),

77

retract children(N,"/",5,T),
retract child(n,"/",s,T),
retract child(NN,C, 2,8},
retract child({NN,"+",1,8),
retract:children(NN,"+",1,S).

op2:-—
parse tree children nc(N,"/",5,T,["-",C],2),
NN=N+1,
parse_tree_children_no(NN,"—",l,S,List,M),!,
M1=M+1,

construct slash list (M, Listslash),NM=N-1,

parse tree child no(NM,R,K,U,"/", I},

retract (parse tree child no(NM,R,K,0,"/", 1)),
asserta(parse_tree child no(NM,R,K,0,"~",I)],
parse tree children no(NM,R,K,U0,LL, MM},

retract (parse_tree children no(NM,R, K, U, LL,MM)},

replace with(LL,"-",I,1,[],KK),
asserta(parse tree children no(NM,R,K,U, KK, MM) },
asserta(parse tree children no{N,"-",S,T,Listslash,M)},

loop neg(1,M1,N,S,T,Listslash,C),
retract children(N,"/",53,T),
retract child(N,"/",S,T)},

retract child(NN,C,2,3),

retract child(NN,"-",1,5),
retract children(NN,"-",1 3}.

construct slash 1ist (0, (]):-"!.

construct slash list(M, ["/"|List]):-
MM=M-1,
construct_slash list (MM, List).

loop(M,M,N,L, T, Listslash,C}:-!.
locop{(I,M,N,L,T,Listslash,C):-
NN=N+1,
parse_tree child no(NN,"+",1,L,X, T},
asserta(parse tree child no(N,"+",L,T,"/", 1)),
asserta(parse tree child no(NN,"/",I1,L,X,1)},
asserta(parse_tree child no(NN,"/",I,L,C,2)},
asserta(parse tree_children no(NN,"/",I,L,{X,C],2)),
N1=NN+1, M1=M-1,
judge (X, I,1,M1,C, L, 2, NN, N1},
II=T+1,
loop (IT,M,N,L,T,Listslash,C).

locop neg(M,M,N,L,T,Listslash,C}:-!.
lOOpﬁneg(I,M, N,L,T,Listslash,C):-

NN=N+1,
parse_tree child no(NN,"-",1,L,X, T},
asserta{parse_tree child no(N,"-",L,T,"/",I}},

asserta(parse_tree_child no(NN,"/",I,L,X,1)},
asserta(parse tree child no(NN,"/",I,L,C,2)},
asserta(parse_tree_children no{WN,"/",I,L, [X,C],2)),
N1=NN+1, M1=M=1,

78

judge(X,I,1,M1,C,L,2,NN,N1),
II=I+1,
loop neg(II,M,N,L,T,Listslash,C).

frEFFkAHkx Thig operacor makes use of the relation*****/
JREFAE S AAk (qapt L, YYo= a*cHbrct., ok ek ok ok ke ok

op3:—

parse tree children no(N,"*",S,T,["+",Cl],2},
NN=N+1,

parse_tree children no(NN,"+",1,5,List,M}, !,
M1=M+1,

construct star list{M,Liststar),NM=N-1,
parse_tree child no(NM,R,K,U,"*", 1},
retract(parse tree child nc(NM,R,K,0T,"*", 1)),
asserta(parse_tree child no(NM,R,K, U, "+", I},
parse tree children no(NM,R,K,U,LL, MM},

retract (parse tree children no(NM,R,K,U,LL,MM)),
replace with(LL,"+",I,1,[],KK]},
asserta(parse tree children no(NM,R, K, U, KK, MM)},
asserta(parse_tree children no(N,"+",8,T,Liststar,M)},
looping(l,M1,N,S,T,Liststar,C),

retract children(N,"*",5,T},

retract child(N,"*",5,T),

retract child(NN,C,Z, 8},

retract child(NN, "+",1,S),

retract children (NN, "+",1,8).

[rxAFxxkEk This operator makes use of the relation*****/

/********* (a_b_

op3:-

,,,,,,,, YYo= arc-DFo—. L L. L Rk Rk S
parse_tree children nc(N,"*",5,T, ("-",C],2),
NN=N+1,
parse_tree children no(NN,"-",1,5, List,M), !,
M1=M+1,

construct_star list(M,Liststar),NM=N-1,
parse_tree child nc(NM,R,K,U,"*", I},

retract {parse tree child nc{NM,R,K,U,"*",I)},
asserta{parse tree child no(NM,R,K,U,"-",I)},
parse_tree children nc(NM,R,K, U, LL, MM},
retract({parse_tree_children no(NM,R,K,U, LL,MM))},
replace with{(LL,"-",I,1,[],KK),
asserta(parse_tree_children no(NM,R,K, U, KK,MM)),
asserta(parse_tree children no(N,"-",5,T,Liststar, M),
looping neg(l1l,M1,N,S,T,Liststar,C),

retract children(N,"*",S, T},
retract_child(N,"*",3,T),

retract child(NN,C, 2,5},

retract child({nN,"-~-",1,3),

retract children(NN,"-",1,3).

79 : -{:,»f,

—hk

frxFFFF kR Thig cperator makes use of the relation** =%/
JRAF AKX ok (atht L, L, y = ar*ctb*ot.. ..., ok ke ke ek /

op3:-

parse_tree children nc(N,"*",5,T, [C,"+"],2),
MN=N+1,

parse_tree_children no(NN,"+",2,5,List,M),!,
M1=M+1,

construct star list(M,Liststar},NM=N-1,
‘parse_tree child no{(NM,R,K,U,"*", 1),

retract (parse tree child nc(NM,R,K,U,"*",I)),
asserta(parse tree child nc(NM,R,K,U,"+", 1))
parse_tree children nc(NM,R,K,U,LL,MM),
retract(parse_tree childrr.n no(NM,R,K,U,LL, MM)),
replace with{LL,"+",I,1,[],KK),
asserta(parse_tree children no{NM,R,K, U, KK, MM}),
asserta(parse tree children no(N,"+",5,T,Liststar,M}]},
looping2(1,M1,N,S,T,Liststar,C),

retract children(N,"*",3,T),

retract child(N,"*",3,T),

retract child(hN,C, 1,85},

retract child(NWN,"+",62,3)},

retract children(NN, "+",2,5).

