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ABSTRACT

Designing a good relational database for a particular system is still a challenging job for

database designer. The designer must have expert knowledge on relational database theories,

attribute dependencies (i.e., functional and multi valued dependencies) and normalization.

Different design methodologies practiced at present do not use machine learning techniques.

Seeing examples of data, machine learning techniques provide us the underlying attribute

dependencies and the inherent structure that the database would possess. After having

extensive investigation, it has become evident that machine learning techniques would

certainly be a useful tool in designing good relational databases and the designer would not

necessarily be a theoretical expert. And the design effort would reduce merely to collect

attributes and the values on the attributes from a particular system. A new design framework

has been proposed in which all the attributes from a particular system has been collected first.

The initial database schema has been defined taking all the attributes in a single relation and

instances have been collected on it. Machine Learning software has been developed for

getting the underlying attribute dependencies (i.e., functional and multi-valued dependencies)

in the initial database. New algorithms have been proposed and software has been developed

to get relational database in 2NF using the set of functional and multi valued dependencies.

Software has been developed for getting good relational databases by further characterizing

and normalizing these 2NF relations into 3NF, BCNF and 4NF.
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Chapter 1
Introduction

1.1 Data Analysis and Database Model

~ . '. - -

.'.,

Data analysis concentrates on understanding and documenting data, which it is argued,

represents the 'fundamental building block of systems'. Even if applications change, the data

already collected may still be relevant to the new or revised system and therefore need not to

be collected and validated again. The data model, the result of data analysis, is orientated

towards that part of the real world it represents and should be implementation independent

[3].

Underlying structure of a database is the concept of a data model, a collection of tools for

describing data, data relationships, data semantics, and consistency constraints. The various

data models, such as object-based logical models, record-based logical models, and physical

data models, have been discussed elaborately in chapter two.

Relational data model is a record-based data model and is used in describing data at the

conceptual and view levels. In this model database is structured in fixed format records of

several types. Each record type defines a fixed number of attributes and each attribute is

usually of a fixed length. The use of fixed-length records simplifies the physical-level

implementation of the database. This makes the relational data models most popular data

models.

A relational database consists of a collection of tables, each of which is assigned a unique

name. A row in a table represents a relationship among a set of values. The structure of

relational database has been discussed in chapter three.

1.2 The Goal of Relational Database Design

In general, the goal of a relational database design is to generate a set of relation schemes that

allow us to store information without unnecessary redundancy, yet allow us to retrieve

information easily. One approach is t6 design schemes that are in an ap~ ~ form.
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Due to bad database design repetition of information and loss of information .incur in

databases. The repetition of information complicates updating, insertion and deletion in a

database [14].

1.3 Different Normal Forms

The various normal forms have been discussed in chapter five.

1.3.1 First Normal Form (1NF)

First normal form ensures that all the attributes are atomic (that is, in the smallest possible

components). This means that there is only one possible value for each domain and not a set

of values. This is often expressed as the fact that relations must not contain repeating groups.

1.3.2 Second Normal Form (2NF)

Second Normal Form ensures that all non-key attributes are functionally dependent on all of

the keys.

1.3.3 Third Normal Form (3NF)

A database is in 3NF if for every functional dependency, that holds on the relation/relations

of that database, the antecedent is the key or the consequent is a part of any key for the

relation/relations.

1.3.4 Boyce-Codd Normal Form (BCNF)

A database is in BCNF if for every functional dependency of every relation, the antecedent is

the key for the relation.

1.3.5 Fourth Normal Form (4NF)

A database is in 4NF if for every multi valued dependency of every relation, the antecedent is
)

the key for the relation.
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1.4 Functional and Multi-Valued dependencies

Functional and multi-valued dependencies are constraints on the set of legal relations. They

allow us to express facts about the enterprise that we are modeling with our database [16].

1.4.1 Functional Dependency

Functional dependency is illustrated by an arrow. The arrow will point from A to B in the

functional dependency if the value of A uniquely determines the value of B and A and B are

the attribute or the set of attributes of a. relation R. Basic concept and the theories of

functional dependencies have been focussed in chapter four.

1.4.2 Multi Valued Dependency

Multi valued dependency is illustrated by a double-arrow. The double-arrow will point from

A to B in the multi valued dependency if the value of A multi determines the value of B and A

and B are the attribute or the set of attributes of a relation R. Theory of multi-valued

dependencies have been discussed in chapter five.

1.5 Normalization based on Functional and Multi Valued
Dependencies

A given set of functional and multi-valued dependencies can be used in designing a given

database in which most of the undesirable properties do not occur. In designing such a

system, it may become necessary to decompose a relation to a number of smaller relations.

Several normal forms such as 3NF, BCNF, and 4NF ensure "good" database designs. A

database is a good database if it is either in BCNF or in 3NF. If there is any multi-valued

dependency, holds on the relation/relations of a database, which is already either in BCNF or

in 3NF we would not say it is a good database since the presence of multi-valued

dependency/dependencies would cause repetition of information. We have to decompose this

database into smaller databases in 4NF, i.e., decomposed relation/relations would not have
J

any multi-valued dependency. Between 3NF and BCNF normal form BCNF is preferable, but

in some cases decomposition towards BCNF causes loss of dependencies. In any case, we

would not allow the loss of dependency. To avoid the loss of dependency we would prefer
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the decomposition towards 3NF instead of BCNF when necessary [16]. We can use

independent program for the decomposition of a relation towards 3NF, BCNF, and 4NF. The

various algorithms for the characterization (decomposition) of databases using functional

dependencies have been discussed in chapter five. Algorithm for the decomposition of a

database using multi-valued dependencies has also been discussed in chapter five.

1.6 Machine Learning Algorithms for determining
Functional and Multi Valued Dependencies

Determining the set of functional and multi-valued dependencies those holds on the relations

of a database is also a design issue. Definitely, the clue of finding the set of dependencies is

not the data structure but the data itself Collecting sufficient number of records (tuples) on a

particular relation, the dependencies can be justified based on them. If a dependency is

refuted by data we can say this dependency does not hold [9]. The process of refutation can

be done using specific machine learning algorithms. Functional dependency and multi-valued

dependency have separate algorithms both incremental and non-incremental. Machine

learning theories for functional and multi-valued dependencies have been discussed in

chapter six. The algorithms for the characterization of databases using machine learning

techniques have also been discussed in chapter six.

1.7 Previous Work

The first discussion of relational database design theory appeared in an early paper by Codd

[1970]. During the 1970's a large number of dependencies and normal forms were

introduced. Codd [1970] defined functional dependencies. Armstrong' s axioms were

introduced in Armstrong [1974]. Codd [1972a] introduced first, second and third normal

forms.

BCNF was introduced in Codd [1972a]. The desirability of BCNF was discussed in Bernstein

and Gooddman [1980b]. Beeri et al. [1977] gave a set of axioms for functional and multi

valued dependencies and proved that their axioms are sound and complete. Biskup et aI.

[1979] gave the algorithm to find a loss less join dependency preserving decomposition into

3NF.
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Maier [1983] presented the theory of relational databases in detail. Ullman [1982a] presented

a more theoretic coverage of many of the normal forms.

Flach [1990] discussed Machine Learning theories for functional and multi valued

dependencies of relational databases and gave Machine Learning algorithms for finding these

dependencies.

1.8 Scope of the Work

Designing a good relational database for a particular system is still a challenging job for

database designer. The designer must have expert knowledge on relational database theories,

functional and multi valued dependencies and normalization. Different design methodologies

practiced at present do not use machine learning techniques. After having extensive

investigation it has become evident that machine learning techniques would certainly be a

useful tool in designing good relational databases and the designer would not necessary to be

a theoretical expert. And the design effort would reduce merely to collect attributes and the

values on the attributes from a particular system.

1.9 Proposed Design Framework and new Algorithms

In the proposed design Framework designers have to collect all the attributes and the values

on these attributes from the system. Machine learning software would find the set of

functional and multi valued dependencies among the attributes. Taking these sets of

dependencies as input software will give good relational database as output. New algorithms

have been proposed to get relational database in 2NF using the set of functional and multi

valued dependencies. Chapter seven discusses the complete design Frame work and new

algorithms for the characterization of relational databases. Chapter eight shows the

experimental results.
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Chapter 2
Data Models

Underlying structure of a database is the concept of a data model, a collection of conceptual

tools for describing data, data relationships, data semantics, and consistency constraints. The

various data models that have been proposed fall into three different groups: object-based

logical models, record-based logical models, and physical data models [16].

2.1 Object-Based Logical Models

Object-based logical models are used in describing data at the conceptual and view levels.

They are characterized by the fact that they provide fairly flexible structuring capabilities and

allow data constraints to be specified explicitly. There are many different models, and more

are likely to come. Some of the more widely known ones are:

• The entity-relationship model.

• The object-oriented model

• The binary model.

• The semantic data model.

• The info logical model

• The functional data model.

The entity~relationship model and the object-oriented model represent the class of object-

base logical models. The entity-relationship model has gained acceptance in database design

and is widely used in practice. The object-oriented model includes many of the concepts of

the entity-relationship model, but represents executable code as well as data. It is rapidly

gaining acceptance in practice. Below are brief descriptions of both models.

2.1.1 The Entity-Relationship Model.

The entity-relationship (E-R) data model is based on a perception of a real world. which

consists of a collection of basic objects called entities, and relationships among these objects.

An entity is an object that is distingnishable from other objects by a specific set of attributes.
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For example, the attributes account number and balance describe one particular account in a

banle A relationship is an association-among several entities. For example, a eustAccl

relationship associates a customer with each account that she or he has. The set of all entities

of the same type and relationships of the same type are termed an entity set and relationship

set, respectively.

In addition to entities and relationships, the E-R model represents certain constraints to which

the contents of a database must conform. One important constraint is mapping cardinalities,

which express the number of entities to which another entity can be associated via a

relationship set.

The overall logical structure of a database can be expressed graphically by an E-R diagram,

which consists of the following components.

• Rectangles, which represent entity sets.

• Ellipses, which represent attributes.

• Diamonds, which represent relationships among entity sets.

• Lines, which link attributes to entity sets and entity sets to relationships.

Each component is labeled with the entity or relationship it represents.

The corresponding E-R diagram of a database banking system consisting of customers and

accounts is shown in Figure 2.1

customer

Figure 2.1 A Sample E-R diagram.
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2.1.2 The Object-Oriented Model

Like the E-R model, the object-oriented model is based on it collection of objects. An object

contains values stored in instance variables within the object. Unlike the record-oriented

models, these values are themselves objects. Thus, objects contain objects to an arbitrary

level of nesting. An object also contains bodies of code that operate on the object. These

bodies of code are called methods.

Objects those contain the same types of values and methods are grouped together into classes.

A class may be viewed as a type definition for objects. This combination of data and code

into a type definition is similar to the programming language concept of abstract data types.

The only way in which one object can access the data of another object is by invoking a

method of that object. This is called sending a message to the object. Thus, the call interface

of the methods of an object defines its externally visible part. The internal part of the object,

i.e., the instance variables and method code are not visible externally. This results in two

levels of data abstraction.

To illustrate the concept, consider an object representing a bank account. Such an object

contains instance variable number and balance, representing the account number and account

balance. It contains a method pay-interest, which adds interest to the balance. Assume that

the bank had been paying 6 percent interest on all accounts but now is changing its policy to

pay 5 percent ifthe balance is less than $1000 or 6 percent if the balance is $1000 or greater.

Under most data models, this would involve changing code in one or more application

programs. Under the object-oriented model, the only change is made within the pay-interest.

method. The external interface to the object remains unchanged.

Unlike entities in the E-R model, each object has its own unique identity independent of the

values it contains. Thus, two objects containing the same values are nevertheless distinct. The

distinction among individual objects is maintained in the physical level through the .

assignment of distinct object identifiers.

Page 8



2.2 Record-Based Logical Models

Record-based logical models are used in describing data at tbe conceptual and view levels. In

contrast to object-based data models, they are used both to specify the overall logical

structure of tbe database and to provide a higher-level description ofthe implementation.

Record-based models are so named because the database is structured in fixed-format records

of several types. Each record type defines a fixed number of fields, or attributes, and each

field is usually of a fixed length. The use of fixed-length records simplifies the physical-level

implementation of the database. This is in contrast to many of the object-based models in

which obj ects may contain otber objects to an arbitrary depth of nesting. The richer structure

oftbis database often leads to variable-length records at the physical level.

Record-based data models do not include a mechanism for the direct representation of code in

the database. Instead, there are separate languages that are associated with the model to

express database queries and updates. Some object-based models (including the object-

oriented model) include executable code as an integral part of the data model itself.

The three most widely accepted data models are the relational, network, and hierarchical

models. The relational model has gained favor over the other two in recent years. The

network and hierarchical models, are still used in a large number of older databases.

2.2.1 Relational Model

The relational model represents data and relationships among data by a ~ollection of tables,

each of which has a number of columns with unique names. Figure 2.2 is a sample relational

database showing customers and the accounts they have. It shows, for example, that customer

Hodges lives at Sidehill in Brooklyn, and has two accounts, one numbered 647 with a balance

of $105,366, and the otber numbered 801 with a balance of $10,533. Note that customers.

Shiver and Hodges share account number 647 (they may share a business venture).
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2.2.2

name Street city number

Lowery Maple Queens 900
Shiver North

.
Bronx 556

Shiver North Bronx 647
Hodges Sidehill Brooklyn 801
Hodges Sidehill Brooklyn 647

Name balance

900 55
556 100000
647 105366
801 10533

Figure 2.2. A sample relational database.

Network Model

Data in the network model are represented by collections of records (in the Pascal or PL/I

sense) and relationships among data are represented by links, which can be viewed as

pointers. The records in the database are organized as collections of arbitrary graphs. Figure

2.3 presents a sample network database using the same information as in Figure 2.2.

I Lowery I Maple , Queens I I 900 I 55 I
I Shiver I North I Bronx I . j 556 I 100000 I

I~
647 I 105366 I

I Hodges I Sidehill I Brooklyn
~ 801 I 10533 I

Figure 2.3 A sample of network database

Page 10
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2.2.3 Hierarchical Model

The hierarchical model is similar to the network model in the sense that data and

.relationships among data are represented by records and links respectively. It differs from the

network model in that the records are organized as collections of trees rather than arbitrary

graphs. Figure 2.4 presents a. sample hierarchical database with the same information as in

Figure 2.3.

I 801 I 10 533

Bronx

Hodges

North

I

~,

Shiver--------------I 556 I 100000 I I r..47 I In''~r..,,,

I 55

I Lowery

I 900

Figure 2.4 A sample of hierarchical database

2.3 Differences Between the Models

The relational model differs from the network and hierarchical models in that it does not use

pointers or links. Instead, the relational model relates records by the values they contain. This

freedom from the use of pointers allows a formal mathematical foundation to be defIned.

Page 11
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Chapter 3
Structure of Relational Databases

A relational database consists of a collection of tables, each of which is assigned a unique

name. A row in a table represents a relationship among a set of values.' Since a table is a

collection of such relationships, there is a close correspondence between the concept of table

and the mathematical concept of relation, from which the relational data model takes its name

[16].

3.1 Basic Structure

Consider the deposit table of Figure 3.1. It has four attributes: branch-name, account-number,

customer-name, and balance. For each attribute, there is a set of permitted values, called the

domain of that attribute. For the attribute branch-name, for example, the domain is the set of

all branch names. Let Di denote this set and let D2 denote the set of all account-numbers, D3

the set of all customer names, and D4 the set of all balances. Any row of deposit must consist

of 4-tuples (Vi, V2, V3, V4), where Vi is a branch name (that is, Vi is in domain Di), V2 is an

account number (that is, V2 is in domain D2), V3 is a customer name (that is, V3 is in domain

D3), and V4 is a balance (that is, V4 is in domain D4). In general, deposit will contain only a

subset of the set of all possible rows. Therefore deposit is a subset of

Dj xD2 xD3 X D4

In general, a table of n columns must be a subset of

Mathematicians defme a relation to be a subset of a Cartesian product of a list of domains.

This corresponds exactly with our definition of table. The only difference is that we have

assigned names to attributes, whereas mathematicians rely on numeric "names," using the

integer I to denote the attribute wh6se domain appears first in the list of domains, 2 for the
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attribute whose domain appears second, and so on. Because tables are essentially relations,

we can use the mathematical terms relation and tuple in place ofthe terms table and row.

Inthe deposit relation of Figure 3.1, there are eight-tuples. Let the tuple variable t refer to the

first tuple of the relation. We use the notation t[branch-name] to denote the value of t on the

branch-name attribute. Thus,

branch- Account- customer-name Balance

. name number

Downtown 101 Johnson 500

Mianus 215 Smith 700

Perryridge 102 Hayes 400

Round Hill 305 Turner 350

Perryridge 201 Williams 900

Redwood 222 Lindsay 700

Brighton 217 Green 750

Downtown 105 Green 850

Figure 3.1 The deposit relation.

t[ branch-name] = "Downtown". Similarly, t[account-number] = 101, the value of t on the

account-number attribute. Customer-name and balance follow suit. Alternatively, we may

write t[l] to denote the value of tuple t on the first attribute (branch-name), t[2] to denote

account-number, and so on. Since a relation is a set of tuples, we use the mathematical

notation fEr to denote that tuple t is in relation r.

We shall require that for all relations r, the domains of all attributes of r be atomic. A domain

is atomic if elements of the domain are considered to be indivisible units. For example, the

set of integers is an atomic domain, but the set of all sets of integers is a non-atomic domain.

The distinction is that we do not normally consider integers to have subparts, but we consider

sets of integers to have subparts, namely, the integers comprising the set. The important issue

is not the domain itself, but the way we use domain elements in our database. The domain of
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all integers would be non-atomic if we considered each integer to be an ordered list of digits.

We would use atomic domains.

3.2 Database Scheme

When we talk about a database, we must differentiate between the database scheme, or, the

logical design of the database, and a database instance, which is the data in the database at a

given instant in time.

The concept of a relation scheme corresponds to the programming language notion of type

definition. A variable of a given type has a particular value at a given instant in time. Thus, a

variable in programming languages corresponds to the concept of an instance of a relation.

It is convenient to give a name to a relation scheme, just as we give names to type definitions

in programming languages. We adopt the convention of using lower case names for relations

and names beginning with an uppercase letter for relation schemes. Following this notation,

we use Deposit-scheme to denote the relation scheme for relation deposit. Thus,

Deposit-scheme = (branch-name, account-number, customer-name, balance)

We denote the fact that deposit is a relation on the scheme Deposit by

deposit (Deposit-scheme)

In general, a relation scheme is a list of attributes and their corresponding domains. To defme

domains for the relation deposit, we can use the notation

(branch-name: string, account-number: integer,

customer-name: string, balance: integer)

As another example, consider the customer relation of Figure 3.2. The scheme for that

relation is
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Customer-scheme = (customer-name, street, customer-city)

Customer-name Street customer-

city

Jones Main Harrison

Smith North Rye

Hayes Main Harrison

Curry North Rye

Lindsay Park Pittsfield

Turner Putnam Stamford

Williams Nassau Princeton

Adams Spring Pittsfield

Johnson Alma Palo Alto

Glenn SandHill Woodside

Brooks Senator Broklyn

Green Walnut Stamford

Figure 3.2. The customer relation.

Note that the attribute customer-name appears in both relation schemes. This is not a

coincidence. Rather, the use of common attributes in relation schemes is one way of relating

tuples of distinct relations. For example, suppose we wish to find the cities where depositors

of the Perryridge branch live. We look first at the deposit relation to find all depositors of the

Perryridge branch. Then, for each stich customer, we would look in the customer relation to

find the city in which he or she lives. Using the terminology of the entity-relationship model,

we say that the attribute customer-name represents the same entity set in both relations.

