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ABSTRACT

Data integrity has been a major concern in cases where data handling is an

essential operation. Also wherever data is to be used, there is every possibility that some

errors would occur. As such, Error Control Codes have an important role to play in

today's information age. Error Control Codes belong to several different families. The

current work deals with codes belonging to three main families namely linear block codes,

cyclic codes and convolutional codes. The underlying concepts behind the formation and

construction of codes belonging to these groups, their representation, error-correction

capabilities and encoding and decoding algorithms along with some other related topics

have been studied during this work. Linear codes and cyclic codes belong to the wider

family of block codes. Linear codes are constructed directly from algebraic formulation.

Several families of linear codes have been discussed here. Cyclic codes have properties

similar to linear codes. But they have an additional feature of the ability to undergo cyclic

shift and still remain as a cyclic code. The convolutional codes are non block codes. Here

a continuous sequence of information symbols is encoded into a continuous sequence of

output. For any code, encoding and decoding are important basic operations. The current

work has tried to discover a relationship between block length, information length, error

correcting capacity and operations required in encoding and decoding algorithms.

Computer programs have been developed and the results show that smaller block length

or information length simplifies the operation of encoding or decoding along with

increased error correcting ability. However channel capacity or channel bandwidth has to

be sacrificed while using smaller block length or information length codes.
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Ii I.l :NECESSITY OF ERROR CONTROL CODES:
Data integrity is the most important concern for any system dealing with any sort or volume of

data. The reason is, in order to be useful, data has to remain in its correct form. But in practical
situations, this desired target is often deviated from owing to several reasons. Data may get corrupted
during transmission from one place to another due to unpredicted disturbances in the media or
intentional interference by unauthorized persons. Again data stored in different media may also get
changed owing to problems in the media itself and its surroundings or unauthorized access. Therefore
one has to devise some mechanism so that the undesired change in data can be undone and its original
form is restored. Error Correction Codes or Error Control Codes (ECC) thus come into being.

1.1.1: €auses of Errors 'In The Transmission 'Media:
When data Transmission takes place, errors may be introduced into the data, causing

errors at receiver's end. The reasons that contribute to errors thus introduced may be:
(1) Noise: In electrical sense noise is an unwanted energy tending to interfere with the

easy and correct reception and reproduction of the wanted signal. There are two types of noises -
External(environmental) noi5e : This noise is generated outside the receiver. Some causes

of external noise are -
• Interference from AC mains and coupling between signallines('Cross Talk').
• Transient and fluctuations on the AC mains.
• Noise of mechanical or acoustic origin and transmission line reflections.
• Relay contacts, thunderstorms etc.

Internal( fundamental) noi5e : This noise is generated by any of the active or passive
devices in the receiver(internal to the receiver). Some internal noises are,-

• Them,';, noise - Vibration of electrons at temperature higher than normal or
room temperature may introduce thermal noise.

• Shot noise - Electrons are emitted from active devices in receiver. This may
cause introduction of random noise.

• nieke. noise - This is due to the random fluctuation in the current at low
frequency (below 10khz).

(2) Attenuation: It is loss in signal power in transmission media.

(3) Intersymbol Interference : Some symbols of the transmitted data may overlap into
adjacent time slots(symbols), causing intersymbol interference. It has wide presence particularly in
telephone lines.

(4) Signal Fading : In this case, due to imperfect response of the transmission system,
the received signal amplitude is found to fluctuate randomly.

••. t.
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(5) Multipath Effect : In this case, radiated transmitter energy for one signal symbol,
following several alternative paths to the receiver appears at the receiver as a sequence of received

symbols.

1.1.2 :j\pplications of Error €ontrol €odes :
From above discussion, it is clear that the main reasonJor using Error Control Codes or

Error Control Codes are to correct errors in information when the information is transmitted from one
place to another. Some of the other reasons are -

• To protect data against intentional enemy interference.
• Error Control Codes are an excellent way to reduce power needs, because massage

received weakly at their destinations can be recovered correctly with the aid ofthe code.

Using Error Control Codes, difference between low and high levels can be kept smaller,
thus a reduction in average signal power requirement is possible. For this, though the probability of
occurrence of errors becomes higher as a consequence of reducing the difference between lower and
higher levels, however, using Error Control Codes the errors can be corrected to certain extent.

!j 1.2 : HISTORY OF ERROR-CONmOl CODES:
The history of error-control codes began in 1948 with the publication of a famous paper

by Claude Shannon. Shannon showed that associated with any communication channel is a number C
(measured in bits per second), called the capacity of the channel, which has the following significance.
Whenever the transmission rate R (in bits per second) required of a communication system is less than
C, it is possible to design for the channel a communication system using error-correcting codes, whose
probability of output error is as small as desired. Throughout the 1950s, much effort was devoted to find
explicit constructions for classes of codes that would produce the promised arbitrarily small probability
of error. As such, in the 1960s, coding research began to settle down to two main avenues-

I) The first avenue has a strong algebraic flavor and is concerned primarily with block
codes. The block codes were introduced in 1950, when Hamming described a class of single-error
correcting block codes.

2) The second avenue of coding research has a more probabilistic flavor. This attempt
led to the notion of sequential decoding. Sequential decoding required the introduction of a class of
non block codes of indefinite length, which can be represented by a tree and can be decoded by
algorithms for searching the tree.

During the decade of the 1970s, these two avenues of research began to combine again.
During the decade of the 1980s, encoders and decoders began to appear frequently in newly designed
digital communication systems and digital storage systems.

!j 1.3 : FAMILIES OF ERRORCONmOl CODES:
From the above discussion, it is clear that there are two main types of error-correcting

codes-one has strong algebraic structure, called the block code and another has no strong algebraic
structure, called the tree code. The presence of strong algebraic structure is important-because in such
case encoding , decoding and computation is efficient as generalized algorithm can be applied.
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Otherwise, tabular decoding technique should be used and maintaining table is impractical for large
block length code of arbitrary form (no strong algebraic structure).

Block codes are used, when information is dealt with as blocks, while tree codes are used,
when i~formation come in a sequence, not in blocks. Codes belonging to these two major families may
further be classified into

1) Linear Block Codes: In block coding the encoder accepts k message symbol and
generates a codeword with n symbols. Thus codewords are produced on'a'block by block basis. Linear
block codes are so called as every codeword of a code can be produced by adding (linear operation)
other codewords ofthe code. Clearly provisions must be made in the encoder to buffer an entire message
block before generating the codeword. There are applications, however, where the message bits come
serially rather than in large block , in which case the use of a buffer may be undesirable . In such
situations , the use of convolutional coding may be a preferred method . Linear block codes follow
strong algebraic structure.

2) Cyclic codes : Cyclic codes belong to an important subclass of linear block codes.
Cyclic codes are very easy to encode. They possess a well-defined mathematical structure which has led
to the development of very efficient decoding schemes for them. They are used not only for error
detection, but also for error correction, since they are easily implementable.

The Bose, Chaudhuri and Hocquenghem (BCH) codes, an important family belonging to
cyclic codes were discovered by Hocquenghem (\ 959) and independently by Bose and
Chaudhuri(\ 960). BCH codes have capabilities for multiple (burst) error detection and correction.
Hardware (Circuit) implementation of BCH codes is easy and practically feasible.

3).Convolutional codes: The most useful tree codes ar~'.highly structured codes called
convolutional codes. A convolutional encoder operates on the incoming message sequence continuously
in a serial manner. Decoding of convolutional codes using probabilistic concepts and methods is rather
difficult a job -but it is employed in situations where no other coding has better performance.

!j1.4 : SCOP£ Of TH£ CVRR£NT WORl{ :
In the current work -'Study and Performance Analysis of Error Control Codes', Error

Correcting Codes or Error Control Codes have been studied under three main groups namely the Linear
Block Codes, Cyclic Codes and Convolutional Codes. The study has incorporated a detailed
investigation of the underlying concepts behind the formation and construction of codes belonging to
these groups, their representation, error-correction capabilities and encoding and decoding algorithms
along with some other related topics. Some special cases or codes, have also been studied in this
purpose.

In the performance analysis part, these groups of Error Control Codes have been considered from
encoding and decoding point of view. For example, the cyclic codes, which has been treated as a
different family from linear codes can be dealt with methods applicable for linear block codes. Some
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computer programs have then been developed using high level programming languages like Pascal and
C to consider the encoding and decoding performances of these codes. The performances are measured
in terms of timing requirements for these operations. As such, upon observation, some recommendations
have been made.

~IS: ORGANIZATJON Of TH£ TH£SIS :

The thesis has been organized to cover its scope in a chronological manner suitable for a
clear understanding of the ideas and concepts presented. Each group of the Error Correcting Codes or
Error Control Codes covered by this work has been discussed in a separate chapter. Three chapters
beginning from chapter 2 have dealt with three groups of Error Control Codes namely Linear Bloc
Codes, Cyclic Codes and Convolutional codes. The theoretical backgrounds behind these families of
Error Control Codes, the formation and construction of the codes, their'representation, error-correction
capabilities and encoding and decoding algorithms along with some other related topics have therefore
been discussed in each of these chapters.

The next chapter deals with the performance study of some Error Control Codes. This
follows development of some computer programs and consideration of the output thus generated. The
timing requirements for encoding or decoding have been carefully examined from a maximum yield
point of view. As such, some recommendations have also been made to ease the way of working with
these codes. Lastly, some suggestions have been made to act as an aid for further work in related fields.

~1.6: SVRV£Y Of l1T£RATVR£:

The design of any project must be aided with sufficient references- the documents of
previous work in the related field. The initiation of this work and its development in later stages has
therefore been aided by different books and journals. Among them, the ones which influenced the course
of this work are to be mentioned in this section.

Error Control Coding has long been a consideration of information science and
engineering or data communications. Therefore, literatures dealing with .these fields have often focused
on Error Control Coding. Again, some publications extensively deal with Error Control Codes.

The book of Richard E. Blahut [I], that deals with Error Control Codes from theoretical
point of view along with their practical implications has been used all throughout to guide the current
work at times of need. Here, the underlying concepts and assumptions behind different families of
codes have been presented in a comprehensive manner. As such, the theoretical study during the current
work has been aided greatly. In discussing different groups of codes, the concepts presented in [I] has
been employed in several places.

Other than [I], study oflinear block codes have also followed the book of Michelson et al
[3]. The formation of encoding and decoding matrices in different cases has been presented there to
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provide sufficient insight into the matter. The works of Fossorier et al [10] and G. Caire ct al [II] has
been helpful in studying linear block codes.

Working with cyclic codes has been aided again to a great extent by [I]. The basics of
cyclic codes along with their polynomial representations, matrix form etc. are covered in this. Lucky,
. Salz and Weldon [6] has also been helpful in this regard. Cyclic property, cyclic shifting, decoding etc.
are presented here which have been employed in forming concepts of the current work.

The work on convolutional codes has made extensive use of Robert Gallager [7]. Here
the basic construction of such codes, their polynomial equivalents, matrix fromation etc. are covered
thoroughly. Simon Haykin[2], has I\lso served important purpose in this regard. Important constructs for
convolutional codes like tree, signal flow graph or state diagram and trellis diagram have been presented
here. Decoding of convolutional codes using Viterbi algorithm and relation of decoding ability with
minimum distance has also been available here.

Many other works and publications have been consulted at times of need during the
current work. They have been acknowledged in the reference.
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~ 2.1: INmODVCTION:
A block code represents a block of k information symbols by an n symbol codeword.

A code is said to be linear if any two code words in the code can be added (in modulo 2
arithmetic -obviously for binary system) to produce a third code word of the code. This basic property

of linear block code is called closure.

2.1.1 : 'Parity eheck eodes :
Linear codes are parity check codes and almost all the block codes used in error control

system belongs to this class.

Parity check block codes can be defined as follows:
The encoder accepts k information digits from the information source and appends a set

of parity check digits, which are derived from the information digits in accordance with a prescribed
encoding rule. The encoding rule determines the mathematical structure of the code. The information
and parity digits are transmitted as a block of n = k+r digits on the communication channel.

It is customary to call the code an (n,k) block code. The n bit block is called the code
k .

block or codeword, and n is called the block length of the code. For code rate R=- ,a parity checkn
code is a particular type of mapping from binary sequences of length k into sequences of some longer
length n.

2.1.2 : c'!lystematic eode :
A systematic code is one that starts each code word with the information symbols

unmodified. The remaining symbols are parity check symbols. For applications requiring both error
detection and error correction , the use of systematic block codes simplifies implementation of the
decoder. The use of non-systematic block code is generally avoided , since encoding and decoding
involve the steps of converting the information vectors to and from the nonsystematic code vectors. But,
in case of systematic code in the receiving side the information vector can be easily extracted from the
codeword without reordering the symbols in the codeword. But for convolution code though the
systematic code has in general smaller hamming distance, it is preferred over nonsystematic code as it is
non catastrophic.

Let, mo , m, , m2, ••• , mk-, constitute a block of k arbitrary message bits. Thus we have
2k distinct message blocks. Let this sequence of message bits be applied to a linear block encoder,
producing an n bit code word whose elements are denoted by Co, c, , ... , Cn-I' Let bo , b" ... , bn.k-,
denote the n-k parity bits in the codeword. For the code to possess a systematic structure, a
codeword is divided into two parts, one of which is occupied by the message bits and the other by parity
bits. The message bits of a codeword can be sent before the parity bits or after the parity bits. The
later option is used here. .

(..'.- - .•..••.-
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I ba , b" .,., bn.k-, ma, m" m2, ••• , mk_, I
Parity Message---Symbols Symbols

Parity bits are also called check bits or parity check bits.

According to the representation of this figure , the (n-k) leftmost bits of a code are
identical to the corresponding parity bits, and the k rightmost bits of the code word are identical to the
corresponding message bits. We may therefore write

ci • bi for i = 0,1, , n-k-I
• mi.k-n for i = n-k, n-k+1 , , n -I (2.1)

The (n-k) parity bits are linear sums of the k message bits as shown by the generalized
relation

Where the coefficients are defined as follows

(2.2)

Pji= I
= 0

if parity bit bi depends on message bit mj
otherwise (2.3)

The coefficients Pji are chosen in such a way that the rows of the generator matrix are
linearly independent and the parity equations ( defined by 2.2 ) are unique that is no two or more bi for
different i's are exactly alike,

Equations (2.1)
description of codeword

and
bits

(2.2) defines the
and parity

mathematical structure (mathematical
bits ) of linear block code,
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~ 2.2 : AlG£URAIC UACI{GROVND :
Three algebraic systems that are fundamental to the theory of error detecting and correcting

codes,
they are groups , fields and vector spaces. A linear block code can be defined as a set of vectors in an
n dimensional vector space over a finite field .This description is related to the generator matrix and

parity check matrix of a code.

The number of possible received sequences are exponentially increasing function (for a q-ary

system it is qn) of n (block length) . Thus for large n , it is impractical to store all the possible codewords
in the encoder and to store the mapping from received sequences to messages in the decoder . To avoid
this storage problems algorithms are provided to generate codewords from messages (c;=iG) and
messages from received sequences using generator matrix G in encoding and parity check matrix H

in decoding.

2.2.1 : 'Matrix 'Notation:
The system of equations (2.1 ) (code word bit definition) and (2.2) (parity bit definition)

may be written in a compact form using matrix notation. Let us define a I by k message or information
vector m or i , the 1 by (n-k) parity vector b, and the 1 by n code vector c as follows:

m = i = [mO,ml' ... ,mk.1 ] = [io ,iI, ... , ik-l ]

b = [bo,bl, ,bn-k-I ]

c = [co,c\, ,cn-I ] (2.6)

(2.4)

(2.5)

All the above three vectors are row vectors. Column vector forms can also be used
But row vector form is most commonly used. Equation (2.2) defining the parity bits can be written in
compact matrix form

b=m.p (2.7)

Where with the help of equation (2.1) and (2.2) p is the k by (n-k) coefficient matrix
defined by

r Poo POI PO,n-k-1lPw
PI1 PI,n-k-1

p= (2.8)

Pk-l,O Pk-I,l P k-1,n-k-1

Where Pij is I or O.



From the definitions given in equations (2.4) to (2.6), we see that
as a partitioned row vector in terms of the vector m and b as follows:

c=[b I m]

9

c may be expressed

(2.9)

(2.10)

Substituting equation (2.7) in equation (2.9) and factoring out the common message

vector m , we get

c= Imp

= m[p
Where Ik is the k by k identity matrix:

II ° ° °11° I ° ~j (2.11 )
Ik =10 0 I

l~0 ° ...