f

frEFHFkkkkd This operator makes use of the relation***+x/

/********* C*(a_b_) .= a*c_b*C_ **********/
cp3:i—
parse_tree_children_no(N,"*",S5,T, [C,"-"],2),
NI=N+1,
parse_tree children noc(NN,"-",2,3,List,M),!,
M1=M+1, ’

construct_star list(M,Liststar),NM=N-1,
parse_tree child no(NM,R,K,U,"*",I),

retract (parse_tree_child ro(NM,R,K, U, "*", 1)),
asserta(parse_tree child no(NM,R,K,T,"-",1)),
parse_tree children no(NM,R,K, U, LL,MM), |
retract {parse tree children no{NM,R, K, U, LL,MM}},
replace with(LL,"-",I,1,[],KK),
asserta(parse_tree_children no(NM,R,K, U, KK, MM}),
asserta(parse_tree children no{(N,"-",5,T,Liststar,M}},
looping negZ(1,M1,N,S,T,Liststar,C),

retract children(N,"*",53,T),

retract_child{N,"=*",5,T),

retract child{NN,C,1,8),

retract child{NN,"-",2,8),

retract children({NN,"-",62,5}.

construct_star list{0,[]1):-!.

construct_star list{M, ["*"|List]):-
MM=M-1,
construct star list (MM,List).

looping{M,M,N,L, T, Liststar,C):-!.

80

looping{(I,M,N,L,T,Liststar,C):-
NN=N+1,
parse tree child no{(NN,"+",1,L1,X,1I),!,
asserta({parse tree child no(N,"+",L,T,"*", I)
-assertal(parse_tree child no(NN,"*",I,L,X,1)),
asserta(parse tree child no(NN,"*",I,L,C,2)},
asserta({parse tree children no{(NN,"*",I,L, [X,C],2}},
N1=NN+1,M1=M-1,)
judge(X,I,1,M1,C,L,2,NN,N1),
II=I+1,
looping (II,M,N,L,T,Liststar,C).

by

lcoping2 (M,M,N,L, T, Liststar,C):-!.

leoping2{(I,M,N,L, T, Liststar,l):-

' NN=N+1, : '
parse_tree child no(NN,"+",2,L,X,I),
asserta(parse tree child no{N,"+",L,T,"*",I
asserta(parse tree child no{NN,"*",I,1,X,1)
asserta(parse_tree child no{NN,"*",I,L,C,2)),
asserta(parse tree_children no(NN,"*" I,L, [X,C],2)},
N1=NN+1,M1l=M-1,
judge(X,I,2,M1,C,L,1,NN,N1),

II=I+1,
looping2 (IT,M,N,L,T,Liststar,C).

1)
)y
)

looping neg(M,M,N,L,T,Liststar,C):-!,
looping neg(I,M,N,L,T,Liststar,C):-

NN=N+1,
parse_tree_child no(NN,"-",1,L,X, I},
asserta(parse_tree child no(N,"-",L,T,"*",I}),

)
asserta(parse_tree child no(NN,"*",I,L,X,1})
asserta(parse_tree child no(NN,"*",I,L,C,2)),
asserta{parse _tree children no(NN,"*",I,L, [X,C],2)),
N1=NN+1,M1=M-1,

judge(X,I,1,M1,C,L,2,NN, N1},

IT=1+1,

looping neg(II,M,N,L,T,Liststar,C)}.

r

locping neg2 (M,M,N,L,T,Liststar,C):-!,
locping neg2(I,M,N,L,T,Liststar,C):-

NN=N+1,
parse_tree_child no(NN,"-",2,L,%,I),
asserta({parse tree child no(N,"-",L,T,"*",1}},

asserta(parse_tree child r>(NN,"*",I,L,X,1})},
asserta(parse_tree child no(NN,"*",I,L,C,2)}),
asserta(parse_tree children no(NN,"*",I,L,([(X,C],2})},
N1=NN+1,M1=M-1,

Jjudge(X,I,2,M1,C,L,1,NN,N1),

II=I+1,

looping neg2{(II,M,N,L,T,Liststar,C).

judge (X,M,J,M,C,L,J1,NN,N1):~
parse leaf(NN,C,J1,L},!,
retract(parse leaf (NN,C,J1,L)},

8!

assérta(parse_leaf(Nl,C,2,M)),
next investigatel (NN,NN,X,M,J}.

judge (¥, I,J,M,C,L,J1,NN,N1):-
parse_ leaf (NN,C,J1,L),!,
asserta(parse leaf(N1,C,2,I}),
next investigatel (NN,NN,X,I,J}.

judge (X,I,J,M,C,L,J1,NN,N1) :-
parse_tree children no(NN,C,J1,L,L1,K)},
retract child(NN,C,J1,L),
retract children(NN,C,J1,L),K1=K+1,
correcting child(NN,N1,C,2,1I,J1,L1,K1,1).

correcting childil (NN,N1,A,J,AL,K,K):~1!,
K2=K-1,
asserta(parse tree children no(Nl,A,1,J,Al,K2)).
correcting childl (NN,N1,A,J,ALl,K,I1):-
n_element (A1, Il,H),K2=K-1, -
asserta(parse tree child no{(N1,A,1,J,H,I1}),
next investigate(NN,N1,H,I1,1,1I1)},
II=I1+1,
correcting childl(NN,N1,A,J,Al,K,II).

next investigatel (NN,N1,H,I1,J):-
N=NN+1,N2=N1+1,
parse tree children no(N,H,I1,J,H1,K2),!,
retract children{N,H,I1,J),
retract child(N,H,I1,J),
K=K2+1,
correcting childl(N,N2,H,T1,H1,K,1).
next investigatel (NN,N1,H,I1,J}:-
N=NN+1, N2=N1+1,
parse leaf(N,H,I1,J),!,
retract (parse leaf(N,H,I1,J)),
asserta({parse leaf (N2,H,1,I1)}.

replace with{LL,A,I,I,K1,KK):-
length(LL, I}, !,append(Kl, [A],KK}.

replace with(LL,A,I,I,Ki,KK):-
!, append (K1, [A]l,Y),
JJ=I+1,
replace with(LL,A,I,JJ,Y,KK).

replace with{(LL,A,I,J,K1,KK):-
length{(LL, K}, J<K, !,
n _element (LL, J,X),
append{K1l, [X],Y),
JJI=J+1,
replace with(LL,A,I,JJ,Y,KK).

replace with(LL,A,I,J,K1,KK):-

n element (LL, J,X},
append{(Kl, [X],KK).