It would appear that, for our banking example, we could have just one relation scheme rather

than several. That is, it may be easier for a user to think in terms of one relation scheme

rather than several. Suppose we used only one relation for our example, with scheme

Account-info-scheme = (branch-name, account-number, customer-name,

balance, street, customer-city).
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Observe that if a customer has several accounts, we must list her or his address once for each

account. That is, we must repeat certain information several times. This repetition is wasteful

and is avoided by the use of two relations, as in our example.

In addition, if a customer has one or more accounts, but has not provided an address, we

cannot construct a tuple onAccount-info-scheme, since the values for street and customer-city

are not known. To represent incomplete tuples, we must use null values. Thus, in the above

example, the values for street and customer-city must be null. By using two relations, one on

Customer-scheme and one on Deposit-scheme, we can represent customers whose address is

unknown, without using null values. We simply use a tuple on Deposit-scheme to represent

the information until the address information becomes available.

It is not always possible to eliminate null values. Suppose, for example, that we include the

attribute phone-number in the Customer-scheme. It may be that a customer does not have a

phone number, or that the phone number is unlisted. We would then have to resort to null

values to signify that the value is unknown or does not exist. Null values cause a number of

difficulties in accessing or updating the database, and thus should be eliminated if possible.

3.3 Keys

A super-key is a set of one or more attributes which, taken collectively, allow us to identify

uniquely a tuple in a relational scheme. For example, the social-security attribute of the

customer relation in Figure 3.3 is sufficient to distinguish one customer tuple from another.

Thus social-security is a super-key. Similarly, the combination of customer-name and social-

security is a super-key for the customer relation. The customer-name attribute is not a super-

key, as several people might have the same name. The concept of super-key is not sufficient

for our purpose, since, as we saw above, a super-key may contain extraneous attributes. If K

is a super-key, then so is any superset of K .We are often interested in super-keys for which

no proper subset is a super-key. Such minimal super-keys are called candidate keys.

It is possible that several distinct sets of attributes could serve as a candidate key. For

example a combination of customer-name and street is sufficient to .distinguish among tuples

Page 16



of the customer relation. Then both {social-security} and {customer-name, street } are

candidate keys. Although the attributes social-security and customer-name together can

distinguish tuples of customer relation, their combination does not form a candidate key,

since the attribute social-security alone is a candidate key.

Primary key is a candidate key that is chosen by the database designer as the principal means

of identifying tuples within a relation scheme.

Customer- social- street Customer-

name. security city

Oliver 654-32-1098 Main Harrison

Harris 890-12-3456 North Rye

Marsh 456-78-9012 Main Harrison

Pepper 369-12-1518 North Rye

Ratliff 246-80-1214 Park Pitsfield

Brill 121-21-2121 Putnam Stamford

Evers 135-79-1357 Nassau Princeton

Figure 3.3 The customer relation

A banking enterprise can be assumed with the following schemes

Branch-scheme = (branchcname, assets, branch-city)

Customer-scheme = (customer-name, street, customer-city)

Deposit-scheme ~ (branch-name, account-number, customer-name, balance)

Borrow-scheme = (branch-name, loan-number, customer-name, amount)

The primary keys for the Customer and Branch entity sets are customer-name and branch-

name, respectively.

Figures 3.4 and 3.6 show a sample borrow (Borrow-scheme) relation and a branch (Branch-

scheme) relation, respectively.

In Branch-scheme, {branch-name} and {branch-name, branch-city} are both super-keys.

{branch-name, branch-city} is not a candidate key, because {branch-name} ~ {branch-

Page 17



name, branch-city} and {branch-name} itself is a super-key. {branch-name}, however is a

candidate key, which for our purpose will also serve as a primary key. The attribute branch-

city is not a super-key, since two branches in the same city may have different names {and

different assets figures). The primary key for Customer-scheme is social-security attribute.

branch-name loan- customer-name Amount

number

Downtown 17 Jones 1000
Redwood. 23 Smith 2000
Perryridge 15 Hayes 1500
Downtown 14 Jackson 1500
Mianus 93 Curry 500

Round Hill II Turner 900
Pownal 29 Williams 1200

North Town 16 Adams 1300
Downtown 18 Johnson 2000
Perryridge 25 Glenn 2500
Brighton 10 Brooks 2200

Figure 3.4. The borrow relation.

branch-name Assets branch-city

Downtown 9000000 . Brooklyn

Redwood 2100000 Palo Alto

Perryridge 1700000 Horseneck

MiMms 400000 Horseneck

Round Hill 8000000 Horseneck

Pownal 300000 Bennington

North Town 3700000 Rye

Brighton 7100000 Brooklyn

Figure 3.5 : The branch relation.
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Let R be a relational scheme. If we say that a subset K of R is a super-key for R, we are

restricting consideration to relations r(R) in which no two distinct tuples have the same values

on all attributes in K. That is, if I} and 12are in r and I} otc 12,then I}[K] otc 12[K].

3.4 Query Languages

A query language is a language in which a user requests information from the database.

These languages are typically at a higher level than standard programming languages. Query

languages can be categorized as being either procedural or non-procedural. In a procedural

language, the user instructs the system to perform a sequence of operations on the database to

compute the desired result. In a non-procedural language, the user describes the information

desired without giving a specific procedure for obtaining that information.

Most commercial relational database systems offer a query language that includes elements

of both the procedural and the non-procedural approaches. The relational algebra is

procedural, while the tuple relational calculus and the domain relational calculus are non-

procedural. These query languages are terse and formal, lacking the "syntactic sugar" of

commercial languages; but they illustrate the fundamental techniques for extracting data form

the database.

A complete data manipulation language includes not only a query language, but also a

language for database modification. Such languages include commands to insert and delete.

tuples as well as commands to modify parts of existing tuples.
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Chapter 4
Functional Dependency

4.1 Basic Concepts

Functi(:mal dependencies are one kind of constraint on the set of legal relations. They allow us

to express facts about the enterprise that we are modeling with our database [16l

We have defined the notion of a super key as follows. Let R be a relation scheme. A subset K

of R is a super key of R if, in any legal relation r(R), for all pairs t} and t2 of tuples in r such

that t} '" t2, t}[K] * t2[K]. That is, no two tuples in any legal relation r(R) may have the same

value on attribute set K.

The notion of functional dependency generalizes the notion of super key. Let a<;;; R and P <;;;

R. The functional dependency a~p holds on R if for any legal relation r(R), for all pairs of

tuples t} and t2 in r such that t} [a]=t2 [a], it is also the case the t}[P] = t2[Pl

Using the functional dependency notation, we say that K is a super key of R if K~R. That is,

K is a super key if whenever t}[K] = t2[K], it is also case that t}[R] = t2[R] (that is, t) ~ t2).

Functional dependencies allow us to express constraints that cannot be expressed using super

keys. Consider the scheme:

Borrow-scheme = (branch-name, loan-number, customer-name, amount).

If a given loan may be made to more than one customer (for example, to both of a

husband/wife pair), then we would not expect the attribute loan number to be a super key.
(

However, we do expect the functional dependency

loan-number ~ amount

To hold, since we know that each l0¥1-number is associated with precisely one amount.

We shall use functional dependencies in two ways :
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I)To specify constraints on the set oflegal relations. We shall thus concern ourselves

only with relations that satisfy a given set of functional dependencies. If we wish to

constrain ourselves to relations on scheme R that satisfy functional dependency F, we

say that F holds on R.

2)To test relations to see if they are legal under a given set of functional

dependencies. If a relation r is legal under a set F of functional dependencies, we say

that r satisfies F.

Let us consider the relation r of Figure 4.1 and see which functional dependencies are

satisfied. Observe that A --+ C is satisfied. There are two tuples that have an A-value of a}.

These tuples have the same C-value, namely, C}. Similarly, the two tuples with an A-value of

a2 have the same

A B C D

a} b} C} d}

a} b2 c} d2

a2 b2 C2 d2

a2 b; C2 d;

a; b; C2 d,

Figure 4.1 Sample relation r.

C-value, C2. There are no other pairs of distinct tuples that have the same A-value. The

functional dependency C--+A is not satisfied, however. To see this, consider the tuples I} =

(a2,b;, C2. d;) and 12 = (a;. bJ, C2, d,). These two tuples have the same C-value, C2, but they

have different A-values, a2 and a;, respectively. Thus, we have found a pair of tuples I} and 12
(

Many other functional dependencies are satisfied by r, including, for example, the functional

dependency AB--+D. Note that we useAB as a shorthand for {A. B}, to conform with standard

practice. Observe that there is no pflir of distinct tuples I} and 12 such that I}[AB] = 12[AB].
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Therefore, if t}[AB] = t2[AB] it must be that t} = t2 and, thus, t}[D] = t2[D]. So, r satisfies

AB-+D.

Some functional dependencies are said to be trivial because they are satisfied by all relations.

For example, A -+A is satisfied by all relations involving attribute A. Reading the definition

of functional dependency literally, we see that for all tuples t} and t2 such that t}[A] = t2[A], it

is the case that t}[A] = t2[A]. Similarly, AB-+ A is satisfied by all relations involving attribute

A. In general, a functional dependency of the form 0.-+13is trivial if 13<;;;; u..

In order to distinguish between the concepts of a relation satisfying a dependency and a

dependency holding on a scheme, let us return to the banking example. If we consider, the

customer relation (on Customer-scheme) as shown in Figure 4.2, we see that street-+

customer-city is satisfied. However, we believe that, in the real world, two cities can have

streets with the same name. Thus, it is possible, at some time, to have an instance of the

customer relation in which street-+ customer-city is not satisfied. So,

Customer-name street customer-city

Jones Main Harrison

Smith North Rye

Hayes Main Harrison

Curry North Rye

Lindsay Park Pittsfield

Turner Putnam Stamford

Williams Nassau Princeton

Adams Spring Pittsfield

Johnson alma Palo Alto

Glenn , Sand Hill Woodside

Brooks Senator Brooklyn

Green Walnut Stamford

Figure 4.2 : The customer relation.
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Branch- loan- customer- Amount

name number name

Downtown 17 Jones 1000
Redwood 23 Smith 2000
Perryridge 15 Hayes 1500
Downtown 14 Jackson 1500
Mianus 93 Curry 500

Round Hill 11 Turner 900
Pownal. 29 Williams 1200

North Town 16 Adams 1300
Downtown 18 Johnson 2000

.

Perryridge 25 Glenn 2500
Brighton 10 Brooks 2200

Figure 4.3 : The borrow relation.

we would not incluge street-+ customer-city in the set of functional dependencies that hold

on Customer-scheme.

In the borrow relation (on Borrow-scheme) of Figure 4.3, we see that loan-number-+ amount

is satisfied. Unlike the case of customer-city and street, we do believe that the real-world

enterprise that we are modeling requires each loan to have a unique amount. Therefore, we

want to require that loan-number-+ amount be satisfied by borrow relation all times. In other

words, we require that the constraint loan-number-+ amount holds on Borrow-scheme.

In the branch relation of Figure 4.4, we see that branch-name-f assets is satisfied, as IS

assetS-f branch-name. We want to require that branch-name-f assets hold on Borrow-
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scheme. However, we do not wish to require that asse/s--+ branch-name hold, since it is

possible to have several branches having the same assets value.

Branch- assets branch-city

name

Downtown 9000000 Brooklyn

Redwood 2100000 Palo Alto

Perryridge 1700000 Horseneck

Mianus 400000 Horseneck

Round Hill 8000000 Horseneck

Pownal 300000 Bennington

North Town 3700000 Rye

Brighton 710000 Brooklyn

Figure 4.4 : The branch relation.

In what follows, we assume that when we design a relational database, we first list those

functional dependencies-that must always hold. In the banking example, our list of

dependencies includes the following:

• On Branch-scheme:

branch-name--+ branch-city

branch-name --+ assets

• On Customer-scheme

cus/omer-name--+ customer-city

customer-name --+s/ree/

• On Borrow-scheme
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loan-number-f amount

loan-number -fbranch-name

• On Deposit-scheme

account-number -f balance

account-number-f branch-name

4.2 Closure of a Set of Functional Dependencies

It is not sufficient to consider the given set of functional dependencies. Rather, we need to

consider all functional dependencies that hold. We shall see that, given a set F of functional

dependencies, we can prove that certain other functional dependencies hold. We say that such

functional dependencies are logically implied by F.

Suppose we are given a relation scheme R = (A, B, C. G, H, I) and the set of functional

dependencies

A~B

A~C
CG~H

CG~I

B~H

The functional dependency

is. logically implied. That is, we can show that whenever our given set of functional

dependencies holds, A~H must also hold. Suppose that t} and t2 are tuples such that

tM] =tM]

Since we are given that A~B, it follows from the definition of functional dependency that
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Then, since we are given that B-->,H, it follows from the definition of functional dependency

that

Therefore, we have shown that whenever I} and 12are tuples such that I}[A] = 12[A], it must be

that I}[H] = 12[H]. But that is exactly the definition ofA-->,H.

Let F be a set of functional dependencies. The closure of F is the set of all functional

dependencies logically implied by F. We denote the closure of F by F. Given F, we can

compute F directly from the formal definition of functional dependency. If F is large, this

process would be lengthy and difficult. Such a computation of F requires arguments of the

type given above to show that A -->, H is in the closure of our example set of dependencies ..

There are simpler techniques for reasoning about functional dependencies.

The first technique is based on three axioms or rules of inference for functional dependencies.

By applying these rules repeatedly, we can find all of F given F. In the rules below, we

adopt the convention of using Greek letters (u, 13,Y, ) for sets of attributes and uppercase

Roman letters from the beginning of the alphabet for individual attributes. We use uf3 to

denote u u 13.

• Reflexivity rule. If u is a set of attributes and 13<;;;; u, then u-->'f3 holds.

• Augmentation rule. If u-->'f3 holds and y is a set of attributes, then yu-->,yf3 holds.

• Transitivity rule. If u-->'f3 holds, and f3-->'yholds, then u-->'y holds.

These rules are sound because they do not generate any incorrect functional dependencies.

The rules are complete because for a given set F of functional dependencies, they allow us to

generate all of F, This collection of rules is called Armstrong's axioms in honor of the

person who first proposed them [2].

Although Armstrong's axioms are complete, it is tiresome to use them directly for the

computation ofF' To simplify matters further, we list some additional rules.
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• Union rule. If a~~holds and a~y holds, then a~~y holds.

• Decomposition rule. If a~~y holds, then a~~ holds and a~y holds.

• Pseudo-transitivity rule. If Cl ~~ holds and y~~oholds, then ay~o holds.

Let us apply our rules to the example we presented earlier of scheme R = (A, B, C, G, H, l)

and the set F of functional dependencies {A~B, A~C, CG~H, CG~I, B~H}. We list

some members ofF below.

• A~H. Since A~B and B~H holds, we apply the transitivity rule. Observe that it was

much easier to use Armstrong's axioms to show that A~H holds than it was to argue

directly from the definitions as we did earlier.

• CG~H1. Since CG~H and CG~I, the union rule implies that CG~H1.

• AG~1. We need several steps to show AG~1. First, observe thatA~C holds. Using the

augmentation rule, we see that AG~CG. We are given that CG~I, so by the transitivity

rule AG~I holds.

4.3 Closure of Attribute Sets

In order to test if a set a is a super-key, we must devise an algorithm for computing the set of

attributes functionally determined by a. We shall see that such an algorithm is useful also as

part of the computation of the closure of a set F of functional dependencies.

Let a be a set of attributes. We call the set of all attributes functionally determined by a

under a set F of functional dependencies the closure of a under F and denote it by a+ Figure

4.5 shows an algorithm, written in pseudo Pascal, to compute a+. The input is a set F of

functional dependencies and the set a of attributes. The output is stored in the variable result.

This algorithm was presented by Korth & Silberschatz [1986] [IS].

To illustrate how Algorithm 4.1 works, let us use the algorithm to compute (AGt with the

functional dependencies defined above.

Algorithm 4.1 : An Algorithm to compute a+, the closure of a under F.
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Input: A set of functional dependencies F.

Output: Closure of a. under F, i.e., 0.+.

proc compute(F, 0.+)

result =0... ,
while (changes to result) do

for each functional dependency ~~y in F do

if ~ ~ result then

result: = v y;

e.ndif

enddo

enddo

endproc

We start with result = AG. The first time we execute the while loop to test each functional

dependency we find that

• A~B causes us to include B in result. To see this, observe that A~B is in F, A ~ result

(which is AG), so result: = result vB.

• A~C cause result to become ABCG.

• CG~H causes result to become ABCGH.

• CG~I causes result to become ABCGHI.

The second time we execute the while loop, no new attributes are added to result and the

algorithm terminates.

Let us see why the Algorithm 4.1 is correct. The first step is correct since o.~o. always holds

(by the reflexivity rule). We claim that for any subset ~ of result, it is the case that o.~~.

Since we start the while loop with o.~result being true, we can add y to result only if ~ ~

result and ~~ y. But then result ~~ by the reflexivity rule, so o.~~ by transitivity. Another

application of transitivity shows that o.~y (using o.~~ and ~~ y). The union rule implies

that o.~result v y, so a. functionally determines any new result generated in the while loop.

Thus, any attribute returned by the algorithm is in 0.+
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It is easy to see that the algorithm finds all of ct. Ifthere is an attribute in ct not yet in result,

then there must be a functional dependency /3--+y for which /3 c;;; result and at least one

attribute in F is not in result.

It turns out that in the worst case his algorithm may take time quadratic in the size ofF.'

4.4 Canonical Cover

In order to minimize the number of functional dependencies that need to be tested in case of

an update, we restrict a given set F of functional dependencies to a canonical cover Fe. A

canonical cover for F is a set of dependencies such that F logically implies all dependencies

in Fe and Fe logically implies all dependencies in F. Furthermore, Fe must have the following

properties:

• Every functional dependency Ct--+/3 in Fe contains no extraneous attributes in Ct.

Extraneous attributes are attributes that can be eliminated from Ct without changing F/.
)

Thus A is extraneous in Ct if A E Ct and Fe logically implies (Fe - {Ct--+/3}) U {Ct-A --+/3}.

• Every functional dependency Ct--+/3 in Fe contains no extraneous attributes in /3.

Extraneous attributes are attributes that can be eliminated from /3without changing F/.
Thus A is extraneous in /3 if A E /3 and (Fe - {Ct--+/3}) U {a--+/3 - A} logically implies Fe.

• Each left side of a functional dependency in Fe is unique. That is, there are no two

dependencies al--+/31 and a2--+/32 in Fe such that al = a2.

To compute a canonical cover for F, use the union rule to replace any dependencies in F of

the form al--+/31 and CtI--+/32 with CtI--+/31/32. Test each functional dependency Ct--+/3 to see if

there is an extraneous attribute in Ct. For each dependency a--+/3 see if there is an extraneous

. attribute in /3.This process must be repeated until no changes occur in the loop.

Consider the following set F of functional dependencies on scheme (A, B, C):
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Let us compute the canonical cover for F.

• There are two functional dependencies with the same set of attributes on the left side of

the arrow:

We combine these into A-?BC.

• A is extraneous in AB-?C because B-?C logically implies AB-?C, and thus (F _

{AB-?C}) u {B-?C} logically implies Fe. As a result of removing A from AB-?C, we

obtain B-?C, which is already in our set of functional dependencies.

At this point, our set of functional dependencies is:

A-?BC

B-?C

All the properties of a canonical cover are met by the above set of functional dependencie.s.
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Chapter 5
Relational Database Design

In general, the goal of a relational database design is to generate a set of relation schemes that

allow us to store information without unnecessary redundancy, yet allow us to retrieve

information easily. One approach is to design schemes that are in an appropriate normal form.

