
DERIVATION OF SCIENTIFIC LAWS
THROUGH ANALYSIS OF PROCESSES AND

THE CORRESPONDING EQUATIONS

MOHAMMAD ISMAT KADIR
ROLL NO. 9405023F, SESSION 1993-94-95

A THESIS SUBMITTED TO THE DEPARTMENT OF COMPUTER
SCIENCE AND ENGINEERING IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN
ENGINEERING (COMPUTER SCIENCE AND ENGINEERING)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DHAKA, BANGLADESH
SEPTEMBER, 1999

1111111/11" 11111/111/111/11111111 -
#93587#

~--~ - __ J

DERIVATION OF SCIENTIFIC LAWS THROUGH ANALYSIS OF
PROCESSES AND THE CORRESPONDING EQUATIONS

Mohammad [smat Kadir

Roll no. 9405023F, Session 1993-94-95

Examination held on: September 08, 1999

Approved as to style and contents by:

I.
•

2.

Dr. Chowdhury Mofizur Rahman

Assistant Professor,

Department of Computer Science and Engineering,

BUET, Dhaka, Bangladesh.

Professor M. Kaykobad

Head,

Department of Computer Science and Engineering,

BUET, Dhaka, Bangladesh.

Chairman & Supervisor

Member

/U /fkq5)'~d'(/f\
3. ~ _

Dr. Muhammad Masroor Ali

Assistant Professor,

Department of Computer Science and Engineering,

BUET, Dhaka, Bangladesh.

Member

4.
Dr. A. B. M. Harun - ur Rashid

Assistant Professor,

Department of Electrical and Electronic Engineering,

BUET, Dhaka, Bangladesh.

Member (External) j

ACKNOWLEDGEMENT

The author wishes to express his heart-felt gratitude and strong devotion to Dr. Chowdhury

Mothur Rahman, who has supervised the thesis and spent a lot oftime in directing the author to

the successful completion of the work. Without his constant guidance and help, the thesis would

not probably come into being.

The author also expresses his gratefulness and deep sense of gratitude to Professor M. Kaykobad,

Head, Computer Science and Engineering department, BUET, Dhaka, who has inspired the author

in many ways to do the work.

The author wishes to thank specially Jan. M. Zytkow, who sent a large number of research papers

to the author and gave valuable suggestions.

(Mohammad Ismat Kadir)

ABSTRACT

A system has been developed to decompose complex composite equations derived from an

automated discovery system into the basic laws. AI discovery systems, like BACON,

FAHRENHEIT, and ABACUS, produce algebraic equations that describe numeric data. Since

physical situations in an experiment may differ in countless ways, such discovery systems have to

discover equations for each of (he situations individually. If there is a combination of processes in

an experiment, we may have a complex and composite equation. To have a knowledge about the

elementary interactions, we decompose the regularities or equations from a BACON-like

discovery system into simpler expressions, each of which is associated with a simple situation or

process. For example, there may be one battery and one resistor in a circuit, or there may be two or

more batteries and two or more resistors in series. From the governing equation of the two circuits

as obtained from a BACON-like system, the developed system will be able to generate Ohm's law

and the law of equivalent resistance of a number of resistances in series. The system uses the

equation from a BACON-like system as the search engine. It uses the parse tree of the equation to

find a satisfactory match with the process decomposition tree. The system utilizes the dynamic

database structure of PROLOG programming language to represent and store the trees. It

transforms the equation into a form compatible with the physical processes they describe so that

equations can be decomposed into pieces useful in model generation . We use a number ~f

operators - more are proposed to deal with the decomposability of equations. hi implementing the

system, the operators are added to guide the search.

ii

TABLE OF CONTENTS

Acknowledgement I

Abstract II

Table of contents ...
III

List of figures VI

1 Introduction 1

1.1 What is an AI discovery system I

1.2 Important features of a machine discoverer 2

1.3 Present state-of-the art of AI discovery systems 3

1.4 Automated discovery of empirical laws 4

1.5 Why discovery of elementary interactions 6

1.6 Outcome of the thesis 10

2 Present AI Discovery Systems

2.1 . Forms of discovery

2.1.1 Theory-driven discovery - AM

2.1.2 Data - driven discovery

2.1.2.1 Discovering Empirical laws using BACON

11

11

II

13

13

2.1.2.1.1

2.1.2.1.2

2.1.2.1.3

2.1.2.1.4

A sample protocol

BACON's representation

Production system of BACON -

with special reference to BACON.3

A Summary of BACON's discovery

iii

14

16

17

20

2.1.2.2 Automated discovery using FAHRENHEIT

21

21

21

22

23

23

26

27

28

28

28

31

33

33

34

36

36

37

38

40

40

41

41

42

Set up experiment

Empirical space

Regularities

Exploration of numerical space

Boundary search

Generalization of empirical regularities

BACON at work

Proportionality graph search

2.1.2.1.5

2.3.2.5.1

2.1.2.2.1

2.1.2.2.2

2.1.2.2.3

2.1.2.2.4

2.1.2.2.5

2.1.2.2.6

2.1.3 Clustering

Discovery of equations

2.2.1 Model-fitting and evaluation

2.2.2 The search space of the equation generator

2.2.2.1 Equation generation search

2.2.2.2 The search driver

2.2.2.3 User control over search

ABACUS: Integrating quantitative and qualitative discovery

2.3.1 The ABACUS approach to quantitative discovery

2.3.2 Discovering bivariate equations in ABACUS

2.3.2.1 Variable dependency and proportionality graph

2.3.2.2 Equation formation - a search for constancy

2.3.2.3 Domain-inc! ~pendent constraints

2.3.2.4 Recognizing the goal

2.3.2.5 Search

2.2

2.3

iv

" : I

2.3.2.5.2 Suspension search 44

3. Development of the Syst~m 45

3.1 Equations and situations 45

3.1.1 Correspondence between situations and equations 45

3.2 The developed system 48

3.2.1 Representing processes and equations 49

3.2.2 Input and output 49

3.2.3 Equation transformation search 53

3.2.4 Tree matching search 54

3.2.5 Operator selection 56

3.3 The system with two case studies 56

3.3.1 Case I: Water temperature problem 58

3.3.2 Case II: Electrical circuit problem 60

4. Discussion and Conclusion 61

4.1 Evaluation of the system 61

4.1.1 Example 1 61

4.1.2 Example 2 62

4.2 Further development 63

4.3 Conclusion 64

References

Appendix : Program Listing

v

65

69

LIST OF FIGURES

Figure l.l BACON discovering the ideal gas law 5

Figure 1.2 Thermal equilibrium for (a) two samples of water 7

(b) water and a piece of ice that melts completely,

(c)water and a piece of ice that melts partially

Figure 1.3 Moving down an inclined plane, (a) sliding, (b) rolling. 8

Figure 1.4 Two circuits: (a) one battery and one resistor, (b) two 9

batteries and two resistors

Figure 2.1 Three regularities separated by boundaries 25

Figure 2.2 The intermediate state to discover some 25

regularities and their boundaries

Figure 2.3 The final state of knowledge 25

Figure 2.4 Sample data and three equations with similar goodness of fit 30

Figure 2.5 The search space, generati. ,n of variables, generation of equations 32

and model - fitting

Figure 2.6 Generation of new variables and equations 35

Figure 2.7 ABACUS analysis of graph example 37

Figure 2.8 Proportionality graph 39

Figure 2.9 Proportionality graph search for ideal gas law 42

Figure 2.10 Proportionality graph search path for ideal gas law 43

Figure 2.11 Partial suspension search for conservation of momentum 45

Figure 3.1 Process diagnm for figure 1.2a 49

Figure 3.2 Overview of system input and process 50

vi

Figure 3.3 Process decomposition tree! 51

Figure 3.4 Process decomposition tree2 51

Figure 3.5 Equation parse tree for Black's equation 52

Figure 3.6 Example of transformation grammar rule 53

Figure 3.7 Results of matching, (a) partial match, (b) mismatch reduction schema 55

Figure 4.1 Parse tree for ideal gas law 61

Figure 4.2 Process decomposition tref for Black's experiment 62

Figure 4.3 Parse tree for Black's law 63

vii

Chapter 1

Introduction

1.1 What is an AI discovery system

Learning is defined as the process by which an entity acquires knowledge. It usually occurs that

knowledge is already possessed by some number of other entities. These may serve as teachers.

Discovery is a restricted form of learning in which one entity acquires knowledge without the help

of a teacher. Sometimes it happens that there is no one in the world who has the knowledge we

seek. In that case, the kind of action we have to take is called scientific discovery.

In machine learning, we typically distinguish between (1) learning as acquiring new knowledge in

the form of concepts, taxonomies, regularities, and the like, and (2) learning as performance

improvement and skill acquisition. Discovery applies to learning things that exist, such as the

moons of Jupiter or the laws of nature. So we confront discovery with learning in the first sense, of

acquisition of objective knowledge. A discoverer must be autonomous in learning something.

Whether a person or a computer system, a di~ ;overer must be equipped with its own autonomously

applicable repertoire of techniques and values. Take concept learning as an example. An

unbounded number of predicates can be defined by the primitives of any language, but only some

make useful concepts. A teacher who understands a concept can prepare a collection of examples

and describe them by suitable attributes, while a discoverer must use its own strategies for data

collection and its own judgement about relevant attributes.

The notion of autonomy requires few explanations. Kepler, for example, discovered his laws from

data collected by Tycho de Brahe [3I]. So neither the data collection strategies nor the attributes

were his own. However, his discovery was autonomous in many ways. First, Brahe's data came

without a guarantee that their exploration would lead to any discovery. Kepler picked them

without assurance that he would be successful. Second, Kepler used his ideas of patterns in data -

generated and evaluated many patterns before he made his discoveries. Third, autonomy best

applies to the whole historical process of discovery, less to a small episode. Great discoveries were

. "

I,

usually made possible by the contribution of many people over a long time. Uncountable

observations, many attributes, and many hypotheses on planetary motion were considered before

Kepler. So when autonomy is concerned, we consider the whole scientific community as a

collection of discoverer.

Discoveries are not limited to 'natural' phenomena. Anything that exists but are not explored can

be the subject of a discovery: For instance, we can use a discovery system to discover the

computational complexity of an algorithm. As another example, consider heuristics. Heuristics are

useful when they improve the behavior of a program. If cost is one ofthe dimensions in a domain,

the least-cost heuristic is, as a rule, discovered and various other heuristics can be invented.

1.2 Important features of a machine discoverer

The number of discovery systems has been growing considerably in the last decade. The majority

of wO,rk on machine discovery focussed on the reconstruction of the scientific method. Recent

developments on machine discovery confirms the old thesis [18] that discovery is problem solving

and that it can be carried out by computer programs. Although discoveries are abundant in

everyday life, the focus on scientific discovery has drawn the main concern. Everyday concepts

notoriously elude formalism, while scientific formalism has historically proved to lead to

spectacular results of scientific reasoning and knowledge representation. A typical scientific

phenomenon can be studied in a compact domain that' is limited t? a few concepts yet rich in

knowledge representable in a hrmal way. The continued concentration on the scientific method is

expected to lead to a practical success in the future. The widespread use of computers and data-

acquisition equipments by scientists permits rapid installation of a successful discovery system.

Machine discovery is no different from applications of computers in modern science. Scientists

develop new methods to match increasingly sophisticated problems. Then, whole scientific

communities learn and apply those methods. The future of successful machine discovery systems

is similar. Modern science and the automation of discovery lead to a diminishing distinction

between the normative systems and established scientific practice.

2

•

1.3 Present state-of-the-art of AI discovery systems

During the last two decades, mmy computer programs have been constructed that simulate various

aspects of scientific discovery. The earlier systems concentrated on qualitative and quantitative

regularities, discovery of intrinsic concepts etc.[10] [28] [2]. Most machine discoverers get their

data in a simulation, for instance BACON [I I]. A still larger group of systems work on fixed, _

externally provided data.

Discovery in mathematics has attracted plenty of interest, but progress has been slow. Early work

on discovery in the theory of numbers was originated by the AM system [13]. EURISKO [14], an

extension to AM played an important role in rediscovering some useful concepts. GRAFFITI, a

program developed by Fajtlowicz [3 I]has prqduced numerous interesting conjectures in graph

theory.

Recently, very fast theorem-provers have been developed for geometry, allowing us to apply an

automated search to propose and then prove or disprove hypotheses in large hypothesis spaces in

geometry .

Discovery in databases had a tremendous progress during the last decade. It is aimed at the

automated exploration of large amounts of tabular data, collected in databases. The task is limited

to discovery from the prearranged data. Left out are automation of experiment and the feedback

between theory formation and experimentation strategies. Results in knowledge discovery in

databases (KDD) have been described in several- collection of papers, typically conference

proceedings [21] [25] [23] [33] and many individual papers.

The growth of discovery systems has accelera~ed in the last decade. Several abilities lacking in

early discovery systems have been introduced, such as the ability to consider empirical context of a

law [19], the ability to design experiments [9], and the ability to represent objects, states and

processes [20].

The search for regularities in a multidimensional space of numerical parameters was studied in

1981, in BACON project, whose results were summarized in [12]. Although BACON was capable

of rediscovering a large number of laws of physics and chemistry, it had the limitation that all the

datapoints need have a single regularity. Otherwise the algorithm could not work well. Then came

the FAHRENHEIT system [30], which successfully discovered complete theories of numerical

3

spaces, even if there had been a number of partial regularities in the dataset. In addition,

FAHRENHEIT could discover knowledge about special points such as maxima and

discontinuities. Several other systems, including ABACUS [2] and IDS [20] made various

improvements over BACON. As for example, the ABACUS system is able to discover multiple'

mathematical equations for numeric data and derives explicit, logic-style description stating

preconditions for the application of the equations.

Discovery systems so far stateu use modules that find mathematical equations from a sequence of

data. However, in science, the discovery of empirical equations is treated as an intermediate step

towards more fundamental knowledge. The deeper goal is to develop theories of elementary

interactions in the world, and the hidden micro-structures of things and processes. Equation

transformation and their interpretation form a search space explored by GALILEO [29].

Knowledge of structure and interaction between the components of a system give the real model of

situations.

1.4 Automated Discovery of Empirical Laws

Empirical scientists discover numerical regularities or equations from experimental data. They are

confronted with the real-world data to make sense of it. They make hypotheses, and in order to

validate them, they design and execute experiments. Scientific discovery has inspired a number of

computer models. Langley et al. [12] present a model of data-driven scientific discovery that has

been implemented as a program called B.\CON, named after Sir Francis Bacon, an early

philosopher of science.

BACON begins with a set of variables for a problem. For example, in the study of the behavior of

gases, some variables are P, the pressure on the gas, V, the volume of the gas, n, the amount of gas

in moles, and T, the temperature of the gas. Physicists have long known a law, called the ideal gas

law, that relates these variables. BACON is able to derive this law on its own. First, BACON holds

the variables nand T constant, performing experiments at different pressures PI, P" and P3.

BACON notices that as the pressure increases, the volume V decreases. Therefore, it creates a

theoretical term PV. This term is constant. BACON systematically moves on to vary the other

variables. It tries an experiment with different values of T, and finds that PV changes. The two

terms are linearly related with an intercept of 0, so BACON creates a new term PV/ T . Finally,

4 J
I

••

BACON varies the term n and finds another linear relationship between nand PV IT. For all

values of n, P, V, and T, PV/nT = 8.32. This is, in fact, ideal gas law. Figure 1.1 shows BACON's

reasoning in a tabular format.

N T P V PV PV/T PV/nT

I 300 100 24.96

I 300 200 12.42

I 300 300 8.32 2496

I 310 2579.2

1 320 2662.4 8.32
2 320 16.64
3 320 24.96 18.32

Figurel.l: BACON Discovering the Ideal Gas Law

BACON has been used to discover a wide variety of scientific laws, such as Kepler's third law,

Ohm's law, the conservation of momentum, and Joule's law. The heuristics BACON uses to

discover the ideal gas law include noting constancies, finding linear relations, and defining

theoretical terms. Other heuristics allow BACON to postulate intrinsic properties of objects and to

reason by analogy. For example, if BACON finds a regularity in one set of parameters, it will

attempt to generate the same regularity in a similar set of parameters. Since BACON's discovery

procedure is state-space search, these heuristics allow it to reach solutions while visiting only a .

portion of the search space. In the gas example, BACON comes up with the ideal gas law using a

minimal number of experimen:s.

Besides BACON, FAHRENHEIT, ABACUS and some other empirical discoverers use modules

that find mathematical equations in two variables from a sequence of data. FAHRENHEIT defines

the problem of empirical search for knowledge in a multi,dimensional space. It autonomously

explores multi-dimensional numerical spaces, accumulating knowledge with the purpose of

reaching a complete theory. ABACUS integrates both the qualitative and the quantitative

approach of discovering numerical laws. It formulates equations that bind subsets of observed

5 , .-

data, and derives explicit, logic-style descriptions stating the preconditions for.the application of

these equations.

A better understanding of the science of scientific discovery may lead one day to programs that

display true creativity. Much more work mu~ be done in areas of science that BACON does not

model, such as determining what data to gather, choosing (or creating) instruments to measure the

data, and using analogies to previously understood phenomena.

1.5 Why Discovery of Elementary Interactions

AI discovery systems, so far stated, produce algebraic equations that describe numerical data.

Algebraic equations discovered by such systems give a quantitative interpretation of the :lifferent

laws of nature. However, scientific knowledge exceeds a set of separate laws - it applies to an

infinite variety of physical situations, and different situations are usually described by different

equations. Established empirical discovery systems discover equations for each such situation

individually. But the problem is, even simple physical situations can be varied in countless way.

For example, figure 1.2 illustrates three posuble versions of an experiment conducted by Joseph

Black in the eighteenth century, in which two liquids are combined and their temperature is

measured at equilibrium. Figure 1.3 depicts two versions of a simple mechanical experiment, and

figure 1.4 shows two simple electric circuits. One can always add more wires, resistors, or

transistors and can reconfigure them to produce other electric circuits. The number of

modifications for each domain is clearly unbounded.

Should one apply an empirical system case by.case to discover the corresponding equations for

each different situation? This would result in an unbounded set of equations rather than in the

parsimonious theories that we associate with modem physics and chemistry. Furthermore, if the

discovered laws are limited to individual experimental situations, they will not allow for transfer of

knowledge. One might try to reduce the number of laws discovered to a manageable size by

discovering equations experinentally for simple situations and then deducing equations for

complex situations. However, in most cases, the equations that describe different situations are

either independent or mutually inconsistent since they describe different phenomena and predict

different behavior.

6

sample I samole 2

sample I sample 2

initial state

(b)

experimenter's action

tf

final state

(a)

sample I

(c)

sample 2

Figure 1.2 : Thermal equilibrium for (a) two samples of water, (b) water and a piece of ice that

melts completely, (c) water and a piece of ice that melts partially.

t

7 '''''1.'.~

v~O
h>O

process 1: v increases
process 2: h decreases

h

(a)

v>O
h=O

h

v~O
h>O
w=O

(b)

process 1: v increases
process 2: h decreases
process 3: w increases

v>O
h~O
w>O

Figure 1.3 : Moving clown an inclined plane: (a) sliding, (b) rolling.

8 ..

E

r

(a)

E,

(b)

T

Figure 1.4; Two circuits; (a) one battery and one resistor, (b) two batteries and two resistors.

9 .'

BACON, FAHRENHEIT, ABACUS and similar other systems are successful in generating

equations for individual physical situations, but they do not capture the way in which science deals

with a multitude of physical configurations to produce simple, finite theories that can be applied to

an infinite number of situations. Science deals with the complexity of physical situations by a

combination of two steps. In the first step, regularities are decomposed into simpler expressions,

each of which is associated with a particularly simple situation or process. In the second step, the

simple expressions are recombined to form equations that model complex situations.

So we are tempted to a discovery system that transforms equations generated byany of the

aforesaid system into a form compatible with the structure of physical processes they describe, so

that equations can be decompo"ed into pieces useful in model generation.