32

/**** OPJ makes use of the operation, asb*c gives a/c=b.*****/

opd:-
parse tree children no(N,"=",5,1,List,2),
parse tree child no(N,"=",5,1,A,2},
parse_tree child ro(N,"=",5,1,"*", 1),
NN=N+1,
parse tree child no(NN,"*",1,1,C,2
parse tree child no(NN,"*",1,1,B,1
NI=NN+1,
1
retract child(N,"=",5,1},
retract:children(N,"=",S,l),
retract child(NN,"*",1,1},
retract children (NN, "*",1,1)},
assertaf{parse_tree child no(N,"=",5,1,B,1)}),
asserta{parse tree child nc(N,"=",5,1,"/",2)},
asserta{parse tree children no(N,"=",5,1,[B,"/"],2)),
asserta{parse_tree_children no(NN,"/",2,1,[A,Cl],2)),
asserta{parse tree child no(NN,"/",2,1,A,1)),
asserta({parse tree child no(NN,"/",2,1,C,2)}),
investigate nodel (NN,N1,A,B,C).

opd:- i
parse_tree children no(N,"=",3,1,List,2),
parse tree child no(N,"=",3,1,A,1},
parse_tree child no(N,"=",5,1,"*",2),
NN=N+1,
parse_tree_child no{(NN,"*",2,1,C,2),
parse tree child r o(NN,"*",2,1,B,1},
N1=NN+1,
retract child(N,"=",5,1},
retract children(N,"=",5,1},
retract child(NN,"*",2,1),
retract_children (NN, "*", 2,1),
asserta(parse tree child nc(N,"=",5,1,B,1)),
asserta(parse_tree child no(N,"=",5,1,"/",2)},
asserta(parse_tree_children no(N,"=",S,1,[B,"/"1,2)),
asserta(parse_tree_children nc(NN,"/",2,1,[A,C],2}),
asserta(parse tree child nc(NN,"/",2,1,A4,1)),
asserta(parse tree child nc(NN,"/",2,1,C,2)),
investigate node2(NN,N1,A,B,C).

op5:-

/**#*%+ Thig operator makes use of the appreoximation **=***/
/***** a+x = ar where X << a ‘ir‘!r***********************/

parse tree children no(N,"+",S5,T,List,M),

Mi=M+1,
comparel (List,1,M1,N,"+",3}, fail.

83

comparel {List,M,M,N,R,S):-1!.
comparel {(List,I,M,N,R,S3):-
n_element (List, I, X},
compare? (List,1,X,I,M,N,R, S},
IT=I+1,
comparel (List,II,M,N,R,S5).

compare’ (List,M,X,I,M,N,R,S):-!.
compareZ (List,J,%X,I,M,N,R,S):-
equal check{I,J,J1)
n_element (List,J1
NN=N+1,
parse result (NN, S,I,X,X1).
parse result(NN,S5,J1,Y,Y1},
writeT"Is '™, X1,"' of same dimension as '",Y1,"' ? {y/n):

1),
IY)I

"),
response (Reply),
check {Reply),
write("Is '",X1, "' << '" , ¥Yi, "' ? (y/m): "),
response {Rply),
check (Rply),
parse tree child no(N,R,S,T,Child, I},
retract (parse tree child no(N,R,5,T,Child, I)},
retract (parse tree children no(N,R,S,T,List,M)},
pull {Child, List,ListA),
MM=M-1,
asserta(parse tree children no(N,R,S,T,ListA,MM)),
deleteinext_child(NN,Child,I),
JI=J1+1,
compare? {List,JJ,X,I,M,N,R,S5).

compare? (List,J,X,I,M,N,R,S):-
JI=J+1,
compare2{List,JJ,X,I1,M,N,R, S}

equal_check(J,J,J1l):-!,J1=J+1.
equal check(I,J,J).

delete next child(N,Child,I):-
parse tree children no(N,Child,I,K,X,J},!,
retract child(N,Child, I,K),
retract (parse tree_ children no(N,Child,I,K,X,J)),
NN=N+1, JJ=J+1,
retract_next child(NW,X,1,I,JJ7).

delete next child(N,Child,I}:-
parse leaf(N,Child, I,K},
retract (parse leaf (N,Child,I,K)).

retract next child(N,X,J,K,J}:-!.
retract next child(N,X,I,K,J}:-
n_element (X,I,Y),
parse leaf(N,Y,I,X),
retract (parse leaf(N,Y,I,K)),
II=T+1,

84

retract

/***** T
/******

op6:-—

op6:-

retract next child(N,X,T1,K,J).

next child(N,X,I,K,J):-

n element (X,I,Y),

retract child(N,Y,I,K},

retract children(N,Y,I,K},
IT=I+1, ' ,
retract next child(N,X,II,K,J).

his operator makes use of the transposition law F**Hxx/
a+b=c+d gives a_dﬁc_b’ etc. ***************************/

parse tree children no(N,"=",S,T, ["+","+"],2),

NN=N+1,

parse_tree_children no NN, "+",1,5,[A,B],2),
parse_tree_children no (NN, "+",2,53,{C,D],2),!,
retract{parse_tree children no(N,"=",5,T, ["+","+"],2)},
retract child(N,"=",5,T),

retract children(NN,"+",1,8},

retract child(NN,"+",1,8),

retract children (NN, "+", 2,85},

retract child(NN,"+",2,8S), .

asserta(parse tree children no(N,"=",5,T,["-","-"1,2)},
asserta(parse_tree child no(N,"=",3,T,"-",1}},
asserta({parse tree child no{ N,"=",S5,T,"-",2)),
asserta(parse_treeichildren_no(NN,"—",l,S,[A,C],2)),
asserta(parse_tree_child no(NN,"-",1,5,4,1)),
asserta(parse_tree child no(NN,"-",1,5,C,2)})},
asserta(parse_tree_children no(NN,"-",2,5, [D,B],2)),
asserta(parse tree child no(NN,"-",2,5,D,1)),
asserta(parse tree child no(NN,"-",2,5,B,2)),
N1=NN}1, B - -

checkA (N1,A,1,1,1,1),

checkA(N1,B,2,2,1,2),

checkA(N1,C,1,2,2,1),

checkA{N1,D,2,1,2,2}.