In order to determine whether a relation scheme is in one of the normal forms, we shall need

additional information about the "real-world" enterprise that we are modeling with the

database [16].

5.1 Pitfalls in Relational Database Design

Among the undesirable properties that a bad design may have are :

,
• Repetition of information.

• Inability to represent certain information.

• Loss of information

Below, we discuss these in greater detail using a banking example, with the following two

relational schemes:

Branch-scheme = (branch-name, assets, branch-city)

Borrow-scheme = (branch-name, loan-number, customer-name, amount)

Figures 5.1 and 5.2 show an instance of the relations branch (Branch-scheme) and borrow

(Borrow-scheme).

Page 31



5.1.1

branch- Assets branch-city

name

Downtown 9000000 Brooklyn

Redwood 2100000 Palo Alto

Perryridge 1700000 Horseneck

Mianus 400000 Horseneck

Round Hill 8000000 Horseneck

Pownal 300000 Bennington

North Town 3700000 Rye

Brighton 710000 Brooklyn

Figure 5.1 : Simple branch relation.

Representation of Information

Con~ider an alternative design for the bank database in which we replace Branch-scheme and

Borrow-scheme with the single scheme:

Lending-scheme = (branch-name, assets, branch-city, loan-number,

customer-name, amount)

Figure 5.3 shows an instance of the relation lending (Lending-scheme) produced by taking the

natural join of the branch and borrow instances of Figures 5.1 and 5.2 . A tuple t in the

lending relation has the following intuitive meaning:
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branch- Loan- customer- amount

name number name

Downtown 17 Jones 1000

Redwood 23 Smith 2000

Perryridge 15 Hayes 1500

Downtown 14 Jackson 1500

Mianus 93 Curry 500

.Round Hill 11 Turner 900

Pownal 29 Williams 1200

North Town 16 Adams 1300

Downtown 18 Johnson 2000

Perryridge 25 Glenn 2500

Brighton 10 Brooks 2200

Figure 5.2 : The borrow relation.

• t[assets] is the asset figure for the branch named t[branch-name].

• t[branch-city] is the city in which the branch named t[branch-name] is located.

• t[loan-number] is the number assigned to a loan made by the branch named t[branch-

name] to the customer named t[customer-name).

• t[amount] isthe amount of the loan whose number is t[loan-number).

Suppose we wish to add a new loan to our database. Assume the loan is made by the

Perryridge branch to Turner in the amount of $1500. Let the loan-number be 31. In our

original design, we would add the tuple

(perryridge, 31, Turner, 1500)

to the borrow relation. Under the alternative design, we need a tuple with values on all the

attributes of Lending-scheme. Thus, we must repeat the asset and city data for the Perryridge

branch and add the tuple
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(Perryridge, 1700000, Horseneck, 31, Turner, 1500)

to the lending relation. In general, the asset and city data for a branch must appear once for

each loan made by that branch.

The repetition of information required by the use of our alternative design is undesirable.

Repeating information wastes space. Furthermore,

Branch- Assets' Branch- loan- customer- amount
name name number name

Downtown 9000000 Downtown 17 Jones 1000

Redwood 2100000 Redwood 23 Smith 2000

Perryridge 1700000 Perryridge IS Hayes 1500

Downtown 9000000 Downtown 14 Jackson 1500

Mianus 400000 Mianus 93 Curry 500

Round Hill 8000000 Round Hill 11 Turner 900,
Pownal 300000 Pownal 29 Williams 1200

North Town 3700000 North Town 16 Adams 1300

Downtown 9000000 Downtown 18 Johnson 2000

Perryridge 1700000 Perryridge 25 Glenn 2500

Brighton 7100000 Brighton 10 Brooks 2200

Figure 5.3 : branch X borrow.

the repetition of information complicates updating the database. Suppose, for example, that

the Perryridge branch moves from Horseneck to Newtown. Under our original design, one

tuple of the branch relation needs to be changed. Under our alternative design, many tuples

of the lending relation need to be changed. Thus, updates are more costly under the

alternative design than under the original design. When we perform the. update in the

alternative database, we must ensure that every tuple pertaining to the Perryridge branch is

updated, or else our database will show two cities for the Perryridge branch.
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The above observation is central to understanding why the alternative design is bad. We

know that a bank branch is located in exactly one city. On the other hand, we know that a

branch may make many loans. In other words, the functional dependency

branch-name-+branch-city

holds on Lending-scheme, but we do not expect that the functional dependency branch-

name -+loan-number holds. The fact that a branch is located in a city and the fact that a

branch makes a loan are independent and, as we have seen, these facts are best represented in

separate relations. We shall see that functional dependencies can be used for specifying

formally when a database design is good.
(

Another problem with the Lending-scheme design is that we cannot represent directly the

information concerning a branch (branch-name, assets, branch-city) unless there exists at

least one loan at the branch. This is because tuples in the lending relation require values for

loan-number, amount, and customer-name.,

One solution to this problem is to introduce null values. Recall, however, that null values are

difficult to deal with. If we are not willing to deal with null values, then we can create the

branch information only when the first loan application at that branch is made, Worse, we

would have to delete this information when all the loans have been paid. Clearly this is

undesirable, since under our original database design, the branch information would be

available regardless of whether or not loans are currently maintained in the branch, and we

could do so without resorting to the use of null values.

5.1.2 Loss of Information

The above example of a bad design suggests that we should decompose a relation scheme

with many attributes into several schemes with fewer attributes. Careless decomposition,

however, may lead to another form of bad design.

Consider an alternative design in which Borrow-schemes is decomposed into two schemes,

Amt-scheme andLoan-scheme, as follows:
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Amt-scheme ~ (amount, customer-name)

Loan-scheme ~ (branch-name, loan-number, amount)

Using the borrow relation of Figure 5.2, we construct our new relations amt (Amt-scheme)

and loan (Loan-scheme) as follows:

ami ~.TIamount, customer-name (borrow)

loan = TIbronch-name, loan-number, amount (borrow)

We show the resulting amt and loan relations in Figure 5.4.

Of course, there are cases in which we need to reconstruct the borrow relation. For example,

suppose that we wish to find those branches from which Jones has a loan. None of the

relations in our alternative database contains this data. We need to reconstruct the borrow

relation. It appears that we can do this by writing:

amt x loan

Figure 5.5 shows the result of computing amt x loan. When we compare this relation and the

borrow relation with which we started (Figure 5.2), we notice some differences. Although

.every tuple that appears in borrow appears in amt x loan, there are tuples in ami x loan that

arenot in borrow. In our example, ami x loan has the following additional tuples:

(Downtown, 14 Hayes, 1500)

(perryridge, 15, Jackson, 1500)

~edwood,23,Johnson, 2000)

(Downtown, 18, Smith, 2000)
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Branch-name loan-number Amount

Downtown 17 1000
Redwood 23 2000
Perryridge 15 1500
Downtown 14 1500
Mianus 93 500
Round Hill 11 900
Pownal 29 1200
North Town 16 1300
Downtown 18 2000
Perryridge 25 2500
Brighton 10 2200

amount customer-name

1000 Jones

2000 Smith

1500 Hayes

1500 Jackson

500 Curry

900 Turner

1200 Williams

1300 Adams

.2000 Johnson

2500 Glenn

2200 Brooks

Figure 5.4 : The relations amt and laon.

Branch-name loan-number customer-name amount

Downtown 17 Jones 1000
Redwood 23 Smith 2000
Perryridge 15 Hayes 1500
Downtown 14 Jackson 1500
Mianus 93 Curry 500
Round Hill 11 Turner 900
Pownal 29 Williams 1200
North Town 16 Adams 1300
Downtown 18 Johnson 2000
Perryridge 25 Glenn 2500
Brighton 10 Brooks 2200
Downtown 14 Hayes 1500
Perryridge 15 Jackson 1500
Redwood 23 Johnson 2000
Downtown 18 Smith 2000

Figure 5.5 : The relation amt x loan.

Page 37



Consider the query, "Find those branches from which Hayes has a loan." Ifwe look back at

Figure 5.2, we see that Hayes has only one loan, and that loan is from the Perryridge branch.

However, when we apply the expression.

I1branch-name~crcustomer-name = "Hayes"(amt X loan»

We obtain two branch names: Perryridge and Downtown.

Let us examine this example more closely. If several loans happen to be in the same amount,

we cannot tell which customer has which loan. Thus, when we join amt and loan, we obtain

not only the tuples we had originally in borrow, but also several additional tuples. Although

we have more tuples in amt x loan, we actually have less information. We are no longer able,

in general, to represent in the database which customers are borrowers from which branch.

Because of this loss of information, we call the decomposition of Borrow-scheme into Amt-

scheme and Loan-scheme a lossy decomposition or a lossy join decomposition. A

decomposition that is not a lossy join decomposition is referred to as a loss less join

decomposition. It should be clear from our example that a lossy join decomposition is,m, .
general, a bad database deSign.

Let us examine the decomposition more closely to see why it is lossy. There is one attribute

in common between Loan-scheme and Amt-scheme:

Loan-scheme nAmt-scheme = {amount}

The only way we can represent a relationship between branch-name and customer-name is

through amount. This is not adequate because many customers may happen to have loans in

the same amount, yet they do not necessary have these loans from the same branches.

Similarly, many customers may happen to have loans from the same branch, yet the amounts

of their loans may be unrelated to one another.

Contrast this with Lending-scheme, which we discussed earlier. We argued that a better

design would result if we decompose Lending-scheme into Borrow-scheme and Branch-

scheme. There is one attribute is common between these two schemes:
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Branch-scheme nBorrow-scheme = {branch-name}

Thus, the only way we can represent a relationship between, for example, customer-name and

assets is through branch-name. The difference between this example and the example above

is that the assets of a branch are the same regardless of the customer to which we are

referring, while the lending branch associated with a certain loan amount does depend on the

customer to which we are referring. For a given branch-name there is exactly one assets

value and exactly one branch-city, while a similar statement carmot be made for amount. That

is, the functional dependency

branch-name-+assets. branch-city.

holds, but amount does not functionally determine branch-name.

The notion of loss-less joins is central to much of relational database design. Therefore, we

restate the above examples below more concisely and more formally. Let R be a relation

scheme. A set of relation schemes {Ri• R2, .••• R,,} is a decomposition of R if:

That is, {Ri, R2, .••• Rn} is a decomposition of R if every attribute in R appears in at least one

Ri• for lsi s n. Let r be a relation on scheme R, and let ri = ITR, (r) for lsi s n. That is, {rl,

r2, ... , rn} is the database that results from decomposing R into {Ri• R2 •••. , Rn}. It is

always the case that:

To see this, consider a tuple t in relation r. When we compute the relations ''1, r2, ... , rn, the

tuple I gives rise to one tuple II in each ri, lsi s n, These n tuples combine to regenerate t

when we compute r, x r2X ... xrn.Therefore, every tuple in r appears in r, x r2 x ... x rn.

In general, r;t rI x r2 x ... x rn. To illustrate this, consider the earlier example in which:

n=2
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R =Borrow-scheme

R} ~ Amt-scheme

R2 = Loan-scheme.

r = the relation shown in Figure 5.2.

r! and r2= the relations shown in Figure 5.4.

r! x r2 = the relation shown in Figure 5.5

Note that the relations in Figures 5.2 and 5.5 are not the same.

In order to have a loss less join decomposition, we need to impose some constraints on the set

of possible relations. We found that decomposition Lending-scheme into Borrow-scheme and

Branch-scheme is loss-less because of the functional dependency branch-name~assets.

branch-city.

Let C represent a set of constraints on the database. A decomposition {R} • R2 •.••• Rn} of a

relation scheme R is a loss less join decomposition for R if for all relations r on scheme R that

are legal under C:

r = DR! (r) x DR2 (r) x ... x DRn (r)

We shall show how to test whether a decomposition is a loss less join decomposition in the

next sections.

5.2 Normalization Using Functional Dependencies

A given set of functional dependencies can be used in designing a given database in which

most of the undesirable properties discussed Section 5.1 do not occur. In designing. such

systems, it may become necessary to decompose a relation to a number of smaller relations.

Using functional dependencies, we can define several normal forms, which represents "good"

database designs. There are a large number of normal forms such as BCNF and 3NF.
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5.2.1 Desirable Properties of Decomposition

The Lending-scheme scheme of Section 5.1.1 :

Lending-scheme = (branch-name, assets, branch-city, loan-number,

customer-name, amount}

The set F of functional dependencies that we require to hold on Lending-scheme are :

branch-name~assets, branch-city

loan-number~amount, branch-name

As discussed in Section 5.1.1, the Lending-scheme is an example of a bad database design.

Assume that we decompose it to the following three relations:

Branch-scheme ~ (branch-name, assets, branch-city)

Loan-info-scheme = (branch-name, loan-number, amount)

Customer-loan-scheme ~ (customer-name, loan-number)

We claim that this decomposition has several desirable properties, which we discuss below.

5.2.1.1 Loss less join Decomposition

In Section 5.1.2, we' have argued that it is crucial when decomposing a relation into a number

of smaller relations that the decomposition be loss-less. We claim that the above

decomposition is indeed loss-less. To demonstrate this, we must first present a criterion for

determining whether a decomposition is lossy.

Let R be a relation scheme and F a set of functional dependencies on R. Let Rj and R2 form a

decomposition of R. This decomposition is a loss less join decomposition of R if at least one

of the following functional dependencies are in F:
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We now show that our decomposition of Lending-scheme is a loss less join decomposition by

showing a sequence of steps that generate the decomposition. We begin by decomposing

Lending-scheme into two schemes:

Branch-scheme ~ (branch-name, assets, branch-city)

Borrow-scheme = (branch-name, loan-number, customer-name, amount)

Since branch-name ~assets, branch-city, the augmentation rule for functional dependencies

implies that:

branch-name ~ branch-name, assets, branch-city.

Since Branch-scheme n Loan-scheme = {branch-name}, it follows that our initial

decomposition is a loss less join decomposition.

Next, we decompose Borrow-scheme into:

Loan-info-scheme = (branch-name, loan-number, amount)

Customer-loan-scheme = (customer-name, loan-number)

This step results in a loss less join decomposition, since loan-number is a common attribute

and loan-number~amount, branch-name

5.2.1.2 Dependency Preservation

There is another goal in relational database design to be considered: dependency

preservation. When an update is made to the database, the system should be able to check that

the update will not create an illegal relation, that is, one that does not satisfy all of the given

functional dependencies. In order to check updates efficiently, it is desirable to design

relational database schemes that allow update validation without the computation of joins.
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In order to decide whether joins must be computed, we need to determine what functional

dependencies may be tested by checking each relation individually. Let F be a set of

functional dependencies on a scheme R and let Rj, R2, ... ,Rn be a decomposition of R. The

restriction of F to Ri is the set Fi of all functional dependencies in F that include only

attributes of Ri• Since all functional dependencies in a restriction involve attributes of only

one relation scheme, it is possible to test satisfaction of such a dependency by checking only

one relation.

The set of restrictions Fl, Fz, . . . , Fn is the set of dependencies that can be checked

efficiently. We now must ask whether testing only restrictions is sufficient. Let P =Fl U F2

U . . . u Fn. F' is a set of functional dependencies on scheme R, but, in general, F' '" F.
I

However, even if F' '" F, it may be that p+ =F. If this is true, then every dependency in F is

logically implied by P and if we verify that P is satisfied, we have verified that F is

satisfied. We say that a decomposition having. the property p+ = F is a dependency

preserving decomposition. Algorithm 5.1 shows an algorithm for testing dependency

preservation.

Algorithm 5.1 : Algorithm for testing dependency preservation.

Input: The set of restrictions Fl, F2, ... , Fn is the set of dependencies.

Output: TruelFalse.

proc dep-preserv (Fl, F2, ... ,Fn )

computeF;

for each scheme Ri in D do

Fi= the restriction ofF to Ri;

enddo

P:=0

for each restriction Fi do

F'~F'uFi

enddo

computeP+;

if (p+ =F) then return (true)

else return (false);

endif

endproc
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The input is a set D = {R1, R2, . . . , Rn} of decomposed relation schemes, and a set F of

functional dependencies. This algorithm was presented by Korth & Silberschatz [1986] [15].

We can now show that our decomposition of Lending-schemes is dependency preserving. To

see this, we consider each member of the set F of functional dependencies that we require to

hold on Lending-scheme and show that each one an be tested in at least one relation in the

decomposition.

• The functional dependency: branch-name --?assets, branch-city can be tested usmg

Branch-scheme = (branch-name, assets, branch-city)

• The functional dependency: loan-number--?amount, branch-name can be tested using

Loan-info-scheme = (branch-name, loan-number, amount).

As the above example shows, it is often easIer not to apply the Algorithm 5. I to test

dependency preservation, since the first step, computation ofF, takes exponential time.

5.2.1.3 Repetition of Information

The decomposition of Lending-scheme does not suffer from the problem of repetition of

information, which we discussed in Section 5. I. I. In Lending-scheme, it was necessary to

repeat the city and assets of a branch for each loan. The decomposition separates branch and

loan data into distinct relations, thereby eliminating this redundancy. Similarly, if a single

loan is made to several customers, we must repeat the amount of the loan once for each

customer (as well as the city and assets of the branch). In the decomposition, the relation on

scheme Customer-loan-scheme contains the loan-number, customer-name relationship, and

no other scheme does. Therefore, we have one tuple for each customer for a loan only in the

relation on Customer-loan-scheme. In the other relations involving loan-number (those on

schemes Loan-info-scheme and Customer-loan-scheme), only one tuple per loan need appear.

Clearly, the lack of redundancy exhibited by our decomposition is desirable.
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5.3 Boyce-Codd Normal Form

One of the more desirable normal forms we can obtain is Boyce-Codd normal form (BCNF).
r

A relation scheme R is in BCNF if for all functional dependencies that hold on R of the form

.ex ~~, where ex (;; R and ~ (;;R, at least one of the following holds:

• ex~~ is a trivial functional dependency (that is, ~ (;; ex).

• ex is a super-key for scheme R.

A database design is in BCNF if each member of the set of relation schemes comprising the

design is in BCNF.

To illustrate this, let us consider the following relation schemes, and their respective

functional dependencies:

• Branch-scheme = (branch-name, assets, branch-city)

branch-name~ assets, branch-city

• Customer-scheme = (customer-name, street, customer-city)

customer-name ~ street, customer-city

• Deposit-scheme = (branch-name, account-number, customer-name, balance)

account-number ~balance, branch-name

• Borrow-scheme ~ (branch-name, loan-number, customer-name, amount)

loan-number ~ amount, branch -name

We claim that Customer-scheme is in BCNF. To see this, not that a candidate key for the

scheme is customer-name. The only nontrivial functional dependencies that hold on

Customer-scheme have customer-name on the left side of the arrow. Since customer-name is

a candidate key, functional dependencies with customer-name on the left side do not violate

the definition of BCNF. Similarly, it can be easily shown that the relation scheme Branch-

scheme is in BCNF.
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The scheme, Borrow-scheme, however, is not in BCNF. First, note that loan-number is not a

super-key for Borrow-scheme since we could have a pair of tuples representing a single loan

made to two people, as:

(Downtown,44, Mr. Bill, 1000)

(Downtown, 44, Mrs. Bill, 1000)

Because we did not list functional dependencies that rule out the above case, loan-number is

not a candidate key. However, the functional dependency loan-number-tamount IS

nontrivial. Therefore, Borrow-scheme does .not satisfy the definition ofBCNF.