1.6 Outcome of the thesis

The thesis is aimed at developing a computer program to decompose a complex composite

equation derived from an empirical autonomous discoverer like BACON, FAHRENHEIT or

ABACUS and thus to deduce the basic laws governing simple physical situations. With this end in

view, we incorporate, in our system, ideas on qualitative process representation, quantitative

theory and the transformation of mathematical formulas. It transforms equations generated by a

BACON-like system into a form compatible with the physical processes they describe, so that

equations can be decomposed into pieces useful in model generation. The outcome of our work is

expected to find excellent application areas in constructing math~matical models for an integrated

scientific process, given a description in terms of elementary objects and processes. An integrated

scientific process is a combination of simple situations. Through an expert discovery system, like

this, equations for the simple situations will be deduced from the equation .of the integrated

process, as obtained from a BACON-like system.

The dynamic database structure of Turbo Prolog is used to store and retrieve the integrated

scientific process and the composite equation. A number of operators are implemented. The

resulting program shows excellent results in some specific domain. The program is tested in cases

of ideal gas law, Black's experiment, and simple electrical circuits. Thus we can treat the

developed system as an integrated scientific engine to decompose complex equations into the

basic laws.

10

Chapter 2

Present AI Discovery Systems

2.1 Forms of Discovery

There are three main avenues in AI discovery systems. They are:

• Theory-driven discovery

• Data-driven discovery

• Clustering.

These are described in the following subsections.

2.1.1 Theory- driven Discovery- AM

AM [13] is a program by Lenat that discovers concepts in elementary mathematics and set theory.

An extension of AM is EURISKO [14].

AM has two inputs:

• A description of some concepts of set theory (in LISP form), e.g., set union, set intersection,

the empty set.

• Information on how to perform mathematics, e.g., functions.

Given the above information, AM discovers:

Integers

• it is possible to count the elements of a set and this is an image of the counting function - the

integers- interesting set in its own right.

Addition

• the union of two adjacent sets and their counting function.

Multiplication

• having discovered addition and multiplication as set-theoretic operations more effective

descriptions are supplied by hand.

Prime Number

• factorization of numbers and numbers with only one factor are discovered.

Golbach's conjecture

• even numbers can be written as the sum of 2 primes, e.g., 28=17+ 11.

Maximally divisible numbers

• numbers with as many factors as possible. A number k is maximally divisible if k has more

factors than any integer less than k, e.g., 12 has six divisors 1,2, 3, 4, 6, 12..

How does AM work?

AM employs many general- purpose AI techniques:

• A frame based representation of mathematical concepts.

•AM can create new concepts (slots) and fill in their values; For example, the AM concept

learner for prime numbers may have slots like name, definition, examples etc.

• Heuristic based search.

•AM uses 250 heuristics that represent hints about activities that might lead to interesting

discoveries.

• Heuristics as to how to employ functions to create new concepts, generalizations etc.

12 p.

• Hypothesis and test based search. Genera' ~-and- test is used to form hypothesis on the basis of

a small number of examples and then to test the hypothesis on a large set to see if they still

appear to hold.

• Agenda control of discovery process. When the heuristics suggest a task, it is placed on a

central agenda, along with the reason that it was suggested. and the strength with which it was

suggested.

2.1.2 nata-driven discovery

There are a number of discovery systems, which are confronted with data from the real world and

explore the numerical regularity among the data points. The vast majority of these systems use a

combination of three searches. They occur in spaces of (1) terms of increasing complexity, (2)

pairs of terms, or more generally tuples of terms, and (3) equations for pairs (tuples) of terms. The

equations are a product of search (3), which typically uses least square fitting applied to a limited

number of polynomial models. Search (1) tra .sforms the initial variables to log (x), exp (x), x x y

and the like. New terms are combined by search (2) in pairs and passed on to search (3) that

combines them into equations and fits the best values of numerical parameters in those equations.

Some equation finders have reached very high level of quality. Their main advantage over humans

is breadth of search and unbiased evaluation of many equations. BACON and FAHRENHEIT play

the pioneering role in the~e types of exploration of experimental data. So we will deal with these

two systems here.

2.1.2.1 Discovering Empirical Laws Using BACON

Langley et al.[12] translated theories about information processing into running computer

programs. This had led to a sequence of computer programs collectively called BACON. The

BACON systems (versions I through 6) are named after Francis Bacon, because they incorporate

many of his ideas on the nature of scientific reasoning. The successive versions of BACON share a

common approach to discovery, as well a'. a common representation of data and laws. The

differences among the various systems lie in the discovery heuristics that each uses in its search for

empirical laws.

BACON. 1 is the simplest of the systems and thus the easiest to describe and to understand.

BACON. 1 uses a general representation and a few heuristics to discover an impressive range of

empirical laws. The system is general in the sense that the basic methods of BACON make no

13

I'

'", ,.

reference to the semantic meaning of the data on which they operate and make no special

assumptions about the structure of the data. We have striven for generality in BACON because we

wish to explore the role in scientific discovery of heuristics that may be relevant over a wide range

of scientific disciplines and hence may cllntribute to our basic understanding of discovery

wherever it may occur. Having clarified our bias toward general mechanisms, let us consider an

example of how one might employ such mechanisms to discover an empirical law.

2.1.2.1.1 A Sample Protocol

In 1618, Johannes Kepler discovered his thinl law of planetary motion: the cube of a planet's

distance from the Sun is proportional to the square of its period. This law can be restated as D3/P'

= C, where D is the distance, P is the period, and C is a constant.

How might one discover such a law? Here is a sample protocol that draws on' three very simple

heuristics:

• If the values of a term are constant, then infer that the term always has that value.

• If the values of two numerical terms increase together, then consider their ratio.

• Ifthe values of one term increase as those of another decrease, then consider their product.

The value of these heuristics can best be seen in their operation. The three planets considered

below, A, B, C, obey a version of Kepler's law ,where the constant is I. The discoverer must begin

by gathering some data, selecting different values for the nominal variable (planet), and obtaining

the values of the numerical terms (D and P):

When planet is A

What is P?

What is D?

When planet is B

What is P?

What is D?

Answer: 1.0

Answer: 1.0

Answer: 8.0

Answer: 4.0

14

•

When planet is C

What is P?

What is O?

o increases with P.
So I'll consider their ratio.

Answer: 27.0

Answer: 9.0

I'll define Term-I as the ratio of D and P [011'].

Here the second heuristic has been applied. The distance and the period have been observed to

increase together, so the new concept Term-I has been defined as their ratio. Next, the values of

this new term are calculated.

When 0 is: 1.0 4.0 9.0

and Pis: 1.0 8.0 27.0

Term-I is: 1.0 0.5 0.333

o increases as Term-I decreases.
So ('II consider their product.

I'll define Term-2 as the product of 0 and Term-l [O(O/P) = D'/P].

When 0 is: 1.0 4.0 9.0

and Pis: 1.0 8.0 27.0

Term-2 is: 1.0 2.0 3.0

Term-] increases as Term-2 decreases.

So I'll consider their product.

I'll define Term-3 as the product of Term-] and Term-2[(0/P)(O'/P) = D3/P'].

By this point, the third heuristic has been applied twice. Two more concepts have been defined:

Term-2 as O'/P and Term-3 as 03/p'. Since the latter of these is the most recently formed, we next

examine its values:

When 0 is: 1.0 4.0 9.0

and Pis: .1.0 8.0 27.0

Term-3 is: 1.0 1.0 1.0

Term-3 has the constant value 1.0.

15

Finally, the first heuristic applies, for the new cpncept Term-3 (defined as D3/P') has the constant

value 1.0 for all three planets. The statement that this term is constant across planets is equivalent

to Kepler's third law of planetary motion, and the above protoci)1 is a plausible trace of how one

might discover this law.

2.1.2.1.2 BACON's Representation

The above protocol was actually generated by the BACON.! program. The program represents its

data in terms of data clusters. A data cluster is a set of attribute-value pairs linked to a common

node; it represents a series of observations that have occurred together. The program knows about

two types of terms or attributes: independent and dependent. It has control over independent

attributes, it can vary their values and request the corresponding values of the dependent attributes.

In the above example, the values of the independent term were the names of planets; the values of

the dependent terms were the distances and periods of those planets. Thus in the Keplerian

example, there are three primitive attributes: the planet being observed, the planet's distance D,
from the sun and the period P. However, much of BACON's power comes ITom its ability to

define higher-level (theoretical) attributes in terms of more primitive ones. Thus the clusters also

contain the values of three non primitive attributes: Term-I (defined as DIP), Term-2 (defined as

D'IP), and Term-3 (defined as DJ/P'). Since these terms include dependent terms in their

definitions and thus cannot b~ manipulated by experiment or observation, they are considered

dependent.

BACON is implemented in the production-system language PRISM. In tum, PRISM is

implemented in LISP, a list-processing language widely used in artificial intelligence research. A

production-system program has two main components: a set of condition-action rules, or

productions, and a dynamic working memory. A production system operates in cycles. On every

cycle, the conditions of each production are matched against the current state of the working

memory. From the rules that match successfully, one is selected for application. When a

production is applied, its actions affect the state of the working memory, making new productions

match. This process continues until no rules are matched or until a stop command is encountered .
•

When two or more rules match, BACON prefers the rule trat matches against elements that have

been added to memory most recently. This leads the system to pursue possibilities in a depth-first

manner.

16

2.1.2.1.3 Production System of BACON - with special reference to BACON.3

As other versions of BACON, BACON.3 [I OJ has seven major sets of productions:

1. A set for gathering directly observable data;

2. A set to detect regularities in the data generated by the first and fourth sets;

3. A set that calculates the values of theoretical terms;

4. A set that checks for loops by comparing new theoretical terms to existing ones;

5. A set for noting related the.lretical terms and ignoring their differences;

6. A set to collapse clusters with identical conditions;

7. A set for discovering irrelevant variables find ignoring their values.

I. Gathering Data

The first set of 17 productions is responsible for gathering directly observable data. Of these

productions, 7 are responsible for gathering information from the user about the task to be

considered. This information consists of the names of all variables, along with suggested values for

those variables under the system's control. Once this information has been gathered, the remaining

10 productions gather data through a standard factorial design.

2. Discovering Regularities

The second set of 16 productions is responsible for noting regularities in the data collected by the

first set. These rules can temporarily interrupt the data gathering productions while pursuing their

own goals. The system's regularity detectors '.an be divided into a set of constancy detectors and a

set of trend detectors. Its basic constancy detector is a general version of the traditional inductive

inference rule. It may be paraphrased as:

If a dependent variable has the same value

across a number of descriptive clusters at level L

then create a cluster at level L+ 1 in which the variable has the value.

After this heuristic has fired, the rule for finding conditions is applied; it is nearly as simple and

17

may be stated as:

lfyou have just created a descriptive cluster at level L+]

based on a number of cluster at level L,

and an independent variable has the same value for all those lower level clusters,

then add that variable and its value as a condition on the new cluster.

BACONJ's trend detectors operate only on numerical data. Some of these notice monotonic

trends between variables, such as:

If the values of the dependent variable v] increase as the values

of the variable v2 increase in a number of descriptive clusters at level L,

then propose a monotonic increasing relation between v] and v2 at level L,

and calculate the slope of v] with respect to v2.

This heuristic and a similar one for noticing monotonic decreasing relations work in conjunction

with other trend detectors that further analyze the data.

3. Calculating Theoretical Values

Once a theoretical term has been defined at a given level, 3 additional productions calculate the

values of this term for the clusters at that level. Once these values have been calculated, they are

fairly enough for the regularity detectors and new levels of description may be created or more

complex theoretical terms may be defined.

4.'Noting.Redundant Theoretical Terms

Before calculating the values of a new theoretical term, BACON must make sure that the term is

not equivalent to an existing concept. If a redundant term's values were calculated, then

mathematically valid but empirically uninteresting relationships (e.g., xix = 1) could be detected.

Accordingly, a fourth set ')f 22 product .0ns decomposes new terms into their primitive

components. If the definition of a new variable is identical to an existing definition, the term is

rejected and other relations are considered.

•
For example, during its rediscovery of the gas law, BACON finds that the pressure, volume and

the temperature are linearly related when the number of moles is unity. The slope of this line is 0,
,
\.

18

8.32 and the intercept is 0; accordingly two new terms are defined, the slopepv.!,l and the

interceptpv,t,1' The definition 01 the first of these is PV/T, while the definition of the second is PV -

8,32T.

5, Ignoring Differences

Suppose BACON has defined two intercept concepts, as in the above example. The values of the

first, interceptpv,t,! are 0 when the number of moles is I, while the values of the second,

interceptpv,.,2 are 0 when the number of moles is 2, One would like BACON to generalize at this

point, stating that the intercept of all lines relating the pressure' volume to the temperature is 0,

regardless of the number of moles, However, because the two intercepts are different terms, the

constancy detector described above cannot be applied.

BACON's solution to this problem is to note that the definitions of the two intercepts differ only

by a consta"t coefficient, and to define an abstraction of the two which ignores this difference,

The single production responsi~le for this may be stated as:

If you have a level L slope or intercept of the variable v I

with respect to the variable v2 with a parameter pi,

and you have a second level L slope or intercept

relating these variables with a different parameter p2,

then define an abstracted slope or intercept of the v1

with respect to the v2 at level L+ 1,,

6. Collapsing Clusters

When a constancy is noted, a higher level description is created and conditions are found for it.

Later, if a constancy is observed on a different variable, a separate cluster is specified, If the two

clusters have identical conditions, they are combined into a single structure; only 3 productions are

devoted to this process, Once this has happened to a number of cluster pairs, the values of the

dependent terms can be compared and regula~.,ties may emerge.

19

For example, suppose BACONJ has run experiments with a pendulum at various locations and

found that Galileo's pendulum law, P'/L = K, holds at each location. In this equation, P is the

period of the pendulum and L is the length of the support. However, suppose that the value of K

differs at each location. Now, imagine that BACONJ drops a set of objects at each location, and

finds that the acceleration of these objects also differs according to the location. Upon combining

the information acquired at identical locations; a regularity is detected. Since the acceleration

increases as the P'/L increases, the product r.P'/L is cOJ;lsidered,where a is the acceleration; the

value of this term is constant regardless of the location.

7. Handling Irrelevant Variables

To deal with situations involving irrelevant variables, BACONJ draws on a set of 8 productions.

The most important of these notes clusters in which the level of description for a variable's value

is two more than the level at which that variable was defined; this implies that the variable most

recently varied has had no effect on the dependent values. The rule may be paraphrased as:

If a descriptive cluster at level L has just been created

to explain some clusters at level L - 1,

in which the values oj the dependent variable v1were constant,

and the level of v1 is L - 2,

and the values of the independent vr ,iable v2 differ in the level L - 1 clusters,

then stop varying the values ofv2 since they are irrelevant.

2.1.2.1.4 A Summary of BACON's Discovery

In summary, BACON gathers data in a systematic fashion, varying one term at a time and

observing its effects. If a variable has no effects, it is marked as irrelevant and its manipulation is

abandoned. If one variable does influence another, a new theoret;cal term is defined, incorporating

both the independent and the dependent variables. If the term has not been considered before, its

values are computed and examined. When these values are constant, BACON creates a new,

higher level description which it treats as data on that level. The new cluster may be combined

with others if it has identical conditions. When the values of the new term are not constant, it is

used to define a more complex term and th, process repeats. In addition, the search for useful

20

theoretical terms and constancies occur anew at each level of description. Taken together, these

heuristics make BACON a p'owerful and efficient discovery system.

2.1.2.1.5 BACON at work

The mechanisms described above enable BACON to rediscover 11 number of laws from the history

of physics. These are given in Table 2.1.

Boyle's law

Kepler's third law

Galileo's law

Ohm's law

Coulomb's law

Ideal gas law

Table 2.1: Physical laws discovered by BACON.

PV=k,

03fP' = k,

DfT' = k3

IL = - rl + V

q, q,fkd' = ""

PVfnT = k,

2.1.2.2 Automated Discovery using FAHRENHEIT

FAHRENHEIT [30] is the computer system that autonomously discovers empirical theories. Each

theory, in the form of a system of empirical equations, is discovered in interaction with a particular

setup experiment. FAHRENHEIT uses robotic equipment to make experiments. It can empirically

investigate any setup experiment with which j. has been interfaced through robotic hardware.

2.1.2.2.1 Setup experiment

FAHRENHEIT captures the interaction between a discovery system and a setup experiment.

There are two meanings of an experiment. In the first meaning, an experiment is a particular

configuration of hardware. In the second meaning, an experiment is a single cycle of interaction

. between the experimenter and the empirical system, which consists in controlling a particular

combination of values of some variables, and measuring the response of the empirical system in

terms of some variables.

21 ,
t"

Investigating an empirical system S, scientists apply manipulators such as heaters and burettes to

create the states of S which hold the desired values of the control variables. Then they use sensors

such as thermometers and pH -meters to measure responses of S in terms of variables such as

temperature and pH . Each experiment setup includes a finite, typically small, number of control

and dependent variables. To set a control variable at a desired value or to measure the actual value

of a dependent variable can be a complex task, requiring many simple actions of sensors and

manipulators. The interaction of a discoverer with a setup experiment is two-wa~, when

measurements are preceded by manipulations. But when the control actions are not possible or not

used, the interaction is one-way and the only variables are those observed.

2.1.2.2.2 Empirical space

Consider M control variables XI, x,,,., XMand N dependent variables y" y" ..., YN' Each variable

Xi, i ~ 1,2, ' .., M is limited in scope to a set of values Xi . Each variable Yi, i~ I ,2, ..,N is limited in

scope to a set of values Yi. When it does not matter whether a variable is control or measured, we

will use the notation z or z;, i ~ I, ..., M + N, and the corresponding sets of values: Z and Zi. The

values of all variables form a Cartesian product E of M +N dimensions. Each Zi is a segment of

real numbers between a minimum and a maximum value.

The values of each variable carry empirical error. In each set of values Zi, the pairs of vulues are

not distinguishable if they differ by less than Ei. The values of Ei can vary over Zi . The values of

error can be determined in the course of experimentation.

In order to make experiments, an autonomous explorer must be able to control the values of all

control variables in E and be able to measure the values of all dependent variables. Experiments

are the only way for obtaining information about E. Each experiment consists of enforcing a value

for each independent variable Xi, i ~ 1,2,'.,M, and of reading the values ofYj, j ~ 1,2, ' .., N from

the measuring instruments. The meaningful differences in values of Xi, i ~ 1, ... ,N are not smaller

than error Ei.

22

2.1.2.2.3 Regularities

We concentrate primarily on knowledge expressed by equations, but it is useful to view them in

the broader perspective of all regularities. A regularity holds in E if some tuples in E do not occur

in any experiment. They are logically possible, but physically impossible. We can learn about what

is feasible and what is not by repeated experimentation. Some outcomes occur repeatedly, while

others may never happen.

,
Those events in E, which physically occur, may form patterns, which can be described in various

languages, for instance in the form of logic statements or mathematical equations. Each ooncrete

pattern may have a limited range of applicability, outside of which other patterns apply. Therefore

the regularities take on the form:

Pattern P holds in range R

Equations are suitable for highly repeatable functional relations for numerical attributes. They

typically allow deterministic predictions, excluding all except one of logically possible values.

Equations are also useful in cxpressing qua£.-functional relationships when the actual values are

spread within a limited variance; for instance, the dependence between human age, weight and

height. FAHRENHEIT discovers knowledge in the form of equations that hold in topologically

coherent regions in a numerical space. It also seeks equations as boundary descriptions of those

regIOns.

2.1.2.2.4 Exploration of empirical space

The task of an autonomous empirical discoverer is to generate as complete a theory of E as

possible. The theory should be empirically adequate to the data, as much as possible, preferably

within empirical error. The theory may include regularities between control variables and

dependent variables or regularities between dependent variables. The theory may include boundary

conditions for each regularity, which are typically regularities on control variables, but can also

involve dependent variables.

As an example, depicted in Figure 2.1, consider a space of two independent variables x, and x,

(and one dependent variable y, not shown for simplicity). Regularities R, , R, , and R] cover the

whole range X, x-X, of x, and x, . Regularities are divided by boundaries B, , B, and B] . Figure

2.1 can be interpreted as a phase diagram, for instance, for water. Under this interpretation, Rio R"

23

and R, are state equations for ice, water and steam; the boundaries capture knowledge about the

conditions for melting/freezing and evaporation/condensation; while fl indicates the triple point of

water in which steam, water and ice are in equilibrium.