(2.12)

This k by n matrix G is called the generator matrix. The generator matrix G is said to
be in echelon canonical form in that its k rows are linearly independent ; that is it is not possible to
express any row of the matrix G as a linear combination of the remaining rows, which is clear from the
presence of identity matrix in G . Using the definition of the generator matrix G, we may simplify
equation (2.10) as

c = mG = iG (2.13 )

The full set of codewords referred to simply as the code, is generated in accordance with
equation (2.13) by letting the message vector m or i range through the set of all 2k binary k tuples (I
by k vectors).

2.2.2 : Group:
The most basic algebraic structure used in specifying the properties of error control codes

IS a group.

A group G is a set of elements and an operation (*) defined on pair of elements in the set
specifying four properties:
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Closure: The set G is closed under the operation *. That is , if a and b are III G then

a* b is also in G.

Associativity: The associative law of ordinary arithmetic holds for *. That is , for any a,
b, c in G (a*b)*c =a*(b*c) .

Identity : G has an identity element e that satisfies a* e=e*a=a , for every a in G.

Inverses: If a is in the set, then there is some element b in the set called an inverse of a

such that a* b=b*a=e.

Here the operation * can be '+' (addition) or '.' (Multiplication). But one has to note that '+' and '.' are
not ordinary addition and multiplication. A special form of arithmetic called modulo arithmetic is

employed for this purpose.

For '+' the identity element is called 0 .
For'.' the identity element is called 1 .
For '+' the inverse element ofa is written as -a, therefore, a+(-a)=(-a)+a=O.
For '.' The inverse element of a is written as a,l , so that a. a,l = a,l • a =1.

A group may have finite or infinite number of elements. If G has a finite number of
elements then it is called a finite group .The number of elements in G is called the order of G.

Some groups satisfy the additional property for all a , b in the group a* b=b*a. This is
called the commutative property . Groups with this additional property are called commutative groups

or abelian groups.

A subset S of elements in a group G is called a subgroup of G if S itself is a group with
respect to the operation defined on G .

If h is element of G, then h is said to form a cyclic subgroup of G if the elements of the
cyclic subgroup are powers ofh, i.e. hI, h2, h3, M, , hC=I. Then c is called the period of the cyclic
subgroup.

2.2.3 : 'Field :
A field is described simply as a set of elements with two operations defined, addition (+)

and multiplication (.) .Two further operations, subtraction and division, are implied by the existence of
inverse elements under each of the defining operations.

The elements in a field F , taken together with the operations + and. , must satisfy the

\-{~,; ,
'-, :!-, '"

, ,~..



II

following conditions:

I. F is closed under the two operations, that is the sum or product of any two elements

in F is also in F.
2. For each operation, the associative and commutative laws of ordinary arithmetic

holds, as that for any elements u,v, and w in F , (u+v)+w=u+(v+w), u+v=v+u , (u. v).w=u.(v.w) ,

3. Connecting the two operations, the distributive law of ordinary arithmetic holds, so
that u.(v+w)=u. v+u. w ,for any u,v, w in F.

4. F contains a unique additive identity element 0 and a unique multiplicative identity,
different from 0 and written as I , such that u+O= u , u. v = u, For any element u in F, the two
identity elements are the minimum that any field must contain. This two elements are simply called
zero and unity.

5. Each element u in the field has a unique additive inverse , denoted by -u , such
that u+(-u)=O. And, for u * 0 a unique multiplicative inverse denoted by u", such that u. u"=1 , from
the inverse operations subtraction (-) and division(+) are defined by

u-v = +(-v), for any u,v in F
u +v = U .(v") , v * O.

Where -v and v" are the additive and multiplicative inverses, respectively ,of v .

A field is an abelian (commutative) group under addition .The field is closed under
multiplication and the set of nonzero elements is an abelian group under multiplication.

The number of elements in a field, called the order of the field, may be finite or infinite.
A field having a finite number of elements is called a finite field or Galois field and is denoted by
GF(q), where q means the number of elements in the field and GF means Galois field.

The simplest finite field is GF(2) , which contains only the zero (0) and unity element (I)

2.2.4: 'Vector ~paces :

Let F be a field. The elements of F will be called 6Calars. A set V is called a vector
space over a field F with a set of elements, called vectors, if there is defined an operation called vector
addition (denoted by +) on pairs of elements from V, and an operation called 6Calar multiplication

..",
d. ,
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(denoted by juxtaposition) on an element from F and an element from Vto produce an element from V
provided the following axioms are satisfied.

I. V is an abelian group under vector addition.
2. The distributive laws apply, so that a(u + v)=au+av and (a+b)u=au + bu .where u

and v are vectors and a and b are scalars.
3. The associative law applies , so that (ab)u= a(bu).
4. For the multiplicative identity element 1 in F, 1u=u.

There are two identity element to deal with here. Since .the vectors in V forms a
commutative group under addition, there is an identity element, called the zero vector and written as 0 .
such that v+O=O+v for all vectors v in V . This is not same as 0 , the zero scalar element in the field F.

Let us consider an ordered set of n elements U1 , U, , ..., Un , where each element Ui
belongs to the field F . This is called an n-tuple (vector) over F . Let us , define the addition .of any two
n tuples as the element by element addition

Where each addition ui+v I is performed if F.
Due to the closure property of F. the addition of two n-tuples over F produces another n-tuples over

F.

Now, the multiplication of an element from F by an n-tuple over F is defined as the
element by element multiplication

a( u1.u" ...,un)=( aUI , au, , ... , aUn )

Where each multiplication aUi is done in F . The result is again an n-tuple over F . And if
a =1 the result of the multiplication is simply the original n-tuple itself.

The addition and multiplication rules for vectors satisfy the distributive and associative
laws (condition I and 2) , and the set of all n- tuples over F , taken together with the operations of
addition and multiplication in F , constitutes vector space over F , with the all -zeros n-tuple or zero
vector being the additive identity in the additive group of the vector space.

We will consider vector spaces over finite field. where the scalars represent code

symbols and vector (n -tuples) represent codewords.

.,
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2.2.5: 'Linear (9perations in a "Vector t!>pace (9ver a 'Field:

2.2.5.1 : Linear combination:
If v,, v

2
, .,. , vk are vectors in a vector space V over a field F , then a linear

combination of v I , V 2 , .•• , v k is any sum of the form
(2.14)

Where each ai is in the field F. The given set of~~ctors { Vi } is said to span the
vectors in V if any vector in V can be generated by a linear combination of them.

2.2.5.2 : Linear independence:
A set of k vectors v,, v

2
, •.• , vk is said to be linearly independent if no set of

scalars a" a2 , ••• , ak (except all ai = 0) exists such that

a,v, + a
2
v2 + ...+ akvk = 0 (2.15)

o denotes zero vector.

If equation (2.15) can be satisfied for at least one set of scalars not all equal to

zero, the vectors v" v2, ••• , vkare said to be linearly dependent.

For example, the vectors (1,0,0), (0,1,0) , and (0,0,1) are linearly independent
over any field. However the vectors (1,1,0) , (0,1,1) and (1,0,1) are linearly dependent over GF(2)
because they sum to the zero vector.

2.2.5.3 : Vector subspace or subspace:
A subset S containing at least one vector in a vector space V is called the

subspace
of V if S itself has all the properties of a vector space with respect to the operations of addition and
scalar multiplication in V. For example, if we take subset of vectors v" V2 , ... , Vr from V over F , the
set S of all vectors formed by linear combinations of v, , V2 , ... , Vr over F constitutes a vector
subspace.

1. Closure property is satisfied, that is for any vector Va and vb in S , Va
+
Vb is in S . We let

va = a, v, + a2v2 + + arVr and
Vb = b,v, + b2v2 + + brvr so that
va + Vb = (a,+b,)v, + (a2+b2)v2+ ... + (ar+ br)vr
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= CIVI+ c,v, + ..' + CrVr'
Because of the closure property of F under addition

.. " Cr are in F, and therefore Va + vb is in S .

, the scalars CI , C, ,

2, For any b in F and v in S , bv is in S . Let, v = aivi + a,v, + +arvr ,
then using distributive and associative laws, bv= baivi + ba,v, + ...+ ba~vr = cvl+ CV,+ +~rvr .
Because ofthe closure property of F under multiplication CI, C, , .., , Cr 10 F and therefore bv IS 10 S .

Ov=Ofor all v in V .
aO=Ofor all a in F .
So, S (a vector subspace) must contain the zero vector,

Each vector v = a
l
VI+ a,v, + ...+ arvr in S has an additive inverse

given by -v = (-a
l
)vI +(- a, )v, + ...+ (-ar )vr , where -aj is the additive inverse of aj in S .

The commutative, associative, and the distributive laws carry over from
V into S , since the vectors in S are contained in V. So , S is a subspace of V.

The set of vectors that generate a vector space V by linear combinations is
said to span V. The same terminology applies to any subspace S of V. For example, the vectors VI, v, ,

... , Vr are said to span the subspace S.

example,
Let us consider the three binary vectors (1;0,0) , (0,1 ,0) and (0,0,1). Let

these vectors span the vector space VJ , composed of all eight binary vectors, (0,0,0), (0,0,1), ... ,
(1,1,1) formed by the linear combinations of the three spanning vectors over GF(2) . If wc use the two
vectors .(1,0,0) and (0, 1,0) to form linear combinations over GF(2) , the resulting vectors (0,0,0) , (1,0,0)
, (0,1,0) and (1,1,0) constitute vector space, let V" which is a subspace of VJ. The vectors (1,0,0) and
(0,1,0) are said to span V,.

2.2.5A :Basis of a vector space:
In any vector space there is at least one set of linearly independent vectors that

spans the space . Any such set is said to be a basis of the vector space . in the example of VJ , the
spanning vectors (1,0,0) , (0,1,0) and (0,0,1) are linearly independent and therefore constitute a basis of
VJ •

A set of vectors having 1 in one position and 0 in all other positions, no two
vectors having 1 in the same position - such vectors are called unit vectors , and they are linearly
independent and can form a basis. however the unit vectors are not the only basis vectors. It can be
shown for V

J
For example (1,0,0), (0,1,0) , and (0,1,1) also form a basis of VJ These three vectors are
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linearly independent and they generates all vectors in VJ (or span VJ) Y, has basis (1,0,0) and (0,1,0) .
The vectors (1,0,0) and (1,1,0) form an alternative basis of the subspace V,.

Vector (1,1,1) is a basis for a subspace, say VI' containing only the vectors

(0,0,0) and (1,1,1).

2.2.5.5: Dimension:
All bases of a given vector space contain the same number of vectors, the number

is called the dimension of the vector space. Therefore the dimension of a vector space is the number
of vectors in any linearly independent set of vectors that can be used to generate the space by forming
linear combinations ( spans the space ). In the above examples VJ , V, , VI have dimensions 3,2,1

respectively.

So a vector space composed of n-tuples need not have dimension n , but may
instead have dimensions less than n . For example, the vector space generated by the three 7 tuples
(0,0,0,1,1,1,1), (0,1,1,0,0,1,1) and (1,0,1,0,1,0,1) over GF(2) can be stated. The linear independence of
the vectors is easily verified by noting that the elements in the first, second, and fourth positions of any
linear combination cannot be all zero unless all three vectors are given the scalar multiplier zero .
Therefore the three vectors generate a vector space of dimension 3 and this is a subspace of the vector
space of all 7 tuples over GF(2) .

2.2.5.6: Matrix representation of a vector space:
It is convenient to write the linear combinations of basis vectors in a shorthand

matrix notation .Matrices can be added and multiplied . This operations obey the distributive and
associative laws of ordinary arithmetic, however matrix multiplication is not commutative in general.

A linear combination c of the three 7 tuples is written as
c = al(O,O,O,I,I,I,I) + a,(O,I,I,O,O,I,I) + all,O,I,O,I,O,I)

[

0 0 0 1 1 1 I]
= (al a, aJ) 0 1 1 0 0 I 1

I 010 1 0 I

We write this more compactly as c=aT

(each ai is a scalar )

The matrix multiplication of the 1 x 3 row vector a times the 3 x7 matrix T yields
a I x7 row vector c. This matrix multiplication constitutes a linear transformation of a 3-tuple a into
a 7-tuple c , where the nature of the transformation is determined by the elements of T . That is the
matrix T maps 3 -tuples into 7-tuples . Since the rows ofT are basis vectors ( as linearly independent)
in a space of dimension 3 ( 3 rows ,so three basis vectors, so dimension is 3), if the three tuples a are
allowed to take on all eight (23) binary combinations , the transforrillition generates the entire vector

t.
~"iC: ,:<
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space spanned by the rows of T (that is ,vector space formed by the linear combinations of the rows
(vector) of T) . To generalize this, a k xn matrix T having k linearly independent rows generates a k-
dimensional vector space Ck ,where the vectors in Ck forms a subspace (contains some of the 2

n

combinations of n symbols over the scalar field) of the vector space of all n-tuples over the scalar field.

2.2.6 : General 'Mathematical 'Framework 'For The 'Binary 'Block eodes (9r 'Block eodes

(9ver G'F(2) : An (n,k) linear block code over a field F is a k dimensional vector subspace of the space
of all n-tuples over F , where k < n . The term linear refers to the formation of a vector space by
linear combinations over GF(2) of k linearly independent basis vectors g) , g, , .., , gk (each of these k
vectors is an n-tuple ) is a binary (n,k) linear block code C (vector subspace) . That is a vector c is a
codeword (vector or an-tuple) in C if and only if it lies or contained in the k dimensional vector space
spanned by the {gj} , equivalently, if the {gj } are arranged as rows of a kxn matrix G (generator

matrix), a codeword c can be expressed as

_(" '):~t "Gc - 1\, /" ... , Ik : J - 1 .

gk

(2.16)

\ ...

Where i is a k bit information vector and G is called the generator matrix of the code
. The full set of codewords ,referred to simply as the code, is generated by letting i range through all

2k binary k tuples.

We know vector space (example : code ) is a set of elements called vectors (each
codeword is also a vector in this space) and vector space is an abelian group (commutative group) under
vector addition. Since the code is a vector space, by definition (given above) the 2k codewords
constitute a group under vector addition .This is clear in coset decomposition and standard array. In fact
it is possible to define a binary (n,k) linear code as a subgroup ( under vector addition ,as the code is a
vector subspace, and a vector subspace is a group) of order 2k (number of codewords in a code) taken
from the group of all binary n-tuples, therefore binary linear block codes are sometimes called group

codes.

Certain obvious properties of linear block codes follow from the group property: the sum
of two codewords is a codeword (closure) and every linear code as a vector subspace contains a zero
vector, the all zero n-tuples (from part 2 of the proof related to vector subspace).

These properties are readily seen from equation (2.16)' :' Since O.G=O and, for any two
codewords Cj and ck in C (code) the sum of Cj and ck is Cj + ck = yG+ jkG=(~+ik)G=i[G .. The
modulo 2 sum of Cj and ck represents a new codevector (code word) . ~) -;;-.

"
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The row space of a matrix A is the set of all linear combinations of the row vectors of A,
the dimension of the row space is called the row rank - that is the number of rows of A which are

linearly independent .Let

i=[lll]

AO[: : l[j
:.iA = 1(1,0,0) + 1(0,1,0) + 1(0,0,1)
= [(1+0+0) (0+1+0) (0+0+1)]
=[111]
= one member ofthe row space of A .

a
o

, a, ,a, are row vectors of the matrix A . Here, all the 3 row vectors of A are linearly
independent, that is the dimension (number of basis vectors) of the row space of A is 3, i.e. the row
rank of A is 3 . The vector space consisting of all vectors formed by iG (by varying i) is called the
row space (if all rows of G are linearly independent and i has k symbols then the row space of the

matrix G has Zk elements) .

c = iG = i[P:Ikl
(Z.17)

P determines how the parity check bits are related to the information bits .This is one

representation of c.

The generator matrix

rgil P, 1 0 0 0

p, 0 1 0 0

G1~:j= PJ 0 0 I 0 = [P Ilk] (stated before hand)

0 0 0 ~JPk

is a generator matrix for an arbitrary (n,k) systematic (bechuse the matrix has the form in
which the existence of k x k identity matrix is readily obvious) linear block code , where Pj denotes
the j th row in the kx(n-k) matrix P. Since every row in G is in the vector space that defines the code
• every row of G is itself a codeword . It is seen that the j th row of G is the codeword that
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The relationship of parity and information bits can be written as in (2.17) but can be
written in another useful way . For example, let r = n-k and consider the rxn matrix H given
by H = [I

r
: opT] where pT is the transpose of the parity matrix P . :. pT is an rxk matrix, that is an (n-

k)xk matrix. Ir is the r xr or (n-k) x (n-k) identity matrix.