We claim that Borrow-scheme is not in a desirable form since it suffers from the repetition of

information problem described in Section 5.1.1. To illustrate this, observe that if there are

several customer names associated with a loan, in a relation on Borrow-scheme, then we are

forced to repeat the branch name and the amount once for each customer. We can eliminate

this redundancy by redesigning our database so that all schemes are in BCNF. One approach

to this problem is to take the existing non-BCNF design as a starting point and decompose

those schemes that are not in BCNF. Consider the decomposition of Borrow-scheme into two

schemes:

Loan-injo-scheme = (branch-name, loan-number, amount)

Customer-loan-scheme ~ (customer-name, loan-number)

This decomposition is a loss less join decomposition.

To determine whether these schemes are in BCNF, we need to determine what functional

dependencies apply to them. In this example, it is easy to see that

loan-number -t amount, branch-name

applies to Loan-injo-scheme, and that only trivial functional dependencies apply to Customer-

loan-scheme. Although loan-number is not a super-key of Borrow-scheme, it is a candidate

key for Loan-injo-scheme. Thus, both schemes of our decomposition are in BCNF.
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It is now possible to avoid redundancy in the case where there are several customers

associated with a loan. There is exactly one tuple for each loan in the relation on Loan-info-

scheme, and one tuple for each customer of each loan in the relation on Customer-loan-

scheme. Thus, we do not have to repeat the branch name and the amount once for each

customer associated with a loan.

In order for the entire design for the bank example to be in BCNF, we must decompose .

Deposit-scheme in a manner similar to our decomposition

Algorithm 5.2 : BCNF decomposition Algorithm.

Input: Relation R and the set of functional dependency F on the relation R .

Output: New smaller relations(decomposed) in BCNF

proc decomp_bcnf( R, F)

result: = {R};

done: = false;

computeF

while (not done) do

if (there is a scheme Ri in result that is not in BCNF)then

let a-.+ 13be a nontrivial functional dependency that holds

on Ri such that a-.+Riis not inF, and a n 13= 0;

result: = (result - Ri) u (Ri -13) u (a, 13);

else done: = true;

endif

enddo

endproc

of Borrow-scheme. When we do this decomposition, we obtain the two schemes:

Account-info-scheme = (branch-name, account-number, balance),

Customer-account-scheme = (customer-name, account-number)
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We are now able to state a general method to generate a collection of BCNF schemes. If R is

not in BCNF, we can decompose R into a collection of BCNF schemes RI, R2, ... , Rn using

the Algorithm 5.2 which generates not only a BCNF decomposition but also a loss less join

decomposition. This algorithm was presented by Korth & Silberschatz [1986] [15]. To see

why our algorithm generates only loss less join decompositions, notice that when we replace

a scheme Ri with (Rj - ~) and (a, ~),the dependency a-+~ holds, and (Rj - ~) n (a, ~)= a.

Let us apply the BCNF decomposition algorithm to the Lending-scheme scheme that we used

earlier as an example of a poor database design.

Lending-scheme ~ (branch-name, assets, branch-city, loan-number,

cu~ome~name,amounO

The set .of functional dependencies that we require to hold on Lending-scheme is

branch-name-+ assets, branch-city

loan-number-+ amount, branch-name

A candidate key for this scheme is {loan-number, customer-name}.

We can apply Algorithm 5.2 to the Lending-scheme example as follows:

• The functional dependency:

branch-name-+ assets, branch-city

holds on Lending-scheme, but branch-name is not a super-key. Thus, Lending-scheme is not

in BCNF. We replace Lending-scheme by

Branch-scheme ~ (branch-name, branch-city, assets)

Deposit-scheme ~ (branch-name, loan-number, customer-name, amount)

• The only nontrivial functional dependencies that hold on Branch-scheme include branch-

name on the left side of the arro~. Since branch-name is a key for Branch-scheme, the

relation Branch-scheme is in BCNF.
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• The functional dependency

loan-number~ amount, branch-name

holds on Deposit-scheme, but loan-number is not a key for Deposit-scheme. We replace

Deposit-scheme by

Loan-info-scheme ~ (branch-name, loan-number, amount)

Customer-loan-scheme = (customer-name, loan-number)

• Loan-info-scheme and Customer-loan-scheme are in BCNF.

Thus, the decomposition of Lending-scheme results in the three relation schemes Branch-

scheme, Loan-info-scheme, and Customer-loan-scheme, each of which is in BCNF. These

relation schemes are the same as those used in Section 5.2.1. We have demonstrated in that

section that the resulting decomposition is both a loss less join decomposition and a

dependency preserving decomposition.

Not every BCNF decomposition is dependency preserving. To illustrate this, consider the

relati~nal scheme:

Banker-scheme = (branch-name, customer-name, banker-name)

indicates that a customer has a "personal banker" in a particular branch. The set F of

functional dependencies that we require to hold on the Banker-scheme is

banker-name~branch-name

customer-name branch-name~banker-name

clearly, Banker-scheme is not in BCNF since banker-name is not a super-key.

Ifwe apply Algorithm 5.2, we may obtain the following BCNF decomposition:
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Banker-branch-scheme = (banker-name, branch-name)

Customer-banker-scheme = (customer-name, banker-name)

The decomposed schemes preserve only banker-name~branch-name (and trivial

dependencies) but the closure of {banker-name~branch-name} does not include customer-

name, branch-name~banker-name. The violation of this dependency cannot be detected

unless a join is computed.

To see why the decomposition of Banker-scheme into the schemes Banker-branch-scheme

and Customer-banker-scheme is not dependency preserving, we apply Algorithm 5.1. We

find that the restrictions Fj and F2 of F to each scheme are as follows (we show only a
canonical cover):

Fj = {banker-name~ branch-name)

F2 = 0 (only trivial dependencies hold on Customer-banker-scheme)

Thus, a canonical cover for the setF'is Fl.

It is easy to see that the dependency customer-name, branch-name~ banker-name is not in

F* even though it is in p. Therefore, p+ * P and the decomposition is not dependency

preservmg.

The above example demonstrates that not every BCNF decomposition is dependency

preserving. Moreover, it demonstrates that it is not always possible to satisfy all the three
design goals:

• BCNF

• Loss-less join

• Dependency preservation.

This is because, every BCNF decomposition of Banker-scheme must fail to preserve

customer-name branch-name~banker-name.
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5.4 Third Normal Form

In those cases where we cannot meet all the three design criteria, we abandon BCNF and

accept a weaker normal form called third normal form (3NF). We shall see that it is always

possible to find a loss less join, dependency preserving decomposition that is in 3NF.

BCNF requires that all nontrivial dependencies be of the form a~p where a is a super-key.

3NF relaxes this constraint slightly by allowing nontrivial functional dependencies whose left

side is not a super-key.

A relation scheme R is in 3NF if for all functional dependencies that hold on R of the form

a~p, where a ~ Rand p ~ R, at least one of the following holds:

• a~p is a trivial functional dependency.

• a is a super-key for R.

• Each attribute A in p is contained in a candidate key for R.

The definition of 3NF allows ceIiain functional dependencies that are not allowed in BCNF.

A dependency a ~p that satisfies only the third condition of the 3NF definition is not

allowed in BCNF though it is allowed in 3NF. These dependencies are called transitive

dependencies.

If a relation scheme is in BCNF, then all functional dependencies are of the form "super-key

determines a set of attributes," or the dependency is trivial. Thus, a BCNF scheme cannot

have any transitive dependencies at all. As a result, every BCNF scheme is also in 3NF, and

BCNF is therefore a more restrictive constraint than 3NF.

Let us return to our Banker-scheme example (Section 5.2.2). We have shown that this relation

scheme does not have a dependency preserving, loss less join decomposition into BCNF.

This scheme, however, turns out to be in 3NF. To see that this is so, note that {customer-

name, branch-name} is a candidate key for Banker-scheme, so the only attribute not

contained in a candidate key for .Banker-scheme is banker-name. The only nontrivial

functional dependency ofthe form a~banker-name is
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customer-name, branch-name~banker-name.

Since {customer-name, branch-name} is a candidate key, this dependency does not violate

the defmition of3NF.

Algorithm 5.3 is an algorithm for finding a dependency preservmg, loss less join

decomposition into 3NF. This algorithm was presented by Korth & Silberschatz [1986] [15].

The fact that each relation scheme Ri is in 3NF follows directly from our requirement that the

set F of functional dependencies be in canonical form (Section 5.3.4). The algorithm ensures

preservation of dependencies by building explicitly a scheme for each given dependency. It

ensures that the decomposition is a loss less join decomposition by guaranteeing that at least

one scheme contains a candidate key for the scheme being decomposed.

To illustrate Algorithm 5.3, consider the following extension to the Banker-scheme

introduced in Section 5.2.2:

Banker-info-scheme = (branch-name, customer-name, banker-name, office-number)

Algorithm 5.3: Dependency preserving, loss less join decomposition into 3NF.

Inpnt: Relation R and the set of functional dependency F on the relation R .

Output: New smaller relations(decomposed) in 3NF

proc decomp_3nf(R, F)

i= 0;

for each functional dependency ex.~/3in F do

if none of the schemes Rj, I <;;j <;; i contains ex. /3 then

i:=i+l;

Ri : = ex. /3;

end if

if none of the schemes Rj, I 7O,j 70, i contains a candidate key for R then

i:=i+l;

Rj : = any candidate key of R;

Endif
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enddo

retnrn(R1, R2, ... , Rn)

endproc

The maID difference here is that we include the banker's office-number as part of the

information. The functional dependencies for this relation scheme are :

banker-name~ branch-name, office-number

customer-name, branch-name ~ banker-name.

The for loop in the algorithm causes us to include the following schemes ID our

decomposition:

Banker-office-scheme = (banker-name, office-number)

Banker-scheme = (customer-name, branch-name, banker-name)

. Since Banker-scheme cOlitains a candidate key for Banker-info-scheme, we have done with

the decomposition process.

5.5 Comparison of BCNFand 3NF

We have seen two normal forms for relational database schemes: 3NF and BCNF. There is an

advantage to 3NF in that we know that it is always possible to obtain a 3NF design without

sacrificing a loss-less join or dependency preservation. Nevertheless, there is a disadvantage

to 3NF. If we do not eliminate all transitive dependencies, it may be necessary to use null

values to represent some of the possible meaningful relationships among data items, and there

is the problem of repetition of information.
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customer- Banker- Branch-name

name name

Jones Johnson Perryridge

Smith Johnson Perryridge

Hayes Johnson Perryridge

Jackson Johnson Perryridge

Curry Johnson Perryridge

Turner Johnson Perryridge

Figure 5.6 : An instance of Banker-scheme.

To illustrate, consider again the Banker-scheme and its associated functional dependencies.

Since banker-name--+branch-name, we may want to represent relationships between values

for banker-name, and values for branch-name in our database. However, in order to do so,

either there must be a corresponding value for customer-name or we must use a null value for

the attribute customer-name.

The other difficulty with the Banker-scheme is repetition of information. To illustrate,

consider an instance of Banker-scheme shown in Figure 5.6. Notice that the information

. indicating that Johnson is working at the Perryridge branch is repeated redundantly.

If we are forced to choose between BCNF and dependency preservation with 3NF, it is

generally pn;ferable to opt for 3NF. If we cannot test for dependency preservation efficiently,

we either pay a high penalty in system performance or risk the integrity of the data in our

database. Neither of these alternatives is attractive. With such alternatives, the limited amount

of redundancy imposed by transitive dependencies allowed under 3NF is the lesser evil.

Thus, we normally choose to retain dependency preservation and sacrifice BCNF.

To summarize the above discussion, we note that our goal for a relational database design is:

• BCNF
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• Loss-less join.

• Dependency preservation.

If we cannot achieve this, we accept:

• 3NF.

• Loss-less join

• Dependency preservation.

5.6 Normalization Using Multi Valued Dependencies

There are relation schemes that are in BCNF which do not seem to be sufficiently normalized

in the sense that they still suffer from the problem of repetition of information. Consider

again our banking example. Let us assume that in some alternative design for the bank

database scheme, we have the scheme:

BC-scheme = ( loan-number, customer-name, street, customer-city)

This is a non-BCNF scheme because of the functional dependency

customer-name~street, customer-city

that we asserted earlier, and the fact that customer-name is not a key for BC-scheme.

However, let us assume that our bank is attracting wealthy customers who have several

addresses (say, a winter home and a summer home). Then, we no longer wish to enforce the

. functional dependency customer-name~street, customer-city. If we remove this functional

dependency, we fmd BC-scheme to be in BCNF with respect to our modified set of functional

dependencies. Despite the fact that BC-scheme is now in BCNF, we still have the problem of

repetition of information that we had earlier.

In order to deal with this, we must define a new form of constraint, called a multi-valued

dependency. As we did for functional dependencies, we shall use multi-valued dependencies

to define a normal form for relation schemes. This normal form, called fourth normal form
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(4NF), is more restrictive than BCNF. We shall see that every 4NF scheme is also in BCNF,

but there are BCNF schemes that are not in 4NF.

5.6.1 Multi-valued Dependencies

Functional dependencies rule out certain tuples from being in a relation. If A~B, then we

cannot have two tuples with the same A value but different B values. Multi-valued

dependencies do not rule out the existence of certain tuples. Instead, they require that other

tuples of a certain form be present in the relation. For this reason, functional dependencies

sometimes are referred to as "equality-generating" dependencies and multi-valued

dependencies are referred to as "tuple-generating" dependencies.

Let R be a relation scheme and let a ~ R and ~ ~ R The multi-valued dependency

a ~ R-a-~
tl at ... Qi ai+l ... aj aj+l ... an

t2 at ... ai bi+ I ... bj bj + I ... bn

t3 al ... Qi
.

Qj+l ... aj aj + I ... an

4 al ... aj bj+ I ... bj bj + I ... bn

Figure 5.7 : Tabular representation of a ~~~.

holds on R if in any legal relation r(R), for all pairs of tuples tl and t2 in r such that tl(a) =

t2(a), there exist tuples t3 and t4 in r such that:

tl(a) = t2(a) = t3(a) = t4(a),

t3(~) = tl(~),

t3(R - ~) = t2(R - ~),

t4(~) = t2(~),

t4(R - ~) = tl(R - ~),
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This definition is less complicated than it appears. In Figure 5.7, we give a tabular picture of

II, 12, 13, and 14. Intuitively, the multi-valued dependency a-+-+~ say that the relationship

between a and ~ is independent of the relationship between a and R -~. If the multi-valued

dependency a-+-+~is satisfied by all relations on scheme R, then a-+-+~is a trivial multi-

valued dependency on scheme R. Thus, a-+-+~is trivial if ~ ~ a or ~ v a =R.

To illustrate the difference between functional and multi-valued dependencies, consider again

the BC-scheme, and the relation bc (BC-scheme) of Figure 5.8. We must repeat the loan

number once for each address a customer has, and we must repeat the address for each loan a

customer has. This repetition is unnecessary since the relationship between a customer and

his or her address is independent of the relationship between that customer and a loan. If a

customer, say Smith, has a loan, say loan number 23, we want that loan to be associated with

all of Smith's addresses. Thus, the relation of Figure 5.9 is illegal. To make this relation

loan- customer- street Customer-city

number name

23 Smith North Rye

23 Smith Main Manchester

93 Curry Lake Horseneck

Figure 5.8 : Relation be, an example of redundancy iu a BCNF relation.

loan- cuslomer- streel Cuslomer-city

number name

23 Smith North Rye

27 Smith Main Manchester

Figure 5.9 : An iIIegal.bc relation.
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legal, we need to add the tuples (23, Smith, Main, Manchester) and (27, Smith, North, R~e)

to the bc relation of Figure 5.9.

Comparing the above example with our definition of multi-valued dependency, we see that

we want the multi-valued dependency

customer-name-+-~street, customer-city

to hold. (The multi-valued dependency customer-name-?-?loan-number will do as well.)

As was the case for functional dependencies, we shall use multi-valued dependencies in two

ways:

l)To test relations to determine whether they are legal under a given setoffunctional

and multi-valued dependencies

2)To specify constraints on the set oflegal relations. We shall thus concern ourselves

only with relations that satisfy a given set of functional and multi-valued

dependencies.

Note that if a relation r fails to satisfy a given multi-valued dependency, we can construct a

relation r' that does satisfy the multi-valued dependency by adding tuples to r.

5.6.2 Theory of Multi-valued Dependencies

As was the case for functional dependencies and 3NF and BCNF, we shall need to determine

all the multi-valued dependencies that are logically implied by a given set of multi-valued

dependencies.

We take the same approach here that we did earlier for functional dependencies. Let D denote

a set of functional and multi-valued dependencies. The closure D+ of D is the set of all

functional and multi-valued dependencies logically implied by D. As was the case for

functional dependencies, we can compute D+ from D using the formal definitions of

functional dependencies and multi-valued dependencies. However, it is usually easier to

reason about sets of dependencies using a system of inference rules.
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The following list of inference rules for functional and multi-valued dependencies is sound

and complete. Recall that soundness means that the rules do not generate any dependencies

that are not logically implied by D. Completeness means that the rules allow us to generate

all dependencies in D+ The first three rules are Armstrong's axioms.

1) Reflexivity rule. If a is a set of attributes and ~ <;;; a, then a~~ holds.

2) Augmentation rule. If a~~holds and y is a set of attributes, then ya~y~ holds.

3) Transitivity rule. Ifa~ ~holds and ~~y holds, then a~ holds.

4) Complementation rule. If a~~~ holds, then a~~R -~-a holds.

5) Multi-valued augmentation rule. If a~~ ~holds and y <;;; R and Ii<;;; y, then ya~~Ii~

holds.

6) Multi-valued transitivity rule. If a~~~ holds and ~~~y holds, then a~~y _~

holds.

7) Replication rule. If a~~ holds then a~~~.

8) Coalescence rule. If a~~ ~holds and y <;;; ~ and there is a Iisuch that Ii<;;; R and Iin ~

= 0 and Ii~, then a~y holds.

Let R = (A, B, C, G, H, I) be a relation scheme. Suppose A~~BC holds. The defmition of

multi-valued dependencies implies that if tl(A) = t2(A) then there exist tuples t3 and t4 such

that:

tl(A) = tM) = t3(A) = t4(A)

t3(BC) = tl (BC)

t3(GHl) = t2(GHl)

t4(GHl) = tl(GHl)

t4(BC) = t2(BC)

The complementation rule states that if A~~BC then A~~GHI. Observe that t3 and t4

satisfy the defmition of A~~GHI if we simply change the subscripts.

We can provide similar justification for rules 5 and 6 using the definition of multi-valued

dependencies.

Page 59



Rule 7, the replication rule, involves functional and multi-valued dependencies. Suppose that

A-+-+BC holds on R. If II(A) = 12(A) and II(BC) = 12(BC), then II and 12 themselves serve as

the tuples 13 and 14 required by the definition of the multi-valued dependency A -+-+ BC.

Rules 8, coalescence rule, is the most difficult of the eight rules to verify.

We can simplify the computation of the closure of D by using the following rules, which can

be proved using rules I to 8.

• Multi-valued union rule. If cx.-+-+f3holds and cx.-+-+yholds, then cx.-+-+f3yholds.

• Intersection rule. If cx.-+-+f3holds and cx.-+-+yholds, then cx.-+-+f3n y holds.

• Difference rule. If cx.-+-+f3holds and cx.-+-+yholds, then cx.-+-+f3- y holds and cx.-+-+y- f3

holds.