All facts obtained by experiments, and all ~.eces of the discovered knowledge are added to the

regularity-network, right after they are discovered. The network grows from the initial empty state

to the complete theory of empirical space.

Figure 2.2 and 2.3 show an instance of a reg-net and its growth. In figure 2.3, each of the three

state equations from figure 2.1 is represented by a node. The areas in which the equations hold are

described by nodes Bl , B, , and BJ , which represent boundary equations. The boundaries are

expressed in terms of independent variables Xl and x, . The regularity network that represents the
. ,

complete knowledge of the phase space in figure 2.1 has been depicted in figure2.3. Figure 2.2

illustrates an intermediate state of the discovery process, after one regularity (RJl and its

boundaries have been found.

Reg-net can include nodes of higher dimensionality, which represent equations in more than two

variables. Those nodes are produced by combination of several 2.0 nodes. Each k-dimensional

regularity node is a structure consisting of the following entries:

1. k-dimensional pattern (an equation or a dataset)

2. pointers to (k - 1) - dimensional regularity nodes (boundaries)

3. pointers to regularity nodes in k+1dimensions

or pointer to the list ojvariables yet to be considered

After constructing the regularity network, FAHRENHEIT tries to find the regularity in two

dimensions. A search for bivariate patterns be20mes an active goal when enough data have been

collected for two variables. In typical experiments, one of the variables is control ~nd one

dependent, while the data about a boundary typically include.two control variables. When data

come from observation, both variables are dependent! measured. Typically the error is linked to

dependent variables, but also possible are situations in which no error is known, or error is known

for each of the variables.

The Equation Finder (EF) module of FAHRENHEIT differs from other equation finding

mechanisms in several ways. It uses experimental error in a systematic, statistically sound manner.

24

\

It has been implemented with a particular concern towards a broad scope of equations it can detect,

modularity of design and flexibility of control. It will be discussed in detail in section 2.2.

X2

Regularity R2 .Ih
....~ Rf gularity

a;/ ~2 R,

, Regularity /
R, .

X,

Figure 2.1; Three regularities separated by boundaries.

X,
a y
lower limit on R]

Figure 2.2; The intennediate sl>te to discover some regularities and their boundaries.

X2

--------------~-- --11, ,, ," ,, '
all, ..Q ,/

,'p:i;-[jj~R30
~

' /~/, , ,, , ,, , ,, , ,
-- --'y---- --~----.. Xl
lower Imlt on R]

r-------,,,,,

(;
,,,,,,,,,

1 -

Figure 2.3; The final state of knowledge.

25

",' .

2.1.2.2.5 Boundary Search

After a pattern P has been detected, the full range in which P holds is still not known. For a given

pattern P in E, a boundary ofP is each hyper-surface such that pattern P holds on one side of the

surface, while it is not satisfied on the other side. A boundary ofP has dimensionality one less than

the range of P. For a bivariate pattern, the range is one-dimensional and the boundaries are two

points: the upper and the lower boundary.

When the search for the upper boundary for the pattern P(x,y) is selected, new data must be

collected 'and confronted with P(x,y), until the boundary is found. The search splits into two

phases. In the first phase the data collection follows a sequence: x ;+1 = x; + x_increment, where

increment is larger than the error of x, and such that.a small number of experiments suffice to

cover the range ofx. The search follows the algorithm:

x : =x-max

LOOP

x : = x + x increment

,. x-max is the largest value known to satisJY P(x,y)

GETy by experiment or from lower level pattern generatedjor x

IF P(x,y) ,. if pattern P is satisfied by data (x y)

THEN add (x y) to the DATA schema associated with regularity P(x,y)

ELSE create a SEEDS schema ojthe t:Ue DATA

add (x y) to the SEEDS schema

RETURN from LOOP

END LOOP

After the first piece of data has been found that contradicts pattern P, the linear search terminates.

It is followed by the binary search aimed at ndrrowing the gap between the known points which

satisfY the pattern and .those which do not, untilthe difference is not larger than the error for x:

26

xl : = max value which satisfies P(x,y)

x2: = min value which does not satisfY P(x,y)

LOOP UNTIL /x2-xl/<= error of x AND RETURN (x1+x2)/2 as the boundary value
. - -

x: = (x1+x2)/2

GET Y by experiment or from lower level pattern generated for x

IF P(x,y)

THEN add (x y) to the DATA schema associated with regularity P(x,y)

AND xl: ~x

ELSE add (x y) to the SEEDS schema

AND x2: ~x

END LOOP

The search returns Xo such that P(x, y) is satisfied for x '" Xo - e/2, while not satisfied by

x'" Xo+ e/2.

The search for the lower boundary follows the analogous schema.

The boundary search works in the same way for patterns of any dimension. For multi-dimensional

patterns, however, instead of single experiments, the values of parameters in the patterns are

determined as numerical values of coefficients in equations discovered for the smaller number of

dimensions. A pattern may include not only an equation in k variables, but also its boundaries, in

the form of equations in k - I variables.

2.1.2.2.6 Generalization .of empirical regularities

After a k-dimensional regularity has been detected, one of the goals is to expand the regularity to

k+1 dimensions. FAHRENHEIT uses BACON's generalization mechanism [II] and expands it

from regularities to boundaries and all types of patterns discovered in data. The search in (k+ 1)-th

dimension follows the same.steps as discovery of regularities in one dimension. As in.BACON,

role of facts, obtained at the lowest level by direct experiments, is played at (k+ 1)-th level by

parameter values for patterns discovered at k-th dimension.

Generalization to a control variable Xk starts from data collection. A sequence of values of Xk is

generated according to the schema analogous for every dimension: Xi.k = Xinit.k .+(i-I) X Ik, i =

27

" ,
"

1,2," where Ik is the increment of Xk, and Xi,i'is a default initial value, such as room temperature

or normal atmospheric pressure, All other cc'ntrol variables which have not yet been varied are

kept constant For each value ofxk , the whole k - 1 dimensional search is repeated. If successful,

it creates a k - I dimensional reg-net similar to the original network.

2.1.3 Clustering

In inductive learning, a program learns to classif'y objects based on the labelings provided by a

teacher, In clustering, no class labelings are provided. The program must discover for itself the

natural classes that exist for the objects, in addition to a method for classif'ying instances.

AUTOCLASS [I] is one program that accepts a number of training cases and hypothesizes a set of

classes. For any given case, the program provides a set of probabilities that predict into which

class(es) the case is likely to fall. In one application, AUTOCLASS found meaningful new classes

of stars from their infrared spectral data. This was an instance of true discovery by computer, since

the facts it discovered were previously unkoJown to astronomy. AUTOCLASS uses statistical

Bayesian reasoning for its operation.

2.2 Discovery of Equations

All empirical discoverers use modules that find mathematical equations in two variables from a

sequence of data. A measurement error is associated with each experimental data point, and that all

knowledge derived from experimental data carries corresponding errors. Systems like BACON,

IDS[19] and ABACUS [2] disregarded or oversimplified error analysis or error propagation. The

equation finder (EF) module of FAHRENHEIT handIes'experim~ntal error in a statistically sound

manner. The equation finder will now be discussed in the following subsections.

2.2.1 Model fitting and e,aluation

Input to equation finder consists ofN numeric data points (Xi,Yi,O'i),i = 1,2, ... ,N, where Xiare the

values of the independent variable x, Yiare the values of the dependent variable y, O'irepresents the

uncertainty of Yi (scientists call it error, for statisticians it is deviation, while the term noise is

often used in AI). Output is a list of acceptable models.

28 ,7'-,
'. ,. j"".r:;

\~

Chi-squarefitting, known also as weighted least-squares, is used to fit given numeric data points

(x;, y;, 0;) to a finite number.of models. Model is a function template y = f(x, a\, ... , a,,) (for

example, y = a,+a,x+a3x') whose parameters' values a\, ... , a" are determined by the requirement

that the value of X',

x' = try; - f{x~;a" ...,aq)J (1)

is minimal. The value of X' is the sum of squares of deviations of data points (x; , y;) from the

model, weighted by errors G; , so that measurements which are more precise carry greater weight.

At the minimum of X', its derivative with respect to the aj all vanish,

~ y; - f(xpa" ...,aq) of(xpa, ,.....,aj,,aq)
L... -----,----. I = 0,
i=l CYi Baj

(2)

for j = 1,.... ,q.

In general, lhe set (2) of equations is non-linear and not easy to solve. For a polynomial model,

however, the set (2) can be solved by algebraic or matrix operations, producing efficiently a

unique solution.

Standard deviations of parameters a\, ,aqat ,he values that minimize X' are calculated according

to the formula for error propagation:

j = 1,.... , q (3)

It is to note here that a;,j=I, ... ,q are solutions of equation (2), therefore they are functions of x;, y;,

,
Sometimes, there is a need for the removal of some parameters. From Figure 2.4 , it is obvious that

there may be three models for the plotted data: y = a,+a,x+a3x'. y = b,+b,x+b,x' + b,x3, and y=

c,+C,X+C3X' +c,/x; b, and c, are "zero-valued": Ib41« ab,'lc41 « ac, . Note that

(i) there is no visible difference between the first two models; (ii) the data does not prefer any of

the models, all have the same goodness of fit defined by (1), but y = a,+a,x+a3x' is the simplest.

Higher degree polynomials will always be created, it is important to eliminate those which are

unnecessary .

29

y

x

Figure 2.4: Sample data and 3 equations with similar goodness of fit,

For the best fit to each model,.we have to calculate the value of X' according to equation (I), and

assign the probability Q = Q(x', N - q) (N - q is the number of degrees of freedom in the data left

after the fit) that this X' value has not been reached by chance. A small value of Q means that the

discrepancy between the data (x;, y;, a;) and th model y = f(x, a" ... , ",,) is unlikely to be a chance

fluctuation. The threshold of acceptance is defined using the probability Q: all models for which

Q is smaller than some minimum value Qrn', , are rejected. The best models are those with the

largest values of Q.

30

2.2.2 The Search Space ofthe Eqt:iati('~Generator

The class of polynomial models is too narrow for many applications. To extend the scope of

detectable functions, the equation finder uses data transformations, combined with application of

polynomial model fitters to the transformed data (figure 2.5). For each pair of variables x',y', and

the error cr' of y', Equation Generation Search (left hand side of figure 2.5) creates new variables

by applying a number of transformation rules, initially to the original variables x and y,

X~X'=t,(X) (4)

(5)

and then the transformed variables. We note that each time y is used in a transformation, the

associated cr is also transformed according to (5). Each new term is simplified and then compared

against all the previous terms to ensure its uniqueness.

The default set of transformations includes logarithm, exponent, inverse, square root,

multiplication, and division. Adding new transformation rules is simple. Only the transformation,
formula must be provided; the formula for error transformation is automatically developed by the

module that calculates analytical derivatives. For example, the inverse and multiplication

transformations are defined by

name:

parameters:

formula:

application condition:

INVERSE

(p)

(/Ip)

p;<O

31

PROQUCT

(p q)

(* p q)

• . ..-

y

, 1
x .-

transfonn
~simPlifYI r remove repetitions

~
generat~equation search

model fitters
constant
linear (e.g. y = a + bx)

•

•

generate
variable
search

+- transfonn
+- simplifY
+- remove repetitions

•
q'h degree polynomial

y

generate
variable
search

•••

logy l/y ••• linear (e.g.
y~a+blogx)
quadratic

•
•.,
q'h degree polynomial

Figure 2.5: The search space: generation of variables, generation of equations,
and model fitting.

32

2.2.2.1 Equation Generation Search

For each possible combination of variables x' and y', and for each polynomial up to the maximum

user-specified degree, the operator Generate New Equations proposes a polynomial equation y' =

f(x', a" ... , aq), which is then solved for y, if possible. If this seems a new equation, the Model

Fitter finds the best values for the parameters a" ... , aq, and then evaluates the model.

2.2.2.2 The Search Driver

The search driver coordinates the search in the spaces of variables and equations (Figure 2.5). The

system applies the Generate New Variable operator to extend the space of .variables, and the'

Generate New Equation operator to generate, fit, and evaluate equations.

The search starts from the two original variables: x and y (upper left part of Figure 2.5). The

application of the Generate New Equation or ,rator leads to a constant model y =a, linear model y

~ a + bx, and other polynomials up to the predefined maximum polynomial degree (upper right

part of Figure 2.5). If none of the models passes the evaluation, the Generate New Variable

operator is applied repeatedly (lower left part of Figure 2.5).

If we consider only three transformations: logarithm, inverse, and multiplication, then the new

variables would be:

logx,
I

x
xy, logy,

1

Y

Now, using the original and new variables, the Generate New Equation search applies to each

combination of x-type and y- type variables would form a large number of models (lower left part

of Figure 2.5). For example, if maximum polynomial degree is I, then the following new

equations will be generated:

b hx b logy = a + y = ae y = a + x
x

axh I a by y y Y -+
X 2a + bx a + b log x X

h b logx - a + x
y y ae x y =

a + bx x

33

Still none of the models is acceptable, the Generate New Variable search applies again. This

operator, for the same three transformations, would generate the following new variables:

log(logx) xlogx
logx

xylogx ylogx
Y

logx x x

log(logy) 1 ylogy logy xylogy xlogy x
--
logy y y

x'y xy' log(xy) 1 logxx logy logx logy
xy Y x

It is noticeable that the number of variables gnws rapidly.

Figure 2.6 demonstrates the creation of new variables and equations from another perspective. It

depicts the backtrace of actions needed to generate the equation

y

This equation can be generated at depth

variables x and yare at depth zero).

e(a+bx'+cx4)lx

two in the Generate New Variables search (the original

The search terminates when an acceptable model is found or at the predefined maximum search

depth.

2.2.2.3 User control over search

The user can change the maximum depth of both searches, that is, the maximum polynomial.

degree and the maximum transformation search depth. The user can also specifY which

transformation rules are to be considered. Another parameter controls the minimum search depth.

It can force the equation finding module to continue the search even if an acceptable model was

found. This option is particularly useful when the user is not satisfied with any of the models

already found and wants to deepen the search.

34

x, l/x ,Iogx, ... y, l/y,logy, ... ,xy,x1y,y/x

x, logy
Select lransfonnations

Transfonn equation

Simplify equation

Solve for y
New equation?

transform terms

simplify tenn

tenn contains y ?

new term ?

tenn defined for all data ?

select polynomial

y' = a + bx' + CX,l

xlogy ~ a + bx' + ex'

[y e (0 + bx 2 + ex ' l=oJ

(x, logy) -> x . logy

y>O?

0"_.cr
0'

Figure 2.6: Generation of new variables and ~quations - example for
the equation, y = e(a+hxl+cx4)1 x.

3S

2.3 ABACUS: Integrating Quantitative and Qualitative Discovery

Most research on inductive learning has been concerned with qualitative learning that induces

conceptual, logic-style descriptions from some given facts. In contrast, quantitative learning deals

with discovering numerical laws that characterizes empirical laws. AB'ACUS[2] attempts to

integrate both types of leaming by comt ming newly developed heuristics for formulating

equations with the previously developed concept learners.

2.3.1 The ABACUS Approach to Quantitative Discovery

There are many strategies to derive an equation or set of equations summarizing the behaviour of
•

some physical process. In choosing a particular strategy, one must weigh the gains from the use of

that strategy against the losses. The approach taken in ABACUS has been to satisfy as many

criteria from our list for quantitative discovery as possible, and to reduce the 'user supplied

information to a minimum.

The ABACUS method of quantitative discovery consists of two steps. First, the equation discovery

module analyzes the original empirical data and attempts to derive equations summarizing the

observed behaviour. If more than one equatio,l is required to describe the observations, the data are

divided into disjoint subsets, and equations are determined for each subset. The second step passes

the resulting subsets to the precondition generation module. This module derives a logic-style

description for each subset. Such a description is used as a precondition for each equation. The

result is a series of if-then rules in which the 'if part' states the precondition for applying the rule in

the 'then part'.

The equation learning module searches for the best equation to describe the given data. If a single

equation holds for all events, the learning task is complete. Sometimes several classes of events

can be described by one expression that evaluates to different values. When this occurs, a number

of classes are formed, one for each value of the expression. The following example is used to

illustrate the general algorithm used in ABACUS.

o
36

2.3.2 Discovering Bivariate Equations in ABACUS,

ABACUS depicts quantitative discovery as a search through the space of possible equations. This

search process mathematically combines variables to form new terms. Before describing the search

algorithm, we discuss how the nodes are formed, the constraints to the search and how goal is

fixed.

Suppose the system is given the data depicted in Figure 2.7(a). Observed values for x and yare

read in and the equation discovery module is invoked. As there are only two variables, the space of

possible equations is small. The best equaton found, which describes 70% of data is x' = y

(Equation formation technique is illustrated in Section 2.3.2). Events covered by the equation are

put in a class associated with this equation.

y

(a) A

25

20

15

10

5

5 10 15 20 25 30

(b) Rule A: IF I x ~ 0.10, •••,5.101

THEN x2 =y,

RuleB: IF I x = 5.10, ,30.001

THEN x + Y= 30.00

Figure 2.7: ABACUS analysis of lS"aphexample.

37

I
The equation discovery module is invoked agam to analyze the remaining events. This time,

x + y ~ 30 is found to hold for all events and a class set is created for these events. Because all

observations are accounted for, the equation discovery step is completed and the precondition,
module is called. This module searches for properties of the data which distinguish between the

two classes. The results are represented in Figure 2.7 (b). They state that when x is below 5, the

equation is y = x', and when x is between 5 and 30, the equation x + y = 30 holds.

2.3.2.1 Variable Dependency and Proportionality Graph

At the heart of quantitative discovery is the concept that one variable's values may be dependent in

some way upon the values of another variable. BACON looked for monotonic relationships in the

data to create new hypotheses; i.e., the relationship between two constants are held taking all other

variables to be constant. There are two problems with such a strict definition. First, for a given set

of data, it is not always possible to observe changing values of x and y while holding all other

variables constant. Second, we must allow for inaccuracies and errors in experimental data. As a

result, we are interested in the degree with which x is proportional to y rather than detecting if x,
exhibits a monotonic relationship to y for all of the data. With this in mind, we say that x is

qualitatively proportional to y if, for a given percentage of the events (user specifiable), the values

of x rise when the values ofy rise while certain specified variables are held constant. Similarly, x

and yare inversely qualitatively proportional if x decreases as y rises for a majority of the events

under the same conditions. There are then four assertions possible as the result of a qualitative

proportionality measurement:

Prop+ (x, y)

Prop' (x, y)

Prop' (x, y)

Nore! (x,y)

- x and yare qualitatively proportional to a user-specifiable degree

- x and yare inversely qualitatively proportional to a user-specifiable

degree

- insufficient data to determine if x and yare related

- x and yare not related

To make a qualitative proportionality assertion about variables x and y, ABACUS looks for,
general trends in the data. Since it is not always possible to hold all other variables constant, an

exclusion set is defined to be the set of attributes which do not need to be held constant and is

constructed by the program and the user. The user must recognize which variables simply cannot

38 ~-
. '

or should not be held constant. Similarly, when measuring the proportionality between variables x

and y, the program recognizes that, if x is a program generated variable composed of user defined

variables v and w, then v and w should be removed from the set of variables which must be held

constant. The proportionality criterion has a margin of tolerance, allowing a moderate degree of

noise and a limited amount of conflicting proportionalities. Conflicting proportionalities occur

when some of the data indicates Prop+ (x, y) and some indicates Prop-(x, y).
I

From these proportionality assertions we may construct an undirected graph, called a

proportionality graph. The nodes of the graph will represent variables, and the edges will indicate

the presence of a qualitative proportionality relation between their incident vertices (Figure 2.8).

We will construct edges for Prop+ (x, y) and Prop- (x, y) relationships, and Prop' (x,y) will be

treated as Norel. In Figure 2.8, a is proportional (+ or -) to b, but not to c .

Figure 2.8: Proportionality graph

In the search algorithm, we will be concerned with cycles in these graphs. Cycles will refer to

maximal cycles in a graph, i.e., cycles that are not subset of some other cycle. In figure 2.8, there is

only one maximal cycle { abe f }.