By multiplication of partitioned matrices GHT = [P : Ik] [~; ] = p- p = 0 . For GF(2) p

= _p . Here 0 represents the k x r or k x (n-k) all zero matrix. Therefore we have,

corresponds to an information vector having a one in the j th position an'd zero elsewhere, It is clear
from the form of encoding transformation c=iG that a codeword with an arbitrary k bit information
vector is obtained by forming a linear combination of the vectors {g, } . Specifically the codeword
associated with an information vector i is the sum of the rowS of G whose row numbers correspond to

positions of ones in i.

cHT = iGHT = 0 .
(2.18)

As GHT = 0 . The matrix H is the parity check matrix of the code. The set of all vectors v such that
AvT = 0 for matrix A , is called the null space of the matrix A. And the equations specified by
equation (2.18) are the parity check equations. cHT = 0 . And as c

T
and H can be multiplied

Considering dimension of them it is clear. By transposing (cHT)T= HcT = 0, this zero matrix is an rxk
or (n-k) xk matrix. So, we can say that the code vectors or codewords in a code are in the null space of
the parity check matrix H. And as the code generated by G is the row space of G (described before
hand) , we can say that the row space of G is in the null space of H .

Information vectors may be transformed into codewords by the operation c=iG (encoding
rule _ where c is the code word for message or information vector i and G is the generator matrix for
the code) , which forms the sum of rows of the generator matrix.

Techniques (c=iG) equivalent to the use of G are usually employed for encoding. while
the parity check relationships defined by parity check matrix H are typically used in decoding.

I ;~
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~ 2.3: IMPORTANT THEOREMS. CONCEPTS. AND CODES:
2.3.1 Theaeem : If a vector space Vis spanned by a finite set of k vectors A = { v" v" ..., Vk

} and V contains a set of m linearly independent vectors (V may have more than k vectors but in a vector
set oflinearly independent vectors in V has m vectors) B = { u" U" ... , Um., } then k;:>:m.

peaaf:
We will describe how to construct a sequence of sets Ao, A" ... , Am in such a way

that each set spans V Each set has k elements chosen from A and B and the set Ar contains u" ... , ur.
Consequently, Am contains U"... , Um among its k elements, and thus k ;:>: m. All vectors in A are not
necessarily linearly independent, and also B may not contain all the linearly independent vectors in V.

Because no nonzero linear combination of vectors of B is equal to zero, no
element of B can be expressed as a linear combination of the other elements of B. If the set Ar.1 does
not contain Ur , and it spans V, then it must be possible to express Ur as a linear combination of
elements of Ar-, including at least one vector of A (say Vj ) not in B. The equation describing the
linear combination can be solved to express Vj as a linear combination of Ur, and the other elements of
Ar." so that afterward we can eliminate Vj from Ar_, and can place Ur to form Ar.

The construction is as follows. Let , Ao = A, that is no elements of B are in
A. If Ar _, contains Ur then let Ar = Ar.,. Otherwise, Ur does not appear in Ar.1 but can be expressed as
a linear combination of the elements of Ar., involving some element Vj of A not in B. We form Ar
from Ar.1 by replacing Vj by Ur. Any vector of V that is a linear combination of vectors in Ar., and
contains Vj in the linear combination can also be expressed as the linear combination of vectors of Ar
( though Ar does not contain Vj) as in the linear combination Vj can be expressed by linear
combination of Ur and other vectors of ArTherefore as A spans V, Ar that is a different form of A
also spans V. Therefore we starts with a set A with no elements from B, and sequentially at first,we
replace one element of A that is not in B but related to u

"
by u, and we get A" then we replace an

element of A" that is not in B and can be expressed in terms ofu, of B by u" thus we get A,. In these
ways we can construct Am, with m elements among k elements of A replaced by m elements of B. Thus
the proof is complete and k;:>: m.

2.3.2 Theaeem ,Two linearly independent sets of vectors that span the same finite dimensional
vector space have the same number of vectors:

" {

'"
Let the two linearly independent sets of vectors are B and A as stated in theorem

2.3.1. So, B spans V. Let B has m vectors and A has k vectors. By theorem 2.3.1 k ;:>:m.As both the
sets span V Changing role of A and B we get by the same theorem that m ;:>: k. As m;:>:k and k ;:>: m,
and to satisfy both of these conditions m = k.
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23.3 Thea.em, Any nonsystematic linear block code is equivalent to a systematic code

A set of vectors can be generated from the linear combinations of the rows of
generator matrix G. If two generator matrices have same row space (set of vectors formed by linear
combination of rows ) then they produce the same set of codewords ( because set of codewords is
nothing but the row space of the generator matrix ) though with different mapping (for the same
information vector it varies depending on the rows of G ) from information vector to codeword vector.
Such generator matrices are called equivalent.

Given a non-systematic generator matrix Gil for a linear block code, it is possible
to convert Gil to a systematic generator matrix G (The rows of Gil are such that systematic generator
matrix can be formed from it because as Gil is used to produce code vector, the codewords obtained by
using Gil . must contain the bits of information vectors though in unordered form, and after ordering,
the whole information vector is readily visible in the codeword, and such form of codeword is available
only from systematic generator matrix) by a straightforward procedure involving column interchange
and elementary row operations on Gil. For this purpose we have to consider three types of elementary
row operations for matrices:

I. Interchanging any two rows.
2. Multiplying a row by a nonzero scalar.
3. Adding a scalar multiple of one row to another row.

The procedure for converting Gil to G is same as procedures for diagonalizing
matrices in ordinary linear algebra (because systematic generator matrix contains identity matrix as a
part of it, and an identity matrix is a diagonal matrix - i.e. matrix elements other than diagonal elements
are all zeros.) If column interchange is not applied, only row operations are applied the same set (LI) of
codewords are generated, but with a different mapping from information sequence to codeword is
produced. If column interchange is also applied, then there will be rearrangement of bit positions in
codewords (and the set of codewords thus produced would be different from L 1 with respect to bit
positions ).

The code generated by the systematic generator matrix G must contain exactly
the same set of codewords as does Gil , except for a possible rearrangement of bit positions in
codewords. This can be seen as follows. Let the converBion from Gil to G be done in two BtepB Gil to

d and G' to G, where the first step consists of elementary row operations and the second step consists
of column interchange. Obviously, the row operations of type I and 2 does not change the vector
space. ( because for type I operation , only the rows are interchanged, and as vector addition is
commutative, the same set of codewords are produced after multiplying by information sequences. For
type two operation it should be mentioned that, from the closure property of a vector space, we know
if we multiply a vector by a scalar over the field under consideration, a vector is produced which is in

\'i
v

_ .••.,.
"
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the vector space, and the rows are still linearly independent as the operations are performed in modulo
and as the rows of the original generator matrix is modulo. So the vector space is not changed, also
as the rows in the new generator matrix after this operation are still linearly independent. the new rows
are also in the basis set if the rows of the original matrix are each different and linearly independent,
and by linear combination of the basis vectors the same vector space would be generated. Because by a
theorem: in a k-dimensional vector space V, any set of k linearly independent vectors is a basis for V,
that is, they produce the same vector space. Proof of this can be &iven as follows: Let {v" v" v3, .•• , vk
} be any set of k linearly independent vectors in V. If they do not span V, then one can find a vector v in
V that is not a linear combination of v"v" v3, .•• , vk.The set {v, v" v" ..., vk} is linearly independent and
contains k+I vectors in V, which contradicts the theorem that two linearly independent sets of vectors
that span the same finite dimensional vector space have the same number of vectors. Therefore every
set of k linearly independent vectors {v" v" ..., vk } in V is a basis for V. For vectors over binary field
and scalars from binary field, type 2 operation keeps the row concerned unchanged ).. ,

For type 3 operations, a row constructed in G' is a linear combination of the rows
of Gil ( as G' is formed by elementary row operations on Gil) and thus contained in the vector space
generated by Gil (due to closure property). As each elementary row operation is inverted by an
elementary row operation of the same kind - any type 3 operation (an elementary row operation) used in
going from Gil to G' can be undone by applying a type 3 operation to G' (that is Gil can be obtained
by multiplying G' by appropriate symbols in information sequence, that is by linear combination of
rows of G', rows of Gil is formed. In this way the rows of Gil is contained in the vector space
generated by G' , proving that Gil and G' generates the same vector space.

The interchanging of columns in going from G' to G (systematic generator
matrix ) can, of course, change the vectors in the vector space, however this is simply a reordering of
bits in the codewords, which does not change the error correction power of the code (Because the
error correction power depends on the minimum distance of the code, which is not changed by this
operation ).

2.3.1 : 'Inner 'ProductoAnd C9rthogonal eomplement :
Given a field F, the quantity (a, a, ...,an ), composed of field elements, is called an n-

tuple of elements from the field F. Under the op~raiions of componentwise addition and componentwise
scalar multiplication, the set of n-tuples of elements from a field F is a vector space and is denoted by
the label p1. Any finite dimensional vector space can be represented as an n-tuple space by choosing a
basis { v,. v, ...., vn} and representing a vector v = a,v, + a,v, +...+ anVnby the n-tuple of coefficients (a,.
a,....,an)' Hence, we need consider only vector spaces of n-tuples.

The inner product of two n-tuples of p1 (the vector space over the field F)
an) and v = (b,. b,...., bn) is a scalar defined as

u. v = (a, ..., an)' (b, ..., bn). . l''t~
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= a,b, + a,b,+ ... + an bn= 0 (scalar zero).
If the inner product of two vectors is zero they are said to be orthogonal. It is possible for

a nonzero vector over GF(q) to be orthogonal to itself. As for example over GF(2), a vector or a two-
tuple II is orthogonal to itself ,because (1,1) . (1,1) =(1+1 ) mod 2=0. A vector orthogonal to every
vector in a set is said to be orthogonal to the set. The set of vectors orthogonal to the vector space W is
said to be orthogonal complement of Wand is denoted by Wl.

2.3.1.1 Theo.em: A vector orthogonal to every vector of a set that spans (that is basis
for) W is in the orthogonal complement of W.

In language description the basis vectors form the vectors of W by linear
combination. 80, a vector orthogonal to every vector of the basis set is in the orthogonal complement of
W.

Let us assume that, the set { WI.w,:..,Wn } spans W. A vector W in the
vector space W can be written in the form W= C,W,+ C,w, +... + cnwn, Then

W.U =(c,w,+c,w,+ ... +cnwn).u
= c,w, . U + c,w, . U +... + CnWn. U

If U is orthogonal to every Wi,
W . U = 0 + 0 +... + 0 = O.
I.e. u is orthogonal to every W in W.

2.3.1.2 Theo.em: If W, a subspace of a vector space of n-tuples has dimension k, then
W~,the orthogonal complement of W, has dimension n-k:

p.oof:
Let { g,. g,: .., gk} be a basis for the vector subspace W, and we define the

matrix G by

G - [J:J
Where the basis vectors appear as rows. ( The row space of a matrix A is

the set of linear combinations of the row vectors of A. The dimension of the row space is called the row
rank. The column space of A is the set of all linear combinations of column vectors of A, and the
dimension of the column space is called the column rank. The set of vectors v such that AvT = 0 is called
the null space of the matrix A. Also a k by n matrix A whose k rows are linearly independent has k
linearly independent columns, so the matrix has row rank = column rank = k.) The matrix has row rilrk

, l



k, and the column space of G has dimension k so column rank is also k. A vector v is in WJ. (the
orthogonal complement of the vector subspace W) if

GvT = o.

The reason is, if a vector of the vector space W (here row space)
produced by rows ( here basis vectors) of a matrix (here G ) is multiplied with any vector from the
orthogonal complement of the vector space W then a scalar zero is produced. Thus if, more than one
vectors of the row space (here basis vector) are multiplied by a member of the orthogonal complement
set, then a zero vector is produced. For multiplication, transpose of the vector of the orthogonal set is
used.)

Let {hi. h2 •.•• , hr } be a basis for WJ.. Let us extend this to a basis for the
whole space { hi. h2 •... , hr. fl. f2 •.•• , fnor }. Linear combinations of the columns ofG (so every vector u in
the column space of G ) is expressible as

u = GhT

where vector b is a linear combination of of the basis vectors of the
column space (k number of independent columns in G, so k basis vectors for the column space ).
Where the scalar coefficient (for making linear combination) is each row scalar of the column vector u .
As b is also an n tuple, it is a vector in the vector space of n-tuples or a vector formed by linear
combination of the basis vectors for the whole space {hi h2 h, ..., hr fl"" fnor } (note A)., ,. ..

+ c2hT +... + crh T2 ,
+ afTI I

As all hi are in WJ., so if we multiply hi with a matrix G having rows
formed with vectors over W, the multiplication would produce a all z~ro vector Gh; = O. Then from
(note A) the set {O, 0, ...,0, GfT , GfT ,..., GfT } spems the column space of G. And also from the

I 2 II -r

above equation every vector in the column space is formed by linear combination of { Gf.' ' Gfi ,...,
Gf
n
T _, }. As the vectors in the basis set for whole space {hI. h2 •••• , hr. fl. f2 •••• , fn-r } are linearly

independent, so { fl f2 ••• , fnor } are linearly independent. To prove that {GfT , GfT ,..., GfT } is a. , t 2 n -1'

basis for the column space, we have to show

1. {GfT, GfT ,..., GfT } spans the column space.
I 2 /I -r

2. they are linearly independent.
I is already shown.

To prove, 2

,,
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(2.19)

Then G(a,fT) + G(a2fT) +...+ G(an_rfT ) = O.That is G(a,fT + a2fT +...
I 2 " -r I 2

+ an_rfT )= O.But, we have already stated fi 's are linearly independent. So, a,fT + a2f2T +... +an_rI/-T I

fT = 0, can be zero only when all ai's are O.
" -r

So from all linear combinations of fi's only one produces the zero vector
and all other are nonzero, So from equation (2.19) the GfT 's are linearly independent. So, n-r is the,
dimension of the column space, but the dimension of the column space is k, therefore n-r = k or n-k = r.
But, r is the dimension of the null space. So, it is proved that if the dimension of a space is k then the
dimension of the null space is n-k.

2.3.2 : 'Dual eodes :
There is a relationship between the generator matrix G and parity check matrix H,

GHT = 0, another important relationship between the generator matrix G and the parity check matrix H
can be illustrated by transposing the two sides of the matrix equation GHT = 0, which yields HGT= OT,
we have transposed the zero matrix simply to emphasize the fact that since 0 has k rows and (n-k)
columns, OThas (n-k) rows and k columns.

H is a (n-k) x n matrix.
G is a kxn matrix.

We can let i be an (n-k) element binary vector or an (n-k) tuple. The product c'=iH
represents linear combination of rows of H. By letting i range through all 2n-k binary combinations,
we generate all the 2n-k linear combination ofrows of H. :. c' is in the row space of H. Also, c'GT=
i(HGT)=i.O=O, 0 is a I x k matrix.Transposing, we get Gk) T = 0, this 0 is a k x I matrix. So, c' is in
null space of G, or all the linear combinations of the rows of H (as c' is a linear combination of rows
of H ) are in the null space of G. This suggests that here H is serving as a generator matrix and G as a
parity check matrix for a code with 2n-k codewords. (Just opposite of the case discussed in section 2_2.6
- the role of Hand G is changed)

If ijH = Vj and ikH = vk, VjGT=( ijH) GT= 0 , vkGT= 0, :. Vj and vk are both in null
space of parity check matrix G, we have to show, Vj + vk is also in the null space ofG, (that is ifvj
and vk is in the code, then Vj + vk is also in the code ( as the new code should be a linear code) that is
Vj + vk is also a codeword. (Vj + vk)GT= Vj GT+ vkGT = 0 + 0 = 0 (using distributive law), which says
that Vj + vk is also in the null space ofG, proving that the vectors vI (l = 0,1, ..., 2n-k_l) generated by iH
are all codewords and constitutes a vector space (satisfies closure property, distributive property,
addition is commutative, and so on ).
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We have to also show that the dimensionality of the vector space is (n-k). A theorem of
linear algebra states that if the dimension of a subspace of n-tuples ( vector with n components, that is
number of columns) is m (the number of rows in the generator matrix of the subspace = dimension of
the subspace ), the dimension of null space is (n-m) = column - dimension. This means that, if a row of
a k x n matrix G generates a vector space (a row space) of dimension k, the null space of code vector
space, which is also the null space of G ( parity check matrix) is a vector space of dimension (n-k). But
we have already proved that the v's are in the null space of G (when G is a parity check matrix ),so
that the vector space composed of all such v's such that vGT=O, is a vector space of dimension (n-k),
i.e. there are n-k linearly independent rows in the generator matrix (H), so, n-k elements in a
information vector. So, over GF(2), 2n-k information vectors or message vectors. This vector space is
the linear code with 2n-k codewords. In otherway , we can use the theorem to show that H, which has
a null space of dimension k (k rows of G ), must generate a vector subspace of dimension n-k (when
H contains vectors of n tuples ). This subspace is therefore a code generated by matrix H , called the

dual of the code generated by G.