Let us apply our rules to the following example. Let R = (A, B, C, G, if, I) with the following

set of dependencies D given:

We list some members of D+ below:

• A-+-+CGHI: Since A-+-+B, the complementation rule (rule 4) implies that A-+-+R-B _

A. R - B - A = CGHI, so A -+-+CGHI.

• A-+-+HI: Since A-+-+B and B-+-+HI, the multi-valued transitivity rule (rule 6) implies

thatA-+-+HI - B. Since HI -B = HI, A-+-+HI.

• B-+-+H: To show this fact, we need to apply the coalescence rule (rule 8). B-+-+HI

holds. Since H ~ HI and CG-+-+H and CG n HI = 0, we satisfy the statement of the

coalescence rule with cx.being B, f3being HI, 6 being CG, and y being H. We conclude

that B-+-+H.

• A-+-+CG: We already know that A-+-+CGHI and A-+-+HI. By the difference rule,

A -+-+CGHI - HI. Since CGHI - HI = CG, A -+-+CG.
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5.6.3 Fourth Normal Form

Let us return to our BC-scheme example in which the multi-valued dependency customer-

name~~street, customer-city holds, but no nontrivial functional dependencies hold. We saw

earlier that, although BC-scheme is in BCNF, it is not an ideal design since we must repeat a

customer's address information for each loan. We shall see that we can use the given multi-

valued dependency to improve the database design, by decomposing BC-scheme into a fourth

normal form (4NF).

A relation scheme R is in 4NF with respect to a set D of functional and multi-valued

dependencies if for all multi-valued dependencies in D+ of the form ex:~~~, where ex:~ R

and ~ ~ R, at least one of the following hold:

• ex:~~/3 is trivial multi-valued dependency.

• ex: is a super-key for scheme R.

A database design is in 4NF if each member of the set of relation schemes comprising the

design is in 4NF.

Note that the definition of 4NF differs from the definition of BCNF only in the use of multi-

valued dependencies instead of functional dependencies. Every 4NF scheme is in BCNF. To

see that this is so, note that if a scheme R is not in BCNF, then there is a nontrivial functional

dependencies ex:~~/3 holding on R, where ex:is not a super-key. Since ex:~/3implies ex:~~~

(by the replication rule), R cannot be in 4NF.

The analogy between 4NF and BCNF applies to the algorithm for decomposing a scheme into

4NF. Algorithm 5.4 shows the 4NF decomposition algorithm. This algorithm was presented

by Korth & Silberschatz [1986] (15]. It is identical to the Algorithm 5.2 (BCNF

decomposition algorithm) except for the use of multi-valued instead of functional

dependencies.
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Ifwe apply Algorithm 5.4 to BC-scheme, we find that customer-name-+.~ loan-number is a

_nontrivial multi-valued dependency and customer-name is not a super-key for BC-scheme.

Following the algorithm, we replace BC-scheme by two schemes:

Customer-loan-scheme ~ (customer-name, loan-number)

Customer-scheme ~ (customer-name, street, customer-city)

This pair of schemes which are in 4NF eliminates the problem we have encountered with the

redundancy of BC-scheme.

Algorithm 5.4 : 4NF decomposition Algorithm.

Input: Relation R and the set of multi-valued dependency F on the relation R .

Output: New smaller relations( decomposed) in 4NF

proc decomp _4nf (R, F)

result: = {R};

done = false;

computeF;

while (note done) do

if (there is a scheme Rj in result that is not in 4NF) then

let a~~p be a nontrivial multi-valued dependency that holds

on Rj such that a~Ri is not inF, and a n P = 0;

result: = (result - Rj)U (Ri - P) u (a, P);

else done := true;

endif

enddo

endproc

As was the case when we were dealing solely with functional dependencies, we are interested

also in decompositions that are loss less join decompositions and that preserve dependencies.

The following fact about multi-valued dependencies and loss-less joins shows that the

Algorithm 5.4 generates only loss less join decompositions:
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• Let R be a relation scheme and D a set of functional and multi-valued dependencies on R.

Let R1 and Rz form a decomposition of R. This decomposition is a loss less join

decomposition of R if and only if at least one of the following multi-valued dependencies

is in D+ :

R1 nRz-+-+R1

R1 nRz--'t--'tRz

We stated earlier that if R1 n Rz--'tRI or R1 n Rz--'tRz, then R1 and Rz are a loss less join

decomposition of R. The above fact regarding multi-valued dependencies is a more general

statement about loss-less joins. It says that for every loss less join decomposition of R into

two schemes R1 and Rz, one of the two dependencies R1 n Rz --'t--'t R1 or R1 n Ri --'t--'t Rz

must hold.

The question of dependency preservation when we have multi-valued dependencies is not as

simple as for the case in which we have only functional dependencies. Let R be a relation

scheme and let Rl, Rz, ... , Rn be a decomposition of R. Recall that for a set F of functional

dependencies, the restriction Fj of F to Rj is all functional dependencies in F that include

only attributes of K Now consider a set D of both functional and multi-valued dependencies.

The restriction of D to Rj in the set Di consisting of:

• All functional dependencies in D+ that include only attributes of Ri

• All multi-valued dependencies of the form

Where a. c;;; Rj and a. --'t--'tp is in D+.

A decomposition of scheme R into schemes R1, Rz, . . . , Rn is a dependency preserving

decomposition with respect to a set D of functional and multi-value dependencies if every set

of relations rl(R1), rz(R), ... , rn(Rn) such that for all i, rj satisfies Di, there exists a relation

r(R) that satisfies D and for which rj = DRj (r) for all i.
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Let us apply the 4NF decomposition Algorithm 5.4 to out example of R = (A, B. C, G. H, I)

with D = {A -+.--tB, B-+-+HI, CG-+-+ H}.

T}: A B

a} b}

a2 b2

C G H

c} g} h}

C2 g2 h2

A I

a} i}

a2 i2

A C G

a} C} G}

a2 C2 G2

Figure 5.10 : Projection of relation r onto a 4NF decomposition of R.

We shall then test the resulting decomposition for dependency preservation.

R is not in 4NF. Observe thatA-+-+B is not trivial, yet A is not a super-key. Using A-+-+B in

the first iteration of the while loop, we replace R with two schemes, (A, B) and (A, C. G, H, I)
. It is easy to see that (A, B) is in 4NF since all multi-valued dependencies that hold on (A, B)

are trivial. However, the scheme (A. C, G, I) is not in 4NF. Applying the functional

dependency CG-+-+H (which follows from the given functional dependency CG-+-+H by

the replication rule), we replace (A. C, G, H, I) by the two schemes (C, G, H) and (A, C, G,

I). Scheme (C. G, H) is in 4NF, butscheme (A. C, G, I) is not. To see that (A, C, G, I) is not

in 4NF recall that we showed earlier that A-+-+HI is in D+ therefore A-+-+1 is in the
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restriction of D to (A, C, G, l). Thus, in a third iteration of the while loop, we replace (A, C,

G, l) by two schemes (A, l) and (A, C, G). The Algorithm then terminates and the resulting

4NF decomposition is {(A, B), (C, G, H), (A, l), (A, C, G)}.

This 4NF decomposition is not dependency preserving since it fails to preserve the multi-

valued dependency B-+-~H1.Consider the relations of Figure 5.10. It shows the four

relations that may result from the projection of a relation on (A, B, C, G, H, l) onto the four

schemes of our decomposition. The restriction of D to (A, B) is A -+-~ B and some trivial

dependencies. It is easy to see that rj satisfies A~~B because there is no pair of tuples with

the same A value. Observe that r2 satisfies all functional and multi-valued dependencies since

no two tuples in r2 have the same value on any attribute. A similar statement can be made for

r3 and r4. Therefore, the decomposed version of our database satisfies all the dependencies in

'the restriction of D. However, there is no relation r on (A, B, C, G, H, l) that satisfies D and

decomposes into rl, r2, r3 and r4. Figure 5.15 shows the relation r = r] x r2 x r3 x r4. Relation

r does not satisfy B~~H1. Any relations containing r and satisfying B~~HI must include

the tuple (a2, hI, C2,g2~hI, iI). However, rrCGH (s) includes a tuple (C2, g2, hI) that is not in

r2. Thus, our decomposition fails to detect a violation of B~~H1.

We have seen that if we are given a set of multi-valued and functional dependencies, it is

advantageous to find a database design that meets the three criteria of:

• 4NF.

• Dependency preservation.

• Loss-less join.

If all we have are functional dependencies, the first criterion is just BCNF.

We have seen also that it is not always possible to achieve all three of these criteria. We

succeeded in finding such a decomposition for the bank example, but failed for the example

of scheme R = (A, B, C, G, H, l).

When we cannot achieve our three goals, we compromise on 4NF, and accept BCNF or even

3NF, if necessary to ensure dependency preservation.
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Chapter 6
Characterizing a Database Relation

6.1 Preliminaries

As stated earlier a relation scheme R is a set of attributes {AI, .... ; An}. Each attribute Ai has a

domain D" I :O::i91, consisting of values. Domains are assumed to be countably infinite. A

tuple on R is a mapping t: R~u,D, with t(A,)EDi, bi:O:: n. The values of a tuple t are usually

denoted as <t(AI), ... ,t(An» if the order of attributes is understood. A relation on R are is set

of tuple on R. We will only consider finite relations. Any expression that is allowed for

attributes is extended, by a slight abuse of symbols, to sets of attributes, e.g., if X is a subset

of R, t(X) denotes the set (t(A) IA EX}. We will not distinguish between an attribute A and a

set {A} containing only one attribute. A set of values for a set of attributes X is called an X-

value. In general, attributes are denoted by the uppercase letters (possibly subscripted) from

the beginning of the alphabet, sets of attributes are denoted by uppercase letters (possibly

subscripted) from the end of the alphabet; values of (sets of) attributes are denoted by

corresponding lowercase letters. Relations are denoted by lowercase letters (possibly

subscripted) such as n. p, q, r. u; tuples are denoted by tl, t2, t3, ..... If X and Yare sets of

attributes, their juxtaposition XY means XuY We employ the usual notation for expressions

of relational algebra.

As defined above, a relation r on a relation scheme R={AI, ...• An} can be viewed as an

extensional of an n-ary predicate symbol r; alternatively, r is a possible model of the open

formula r(XI, ... , Xn). Likewise, a relation that satisfies a dependency D is a model of D. If r

is a model of a formula 0, we write r I=0. this is. called the model theoretic view of database

[9].

6.2 Characterization by functional dependencies

As stated earlier relation r satisfiesa functional dependencies X~Y if tl E rand t2 E rand

tl(X) = t2(X) imply tl(Y) = t2(Y). Put pifferently, for every X-value x, the relation lty (0" x=x(r))
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contains at most one tuple. The characterization of r in terms of functional dependencies is

FD(r) = {X ~Y I r satisfies X~Y}. Thus, r is a relation that satisfies all fds in FD(r) and no

other, hence r is an Armstrong relation for FD(r). A relation contradicts any fd that it does

not satisfy [2].

The empty elation 0 and anyone-tuple relation {t} satisfy all fds. The universal relation u

(the Cartesian product XDj of all domains of attributes satisfies only trivial fds. While u is

infinite, there are also finite relations q that satisfy only trivial fds, thus FD(q) = FD(u). This

follows directly from the existence of Armstrong relations for any (consistent) set of fds

[2][4].

As an illustration, let r be the relation depicted in Table 6.1.

A B c

C2

C2

Table 6.1. A relation satisfying some functional dependencies.

Then r satisfies A~B, A~C (hence, A is a key for r) and B~C, among others. FD(r)

contains these three fds, plus every fd that is implied by them (such as A~BC, and AC~ B),

including trivial fds X~Y where X;;2 Y (such as AC~A). The set {A~ B, A~ C, B~ C}

appears to be a cover for FD(r), i.e., FD(r) is the deductive closure of this set. It can be easily

shown that each element of a non-redundant cover can be written in the form X ~A, where A

is a single attribute such that A (l X Thus, we can solve the characterization problem for fds

if we have an algorithm that constructs a set of fds X~A which is a cover for FD(r). In the

following, we restrict 'ourselves to fds with a single attribute on the right-hand-side: The

following theorem provides the clue for a fd-characterization algorithm.

THEOREM 6.1 (More general fds). If a relation r satisfies fd X~A, then it also

satisfies any fd Y~ A such that Y;;2X
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Proof If r contradicts Y~A, then it contains two tuples with equal Y-values but

unequal A -values. But then these tuples also have equal X-values, hence r contradicts

X~A.

Thus, if a non-redundant cover contains two fds X ~ A and Y~A, then X<;tY. We call an fd

X ~ A as general as an fd Y ~ A iff X <;;; Y. This terminology is justified by theorem 1 : any

model of a more general fd is a model of a less general one, hence the former implies the

latter. The relation of generality is a partial ordering on the set of fds (partitioning it into sets

of fds with equalright-hand-sides). Theorem 1 shows that the set of fds satisfied by r is

bounded from above by a set of most general fds, such that any fd more specific than one of .

these is also satisfied by r. Thus, it suffices to maintain this upper boundary in a

characterization algorithm.

There are essentially two approaches for determining FD(r) for a given r: (i) start with the

(empty) cover of FD(u), the set of trivial fds, and add those fds that are also satisfied by r ;

(ii) start with a cover of FD(0), the set of all fds, and remove those fds that are contradicted

by r. The former approach will be called an upward approach, because it starts with the set of

most specific fds; likewise, the latter approach will be called a downward approach. Which

approach will be more efficient depends on the actual number offds satisfied by the relation.

There is an important difference, however, between testing for satisfaction and testing for

contradiction: contradiction can always be reduced to two witnessing tuples [25]; this can

easily be seen if fds are expressed in Hom form. More importantly, these two witnesses give

information about how to specialize the refuted fd, as will be detailed below. For these

reasons, we restrict attention to the downward approach.

The satisfaction of an fdX~A by a relation r can be expressed in Hom clause form as [13] :

A =A' : - rX4(X1, ..... , Xn, A), rX4(Xl, .... , Xn,A'). (6.1)

where rX4 denotes the projection 1tX4(r) of r on the attributes in X followed by A. The equality

test for the A-values of both tuples can be implemented by syntactic unification, as in Prolog.

For instance let R = {A, B, C, D}, then the fd A~ C is expressed as C =C :-rAcCA, C), rAcCA,
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C), or equivalently, C=C':- r (A,B, C. D), r (A,B~ C', Dj. Thus, the general Horn form of

a fd is A = A' : - Tuplel, Tuple2, and the test for contradiction are easily implemented in

Prolog as

fd_contradicted «A =A': - Tuplel, Tuple2), Tuplel, Tuple2) :-

tuple (Tuplel), tuple(Tuple2),A ",A '. (6.2)

The goal ?- fd_contradicted (FD, Tuplel, Tuple2) succeeds if the fd FD is contradicted by the

tuples Tuplel, Tuple2. For instance, a refutation of the satisfaction (and thus a proof of the

contradiction) of the above fd by a relation containing the witnesses r (a), bJ. C}, d}) and r (a),

.b}, C2, d2) is given in Figure 6.1.

C = C :- r(A, B, C,D), r (A, B', C', D').

c}=C :-r(a},B',C,D').

Figure 6.1. Refutation ofthe satisfaction of an fd with two tuples.

The clause c} = C2 evaluates to false by definition.

Using this contradiction test, an algorithm for downward fd-characterization is given by

Algorithm 6.1. This algorithm was presented by Flach [1990][9]. For simplicity, the right-

hand-side attribute A is kept fixed. The algorithm leaves the way in which the relation is

searched for two tuples contradicting an fd is left unspecified. Notice that a naive approach is

easily implemented by calling fd_contradicted (FD, Tuplel, Tuple2) with second and third

argument non-instantiated. This goal will succeed with the first pair of tuples found to

contradict FD, and on backtracking all other solutions will be generated. This approach is
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naive in the sense that it investigates all n2 pairs oftuples. while only 1/2n(n-l) pairs need to

be investigated. The latter approach corresponds to calculating FD(rv{t}) by first calculating

FD(r), followed by a comparison of t with each tuple in r. This is in fact equivalent to the

inductive learning approach presented in section 6.4, which relies on the fact that FD(r) ::J

FD(rv{t}).

ALGORITHM 6.1. Downward characterization by functional dependencies.

Input: A set r of tuples on a relational scheme R and an attribute A E R.

Output: A non-redundant cover ofthe set of functional dependencies X~A, satisfied

by r.

proc fd_char(r, A);

QUEUE: = {0~A};

FD_SET: =0;

while QUEUE ",0 do

FD = remove next fd from QUEUE;

for each pair h T2 from r do

iffd_contradicted (FD, h T2)

then add fd_specialize (FD, h T2) to QUEUE;

endif

enddo

If FD is not contradicted

then FD_SET: =FD_SETuFD;

end if

enddo

c1eanup(FD _SE1);

return (FD_SE1).

endproc

The algorithm operates as follows. A QUEUE is maintained, fds still to be tested. for the first

FD in the queue, a pair of contradicting witnesses is sought. If no such can be found, FD is

satisfied by r and can be added to FD_SET. If FD can be refuted, it is discarded and more

specific fds are added to the queue, Finally, call c1eanup(FD SE1) removes those fds from

FD_SET that are subsumed by (less general than) others.
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The procedure fd_specialize (FD, h T2) should of course not jump over fds that are satisfied,

but it should preferably jump over fds more special than FD that are also contradicted by {h

T2}. As suggested above, this can be done. The key idea is, that if the fd A ~C is contradicted

by the witnesses r (ai, bi, Ci, di) and r (ai, h C2, d2), then we can immediately deduce from

this refutation that AD~C is a possible replacement, but AB~C definitely is not. This

conclusion can be reached by looking for attributes, apart from C, for which both witnesses

have different values, i.e., D. This set of attributes is called the disagreement of the two

witnesses, and can be obtained by computing their anti-unification (the dual of unification)

[22][23][24]. The anti-unification of r (ai, bi, Ci, di) and r (ai, bi, C2, d2) is r(ai, bi, C,D),

suggesting D as an extension to the left-hand-side of the fd. In the next iteration, AD~C may

. itself turn out to be contradicted, ifr (ai, b2, Ci, d2) happens to be in r. But then we obtain r

(ai, B, C, d2) as anti-unification of r (ai, b2, Ci, d2) and r (ai, h C2, d2), suggesting B as an

extension to the left hand side of the fd. This yields the even more specific fd ABD~C.

The procedure is slightly more involved than suggested above, because the disagreement

might contain several attributes, each of which is a sufficient extension to the left-hand-side

of the contradicted fd (at least for those two witnesses). Thus, each pair of witnesses can

suggest a number of extensions, and each possible replacement should follow one suggest~on

for each pair of witnesses, e.g., if A~C is contradicted by r (ai, bi, Ci, di) and r (ai, h C2,

d2), the disagreement is {B, D}, yielding the possible replacements AB~C and AD~C. The

full algorithm is given below. This algorithm was presented by Flach [1990][9].

ALGORITHM 6.2. Specialization of an fd contradicted by two tuples.

Input: An fdX~A and two tuples fi, f2 contradicting it.

Output: The set ofleast specialization of X~ A, not contradicted by !}. f2.

proc fd_specialize (X~A, fi, f2);

SPECIALISED]DS: = 0;

DISAGREEMENT: = the set of attributes for which fi and f2 have different

values;

. DISAGREEMENT: =DISAGREEMENT - {A};

for each A TTR in DISAGREEMENT do
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add (XuA TTR) ~A to SPECIALISEDJDS;

enddo

return (SPECIALISEDJDS).

endproc

The above characterization algorithm has been implemented in C programming language,

applied separately to each possible right hand side. The database tuples are asserted on the

object-level, proving contradiction offds as specified in formula (6.2). On the other hand, the

replacement procedure operates on a meta-level, on which fds are described by (lists of)

attribute names. This greatly simplifies the manipulation and specialization of fds. There is a

very straightforward procedure for translating fds on this meta-level to the object-level. We

note that a cover for FD(r) is usually smaller than the union over A of covers for {X~A IX~
A is satisfied by r}, due to the pseudo-transitivity derivation rule (X~A and AY~B imply

X~B). Thus, the characterization algorithm could be made more efficient by not splitting it

into separate procedures for every possible right-hand-side.