39
(::

2.3.2.2 Equation Formation - A Search For Constancy

The existence for qualitative proportionalities between variables suggests the possibility of causal

or other relationships between them. For example, if we know that the value of x always goes

down when the value of y goes up, then the relation xy = constant might be binding these

variables. This may be generalized to a rule:

If Prop' (x, y) then create a variable equal to xy

Such a variable is more likely to take on a constant value than x or y independently. Expanding on

this concept, the following heuristics are formulated:

If Prop + (x, y) then

Generate' a vadable equal to a quotient relation between x and y

Generate a var:able equal to difference relations between x and y

If Prop' (x, y) then

Generate a variable equal to a product relation between x and y

Generate a variable equal to sum relations between x and y

With these heuristics in mind, search in quantitative discovery involves the continual combination

of variables which are qualitatively proportional to form new variables in the hope of finding a

variable which takes on a constant value.

2.3.2.3 Domain - independent Constraints

Several domain-independent constraints are used to limit the large search space associated with

quantitative learning. These arf divided into three categories:

• Units compatibility rule

• Redundancy detection

• Tautology detection

For a detailed discussion of these constraints, see [2].

,40

2.3.2.4 Recognizing the Goal

Because a valid equation may describe only a subset of events, recognizing when a good equation

has been found and when to terminate search is not as easy as it would be otherwise. There are

three types of goal nodes recognized by the system. The first type corresponds to a term that

describes all events, i.e., one that evaluates to the same value for every event. Such a goal is easily

recognized and search terminates when one is discovered.

The second type of goal node is based on the notion of a nominal subgroup of events and also

causes immediate cessation of the search process. A nominal subgroup is defined to be a set of

events that are equal on all nominal attributes. If a term is found which evaluates to a single value

for a nominal subgroup, search terminates on the assumption that an equation of significance has

been found.

The third type of goal node does not halt the search algorithm. As each new variable is created, its

degree of constancy is measured, and the variable having the largest degree of constancy is stored.

The degree of constancy is defined to be the percentage of the data for which the function

evaluates to a single value within a percentage range of uncertainty modifiable by the user. If

search exceeds the allowed limit, the term having the highest degree of constancy is returned. If its

constancy is greater than a user modifiable threshold, the resulting equation is reported. Otherwise,

the program states that no formula could be found.

2.3.2.5 Search

ABACUS discovers equations by searching through the space of possible terms which relate the

user supplied variables. ABACUS uses a combination of two search algorithms. The first

algorithm, proportionality graph search, uses the graphical nature of the proportionality assertions

to guide the search path and discriminate against irrelevant variables. The second algorithm,

suspension search, enables the program to reduce the number of terms being examined by

removing those that do not look promising until all other possibilities have been exhausted. We

will examine the search by two examples: one is the ideal gas law, as discovered by BACON, and

another is the law of conservati~n of momentum:

PV =8.32
NT

41

(i)

(ii)

2.3.2.5.1 Proportionality graph search

The proportionality graph search technique directs its search to the interrelations of variables

forming a cycle and avoids variables that are not contained in a cycle. The algorithm consists of

the repeated application of the following steps:

1. Form a proportionality graph for the current set of variables, both those

provided by the user and those generated by the program. Exclude all edges

which occurred in previously generated graphs .

. 2. Extract the cycles (maximal cycles) and represent each cycle by the set of

nodes it contains.

3. Search each cycle in a depth-first manner for a depth given by the cardinality

of the set.

The process repeats until a suitable relation is found up to a maximum of K times. The default

search depth, K, is 4, since powers greater than 4 are seldom seen in the natural.sciences.

For each graph, the cycle sets are sorted in decreasing order under the assumption that the largest

cycles will prove to be the most promising.

(a)

(b) Cycle Sets:

{(P V) (P N) (P T) (V N) (V T) (N T)}

{(Y V)}

{(N M)}

,

Figure 2.9: Proportionality graph search for the ideal gas law (PV/NT = 8.32).

42

~1

.,. ,..
\ ~ ,-

"'-I . r

A cycle (e.g. {V, N, P, T} lis searched in a depth-first manner by first removing two nodes that are

proportional and combining th~m according to the equation formation heuristics to form new terms

(e.g., VIN). The remaining nodes (e.g., {P,T}) are then tested one at a time against these terms to
•

form new terms. For the set {P, T} and the current node YIN, P would be tested against YIN to

possibly c'reate new terms such as PYIN. If backtracking occurred, then T would be tested against

VIN. This process repeats until all combinations have been exhausted. Because nodes are removed

from the cycle set as search progresses, powers of variables are not possible after the first round of

search.

As an example of this search technique, a sample proportionality graph is shown in Figure 2.9(a)

for the ideal gas law. A total of six attributes were initially provided by the user. The irrelevant

variable mass, M, is independent of pressure, volume and temperature, but is proportional to the

number of moles of gas present. A similar situation exists for variable Y.

The three cycles of the graph are given in Figure 2.9(b), where solitary edges are simply treated as

a cycle having only one edge. Figure 2.10 shows the search tree resulting from the above strategy

applied to the example.

Figure 2.10: Proportionality graph search path for ideal gas law example.

43
_,J-

2.3.2.5.2 Suspension search

To avoid the problem caused by repeated application of proportionality graph search, ABACUS

uses only one iteration of the algorithm. Ifno law is found, then the program employs a technique

called suspension search. This algorithm is able to remove nodes from consideration, yet. allows

their return should they be needed. Suspension search begins by normal breadth- first search. But

whenever each level is created, all nodes on that level are divided into active nodes and suspended

nodes. Suspended nodes are those whose constancy is less than a low threshold.

Search then proceeds on to the next level, where only the active nodes of previous levels are

visible to the search algorithm. Since suspended nodes are ignored, fewer nodes are involved in the

search at anyone time. Therefore, search may be allowed to explore deeper than it could

otherwise. A second search depth limit is defined, called the filler depth, which cites a limit

shallower than absolute search depth. Search may proceed beyond the filler depth, but only active

nodes are allowed. Suspended nodes beyond the limit are permanently discarded.

The suspension search may be summarized a8'

FUNCTION Suspension(active _ancestor _nodes, active _nodes, suspended _nodes, environment)

• If the search depth limit has been reached

then return true if the best constancy found is greater than threshold else return false

• If new active or suspended nodes can be created from the current list of active nodes

then return true if one of these has a constancy of 100%

or return true if a'call to Suspension using the new nodes returns true

• If the filler depth has been reached

then save the environment and return false

• If new active or suspended nodes are created from the current list of suspended nodes

then return true if one of these has a consistency of 100%

otherwise save the environment

and return true if a call to Suspension using the new nodes returns true

• Save the environment and return false

44

A partial suspension search is given in Figure 2.1 J for the example involving the discovery of the

law of conservation of momentum.

suspended

node

rn'\v'\+m'Zv'2

__________________ c filler depth

Figure 2.1 I: Partial suspension search tree for conservation of momentum

Combining the proportionality graph search algorithm with the suspension search algorithm favors

quick discovery of laws which"are composed solely of multiplication and division while still being

adept at discovering more complicated equations in a reasonable amount of time. As cycles in the

first pass can never be larger than the number of given attributes, the depth- first search of the first

phase is not deep for most problems, thus cre ,ting variables which would normally be created for

more complicated examples anyway.

45

Chapter 3

Development of the system

3.1 Equations and Situations

To understand the decomposition of quanti'ltive regularities into simple expressions and their

recombination into models, one must first understand the relationship between equations and

physical situations. This will be described now.

3.1.1 Correspondence between Situations and Equations

Let us first examine some examples in which we compare physical situations and the

corresponding equations. Consider a process in which two samples of water at different initial

temperatures are combined and eventually reach thermal equilibrium (Figure 1.2a). The

experimental space is spanned by four independent variables under the experimenter's control: two

initial temperatures, t, and t" and two masses m, and m,. The outcome is the final temperature t,.

Black's equation for this process can be discovered by a BACON-like system, usually in the form:

t
f

m/,+m,t, (la)
m, +m,

Now we replace the water in the first sample by a small piece of ice at the melting iemperature t,.

The ice melts entirely in the water from the second sample(Figure 1.2b). This process is described

by the equation:

mIt, + m,t, - mlc,t f -- ---..---
ml +m,

(lb)

where c, is the latent heat of the melting ice. Still another experiment, with a larger piece of ice

that melts partially (Figure 1.2 c), leads to the pair of equations

(Ic)

where mlf is the final mass of ice. Many similar experiments are possible, in which ice is dropped

into a glass of scotch, a piece of potassium is dropped into water, water is poured over dry ice, and

so forth. Each time the outcome is described by a different equation.

Other phenomena can also be varied in uncountable ways, but the same principle of composability

applies. Consider a body sliding down an inclined plane, as shown in figure l.3a. If the initial

velocity is zero and the difference in height is h, then the equation that describes a class of such

experiments is

v'=c,h (2a)
where v is the final velocity and c, is a constant. Now suppose that another body is on the

downward path but this time it rolls without slippage, as in figure l.3b. The equation here will

differ, assuming the form

v' = c,h (2b)

in which c, is another constant, c,= 5c,/7. He'~ it is less clear what new expressions are added to

equation 2a, but when we rewrite 2a and 2b as

mgh=mv'/2
and

mgh=mv' 12+mv' 15

(2a')

(2b')

we can attribute the expression mgh to the change of altitude, mv'/2 to the process of sliding, and,

mv'I5 to the process of rolling.

The correspondence of physical components and equation parts applies not only to processes but

also to state descriptions, as in the following example of electric circuits. Consider the simple

circuit shown in figure 1Aa, w:tich is described by the equation

47

E=IR + Ir (3a)

where E is the electromotive power of the battery, r is the internal resistance of the battery, and R

characterizes the resistor. By adding more elements to the circuit, as depicted in figure lAb, the

equation becomes

E+E, =IR+lr+IR, +Ir, (3b)

where additional expressions E, and 1r, correspond to an additional battery, and IR, corresponds to

the added resistor.

We have seen m these simple examples how sc,ence deals with the complexity of physical

situations by combining analysis with synthesis. Scientists decompose laws into simple

expressions that correspond to and are interpreted by the generic physical components of the

situation. These expressions are elementary :nits of recombination, that is, building blocks from

which complexes of equations that describe complex physical situations are recombined into

models. This process allows the scientist to transfer knowledge extracted by analyzing simple

situations to synthesize descriptions of complex situations. In most real-world situations, one must

apply a combination of basic laws to generate an adequate description. However, the number of

elementary components is small as compared with the total set of physical situations, and a small

number of elementary expressions lets one build a limitless number of models.

3.2 The Developed System

Our system decomposes equations like the law of equation (la) into simpler expressions. The

.system's input consists of an equation that d, Jcribes a particular physical process P, along with a

description of P in which the measured variables are attached to the appropriate elements in P. The

system transforms equations until they can be interpreted by fitting a given equation and the

corresponding process description. Under a satisfactory fit, all expressions that occur in the final

form of the equation are assigned to the corresponding elements of the process description.

48

3.2.1 Representing Processes and Equations

The thermal process depicted in figure 1.2a can be represented in a process diagram (Figure 3.1) as

a combination of the processes of heating and cooling, one process for each sample, coupled by

energy transfer between both processes. The process diagram in figure3.1 represents a particular

understanding of the actual process. Each elementary process is associated with a particular change

in a particular object. ,

warmmg

internal

energy

transfer

cooling

Figure 3.1: Process diagram for figure 1.2a

3.2.2 Input and Output

Figure 3.2 reviews the system's input and basic algorithm. In preparation for the main search

procedure, the system represents the process diagram by a process decomposition tree like those in

figures 3.3 and 3.4, and it represents the equation by a parse tree like the one in figure 3.5. A

process decomposition tree offers a simplified representation of the process diagram sufficient to

guide equation transformation.

One process diagram may be represented by several process decomposition trees, each providing a

different perspective on the same process. For instance, figures 3.3 and 3.4 depict two different

, trees for the process diagram of 3.2. In figure 3.3, the process is decomposed into the initial and

final states, which in turn decompose into elementary states. In figure 3.4, the same process is

decomposed into two elementary subprocesses, which in turn decompose into their initial and final

states. When several process decomposition crees are possible, we can operate with any of them,

resulting in different possible equation decompositions.

49

decomposition

Process diagram - obtained by observation and measurement

1
Process decomposition tree

t
~

matching

Equation parse tree transformed until it matches

the process decomposition tree

parsmg

Equation - obtained from a BACON-like system

Figure 3.2 : Overview of the system's input (bold) and processing (italics).

50

'."r

process

initial state final state

initial state 1 initial state2 final state 1 final state2

Figure 3.3: Process decomposition tree Ifor the process diagram in figure 3.1

process

process1Arocess2

/\
initial state I initial state2 final state I final state2

Figure 3.4: Process decomposition tree2 for the process in figure 3.1

51

•

tf

+

I

* *
m,

/\
ml tl m2 t2

Figure 3.5: Equation parse tree for the equation tf= (m1t1+m2t2)/(m1+m2).

The fitting procedure produces a mapping between the subtrees in the process decomposition tree

and subtrees (expressions) in the equation parse tree. Before the search for a fit, the system is told

what quantities represent measurements in each state. For instance, it is told that t] and m] describe

the initial state 1, but it does not know that ,heir product m,t] is a meaningful state description.

Many expressions that are built from m] and t] are potential candidates, such as t], m], t]/m], and

tim,'. As a result of the fitting procedure, the system is able to identify the most appropriate

expression, namely mit], without explicit search through the space of candidate expressions. As a

result of the matching procedure, the system also infers that, for the internal nodes "initial state"

and "final state" in figure 3.3, the concatenation of complex thermal states is reflected by addition

of the quantities that describe elementary states, giving the expression mit] + m,t,. Using the tree

of figure 3.4 leads the system to determine expresssions corresponding to the processes of heating

and cooling: mit, - m,t, and m,t, - m,t,.

52

3.2.3 Equation Transformation Scare}

To transfonn the input equation to an interpretable fonn, the equation transfonnation search

method plays the principal role. It changes the equation to a fonn that matches the process

decomposition tree. We use a variety of transfonnation grammar rules (operators) to modify the

parse tree. Most of these are typical operations on algebraic expressions, which are represented in

if-then fonn. Figure 3.6 illustrates two such rules that can be recognized as standard algebraic

transfonnations,

(a + b)1 c -'> ale + blc and a = blc -'> ac = b.

If the current equation or one of its parts matches the IF part of a transformation rule, it can be

transfomled into the structure shown in the THEN part.

Equation transfonnation search proceeds by applying transfonnation rules, which act as search

operators, until it establishes a complete match with the process decomposition tree or when no

improvement can be made to a partial m ,tch. It is implemented as depth-first search with

backtracking, guided by the degree of match. Two other search methods work as subroutines. The

first is the Match method, which tries to detennine the degree of match between a given fonn of

the equation and the process decomposition tree.

/

+

~

I.

/~ /\
~-----==-c

//~
/\

ba

a c b c

Figure 3.6: Examples oftransfonnation grammar rules.

53

The second submethod, Operator Selection, u,es the guidance provided by a partial match to select

operators that should be applied by Transform. Operators are heuristically selected to reduce the

mismatch between the equation and the process decomposition tree.

3.2.4 Tree Matching Search

The matching procedure uses the equation parse tree as its search tree, implementing a depth-first

traversal of that tree with backpropagation of results. Matching starts from the leaves of the

equation parse tree, where either single variables or constants are stored. A variable matches all the

leaves in the process decomposition tree that are described by that variable. For instance, m,

matches initial state I and final state I, because m, describes each of them, but m, matches neither

initial state2 nor final state2, because m, does not belong to the description or these states. As a

result, matching at the leaf m, returns the list of two elements, including both initial state 1 and

final state I .

After all children of a particular node are considered, the results are backpropagated to the parent

node. Internal nodes of the equation parse tree represent arithmetic operations. Depending on the

arithmetic operation, one of two different list operations is applied to the lists returned from the

children of a. given internal node to produce the result at that node. For addition, subtraction and

equality, the union is applied to the results obtained for children, whereas for multiplication and

division, it is their intersection. Backpropagation stops and returns failure of the match at any node

at which an empty set has been reached. When the backpropagation reaches the root of the

equation, a list of physical states has been attached to each node of the equation tree that are

possible candidates for the interpretation of that node.

54

If

step 1

/~
X /

/\
===:>

process

final state 1

y u

u=zx

final state2

b

y z

Figure 3.7. Results ofl)latching: (a) partial match; (b) mismatch reduction schema for (a).

55

The next cycle of backpropagation extends the partial matches as far as possible. If the root is

reached, a complete match has been detected; otherwise the backpropagation stops at a particular

node when no match holds for the subtree starting at this node. If the search cannot find a total

match, it uses a consistent partial match to guide operator selection for the next step of equation

transformation.

3.2.5 Operator Selection

A partial match between an equation and a process decomposition tree helps us select an

appropriate operator for continued equation transformation. As a result of matching the equation in

figure in 3.5 and the tree in figure 3.3, the system detects a partial match between the initial state

and the expression m,t, + m,t, , as illustrated in figure 3.7(i). Other elements of the equation in

figure 3.5 do not match the tree in figure 3.3. This partial match lets the system schematically

characterize the desired transformation of the equation presented in figure 3.7(ii). This

transformation schema, called a mismatch reduction schema, is input to the search method for

selecting the relevant operator transformations. This method tries to identifY the rules in the

transformational grammar, such as those depicted in figure3.6, that satisfY the mismatch reduction

schema.

3.3 The system with two case studies

The system developed is coded in Turbo Prolog with a large number of predicates. But if we look

into the depth of it, we will find that it consists of a few subsections or modules. The modules are

for process tree input, parse tree input, to find the result at the internal parse nodes, to input

matches at the leaves i.e., the correspondence of the parse leaves to the nodes of the process

decomposition tree, to find the matches at the internal parse nodes, accumulation of the result and

process nodes at these internal parse nodes in a declarable form and then if not declarabl0, use of

some operators in the state- space search technique to reach a goal. The operators, as has already

been mentioned are equation transformation rules from algebra. In our. system, we have

incorporated nine most useful transformation rules. These are:

1. a = blc ,.....b ~ ac

56

2. b = ac --+ a = b/c

3. (a, + a, + a3+ + aN) I c = a,/c + a,/c + + aN/c

5. a=b --+ b=a

6. a + E --+ a, if E« a

7. Transposition rule: a + b = c + d --+ a - c = d - b, etc.

8. ab Icd = a*(b/cd)

9. ab/cd = (ab/c)/d

Many other transfonnation rules can be applied. But the above ones cover a vast majority of

decompositions.

Process decomposition tree and equation parse tree cannot easily be handled in Prolog, because,
tree representation cannot be done easily. We can represent trees through lists, but although Prolog

support list structure, we have to define the length of how far we will move using list of lists. So

we had rather represented trees through the dynamic database structure of Turbo Prolog. We used

three databases for this purpose. These are:

Process_tree _children _no(N,R,S,L,M)

Process tree child no(N,R,S,X,I)- - -

Process_leaf(N,R,S)

We use similar dynamic databases for the parse tree. Here N refers to the level of a node of a tree,

R represents the string or name of that node, S is the number of being child of its parent node, L is

the list of children of that node and X is the l-th child. As with this process tree predicates or

database predicates, there are similar parse tree predicates.

57

After inputting the process decomposition tree and parse tree of equations, we find the same

branch nodes of the process tree and have the results at the internal nodes of the parse tree. Then

the process tree nodes that matches the leaves of the parse tree are inputted. Then process tree'

nodes matched at internal nodes of the parse tree are obtained. As has already been stated, for an

additive or subtractive node, the result will be the union of the sets of matching process nodes at

the child nodes of that particular node. For division and multiplication, it will be the intersection.

After having the matches at all nodes of parse tree, we seek for the result. If any node matches a

single process node or nodes of the same branch, then we conclude that the equation at that root

process node is the parse result at the parse node concerned. If no such node or set of nodes can be

obtained, then search through operators is done using depth-first search strategy. Using an

operator, the whole equation parse tree is modified and the dynamic database is also modified.

Then again we search for a solution. If solut .un at all nodes of the process tree is found, then we

terminate the search.

Now let us illustrate the method of decomposition through two case studies.

3.3.1 Case I: Water temperature problem

Now let us illustrate the system using the water temperature case mentioned earlier. We will use

the process decomposition tree having a process P comprised of two subprocesses, is (initial state)

and fs (final state). We will input the parse tree of the equation, tf=. (mltl +.m2t2)/(ml + m2).