2.3.3 : 'Properties (9f~yndrome :
When a particular code word c is transmitted, we receive a word r which may differ

from c in one or more symbol ( for binary code a symbol is a bit) positions due to the channel induced
errors. That is

r=c+e (2.20)

where e, which is called the error vector or error pattern, has zeros in those positions
where r and c agree and ones in those positions where rand c disagree. In other words, the ones in e
mark the positions where errors have occurred. The decoding problem then is to attempt to determine e
so that the intended codeword may be recovered by forming c= roe ,where e is the estimate of the
error pattern and c is the decoded word . When e = e , we have c =c • which means that decoding
successfully reproduces the transmitted codeword.

The algorithms commonly used for decoding parity check block codes start with the
calculation of an (n-k) element vector called the syndrome. Syndrome is symptomatic to the error vector
that actually occurred. The term symptomatic is used, since the syndrome does not uniquely specify the
true error vector. What is important though, is that the syndrome can be used to identify the complete
set of error vectors that. could have occurred ( the same syndrome can indicate two or more error
vectors ). This is clear from the discussion of most likely choice of coset leaders or error vectors and
production of same syndrome for same coset in section 2.3.5.1 below the table for (5,2) code. The
decoder then made best selection from the set. Let us consider the transmission of a codeword c
satisfying the matrix equation cHT = 0, and the reception of the vector r. The syndrome corresponding
to r has been_definedas s=rHT

• Important general properties of the syndrome for the parity check codes
are given below:
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P,opedy : 23.3.1 : The syndrome depends only on the error pattern, and not on the
transmitted codeword.

s= rHT

= (c+e)HT

= cHT + eHT

=eHT ( because cHT= 0 ) (2.2 I)

Hence, the parity check matrix of a code permits us to compute the
syndromeor syndrome vector s which depends only upon the error pattern e.

P,opedy : 2.3.3.2: All received words that differ by a codeword (that is both have
errors in the same bit positions) have the same syndrome.

p,oof: .
For k message bits, there are 2k distinct code vectors denoted as ci, i =

0, I ,..., 2k- I. Correspondingly for any error pattern e, we define 2k distinct vectors e, as

ei = e+ci, i = 0,1, ..., 2k - I,
" ..""

(2.22)

ei has same role as received vector r. In other words, a coset has exactly
2k elements that differ at most by a codeword or codevector. Thus, an (n,k) linear block code has 2n-
k ( number of vectors with n-tuples/ number of vectors in each coset) possibilities of syndrome values.

( 2.23)

which is independent of the index i. Same error means same coset.
Accordingly we may state that a coset of a code is characterized by a unique syndrome, but the same
syndrome can indicate more than one coset. This is shown in the table of section 2.3.7. As for example
both the cosets {OOI, I 10} and {II 0, 00 I} for code words {OOO,I II } have syndrome 01.

Let, H ( parity checkmatrix) have the systematic form
H = [In_k I pT] (where P is the parity matrix from equation (2.8) )

, ..,.
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:. So = eo + en_kPoo + en-k+JPIO + ... + en-JPk-l.o
SI = e1 + en_kPol + en.k+JPlI + ... + en-JPk-I.l

(2.24)

This set of (n-k) linear equations clearly shows that the syndrome contains
information about the error pattern and may therefore be used for error correction or at least error
detection (for single parity check code). However • it should be noted that the set of equations be
undetermined in that we have more unknowns ( n ) than equations (n-k). Accordingly. there is no
unique solution for error pattern. Rather for the same value of syndrome, and for GF(2) there are 2k
error patterns (n-(n-k) = k bit values are chosen randomly producing' total n-k+k = n bit values for e
for same s, depending on chosen k bits, other n-k bits are fixed, so for k arbitrary values, 2k possible
combinations) that satisfy equation (2.24). Different member of a coset can be chosen as coset leader or
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error pattern, but the same coset has always same syndrome irrespective of the choice of the coset
leader.

But, according to equation (2.23) and property 2.3.3.2, for the same
syndrome there are 2k received vectors in a coset. The information contained in the syndrome s about
the error pattern is not enough for the decoder to compute the exact value of the transmitted code vector
or codeword. Nevertheless, the knowledge of the syndrome s reduces the search for the true error
pattern e from 2" to 2"-<possibilities of syndrome values. In particular, the decoder has the task of
making the best selection of transmitted codeword from the coset corresponding to s. For this most
likely error pattern is preferred as coset leader (or occurred error) over several possible choices of
error pattern in a coset producing same syndrome.

P.ope.ty , 2.3.3.3 , The syndrome s is the sum of the rows of HT corresponding to the
bit positions in which the errors have occurred.

the} th row of HT
•

check matrix in the form
h I l

\ h 2 I
h , j
h n

p,oof'
First we writ

n

The syndrome then can be written as s = eHT = Lejhj (2.25)
j= I

Where ej is the} th element of the error vector e. However ej = I if an
error has occurred in the} th bit position, and ej = 0 otherwise. Therefore, s is the summation of those
rows of HT whose row positions are error location in e.
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2.3.4 : 'Hamming 'Distance.;\nd 'Weight 'Distribution:
Before considering the error correction power of linear block codes, it is first necessary

to know some key concepts.

2.3.4.1 : Hamming distance:
The hamming distance between two vectors (or n-tuples) having the same number

of elements is defined as the number of positions in which the elements differ . For example , the
hamming distance between the vectors (1,0,1) and (0,1,1) is 2.

2.3.4.2 : Minimum distance:
The minimum distance d of a linear block code C is the smallest of the hamming

distances between pairs of different codewords in the code. It follows that the minimum distance is the
smallest hamming weight of Ci- Cj where Ci and Cj are any two different codewords in C. Since the
difference (or sum for a binary code ) of a pair of codewords is another codeword ,the minimum
distance of a linear code is the minimum hamming weight of the non zero code words.

2.3.4.3: Hamming weight:
The hamming weight of a vector is the number of non zero elements in the vector

. Stated differently , the hamming weight of a vector is equal to the hamming distance between the
vector and the all zero vector. The hamming distance between two vectors viand Vj is the hamming
weight vi - Vj.

2.3.4.4 : Relationship between the minimum distance of the linear block code C
and the structure of the parity check matrix H :

H can be written in the form H = [hI h, h) ... hn 1

Where hi is the i th column of H . We know we can define C as the set of all n-
tuples or vectors for which cHT = 0 ,where C is the code and C is a code vector from the code. We
can restate this by saying that a codeword in C is a vector having ones in the position such that the
corresponding rows of HT , i.e. corresponding columns of H sum to the zero vector 0 .

The minimum codeword weight(d)= the minimumrhamming distance between any
pair of different codewords

=the minimum number of columns of H
summing to 0

= the minimum distance of the code.
The parity check matrix for the (7,4) hamming code has columns that are the

seven nonzero binary 3-tuples (n-k=7-4=3 ,because H is an (n-k)xn matrix) , that is 7 columns and 3
rows .AlI columns are distinct - that is as no column is repeated, no two columns can sum to zero, and
d must be at least 3 . Any two columns must sum to a third column in H because all the possible
nonzero seven 3 tuples are used as columns of H (given with the description of Hamming Code ), and
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of a code:

thus adding the third column into the sum we produce 0 . Therefore it can be concluded that the
minimum distance of the (7,4) hamming code is d =3 .

2.3.4.5 : Relationship between the minimum distance and error correction ability

The minimum distance of a linear block code, dmin is an important parameter of
the code, specifically it determines the error correcting capability of the code. Let us assume an (n,k)
linear block code is required to detect and correct all error patterns, and whose hamming weight is less
than or equal to t. That is, if a code vector ci in the code is transmitted and the received vector is
r = Ci + e , we require that the decoder output c = ci , whenever the error pattern e has a hamming
weight wee) :0:; t . We assume that the 2k code vectors are transmitted with equal probability .The best
strategy for the decoder then is to pick the code vector closest to the received vector r , that is the one for
which the hamming distance d( ci ,r) is the smallest. With such a strategy the decoder will be able to
detect and correct all error patterns of hamming weight w( e):O:; t , pro~ided that the minimum distance
of the code is equal to or greater than 2t + I . That is lowest value of minimum hamming distance for
maximum t error correction is 2t + I .

We may demonstrate the validity of this requirement by adopting a geometric
interpretation of the problem . In particular, the Ixn code vectors and Ixn received vectors are
represented as in an n-dimensional space. Suppose we construct two sphere, each of radius t , around
the points that represent code vectors ci and Cj .

Let these two spheres be disjoint, as shown in figure (2.la) . For this condition to
be satisfied, we require that d(Ci ,Cj) ~ 2t + I . If then the code vector Ci is transmitted and the hamming
distance d(Ci , r) :0:; t , it is clear that the decoder will pick Ci as it is the code vector closest to the received
vector r . If on the other hand the hamming distance d( Ci , Cj) :0:; 2t the two spheres around Ci and Cj
intersect, as depicted by figure (2.1b) . Here we see that if Ci is transmitted, there exists a received
vector r such that the hamming distance d(ci , r) :0:; t , and yet is as close to Cj as it is to ci • Clearly
there is now the possibility of the decoder picking the vector Cj, which is wrong. We thus conclude
that an (n,k) linear block code has the power to correct error patterns of weight t or less, if and only if,

d( Ci , Cj) ~ 2t + I for all Ci , Cj
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CD CD
Figure 2.I(a): Hamming distance

d(Ci ,Cj) ~ 2t+ 1
Figure 2.1(b): Hamming distance

d( Ci , Cj) <2t

By definition, however the smallest distance between any pair of code vectors in
a code is the minimum distance of the code dmi n . We may therefore state that an (n,k) linear block
code of minimum distance dmi n can correct up to t errors if and only if.

(2.26)

Where L J denotes the largest integer less than or equal to the enclosed quantity .
Equation (2.26) gives the error -correcting capability of a linear block code a quantitative meaning.

Theo,em 2.3.4.1 ,The code C contains a nonzero codeword of hamming weight w or
less if and only if a linearly dependent set of w columns ofH (that w rows of HT

) exists:
pwof:

For any codeword c, cHT = 0 . Let C has weight w (nonzero elements) .
Then cHT = 0 is a linear dependence relation or sum of w rows of HT those sums to zero. Hence H has
a linearly dependent set of w columns.

Conversely , if H has a linearly dependent set of w columns , then a
linear combination of at most ( with respect to code vector) w columns of H is equal to zero .( If
there are more than w nonzero symbols in the codeword and H has some sets with more than w columns
linearly independent then their sum will not produce the zero vector , but when at most w nonzero
symbols in the codeword, then the w columns of H (from the set of more than w columns which are
independent -clear from the H matrix of hamming code given later) may produce linearly dependent
relation and other columns of the set being multiplied with zero, still suffice the definition of linear
dependence - not all scalar multipliers are zero. If w columns of H are linearly dependent then C may
have any number of nonzero symbols from 1 up to w. If w -I columns of H are linearly dependent then
C may have any number of nonzero symbols from I up to w-I (number of nonzero symbols)). These w

,,
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cHT = 0 , and if (w-I) columns are linearly independent, then at least one
column is needed to make it linearly dependent, that is cHT = O.This means the codeword or codevector
also have at least w-l + I = w nonzero elements. That is the code has minimum weight at least w.

or less than w nonzero coefficients define a vector c of weight w or less, i.e. c has non zero symbols at
those positions for which cHT

= 0 .
Theorem 2.3.4.2 :A code has minimum weight (at least) not smaller than w if and only

if every set of (w-I) columns of H are linearly independent:
proof:

Hence, to find an (n,k) code that can correct terrors (the H matrix has
every set of at least 2t+ I columns linearly dependent because the code has minimum distance 2t+1 ),
it suffices to find an (n-k) by n matrix H with every set of 2t columns linearly independent . That is
every set of 2t+ I column is linearly dependent.

Theorem 2.3.4.3: The minimum distance a of any linear (n,k) ( n is the codevector
size, and k is the size of information vector) code satisfies a ::;I+n-k (\ +number of parity symbols)
(Singleton bound) :

The smallest weight nonzero codeword has weight a . In a systematic
code some nonzero codewords may exist (among other codewords with more than I nonzero
information symbol , also for clarity of thinking , example of systematic code is drawn , case of
nonsystematic code is also same , because nonsystematic code from a systematic code is obtained by
column interchange in the codeword which does not change the minimum weight ) with only one
nonzero information symbol and (n-k) parity symbols. Such a nonzero codeword cannot have weight
larger than I+n-k . That is minimum weight of nonzero codewords or number of nonzero symbols in
such a code can be at most I+n-k . If all n-k are non zero then a = Hn,-k else a < 1+n-k .:. a ::;I+n-k

example:
000,001,010,011, ... ,111 are each three bit information vector ,in

codeword form they are 000 (n-k parity symbols ), OOI(n-k parity symbols), ... , II I (n-k parity
symbols) . The above discussion can be clear from this codeword structure.

".•!,
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2.3.5 : ~yndrome 'Decoding,And ~tandard..;\rray :
Let ,c, , c, , ..., C k denote the 2k code vectors of an (n,k) linear block code. Let rz

denotes the received vector, which may have one of 2n possible values . The receiver has the task of
partitioning the 2n possible received vectors into 2k disjoint subsets D, , D, , ... , D k in such a way

Z
that the i th subset Di corresponds to code vector Ci for 1::; i::; 2k . The received vector is decoded into Ci
ifit is in the i th subset. For the decoding to be correct, r must be in the subset that belongs to the code
vector Ci that was actually sent .The 2k subsets described herein constitute standard array of linear
block code. To constitute the standard array:

1. The 2k code vectors are placed in a row with the all zero code vector c, as the
leftmost element.

2. An error pattern e, is picked and placed under c, and a second row is formed by
adding e, to each of the remaining code vectors in the first row ; it is important that
error pattern chosen as the first element in a row does not have previously appeared in
standard array.

3. Step 2 is repeated until all error patterns have been accounted for.

Now the code is a subgroup and the process generates cosets . Hence it halts with
each word used exactly once.

C, =0 C, CJ Ci CZk

e, C, + e, cJ+ e, Ci+ e, C k + e,
Z

eJ c, + eJ CJ+ eJ ci+ eJ C k + e3
Z

e.
']

C + e, zn-k C+e3 Zn-k

The Standard Array For An (n,k) Block Code
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Property 2.3.5.1 : There 2".k rows or cosets in the standard array.

The standard array is formed in the way of coset decomposition. There are
2n elements in the whole vector space or in the standard array . The code is a coset or row in the
standard array , for k bit information there are 2k valid codewords .Also , the standard array or coset is
rectangular because it is constructed in that way. So , there are 2n / 2k =2n-k rows or cosets .For GF(q)
number of cosets would be qn-k.

The figure of standard array illustrates the structure of the standard array
so constructed. Each of the 2n-k rows of this array represent the coset of the code, and their (rows)
first elements e" e, , ..., e,n-k are called coset leaders.

For a given channel the probability of decoding error is minimized when
the most likely error patterns i.e. , those with the largest probability of occurrence) are chosen as the
coset leaders. In the case of binary symmetric channel. the smaller the hamming weight of the error
pattern. the more likely it is to occur. Accordingly. the standard array should be constructed with
each coset leader having the minimum weight in its coset. In other words the added error pattern will be
the most probable one.

The table of standard array is of value only conceptually. For large n and
k such a table would be impractical to list. The table can be simplified if we can store only the first
column and compute the remaining columns as needed. This we do by introducing the concept of
syndrome of the error pattern.

2.3.5.1 : Decoding procedure for a linear block code:
I. For a received vector r, the syndrome s is computed, (s = rHT within the

coset characterized by the syndrome s, the coset leader is identified ( i.e. the error pattern with the
largest probability of occurrence) ; let us call it e.

2. The code vector is computed.r=c+e , therefore c = r - e. For GF(2) '-' is
equivalent to '+'. Therefore, c = r + e. The code vector c is the decoded version of the received vector
r.

This procedure is called syndrome decoding.