parse_tree children no(N,"=",S,T, ["+","+"],2),
NN=N+1,

parse_tree children no (NN, "+",1,S,[A,B],2),

parse tree children no(NN,"+",2,S,[C,D],2},!,

retract (parse_tree children no(N,"=",S,T,["+","+"],2)},
retract child(N, "=",5,T),

retract children(NN,"+", 1,5},
retract_child(NN,"+";l,S),

retract children(NN, "+", 2,3},
retract child (NN, "+",2,8j,

asserta(parse tree children no(N,"=",S,T,["-","-"],2)),
asserta(parse tree child no(N,"=",5,T,"-",1)),

85

asserta(parse_tree child no(N,"=",5,T,"-",2)},

asserta(parse_tree chi’ .dren no(NN,"-",1,5,[A,D],2)},
asserta(parse tree child no(WN,"-",1,5,A,1}),
asserta({parse tree child no{ NN,"-",1,5,D0,2)),
asserta{parse_ tree children no(NN,"-",2,3, {C,B],2)),
asserta(parse_ tree child no(NN,"-",2,5,C,1}),
asserta(parse_tree child no(NN,"-",2,8 21,
N1=NN+1,
checkA(N1,A,1,1,1,1)},
checkA(N1,B,2,2,1,2},
checkh(N1,C,1,1,2,2},
checkA(N1,D,2,2,2,1).

op6:-
parse tree children no(N,"=",S,T,["-","-"1,2},
NN=N+1,
parse tree children no(NN,"-",1,S,(A,B},2),
parse_tree children no{NN,"-",2,5, [C,D], 2}, !,
retract (parse tree children no(N,"=",S,T, ["-","-"],2})),
retract child(N,"=",3,T),
retract children{NN,"-",1,85),
retract child(NN,"-",1,5),
retract children{NN,"-",2,5),
retract child(nnN,"-",2,3),
asserta(parse_tree children no(N,"=",3,T,["-","-"],2))
asserta(parse tree chi.d no(N,"=",S,T,"-",1)},
asserta(parse tree child no(N,"=",5,T,"-",2)},
asserta(parse tree children no(NN,"-",1,5,[A,C],2)),
asserta(parse_tree child no(NN,"-",1,5,A,1)),
asserta(parse tree child no{ NN,"-",1,5,C,2)},
asserta(parse tree children no{NN,"-",2,3,[B,D],2}),
asserta(parse_tree_child_no(NN,"—",2,S,B,l)),
asserta(parse tree child no(NN,"-",2,5 2)),
N1=NN+1, a h
checkA{N1,2,1,1,1,1),
checkA(N1,B,2,1,1,2),
checkA (N1,C,1,2,2,1),
checkA(N1,D,2,2,2,2).

op6:—
parse_tree_children ne(N,"=",3,T,["-","-"1,2},
NN=N+1,
parse_tree_children no{NN,"-",1,8, {A,B], 2},
parse tree children neo{NN,"-",2,3,{C,D],2),!,
retract(parse tree children no(N,"=",S,T,["-","-"],2)),
retract child({N,"=",5,T),
retract children{NN,"-",1,3),
retract child(NN,"-",1,3),
retract_children(NN,"-", 2,5},
retract_child({NN,"-",2,5),
asserta(parse_tree children no(N,"=",S5,T, ["+","+"],2}},
asserta(parse tree child no(N,"=",35,T,"+",1)},
asserta(parse tree child no{ N,"=",53,T,"+",2}),

asserta(parse_tree child no(NN,"+",1,8,A,1)),
asserta(parse_tree child no{ NN,"+",1,5,D,2)},

{
{
{
asserta(parse tree children no(NN,"+",1,5,[A,D],2)},
{
{
asserta (parse_tree_children nci(NN,"+",2,5, [B,C],2)),

86

opb:-

opb -

asserta(parse tree child no(NN,"+",2,5,B,1)),
asserta({parse tree child no(NN,"+",2,5,C,2)),
N1=NN+1,

checkA (N1,A,1,1,1,1),

checkA(N1,B,2,1,1,2),

checkA(N1,C,1,2,2,2),

checkA(N1,D,2,2,2,1).

parse tree children no(N,"=",8,T, ["-","+"],2),
NN=N+1,

parse tree children no(NN,"-",1,S, [A,B],2),
parse_tree children no(NN,"+",2,S,I[C,D],2},!,
retract (parse_tree children no(N,"=",3,T, ["-","+"],2)},
retract child(N,"=",5,T),

retract children(NN,"-",1,8),

retract child(wn,"-",1,8j,

retract children{NN,"+",2,5),
retract_child (NN, "+", 2,3},

asserta(parse tree children no(N,"=",5,T, ["-","+"],2)).,
asserta(parse tree child no(N,"=",5,T,"-",1)},
asserta(parse_tree child no(N,"=",5,T,"+",2)}},
asserta(parse tree_children no({NN,"-",1,8,[A,C],2)),
asserta(parse_tree child no(NN,"-",1,5,A,1)),
asserta(parse_tree child no(NN,"-",1,5,C,2)),

asserta(parse_tree children no(NN,"+",2,53,[B,D},2)),
asserta (parse_tree child no{NN,"+",2,5,B,1)),
asserta (parse tree child no{(NN,"+",2,5,D,2)),
N1=NN+1,

checkA({N1,4,1,1,1,1),

checkaA(N1,B,2,1,1,2),

checkA(N1,C,1,2,2,1),

checkA(N1,D,2,2,2,2}.

parse_tree children no(N,"=",3,T, ["-","+"],2),
NN=N+1,

parse_tree children no(NN,"-",1,5,[A,B],2),
parse_tree_children _no (NN, "+",2,5, [{C,D],2),!,
retract (parse_tree children_no(N,"=",S,T, ("-","+"],2)),
retract child(N,"=",S,T),

retract children(NN,"-",1,8)},

retract child(NN,"-",1,35},

retract children(NN,"+", 2,3},
retract child(NN,"+", 2,65},

asserta(parse_treeichildren_no(N,"=",S,T,["—","+"],2)),
asserta({parse tree child no(N,"=",3,T,"-",1}),
asserta(parse tree child no(N,"=",3,T,"+",2)),
asserta(parse_tree children no(NN,"-",1,5,[A,D],2}),
asserta(parse_treemchild_no(NN,"—",l,S,A,l)),
asserta(parse tree child no{ NN,"-",1,5,D,2}),

asserta(parse_ tree_ chi’dren no(NN,"+",2,5,[B,C1,2})),
asserta(parse tree child no(NN,"+",2,5,B,1}),
asserta(parse_tree child no{NN,"+",2,8,C,2}},