6.3 Characterization by multi-valued dependencies

Relation r satisfies a multi-valued dependency (mvd) X~~Y if IJEr and 12Er and IJ(X) =

12(X) imply that there exists a tuple 13Er with 13(X)=IJ(X), 13(Y)=IJ(Y), and 13(Z)=12(Z), where Z

denotes R-XY. In words, the set of Y-values associated with a particular X-value must be

independent of the values of the rest of the attribute (Z). The symmetry of this definition

implies that there is also a tuple 14Er with 14(X)=IJ(X), 14(Y)=12(Y), and 14(Z)=IJ(Z). Let r be the

relation shown in Table 2, then r satisfies the mvds A~~B andA~~CD.

A B C D

aJ bJ CJ dJ

. aJ b2 C2 d2

aJ bJ C2 d2

aJ b2 CJ dJ

a2 b2 C2 dJ

Table 6.2. A relation, satisfying some multi-valued dependencies.
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Define MVD(r) = {X---t---tY I r satisfies X---t---tY}. With mvds we only need a cover for

MVD(r), containing for instance no trivial mvds; if X---t---tYEMVD(r) then also

X---t---tZEMVD(r), with Z~R-XY. Such a cover can be represented by a set of dependency

basis [19]. The dependency basis DEP(X) of X>;; R wrtMVD(r) is a partition of R containing

X, such that X---t---tYEMVD(r) iff Y is the union of some sets in DEP(X). For instance, if

R={A, B, C. D}, the dependency basis of A wrt {A---t---tB} is {A, B, CD}, implying the mvd

A---t---tCD. Thus, MVD(r) can be completely described by {DEP(x)1 X>;;R}.

Satisfaction and contradiction of mvds can be extended to dependency basis in the obvious

way. We then have the following theorem.

THEOREM 6.2 (More general than for mvds). If a relation r satisfies a dependency basis

DEP leX), then it also satisfies any dependency basis DEP2(X) such that X;2X, and DEP l(X)

is a fmer partition than DEP2(X').

Proof. If r contradicts PEP2(X'), then there is an mvd X---t---t Y that is contradicted by r,

such that it is the union of some sets in DEP2(X'). That is, there are t]Er and t2Er with

t](X')=tl(X'), such that no t3Er satisfies tl.)C)=t](X'), t3(Y)=t](1'), and t3(Z')=tl(Z'), where Z'

denotes R-XY. But then no t4Er satisfies t4(X)=t](X), tlY)=t](Y), and t4(Z)=tl(Z), where Z

denotes R-XY, either. Thus X---t---tY is also contradicted by r. But X---t---tY is implied by

DEP leX), which is therefore also contradicted by r .

. We call DEP l(X) as general as DEP2(X), because the former logically implies the latter.

Thus, the set {DEP(x)1 X>;;R} can be made non-redundant by removing those elements that

are less general than others. For instance, DEP l(A)={A, B, C, D} is more general than both

DEP2(A)={A, B, CD} and DEP3(AB)={AB, C, D}. Consequently, the most general MVD(r)

is represented by DEP(0)=R. This relation of generality forms the basis for a downward

characterization algorithm for mvds, similar to Algorithm 6.1 above: if the current set of

dependency basis implies an mvd that is falsified by a new tuple, the guilty dependency basis

is removed and replaced by more specific ones.

The satisfaction of an mvd X ---t---t Y by a relation r is expressed in Horn form as:
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r(XI, ,Xn, YI, , Ym, Zl Zk) :-
r(XI ....• Xn. AI, ..., Am, Zl, ..., Zk), r(XI .... , Xn, YI.... , Ym, BI, .... Bk). (6.3)

assuming for notational convenience that X denotes the first n attributes of r, and Y denotes

the next m attributes. For instance, let R be {A. B, C, D}. Then both mvds A-+-,> B and

A-+--,; CD are expressed by r(A, B. C, D) : r(A, B', C, D), r(A. B, C, D'). Thus, the general

Horn form of an mvd is Tuple3:- Tuplel, Tuple2, and the test for contradiction is easily

implemented in Prolog as

mvd_contradicted «Tuple3 : - Tuplel, Tuple2), Tuplel, Tuple2) :-

tuple (Tuplei), tuple (Tuple2), not tuple (Tuple3). (6.4)

For instance, refutation of the satisfaction of the above mvd by the positive witnesses r(al,

bl, CI, dl) and r(al, h C2,d2) and the negative witness r(al, h CI, dl) is given in Figure 6.2.

Using this contradiction test, an algorithm for downward mvd-characterization is given by

Algorithm 6.3. This algorithm was presented by Flach [1990][9]. It is analogous to Algorithm

6.1.

r(A, B, C, D) :- r(A. B~ C, D), r(A. B, C', D ').

D

Figure 6.2. Refutation of the satisfaction of an mvd with three tuples.
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ALGORITHM 6.3. Downward characterization by multi-valued dependencies.

Input: A relational scheme R, and a set r of tuples on R.

Output: A set of dependency bases covering exactly those multi-valued dependencies

satisfied .by r.

proc mvd_char (R, r);

QUEUE:={0, R};

DEP _SET: =0;

while QUEUE 'f- 0 do

DEP: = remove next dependency basis from QUEUE;

for each pair h T2 from r do

ifmvd_contradicted (DEP, MVD, h T2)

then add mvd_specialize (DEP, MVD, h T2) to QUEUE;

endif

enddo

if DEP is not contradicted

thenDEP_SET: =DEP_SETuDEP;

endif

enddo

cleanup(DEP _SE1);

return (DEP SE1).

endproc

The specialization queue QUEUE contains pairs (X, DEP(X». The call mvd_contradicted

(DEP, MVD, h T2) differs from formula (6.4) in that it takes a dependency basisDEP and

two tuples T1 and h and succeeds if T1, T2 contradict DEP, in which case it also returns the

contradicted mvd MVD implied by DEP.

Specialization of a refuted dependency basis DEP(X) must be done in two ways, according to

Theorem 6.2: by combining blocks in the partition (a right specialization), and by augmenting

X (a left specialization). For instance, suppose the dependency basis DEP(A)={A, B, C. D}

and the mvd A~~B are refuted. Fir~t of all, DEP(A) must be changed, either to {A, BC, D}

or to {A, BD, C}. The witnesses do not contain a clue for choosing between these two
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candidates, but notice that they cannot both be satisfied : otherwise the originally refuted

dependency basis would be implied. In one of the following iterations, the right one will be

chosen (or again specialized). To prevent a specialization step that is too coarse, we must also

add the dependency basis DEP(AB)={AB, C, D}, DEP(AC)={AC, B, D} and DEP(AD)={AD,

B, C} to the specialization queue. The specialization procedure is given by Algorithm 6.4.

This algorithm was presented by Flach [1990][9].

ALGORITHM 6.4. Specialization of a dependency basis contradicted by two tuples.

Input: A dependency basis DEP(X), an mvdX-)-)Y, and two tuples 11, 12

contradicting them.

Output: The set ofleast specialization of DEP(X), not contradicted by 11, 12.

proc mvd_specialize (DEP(X), X-)-)Y, 11, (2)

SPECIALISED _DEPS: = 0 ;
/*right specialization!

for each fillest DEP I(X) such that DEP(X) is finer partition and Y is not a

combination of blocks in DEP(X) do.

add ex. DEP I(X)) to SPECIALISED _DEPS;

enddo

/*left specialization!

for each smallest augmentation X' of X do

add (X', DEP(X)) to SPECIALISED-DEPS;

enddo

return(SPECIALISED _DEPS).

endproc

Notice that some of the left specialization may also be falsified by the same witnesses, e.g., in

Figure 6.2, the C- and D-values of the second witness are immaterial, which therefore could

also have been r(a1, b2, c1, d2), falsifying the mvd AC-)-)B. If this is true, it will come out in

one of the next iterations of the mvd characterization algorithm. To improve efficiency, it

could also be tested within the specialization routine.
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6.4 Inductive learning of functional dependencies

6.4.1 The problem of incremental characterization: monotonicity

In this section, we can reformulate the characterization problem as an inductive learning

problem. That is, we switch from non-incremental characterization to incremental

characterization by assuring that tuples of r are supplied one at a time. After each new tuple

the current characterization should be updated. Thus, we can take advantage of the large body

of work on inductive learning.

In the spirit of the majority of this work, we will assume that the last tuple of r is not

signaled; thus, each intermediate characterization (or hypothesis) could tum out to be the

final one. That is our learning criterion is identification in the limit: when given a sufficient

set of examples, the learner should output the correct hypothesis after a finite number of steps

and never change it afterwards [12]. Additionally, we allow for the possibility that the

learning process is halted before such a sufficient set of examples (i.e. the complete relation)

has been supplied. In such a case, the final hypothesis may not be the correct one, but it

should be at least as close to the correct characterization as every hypothesis preceding it.

Consequently, the sequence of intermediate hypothesis should demonstrate a global

convergence towards the correct characterization. This global convergence is guaranteed by

requiring the learning algorithm to be consistent (intermediate hypothesis make sense) and

conservative (the current hypothesis is changed only whennecessary).

The result of section 6.2 can also be interpreted in the context of inductive learning: non-

incremental characterization can be viewed as batch learning, in which all examples are

processed at once, and no intermediate hypothesis are generated. There is a very obvious

method for transforming a batch learning algorithm into an incremental learning algorithm:

maintain a list of examples seen so far, and on the advent of a new example, add it to the list

and runthe batch algorithm on the ~ntire list. The resulting algorithm is consistent, but may

not be conservative. Moreover, this approach is infeasible because of its storage and
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computation time requirements. We can do better if the results of the previous run can be

used in the next run, i.e., if we can take D(r) as the starting point for the calculation of

D(rv{t}). In section 6.4 we prove that fds are monotonic in the following sense: r}g2

implies FD(r}) ~FD(r2). Due to this property, we derive an inductive fd-characterization

algorithm which resembles the batch algorithm very much, and which is guaranteed to be

conservative.

In section 6.4.2 we show that mvds are not monotonic, which makes incremental mvd-

characterization problematic, with respect to efficiency as well as convergence. A solution is

by introducing possible multi-valued dependencies or pmvds, which can only be refuted by

so-called negative tuples, i.e., tuples that are known to be not in the relation. We'show that

the set of pmvds shrinks monotonically when the sets of positive and negative tuples grow

larger. An additional problem is that pmvds can not always uniquely be translated to mvds.

This problem can be solved by an approach, which permits the system to query the user about

crucial tuples.

THEOREM 6.3 (monotonicity offds). r} ~ r2 implies FD(r})~ FD(r2).

Proof. r} ~ r2 implies (Jx~x(r}) ~ (JX~x(r2)implies 1ty«Jx~x(r})~ 1ty«JX~x(r2).Hence, if r2

satisfies X~Ythen r} satisfiesX~ Yand thus FD(r2) ~ FD(r}).

An algorithm that calculates FD(rv{t}) given r, FD(r), and t is shown in Algorithm 6.5. This

algorithm was presented by Flach [1990][9]. Again, for simplicity the right-hand-side of the

fds is fixed.

ALGORITHM 6.5. Incremental Downward characterization by functional dependencies.

Input: A set r of tuples on a relational scheme R, a non-redundant cover COVER

of the set of functional dependencies X ~A satisfied by r, a tuple t on R, and

an attribute A ER.

Output: A non-redundant cover of the set of functional dependencies X~A,

satisfied by rv{ t}.

procfd_char (r, COVER, t, A)

QUEUE: = COVER;
FD_SET: =0;

while QUEUE ;to do
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Input:

Output:

FD: = remove next fd from QUEUE;

for each tuple T from r do

if fd_contradicted (FD, t, T)

then add fd_specialize (FD, t, T) to QUEUE;

endif

enddo

if FD is not contradicted

then FD_SET: = FD_SETvFD;
end if

enddo

c1eanup(FD _SET);

return (FD SET).

endproc

A non-incremental algorithm based on this incremental algorithm is shown in Algorithm 6.6.

This algorithm was presented by Flach [1990][9].

ALGORITHM 6.6.Non-incremental downward characterization by functional

dependencies.

A set of tuples on a relational scheme R, and an attribute A ER.

A non-redundant cover of the set of functional dependencies X~A,

satisfied by r.

proc fd_char_non_incr (r, A);

ifr=0

then FD_SET: = 0~A;

else select a tuple T from r;

COVER: = fd_char_non-incr(r-T, A);

FD_SET: = fd_char(r- T, COVER, T, A).

return (FD SET).

endproc
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6.4.2 Inductive learning of possible multi-valued dependencies

There is a very important difference between fds and mvds, as follows. An fd X~Y says: if

two tuples have equal X-values, than they also have equal Y-values. An mvd, however, says:

if it is known that these two tuples are in the relation, then it is also known that two other

tuples are in the relation. Put differently, mvds are tuple-generating dependencies rather than

equality-testing dependencies [5]. Consequently, the analogue of theorem 6.3 does not hold

for mvds.

THEOREM 6.4 (non-monotonicity of mvds). MVD(r) does not monotonically decrease

when r increases.

Proof Let X~~YEMVD(r), and let t}~r and t2~r (t};42) have equal X-values, then

X~~Y~MVD(1V{t}, t2}). Now, let t3(X)=t}(X), tly)=t}(y), t3(Z)=tJ(Z) (Z=R-XY),

t4(X)=tl(X), t4(Y)=t2(Y), and t4(Z)=t}(Z), then again X~~YEMVD(1V{tlht3,t4}). (NB. tlftr

and t2~r andX~~YEMVD(r) implies t3~r and t4~r.)

For an example, see the relation in Table 6.3: the first four tuples constitute r, and the other

four are tl, t2, t3, and t4.

A B C D

A} B} C} dl

Al B2 C2 d2

Al BI C2 d2

Al B2 C} dl

T}: A2 B2 C2 dl
h. A2 BI CI d2
h. A2 B2 CI d2

T4: A2 B} C2 d}

Table 6.3. MVD is not monotonic: r satisfies A~~B, rv{tJ, tz} does

. not, and rv{tJ, tz, t3, t4} again does ..
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Theorem 6.4 implies that MVD(ru{f}) can not be constructed by simply removing falsified

mvds from MVD(r): some mvds not in the latter set might have to be added to the former. It

is thus not possible to derive an incremental algorithm from the non-incremental one

(Algorithm 6.3) in the same way as Algorithm 6.5 was derived from Algorithm 6.1 in the fd-

case. On the contrary, an incremental approach would require reconsideration of all tuples

upon arrival of a new tuple, and would therefore be considerably less efficient than the non-

incremental algorithm. Moreover, the resulting algorithm would not be conservative. In the

remainder of this section, an approach based on incorporating explicit negative information in

the learning process is shown .

.
The behavior of non-monotonic characterizations can be explained by the Closed World

Assumption (CWA), which states that everything that is not known to be true is assumed to

be not true. This assumption is in conflict with an incremental approach, which assumes that

if a tuple is not in the current, partial relation, it may still appear in a future extension. The

only way to resolve this conflict, is to abandon the CWA by defining a mvd to be possibly

satisfied by a partial relation r if it is satisfied by some extension r':;;,r. This introduces an

additional problem: the universal extension r* of r, i.e., the universal relation restricted to

tuples containing attributevalues appearing in r, satisfies every mvd. Because r*:;;,r, we have

that r possibly satisfies every mvd as well. The only way to get around this, is to incorporate

negative information in the characterization process, by supplying negative tuples that are not

in the relation to be characterized. Thus, we define a possible multi-valued dependency

(pmvd) X=>=> Y to be satisfied by a set p of positive tuples and a set n of negative tuples (p

and n disjoint) iff for any three tuples fj, f2, f3 such that fj(X)=f2(X)=f;(X), f3(J')=fj(J'), and

f3(R-Xl')=f2(R-Xl'), fjEP and f2Ep implies f3<!.n; alternatively the pmvd is contradicted iff

fjEP, f2Ep and f;En. We also write <p, n>l= X=>=>Y for a satisfied pmvd, and <p,

n>l;tX=>=>Y for a contradicted pmvd. The set of pmvds satisfied by <p, n> is denoted

PMVD(p, n). Clearly, this set is monotonic with regard to positive and negative tuples.

THEOREM 6.5 (monotonicity ofpmvds).

(i) pj r;;;,P2implies PMVD(pj, n) :;;,PMVD(p2, n).

(ii) nj r;;;, n2 implies PMVD(p, nj) :;;,PMVD(p, n).
. .
Proof. Immediate from the definition of satisfaction of pmvds.
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The generality relation for pmvds is given by Theorem 6.6.

THEOREM 6.6. (more general than for pmvds)

(i) (augmentation) <po n>l=X~~ Y implies <p, n>l=XZ~~ Y;

(ii) (complementation) <p, n>I=X~~Yimplies <Po n>I=X~~R-XY.

Proof (i) LetXZ~~ Ybe contradicted by witnesses II. 12, IJ, then II(XZ)=

IlXZ)=IJ(XZ) implies IM')=12(X)=IJ(X); 12(XZ)= IJ(XZ) and 13(R-XZY)=12(R-

XZY) implies IJ(R-XY)=llR-XY). Thus X~~Y is contradicted by the same witnesses.

(ii) Immediate.

Theorem 6.6 (ii) shows that the pmvds X~~Y and X~~R-XY are equivalent (suggesting a

dependency basis-like representation PDEP(X) = {X; Y, R-XY}). Theorem 6.6 (i) shows, that

a more specific pmvd is obtained by removing attributes from Y or R-XY and adding them to

X. In Figure 6.3, the generality relation is depicted for pmvds on the relation scheme R = {A,

B, C}. Only non-trivial pmvds, i.e., X~~Ywith both Yand R-XY non-empty, are included

also, for each pair of equivalent pmvds, only one representative is included.

0~~A 0~~B 0~~C

C~~A 'B~~A A~~B

Figure 6.3. Non-trivial pmvds on R = {A, B, G, ordered by generality.

Note that this relation is a restriction of the generality relation for mvd, e.g., pseudo-

transitivity, pl= 0-+--+A and pl= A---+---+Bimply pl= 0---+---+B, but <Po n>l= 0~~A and <p,

n>l=A ~~B do not imply <Po n>l= 0 ~~B.

The contradiction test for pmvds is derived from the test for mvds (formula (6.4) by changing

not tuple (Tuple3) (implementing the CWA by negation as failure) to neg_tuple (Tuple3)

(testing for explicit negative information).
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pmvd _contradicted «Tuple3:- Tuplel, Tuple2), Tuplel, Tuple2, Tuple3) :-

pos_tuple (Tuplel), poUuple(Tuple2), neg_tuple (Tuple3). (6.3.1)

Following is an incremental pmvd-characterization algorithm. This algorithm was presented

by Flach [1990][9].

ALGORITHM 6.7. Incremental downward characterization by possible multi-valued

dependencies.

Input: A set p of positive tuples and a set n of negative tuples on a relational

scheme R, the set of most general possible multi-valued dependencies

satisfied by <p, n> and a pair <I, s> consisting of a tuple 1 on R, and

SE{+, -}.