Exa"'ple ,
Let us consider the (5,2) code with
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o :J
As 21+I= n-k = 3 , this code can correct one error. The standard array is

( by applying Cj = ijG , and then forming each row of the standard array by adding ek with Cj for j
=1,2, ... ,2k.

11

mtersphere regIOn attached
to 01

0110

coset leaders

Decoding sphere

I 00000 10111 01101 11010 I

00001 10110 01100 11011

I 00010 10101 01111 11000 I

00100 10011 01001 11110

01000 11111 00101 10010

10000 00111 11101 01010

e
00011 10100 01110 11001

00110 10001 / 01011 11100

-L.

code vector
(result of
encoding)

without error

coset

horizontal lin

for message vector 00

Syndrome for each coset is not listed here, but listed in the concise table given afterward .
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The elements of the first column are coset leaders , the first column is for
information vector 00, the second column is for the information vector 10 , the third is for 0 I , and the
fourth for II . For, this code by calculation it can be shown that I bit error is most probable. We may
, (in row 2) instead of taking 0000 I as the coset leader may choose 10II 0 (3 bit error , not most
probable) as coset leader , in this case the same elements in the row would be produced but with
different mappings between information vectors and standard array elements of this row . Each column
is for each sphere. There are four spheres, six points per sphere, and eight points outside of any sphere.

Any two vectors in the same coset has same syndrome. Hence. we need
only tabulate syndromes and coset leaders. We can then decode as follows. Given a received word (r)
we computes the syndrome (s=rH T =cH T + eHT = eHT • It should be noted that e is the error vector.
and in such way the concept that for a valid codeword c, cHT= 0 is used in syndrome decoding, this
concept is used in all decoding related to linear block code.)and look up its associated coset leader.
This coset leader ( most probable error pattern for the received word) is the difference between the
received word and the center of the decoding sphere (codeword) - that is by subtracting coset leader
from the received word we have the possibility of finding transmitted codeword - estimate of codeword
(not information or message vector) .

For the example introduced above, the parity check matrix is
H = [pT I Ir]

.(this r is not for received vector but indicates the number of
parity symbols)

II I I 0 0]
= II 0 0 I 0

11001

Received words in the same coset (same row ) of the standard array has
same syndrome, this can be shown by considering row 2 of the standard array and its first two
elements 00001 and 10110. For received vector 00001

I I I

I 0 I

S = rHT = [00001] I 0 0 = [001]
010

001

For recei ved vector I0 II 0
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I 0 1

s=rHT = [10110] 1 0 0 = [001]
010

o 0 I

The new table (from standard array) with coset leaders and syndromes is

coset leader syndrome(S)

00000 000
00001 001
00010 010
00100 100
01000 101

10000 111
00011 Oil
OOJ10 110

This is a simpler table than the standard array with reduced storage
requirements. Suppose, r =10010 is received. Then s =rHT = 101. The coset leader is 01000 . Therefore
the transmitted word (code word or result of encoding) is 10010 - 01000 = 11010, and the information
word is 11. If syndrome is the zero vector then it is assumed that there is no error. But in some cases
whenthe error pattern is such that it is uncorrectable by the code. a zero syndrome may be produced
(though there is some error) . Such example is given later.

2.3.5.2 : Complete Decoder:
There are two basic classes of decoders that can be described in terms of the

standard array : complete decoders and incomplete decoders . A complete decoder is one that assigns
every received word to a nearby codeword. When a word is received. it is found in the standard array
and decoded into the codeword at top of its column.

2.3.5.3 : Incomplete Decoder:
An incomplete decoder is one that assigns every received word to a codeword

within distance t , if there is one , and otherwise refuses to decode . When a word is received , it is
found in the standard array. If it lies above the horizontal line, it is decode into the word at the top of
its column. If it is below the line, the received word is flagged as uncorrectable . It has more than t
errors. The above given example is for incomplete decoder.
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2.3.6 : eode 'Designj\nd ~phere 'Packing:
The error-correction capability of an (n,k) linear block code is directly related to the

defining property (G or H) of the code as a k dimensional subspace of the space of all n-tuples over a
field. The way the subspace is constructed determines the minimum distance between the pairs of
codewords, and this in terms determines how many errors can be corrected . In using a code ,
the" leftover" n-tuples, the n-tuples that are not in the code subspace ( that is not actual codewords ) ,
are identified (by the syndrome calculation ) as codewords corrupted by errors . In bounded distance
decoding, the problem is determining the radius ( sphere to which the received n-tuples belongs.

Let us say we wish to have an (n,k) code capable of correcting ( errors in each code block
or code vector (code word) by the use of bounded distance decoding. Assume that we have chosen k
and ( and we want the block length n to be as small as possible in the irtterest of overall communication
efficiency . Since a received word is decoded only if it lies within a radius ( sphere centered on a
codeword, we would like every received word to fall within one of the spheres. That is by minimizing
the number of -tuples outside the spheres we are minimizing n (as information vector size k and radius
of each sphere ( are fixed) . This means that if we compute the volume of each sphere (number of
possible received word within a sphere) and multiply by the number of codewords or number of
spheres (2k) ,we would like the result to exactly equal to the total number of n-tuples (2n), as given by
the following equation for a binary code

(2.27)

Considering the case of all points are covered or all points are not covered this becomes

(2.28)

Spheres cannot overlap, for there would then be an ambiguity as to the decoding of a
received word lying simultaneously in more than one sphere. "

Equation (2.28) is the generalization for an arbitrary (-error correcting binary code. A
binary code for which equation (2.28) is satisfied is called a perfect code. It can be proved that all
(n,l) repetition codes of odd block length are perfect code ( proof is given later). The binary Hamming
codes are also perfect code, which can be shown as follows. The binary Hamming codes are defined to
have block-length n =2n-k -1 . So that all words within spheres of radius (=1 (single error correcting)
are accounted for by (1+n)2k = 2n which satisfies equation (2.27) or equation (2.28) with equality. For
binary codes in general, the = sign in equation (2.27) must be replaced with :5 sign, (as in equation
(2.28) ) , because the defining bound relating n,k,( that is satisfied with equality is true only for perfect
codes . The bound in (2.28) can be generalized from the binary case to an arbitrary (n,k) (error
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correcting code over a q-ary alphabet, resulting in a sphere packing bound or Hamming bound, given
by

(2.29)

The form of the bound is such because there is only one way of receiving a codeword

correctly «(~)= I ) here 0 means no symbol in the codeword of n syhibols is in error , (~) ways of

having one wrong symbol in a codeword or block with (q-I) possibilities for the wrong symbol value
(over GF(q) there are q possible symbols in a position of a codeword but I of these symbol is for that

position when no error have occurred in that position ), (;) ways of having 2 wrong symbols in the

block with (q-I)(q-I) = (q-I)' possibilities for two wrong symbol values, and so forth. The total
volume of all the spheres cannot be greater than the total possibilities of received words qn . A non
binary code that satisfies the bound (2.29) with equality is a (nonbinary) perfect code.

It is customary to refer to codes as tightly packed or loosely packed in accordance with
how well or how poorly they approach the sphere packing bound or Hamming-bound.

For a given k and t , block length n should be as small as possible in order to minimize
the required redundancy. Also, given nand k , we want the error correction limit t ( which is related to
the minimum distance cr or structure of the parity check matrix H ) and hence the minimum distance cr
made as large as possible. The error detection and error correction power of a code is directly related to
the minimum distance which should be made as large as possible.

2.3.7 : The Error 'Detection,And Error €orrection 'Properties <9f,A€ode,Are 'Related '1'0
The ,!!)tructure <9f'Its 'Parity €heck 'Matrix 'H,And Thus The 'Minimum 'Weight <9r 'Minimum
'Distance <9f,A€ode :

The description of the parity check code can be given in terms of its parity-check matrix
H and the syndrome can be interpreted as the sum of the columns of the parity check matrix (or rows
of HT

) corresponding to the locations of errors in the received word . Parity check matrices for two
simple codes ( single parity check code with n = 7 and a repetition code with n = 3 ) are listed.

[I I I I I I I I ] [I I 0]
I 0 I
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With the single-parity-check code, any odd number of errors produce a syndrome equal
to I (odd number of errors , so odd number of columns all of which are I added modulo 2 and thus
produces I) , and since all columns of H are I (that is not distinct) the non-zero syndrome can yield no
information on locations of errors (not correctable). However the parity check matrix for the repetition
code has three distinct column vectors, and any single error will produce a syndrome that uniquely
identifies one of the columns of H (or rows of HT) and in turn the position of single error inthe
received word . .i'

Table For (3,1) Repetition Code

information 0 I

syndrome
code vector 000 III 00 (no error)
without
error

001 110 01
010 101 10
100 Oil II

code vectors Oil 100 II
with error 101 (error in LSB 010 10

and MSB)
110 001 di 01
III (all three bits 000 00

are in error)

Considering I bit error if we found 00 I the correct code will be 000 and hence
information vector would be 0, from syndrome value of 0 I and from H matrix we see the 3rd column
(rightmost) column of H be 01 , so it is assumed that the rightmost bit of the received code word is
in error. But we should also note that a two bit error can also cause a syndrome of 0 I (sum of first and
second columns of H), but as I bit error is most probable (shown later) the erroneous code word.is
treated as the former case.

Every single error pattern will be correctable if every two columns of H are not the
same, otherwise there would be ambiguity about the actual column of H from the calculated syndrome
, in which position in the codeword the error has been occurred even in the case of single bit error.
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2.3.8 : ~ingleton 'Bound and 'Maximum 'Distance eodes :
P,opedy 2.3.8.1 : (Singleton Bound) the minimum distance (minimum weight) of

any linear (n,k) code satisfies
d* ~ I+n-k

P,oof:
The smallest-weight nonzero codeword has weight d*. Systematic codewords

exist with only one nonzero information symbol and (n-k) parity symbols. Such a codeword cannot have
weight larger than I+(n-k). Hence the minimum weight of the code cannot be larger than I+(n-k).

Any code whose minimum distance satisfies a = n-k+ I is called a maximum-distance
code. Here maximum means maximum possible value of minimum distance a = n-k+ I .

2.3.8.1 : Hamming code:
Parity check matrix H is a (n-k)xn matrix, n-k = m is equal to the number of

parity symbols. A code whose minimum weight ( also minimum distance for linear code) is at least 3
must have a parity check matrix all of whose columns are distinct (as no pair of columns sums to zero)
and nonzero by theorem 2.3.4.2.

If a parity -check matrix for a binary code has m rows, then each column is an m
bit binary number. There are 2m - I possible columns (for excluding all zero column) . Hence if the H
matrix of a binary code a (minimum distance) at least 3 has m rows, then it can have 2m - I columns,
but no more, to make each pair of columns linearly independent. This defines a (2m - I, 2m - I-m)=
(n,k) code. [m is equal to number of parity symbols in a codeword, m=n-k , n=2m - I , therefore k=n-
m=2m - I-m]. The simplest nontrivial example is m=3 .Then in systematic form

I 0 I I 0 0]
011010
111001

I

o
G= o

o

These (2m - I, 2m - I-m) codes are the hamming codes .Clearly , every pair of
columns of H is independent (because no pair of distinct binary vectors can sum to zero) , and some
set of three columns are dependent . :. By theorem 2.3.4.3 the minimum weight (w) is 3 , and the code
can correct a single error, by applying equation 2.26 .

Hamming codes are codes for which the rows of H are distinct and includes all
the nonzero sequences of length n-k in the case of binary hamming code as columns of H . Hamming
codes can be easily defined for larger alphabet sizes. The main idea is .to define an H with every pair
of columns linearly independent. Over GF(q) , q # 2 , one cannot'hse all nonzero m-tuples as the
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columns of H , because some pairs will be linearly dependent The error-detection and error-
correction properties of a code are related to the structure of its parity check matrix H, that is on
minimumdistance of the code. Every single error pattern in a received word will be detectable, as long
as no columns of H is all zeros (if there is all zero column , there may be error in received word
within correctable range but may produce all zero syndrome - which is according to assumption
indication of no error ), and every single error pattern in a received word will be correctable, if any two
columns of H are not the same (because due distinctness of columns of H error positions can be
located when error is in the correctable range ). In other words, a single -error correcting code of block
length n is one whose parity check matrix has n - unique nonzero columns . Therefore , we can
construct a single-error correcting code by specifying an (n-k )xn parity check matrix with unique
non zero columns. For, GF(2) , this can always be done as long as n ~ 2n.k -I . The limitation
reflects that there can be no more than 2n-k -I unique non-zero binary vectors of length (n-k) .
Therefore , the longest single-error correcting (longest codeword ) binary block code that can be
constructed with r parity checks has block length n = 2r -I . A code with this parameter is called binary

hammingcode.

For the (7,4) binary hamming code let us consider the parity -check matrix.
Below two parity- check matrices for the (7,4) hamming code is given. The parity check matrix for the
(7,4) hamming code has columns that are the seven nonzero binary 3-tuples (n-k=7-4=3 , because H is
an (n-k)xn matrix) , that is 7 columns and 3 rows .AIl columns are distinct - that is as no column is
repeated, no two columns can sum to zero, and d must be at least 3 . Any two column must sum to a
third column in H, and thus adding the third column into the sum we produce 0 . therefore we
conclude that the minimum distance of the (7,4) hamming code is d =3 .

[

0 0 0 I I I I]
0110011
1010101

[

I I I
o I I
I I 0

0100]
I 0 I 0
I 0 0 I

On the left the columns of H are arranged as the binary coded numbers I to 7 .
Any re-arrangement of the columns of H will preserve the single-error-correction capability
(uniqueness of columns -so every pair of column is linearly independent, so , minimum weight of the
code cannot be less than 3 ), and thus the ordering of the columns may be chosen in accordance with
convenience of implementation for encoding or decoding. The second form of parity - check matrix is
called reduced echelon form or systematic form. It is characterized by the partitioned structure H= [
pT I Ir 1 , where Ir is the rxr identity matrix, and pT is an rxk submatrix that defines the essential
structure of the code . Where r = n-k is the number of parity symbols in any code of the codeword .We
already know that a block code constructed with a parity check matrix of this form is called a systematic
code.
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We also know that two codes are said to be equivalent if they differ only in the
ordering of their symbols. Thus the codes formed by the two parity check matrices for (7,4) Hamming
code are equivalent Hamming codes. We can generalize this by saying that all binary Hamming

codes of a given length are equivalent.
We know for ( error correcting binary code of block length n , the Hamming

bound (sphere packing bound) is

And this bound can be generalized from the binary case to an arbitrary (n,k) (-
error-correcting code over a q -ary alphabet, resulting in the sphere-packing bound or Hamming bound
, given by

A nonbinary or binary code that satisfies this bound with equality is a perfect

code. For a single error correcting nonbinary Hamming code this bound has the form

The = sign is used instead of $ , because Hamming code is a perfect code and a
perfect code satisfies the sphere packing bound or Hamming bound with equality.

~[I+(q-It)]=q"-'
~(q-It)=q" -'_1

where n-k = r =m =number of parity symbols.
~ n(q-l) =qm_l

q"' -1
~n=--

q-l
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q"-I
:. For a single error correcting non-binary Hamming code, there are n=--q-I

(

m I "I )
such distinct columns (n) . Hence the code is a (n,k) or L=-- ,L=--I -m . A single error-correctingq-I q-

Hamming code with these parameters exists for each q ( for which a field GF(q) exists) and for each

m.
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I. The encoding rules are reapplied to the received word to determine whether the parity
check relationships are satisfied (If no errors have occurred in the transmitted codeword , after
transmission, the received word r would produce rHT = 0 , though in some case codeword with error
can produce the zero vector. Discrepancy in the parity check relationships (rH

T *" 0) indicates the
presence of one or more errors in the word. If only error detection is to be performed, the decoding
function is completed with an announcement either that the received word is a codeword or that errors
have been detected. If error corrections are to be performed ,the next two steps are required.

2.3.9 : The 'Decoder 'Performs Either The 'First (l:)rj\1l Three (l:)f The 'Following

'Functions:

2. The parity check discrepancy is used to derive an estimate of the error pattern
contained in the received word. ( May be the syndrome) ,

3, When an estimate of the error pattern has been determined, the errors are
corrected ( may be the example of syndrome decoding (for binary code) can be given . From computed
syndrome , in the codeword where errors have been occurred can be assumed and the bits in the
codewords at that positions can be inverted). Then the check digits are removed from the codeword to
get the information vector or the message vector, and this decoded information is delivered to the user,

A central problem in coding theory is to find code designs for which the r = n-k check
digits can be used as effectively as possible in the detection and correction of errors. A given code may
be utilized for error detection only or for error detection and correction. Principles governing the design
of a code for error detection is essentially the same as that for effective error correction.