87

op6: -

op6: -

N1=NN+1,
checkA(N1,A,1,1,1
checkA (N1,B,2,1,1,
checkA (N1,C,1,2,2,
checkA (N1,D,2,2,2

r r r

I L

)
),
)
)

(SN

! r r

parse tree children no(N,"=",3,T,["+","-"]1,2),
NN=N+1, h

parse tree children no(NN,"+",1,5,[A,B],2},
parse tree children no(NN,"-",2,5,[C,D],2),!,

retract(parse tree children no(N,"=",S5,T, ["+","-"1,2)),

retract child({N,"=",8,7),
retract children{NN,"+",1,5),
retract child({NN,"+",1,85),
retract children(NN,"-",2,85),

asserta(parse_tree children no(NN,"+",2,5,[B,D],2}},
asserta(parse tree child no{NN,"+",2,S5,B,1)),
asserta(parse tree child no(NN,"+",2,5,D,2)),

retract child(NN,"-",2,85),
asserta(parse_treeuchildren_no(N,"=",S,T,["—","+"},2)),
asserta(parse_tree child no(N,"=",3,T,"-",1)},
asserta(parse tree child no{ N,"=",S,T,"+",2}},
asserta(parse tree children no(NN,"-",1,5, [C,Al,2}},
asserta(parse _tree child no(NN,"-",1,S,C,1)),
asserta(parse tree child no(NN,"-",1,5,A,2)),

(

{

N1=NN+1,

checkaA({Nl,A,1,2,1,1),

checkA(N1,B,2,1,1,2}),

checkaA(N1,C,1,1,2,1),

checkA(N1,D,2,2,2,2).

parse tree children no(N,"=",S,T, ["+","-"],2},
NN=N+1,

parse_tree_ children no JN,"+",1,5, [A,B), 2},
parse tree children no(NN,"-",2,5, (C,D],2},
retract{parse_tree children no(N,"=",5,T,["+","-"1,2}),
retract child(N,"=",5,T),

retract children(NN,"+",1, 3},
retract _child (NN, "+",1,3),
retract children(NN,"-",2,85),
retract child(NN,"-",b2, 3]},

assertalparse_tree children noc(N,"=",S,T, ["+","-"1,2)1,
asserta(parse tree child no(N,"=",S,T,"+",1}},
asserta(parse_tree child no(N,"=",S,T,"-",2)}),

asserta (parse tree children no(NN,"+",1,S,[A,D],2)),
asserta (parse_tree child nc(NN,"+",1,5,A,1)},
asserta{parse_tree_child no(NN,"+", 1,5,D,2)),
asserta({parse tree children no(NN,"-", 2,5, [C,B],2)),
asserta(parse tree child no(NN,"-",2,5,C, 1)},
asserta{parse tree child no(NN,"-",2,58,B,2})),
N1=NN+1, - - N
checkA (N1,A,1,1,1,
checkA(N1,B,2,2,1,
checkA(N1,C,1,2,2

Vo
),
]

I

N B

r I L I

88

&

i

i

/****

/****

opli-

checkA(N1,D,2,1,2,1}).

checkA (N,A,I1,J,L,5):-
parse leaf(N,A,I,L),!,
retract(parse leaf(N,A,I,L)),
assertz(parse leaf (N,A,d,5)).

checka(N,A,I1,J,1,8):-
parse_tree_children no(N,A,I,L,ListA,M1),
retract(parse_treeﬁchildren_no(N,A,I,L,ListA,Ml)),
M=M1+1,
include child(N,A,T,L,J,8,ListA,1,M).

nclude_child(N,A,I,L1,J,5,L,M,M):~!,M1=M-1,
assertz(parse_tree children no(N,A,J,5,L,M1)).
ncludeﬁchild(N,A,I,Ll,J,S,L,K,M):~
n_element (L, K, X},
retract(parse_tree_child_no(N,A,I,LI,X,K)),
assertz(parse_treeﬁchild_no(N,A,J,S,X,K)),
NN=N+1,
checkA (NN, X,K,K, I,J},
KK=K+1,
include child(N,A,I,L1,.,S,L,KK,M).

**¥* OP7 is the production for (ab/cd) i ** s kss k=t ks /
L equivalent to (ab/c)/d **************************/

parse_tree_ children_no(N,"/",S,K, ["*","*"],2),
NN=N+1,

parse_tree children no(NN,"+*",1,S, &, B],2),
parse_tree_children no(NN,"*",2,3, [C,D],2),
N1=NN+1,

retract (parse_tree_children no(N,"/",5,K, ["*", "«"] 239,
retract child(wN,"/",3,K)},

retract children(NN,"*",1,3),
retract_child(NN,"*",1,3),
retract_children{NN, "*", 2,3},

retract child{NN,"*", 2,63},

retract(parse leaf(N1,A,1,
retract (parse leaf (N1,B, 2,
retract (parse leaf{N1l,C,1,
retract(parse leaf(N1,D, 2,
N2=N1+1,
asserta (parse leaf (N2,A,1,
asserta (parse leaf (N2,B, 2,
asserta{parse leaf(N1,C, 2,
asserta{parse leaf (NN,D, 2,

{

(

asserta(parse_tree children no(N,"/",S,K, ["/",D],2)),
asserta(parse_tree_child no(N,"/",S,K,"/", 1)),

r
I

r

i)
1)
2))
2)),

r

b
1.
1)y
5))

I

89

/

asserta(parse_tree_child no(N,"/",S,K,D,2)),
asserta(parsegtree_childrenﬁno(NN,"/",1,1,["*“,C],2)),
asserta({parse_tree child no(NN,"/", 1,1,"*", 1)),
asserta(parse_treegchild_no(NN,"/",1,1,C,2)),
asserta(parse_tree children no(N1,"=*", 1,1, [A,B],2)),
asserta(parseﬁtree_childﬁno(Nl,"*",l,l,A,1)),
asserta(parse_tree_child_ro(Nl,"*",1,1,B,2)).