Matching at the leaves will then start by inputting the following correspondences:

I. tf --> fs

2. ml-->is,fs

3. tl --> is

4. m2 --> is, fs

5. t2 --> is

After matching at the leaves, matching at the internal nodes of the parse tree is done. At this stage,

we get 'is' at 'rilltl', 'is' at m2t2, 'is' at 'mltl+m2t2', 'is' at '(mltl+m2t2)/(ml+m2)',but 'is' and

'fs' at 'm I+m2'. Since these two are not of same branch, operator search occurs.

58

The first operator now matches and the equation reduces to:

mltl+m2t2 =tf(m1+m2)

Now again we do not get a single process node at 'm1+m2'. So, again we make operator search.

Now operator 3 matches and the equation again reduces to:

mltl + m2t2 =mltf+m2tf

Now all the parse tree nodes match single process nodes. So the goal succeeds and we get the

decomposed equations:

'is': mlt1+m2t2, mltl, m2t2

'fs': mltf+m2tf, mltf, m2tf

Then a second level search attempts to drop first any of the expressions m It I, m2t2, m Itf, m2tf

using the operator a + E -> a, if E « a. But since no such conclusions can be made, the operator

fails.

Now the transposition rule tries to succeed, and operator 6 makes transformations like:

mltl - mltf= m2tf - m2t2

But this transformation cannot yield a succe >sful decomposition, the rule fails, and the previous

goal that has been succeeded is the output of the system.

59

,0
C" ""'-\ :~~.')
, v\ "

3.3.2 CaseII: Electrical circuit problem

We know that if only one resistor Rl is in series with a battery having voltage El with current I

flowing, then from Ohm's law, we get El = IRI. But if EI and E2 are in additive series with two

resistances RI and R2, then the equation obtained from a BACON-like system for the circuit will

be:

EI + E2 = IR I + 1R2

Here we do not get the equation for the elementary interaction, i.e., Ohm's law.

So we want to decompose the equation.

We will designate the process P as being composed of two subprocesses, Pl for battery EI and

resistance RI and P2 for battery E2 and resistor R2.

Match at the leaves will yield:

1. El -> PI

2. E2 -> P2

3. I -> PI, P2

4. Rl -> Pl

5. R2 -> P2

Now we will have both PI and P2 for 'EI + E2', which are not of same branch. So operator search

starts. Since there are '+' sign, the operator search will seek either of its descendents is much

smaller than the other. Since no such conclusion can be made, transposition rule is tried, and the

equation reduces to:

EI-IRI =E2-IR2

Here the left side matches with P I and the right side with P2.

Both ofthese matches are nothing but reflections of Ohm's law for PI and P2 respectively.

Thus for a wide variety of problems the developed system successfully decomposes equations

from a BACON-like system into the basic laws.

60

Chapter 4

Discussion and Conclusion

4.1 Evaluation of the system

The system developed successfully decomposes composite equations. Here we will illustrate two

examples of the decomposition of composite equations derived from a BACON-like system.

4.1.1 Exampl~1

Let us first take the case of ideal gas law. We know that the system BACON can successfully

discover this law [2]. But there may be a number of variations in the physical situations to describe

the law. In one arrangement, the temperature of the gas may remain constant. The pressure may be

constant in another experiment. So the process decomposition tree may be like figure I.

Now the equation parse tree will be as follows:

/\
k

PV/nT~ k =>

* *
/\/\
P V n T

Figure 4.1: Parse tree for ideal gas law

The lists of process nodes corresponding to P, V, n, T and k are {p,}, {pI, P,},{PI, p,}, {p,}and

{pI, p,} respectively, where PI and p, refers to processl and process2 respectively.

We get { PI land {P2 } respectively at the two nodes designated by'.', because these can be

obtained by the intersection of the sets or lists for their children. At the node designated by'/" we

will get a null set of process tree nodes. So operator search transforms the equation as: PV = KnT.

And we get PV for process I, where temperature is constant.

This is an indication ofBoyle'c. law.

A second level of search transforms the equation into the form

P=KnTN

At the node for TN, we will get 'process 2',where pressure is held constant. This is a complete

indication of Charles' law.

Thus Boyle's law and Charles' law can be deduced from the ideal gas law.

4.1.2 Example 2

Consider the case of Black's experiment. Let us take two beakers containing mland m, amount of

water at temperatures tl and t, respectively. The water in the two beakers are mixed and waited a

bit until, at equilibrium, the final temperature be tf. Now the prqcess decompOsition tree for this

experiment will be:

process

1-
initial state final slate

initial stateI, initial state2, final statel, final state2,

m,lr

Figure 4.2: Process decomposition tree for Black's experiment

62

tf

The corresponding equation parse tree will be:

~

A
A0m,
• •
AA

t,

Figure 4.3: Parse tree for Black's law

Now {initial state} successfully matches up to (ml tl + m,t,) . But the match does not reach the

root. To reach the root, we should use the operator: a = blc -. ac = b. Then, obviously, {final

state} will match (ml + m,) tf, yielding the basic laws of thermal equilibrium.

4. 2 Further Development

The present program incorporates a large number of mathematical operators to guide the search.

Using the operator selection, we can have a huge database of relations. Still there are situations

where extensions to the present system can be made. These are outlined here.

There may be discrepancies in the interpretation of processes and as such the process

decomposition tree may be faulty. A section of subprocesses in the experiment may be overlooked

or an extraneous portion of an experiment that has no significant impact can be included in the

process interpretation. So the system may not successfully deduce the basic laws. In these cases, a

system can be developed which will yield good results in such situations.

63

In developing the system, we use depth-first search with backtracking. Heuristic searches can be,
incorporated to reach the goal at a minimal cost. Heuristic algorithms like A', AO' or steepest-

ascent hill-climbing can be used to guide the search to obtain an optimal solution.

We can take advantage of the finite differences to step forward to the components of differential

equations. Any expression of the form k (Xl - X,), where Xl and x, are two states relating to k, can

be replaced by a finite difference k tJ.x. When we take into account the case of infinitesimal

differences, it becomes kdx. When such infinitesimal differences are encountered, differential

equations may arise.

We have represented the process decomposition tree and the equation parse tree through the

dynamic database structure of Turbo Prolog. Use of this database and deletion and at the same

time update of the same during equation transformation require a large memory space, especially

large stack area Often it so occurs that stack overflows and the program can not.run. So computers

having high memory capacity happen to be required. This could be avoided, if some other

representation except the dynamic database could be implemented in the system.

Finally the decomposition process can be use'. in scientific model-building process.

4. 3 Conclusion

The number of AI discovery systems has been growing considerably since the last decade. These

systems cover many areas of human discovery activity and are becoming useful as everyday tools

for scientists, providing labor-intensive, systematic and unbiased help. Two discovery processes

BACON and FAHRENHEIT play the most vital role in empirical discovery of scientific

equations. Equations derived from such systems are used to deduce the basic laws in th~ present

program.

Equation transformations and their interpretations form the main search space ..There is a system

called GALILEO [29], which also decompose composite equations to obtain the elementary

interactions, but we implement the system differently and add some useful operators to guide the

search. We use a database model for the implementation of the process tree and the equation parse

tree. A trajectory is formed from an initial st :te, i,e, equation in the form discovered by BACON-

like systems to a goal state which is an equivalent equation in interpretable form.

64

References

[1] Cheeseman, P., Self, M., Kelly, J., Taylor, W., Freeman, D. & Stutz, J. (I988).Bayesian

Classification, In: Proceedings of AAAI-88.

[2] Falkenhainer, B. C. & Michalski , L. S.(1986), Integrating quantitative and qualitative

discovery: the ABACUS system. Machine Learning 1,367 - 401.

[3] Fischer, D. H. (1987). Knowledge acquisition Via incremental conceptual clustering,

Machine Learning, 2, 139- 172.

[4] Forbus, K. D.(I984). Qualitative Process Theory: Qualitative Reasoning about Physical

Systems. Cambridge, MA; MIT Press.

[5] Gerwin, D. G. (1976). Information processing, data inference, and scientific generalization,

Behavioral Science, 19,314 - 325.

[6] Jankowski, A. & Zytkow, J. M. (1988). A methodology of multisearch systems. In: Z. Ras

& L. Saita (eds.), Methodologies for intelligent systems (vol. 3). New York: North Holland.

[7] Knight, K. and Rich, E.(1991), Artificial Intelligence, 2"d edition, Mc-Graw Hill Book

Company, New York.

[8] Koehn, B. & Zytkow, J. M.(1986). Experimenting and Theorizing in Theory formation.

Proceedings of the international symposium on methodologies for intelligent systems

(pp.296-307). ACM-SIGART Press.

[9] Kulkarni, D. & Simon, A. (1987), The processes of Scientific Discovery: the Str~tegy of

Experimentation. Carneggie- Mellon University.

[10] Langley, P. (1981). Data-driven discovery of physical laws. Cognitive Science, 5, 3 I - 54.

65

[11] Langley, P. W. & Zytkow, J. M. (1989). Data-driven approaches to empirical discovery,

Artificial Intelligence, 40, 283 - 314.

[12] Langley, P., Bradshaw,G. L., Simon, A. and Zytkow, J. M.(l987), Scientific discovery:

Computational Explorations of the Creative Processes. Cambridge, MA: MIT press.

[13] Lenat, D. (1976). AM: An Al approach to discovery in mathematics as heuristic search, Ph.

D. Thesis, Computer Science Department, Stanford University, Stanford, CA.

[14] Lenat, D. (1983). EURISKO: A program that learns new heuristics and domain concepts,

Artificial Intelligence, 21, 61 - 98.

[IS] Lenat, D. and Brown, J., (1984). Why AM and EURISKO appear to work, Artificial

Intelligence, 23, 269 - 294.

[16] Lewenstam, A. & Zytkow, J. M. (1989). Model-based science of ion-selective electrodes.

In: E. Pungor (Ed.), lon-selective Electrodes (Vol. 5). Oxford, England: Pergamon Press.

[17] Moulet, M. (1992). ARC.2: Linear regression in ABACUS, In: Zytkow, J. M. (ed.),

Proceedings ofML-92 workshop on machine discovery, Aberdeen, UK, July 4, 137 - 146.

[18] Newell, A. & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ:

Prentice-Hall.

[19] Nordhausen, B. and Langley, P. (1993). An integrated framework for empirical discovery,

Machine Learning, 12, 17 - 47.

[20] Nordhausen, B. & Langley, P. (1990). A robust approach to numeric discovery. Proceedings

of the Seventh International Conference on Machine Learning, Morgan Kaufrnan

Publishers, Inc., Palo Alto, CA, 411 - 418.

[21] Piatetsky - Shapiro, G. & Frawley, W. (eds.)(l991). Knowledge discovery in databases,

Menlo Park, CA: AAAI Press.

66 .,'.\
'-",

[22] Schaffer, C. (1993). Bivariate scientific function finding in a sampled, real-data testbed,

Machine Learning, 12, 167 - 183.

[23] Wu. Y. and Wang, S. (1989). Discovering knowledge from observational data. In: Piatetski

- Shapiro, G. (ed.), Knowledge discovery in databases, IJCAI - 89 Workshop Proceedings,

Detroit, MI, 369 - 377.

[24] Zembowicz, R. & Zytkow, J. M. (1992). Discovery of equations: experimental evaluation of

convergence, Proceedings of 10'" national conference on Artificial Intelligence, the AAAI

Press, 70 - 75.

[25] Zembowicz, R. & Zytkow, J. M. (1996). From Contingency Tables to various forms of

knowledge in databases. In: Advance:. in Knowledge Discovery and Data Mining. In: U.

Fayyad, G. Piatetsky - Shapiro, P. Smyth and R. Uthurusamy (eds.), AAAI Press.

[26] Zytkow, J. M. (1993). Introduction: cognitive autonomy in machine discovery, Machine

Learning, 12, 7 - 16, Kluwer Academic Publishers, Boston.

[27] Zytkow, J. M. & Jankowski, A.(1989). Hierarchical control and heuristics in multisearch

systems. In Z. Ras(Ed.), Methodologies for intelligent systems (vol. 4). New York.

[28] Z)tkow, J. M. & Zhu, Jieming (1991). Automated empirical discovery in.a numerical space.

Proceedings of the Third Annual Chinese Machine Learning Workshop. Harbin, Peoples

Republic of China.

[29] Zytkow, J. M. (1990). Deriving law. through analysis of processes and equations. In:

Langley, P. & Shrager, J. (eds.). Computational models of discovery and theory formation.

Morgan Kaufman Publishers Inc., San Mateo, CA, 129 - 156.

[30] Zytkow, J. M.(1996). Automated discovery of empirical laws. Fundamenta Informatieae,

27, lOS press, 299 - 318.

[31] Zytkow, J. M. (1997). Creating a discoverer: automatic knowledge seeking agent. Zytkow,

J. M. (ed.). Kluwer Academic Publishers.

67 ,

[32] Zytkow, J. M., Zhu, J. & Hussam, A. (1990). Automated discovery in a chemistry

laboratory, Proceedings of the AAAI - 90, AAAI Press, 889 - 894.

[33] Zytkow, J. M., & Zembowicz, R. (1993). Database exploration in search of regularities,

Journal of Intelligent Information Systems, 2, 39 - 81.

68

APPENDIX

PROGRAM LISTING

••

. .,'-~

/***

THIS PROGRAM IS WRITTEN BY
MOHAMMAD ISMAT KADIR.

***/

/* DECLARATION SECTION */

domains
root, child,rootp/head, element,xl,x/other=string
n,m,i,nn/ffiffi/mp,j,jj,k,kk,il=integer
list,new_list,listp,tail,list2,list3,listl/listb,
new,setl/set,set2,newtail,lists~3sh,rem,reml=string*

predicates
get_process tree
get chlld(lnteger,lnteger,strlng,lnteger/llst)
testl(integer,integer,string,integer,string/list)

get_parse_tree
get chlldp(lnteger,lnteger,string,lnteger,lnteger/llst)
test2 (integer, integer, string, integer, integer, string, Iist)
append_list (string, list, list)
n_elernent (list/integer, string)

rept (list, integer, integer, integer)
reptp(list, integer, integer/integer, integer)
operator search
opl
op2
op3
op4
opS
op6
op7
opS
op9
construct slash_llst(lnteger,llst)
loop(integer, integer, integer, integer, integer, list, stri ng)
construct star_llst(lnteger,list)
looping (integer/integer, integer, integer, integer, list,s tring)
looping2(integer,integer,integer,integer/integer/list,string)
loop_neg (integer, integer, integer/integer/integer, list, string)
looping_neg (integer, integer, integer/integer, integer, list/string)
looping_neg2 (integer, integer, integer, integer, integer,l ist/string)

70
•• •

include child(integer, string, integer, integer, integer, integer, 1ist,intege
r,

integer)
equal check(lnteger,integer,lnteger)
pull (string, list, list)
retract_next_child(integer,list,integer, integer, intege r)
delete_next_child(integer, string, integer)
comparel(list,integer,integer,integer,string,integer)
compare2(list,integer,string,integer,integer,integer,string,integer)
response (string)
get_parse_result
parse_tree_result(integer,string,integer,integer)
store_parse result (integer, integer, integer, string, string)

find_result (integer, list, string, integer, integer,intege r, integer, string)
match
matchlng leaf_llst(lnteger,strlng,lnteger,lnteger,llst)
matching_nodes_list (integer, string, integer, integer, lis t,list)
match_internal (integer, string, integer, integer, integer, integer)
repit(integer,string,integer,integer,integer,integer,list)
internal_match (integer, string, integer, integer, integer)
retract children (lnteger, strlng, lnteger, integer)
retract Chlld(lnteger,strlng,lnteger,lnteger)
retract result
deduct (list, list, list)
add(string,list,list)
retract match
assertion
accumulation
accumulate (integer, string, integer, integer, list, integer ,integer)
speak (integer, string, integer, integer, integer, integer)
length(list,integer)
union(list,list,list)
intersect (list, list, list)
append(list,list,list)
replace_with (list, string, integer, integer, list, list)
member {string, list)

correcting_child (integer, integer, string, integer, intege r,integer,list,int
eger,integer)

correcting_childl (integer, integer, string, integer, list, integer, integer)
investigate_node 1 (integer, integer, string, string, string)
investigate_node2 (integer, integer, string, string, string)
investigate_nodell (integer, integer, string, string, strin g)
investigate_node21 (integer, integer, string, string, strin g)
investigate_Dode12 (integer, integer, string, string, strin g)
investigate_node22 (integer, integer, string, string, strin g)
investigate_node13 (integer, integer, string, string, strin g)
investigate_node23 (integer, integer, string, string, strin g)
next lnvestlgate(lnteger,lnteger,strlng,lnteger,lnteger,lnteger)
next lnvestigatel(lnteger,lnteger,strlng,lnteger,lnteger)
check(string)
equal_list (list, list)
whether same_process oranch
same_branch (list, integer, integer)
find_root (list, string)

71

•

same_branch_check(string)
next_check(string, list, list, integer, integer)
checkA(integer, string, integer, integer, integer, integer)

judge (string, integer, integer, integer, string, integer, integer, integer, inte
ger)

go

database

process~_leaf (integer, string, integer)
process _tree_children ...:..no (integer, string, integer, list, integer)
process tree child~no(lnteger,string,lnteger,strlng,lnteger)
same~process_branch(string,list) .
parse_leaf (integer, string, integer, integer)
parse tree chlldren_no(integer,strlng,lnteger,integer,llst,lnteger)
parse tree chlld_no(lnteger,str ng,lnteger,lnteger,strlng,lnteger)
parse result (lnteger,lnteger,lnteger,strlng,strlng)
matching_nodes (integer, string, integer, integer, list)
matched_leaf (string, list)

goal
go.

/*

clauses

PROCESS TREE INPUT SECTION */

go:-
get process_tree,
whether same_process_branch,
get~parse _tree,
get_parse result,
match,
accumulation,
assertion,
operator_search,
retract_result,
retract_match,
get_parse_result,
match,
accumulation,
assertion.

makewindow(1,7,7,"PROCESS TREE INPUT",4,5,20,50),

72 (

write("Enter the root of process tree:"),
readln(Root) ,
write("Enter the children of the process tree root,

I", Root," I: "),
nl,get child(l,O,Root,l, []).

get child(N,M,Root,S,List):-
readln (Child),
testl(N,M,Root,S,Child,List)

testl(N,M,Root,S,Child,List)
Child<>"", ! ,
MM=M+l,
assertz(process tree_child_no(N,Root,S,Child,MM)),
append_list (Child,List,New_list),
get_child(N,MM,Root,S,New_list) .

testl(N,M,Root,S,Child,List) :-
M>O, !,
assertz(process tree children_no(N,Root,S,List,M)),
NN~N+l,
MM=M+l,
rept(List,NN,l,MM) .

testl(N,M,Root,S,Child,List) :-
! ,
asserta(process leaf(N,Root,S)).

rept(List,NN,MM,MM) .
rept(List,NN,I,MM) :-

n_element(List,I,X),
write("Enter the children of the process tree root,

''',X, "': "),
nl,get Chlld(NN,O,X,I, []),
II~I+l,
rept(List,NN,II,MM) .

append_list (Element, [J, [Element]).
append list (Element, [HeadITail] , [HeadINewtail])

append_list (Elernent,Tail,Newtail)

n element([Headl],l,Xl):-
! ,
Xl~Head.

n_element([HeadITail],N,Xl):-
NN=N-l,
n_element(Tail,NN,Xl) .

/* PARSE TREE INPUT SECTION */

73

makewindow(2,7,7," PARSE TREE INPUT
SECTION",3,5,lB,50),

write(" Enter the root of parse tree :"),
readln (Root) ,
write("Enter the children of the parse tree

root, ,",Root, ",:"),
nl,get childp(l,O,Root,l,l, []).

get childp(N,M,Root,S,K,List):-
readln (Child) ,
test2(N,M,Root,S,K,Child,List) .

test2(N,M,Root,S,K,Child,List) :-

Child<>'''',!,
MM=M+l,
assertz (parse tree_child _no (N,Root, S,K,ChiJ.d,MM)),
append_list (Child,List,New_list),
get childp(N,MM,Root,S,K,New_list)

test2(N,M,Root,S,K,Child,List) :-
M>O, !,
assertz(parse tree children no(N,Root,S,K,List,M)),
NN=N+l,
MM=M+l,
reptp(List,S,NN,l,MM)

test2(N,M,Root,S,K,Child,List) :-
! ,
asserta(parse leaf(N,Root,S,K)).

reptp(L,K,N,M,M) :-!.
reptp(L,K,N,I,M) :-

n_element(L,I,X),
write(nEnter the children of the parse tree

root, I " , X, " I : ") ,

nl, get_childp (N,0,X, I,K, [J),
II~I+l,
reptp(L,K,N,II,M) .