Output: The set of most general possible multi-valued dependencies satisfied by

<pu{I}, n> if S = +, or by <p, nu{I}> if S =-.

proc pmvd_char_incr (p, n, IN_PMVDS, <I, s»

QUEUE: = IN]MVDS;

PMVD _SET: = 0;

while QUEUE*0 do

PMVD: = remove next pmvd from QUEUE;

if s= +

then I*positive tuple*1

for each tuple Tp from p and Tn from n do

if pmvd _contradicted(PMVD, I, Tp. Tn)

then add pmvd_specialize(PMVD, I, Tp, Tn) to

QUEUE;

end if

enddo

else I*negative tuple*1

for each pair TpJ, Tp2 from p do

if pmvd_contradicted(PMVD, TpJ,Tp2,r)

then add pmvd_specialize(PMVD, Tpj, Tp2,I) to

QUEUE
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endif

enddo

endif

if PMVD is not contradicted

then PMVD _SET: =PMVD _SET uPMVD;

enddo

c1eanup(PMVD _SE1)

return(PMVD _DEPS).

endproc

The operation of Algorithm 6.7 depends on whether the new tuple is positive or negative ..

Notice that the call pmvd.c.contradicted(PMVD, Tp1• Tp2• t) now takes three tuples. The call

c1eanup(PMVD _SE1) removes redundant pmvds with respect to the generality ordering.

The specialization algorithm for pmvds is shown in Algorithm 6.8. This algorithm was

presented by Flach [1990][9].

ALGORITHM 6.8. Specialization of a possible multi-valued dependency contradicted by

three witnesses.

Input: A possible multi-valued dependency X=:>=:>Y contradicted by three distinct

witnesses t1. t2 (positive) and t3 (negative).

Output: The set ofleast specialization of X=:>=:>Y, not contradicted by t1. t2. t3.

proc pmvd_specialize (X=:>=:>Y, f1, t2. t3);

SPECIALISED ]MVDS: = 0;

DISAGREEMENTI:= the attributes for which only f1 and f3 have the same

values;

DISAGREEMENT2: = the attributes for which only t2 and t3 have the same

values;

if DISAGREEMENTI contains more than one attribute

then

for each attribute A in DISAGREEMENTI do
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add (XuA) ~~ (Y-A) to SPECIALISED ]MVDS;

enddo

endif

if DISAGREEMENT2 contains more than one attribute

then

for each attribute Bin DISAGREEMENT2 do

add (XuB) ~~ (Y-B) to SPECIALISED ]MVDS;

enddo

endif

return (SPECIALISED ]MVDS).

endproc

The main idea behind Algorithm 6.8 is, to augment the left hand side of a contradicted pmvd

with an attribute for which not all three witnesses have the same value. Care must be taken to

prevent generation of trivial pmvds. For instance, let I}=<a}, h}, C},d}. e}>, 12=<a},h}, C2.d2.

ey and 13=<a}.bJ. C2,d}, e}>, refuting the pmvd A~~C; we have DISAGREEMENTl = C

and DISAGREEMENT2 = DE (each of these sets is necessarily non-empty, otherwise the

negative witness would be identical to one of the positive witnesses). DISAGREEMENTl

contains only one attribute; moving it to the left-hand-side would result in a trivial pmvd.

Moving one attribute from DISAGREEMENT2 to the left hand side results in the pmvds

AD~~C and AE~~C. Notice that the complementary pmvds AD~~BE and AE~~BD

are not generated; they would have been generated upon the call pmvd_specialized

(A~~BDE, I), /2, 13).

6.4.3 From possible multi-valued dependencies to satisfied
multi-valued dependencies: a querying approach

We have to use an incremental pmvd-characterization algorithm, but it is mvds rather than

pmvds that we are interested in. Thus, the remaining issue is: what is the relationship between

MVD(r) and PMVD(p, n), expressed in terms of the relationship between r on the one hand

and pand n on the other ? The obvious approach would be to. take r=p and

MVD(r)=PMVD(p, n). However, this will lead to inconsistencies, because the .implicational
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structure of mvds is stronger than the implicational structure of pmvds. For instance, let

p={<a}, b}, C}, d}>, <a} ,b2 ,C2 ,d2>} and n={<a}, b}, C2, d}>}, then <p, n> satisfies both

A=:>=:>Band A=:>=:>BC,but contradicts A=:>=>C,while A~~ C follows by projectivity from

A~~B andA~~BC. Thus, we cannot include both A~~B andA~~BC inMVD(r), but

there are no reasons to choose either one of them.

There are, however, conditions under which MVD(r)=PMVD(p, n) is valid: if we have seen

. all negative tuples that are crucial. This idea is formalized as follows. We call <p, n>

necessary for r iffevery positive example is in r, and every negative example is not in r but in

r*: rg and r*-rr;;;,n.Likewise, we call <p, n> sufficient for r iff every tuple in r has been

supplied as a positive example, and every tuple not in r but in r * has been supplied as a

negative example: rg and r*-rr;;;,n.We call <p, n> complete for riff <p, n> is both

necessary and sufficient for r.

LEMMA 6.7. Let I}, 12,13be three tuples with 1}(X)=llX)=13(X), IJ(Y)=I}(Y), and

IJ(R-XY)=12(R-XY).

(i) If<p, n> is necessary for r, I}E p, 12EP and IJE n implies I} E r, 12E rand IJrtcr.

(ii) If<p, n> is sufficient for r, I}Er, 12Er and IJrtcrimplies that I}Ep, 12Ep and, IJEn.

Proof. Trivial.

In what follows, I}, 12and IJ are witnesses as in Lemma 6.7. Necessary tuples are needed for

contradiction of pmvds.

THEOREM 6.8. If<p, n> is necessary for r, MVD(r) r;;;,PMVD(p, n).

Proof. Suppose <p, n>I=X=:>=:>Y,i.e., there are witnesses I}Ep, 12Ep and IJEn. By

Lemma 6.7 (i) I}Er, 12Er and IJrtcr,hence rl=X~~Y

For instance, the positive tuples p={<a}, b}, C}, d}>,<a}, h C2, d2>} and the negative tuple

n={ <a}, b}, C2,d}>} contradict the pmvds A=:>=:>Cand A=:>=:>BD;<p, n> is necessary for the

relation r depicted in Table 6.4, which therefore does not satisfy the corresponding mvds.
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A B C D

P: a] h] C] D]

P: a] h2 C2 D2
N: a] h] C2 D2

Table 6.4. A relation contradicting the mvds A--+--+C and A --+--+BD.

Analogously, a sufficient set of positive and negative tuples contradicts at least those pmvds

which are (as mvd) not satisfied by the positive tuples.

THEOREM 6.9. If <p, n> is sufficient for r, MVD(r) ;;;> PMVD(p, n)

Proof. Suppose the mvd X--+--+Y is not satisfied by r, i.e., there are witnesses tiEr, t2Er and

t;~r. By Lemma 6.7 (ii) t]Ep, t2Ep and t;En; hence <p, n>I=X=>=>Y.

A complete set of positive and negative tuples results in a set of pmvds, equivalent with the

set of mvds satisfied by the positive tuples.

COROLLARY 6.10. If <p, n> is complete for r, MVD(r) = PMVD(p, n).

For instance, a complete set of positive and negative tuples for the relation in Table 6.4 is

depicted in Table 6.5.

A B C D

p: a] B] C] d]

p: a] B2 C2 d2
p: a] Bj C2 d2
n: aj Bj C2 dj

n: a]. Bj Cj d2

n: a] B2 Cj dj

(*)n: aj B2 C2 d]

(*)n: a] B2 C] d2

Table 6.5. <p, n> is complete for the relation in Table 6.4.
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In fact, the two negative tuples marked (*) are superfluous, because every pmvd they refute

can be refuted by means of one of the other three negative tuples (this is related to the

symmetry of the defInition of satisfaction of an mvd). This does not mean that the starred

tuples might just as well have been positive; it means, that removing them from n does not

influence the set of refuted pmvds. Thus, the starred negative tuples are not necessary for r,
implying that the defInition of necessary negative tuples is somewhat too strong.

In reality, we do not know r, the relation to be incrementally characterized. Corollary 6.10

shows that the set of pmvds can be consistently interpreted as a set of mvds if <p, n> is

complete for some r (i.e. if pun=p*, according to the defInition of completeness given

above). An approach of extendingp and n such that <p, n> is complete is that we have to let

the system pose queries to the user. That is, the system generates typical tuples not yet in p or

n,which the user must classify as either positive or negative. This process halts when p and n
are complete for p, resulting in a set of pmvds that can consistently be interpreted as an mvd-

characterization of p. The query-process can naturally be integrated with the specialization

process. Several query-strategies are possible, e.g., a cautious approach (corresponding to the

search for least specialization), or a divide-and-conquer approach, searching for a refutation

of a pmvd somewhere between a most general satisfIed pmvd and a trivial (most specifIc)

pmvd. The cautious querying approach is illustrated below.

We assume that the user initially only supplies positive tuples; negative tuples are obtained

by means of queries. As in the previous algorithms, we maintain a queue of most general

pmvds and try to falsify each one of them, as follows: for each pair of positive tuples f}, f2, we

construct the negative witness f3. Now there are three possibilities: (i) f3Ep, i.e., the pmvd

cannot be contradicted by means of f}, f2, and "fe proceed with the following pair of positive

tuples; (ii) f3En, i.e., the pmvd is indeed contradicted and needs to be specialized; (iii) f3~P

and f3~n, and we ask the user to classify f3 as either positive or negative; f3 is added to the

appropriate set of tuples, and we proceed with either case (i) or case (ii). The process halts if

every tuple thus constructed is in p. In this case, <p, n> is complete for p (in the weaker sense

discussed above), and the resulting set of pmvds can consistently be interpreted as a set of

mvds.
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We illustrate this approach with an example session with a Prolog program. The example is

taken from [19]. A tuple service if, d, p) means that flight number f flies on day d and can use

plane type p on that day. User input is in bold.

?- pmvd_learn.

Relation: service(tlight, day, plane).

Dependencies:

Service: [ ] -+-~[plane]

Service: [ ] -+-+ [flight]

Service: [ ] -+-+ [day]

New tuple: service (106, Monday, 747).

New tuple: service (106, Thursday, 1011).

Is service (1.06, Thursday, 747) in the relation? yes.

Is service (1.06, Monday, 1.011) in the relation? yes.

The user specifies the relation scheme, and the system shows the initial set of most general

pmvds. The user types in the first two tuples, which concern flight number 1.06. The system

tries to falsify the pmvds 0-::::;,-::::;,PLANE and 0-::::;,-::::;,DAYby asking for a classification for two

other tuples. both of these tuples are classified as positive, so none of the pmvds is

contradicted (note that 0-::::;,-::::;,FLIGHT cannot be contradicted, because all tuples have the

same flight number). This results in a complete set of positive and negative tuples.

New tuple: service (204, Wednesday, 707).

Is service (1.06, Monday, 7.07) in the relation? no.

Specialize [ ] -+-+ [plane]

service (2.04, Wednesday, 7.07)

service (1.06, Monday, 1.011)

not service (1.06, Monday, 7.07)

Is service (2.04, Monday, 1.011) in the relation? no.

Specialize [ ] -+-+ [flight]

service (2.04, Wednesday, 7.07)

service (1.06, Monday, 1.011)

not service (106, Monday, 10 11)

Is service (1.06, Wednesday, 1.011) in the relation? no.
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Specialize [ ] -+.-+ [day]

service (204, Wednesday, 707)

service (106, Monday, 1011)

not service (106, Wednesday, 1011)

The next positive tuple introduces new values for all three attributes. Now, the system is able

to refute each initial pmvd by constructing appropriate negative witnesses. They are replaced

by more specific pmvds, which cannot be contradicted because there are no two distinct

positive tuples with either flight number 204, day Wednesday, or plane type 707. Thus, the

positive and negative tuples are complete, in the weaker sense.

New tuple: service (204, Wednesday, 727).

New tuple: stop.

Dependencies:

service: [day ]-+.-+ [flight]

service: [ flight] --+--+ [day]

service: [ plane] --+--+ [day]

Yes

Adding one more positive tuple does not result in additional queries. After the learning

process is halted by the user, the system shows its final hypothesis, which can consistently be

interpreted as a set of mvds. Note, that this set of pmvds contains no redundant or trivial

mvds.

Page 90



Chapter 7
Proposed Design Frame Work and Algorithms

7.1 Design Framework

Instead of looking for the entity (relation) and the associated set of attributes for each entity

(relation) it is quite easy to look only for the entire set of attributes not associating them with

different entities (relations) i.e. not associating them with different database/tables. To do this

job efficiently we must have clear conception of distinguishing an entity from an attribute.

During the system analysis, we will get both entity and attribute formally described as a

noun. Clearly, if an item does not present more than once in the system it is neither an entity

and nor an attribute. An entity has independent existence in the system whereas an attribute

cannot exist independently. The existence of an attribute is dependent on the existence of one

or more other attributes. This dependency defines an entity as a collection of attributes, which

depends on each other for their mutual existence [6]. It is hard to find this dependency by

simple observation, particularly, for a large and complex system.

Without trying to find this dependency it is better to define a single scheme putting all the

attributes in it. Thus the initial data model would have only one scheme and one relation on

that scheme. At first, We have to collect tuples on this relation. After collecting tuples on this

single relation (database) it has to be analyzed for characterization (decomposition). Some

tuples may have NULL values on one or more attribute/attributes. We have to divide tuples

into several groups putting the tuples in a same group those have NULL values on the same

attribute/attributes.

For each group of tuples we have tiJ define a new database scheme discarding those attributes

which have NULL values, and distribute tuples on those newly defined database scheme so

that no relation has NULL value in any of its attributes. This ad-hoc scheme would need to be

characterized further for getting normalized database scheme.

Applying Algorithm 6.1 or Algorithm 6.5 or Algorithm 6.6 and Algorithm 6.3 or Algorithm

6.7 on this ad-hoc scheme we can get the set of functional and multi-valued dependencies.
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Applying Algorithm 7.1 we have to merge those functional dependencies, whose antecedent

attribute/ attributes is/are same into a single dependency. We have to list multi-valued

dependencies separately. Applying Algorithm 7.2 we need to derive the set of relations in

2NF and keys and the set of functional and multi-valued dependencies holds on these

relations respectively. If any attribute of ad-hoc scheme were not taking part in any of the

functional or multi-valued dependencies that attribute would be discarded from the new

scheme in 2NF.

We have to analyze these 2NF relations (database) to see whether they are in BCNF or not. If

these relations (database) are not in BCNF we have to apply Algorithm 5.2 to decompose

them into new relations (database) in BCNF. Applying Algorithm 5.1 we have to confirm that

these new relations (databases) are also dependency preserving. If they are not dependency

preserving we have to discard the decomposition and have to get the original 2NF relations

(databases) back and analyze them to see whether they are in 3NF or not. If these relations

(database) are not in 3NF we have to apply Algorithm 5.3 to decompose them into new

relations (database) in 3NF. The Algorithm 5.3 also provides dependency preserving

relations.

After getting the relations (databases) either in BCNF or in 3NF we have to check whether

there is any multi-valued dependency or not. If there is any multi-valued dependency we have

to decompose that relation into new relations in 4NF using Algorithm 5.4.

7.2 Proposed New Algorithms

Algorithm 7.1 is for computing the merged set of functional dependencies. A set of functional

dependencies is given input to this procedure. It will merge two dependencies into one if the

antecedent attribute/attributes is/are same. This merging is done in iteration simply using the

union rule of functional dependencies

Algorithm 7.1: The Algorithm for merging functional dependencies

Input: A set of functional dependencies F; the format of each dependency is X --+ Y.
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Output: A set of functional dependencies F ' merging those functional dependencies in F

whose antecedent attribute/ attributes is/are same into a single dependency.

proc merge (F(n),F ' (n j)

for each pair of functional dependencies Fj : Xi --+ Y; and F; :)(j --+ 0 do
if Xi ==)(j then

F'j :Xi--+Y;u0

else

F'j :Xi--+Y;

F 'H} :)(j --+ 0
endif

end do

endproc

Algorithm 7.2 is for constructing relations in 2NF from a given set of functional

dependencies. This procedure is taking a set of functional and multi-valued dependencies as

input. Each dependency in the set is checked to see whether all the attributes of it are already

in any of the relations derived so far or not. If attributes are found to be in a relation, this

program will mention that this dependency holds on that particular relation. If attributes are

not in any of the relations, this program will create a new relation comprising all the

attributes of the dependency. The antecedent attribute/attributes of this dependency will be

mentioned as the key and the dependency as the dependency of this new relation The

clean_up procedure will delete that relation which is already in a bigger relation.

Algorithm 7.2 : The Algorithm for constructing relations in 2NF.

Input: A set of functional dependencies F; format of each dependency is X --+ Y.

Output: A set of relations R in 2NF: format of each relation is

RelationR(X}, X2, ...)

~eyKlX} , X2 ,...) KlX} , X2 ,...)

Dependencies D(F}, F2, .••••. .)
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proc 2NF relations (F(nl), R(nJ) )

for every functional dependency F; :Xi --+ Y;do

for each relation Rj do

if Xi and Y; are in Rj(X1 , Xl , ...) then

DlF1, Fl, .) =DlF1 ,Fl, .) uF;

if (num(Xi )+ num(Y;» = num(Rj(X1, Xl , ...)) then

if Xi is not in any of ~lXl , Xl,".) then

K{X;) is a key of Rj

endif

end if

endif

enddo

if F; does not hold in any of Rj then

Create new Rnl+1

Rn2+1(K) =Xi

D n2+1( (Fl) = F;

end if

enddo

clean_up ()

endproc
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Chapter 8
Experimental Results

8.1 Target System

A university has several departments. Each department has a umque name called the

department name that is the identification of that department. Each department has an

administrative head. Head of the department is described by his/her name. Two departments

can have heads of the same name though they are different person. Each department has

several students. Each student is uniquely identified by his/her ill. Each student has an

advisor. But one advisor could be the advisor of many students. Advisors have unique

identification comprising his/her department and designation. Every student is allowed to

registrar several courses. A course has its predefined course number, teacher, and credit.
, . .

Course number is unique for a particular course. But two or more courses have the same

teacher and/or the same credit. Course teacher's designation is also known to all. GPA

obtained by a student in a particular course is also recorded.

Books are borrowed by research students in the research library. One student can make

several borrows. Each borrow is treated independently with a unique borrow number. A

borrow is recorded using borrow number, student identification number, and the research

group to which the student belongs to: A student can do only course work or research or both.