frrxdrxts OPB is the production for (ab/ad) is **#**tskssmrsk/
/******** equivalent to (b/cd)*a ***************************/

op8:-

parse_tree children no(N,"/",S,K, ["*", ">="] 2},

NN=N+1, :

parse_tree children no(NN,"*", 1,5, {A,B],2),

parse_tree children nc(NN,"*",K 2,5, [C,D], 2},

N1=NN+1,

retract(parse_tree_children_no(N,"/",S,K,{"*",“*"],2)),

retract_child{N,"/",S,K),

retract children(NN,"*",1,8),

retract child(NN,"*" 1,5,

retract children (NN, "*", 2,63,

retract_child(NN,"*",6 2,8), NM=N-1,

parse_tree_child no(NM,R,K,U,"/", I},

retract(parse_tree_child_no(NM,R,K,U,"/",I)),

asserta(parseitreeﬁchild_no(NM,R,K,U,"*",I)),

parse tree_children no(NM,R,K,U,LL,MM),

retract(parse_treeﬁchildrenino(NM,R,K,U,LL,MM)),

replace_with(LL,"*",I,l,[;,KK),

asserta(parsektree_children_no(NM,R,K,U,KK,MM)),

recract {parse leaf(N1,A,1,1)),

retract (parse leaf (N1,B,2,1)

retract (parse leaf{N1,C,1,2)

retract (parse leaf(N1l,D,2,2)

N2=N1+1, B

asserta(parse leaf(NN,A,1,8)

asserta({parse leaf(N1,B,1,2)
2)

)

by
1y
1,

),
)y

asserta(parse leaf(N2,C,1,2)),
asserta({parse leaf (N2,D,2,2)),
asserta(parse_tree_children no(N,"*",S,K, [A,"/"],2)),
asserta(parse_tree_childﬁno(N,"*",S,K,A,l)),
asserta(parse_tree_child_no(N,"*",S,K,“[",2)),
asserta(parse tree_children no{NN,"/",2,3,[B,"*"],2)),
assertal{parse_tree child no(NN,"/",2,3,B,1)),
asserta{parse_tree child no(NN,"/",2,5,"*", 2},
asserta(parseﬁtree_children_no(Nl,“*",2,2,[C,D],Z))}
asserta(parse_tree_child_no{Nl,"*",2,2,C,1)),
asserta(parse_tree_child‘no(Nl,"*",2,2,D,2)).

90

/***%* This cperator makes use of the operation,a=b gives b=a , ****/

op9:-

parse tree_child no(N,"=",5,K,A,1),
parse_tree_chiid noc(N,"=",S,K,B, 2},
NN=N+1,
retract(parse_treeichildrennno(N,":",S,K,[A,B],Z)),
retract(parse_tree_child_no(N,":",S,K,A,l)),
retract(parsegtree_child_no(N,"=",S,K,B,2)),
asserta(parseﬁtree_children_no(N,“=",S,K,[B,A],2)),
asserta(parse_tree_child_no(N,":",S,K,B,l)),
asserta(parse_treeﬁchild_no(N, "=",5,K,A,2)),
checkA (NN,A,1,2,1,1),
checkA (NN,B,2,1,1,1).

/*****. Representation of results at each node of the parse tree ***x*x/

/-A-***'ﬂr******************************'ﬂr*********************************i/

get_parse result:-
parse_tree children no(1l,R,S,K,L, M),
parse_tree result{l,R,S,K).

parse_tree result(N,R,S,K):-

parse tree_children no(N,R, 8,K,List, M),
n_element(List,1,X),
NN=N+1,
parse leaf(NN,X,1,8),!,
assertz(parse result(NN,S,1,X,X)),
concat (X,R,Y),
find_result(N,List,R,S,K,M,l,Y).

parse_tree_ result(N,R,S,K):-
parse tree children no(N,R,5,X,List, M),
n_element (List, 1,X),
NN=N+1,
parse_tree result(NN,X,1,8),
parse tresult(NN,S,1,X,21),
concat(zl,R,Y),
find result(N,List,R,S,K,M, 1, 7).

find_result(NAL,R,S,K,M,I,Y):—
T1=I+1,
n_element (L,I1,%X),
NN=N+1, '
I1=M, o

91 &

parse leaf (NN,X,I1,5),!,
assertz(parse result(NN,S5,I1,X,X)),
concat (Y,%, 2),

store_parse result(N,K,S,R,2).

find result(N,L,R,S,K,M,T,Y):-
I1=T+1,
n_element(L,Il,X),
*N+1
Il—M
parse tree _result (NN,X,I1, S),
parse_result (NN,S,I1,X,21),
concat (Y, z1,Z),
store_parse result(N,K,S,R,Z).

find_result(N,L,R,S,K,M,I,Y):~
I1="+1,
n element(L,I1,X),
NN=N+1,
parse leaf (NN,X,I1,S),!
concat (Y, X, 2),
concat (Z,R, YY),
find result(N,L,R,S,K,M, I1,¥YY).
find result(N,L,R,3,K,M,I,Y):-
I1=1+1,
n_element (L, T1,X),
NN=N+1,
parse_tree result(NN,X,Il1,S),
parse_result (NN,S,I1,X,Z1),
concat (Y, z1,2),
concat{Z,R, YY),
find_result(N,L,R,S,K,M,I1,YY).

store_parseuresﬁlt(N,K,I,R,Z):—

R ="+|’l, !r
concat{"(",Z,Y),
concat (Y,"™)", Py,

asserta{parse result(N,K, I,R, P))
store parse _result (N, K,I,K, Z):-

R A;Il -n ; ! .
concat("(" Z,Y),
concat {y,"}", B},

asserta(parse_result(N,K,I,R,P)).
Store_parse result{N,K,I,R,Z):- :
asserta{parse result(N,K,I,R,Z)}.