/*************** THIS SECTION USES THE OPERATOR SEARCH
****************/

operator search:-
oplo

operator search:-
op2.

operator search:-
op3.

operator search:-
op4.

operator search:-
opS.

operator search:-
op6.

operator search:-
op7.

operator_search:-

74

op8.
operator search:-

op9.
operator search.

/**** OPl makes use of the operation, a=b/c gives ac=b.*****j

opl:-
parse_tree_children_Do(N,"=",S,1,List,2),
parse_tree Chlld _~,o(N, n=", S, 1, A, 2) ,
parse_tree chlld_no(N,"=",S,l,"/",l),
NN=N+l,
parse_tree child_no(NN,"/",l,S,C,2),
parse_tree chlld_no(NN,"j",l,S,B,l),
Nl~NN+ 1,
I. ,
retract_child(N,"=",S,l),
retract_children(N,"=",S,l),
retract_child (NN,"/",l,S),
retract_children(NN,"j",l,S),
asserta(parse_tree_child_no(N,"=II,S,l,B,l)),
asserta(parse tree child no(N,"=",S,1,"*",2)),
asserta (parse=: tree=: children _no (N, n=" , S, 1., [B, "*"] / 2)) ,
asserta (parse_tree _children __no (N::J, "*",2,1., [A,C] /2)) ,
asserta(parse_tree_child_no(NN,"*",2,I,A,I)),
asserta (parse_tree _child_no (NN, "'}<", 2,1, C,2)),
investigate_nodel(NN,N1,A,B,C) .

opl: -
parse_tree children_no(N,"=",S,I,Llst,2),
parse_tree_child_no(N, u=",S,1,A, 1),
parse_tree chlld_no(N,"=",S,l,"/",2),
NN~N+l,
parse_tree Chlld_llO(NN,"/",2,S,C,2),
parse_tree child_no(NN,"/",2,S,B,1),
Nl~NN+l,
retract chlld(N,"=",S,I),
retract_children(N,"=",S,l),
retract_child (NN,"j",2,S),
retract_children(NN,"j",2,S),
asserta(parse_tree_child_no(N,"=",S,1,B,l)),
asserta(parse_tree_child_no(N,"=",S,l,"*n,2)),
asserta (parse_tree _children _no (N,"=", S, 1, [B,n*,,],2)),
asserta (parse_tree_children _no (NN,"*n,2,I, [A,C] ,2)),
asserta (parse_tree_child_no (NN,,,*n,2,I,A,l)),
asserta(parse_tree_child_no(NN,,,*n,2,I,C,2)),
investigate_node2(NN,Nl,A,B,C) .

correcting_chlld(NN,N1,A,J,Jl,JJ,A1,K,K) :-!,
K2~K-l ,
asserta(parse_tree_children_no(Nl,A,J,Jl,Al,K2))

correctlng Chlld(NN,N1,A,J,J1,JJ,Al,K,Il):-
n_elern€nt(A1,I1,H),K2=K-1~
asserta(parse_tree_child_no(N1,A,J,Jl,H,Il)),
next_investigate(NN,Nl,H,Il,J,JJ),
II~Il+l,
correcting_child(f~,Nl,A,J,Jl,JJ,Al,K,II} .

75 ••

next investigate(NN,Nl,H,Il,J,JJ):-
N~NN+l,N2~Nl+l,
parse_tree chlldren no(N,H,Il,JJ,Hl,K2),!,
retract_children(N,H,Il,JJ),
retract child(N,H,Il,JJ),
K~K2+'1,
correcting_child(N,N2,H,Il,J,Il,Hl,K,1)

next investigate(NN,Nl,H,II,J,JJ):-
N=NN+ 1,N2=Nl +I,
parse_leaf(N,H,Il,JJ), !,
retract(parse_leaf(N,H,Il,JJ)),
asserta(parse leaf(N2,H,Il,J))

investigate_nodel(NN,Nl,A,B,C) :-
lnvestlgate nodell (NN,NI,JI._,B,C),
investigate_nodel2(NN,Nl,A,B,C),
investigate node13(NN,NI,A,B;C).

investigate_nodell(NN,Nl,A,B,C) :-
parse_lea£(NN,A,2,1), !,
retract(parse_leaf(NN,A,2,1)),
asserta(parse leaf(Nl,A,1,2)).

investigate_nodell(NN,Nl,A,B,C) :-
parse_tree_children no(NN,A,2, l"Al,K2),
retract_child(NN,A,2,l),
retract_children(NN,A,2,1),K=K2+1,
correcting_child(NN,Nl,A,I,2,2,Al,K,I)

investigate_node12(NN,Nl,A,B,C) :-
parse_lea£(Nl,B,l,l), !,
retract(parse_leaf(Nl,B,I,l)),
asserta(parse leaf(NN,B,l,l)).

investigate nodeI2(NN,Nl,A,B,C):-
parse_tree_children_no(Nl,B,l,l,Bl,Kl),
retract_.child (NI,B, 1,1),
retract_children(Nl,B,I,I),K=Kl+1,
correcting_child(Nl,NN,B,I,l,l,Bl,K,l)

investigate_node13(NN,Nl,A,B,C) :-
parse_leaf(Nl,C,2,1), !,
retract(parse_leaf(Nl,C,2,1)),
asserta(parse leaf(Nl,C,2,2)).

investigate node13(NN,NI,A,B,C):-
parse_tree~children_no(Nl,C,2,I,Cl,K3),
retract_child(Nl,C,2,1),
retract_children(Nl,C,2,1),K=K3+1,
correcting_child(Nl,Nl,C,2,2,2,Cl,K,l) .

investiqate_node2(NN,Nl,A,B,C) :-

76

,

lnvestlgate node21(NN,Nl,A,B,C),
investigate_node22 (NN,Nl,A,B,C),
investigate_node23 (NN,Nl,A,B,C) .

lnvestlgate_node21(NN,Nl,A,B,C) :-
parse_leaf(NN,A,l,l), !,
retract(parse_leaf(NN,A,l,l)),
asserta(parse leaf(Nl,A,1,2))

investigate_node21(NN,Nl,A,B,C) :-
parse_tree chlldren_no(NN,A,1,1,Al,K2),
retract_child(NN,A,l,l),
retract_children(NN,A,1,1),K=K2+1,
correcting_child(NN,Nl,A,1,2,1,Al,K,1)

investigate_node22 (NN,Nl,A,B,C) :-
parse_leaf(Nl,B,1,2), !,
retract(parse_leaf(Nl,B,1,2)),
asserta(parse leaf(NN,B,1,2)).

investigate_node22 (NN,Nl,A,B,C) :-
parse_tree chlldrE 1 no(Nl,B,l,2,Bl,Kl),
retract_child(Nl,B,l,2),
retract_children(Nl,B,l,2),K=Kl+l,
correcting_child(Nl,NN,B,l,l,l,Bl,K,l) .

investigate_node23 (NN,Nl,A,B,C) :-
parse_leaf(Nl,C,2,2), !,
retract(parse_leaf(Nl,C,2,2)),
asserta(parse leaf(Nl,C,2,2))

investigate_node23 (NN,Nl,A,B,C) :-
parse_tree_children_no(Nl,C,2,2,Cl,K3),
retract_child(Nl,C,2,2),
retract_children(Nl,C,2,2),K=K3+1,
correcting child(Nl,Nl,C,2,2,2,Cl,K,1)

/********** op2 makes use of the operation

************(a+b+c+)ic gives
aic+bic+cic+ ~******************i

op2:-

parse_tree children_no(N, "I",S,T, ["+",C] ,2),
NN=N+l,
parse_tree children_no(NN,"+",l,S,List,M),!,
Ml~M+l,
construct_slash_list(M,Listslash),NM=N-l,
parse_tree_child_no(NM,R,K,U,II/",I),
retract(parse_tree child_no(NM,R,K,U,"I",I)),
asserta(parse_tree chlld_no(NM,R,K,U,"+",I)),
parse_tree_children_no(NM,R,K,U,LL,MM),
retract(parse_tree chlldren_no(NM,R,K,U,LL,MM)),
replace_with (LL,11+", I, 1, [J , KK),
asserta(parse_tree chlldren_no(NM,R,K,U,KK,MM)),
asserta (parse_tree_children_no (N,"+",S,T,Listslash,M)),
loop(l,Ml,N,S,T,Listslash,C),

77

retract_children(N,"I",S,T),
retract_child(N,"I",S,T),
retract_child(NN,C,2,S),
retract_child(NN,"+",l,S),
retract children(NN,"+",l,S).

op2:-

parse tree children no(N,"I",S,T, ["_",C],2),
NN=N+l,
parse_tree children no(NN,"-",l,S,List,M),!,
Ml~M+l,
construct_slash_list(M,Listslash),NM=N-l,
parse_tree_child_no(NM,R,K,U,"I",I),
retract (parse_tree_child_no(NM,R,K,U,"I",I)),
asserta(parse tree_chlld_no(NM,R,K,U, "-",I)) ,
parse_tree_children_no(NM,R,K,U,LL,MM),
retract(parse_tree~children_no(NM,R,K,U,LL,MM)),
replace_with (LL,"_", I,1, [],KK),
asserta(parse~tree_children_no(N.M,R,K,U,KK"MM)),
asserta(parse_tree_children_no(N, "-",S,T,Listslash,M)),
loop_neg (1,Ml, N, S,T,Listslash, C) ,
retract_children(N,"I",S,T),
retract_child(N,"I",S,T),
retract_child(NN,C,2,S),
retract_child(NN,"-",I,S),
retract children(NN,"-",l, 3).

construct_slash_list (0,(]):-!.
construct_slash _list (M,("I" I List])

MM~M-l,
construct slash list(MM,Llst)

loop(M,M,N,L,T,Listslash,C) :-!.
loop(I,M,N,L,T,Listslash,C)

NN~N+l,
parse tree chlld_no(NN,"+",I,L,X,I),
asserta(parse_tree_child~no(N,"+",L,T,"/",I)),
asserta(parse_tree_child~no(NN,"I",I,L,X,I)},
asserta(parse_tree_child_no(NN, "/",I,L,C,2)),
asserta(parse_tree children_no(NN,"/",I,L, (X,C],2)),
Nl~NN+ 1, Ml~M-l,
judge (X,1,1,MI,.C,L,2,NN, NI),
II~I +1,
loop(II,M,N,L,T,Listslash,C) .

loop neg(M,M,N,L,T,Listslash,C) :-!.
loop __neg (I,M,N,L,T,Listslash, C) :-

NN=N+l,
parse tree_chlld_no(NN,"_II,l,L,X,I),
asserta (parse_tree __child_no (N,"-",L,T, II/",I)),
asserta(parse_tree_child_no(NN, "/",I,L,X,l)),
asserta(parse tree_chlld_no(NN, "/",I,L,C,2)),
asserta (parse_tree children_no (NN,"I ", I,L, (X,C] ,2)),
Nl~NN+l,Ml~M-l,

78

judge(X,I,l,Ml,C,L,2,NN,Nl),
II~I+l,
loop neg(II,M,N,L,T,Llstslash,C)

/********* This operator makes use of the relation*****/
/*********(a+b+)*c = a*c+b*c+ **********/

op3:-

parse_tree children no(N,"*",S,T, ["+",C],2},
NN~N+l,
parse_tree children no(NN,"+",l,S,List,Ml,!
Ml~M+1,
construct_star_list(M,Liststarl,NM=N-l,
parse tree_chlld_no(NM,R,K,U,"*",I),
retract(parse_tree chlld_no(NM,R,K,U,"*",I)),
asserta(parse_tree chlJd_no(NM,R,K,U,"+",I)l,
parse_tree_children_no(NM,R,K,U,LL,MM},
retract (parse_tree chlldren __no (NM,R, K, U, LL, MM)),
replace_with (LL,"+", 1,1, [],KK},
asserta(parse_tree chlldren_no(NM,R,K,U,KK,MM)),
asserta(parse_tree_children_no(N,"+",S,T,Liststar,Ml),
looping(l,Ml,N,S,T,Liststar,C),
retract_children(N, "*",S,T),
retract_child(N,"*",S,Tl,
rAtract_child(NN,C,2,S),
retract_child(NN, "+",l,S),
retract_children(NN,"+",l,Sl

/********* This operator makes use of the relation*****/
/*********(a-b-)*c = a*c-b*c- **********/

op3:-

parse_tree children no(N,"*",S,T, ["-",C],2),
NN=N+l,
parse_tree children_no(NN,"-II,l,S,List,Ml,!,
Ml~M+l,
construct_star_list(M,Liststar),NM=N-1,
parse_tree_child_no(NM,R,K,U,"*",Il,
retract(parse_tree chlld_no(NM,R,K,U,"*",I)),
asserta(parse_tree_child_no(NM,R,K,U,"-",I)),
parse_tree_children_no(NM,R,K,U,LL,MM),
retract(parse_tree chlldren_no(NM,R,K,U,LL,MM)),
replace_with (LL, "_", I, I, [],KK) ,
asserta(parse_tree chlldren_no(NM,R,K,U,KK,MM)l,
asserta (parse_tree _children_no (N,"_", S, T, Liststar, M'l),
looping_neg(l,Ml,N,S,T,Liststar,C),
retract_childre~(N,"*",S,T),
retract_child(N,"*",S,T),
retract_child(NN,C,2,S),
retract_child (NN,"-",l,S) ,
retract children(NN,"-",l, S)

79

/*********
/*********

op3:-

This operator makes use of the relation*****/
c*(a+b+) = a*c+b*c+ **********/

parse_tree ,children_nO(N, "*",8,T, [C, "+"] ,2),
NN~N+l,
parse_tree children no(NN,"+",2,S/List/M)/!,
Ml~M+ 1,
constr1lct_star_list(M,Liststar)/NM=N-l,

"parse_tree _ child_no (NM,R,K, U, "*",I) ,
retract(parse_tree chlld_no(NM,R,K,U/"*",I)),
asserta(parse_tree child_no (NM,R,K,U, "+",1)),
parse_tree_children_no(NM,R,K,U/LL,MM),
retract(parse_tree chlldrrn_no(NM,R,K,U/LL/MM)),
replace_with (LL, "+", I,1, [],KK) ,
asserta(parse_tree chlldren_no(NM,R,K,U/KK/MM)),
asserta(parse_tree chlldren_no(N,"+"/S,T,Llststar,M)),
looping2(I,Ml/N/S,T,Liststar/C),
retract_children(N,"*",S/T),
retract_child(N,"*",S,T)I

retract_child(NN,C,l,S),
retract_child(NN,"+",2,S),
retract children(NN,"+",2,S)

/********* This operator makes use of the relation*****/
/********* c*(a-b-).= a*c-b*c- **********/

op3:-

parse_tree children no(N, "*",8,T, [C,"_"] ,2),
NJ,~N+ 1,
parse cree chlldren no(NN,"-",2,S,Llst,M),!,
Ml~M+l,
construct_star_list(M,Liststar),NM=N-l,
parse_tree_child_no(NM,R,K,U,"*",I),
retract (parse_tree chlld_r) (NM,R,K,U, ,,*",I)),
asserta(parse_tree_child_llO(NM,R,K,U/"-",1)),
parse_tree_children_no(NM/R,K,U/LL,MM),
retract(parse~tree_children_no(NM,R,K,U,LL/MM)),
replace_with (LL,"_", I, 1, [],KK) ,
asserta(parse_tree chlldren_no(NM/R,K,U,KK/MM)),
asserta(parse_tree_children_no(N,"-II/S/T,Liststar,M)),
looping_neg2(1,Ml,N,S,T,Liststar,C),
retract_children(N,"*",S,T),
retract_child(N,"*",S,T),
retract_child(NN/C,l,S)I

retract_child(NN/"-",2,S),
retract children (NN,"-"/2/S) .

construct_star_list(O, [I):-!.
construct_star list (M, ["* II I List]):-

MM~M-l,
construct star_list (MM,List) .

looping(M,M/N,L,T/Liststar,C) :-!.

80

looping(I,M/N,L,T,Liststar/C) :-
NN~N+l,
parse_tree _child_no (NN, n+" /1/L,X, I) , ! ,
asserta(parse_tree chlld_no(N,"+",L,T,"*",I)),
asserta(parse_tree_child_no(NN/"*",I,L/X,I)),
asserta(parse_tree chlld_no(NN,"*",I,L/C,2)),
asserta(parse_tree chlldren no(NN,n*",I,L, [X,C},2)),
Nl~NN+l,Ml~M-l,
judge(X,I,1/Ml,C,L,2,NN,Nl),
II~I+l,
looping(II,M,N,L,T,Liststar,C) .

looping2(M,M,N,L/T,Liststar,C) :-!.
looping2(I,M,N,~/T/Liststar,f)

NN=N+l, .
parse_tree~child_no(NN,"+"/2/L,X,I),
asserta(parse_tree_child_no(N,"+n/L,T,"*",I)),
asserta(parse_tree_child_no(NN,"*",I/L,X,l)),
asserta(parse_tree_child_no(NN,"*"/I,L,C,2))/
asserta(parse_tree chlldren no(NN/"*",I/L/ [X/C].,2)),
Nl~NN+l,Ml~M-l,
judge(X/I/2,Ml/C"L,1,NN/Nl),
II~I+l,
looping2(II,M,N/L/T/Liststar/C)

looping_neg(M/M,N/L,T,Liststar,C) :-!.
looping_neg(I,M,N/L,T,Liststar,C) :-

NN~N+l,
parse_tree_child_no(NN/"-",l,L,X/I),
asserta(parse_tree_child_DO(N/"-",L,T/"*",I)),
asserta(parse_tree_child_no(NN,"*"/I,L,X/l)),
asserta(parse_tree_child_no(NN/"*"/I,L,C,2)),
asserta (parse_tree chlldren _ no (NN,"*" /1/L, [X,C] ,2)),
Nl~NN+l,Ml~M-l,
judge(X/I,1,Ml,C,L/2/NN,Nl),
II~I+l,
looping_neg(II,M,N,L,T/Liststar/C) .

looping_neg2 (M,M, N, L/'T/Liststar, C) :-! .
looping_neg2(I/M/N,L,T/Liststar,C) :-

NN=N+l,
parse treE) chlld_no(NN,"_II,2/L/X,I),
asserta(parse_tree chlld_no(N,"-"/L,T/"*"/I)),
asserta(parse_tree_child_rJ(NN/"*",I/L/X,l))/
asserta(parse_tree_child_no(NN/"*",I,L/C,2))/
asserta(parse_tree chlldren_no(NN,"*",I,L, [X/C]/2)),
Nl~NN+1, Ml~M-l,
judge(X,I/2/Ml,C/L/l/NN,Nl),
II~I+l,
looping neg2(II/M/N,L,T,Liststar/C)

judge(X,M/J,M,C/L/Jl/NN/Nl) :-
parse_leaf(NN/C/Jl/L), !,
retract(parse leaf(NN,C,Jl,L)),

81 \,

asserta(parse_leaf(Nl,C,2,M)),
next investigatel(NN,NN,X,M,J).

judge(X,I,J,M,C,L,Jl,NN,NI) ;-
parse_leaf(NN,C,JI,L), !,
asserta(parse_leaf(Nl,C,2,I)),
next investigatel(NN,NN,X,I,J).

judge(X,I,J,M,C,L,JI,NN,NI) :-
parse_tree_children_no(NN,C,Jl,L,LI,K),
retract_child(NN,C,Jl,L),
retract_children(NN,C,Jl,L),KI=K+l,
correcting_child(NN,Nl,C,2,I,Jl,Ll,KI,1)

correcting_childl(NN,NI,A,J,Al,K,K) ;-!,
K2~K-l,
asserta(parse_tree_children_no(Nl,A,I,J,AI,K2)) .

correcting_childl(NN,NI,A,J,Al,K,Il) :-
n_elernent(AI,II,H),K2=K-l,
asserta (parse_tree _child_no (NI,A, I,J,H,II))',
next investlgate(NN,NI,H,II,I,Il),
II~I 1+1,
correcting childl(NN,Nl,A,J,AI,K,II).

next lnvestigatel(NN,Nl,H,Il,J):-
N~NN+ 1,N2~Nl +1,
parse_tree_children_no(N,H,II,J,Hl,K2), !,
retract_children(N,H,Il,J),
retract child(N,H,Il,J),
K~K2+l,
correcting_childl(N,N2,H,Il,Hl,K,I) .

next lnvestigatel(NN,Nl,H,II,J):-
N~NN+l,N2~Nl+l,
parse_leaf(N,H,Il,J), !,
retract(parse_leaf(N,H,Il,J)),
asserta(parse leaf(N2,H,1,Il))

replace_with(LL,A,I,I,Kl,KK) :-
length (LL,I), ! ,append (Kl, [Aj,KK) .

repIace_with(LL,A,I,I,Kl,KK)
!, append (Kl, [AJ,Y) ,
JJ~I +1,
replace_with(LL,A,I,JJ,Y,KK)

replace_with (LL,A, I,J, KI, KK)':-
length(LL,K),J<K, !,
n_elernent(LL,J,X),
append(Kl, [XJ,Y),
JJ~J+l,
replace_with(LL,A,I,JJ,Y,KK)

replace_with(LL,A,I,J,KI,KK)
n_eIernent(LL,J,X),
append(Kl, [XJ,KK).