No code can be designed that can successfully correct all error patterns to which the
transmitted codeword can be subjected, For example, an error pattern that changes one codeword
into a different codeword is always undetectable (Also clear from the syndrome decoding of (3,1) ,
repetition code when all three bits are in error ,errors cannot be detected) . Rather, codes are designed
to correct the most likelyerror patterns .The effectiveness of a code on a given channei willdepend in
part upon the characteristics of the error patterns produced by the channel,

,
"

I'i

(J
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2.3.10 : £imple 'Modifications 'I'0"A 'Linear eode :
Simple changes can be applied to a linear code to get a new code. If the new code is also

linear, these changes corresponds to simple changes that can be made to the generator matrix G.
Namely, one can add a column or a row, delete a column or a row, add both a column and a row, delete
both a column and a row. These change the code in ways that are simply described, though it might not
be a simple matter to find such modifications that are worthwhile.

The block length n can be increased by increasing k or by increasing number of parity
symbols n-k. We call these lengthening and expanding and subsume both notions under the more
general term extending that is by extending we mean increasing the block length either by expanding
or by lengthening. The six basic changes are as follows:

_n_
11 Jk~G =l •

Increasing the length by adding more parity check symbols is in effect
expanding a code. This corresponds to increasing the larger dimension of the generator matrix.

Increasing the length by adding more information symbols ( k ) is called
lengthening a code. This corresponds to increasing both dimensions of the generator matrix by the
same amount.

Reducing the length by dropping parity-check symbols is called puncturing a code. This
corresponds to decreasing the larger dimension of the generator matrix.

Reducing the length by dropping information symbols is called shortening a code. This
corresponds to decreasing both dimensions of the generator matrix by the same amount.

Increasing the number of information symbols without changing the length or block
length n, that is increasing k, decreasing n-k) is called augmenting a code. This corresponds to
increasing the smaller dimension of the generator matrix.

Decreasing number of information symbols without changing the length is called
expurgating a code. This corresponds to decreasing the smaller dimension of the generator matrix.

,
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2.3.11 : 'Reed-'Muller eodes :
Reed-Muller codes are a class of linear code over GF(2) that are easy to describe and can

be decoded by simple voting technique. For these reasons ,the Reed Muller codes are important even
though with some exceptions ,their minimum distances are not noteworthy. For each integer m and for
each integer r less than m there is a Reed-Muller code of block length 2m called the roth order Reed
Muller code of block length 2m.

A Reed Muller code is a linear code . This code will b~' defined by a procedure for
constructing a generator matrix . we will construct a non systematic generator matrix that will prove
convenient for decoding (easy grouping ofreceived bits when forming check-sum equations to detect a
information bit value by majority vote). First let us define the product of two vectors a and b by a
componentwise multiplication (as already defined in case of inner product ). That is , let

a = (ao, a" , an_i)
b = (bo , b, , , bn_,)

Then the product is the vector ab = (aobo , alb, , ... , an_ibn_i)

The generator matrix for the roth order Reed-Muller code of block length 2m is defined
as an array of blocks

. n

Where Go is the vector of length n = 2m containing all ones, G, an m by 2m matrix,
has each binary m tuple appearing once as a column; and GZ is constructed from G, by taking its rows
to be all products ofrows ofG" z rows ofG, to a product. For definiteness (otherwise permutation of
columns should be considered) , we take the leftmost column of G, to be all zeros, the rightmost to be
all one , and the others to be the binary m-tuples in increasing order , with the low order bit in the
bottom row .

Because there are (:) ways to choose the z rows to a product, GZ is an (:) by 2m

matrix. Clearly for any Reed-Muller code ,total number ofrows in the generator matrix G
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k= (~)+(7)+(;} ...{;) = 1+(7) +(;} ...{;)

from definition of G, block length n = 2m = all possible bit values combination in m
positions (m rows) to produce 2m columns = column with all zero symbol +columns with single I +
columns with 2 ones +...+columns with m 1=

(~)+( 7 )+(;} {~ )+C: J+C: 2}"'{:)

= I+( 7)+(;} {~)+(,: 1)+(,:2}"'{:)

n-k= {I+( 7)+(;} ...{;)}+(,: 1)+(,: 2}"'{:)- {I +(7 ) + (;} ...{; )}

= (,: J+(':2}"'{m~1)+(:)
= (m-:- J+(m-7-2} ...{7)+(~)= 1+(7}"'{m-7-2)+(m-:- J

Provided the rows of G are linearly independent (each combinations of bit appears
only once, otherwise value of k will be of another magnitude, not as defined above).TheO-th order
Reed Muller code is an (n,1) code. It is a simple repetition code and is decoded trivially by a majority
vote (For a (5,1) code by majority vote 00011 will be considered an erroneous form of the codeword
00000 , and the information is 0 .

c)("''''ple , , '.
For a (4,1) repetition code (As for Reed Muller code n is even, so this example

of code with even block length is chosen)

The parity check matrix H = [: ~ ~ ~] (
100 1

This form of H is formed from the parity check equations used for repetition code
given below

i,+p, =0 mod 2

-~-,',.
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i, +p, =Omod2
i, +p) = o mod 2

So, G= [I: III]

For first column of H we get the last three columns of G , here G has form like
Go (all elements are I ) . As Go is vector of length n = 2m containing all I , the O-th order Reed Muller
code has minimum distance 2m . (For (4,1) repetition code the two possible correct codewords are
0000, IIII ,that is minimum weight is the minimum distance between this two codewords ).

An example of describing Reed Muller code in terms of generator matrix, let
m = 4, n =16, and r = 3. Then

Go = [1111 1111 1111 1111] = [ao]

0 0 0 0 0 0 0 0 I I I I I I I I a,

0 0 0 0 I I I I 0 0 0 0 I I I I a,
G = = ( say),

0 0 I I 0 0 I I 0 0 I I 0 0 I I a)

0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 I a4

Because G, has 4 rows, G, has (~) rows.

r~0 0 0 0 0 0 0 0 0 0 0 I I I I a,a'l
0 0 0 0 0 0 0 0 0 I I 0 0 I I ala)

0 0 0 0 0 0 0 0 0 I 0 I 0 I 0 I a,a4
G2=

0 0 0 0 0 0 I
=

I 0 0 0 0 0 0 I I a,a)

0 0 0 0 0 I 0 I 0 0 0 0 0 I 0 I a,a4

Lo 0 0 I 0 0 0 I 0 0 0 I 0 0 0 I a)a4

And G) has (;) rows,



0 0 0 0 0 0 0 0 0 0 0 0 0 0 I I r 8,8,8)
0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 I

G)= =l8'8'8'
0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 I 8,8)8,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 8,8)8,
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Then the generator matrix for the third-order Reed Muller code of block length 16

isthe kxn or 15xl6 matrix. (k=I+(:)+(~)+(:)=1+4+6+4=15).

G = r~:l
l~:J

This generator matrix gives a (n,k) or (16,15) code over GF(2) . In fact it is a
single parity check code -can be shown by converting G to row echelon form and converting the row
echelon form of G to systematic form. Then forming H from G , H will be as

H = [I I I I I I I I I I I I I I I

IS information bits

I 1

I parity bit(n-k= 16-15 = I)

In equation form ( assuming even parity)

Another Reed Muller code obtained from these same matrices is obtained by
choosing r equal to 2 , then the generator matrix is

It gives a (16,11) Reed Muller code over GF(2) , in fact, it is the (15,11)
Hamming code expanded by an extra parity check. (This can be shown by forming H matrix say H, of
(16, II) code, and extracting H matrix say H, for (15, II) code from H, .

'0- :J
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.' \

All previous codeword symbol + one
new parity symbol

H=I

1111111

o

o

1 11111 I I

In the H2 any two columns are distinct, and the code parameters (n,k) also satisfy
the values (2m-I, 2m -1- m ) which is required for a Hamming code.

From the definition of their generator matrices, it is clear that an r-th order Reed
Muller code can be obtained by augmenting an (r-I) th order Reed Mull~r code, and an (r-I) th order
Reed Muller code can be obtained by expurgating an r-th order Reed Muller code . Clearly , because
the r-th order Reed Muller code contains the (r-I) th order Reed Muller code , its minimum distance
(depends on column structure. Let Number of dependent columns in a set, has minimum value x, then
minimum weight is x+ I ) of H , which implies minimum distance depends on the structure of G )can
not be larger ( can be smaller) than that of the (r-I) th order Reed Muller code - this may be clear by
observing the number of nonzero terms in each rows of the generator matrices . It will be proved later
that d'= 2m -r for an r-th order Reed Muller code .

Every row of Gz has weight 2m -z . Hence, every row of G has even weight
(as r is less than m and according to our initial assumption m * z , 2m -z * 2° or I) . And the sum of two
binary vectors of even weight must have an even weight. Hence all linear combination of rows of .G (
that is codewords ) has even weight. The matrix Gr has rows of weight 2m -r , and thus the minimum
. weight is not larger than 2m -r .

We must show that the rows of G are linearly independent (otherwise more than
one information vector (all zero vector) would produce all zero codeword ) . We shall show that the
code must have a minimum weight of 2m - r and the rows of G must be linearly independent by

. I )developing a decoding algorithm - the Reed algorithm that corrects '1 = -. 2m-, -I errors and
, il~ 2

recovers k information bits .This implies that the minimum distance is at least 2m-r -I (we know that, d

;::2/+I, putting value of 1 , we get d ;::2. t.2m -, - 1)+I ), and because d is even, it is at least 2m-r .
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The Reed algorithm is designed specifically for Ree~ Muller codes. Of course
the general syndrome techniques could be used but would not be as simple to implement . The Reed
algorithm is unusual as compared to most algorithms for most codes in that it recover5 the
information directly from the received word and doe5 not explicitly compute the error .Intermediate
variable5 5uch a5 5yndrome are not u5ed .

Suppose that we have a decoder for an (r-I) th order Reed Muller code ( that is

the decoder is able to correct ~. 2",-<,-1) -I) errors) . We will construct a decoder for an r-th order

Reed Muller code in the presence of ~. 2'"-, - I) errors by reducing it into the earlier case . Because

we already know that the O-th order Reed Muller code can be decoded by majority vote (as is used for
simple repetition code ), we have a decoding algorithm by induction.

It is convenient to break the information vector into r+ I segments written i= [10 ,

I, , I" ... , Ir] where segment Iz contains :) information bits. Each segment multiplies one block of

G . The encoding can be represented as a block vector matrix product. "r
Gol

Gil
c = [10' II , I" ... ,Ir] = : I =iG

G,J
Consider the information sequence broken into such sections : each section

corresponds to one of the r+I blocks of the generator matrix and is multiplied by the corresponding
section of G during encoding . If we can recover the information bits in the r+I th section (labeled as
r), then we compute their contribution to the received word and subtract this contribution ( because the
G and H matrices are always known and fixed, so after recovering the information bits the contribution
can be easily computed).This reduces the problem to that of decoding a smaller code .
The decoding procedure i5 a 5ucce55ion of majority vote5 , 5tarting with majority vote5 to determine th
e information bit5 in the r+1th 5ection • then in the r th 5ection and 50 on .
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The received word is

k bits

+ e

Where e is the introduced Ix2m error vector. The decoding algorithm will first
recover Ir from v. Then it computes Vi = V - IrGr (the first and second term on the right of '=' sign
have same number of columns (2m), otherwise this subtraction is not possible)

Go
G,

+ e.

First, let us consider decoding the information bit ik., , which multiplies the last
row of Gr . This is decoded by setting up 2m'r linear check sums in the 2m received bits. Each such
check sum involves 2r bits of the received word (2ml2m'r = 2r), and each received bit (vs ,s = 0,1,2,
... 2m_I) is used in only one check sum. Information bits are iy ,y = 0,1,2, ... , k-I, where k is the
number of rows in the generator matrix). The check sums will be formed so that ik-, ( information bit)
contributes to only one bit of each check sum, and every other information bit contributes to an even
number of bits (so no contribution in the value of checksum, under mod 2 operation) in each check sum
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. Hence, each check sum is equal to ik., in the absence of errors. But if there are at most ~. 2"'-' -1)

errors, the majority of the check sums will still equal to ik .,
e..xpIC\I'1.CltlOI'\ :

Suppose the Reed Muller code of first order that is r = 1 . Let m = 4. The

generator matrix has 1+ :) = 5 rows, and also there are 5 bits in each information vector or message

vector (i = [io, i" i" i3, i,]) . There are 2m = 2' =16 bits in each codeword ,so 16 bits in each received
vector v = [vo, v" v" ... , v's] . There are 2m'r =23= 8 check sums and 2r = 2' = 2 received bits in each
equation.

The generator matrix is

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

=[~~]G= 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Multiplying the information vector by G we get codeword vector without
error c=[co , c"c" ,clS], the received vector v=c+e .If, no error occurs then v=c. After multiplication,
the sequence of codewords thus formed may be expressed to have the following form:

Co = io
c, = io+i,
c, = io+i3
C3= io+i3+i,
C,= io+i,
Cs =io+i2+;4
C6=io+i,+i3
c, =io+i,+i3+i,
c, = io+i,
c. = io+i,+i,
CIO = io+i,+i3

CII = io+i,+i,+i,
C12 = io+i,+i,
CIJ = io+i,+i,+i,
c14 = io+i,+i,+i3

CIS = io+i,+i,+i,+i,
,-, ;
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If the checksums are formed by

CO+C, mod 2 = io+io+i4 mod 2 = i4
c,+c] mod 2 = 2io+2i]+i4 mod 2 = i4
C4+C, mod 2 = i4
c,+c7 mod 2 = i4
c,+c9 mod 2 = i4
CIO+CII mod 2 = i4

c12+c\3 mod 2 = i4
C,4+CIl mod 2 = i4

But in the presence of error these equations would be

All the i4(j ) for j =1,2, ... , 8 are estimates of information bit i4 • In the
absence of error all these estimates are equal to i4 , But if there are at most (8/2 -I = 3) errors , the
majority of the check sums (8-3=5) will still equal to i4 • Thus if the error is within correctable range we
get the value of i4 • If more 4 errors occur , then there is no majority ,so error is detected , but not
correctable . If more than (t+I) errors , i.e. more than 4 errors occur then a wrong decision about the
information bit under consideration is the result of decoding.

To get the value of i3 , the check sums are formed by

v +v mod 2 = i (I)o 2 3

V,+V3 mod 2 = i3(2)
V +v mod 2 = i (3)4 , 3

V +v mod 2 = i (4)l 7 ]
V +v mod 2 = i (l)8 10 3
V9+V1I mod 2 = i](')

+ d2-.(7)v12 V14 rna - 13

+ d2-.(')v\3 vll mo - I]

o
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These eight check sums are formed such that in each equations i, appears
in one bit ( that is odd number of times) and other information bits appear in each equation an even
number of times , thus nullifying their contribution on the value of each check sum.

In the same way , each information bit multiplying a row in Gr can be
decoded by setting up 2m-r linear check sums in the 2m received bits, followed by a majority vote. In
this way all the elements of II that is il , i, , i, , i. is computed .After these information bits are known ,
their contribution to the codeword is subtracted from the received word. This results in the equivalent
ofa codeword from an (r-I) th order Reed Muller code (all the information bits oflr are excluded). It in
tum can have the last section of its information bits recovered by the same procedure . The process is
repeated until all information bits are recovered. The (lxI6) vector IIGI is subtracted from the (lx16)
received vector v which is another (I x 16) vector.

0 0 0 0 0 0 0 0 I I I I

I, G1 =[;" ;1 , ;] , i.] 0 0 0 0 I I I I 0 0 0 0

0 0 I I 0 0 I I 0 0 I I

0 I 0 I 0 I 0 I 0 I 0 I

I I I I
I I I I
o 0 I I

o I 0 I

This implies I,G1=[ c~,c; ,c;, c; ,c~,c; ,c~,c; ,c~,c~,c;o ,c; 1 ,C;2 ,C;3 ,C;4 ,C~5]'
.By subtracting I IG I from v we get (r-I) th = O-th order Reed Muller code .Each bit in the (r- I) th order
Reed Muller code can be decoded by setting up 2m - (r -I)checksums for each bit (starting from the last
bit, then working back to the first bit of the vector section Ir_1in i) followed by a majority vote.

c'=Oo
c~=;4
c~= ;3
c;= ;3+ ;4
c~= ;2
C;=;2+;4
c~=;2+;3
c;=i,+i,+i.
c~=il
c~=;l+i4
c;o=;,+i3
c:,=;I+i3+i4
c~2=il+i2
c;,=il+i,+i.
C:4=;'+;2+;3
c; ,=i I+i, +i,+i.

o



v =v- IIG,
= [Co, C

I
, C2 , C3 , C4 , Cs , C6 , C7 , C, , C, , ClO , Cl1 , C12 , C13 , C'4 , CIS]

[' , , , , , , , , , , , , , , , 1 +
_ CO,CI,C2,C3,C4,CS,C6,C7,Cg,C9,CIO,CII,CI2,Cn,C14,CI5 e.