/***/

92

JRxFAKFxFAwk THIS IS AN IMPORTANT SECTTON OF THE PROGRAM A kdokohkk kok s /

/**************************MATCHING SECTION **************************/

/**-}-**/

/**** After matching at the leaves, matching ***xxkxksdds/
/**** at the internal nodes is done. *****%xwwkkrtsssnsn/

match: -
makewindow{3,7,7," MATCHING WINDOW ", 4,5,20.4%5),
parse_tree_children no(l,R,S,K,L,M1),
M=M1+1,
match internal(1,R,S,K,1,M).

match internal (N,R,S,K,M,M):-!.
match internal (N,R,S,K,I,M):-
parse tree_child ne(N,R,S,K, X, I},
NN=N+1,
parse leaf(NN,X,I,8),!,
matching leaf 1ist(NN,X,1,S,[]},
II=T+1,
match internal(N,R,S,K,IT,M).
match internal (N,R,S,K,I,M):-
parse_tree_child nc(N,R,S,K, X, I},

NN=N+1, .
parse_tree children no(NN,X,I,S,L,MM),
M1=pMM+1,

internalkmatch(NN,X,I,S,Ml),

IT=I+1,

match internal(N,R,S,K,II,M).

internal_match(N,R,S,K,M){—-
parse_tree child no(N,R,S3,K,X, 1),
NN=N+1,
parse leaf(NN,X,1,S),
matching_leaf_list(NN,X,l,S,[]),
matching_nodes(NN,X,l,S,SETl),I,
repit(N,R,S,K,2,M,SET1).

internal match(N,R,S,K,M):-
parse_trae_child no{N,R,S,K,X,1),
NN=N+1, B
parse tree children no(NN,X,1,S8,L,M1),
M2=M1+1,
internal_match(NN,Y,l,S,MZ),
matching nodes (NN,%,1,5,SET1),
repit (N,R,S,K,2,M,SET1}.

repit (N,R,S5,K,M, M, SET1) : -
!,asserta(matching_nodes(N,R,S,K,SETl)).
"repit(N,R,S,K,J, M, SET1) : -
parse_tree child no(N,R,S,K,Y,J),
NN=N+1, h
parse leaf(NN,Y,J,S),
matching leaf 1ist(NN,Y,J,S,[]),

93

matching nodes (NN, Y, J, 5, SET2),
R=1l*"’ !'
intersect (SET1,SET., SET),
JI=J+1,
repit (N,R,S,K,JJ,M, SET) .
repit(N,R,S,K,J,M,SET1):-
parse_tree_ child no(N,R,S,K,Y,J),
NN=N+1,
parse leaf(NN,Y,J,S3),
matching leaf list(NN,Y,J,5,[]},
matching nodes (NN, Y, J,S,SET2),
R=rr/n’ .|’
intersect {SET1, SET2, SET),
JI=J+1, .
repit(N,R,S, K, JJ,M, SET) .
repit (N,R,S,K,J,M, SET1):-
parse _tree_child no(N,R,5,K,Y,J),
NN=N+1,
parse leaf (NN, Y,J,S},
matching leaf list(NN,Y,J,5,[1),
matching nodes (NN, Y, J, S, SET2),
R=“+".r !'_
union (SET1, SETZ, SET),
JI=J+1,
repit (N, R, $,K, JJ,M, SET) .
repit (N,R,S,K,J,M,SET1) : -
parse_tree_child no(N,R,S,K,Y,J),
NN=N+1,
parse leaf(NN,Y,J,8),
matching leaf list{NN,Y,J,S,[]},
matching ncdes (NN, Y, J, 5,SET2),

=n_n
oy

union (SET1, SET2, SET),
JI=J+1,
repit(N,R,5,K,JJ,M, 3ET) .

repit (N, R, S,K,J,M, SET1) : -

parse_tree child no{N,R,S,K,Y,J),
NN=N+1, B
parse tree children no(NN,Y,J,5,L,M1},
M2=M1+1,
internal_match(NN,Y,J,S,M2),
matching nedes (NN, Y, J, 5,S8ET2),
R="*", ! ,
interseéct (SET1, SETZ, SET),
JI=J+1,
repit(N,R, 5,K,JJ,M, SET) .

repit (N,R, 5,K,J,M, SET1) : -
parse_tree child no(N,R,S,K, Y, J),
NN=N+1, B
parsektree_children_no(NN,Y,J,S,L,Ml),
M2=M1+1,
internal_match(NN,Y,J,S,M2),
matching nodes (NN,Y,J, S, SET2),
R="/",1,
intersect(SETl,SET2,SET),
JJ=J+1,

94

repit{N,R, 5,K,JJ,M, SET) .

repit (N, R, S,K,J,M,SET1): -
parse_tree child no(N,R,S,K,Y,J),
NN=N+1,
parse_tree children no(NN,Y,J,S,L,M1),
MZ2=M1+1,
internal match(NN,Y,J,5,M2),
matching nodes{NN.Y,3,5,SET2),
R:n+lr’ ! ,
union({3ET1, SET2, SET),
JJ=J+1,
repit(N,R,S,X,JJ, M, SET).

repit (N,R,S,K,J,M, 8ETL) : -
parse_tree_child no(N,R,S,K, Y, J},
NN=N+1,
parse_tree_ children no(NN,Y,J,S,L,M1),
M2=M1+1,
internal match(NN,Y,J,S,M2},
matching_nodes(NN,Y,J,S,SET2),
R:"—",
union {SET1, SET2, SET),
JI=J+1,
repit(N,R,S,K,JJ,M, SET).

/*******************THIS SECTION IS5 FOR MATCHING AT*****************/

/********************LEAVES***/

/***‘k*******************/

matching leaf 1ist(N,R,I,5,L):-
matched leaf(R,M),!,
asserta(matching nodes(N,R,T,5,M)).

matching_leafglist(N,R,I,S,L):—
write ("Enter the process tree nodes that "), nl,
write("match ' ",R," ': ™),ni,
matching_nodes_list(N,R,I,S,L,M),
asserta(matching_nodes(N,R,I,S,M)),
asserta(matched leaf (R,M}).

matching_nodes_list(N,R,I,S,List,Matchlist):—
readln (Matchnode),
Matchnode<>"", |,
append_list(Matchnode,List,Newmatchlist),
matching_nodesilist(N,R,I,S,Newmatchlist,Matbhlist).
matching_nodes_list(N,R,I,S,List,List).