82

1**** Op.l makes use of the operation, a=b*c gives a/c=b.*****1

op4:-
parse_tree_children_no(N,"=",S,1,List,2),
parse_tree_child_no(N,n=",S,I,A,2),
parse_tree child_r"J (N,n=",S,1,n*", 1),
NN~N+l,
parse_tree_child_no(NN,"*",I,I,C,2),
parse_tree child_no(NN,"*",I,I,B,I),
Nl~NN+l,
I. ,
retract_child(N,"=",S,l),
retract_children(N,"=",S,I),
retract_child(NN,"*",I,I),
retract_children (NN,"*",1,1),
asserta(parse_tree_child_no(N,n=",S,I,B,I)),
asserta(parse_tree_child_no(N,n=",S,I,"I",2)),
asserta (parse_tree _children_no (N,n=",S,1, [B,"I"] , 2)),
asserta (parse_tree_children_no (NN,"1",2,1, [A,C], 2)),
asserta (parse_tree_child_no (NN,"1",2,I,A,I)),
asserta (parse_tree_child_IlO (NN,"1",2,1,C,2)),
investigate_nodel(NN,Nl,A,B,C)

op4:-
parse_tree_children_nO(N,"=",S,I,List,2),
parse_tree _child_no (N,"=",S,1,A, 1),
parse_tree child no(N,"=",S,I,"*",2),
NN=N+l,
parse_tree_child_no(NN,"*",2,I,C,2),
parse_tree child_T:)(NN,"*",2,1, B,1),
Nl~NN+l,
retract_child(N,"=",S,I),
retract_children(N,"=",S,I),
retract_child (NN,"*",2,1),
retract_children(NN,"*",2,1),
asserta (parse_tree_child_no (N,"=",S,I,B,I)),
asserta (parse_tree_child_no (N,"=",S,I,"I",2)),
asserta (parse_tree_children _no (N,"=",S,1, [8,"I"] , 2)),
asserta (parse_tree_children _no (NN,"/~',2,1, [A,C] ,2)),
asserta (parse_tree_child_no (NN,"1",2,I,A,I)),
asserta (parse_tree_<;:hild_no(NN,"1",2,I,C,2)),
investigate_node2{NN,Nl,A,B,C)

op5:-

1*****
1*****

This operator makes use
a+x = a, where x « a

of the approximation *****1
*************************1

parse_tree children_no(N,"+",S,T,List,M),
Ml~M+l,
comparel(List,I,Ml,N,"+",S),fail.

83 l

,.

comparel(List,M/M,N,R,S) :-!.
cornparel(List,I,M,N,R,S) :-

n_elernent(List,I,X),
compare2(List,1,X,I,M,N,R,S),
II~I+l,
comparel(List,II,M,N,R,S) .

compare2(List/M,X,I,M,N,R,S) :-!.
compare2(List,J,X,I,~,N,R,S)

equal check(I,J,Jl),
n_element(List,Jl,Y),
NN~N+1,
parse_result(NN,S,I,X,Xl).
parse_result(NN,S,Jl,Y,Yl),
write("Is "',Xl, III of same dimension as

") I

'",YI,''' ? (yin)

response(Reply),
check (Reply),
write("Is ''',Xl, '" « ''', Yl, IT' ? (yin) "),
response (Rply) ,
check IRply) ,
parse_tree_child_no(N/R,S,T,Child,I),
retract(parse_tree_child_no(N,R,S,T,Child,I)),
retract(parse_tree_children~no(N,R,S,T,List,M)),
pull (Child,List,ListA),
MM=M-l1
asserta(parse_tree_children_llo(N,R,S,T,ListA,MM)),
delete_next child(NN,Child,I),
JJ~Jl+l,
compare2(List,JJ,X,I,M,N,R,S)

compare2(List,J,X,I,M,N,R,S) :-
JJ~J+l,
cornpare2(List,JJ,X,I,M,N,R,S)

equal check(J,J,Jl) :-!,Jl=J+l.
equal checkII,J,J)

delete_next_childIN,Child,I) :-
parse tree children_no(N,Chlld,I,K,X,J),!,
retract chlld(N,Chlld,I,K),
retract(parse_tree children no(N,Child,I,K,X,J)),
NN=N+ 1,JJ=J+ 1,
retract_next child(NN,X,l,I,JJ)

delete_next_child(N,Child,I) :-
parse leaf(N,Child,I,K),
retract (parse leaf(N,Child,I,K)).

retract_next_child(N,X,J,K,J) :-!.
retract_next_child(N,X,I,K,J) :-

n_elernent(X,I,Y),
parse_leaf(N,Y,I,K),
retract (parse leaf(N,Y,I,K)),
II~I+l,

84

retract_next~child(N,X,II,K,J)

retract next_child(N,X,I,K,J):-
.n_elernent(X,I,Y),
retract_child(N,Y,I,K),
retract children(N,Y,I,K),
II~I+l,
retract_next child(N,X,II,K,J)

/***** Th\s operator makes use of the transposition law *******/
/****** a+b=c+d gives a-d=c-b, etc. ***************************/

op6: -
parse_tree children no(N,"=",S,T, ["+","+"],2),
NN~N+l,
parse_tree_children_no,NN,"+",I,S, [A,B],2),
parse_tree_children_no (NN,"+",2, S, [C,0], 2!, !,
retract (parse_tree _children_no (N,"=", S,T, ["+","+" J ,2)),
retract_child(N,"=",S,T),
retract_children (NN,"+",I,S),
retract_child(NN,"+",I,S),
retract_children (NN,"+",2,S),
retract_child (NN,"+",2,S),
asserta (parse_tree_children_ no (N,".=",S,T, ["_","_"),2)),
asserta (parse_tree_child_no (N,"=",S,T, "-",1)),
asserta(parse_tree_child_no(N,"=",S,T,"_",2)),
asserta (parse_tree _children_no (NN,"-",1, S, [A,C] ,2)),
asserta(parse_tree_child_no(NN,"-II,I,S,A,I)),
asserta(parse_tree_child_no(NN,"-",I,S,C,2)),
asserta(parse_tree_children_no(NN, "-",2,S, [O,B],2)),
asserta(parse_tree_child_no(NN,"_n,2,S,D,I)),
asser~a(parse_tree_child_no(NN,"_n,2,S,B,2)),
Nl=NN+ 1,
checkA(Nl,A,.I, 1,1,1),
checkA(Nl,B,2,2,1,2),
checkA(Nl, C, 1,2,2,1),
checkA(Nl,D,2,1,2,2) .

op6:-
parse_tree children no(N, n=",S,T, ["+n,"+"] ,2),
NN~N+l,
parse tree_chlldren_no(NN,"+",I,S, (A,B],2),
parse_tree_children_no (NN,"+",2, S, [C,0],2), !,
retract (parse_tree _children_no (N,n=", S,T, ["+", "+ II J ,2)),
retract_child(N,"=",S,T),
retract_children (NN,'.'+",1,S),
retract_child(NN,"+",I,S),
retract_children (NN,"+",2,S),
retract_child(NN,"+",2,S),
asserta(parse_tree_children_no(N,"=",S,T, ['1_","_"],2)),
asserta(parse_tree child no(N,n=",S,T,"-"",l)),

85 . ~

op6:-

op6:-

asserta(parse tree chllj_no(N,"=",S,T,"-",2)),
asserta (parse tree chi dren_no (NN,"-",1, Sf [A, OJ, 2)),
asserta(parse_tree_child_no(NN,"-"/l,S,A,l)),
asserta(parse tree_chlld_no(NN,"-II,1,S,D,2)),
asserta (parse_tree_children_no (NN, "-",2,S, [C,8J,2)),
asserta(parse tree chlld_no(NN,"-",2,S,C,1)),
asserta(parse tree child_no(NN,"-",2,S,B,2)),
Nl~NN+ 1,
checkA(Nl,A, 1, 1, 1, 1),
checkA(Nl,B,2,2tl,2),
checkA(Nl,C,1,1,2,2),
checkA(Nl,D,2t2,2,1) .

parse_tree children.:.-no(N, "=",S/T, ["_","_IIJ,2),
NN=N+l,
parse_tree_children_no (NN,"_",1, S, [A, B], 2),
parse_tree_children_no (NN,"_11,2, Sf [e, OJ, 2), !,
retract (parse_tree _children_no (N, n=", S, T, ["_", 11_.11],2)),
retract_child(N,"=",S,T),
retract_children (NN, "-",l,S),
retract_child(NN,"-",l,S),
retract_children (NN, "-1I,2,S),
retract_child(NN,"-",2,S),
asserta(parse_tree_chiJ :lren_no(N, n=",S,T, [n_", "_"] ,2)),
asserta(parse_tree_chi.i.d_no(N,"=",S,T,"_II,l)),
asserta(parse_tree_child_no(N,"=",S,T,n_II,2)),
asserta (parse_tree _children_no (NN, "-",1, S, [A,C] ,2)),
asserta(parse_tree~child_no(NN,"_n,l,S,A,l)),
asserta(parse_tree_child_no(NN,"-",1,S,C,2)),
asserta (parse_tree _children_no (NN, "- ",2, S, [B, 0] ,2)),
asserta(parse_tree_child_no(NN,"_1I,2,S,B,1)),
asserta(parse_tree child_no(NN,"_II,2,S,O,2)),
Nl~NN+l,
checkA(Nl,A,l,l,l,l),
checkA(Nl,B,2,1,1,2),
checkA(Nl,C,1,2,2,1),
checkA(Nl,O,2,2,2,2) .

parse_tree chlldren_no(N,"=",S,T, ["_","_"],2),
NN=N+l,
parse_tree_c:hildren_no{NN,"_n,l,S, [A,B],2),
parse_tree_children~no (NN, "_",2, S, [C, 0],2), !,
retract (parse_tree _children_no (N, "=", S, T, ["_", "_''],2)),
retrac't_child(N, n=",S,T),
retract children(NN,"-",l,S),
retract_child (NN, "-",l,S),
retract_children (NN, "-'-,2,S),
retract Chlld(NN,"-II,2,S),
asserta(parse_tree~children_no(N,"=",S,T, ["+","+11],2)),
asserta(parse_tree_child_no(N,"=",S,T,n+",l)),
asserta(parse_tree_child_no(N,,,=n,S,T,"+",2)),
asserta(parse_tree_children_no(NN,"+",l,S, [A,O],2)),
asserta(parse_tree_child_no(NN,"+",1,8,A,1)),
asserta(parse_tree_child_no(NN,n+",1,S,O,2)),
asserta(parse tree children_no (NN, "+",2,8, [B,C] ,2)),

86

op6:~

op6:-

asserta(parse tree Chl1d_DO(NN,"+",2,S,B,1)),
asserta(parse tree Chl1d_DO(NN,"+",2,S,C,2)),
Nl=NN+ 1,
checkA(Nl,A,!,!,!,l),
checkA(Nl,E,2,l,1,2),
checkA(Nl,C,!,2,2,2),
checkA(N1, D, 2, 2, 2, 1).

parse_tree children_TIo(N, "=",8,T, ["_", "+"] ,2),
NN~N+1,
parse_tree_children_no (NN,"-",1, S, [A,B], 2),
parse_tree_children_TIo (NN,u+", 2, Sf [C, DJ, 2) , !,
retract (parse_tree _children_no (N, "=", S, TI ["_", u+"] , 2)) ,
retract_child(N,"=",S/T),
retract_children (NN,"-",l,S),
retract_child(NN,"-",l,S),
retract_children (NN,"+",2,S),
retract_child(NN,"+",2,S),
asserta(parse_tree chlldren_Do(N, "=",5,T, ["_II, "+"] /2)) r

asserta(parse_tree_child_Do(N,"=",S,T,"-",l)),
asserta(parse_tree_child_no(N,"=n,S,T,"+II,2)),
asserta (parse tree children no (NN,"_", I,S, [A,C], 2)),
asserta(parse=tree_child_no(NN,"-",I,S,A,l)),
asserta(pars2 tree_chlld_no(NN,"-lI,1,S,C,2)),
asserta(parse tree chlldren_no(NN, "+",2,S, [B,O] ,2)),
asserta(parse tree_chlld_no(NN,"+",2,S,B,I)),
asserta(parse tree child no(NN,"+",2,S,O,2)),
N1~NN+1,
checkA(Nl,A,I,I,I,I),
checkA(Nl,B,2,1,1,2),
checkA(Nl,C,l,2,2,1),
checkA(Nl,D,2,2,2,2) .

parse_tree children_no(N, "=",S,T, ["_", "+"J ,2),
NN=N+l,
parse_tree_children_no(NN,"-",l,S, [A,BJ,2),
parse_tree_children_no(NN,"+",2,S, [C,O],2),!,
retract(parse tree_chlldren_no(N, "=",S,T, ["_", n+"] ,2)),
retract_child(N,"=",S,T),
retract_children(NN,"-'l,l,S),
retract_child(NN,'I-",I,S),
retract_children(NN,"+n,2,S),
retract_child(NN,"+",2,S),
asserta (parse tree_chlldren_no (N,"=", S,T, ["_", "+"] ,2)),
asserta(parse_tree_child_no(N,"=",S,T,"_II,l)),
asserta(parse tree chlld_no(N,"=",S,T,"+",2)),
asserta (parse tree chlldren _no (NN,"-",1, S, [A,0] ,2)),
asserta (parse_tree_child_no (NN,"-",l,S,A,l)),
asserta(parse_tree_child_no(NN,"-",I,S,D,2)),
asserta (parse_tree Chl- dren_no (NN,"+",2, S, [B,C], 2)),
asserta(parse_tree_child_no(NN,"+",2,S,B,l)),
asserta(parse_tree child_no(NN,"+",2,S,C,2)),

87

op6: -

op6:-

Nl~NN+l,
checkA(Nl,A, 1, 1, 1, 1),
checkA(Nl,B/2,1,1,2),
checkA(Nl,C,1,2,2,2),
checkA(Nl,D,2,2,2,1) .

parse_tree children_DarN, "="/8,T, ["+"/ "_"] ,2),
NN~N+l,
parse_tree _children_no (NN,n+", 1, S, [A, B] ,2) ,
parse_tree_children _no (NN,"_",2, Sf [C, OJ, 2), !,
retract(parse tree chlJiren_no(N,"=",S,T, ["+","-"]/2)),
retract_child(N,"="/S/~),
retract_children (NN, "+",l,S),
retract_child(NN,"+",l,S),
retract_children(NN,"-",2,S),
retract_child(NN,"-",2,S),
asserta (parse_tree children_no (N, "=", S, T, ["-" f "+" J ,2)) f

asserta (parse_tree_child_no (N, "=",S,T,"-",l)),
asserta(parse_tree child_TIo(N,"=",S,T,"+",2)),
asserta (parse_tree chlldren _no (NN,"- ",1, S, [C,A] ,2)) ,
asserta(parse_tree chlld_no(NN,"-II,l,S,C,I)),
asserta(parse tree chlld_no(NN,"-II,1,S,A,2)),
asse~ta (parse_tree _children_no (NN, "+ ",2/ S, [B, OJ ,2))/
asserta(parse tree chlld_no(NN,"+"/2/S,B,I)),
asserta(parse tree child_no(NN,"+"/2/S,O,2)),
Nl~NN+l,
checkA(Nl,A,I,2,1,1),
checkA(Nl,B,2,1,1,2),
checkA (Nl, C,), 1, 2/ 1) ,
checkA(Nl,D,2,2/2/2) .

parse_tree children_no(N,"="/S/T, ["+","-IIJ/2),
NN~N+l,
parse_tree _children_no .\IN,"+",1, S/ [A, BJ /2) /
parse_tree_childr~n_no (NN, "_",2, S/ [C/ OJ /2) /
retract (parse tree _ chlldren _ no (N, "=" /S/ T, ["+ II/"-"]/2))/
retract_child(N/"="/S,T),
retract_children(NN/"+",l,S),
retract_child(NN,"+",l/S),
retract_children(NN/"-",2,S},
retract_child(NN,"-"/2/S),
asserta (parse_tree _children_no (N, "=" /S/ T, ["+ ", "- "] ,2)),
asserta(parse tree chlld_no(N/"="/S/T,"+"/l)},
asserta(parse_tree_child_no(N/"=",S/T/"_",2)),
asserta (parse tree chlldren _ no (NN, "+"" 1, S, [A, 0] /2)),
asserta(parse_tree_child_no(NN,"+",I,S/A/l)),
asserta(parse tree child_no(NN,"+1I/1,S/O/2)),
asserta (parse_tree chlldren _ no (NN, "_11,2,S, [C/ 8] /2)),
asserta(parse_tree_child..:....no(NN/"-",2,S/C/l))/
asserta(parse_tree chlld_no(NN,"_1I/2,S,B/2))/
Nl~NN+l,
check.A(Nl,A/.l, 1/ 1/ 1) /
checkA(Nl,B,2,2/1/2),
check.A(Nl,C,1/2/2/2},

88

~.-

checkA(Nl, 0,2,1,2,1).

checkA(N,A,I,J,L,S) :-
parse_leaf(N,A,I,L), !,
retract(parse_leaf(N,A,I,L)),
assertz(parse leaf(N,A,J,S))

checkA(N,A,I,J,L,S) :-
parse tree_children no(N,A,I,L,ListA,Ml),
retract(parse tree children_no(N,A,I,L,ListA,M1)),
M~Ml+l,
include child(N,A,I,L,J,S,ListA,l,M)

lnclude chlld(N,A,I,L1,J,S,L,M,M) :-!,M1=M-l,
assertz(parse_tree_children_no(N,A,J,S,L,Ml))

include_child(N,A,I,Ll,J,S,L,K,M) :-
n_element(L,~,X),
retract(parse_tree_child_no(N,A,I,L1,X,K)),
assertz(parse_tree child_no(N,A,J,S,X,K)),
NN~N+l,
checkA(NN,X,K,K,I,J),
KK=K+l,
include_child(N,A,I,L1,l ,S,L,KK,M).