=[~,~,~,~,io,~,~,~,~,~,~,~,~,~,~,~]+e.

From this, io is decoded by majority vote.
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2.3.12 : c'!)ingle'Parity eheck eodes :
The very simple parity- check code is one that uses a single parity check bit or check bit,

appended to a block of k information bits, the check bit being chosen to satisfy an overall parity rule
for the codeword (even or odd parity) . Encoding of the single - parity- check code is described by the
equation

therefore, H = [I I ...11] , the all terms in between are also 1. Where i" i2, ••• , ik are
arbitrary information bits and Pl is the parity bit .The equation specifies that the parity bit is chosen so
that the code word has an even parity, that is an even number of ones. We might just as easily have
specified an odd parity rule(in the above equation I should be written in place of 0) for setting the check
bit, and the properties of the code would have been exactly the same.

We consider the (4,3) binary code whose codewords are listed as follows:

The (4,3) = (n,k) single binary parity check code
( For even parity)

Single parity ,because (n-k)= 1.

Information sequences

000
001
010
011
100
101
110
111

codewords
information parity

000 0
001 I
010 I
011 0
100 I
101 0
110 0
III I

2.3.12.1 : Error Detection Decoding For Single Parity Check (n,n-1) Code:
At the decoder , the received word , possibly containing transmission errors , is

checked to determine whether or not the parity check relationship is satisfied . This is done by
calculating from the received word (r=[", '2' ..., 'n]), the sum

S = "+'2 +'..+'n mod 2 (2.30)
And observing whether s is 0 or I . If s = 0 , the decoder assumes that the

codeword was received correctly, the parity check bit is removed and the (n-I) information bits are
released to the user. If s =I , the decoder declares the received word to be in error.
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2.3.12.2 : Performance of the decoding rule for the (n,n-l) code on the binary
symmetric channel :

let us consider the error patterns that preserve even parity (s = 0) in the received
word, patterns having an even number of errors .On the binary symmetric channel, the probability of
occurrence of any particular pattern of i errors is simply Prob(i error pattern) = pi(l_p)n-i, Where pis
the bit error probability in the channel (p<O.5). Total probability of i error patterns for a particular i =

~Jp;(I-pr-; . For all i, i=I,2,oo.,n total probability of error = ~(~)p(l-pr-; . If we compare
I ~l

the probabilities of zero error and a two error pattern , we see that for p<O.5 , Since (l-p)' > p' , (I_p)n
> p'(I_p)n-' . Thus, given the result of parity check s = 0, the probability of no errors in the received
word is greater than the probability of any particular two error pattern. It can be easily verified (by
changing the above inequality for any even number of errors) , the probability of zero errors is greater
than that of any error pattern containing an even number of errors .We can now state that the
interpretation of s = 0 as the occurrence of "no error" and s =I as errors detected is in fact a
maximum likelihood decoding rule for the binat)' symmetric channel. 50 . though 5 = 0 may be produced

for no error or even number of errors in a received word. in decoding 5 = 0 is treated as indication of n
o error for supporting most probable event.

The discussion of the single parity check code has shown that the single check bit
permits a decoder merely to classify received words in the two categories , "no error" and "errors
detected". Let us consider the (7,6) single parity check code.

:.TheparitycheckmatrixH =[1111111]

With single parity check code (even parity), any odd number of errors produce a
syndrome equal to I , and since all columns of H for this code are equal to I (that is they are same or
not distinct), the nonzero syndrome can yield no information on the location of the errors.
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The repetition code as a parity check code:
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2.3.13 : 'Binary 'Repetition eodes :
The simplest type of block code allowing a variable amount of redundancy is the

repetition code.With this code a single information bit is encoded into a block of n identical bits ,
producing an (n,I) code. The code contains only two codewords, The all-zero and the all-one
codewords. The repetition code can be discussed without reference to error control coding concepts by
observing that the same bit is transmitted by shifting n times. The received n bit word, detected I bit at
a time, may be operated on by the majority voting rule to detect the actual transmitted bit in each
codeword .We assume n is odd. Because for a repetition code with even block length, a received word
containing an equal number of ones and zeros does not permit a maximum likelihood decision. In this
case the receiver can do no better than announce that the n bit word was received in error. Incorrect
decoding decision can be made, but equal number of errors and correct bits can not occur in a

codeword.

That this is a maximum likelihood rule can be simply shown with the following example.
Consider the transmission ofa codeword from the (5,1) code. Suppose that the received word is
01001 . Obviously there are errors in the word, since only 00000 or IIIII could have been sent. Two
interpretation are possible : either five zeros were transmitted and two errors occurred (a two error
pattern), or five ones are transmitted and three errors occurred (a three error pattern ). If we compare
the conditional probabilities of these two events for the binary symmetric channel, we find that p2( 1-
p)' > p'(l-pi . For p <0.5 . Thus The two error pattern is the event of greater likelihood or maximum
likelihood .The transmitted word was 00000 and also by majority vote it is 00000 ,as majority of bits
are 0 in the received word ). The corresponding analysis can be made of each possible received word to
show that the majority -voting rule is a maximum likelihood decision rule for the binary symmetric
channel. So,by the (5,1 ) repetition code all the single and double error patterns are correctable by the
majority vote (because if more than 2 errors occur, then by majority voting wrong decision would be
made about the transmitted codeword) .

2.3.13.1 : The generalization of the results for a Repetition Code of arbitrary

That is the majority voting rule decides between two explanations for the
received word by favoring the one that assumes the smaller number of channel errors. It is easy to see
that this is a maximum likelihood decoding rule by comparing the likelihood of an ierror and a j error
event, where i<j . For probability of one bit errorp <0.5 , the likelihood obey the inequality pi(l_p)n'i >
pj(l_p)nj , i <j. Since (l_py-i >pj-i , i<j

2.3.13.2 : Discussion Of Repetition Code With Respect To Error Correcting

Coding Concept :

The (n,l) repetition code can be described as a parity check code in which
n-I parity bits aregenerated from one information bit by the following set of equations:



(i, + p,
(i\ +P2
(i, +P3

) mod 2 =0
) mod 2 = 0
)mod2=O

+Pn-, ) mod 2 = 0

( 2.31)
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These simultaneous equations are called parity check equationB and can
be generalized to describe encoding rule for any parity check block code (because from these equations
H can be formed and from H, the matrix G can be derived which is used in encoding). It is readily seen
that this set of equations produce a codeword that is a block of n replicas of the information bit.

From the above equations we can write the H matrix as :

H=

Many of the commonly used algorithms for decoding parity -check codes
begin by testing the parity -check relationships in the received word r\ , r2 , ... ,rn as the first step in
decoding. For the (n,l) repetition code, this step can be written as follows:

+ rn = Sn.\
(2.32)

It is obvious from examination of the parity check equations (2.31) ,that
if the received word r\ ,r2, ... , rn is error free, equation (2.32) yields n-I parity check sums SI,S2' ...,Sn.\
all equal to zero . Let , us now examine the set of check sums , that is , the S vector , resulting from
various received error patterns for the example of the (5,1) code. (5,1) repetition code is capable of
correcting any error pattern of up to two errors in a received word. lrithe table given below' all such
correctable errors (including the all zero pattern) together with the parity check result for each error is
shown. The
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Parity check tests for the (5,1) repetition code

i

parity check result given in the table may be verified from equation (2.32) by n~ting that.a single :rror ~n
one of the two bits checked in any parity check equation will produce I ,while error In both bIts wIll

yield 0 .

Received Error Pattern Parity Test Results

I 2 3 4 5 8, 82 83 84

0 0 0 0 0 0 0 0 0

x 0 0 0 0 I I I I

0 x 0 0 0 I 0 0 0

0 0 x 0 0 0 I 0 0

0 0 0 x 0 0 0 I 0

0 0 0 0 x 0 0 0 I

x. x 0 0 0 0 I I I

x 0 x 0 0 I 0 I I

x 0 0 x 0 I I 0 I

x 0 0 0 x I I I 0

0 x x 0 0 I I 0 . ,','. 0

0 x 0 x 0 I 0 I 0

0 x 0 0 x I 0 0 I

0 .J 0 X X 0 0 I I 0

0 0 x 0 x 0 I 0 I

0 0 0 x x 0 0 I I

x means bit value is changed at that location .The key point to be
observed in the' table is that each of the correctable error patterns results in a unique S vector in the
parity check test . Thus the S vector which is called the syndrome vector or simply the syndrome ,
provides a unique indication for each error pattern that can be corrected by the code. We see, therefore
, that as an alternative to a majority voting rule on the received bits, the syndrome may be used in a
decoding procedure to determine which of the set of correctable error patterns has actually occurred.

In order to discuss parity check and syndromes more conveniently , we
can rewrite the equations in matrix form .To rewrite the parity check equations given in equation (2.31)
, we represent the codeword as a row vector c = [i \> p, , P2 , ... , Pn-l ] and the matrix coefficients of the
parity check equations as H, a matrix having n-I (i.e. n-k) rows and n columns. The parity check
matrix H for (5,1) repetition code can be written as
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(2.33)

I I 0 0 01

H= ~ ~ ~ ~ ~I
loood

We can now write the parity check equations (2.31) in the form of a single
compact matrix equation cHT = 0 .Where HT denotes the transpose of Hand 0 is the row vector of n-I

(Y\ (number of parity symbols Si ) zeros .Similarly we can rewrite the set of syndrome equations, equation
(2.32) , as the single matrix equation S = rHT • Where r is the row vector representing the received word
r, , r, , ..., rn , and S is the resulting syndrome row vector .(Note , for typographical convenience, we
write codewords , received words, and syndromes as row vectors .If we choose to use column vectors
instead for c,r,S, the matrix equations would be written Hc=O and S=Hr ).

-0)
'-'J

The key point to be observed in examining the matrix form of the
syndrome equations is the following .The syndrome S resulting from multiplication of the received
vector r by HT is the sum of columns of H (rows ofHT

) corresponding to the locations of errors in r,
by this operation the sum of the columns of H are transposed into a row vector . It can be easily
verified that regardless of which codeword is transmitted, 00000 or 11111 , the error pattern OOOOxwill
produce S = 0001 the fifth column of H transposed, and the error pattern OxxOOwill produce S =
1100 , which corresponds to the sum of the second and the third columns of H transposed. The task
of the decoder then is to determine which column of H or which sum of columns of H produced the
observed syndrome. This states the task that must be performed by the decoder for any parity-check
block code. At these positions the bit of received word is changed.

A further point to be made with regard to the table of syndromes is that
the number of possible four bit syndrome vectors 2' = 16 , is exactly equal to the number of error
patterns that can be corrected (more can be detected - up to 3 or 4 bit error can be detected but can not be
always corrected, because several different groups of columns of H may produce the sum equal to the
syndrome , so no clear indication about error positions , different column group indicates different
positions. 5 bit error can not even be detected with the (5,1) repetition code because in such case the
syndrome is the all zero vector - which is an indication of no error . For this code

~)+(~)+(~)=1+5+10=16 Therefore, the set of possible syndrome vectors are fully utilized as

indicators of the correctable error patterns, that is all error patterns having from 0 to (n-l )/2 errors.
This exact sufficiency of parity checks for the required syndrome occurs only in special cases, and the
code for which this relationship holds are referred to as perfect codes. So, a (5,1) repetition code is a
perfect code .

2.3.13.3: Performance Of Binary Repetition Codes:
Knowing that the (n,l) repetition code with n odd can be used. (if n is even, a

received word containing an equal number of ones and zeros does not permit a maximum likelihood
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decision. In the case the receiver can do no better than announce that the n bit word was received in
error) . To correct up to (n-I)/2 errors ,we can calculate the probability of correctly decoding a

received word on the binary symmetric channel as

1/-1

prob(correct decoding) = ;~(~ )p'( 1- Pr~;
For n odd, all patterns of (n + I)/2 or more errors will be decoded incorrectly, so

we can also write prob(incorrect decoding) = 1- prob( correct decoding) . Repetition coding achieves
consistently better error performance than uncoded transmission , the improvement increasing with n
(more redundancy) . However, ifthe channel signaling rate is fixed, the use of an (n, I) repetition code
causes a reduction of the overall information transmission rate for the system by the ratio lin.

Li-teo,e", 2.3.13.7, An (n,I) repetition code for odd n (n and r are integer for making

nc,.meaningful) is a perfect code, that it satisfies the Hamming bound wiih equality:

p,oof,
for 1 error correcting binary (n,k) code and which is perfect the Hamming

bound is (~)+(:)+(~} ...{~ )]21 =2" (2.34)
Where 21+1 = n , ~ t = (n-I)/2. We prove the above theorem by

induction.

Basis: for (3,1) repetition code (~)+(~)]i=(J+3)X2=8=2J .That

is the Hamming bound is satisfied with equality.
I

repetition code for n

Induction: Let, the bound defined by equation (2.34)is true for (n,l)
odd. Let us , prove it for code word size n+2. we , have to show

(
n+2) (n+2) (n+2)1o + I +...1.n; 1 J2

k = 2" +2

We know,
m+n _ m m n m n m n ncr - cr + cr_\. c\ + cr_Z' Cz +...+ Ct' cr_\ + cr
Therefore



n+2C - nC0- 0

n+2 n n 2 n 2
C2 = C2 + C,' C, + CO' C2

n+2 n n 2 n 2
Cn+1 = Cn+1 + Cn-I" CI + Cn-3• C2

- - -
2 2 2 2
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n+2 n+2 n+2 n+2
Adding Co + ci + c2 +...+ Cn+1

2

lie + lie +o I "C, " )+ ...+ en ;1 +

"C2 +...+

n n n= Co + c, + C2 +...+

'I
2C nco + nC, + nC2 + ••.+nCn ;,)+

'I
+2C2 "Co + "c, + "C2 + ... +"c,,;,)

n n n n n n
= Co + C, + C2 +...+ Cn_J + Cn_1 + Cn+, +

2 2 2

2 "co + "c, + "c, +...+ "C";' + "C";I)+
n n n n
Co + C, + C2 +...+ Cn_3

2

n nBut, Cr = Cn-r

n "So , Cn+1 = Cn~1

2 2

n+2 n+2 n+2 n+2
Therefore, Co + ci + c2 +...+ cn+ I

2
n n nCn_3 + Cn_, + Cn_, +

2 2 2

+ "c ) +,,-I,
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n n n n
Co + c) + C2 +...+ Cn_3

2
n n n n n

= Co + C1 + C2 +...+ Cn-3 + Cn_1 +
-- --~

2 2

'I
2" "" " ".)Co"+ C1 + Cz +...+ C~ + C~~ +

. 2 2

n n n n
Co + C1 + C2 +...+ Cn_3 +

2

= 4 nco + nC] + Nez +...+ nCn_3 +
2

" "Cz +...+ Cn_ 3 +
2

(
n+2) (n+21 (n+iil:. 0 + 1 r..in;1)J2k (using equation 2.35)

- 22" "" " "C"~I ) 2k- Co + c] + c2 +...+ cn_3 +
2 2

= 2n+',as the Hamming bound is satisfied with equality, so (n,l)
repetition code for n odd is a perfect code.

Necessity of n to be odd is explained before hand.

.>
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2.3.14: 'Perfect.;\nd ~uasi-'Perfect eodes:
Let us visualize small sphere about each of the codewords of a code , each sphere with

the same radius (an integer) . Let us allow these spheres to increase in radius by integer amounts until
they cannot be made larger without causing some spheres to intersect .That value of the radius is equal
to the number of errors that can be corrected by the code .It is called the packing radius of the code .
Now let us allow the radii to continue to increase in by integer amounts, until every point in the space is
contained in at least one sphere .That radius is called the covering radius of the code.

The packing radius and covering radius may be equal; if so , then the construction of the
standard array stops just when the sphere of radius t is completed. All points of the space are used in
these spheres, none are left over. This is true for perfect codes.