8.2 Results

To get a relational database model we have collected all possible attributes present in the

system. At first, we put all the collected attributes in a single scheme. We called this scheme

the University-scheme as follows:

University-Scheme = (std_id, std_name, std_address, department, advisor_id, head_name,

course_number, course_credit, gpa, teacher, borrow_number, research -.15roup)
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Thus, our initial data model has only one scheme. And we can define university relation as

university (std_id, std_name, std_address, department, advisor _id,

head_name, course_number, course_credit, gpa, teacher, borrow_number,

research_group)

After getting the initial data model that is comprising only one relation and that is university

in this case, we have collected tuples on this relation. This is shown in the Figure 8.1. Some

of the attributes of these tuples have NULL values. We have divided tuples into several

groups putting the tuples in a same group those have NULL values on the same

attribute/attributes. In this case, we got two groups.
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std_id SId SId department Advisor Head course Credit gpo teach~r Borrow Research

-name -address -id -name # -number Jroup

50-Ill Nipa Mirpore CSE 01-50-111 Khaled CSE 3 A Mamun Null Null

103

50-222 Nipa Malibag CST 02-50-222 Khaled CSE 3 A- Mamun Null Null

103

50-333 Jabed Kakrile CSE 01-50-333 Khaled CSE 2 B Mantun Null Nun

101

50-444 Babu 'Palashi CS 03-50-444 Almas CSE 2 A Mamun 06 Pall

101 Recog.nition

50-555 Chaman Malibag ECS 04-50-555 Iqbal CSE 3 A Masum Null Null

105

50-Ill Nipa Mirpore CSE 01-50-111 Khaled CSE 3 A+ Masum Null Nun

105

50-333 Jabed Kakrile CSE 01-50-333 Khaled CSE 3 A Masum Null Null

105

50-444 Bahu Palashi CS 03-50-444 Almas CSE 3 B Masum 06 Pall

105 Recognition

50-555 Chaman Malibag ECS 04-50-555 Iqbal CSE 2 A+ Haque Null Null

106

50-666 Aumy Palashi CSE 01-50-666 Khaled CSE 2 A Haque Nun Nun

106

50-Ill Nipa Mirpore CSE 01-50-111 Khaled CSE 2 A Haque Null Null

106

50-Ill Nipa Mirpore CSE 01-50-111 Khaled CSE 2 A Almas Null Null

108

40-888 Mostafa M. Pore EEE 05-40-888 Bakir EEE 3 A Hasib Nun Nun

101

40-999 Papri Maghbaza EEE 05-40-999 Bakir EEE 3 B Hasib 07 Sig.

r 101 Processing

40-999 Papri Maghbaza EEE 05-40-999 Bakir EEE 3 B Hasib 08 Sig.

r 101 Processing

40-666 Jashim Eskaton EEE 05-40-666 Bakir EEE 3 A . Nasir Nun Nun

205

40-777 Pallabi Dhanmon EEE 05-40-777 Bakir EEE 3 A Nasir Null Null

di 205

90-111 Aman Palashi Null Null Null Null Null Null Null 01 q. Theory
90-111 Aman Palashi Null Null Null Null Null Null Null 01 Networking

90-111 Aman Palashi Null Nun Null Nun Nun Null Nun 02 G. Theory

90-111 Aman Palashi Null Null Null Null Nun Nun Null 02 Networking

90-222 Beauty Palashi Nun Nun Nun Nun Null Nun Nun 03 G. Theory

90-222 Beauty Palashi Nun Null Null Nun Null Nun Null 03 Pall

.Recognition

90-333 Mahboob Mirpore Null Null Null Null Null Null Null 04 Networking

90-444 Aman B.Bazar Null Null Null Null Null Null Null 05 Networking

Figure 8.1: The university relation
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Std_id Std_name Srd_address department advisor id head_name course # credit gpa reacher

50-Ill Nipa Mirpore CSE 01-50-111 Khalod CSE 103 3 A Mamun

50-222 Nipa Malibag CST 02-50-222 Khaled CSE 103 3 A- Mamun

50-333 Jabed Kakrile CSE 01-50-333 Khaled CSE 101 2 B Mamun

50-444 Bahu Pal •• hi CS 03-50-444 AIm•• CSE 101 2 A Mamun

50-555 Chamau Matibag ECS 04-50-555 Iqbal CSE 105 3 A Masum

50-II I Nipa Mirpore CSE 01-50-111 Khaied CSE 105 3 A+ Masum

50-333 Jabed Kakrile CSE 01-50-333 Khaled CSE 105 3 A Masum

50-444 Babu Palashi CS 03-50-444 AIm.. CSE 105 3 B Masum

50-555 Chaman Malibag ECS 04-50-555 Iqbal CSE 106 2 A+ Haque

50-666 Aumy Palashi CSE 01-50-666 Khaled CSE 106 2 A Haque

50-III Nipa Mirpore CSE 01-50-111 Khaled CSE 106 2 A Haque

50-II 1 Nipa Mirpore CSE 01-50-111 Khaled CSE 108 2 A AIm ••

40-888 Mostafa M. Pore EEE 05-40-888 Bakir EEE 101 3 A Hasib

40-999 Papri Maghbazar EEE 05-40-999 Bakir EEE 101 3 B Hasib

40-666 Jashim Eskaton EEE 05-40-666 Bakir EEE205 3 A Nasir

40-777 Pallahi Dhanmondi EEE 05-40-777 Bakir EEE 205 3 A Nasir

40-777 Jalal Pal..rn ME 06-40-777 Shafiqul Me 109 3 C Habib

40-666 Akbar Palashi ME 06-40-666 Shafiqul Me 109 3 B Habib

Figure 8.2: The student relation

srd_id Srd_name Std_address borrow_number Research ~roup

50-444 Bahu Pal •• hi 06 Pattern Reeog.

40-999 Papri Maghbazar 07 Sig. Processing

40-999 Papri Maghbazar 08 Sig. Processing

90-111 Amau Palashi 01 G. Theory

90-1 II Amau Paioshi 01 Networking

90-1 II Amau Palashi 02 G. Theory

90-11 I Amau Pal •• hi 02 Networking

90-222 Beauty Palashi 03 G. Theory

90-222 Beauty Palashi 03 Pattern Reeog

90-333 Mahboob Mirpore 04 Networking

90-444 Amau BakshiBazar 05 Networking

Figure 8.3: The borrow relation
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std_id 8td_name sid_address department advisor~id head_name

50-111 Nipa Mirpore CSE 01-50-111 Khaled

50-222 Nipa Malibag CST 02-50.222 Khaled

50-333 labed Kakrile CSE 01-50-333 Khaled

50-444 Babu Palashi CS 03-50-444 Almas

50-555 Chaman Malibag ECS 04-50-555 Iqbal

50-666 Aumy Palashi CSE 01-50-666 Khaled

40.888 Mostafa M. Pore EEE 05-40-888 Bilir

40-999 Papri Maghbazar EEE 05-40.999 Bakir

40-666 lashim Eskaton EEE 05-40.666 Bakir

40-777 Pallabi Dhanmondi EEE 05-40-777 Bakir

40-777 Jalal Palashi ME 06-40-777 Shafiqul

40-666 Akbar Palashi ME 06-40-666 Shafiqul

Figure 8.4: The student_info relation

Std_id course # gpa

50-111 CSE 103 A

50-222 CSE 103 A-

50-333 CSE 101 B

50-444 CSE 101 A

50-555 CSE 105 A

50-111 CSE 105 A+

50-333 CSE 105 A

50-444 CSE 105 B

50-555 CSE 106 A+

50-666 CSE 106 A

50-Ill CSE 106 A

50-Ill CSE 108 . A

40-888 EEE 101 A

40-999 EEE 101 B

40-666 EEE205 A .

40-777 EEE 205 A

40-777 Me 109 C

40-666 Me 109 B

Fignre 8.5: The student_course relation
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Course # Credit Teacher

CSE 103 3 Mamun

CSE 101 2 Mamun

CSE 105 3 Masum

CSE 106 2 Haque

CSE 108 2 Almas

EEE 101 3 Hasib

EEE205 3 Nasir

Me 109 3 Habib

Figure 8.6: The course relation

In the first group we got NULL values on attributes borrow number and research Jjroup.

And we got definite values on attribute std_id, std_name, std_address department,

advisor _id, head_name, course_number, course_credit, gpa, teacher. We have discarded

attributes borrow_number and research JjToup from this group due to the presence of

NULL values on them. Taking the remaining attributes we have defmed a new scheme called

Student- Scheme as

Student-Scheme=(std _id, std_name, std_address department, advisor _id, head_name,

course_number, course_credit, gpa, teacher)

and student relation as

student (std_id, std_name, std_address department, advisor _id, head_name, course_number,

course_credit, gpa, teacher).

In the second group we got NULL values on attributes advisor_id, department, head_name,

course_number, course_credit, gpa, teacher. And we got definite values on attributes std_id,

std~name, std_address borrow_number, researchJjToup . We have discarded attributes

advisor _id, department, head_name, course yumber, course Jredit, gpa, teacher from this

group due to the presence of NULL values on them. Taking the remaining attributes we have

defined a new scheme called Borrow Scheme as
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Borrow Scheme = (std_id, std_name, std_address, borrow _number, research Jroup)

and borrow relation as

borrow(std _id, std_name, std_address, borrow_number, research Jroup).

We have distributed tuples on these newly defined student and borrow relations so that no

tuple has NULL value on anyone of its attributes. The student relation is shown in the Figure

8.2 and the borrow relation is shown in the Figure 8.3.

Applying Algorithm 6.1 and Algorithm 6.3 on student relation we got the following set of

functional and multi-valued dependencies

Functional dependencies

std id --+ std name

std id --+ std address- -

std_id --+ department

std id --+ advisor id

std id --+ head name- -

std_name, std_address --+ std_id

sId_id, department --+ advi~or_id

advisor id --+ department

std_id, course_number --+ gpa

course number --+ course credit- -

course number --+ teacher

Multi-valued dependencies

Nil.

At these stage we got the complete set of dependencies on student relation. Applying

Algorithm 7.1 we have merged those functional dependencies whose antecedent attribute!

attributes is/are same into a single' dependency. We also listed multi-valued dependencies

separately. And we got the following set
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std id -fstd name, std address, department, advisor id, ,head name.- - - --

std_name, std_address -f std_id

std_id, department -f advisor-id

advisor id -f department

std_id, course_number -f gpa

course_number -f course_credit, teacher

Applying Algorithm 7.2 we have constructed relational database or tables directly in 2NF and

their keys and the set of dependencies that holds on the tables respectively. We got three

tables as follows:-

1. Student info TablelRelation

TablelRelation:

student _info(std _id, std_name, std_address, department, advisor _id, head_name)

Key: std id

Set of dependencies:

std_id -f std_name, std_address, department, advisor _id,

head name

std_name, std_address -f std_id

std_id, department -f advisor _id

advisor id -f department

The student _info relation is shown in the Figure 8.4

2. Student Course TablelRelation

TablelRelation:

student_course(std_id, course_number, gpa)
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Set of dependencies:

std_id, course_number ~ gpa

The student course relation is shown in the Figure 8.5

3.Course TablelRelation

TablelRelation:

courser course_number, course_credit, teacher)

Key: course_number

Set of dependencies:

course number ~ course credit, teacher

The course relation is shown in the Figure 8.6.

We observed that for the functional dependency advisor_id ~ department the student info

relation is not in BCNF , since advisor _id is not a key, and not in 3NF either, since

department is not part of a key; and for the functional dependency std_id, department ~

advisor _id the student_info relation is not in BCNF, since std_id, department is not a key,

and not in 3NF either, since advisor id is not part of a key. For this reason, we got several

duplications of data in the Figure 8.4.

Applying Algorithm 5.2, we decomposed student_info relation into two new relations as

i) The student Jegular relation

TablelRelation:

studentJegular(std_id, std_name, std_address, advisor_id, head name)

Set of dependencies:

std_id ~ std_name, std_address, advisor _id, head~name,

std_name, std_address ~std_id
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ii) The advisor relation

TablelRelation:

advisor(std id, advisor id, department)- -

Key: std_id, department

Set of dependencies:

std_id, department -:+ advisor _id

advisor id -:+ department

Applying Algorithm 5.1 we have tested that the relations student Jegular and advisor are

dependency preserving. We observe that though the relation student regular is in BCNF but

the relation advisor is not in BCNF due to the functional dependency advisor _id -:+

department. Since, advisor _id is not a key in the relation advisor. If we try to give input in

Algorithm 5.2 by swapping the order of the functional dependencies std_id, department -:+

advisor _id and advisor _id -:+ department, i.e., the functional dependency advisor _id -:+

department before the functional dependency std_id, department -:+ advisor _id, we could

generate the advisor _alt relation instead of advisor relation.

iiia) The advisor _alt relation

TablelRelation:

advisor alt( advisor id, department)- -

Key: advisor _id

Set of dependencies:

advisor id -:+ department
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Applying Algorithm 5.1 we found that the relation advisor _alt is not dependency preserving,

since the functional dependency sid_id, department --+ advisor _id is lost. Alternatively, if we

try to apply Algorithm 5.2 on the relation advisor we could have the relation advisor ~alt and

the relation department as

iiib) The department relation

TablelRelation:

department (std id, department)

Key: std_id, department

Set of dependencies:

Nil

Applying Algorithm 5.1 we have tested that these decompositions are not dependency

preserving. Since, the functional dependency std_id, department --+ advisor _id is lost. Instead

of applying Algorithm 5,2 on the student _info relation, we had applied Algorithm 5.3 and got

the relations student Jegular and advisor as described above. At this stage, the relations

student Jegular and advisor are in 3NF as well as dependency preserving.

The relations student course and course are in BCNF. Applying Algorithm 5.1 we have

tested that these relations are also dependency preserving.

Applying Algorithm 6.1 and Algorithm 6.3 on borrow relation we got following set of

functional and multi-valued dependencies

Functional dependencies

std id --+ std name

std id --+ std address

borrow number--+std id

borrow number--+ std name
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Multi-valued dependencies

sId_id -f-f research youp

At these stage we got the complete set of dependencies on borrow relation. Applying

Algorithm 7.1 we have merged those functional dependencies whose antecedent attribute/

attributes is/are same into a single dependency. We also listed the multi-valued dependencies

separately. And we got the following set

Functional dependencies

sId_id -f sId_name, sId_address,

borrow_number-fsld_id, sId_name, sId address

Multi-valued dependencies

sId_id -f-f research youp

Applying Algorithm 7.2 we have constructed relational database or tables directly in 2NF and

their keys and the set of dependencies that holds on the table respectively. We got one table

as follows:-

4) The borrow-l relation

TablelRelation:

Borrow 1 (. borrow number, sld_id, sId_name, sId_address)

Key: borrow number

Set of dependencies:

sld_id -fsldJlame, sId address

borrow_number -f sId_name, sId_address, sId_id

The relation borrow-l is shown in the Figure 8.7
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std_id Std~name Std_address Borrow_number

50-444 Bahu Palashi 06

40-999 Papri Maghbazar 07

40-999 Papri Maghbazar 08

90-111 AIDan Palashi 01

90-111 AIDan Palashi 02

90-222 Beauty Palashi 03

90-333 Mahboob Mirpore 04

90-444 . Am"" Bakshi Bazar 05

Figure 8.7: The borrow-l relation

Applying Algorithm 5.4 we got the relation student Jesearch as follows

5) The student Jesearch relation

TablelRelation:

student research ( std_id, research -zroup)

Set of dependencies:

std id ---J>---J> research -ZT0UP

The relation borrow-l is not in BCNF due to the presence of functional dependency std_id

---J>---J>std_name,std_address. Applying Algorithm 5.3 we got two relations as follows

4-i) The student_borrow relation

TablelRelation:

Student_borrow (std_id, borrow_number)

Key: borrow number

Set of dependencies:

borrow number ---J> std id
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4-ii) The student_special relation

TablelRelation:

student_special (std_id, std_name, std_address)

Set of dependencies:

std_id -fstd_name, std address

Both the relation student_borrow and student_special are in 4NF. Applying Algorithm 5.1

we have tested that these relations are also dependency preserving

The resultant relations student Jegular, advisor, student_course, course, student borrow,

student_special and studentJesearch, are depicted in the Figure 8.8, Figure 8.9, Figure 8.10,

Figure 8.11, Figure 8.12, Figure 8.13, Figure 8.14 respectively.

Std_id Std_name std_address advisor_id Head name

50.111 Nipa Mirpore 01.50.111 Khaled
50.222 Nipa Malibag 02.50.222 Khaled

50.333 Iabed Kakrile 01.50.333 Khaled

50.444 Babu Palashi 03.50-444 Almas
50.555 Chaman Malibag 04-50.555 Iqbal

50.666 Aumy Palashi 01.50.666 Khaled

40.888 Mostafa M. Pore 05.40.888 Bakir
40.999 Papri Maghbazar 05-40.999 Bakir
40-666 Jashim Eskaton 05.40.666 Bakir
40.777 Pallahi Dhanmondi 05.40.777 Bakir
40.777 Jala! Palashi 06-40.777 Shafiqul
40.666 Akbar Palashi 06.40.666 Shafiqul

Figure 8.8 : The student_regular relation
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std_id department advisor id

50-111 CSE 01-50-111 .

50-222 CST 02.50.222

50-333 CSE 01-50-333

50-444 CS 03.50-444

50-555 ECS 04-50-555

50-666 CSE 01-50.666

40-888 EEE 05.40-888

40-999 EEE 05-40-999

40.666 EEE 05.40-666

40-777 EEE 05-40.777

40-777 ME 06-40-777

40-666 ME 06-40-666

Figure 8.9: The advisor relation

std_id course # gpa

50-111 CSE 103 A

50-222 CSE 103 A-

50-333 CSE 101 B

50.444 CSE 101 A

50-555 CSE 105 A

50-111 CSE 105 A+

50-333 CSE lOS A .

50-444 CSE 105 B

50-555 CSE 106 A+

50-666 CSE 106 A

50-111 CSE 106 A

50.111 CSE 108 A

40.888 EEE 101 A

40-999 EEE 101 B

40-666 EEE 205 A

40-777 EEE 205 A

40-777 Me 109 C

40-666 Me 109 B

Figure 8.10 : The student_ course relation
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Course # Credit Teacher

CSE 103 3 Mamun

CSE 101 2 Mamun

CSE 105 3 Masum

CSE 106 2 Haque

CSE 108 2 Almas

EEE 101 3 Hasib

EEE205 3 Nasir

Me 109 3 Habib

Figure 8.11: The course relation

std_id Borrow_number
50-444 06

40-999 07

40-999 08

90-111 01

90-111 02

90-222 03

90-333 04

90-444 05

Figure 8.12: The student_borrow relation

std_id std_name Srd_address

50-444 Babu Palashi

40-999 Papri Maghbazar

90-111 Aman Palashi

90-222 Beauty Palashi

90-333 Mahboob Mirpore

90-444 Aman Bakshi Bazar

Figure 8.13: The student_special relation

std_id Research ...zroup
50.444 Pattern Recog.

40-999 Sig. Processing

90-111 G. Theory

90-111 Networking

90-222 G. Theory

90-222 Pattern Recog

90-333 Networking

90-444 Networking

Figure 8.14 : The studentJesearch relation
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Chapter 9
Conclusions

..,
In this research work Relational Database design is viewed as a Machine Learning problem.

Initially, a relational database of a single relation containing all the attributes, those have been

collected from the target system, have been defined. Examples have been collected on this

relation from the target system. Though the presence of NULL values in different attributes

of a particular example has made it difficult to use machine learning algorithms for

characterizing the relation this has provided with the hints of initial decomposition of the

relation. We have divided the set of examples into several groups putting the examples in the

same group those have NULL values on the same set of attributes. For each group of

examples we have defined a new relation discarding .those attributes which have NULL

values, and have distributed examples on those newly defined relations so that no relation has

NULL value in anyone of its attributes. Machine learning algorithms have been used on

these relations to get the corresponding set of functional and multi valued dependencies for

each relation. Derived set of functional dependencies has been used in an algorithm to

construct relations in 2NF and corresponding set of keys and dependencies. Several

algorithms have been used to normalize these 2NF relations. These normalization algorithms

have normalized all the 2NF relations either into 3NF or BCNF. For the presence of multi

valued dependency separate algorithm has been used to normafize the relation into 4NF. We

have used popular normalization algorithms in this research work. We have also used already

established machine learning algorithms for characterizing relations. There are numerous

algorithms in this connection. We have tried few of them. Others can be tried to get better

results. These machine learning algorithms can also be improved to cope with the presence of

Null values in a relation. We have proposed a decomposition method using Null values in a

relation and algorithms for constructing 2NF relations and corresponding set of keys and

dependencies. We have gotten satisfactory results from these method and algorithms. Further

research can be done to construct 3NF or BCNF or 4NF relations directly avoiding the

creation of 2NF relations.
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