/***%+ THIS PORTION OF THE PROGKAM IS FOR QUTPUT ****dxskksk/
/**%*+ AND FOR DISCARDING TRRELEVANT SUBPROCESSES, * % %k xx** /

95

accumulation: -
parse tree_children no(l,R,1,1,L,M),
M1=M+1,
accumuliate(1l,R,1,1,[],1,ML).

accumulate (N, R, S,K,L1,M, M) :~
accumulate (N, R,S,K,L1,I,M):-
parse_tree_child no(N,R,S,X,%, I},
NN=N+1,
parse leaf(NN,X,I,S),!,
IT=1+1,
accumulate (N,R,S,K, L1, . [,M),
accumulate (N,R,S,K,L1,I,M):~
parse_tree_child no(N,R,3,X,X, I},
NN=N+1,
matching nodes(NN,X,I,S,L),
length(L,1},
parse tree chlldren no(NN X, I,5,LIST,K1),
KK=K1+1, -
accumulate (NN,X,I,S$,L1,1,EX),
1I=T1+1,
accumulate (N,R,S,K,L1,II,M).

accumulate(N,R,S5,K,L1,I,M):
parse tree Chlld no(N,R,5,K,X, I},
NN= N+1
matching nodes (NN, ¥,I,S,L),
length{L, J),
J>0,
find root(L,P), !
retract{matzhing nodes (NN,X,I,S,L)},
asserta(matching nodes (NN, X,I,5, [P])),
parse tree children no(NN,X,I,S,LIST,K1),
EK=K1+1,
add(p,L1,L2},
accumulate (NN,X,I,5,Ls, 1,KK),
II=T+1,
accumulate(N,R,S$,K,L1,II,M).

accumulate (N,R,S,K,L1,I,M):-
parse_tree_child no(N,R, §,K,%,I),
NN=N+1,
matching_nodes (NN, X%, I,5,LK),
deduct (LK, L1,L),
length (L, 1), !,

" retract (matching nodes(NN,X,I,S,LK)},
asserta(matching nodes(NN,X,I,S,L)},
parse tree children no (NN, X,I,3,LIST,K1),
KK=K1+1, h
accumulate (NN, X, I,s,L1,1,KK),

II=1+1,
accumulate(N,R,S,K,L1,II,M).

accunulate(N,R,5,K,L1,I,M):-
operator_ search,

96

s

k-

frrAFEAAxAAE This section analyses the process tree for match***x«wx*/
/**r****#**** and uses the helplnq predicates*************************/

retract result,
retract match,
get_parse result,
match,
accumulation.

THIS PORTION OF THE PROGRAM IS FOR OUTPUT FoAk ko k ok k
AND FOR DISCARDING IRRELEVANT SUBPROCESSES ., *xakkkwad & /

assertion:-
makewindow(4d,7,7," OUTPUT SCREEN ",4,5,18,50),

parse_tree children no(l,R,1,1,L,M),
M1=M+1,
speak(l,R,1,1,1,M1).

speak(N,R,S,K,M, M) : -1,
speak (N,R,S,K,I,M):-

parse tree_child no(N,R,S,K,X,I),
NN=N+I, B B

parse leaf{NN,X,I,S),!,

IT=I+1,

speak (N, R,S,K, II,M).

speak (N, R, 3, K, I,M):-

parse_tree child no(N,R,S,K,X%, I},

NN=N+1,

matching nodes (NN, X,I,5,L),

parse result(NN,S,T,X, Y},

write ("The equation at the node",L, "is:",Y),nl,

write("Press Enter: "y,
readln (A},

A=nn ,

nl,

parse_tree_children_no(NN,X,I,S,LIST,KI),
KK=K1+1,

speak (NN,X,I,S8,1,KK),

II=1+1,

speak (N,R,S,K,II,M).

speak (N,R,S,K,I,M).

whether same process branch:-

process_tree_children no(l1,R,1,L,M),
M1=M+1,
same branch(L,1,M1).

sameﬁbranch(;,M,M):—!.
same_branch{L, I,M):-

97

e

n_element{L,I,X),
same_branch check (X},
IT=I+1,

same branchi{L,II,M).

same_branch_check(x):—
prccess_leaf (N,X,I),!,
asserta(same_process_branch(x,[X])).
same_branchﬁcheck{X):—
process_tree_children no(N,X,T,L,M),
M1=M+1,
next check(X,L, [],1,M1).

I next_ check(¥,L,L1,M1,M1}):-1,
append{[X],L1,LL},
asserta(same_process_branch(X,LL)).

next check(X,L,L1,I,M1):-
n_element (L, I,Y),
same_branch check(Y),
same_process branch(Y,YL),
append (L1, YL, LL),
IT=I+1,
next check(X,L,LL,II,ML).

equal list([],[]):-1!.
equal list(L,LL):-

length (L, K),
length{LL, K),
n_element(L,1,X),
member (X, LL),
pull (X, L.,L1L1),
pull (X,LL,L2),
equal list(Ll,L2).

add(F,L,LL):-
member (P, L}, !,
LL=L.
add(pP,L,LL) : =
append ([P],L,LL) .

deduct (LL, [],LL):-!.

deduct (LL, [H{T],L1):-
pull{H,LL,L2},
deduct (L2, T, L1).

findﬁroot(L,P):—
same_ process branch{PF,LL),
equal list(L,LL).

98

length([],

lengtht [[R], HE
length(R,Ll),
L=L1+1.

retract children(N,A,I,K):
retract (parse_ tree children _no(N,A,I,K, , }),fail,
retract children (N,A,I,K}.

retract child(N,A,I,K):
retract(parse_tree child _no{N,A,I,K, ,)),fail.
retract_child(N,A,I,K).

retract result:-
retract (parse_result(_, , , ,)}, fail.
retract result.

retract match:-
retract(matching_nodes(_,_,_,_,ﬁ)),fail.
retract _match.

union({],SETZ,SET2):~
!
union{[H|T],SET2,LIST):-
member (H, SET2}, !,
unicn{T, SET2,LIST).
union ([H|T],SET2,LIST):-)
append (SET2, [H], NEW),
union (T, NEW, LIST) .

intersect ([],REM, []):-

) P
intersect (REM, {1, []}:-

|
intersect([HITl],SETZ,LIST):—

member (H, SET2),

pull (H, SET2, REM),

intersect (T1, SET2, NEW), !,

append { [H] , NEW, LIST) .

99

intersect ([E{T], SET2,LIST) :-
intersect (T, SET2,LIST).

append([],LISTRE, LISTB).
append ([X|LIST1],LIST2, [X)LIST3]) :~
append (LIST1,LIST2,LIST3).

member (X, [X!]):-!.
member (X, [|TAIL]):~
member (X, TAIL) .

pull (X, [X|List],List):=1!.
pull (X, [OTHER|REM], [OTHER|REM1]) : -
pull (X, REM, REM1} .

check (A) : -
A="Y", 1.

check (A} : -
A= l'lyll

response(Reply):;
readln (Reply),
write (Reply),nl.

'*****+/
/*********************************THEEND*******************************/

/***7.—/

100

-

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109