1******** OP7 is the production for (ab/cd) is **************1
1******** equivalent to (ab/c)/d **************************1

op7:-
parse _tree_children _no (N,"1", S,K, ["*", "*"] ,2) ,
NN=N+1,
parse_tree _children_no (NN,"*",1, S, [A,BJ ,2) ,
parse_tree children_no (NN,"*",2,S, [C,O] ,2),
Nl~NN+l,
retract (parse_tree_children_no(N, "I",S,K, ["*","*"J ,2)),
retract_child(N,"I",S,K),
r8tract_childrenINN,"*",l,S),
retract_child (NN,"*",l,S),
retract_children (NN,"*",2,S),
retract_child (NN,"*",2,S),
retract(parse_leaf(Nl,A,l,l)),
retract(parse_leaf(N1,B,2,1)),
retract(parse_leaf(Nl,C,1,2)),
retract(parse leaf(Nl,D,2,2)),
N2~Nl+l,
asserta(parse_leaf(N2,A,l,l)),
asserta(parse_leaf(N2,B,2,l)),
asserta(parse_leaf(Nl,C,2,1)),
asserta(parse_leaf(NN,O,2,S)),
asserta (parse_tree _children_no (N,"I", S,K, ["I", OJ ,2)),
asserta(parse tree child_no(N,"I",S,K,"I",l)),

89 {.
•

asserta(parse_tree_child_Do(N,"I",S,K,O,2)),
asserta (parse_tree _children_no (NN,"1",1,1, [" *",C] ,2)),
asserta(parse_tree_child_no(NN,"I",l,I,"*",l)),
asserta(parse_tree_child_no(NN,"/",1,1,C,2)),
asserta (parse_tree _children_no (Nl,"*",1,1, [A,B] ,2)),
asserta(parse_tree_child_no(Nl,"*",l,l,A,l)),
asserta(parse tree child_T.o(Nl,"*",1,1,B,2)).

1******** OP8 is the production for (ab/cd) is **************1
1******** equivalent to (b/cd)*a ***************************1

op8:-
parse_tree_children_no(N, "/",S,K, ["*","*"] ,2),
NN~N+l,
parse_tree_children_no(NN, "*", 1,S, [A,B],2),
parse tree_chlldren _no (NN,"*",2, S, [.C,0] ,2) ,
Nl~NN+l,
retract (parse_tree_children_no(N, "I",S,K, ["*","*"],2)),
retract_child(N,"/",S,K),
retract_children(NN,"*",l,S),
retract_child(NN,"*",l,S),
retract_children (NN,"*",2,S),
retract_child (NN,"*",2,S),NM=N-l,
parse tree chlld~no(NM,R,K,U,"/",I),
retract (parse_tree_child_no(NM,R,K,U, "I",I)),
asserta(parse_tree_child_no(NM,R,K,U,"*",I)),
parse_tree_children_no(NM,R,K,U,LL,MM),
retract(parse~tree_children_no(NM,R,K,U,LL,MM)),
replace_with (LL,"*", I,1, [J, KK) ,
asserta(parse_tree_children_no(NM,R,K,U,KK,MM)),
retract (parse_leaf(Nl,A, 1,1)),
retract(parse_leaf(Nl,B,2,1)),
retract(parse_leaf(Nl,C,1,2)),
retract (parse leaf(Nl,D,2,2)),
N2=Nl+l,
asserta(parse_leaf(NN,A,l,S)),
asserta(parse_leaf(Nl,B,I,2)),
asserta(parse_leaf(N2,C,1,2)),
asserta(parse_leaf(N2,O,2,2)),
asserta (parse_tree _children_no (N,"*", S,K, [A,"I"] , 2)),
asserta(parse_tree_child_Do(N,"*",S,K,A,l)),
asserta(parse_tree_child_no(N,"*",S,K,"I",2)),
asserta (parse tree_chlldren_ no (NN,"1",2, S, [B,n*,,],2)),
asserta (parse_tree_child_no (NN,"1",2,S,B,1)),
asserta(parse tree child no(NN,"/",2,S,n*",2)),
asserta (parse-tree -child~en no (Nl,"*",2,2, [C,0] ,2)).,
asserta(parse=t:ree=child_DO(Nl,"*",2,2,C,1)),
asserta(parse tree child_no(Nl,"*",2,2,O,2)).

90 -
•..

/***** This operator makes use of the operation,a=b gives b=a . *+**/

op9:-

parse_tree _ child_no (N,n=", S,K,A, 1),
parse_tree chlld_no(N,"=",S,K,B,2),
NN=N+l,
retract (parse_tree_children_no(N, "=",S,K, [A,B],2)),
retract(parse_tree_child_no(N,"=",S,K,A,l)),
retract (parse_tree_child_no (N,"=",S,K,B,2)),
asserta (parse_tree _ chL.dren _no (N,n=", S,K, [B,A] ,2)),
asserta(parse_tree_child_no(N,"=",S,K,B,l)),
asserta(parse_tree_child_no(N,"=",S,K,A,2)),
checkA(NN,A,l,2,1,1),
checkA(NN,B,2,l,l,l) .

/***** Representation of results at each node of the parse tree ******/
/**/

get parse result:-
parse tree chlldren_no(l,R,S,K,L,M),
parse_tree_result(l,R,S,K)

parse tree result(N,R,S,K):-
parse _tree children_no(N,R,S,K,List,M),
n_element(List,l,X),
NN=N+l,
parse_leaf(NN,X,l,S), !,
assertz(parse_result(NN,S,l,X,X)),
cone at (X,R,Y) ,
find_result(N,List,R,S,K,M,l,Y) .

parse tree result(N,R,S,K):-
parse tree_chlldren_no(N,R,S,K,List,M),
n_element(List,l,X),
NN=N+l,
parse_tree_result(NN,X,l,S),
parse_result(NN,S,l,X,Zl),
con cat (21,R,Y),
find_result(N,List,R,S,K,M,l,Y)

find_result (N,.L,R,S,K,M, I,Y) :-
Il~I+1,
n_element(L,Il,X),
NN~N+l,
I1=M,

91

I \

j_.-

parse_leaf(NN,X,Il,S), l,
assertz(parse_result(NN,S,1l,X,X)),
concat (Y,X,Z),
store_parse result(N,K,S,R,Z)

find result(N,L,R,S,K,M,I,Y):-
Il~I+l,
n_element(L,1l,X),
NN=N+l,
Il=M, !,
parse tree result(NN,X,I1,Sl,
parse_result(NN,S,11,X,Zl),
conca t (Y,Z1,Z) ,
store_parse_result(N,K,S,R,Z)

find_result(N,L,R,S,K,M,I,Y) :-
11=:_+1,
n_elernent(L,Il,X),
NN~N+l,
parse leaf (NN,X, II,S), !,
concat (Y,X,Z),
con cat (Z,R,YY),
find_result(N,L,R,S,K,M,I1,YY)

find_result(N,L,R,S,K,M,I,Y) :-
Il~I+l,
n_element(L,Il,X),
NN~N+l,
parse_tree_result(NN,X,Il,S)
parse_result(NN,S,Il,X,Zl),
concat (Y,Zl,Z),
concat (2,R,YY),
find_result(N,L,R,S,K,M,Il,YY)

store_parse_result(N,K,I,R,Z) :-
R ="+", !,

concat(I'(",Z,Y),
concat(Y,")!',P),
asserta(parse result(N,K,I,R,P) l

store_parse_result(N,K,I,K,Z) :-
R ="_11, !,
concat("(",Z,Y),
concat (Y,.")",P),
asserta(parse_result(N,K,I,R,P))

store_parse result(N,K,I,R,Z):-
asserta(parse result(N,K,I,R,Z))

/***/

92

/*********** THIS IS AN IMPORTANT SECTION OF THE PROGRAM ************/
/**************************MATCHING SECTION **************************/
/**~**/

/**** After matching at the leaves, matching ************/
/**** at the internal nodes is done. *******************/

match:-
makewindow(3,7,7," MATCHING WINDOW", 4,5,20,.45),
parse tree chlldren_no(l,R,S,K,L,Ml),
M~Ml+l,
match_internal(I,R,S,K,l,M)

ma~ch internal(N,R,S,K,M,M) :-!.
match_internal(N,R,S,K,I,M) :-

parse tree chlld_no(N,R,S,K,X,I),
NN~N+l,
parse leaf(NN,X,I,S),!,
matching_leaf_list (NN,X, I,S, (J),
II~I+l,
match_internal (N,R,S,K,II,M)

match internal(N,R,S,K,I,M):-
parse_tree_child_no(N,R,S,K,X,I)
NN~N+l,
parse_tree children_no(NN,X,I,S,L,MM),
Ml~MM+l,
internal_match(NN,X,I,S,Ml),
II~I+l,
match_internal(N,R,S,K,II,M)

internal_match(N,R,S,K,M) :'_.
parse_tree child_no(N,R,S,K,X,l),
NN=N+l,
parse_leaf(NN,X,l,S),
matching_leaf_list (NN,X, 1,S, []),
matching_nodes(NN,X,I,S,SET1), !,
repit(N,~,S,K,2,M,SET1) .

internal_match (N',R, S,K,M) :-
parse_tree_child_no(N,R,S,K,X,l),
NN~N+l,
parse_tree children_no(NN,X,l,S,L,Ml),
M2~Ml+l,
internal_match(NN,Y ..l,S,M2),
matching_nodes(NN,X,1,S,SET1),
repit(N,R,S,K,2,M,SET1) .

repit(N,R,S,K,M,M,SET1) :-
!,asserta(matchlng_nodes(N,R,S,K,SET1))

repit(N,R,S,K,J,M,SET1) :-
parse_tree child_no(N,R,S,K,Y,J),
NN~N+l,
parse_leaf(NN,Y,J,S),
matching_leaf_list(NN,Y,J,S, []),

93

matching_nodes(NN,Y,J,S,SET2),
R="*", !,
intersect (SETl,SET; ,SET),
JJ~J+l,
repit(N,R,S,K,JJ,M,SET) .

repit(N,R,S,K,J,M,SETl) :-
parse_tree_child_no(N,R,S,K,Y,J),
NN=N+l,
parse_leaf(NN,Y,J,S),
matching_leaf _list (NN,Y,J,S, [J) ,
matching_nodes(NN,Y,J,S,SET2),
R=" I", !,
intersect(SET1,SET2,SET),
JJ~J+l,
repit(N,R,S,K,JJ,M,SET) .

repit(N,R,S,K,J,M,SETl) :-
parse_tree_child_no(N,R,S,K,Y,J),
NN~N+l,
parse_leaf(NN,Y,J,S),
matching_leaf_list(NN,Y,J,S, [J),
matching_nodes(NN,Y,J,S,SET2),
R="+", !,
union(SET1,SET2,SET),
JJ~J+l,
repit(N,R,S,K,JJ,M,SET)

repit(N,R,S,K,J,M,SETl) :-
parse_tree child _I.O (N,R,S,K, Y,J) ,
NN=N+l,
parse_leaf(NN,Y,J,S),
matching_leaf_list(NN,Y,J,S, []),
matching_nodes(NN,Y,J,S,SET2),
R="_" I, .,
union(SET1,SET2,SET),
JJ~J+l,
repit(N,R,S,K,JJ,M,SET} .

repit{N,R,S,K,J,M,SETl) :-
parse_tree child_no(N,R,S,K,Y,J),
NN=N+l,
parse_tree children_no(NN,Y,J,S,L,Ml},
M2~Ml+l,
internal_rnatch(NN,Y,J,S,M2),
matching_nodes(NN,Y,J,S,SET2),
R="*", !,
intersect(SET1,SET2,SET),
JJ~J+l,
repit(N,R,S,K,JJ,M,SET) .

repit(N,R,S,K,J,M,SETl) :-
parse_tree child_no(N,R,S,K,Y,J),
NN=N+l,
parse_tree children_no(NN,Y,J,S,L,Ml),
M2~Ml+l,
internal_match(NN,Y,J,S,M2),
rnatching_nodes(NN,Y,J,S,SET2),
R=" I", !,
intersect(SET1,SET2,SET),
JJ~J+l,

94

repit(N,R,S,K,JJ,M,SET) .
repit(N,R,S,K,J,M,$ETl) :-

parse tree chlld_no(N,R,S,K,Y,J),
NN~N+l,
parse_tree children_no(NN,Y,J,S,L,Ml),
M2~Ml+l,
internal_match(NN,Y,J,S,M2),
matching_nodes (NN. f, J,S,SET2) ,
R="+", !,
union(SETl,SET2,SET),
JJ~J+l,
repit(N,R,S,K,JJ,M,SET) .

repit(N,R,S,K,J,M,SETl) :-
parse_tree_child_nO(N,R,S,K,Y,J),
NN~N+l,
parse_tree_children_no(NN,Y,J,S,L,Ml),
M2~Ml+l,
internal_match(NN,Y,J,S,M2),
matching_nodes(NN,Y,J,S,SET2),
R=,,_n,
union(SETl,SET2,SET),
JJ~J+l,
repit(N,R,S,K,JJ,M,SET) .

/*******************THIS SECTION IS FOR MATCHING AT*****************/
/********************LEAVES***/
/***/

matching leaf_list(N,R,I,S,L):-
matched_leaf(R,M),1,
asserta(matching_nodes(N,R,I,S,M)) .

rnatching_leaf_list(N,R,I,S,L) ;-
write ("Enter the process tree nodes that "),nl,
write{"rnatch I ",R, II ': ") ,nl,
matching_nodes_list(N,R,I,S,L,M),
asserta(matching_nodes(N,R,r,S,M)),
asserta(matched_leaf(R,M))

rnatching_nodes_list(N,R,r,S,List,Matchlist) ;_
readln(Matchnode),
Matchnode<>"", !,
append_list(Matchnode,List,Newrnatchlist),
matching_nodes_list(N,R,I,S,Newmatchlist,Matchlist) .

matching_nodes list(N,R,I,S,List,List).

/*****
/*****

THIS PORTION OF THE PROGkAM IS FOR OUTPUT **********/
AND FOR DISCARDING IRRELEVANT SUBPROCESSES.*********/

95

accumulation::""
parse tree children no(l,R,l,l,L,M),
M1~M+1,
accumulate(l,R,l,l, [],l,Ml).

accumulate(N,R,S"K,Ll,M,M) :-!.
accumulate(N,R,S,K,Ll,I,M) :-

parse_tree child_no(N,R,S,K,X,I),
NN=N+1,
parse_leaf(NN,X,I,S), !~
11=1+1,
accumulate (!\I, R,S,K,L1,~.I,M) .

accumulate(N,R,S,K,Ll,I,M) :-
parse_tree chlld_no(N,R,S,K,X,I),
NN=N+l,
matching_nodes(NN,X,I,S,L),
1ength(L, I),!,
parse_tree children_no(NN,X,I,S,LIST,Kl) ,
KK~K1+1,
accumulate(NN,X,I,S,Ll,l,KK),
II~I+1,
accurnulate(N,R,S,K,Ll,II,M) .

accumulate(N,R,S,K,Ll,I,M) :-
parse_tree_child_no(N,R,S,K,X,I),
NN=N+1,
matching_nodes(NN,X,I,S,L),
length (L, J),
J>O,
find_root(L,P), !,
retract(matshing_nodes(NN,X,I,S,L)),
asserta (matching_nodes (NN,X, I,S, [pl)),
parse_tree children no(NN,X,I,S,LIST,Kl),
KK~K1+1,
add(P,L1,L2} ,
accumulate(NN,X,1,S,LL,l,KK),
II~I+1,
accumulate(N,R,S,K,L1,I1,M) .

accumulate(N,R,S,K,L1,I,M) :-
parse_tree_child no(N,R,S,K,X,I),
NN~N+1,
matchlng nodes(NN,X,I,S,LK),
deduct(LK,L1,L),
length(L, l),!,
retract (matching nodes{NN,X,I,S,LK)),
asserta(matching_nodes(NN,X,I,S,L)),
parse _tre-e children_no (NN,X, I,S,LIST, K1) ,
KK~K1+1,
accurnulate(NN,X,I,S,Ll,l,KK),
11=1+1,
accurnulate(N,R,S,K,L1,II,M)

accwRulate(N,R,S,K,Ll,I,M) :-
operator_search,

96

/*****
/****",.

retract_result,
retract_match,
get_parse result,
match,
accumulation.

THIS PORTION OF THE PROGRAM IS FOR OUTPUT **********/
AND FOR DISCARDING IRRELEVANT SUBPROCESSES.*********/

",4,5,18,50),

assertion:-
makewindow(4,7,7," OUTPUT SCREEN
parse_tree children_no(l,R,l,l,L,M),
Ml~M+l,
speak{l,R,l,l,l,Ml) .

speak(N,R,S,K,.M,M) :-!.
speak(N,R,S,K,I,M) :-

parse_tree_child~no(N,R,S,K,X,I),
NN=N+l,
parse_leaf{NN,X,I~S), !,
II~I+l,
speak(N,R,S,K,II,M) .

speak(N,RfS,K,I,M) :-
parse_tree child_no(N,R,S,K,X,I),
NN~N+l,
matching_nodes (NN,X,I,S;L) ,
parse result(NN,S,I,X,Y;,
write("The equation at the node",L,"is:",Y),nl,
write("Press Enter: II),
readln (AI,
A="" ,
nl,
parse tree Chlldren no(NN,X,I,S,LIST,Kl),
KK~Kl+l,
speak(NN,X, I,S,l,KK),
II~I+l,
speak(N,R,8,K,II,M)

speak(N,R,8,K,I,M) .

/************ This section analyses the process tree for match********/
/**T*~.******* and uses the helping predicate3*************************/

whether~sarne_process_branch:-
process tree children ~no (1,R, 1,IJ,M) ,
Ml~M+l,
sarne_branch(L,1,M1) .

same branch(L,M,M) :-!.
same=branch(L, I,M)

97

n_element{L,I,X),
same_branch_check{X) ,
II~I+l,
same_branch{L,II,M) .

same_branch_check{X) ;-
process_leaf(N,X,I), !,
asserta(same_process_branch(X, [X])).

same_branch_check(X) ;-
process_tree_children_no(N,X,I,L,M),
Ml~M+l,
next_checkIX,L, [],l,Ml).

next_check(X,L,Ll,Ml,Ml) :-!,
append ([X],Ll,LL),
asserta(same_process_branch(X,LL)) .

next check(X,L,Ll,I,Ml):-
n_element(L,I,Y),
same_branch_check(Y),
same_proces3_branch(Y,YL),
append(Ll,YL,LL),
II~I+1,
next check(X,L,LL,II,Ml).

equal_listie], []):-!.
equal_list (L,LL) :-

lengthIL,K) ,
length (LL,K) ,
n_element(L,l,X),
member (X,LL) ,
pull IX,L,Ll) ,
pull (X,LL,L2) ,
equal listILl,L2).

add(p,L,LL) :-
member (P, L) , ! ,
LL~L.

add(p,L,LL) :-
append([P],L,LL) .

deduct (LL, [J , LL) :-! .
deduct (LL, [HIT],Ll) :-

pull(H,LL,L2),
deduct(L2,T,Ll) .

find_root (L,P) :-
same_process branch(P,LL),
equal listIL,LL).

98

length ([],0) :-! .
lengthl[_IR],L) :-

length (R,Ll),
L~Ll +1.

retract children(N,A,I,K):-
retract (pars8_tree_children no(N,A,I,K, ,)),fail.

retract children(N,A,I,K).

retract child(NtA,I,K):-
retract (parse_tree child no (N,A, If K/" ,)), fail.

retract child(N,A,I,K).

retract result:-
retract (parse

retract result.
result(_,_,_,_,_)),fail.

retract match:-
retract(rnatching_nodes(_,_,_,_,_)),fail.

retract match.

union([],SET2,SET2) :-
! .

union([HIT],SET2,LIST) :-
rnember(H,SET2), !,
union(T,SET2,LIST) .

union([HIT],SET2,LIST) :-
append (SET2, [H],NEW),
union(T,NEW,LIST) ,

intersect ([],REM, []) :-
! .

intersect (REM, [], []):-
! .

intersect([HITl],SET2,LIST) :-
member(H,SET2),
pull(H,SET2,REM),
intersect(Tl,SET2,NEW), !,
append([H],NEW,LIST) .

99 \

•-,--

J
I
"

intersect([HIT],SET2,LIST) :-
intersect(T,SET2,LIST)

append([],LISTB,LISTB) .
append I[XILISTl] ,LIST2, [XILIST3]):-

appendILISTl,LIST2,LIST3) .

member (X, [XI]):-!.
member (X, [_ITAIL]):-

member IX,TAIL)

pull IX, [X IList] ,List) :-! .
pull(X, [OTHERIREM], [OTHERIREMl]):-

pull (X,REM,REMl) .

check (A) :-
A="y" I!'

check (A) :-
A="y" .

response (Reply) :-
readl~ (Reply) ,
write(Reply),nl.

/*************************************~**********~** *****+/
/*********************************THEEND******************************+/
1***~/

100

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109