A perfect code is one for which there are equal radius spheres about the codewords that
are disjoint and completely fill the space .A perfect code satisfies the Hamming bound with equality. A

"'_I (n)]Hamming code with blocklength n=-q-- is perfect. Because I+(q-l) l=q"
q -I I

:::}[I+(q-I)nj = q"~k = q"'. That is [l+(q-I)n]qk = qn points for qk codewords. :. l+(q-I)n= qn-k =

qm points for a codeword or sphere of radius one ( this is clear from the term ~), as this relation is

for single error correcting) . The number of points in the space is qn . The number of spheres or valid
codewords is qk. :.The number of points in the space divided by the number of spheres is qn/qk = qn-
k = qm (as n-k = m = number of parity symbols).

Perfect codes, when they exists, have nice properties and are aesthetically pleasant. But
, they are not often important in practical applications, because they are so rare.

Quasi-perfect code is one in which spheres of radius t about each codeword are disjoint
and all words not in such a sphere are at a distance t + I from at least one codeword.
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, (I).

@
, .-.

Figure 2.2 : Quasi-perfect code

Quasi-perfect codes are more common than perfect codes. When one exists for a given n
and k (and no such perfect code) then for this nand k no other code can have larger t1 . But, these
codes are rare and for practical applications have no special importance.
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!13.1 : INTRODVCTION:
3.1.1 : 'Definition:

A linear code 1:, over GF(q) is called a cyclic code if any cyclic shift of a code word is
also a codeword.

So, cyclic codes have two properties:-
1, U"e,vity Propedy :

The sum of two code words is also a codeword.

2. Cyclic Propedy :
Any cyclic shift of a codeword is also a codeword.

Let n-tuple (Cn-I, ... , ct, co) denote a codeword in 1:,. The code is a cyclic code ifleft cyclic
shift of the code i.e. (Cn-2, Cn-3,""CO, Cn-I) is also a codeword. Similarly (Cn-3, Cn-4,... ,CO,Cn-I, Cn-2), (Cn-4,

Cn-5,... ,CO,Cn-I, Cn-2, Cn-3) are codewords. Similarly, right cyclic shift ofa codeword is also a codeword.
Here Cn-I, ... ,Co are from GF(q).lts proof is obvious from the definition.

. f,. ~
.' 'r-
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Ii J.2 : POLYNOMIAL R£PR£S£NTAnON Of CYCLICCOD£S :
A polynomial over a field GF(q) is a mathematical expression
j(x) =fn_Ixn-1 +fn_2xn-2 +...+fix +[0 (3.1)

where the symbol x is an indeterminate, the coefficientsfn~I""'fo are elements of GF(q) and the indices
and exponents are integers.

So from the definition of cyclic property, we may treat the elements from GF(q) of a
codeword of length n as the coefficients of the polynomial of degree (n-I) over GF(q). That is, the
codeword c = (cn-I, cn-2, ..., co) may be represented in the form of a codeword polynomial as follows:

c(x) = cn_Ixn-1 + cn_2xn-2 +...+ C1X+ cO (3.2)
11-1

= LC,x'
;=0

where x is an arbitrary variable(indeterminate), the coefficients or codeword elements cn-I, Cn-

2, ..., Co are elements ofGF(q).

Each power of x In the polynomial c(x) represents a one bit cyclic shift. Hence
multiplication of c(x) by x may be viewed as a cyclic shift or rotation to the left, subject to constraint xn

= I. The constraint xn = I achieves two objectives - (\) it keeps the polynomial xc(x) to order (n-I) as
the codeword polynomial definition. (2) the coefficients are rotated to the left and thus helps to satisfy
cyclic property. These two objectives are cleared in the following.

Multiplication of c(x) by x, subject to the constraint xn = I is denoted by a special type of
polynomial multiplication as multiplication modulo(xn - I). Since the codeword polynomial of equation
(3.2) represents codeword, c = (cn-I, Cn-2,..., cO), for single cyclic shift, the codeword polynomial
becomes -

x.c(x) mod (xn - I) = cn_2xn-1 + cn_3xn-2 +...+ cox + Cn-I (3.3)

here mod means 'modulo'.Equation (3.3) is a polynomial representation of a codeword, c = (cn-2, Cn-
3,..., cO,cn-I) as predicted. Similarly for two cyclic shifts, the codeword polynomial becomes -

x2.c(x) mod (xn - I) = cn_3xn-1 + cn_4Xn-2 +...+ cOX2+ Cn-IX + cn-2 (3.4)
Equation (3.4) is a polynomial representation of the codeword, c = (cn-3, cn-4, ..., co,

Cn-I, cn-2).

So, generally we can describe the cyclic property of the cyclic code in polynomial
notation by stating that if c(x) is a codeword polynomial, then the polynomial xic(x) mod (xn-I) is also a
codeword polynomial for any cyclic shift i.

3.2.1 : 'Ring ~tructure :
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1. R is an abelian group under addition( +).
2. Closure For any a,b in R, the product ab is in R
3. Associative Law: a(bc)=(ab)c
4. Distributive Law: a(b+c)=ab+ac; (b+c)a=ba+ca

A commutative ring is one in which the multiplication is commutative.

A ring R is a set with two operations defined: the first is called addition (denoted by +)
and the second is called multiplication (denoted by juxtaposition); and the following axioms are

satisfied:

The above polynomial notation of the cyclic code can also be described by ring structure.
The set of all polynomials over GF(q) forms a ring if addition and multiplication are defined as the usual
addition and multiplication of polynomials. Such a polynomial ring for GF(q) is denoted by GF(q)[x]'

Now we have to define quotient ring in GF(q)[x], For any monic polynomial p(x) with
nonzero degree over GF(q), the quotient ring is the ring of polynomials modulo p(x) i.e. the set of all
polynomials with degree smaller than that of p(x), together with polynomial addition and multiplication
modulo p(x).The quotient ring is denoted by GF(q)[x]/p(x).

In the above definition, p(x) is taken as monic polynomial. A monic polynomial is a
polynomial with leading coefficient, (e.g.fn-I of equation (3.1» equal to 1.

From equation (3.3) and (3.4), it is clear that cyclic codes in polynomial notation can be
described from the ring GF(q)[x]/(xn-l). The following theorem is helpful in defining cyclic code in this
nng.

Theoeem 3.2.1.1,
In the ring GF(q)[x]/(xn-l) a subset C; is a cyclic code iff it satisfies the following

two properties:
1. C; is a subgroup of GF(q)[x]/(xn-l) under addition.
2. If c(x) EC;and a(x)EGF(q)[x]/(xn-l), then Rx'_' [a(x)c(x)] ES

Peoof,
At first let the subset satisfies the two properties. From property (I), it is closed

under addition, that proves the linearity property of cyclic codes. From property (2) it is closed under
multiplication by any ring element, particularly multiplication by x. This proves th~ cyclic property of
cyclic codes. Hence it is a cyclic code.

Now let, the subset is a cyclic code. Then from linearity property, it is closed under
addition. This proves property (I). From cyclic property, it is closed under multiplication by powers of
x. From linearity and cyclic property, it can be said that the subset is closed under multiplication by

..
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linear combinations of powers by x. That is, it is closed under multiplication by an arbitrary polynomial,
whose coefficients are in GF(q) (x]/(xn-I). Hence it proves property (2). So the assumption is proved.

3.2.2 : Generator 'Polynomial:
Let, block length ofa codeword be n, of which k (n>k) be message bits and(n-k) be parity

bits. This codeword is represented by (n, k). A (n, k) codeword polynomial has minimum degree (n-k).

Peoof,
A (n, k) codeword has (n-k) parity bits. If the codeword polynomial has degree (n-

k), then it has (n-k+ I) bits : lone message bit and (n-k) parity bits. If the codeword polynomial has
degree (n-k-I), then it has 'only (n-k) parity bits, but no message bit. so, this cannot be a codeword. again
if the codeword polynomial has the degree less than (n-k-I), then it has not (n-k) parity bits. This cannot
also be a codeword. So, a (n, k) codeword polynomial has minimum degree (n-k).

Generator polynomial is a nonzero monic polynomial of smallest degree i.e. (n-k) and is denoted
by g(x).

Generator polynomial, g(x) of (n, k) cyclic code has following properties:

Peopedy 3.2.2.1,
Any multiple of the generator polynomial g(x) with degree k-I or less IS a

codeword polynomial, c(x), i.e. c(x) = a(x)g(x) for any a(x).

Peoof,
Let c(x) = a(x)g(x) + S(x). This means when c(x) is divided by g(x) then quotient =

a(x) and remainder = S(x). Here a(x)g(x) must be in the code by theorem (3.2.1.1), because g(x) is in the
code.

So, deg S(x) < deg g(x) and S(x) = c(x) - a(x)g(x) is a codeword polynomial, because c(x)
is a codeword polynomial and a(x)g(x) is also a codeword polynomial. But deg S(x) < deg g(x) i.e. deg
S(x) < (n-k), which is the smallest degree of any nonzero codeword polynomial. Hence S(x) = O. So, c(x)
= a(x)g(x). d'

Peopedy 3.2.2.2 ,
The generator polynomial, g(x) is unique.

p"OOf,
Let g(x) itself represents a codeword and let there be another monic codeword

polynomial of degree (n-k). So, we can get another codeword polynomial by adding these two codeword
polynomials. Since highest degree coefficient of these polynomials are I, then the new codeword
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(3.6)

(3.7)

polynomial has degree less than (n-k). This is impossible, since (n-k) is the minimum degree. So, g(x) is
umque.

A polynomial s(x) is said to be divisible by the polynomial r(x)or that r(x) is a
factor of s(x) , if there exists a polynomial a(x), such that, s(x)=a(x) r(x). And a polynomial p(x) that is
divisible only by a p(x) ora, where a is an arbitrary field element in GF(q) is called an irreducible

polynomial.

P,opedy 3.2.2.3 ,
g(x) divides xn-l.

P,oof'
Let xn-I = a(x)g(x) + Sex).Here deg Sex)< deg g(x) = (n-k). So,
RX"_1 (xn-I) = Rx"_' [a(x)g(x)] + Rx"_l [Sex)]

Here Ra(b) means residue or remainder of (b+a).

=> 0 = R
x
"_' [a(x)g(x)] + Sex) [':deg Sex) < n-k]

But the first term of the above equation is a codeword polynomial with degree (n-k) or
higher. So, Sex) is a codeword polynomial whose degree is less than (n-k). The only such codeword
polynomial Sex) = o.

:. xn-I = a(x)g(x)

Thus g(x) divides xn-I.

For large values of n, the polynomial xn-I may have many factors of degree (n-k). Some
of these polynomial factors generate good cyclic codes, which some generates bad.

From property (3.2.2.1), c(x)= m(x)g(x). (3.5)
Here m(x) = message polynomial. Since c(x) is an (n, k) cyclic codeword polynomial, deg c(x) = n-l,
[equation (2)] and deg g(x) = n-k [g(x) definition]. So,

deg m(x) = deg c(x) -deg g(x)
= (n-I) - (n-k)
= k-l.

In equation (3.5), c(x) is a nonsystematic codeword polynomial because message polynomial m(x) is not
immediately visible in c(x). How to get a systematic eode is described below:

Let m(x) =mk_Ixk-1 + mk_2xk-2 +...+ mo.

So, message sequence is (mk-I, mk-2, ..., mo). Again let, parity polynomial,

p(x) = Pn_k_Ixn-k-1 +Pn_k_2xn-k-2 +...+PO.
[In (n, k) code, there are (n-k) parity bits. So, degree of parity

polynomial = n-k-I]
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So, parity sequence is (Pn-k-I, Pn-k-2, ..., PO). ; .,
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In (n, k) systematic cyclic codes, message bits are transmitted in unaltered, as shown by
the following structure for a codeword:

mk_l , mk_2,. .. ,rna' P,,-k-I' Pn-k-2"'" Po
, ' , '

k mess;ge bils (If-h) parity bits

According to the structure specified for a codeword, the leading message bit mk-I is the

coefficient of xn-I in the corresponding codeword polynomial representation .. To meet this requirement,
we multiply the message polynomial m(x) by xn-k. Then the codeword polynomial is of the following
form :

e(x) = xn-km(x) +p(x) (3.8)

=:} Rg(x)[c(x)] = Rg(x)[xn-km(x)] + Rg(x)[p(x)]

=:} 0 = Rg(x)[xn-km(x)] +p(x)
[.: deg p(x) = n-k-l < deg g(x) = n"k]

=:} p(x) = -Rg(x)[xn-km(x)] (3.9)

Thus parity polynomial p(x) of equation (3.8) can easily be chosen from equation (3.9).

In fact, systematic code from equation (3.8) and non systematic code from equation (3.5)
is same, but the association between the m(x) and e(x) is different. Now we want to find the possible
generator polynomials for a (n, k) cyclic code.

From property (3.2.2.3), we have seen that generator polynomial g(x) over GF(q) of (n, k)
cyclic code divides (xn-I). Now factoring (xn-I), we get

xn-I =fl(x)f2(x) ..fs(x) (3.10)
where s is the number of prime polynomial,.fCx) over GF(q). A monic irreducible polynomial of degree
of at least I is called a prime polynomial.

So, any subset of the prime polynomials of equation (3.10) can be multiplied together to
produce a generator polynomial, g(x). If the prime polynomials are distinct then there are 2S different
combinations of prime polynomials to produce g(x). Among these 2s combinations, we have to exclude
trivial cases g(x) = I and g(x) = (xn-I) to get nontrivial cyclic codes. So, there may be (2S-2) different
nontrivial (n, k) cyclic codes. Now, we want to find prime polynomials of equation (3.10).

There are two types of cyclic codes - (i) Primitive and (ii) Nonprimitive cyclic codes.

A blocklength n of the form n = qm_1 is called a primitive blocklength for a code over
GF(q) for nonzero positive integer m. A cyclic code over GF(q) of primitive blocklength is called a
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primitive cyclic code. At first we want to find prime polynomials of equation (3.10) for primitive cyclic
codes. For this, we have to know, what are extension field and minimal polynomial.

Let F be a field. A subfield of F is called a subfield if it is a field under the inherited
addition and multiplication. The original field F is then called an extension field of the subfield.

Let, GF(q) be a field and GF(Q) be an extension field of GF(q). Also let fJ be in over
GF(Q). The prime polynomial, fix) of smallest degree over GF(q) with flfJ ) = 0 is called the minimal
polynomial of fJ over GF(q). Since minimal polynomials are prime polynomial in GF(q), they are
irreducible in GF(q).

Now, return to the original description. Since, for (n, k) primitive cyclic code, n = qrn_1.
Putting this value in equation (3.10), we get,

xq"'~' -I = !,(x)!,(x)"'/,(x) (3.11)

Here eachfi (x) (for I = I, ..., s) is a prime polynomial over GF(q). The GF(qrn) is an extension field of
GF(q). We know from definition of galois field there are (qrn_l) nonzero elements in GF(qrn). Let the
nonzero elements are fJ I, fJ2, ...,fJ '" in GF(qrn). Thenq ~,

xq"'~'-I=(x-fJ,)(x-fJ,)"'(x-fJq",~') (3.12)

Before proving this equation, we have to prove that - the order of any element of GF(qrn) divides the
order of GF(qrn).

Peoof,
Let, H is a subgroup of finite group G, in the process of construction of coset

decomposition. From the rectangular structure of the coset decomposition

(Order or number of elements of H ).(Number of cosets or rows of G) =
(Order or number of elements of G).

=> n.rn=x
If H is formed from h , then the order of h is n . Also h is an element of G . So the order of an element
of G (here h) divides the order (x) of G . This can be shown for all elements of G, choosing them as
coset leaders (may be for different coset decomposition) . So it is proved that the order of a finite group
is divisible by the order of any of its elements.

Since, a GF is a finite group, The above proof can be applied to prove the statement.

Now we can prove the equation (3.12).
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P,oof,
GF(qm) has (qm_l) nonzero elements. So, order ofGF(qm) is equal to (qm_l). But

we know that orders of elements of GF(qm) divides the order of GF(qm), i.e. (qm_I). And order of an
element P, in GF(qm) is defined as the smallest positive integer p for which,;P = an identity element, e.

(3.13)

Here since the nonzero elements of the GF(qm) form an Abelian group under
multiplication operation, identity element, e = I(see definition of Galois Field in Linear Block Codes).
Since p divides (qm_I),

let qm_1 = bp for some positive integer b. (3.14)
=>pbp = Ib = I [from equation (3.13)]

=>P q"~' = I [from equation (3.14)]

=>P '1"'-'_1 =0

=> P('-'-I =0 [':prepresents any nonzero elementofGF(qm)]

for 0 < i $ qm_1 (3.15)

This equation implies that each Pi is a root of the polynomial x"m_, -1. Therefore,

x""-' -I = (x - p, )(x - P,) ... (x - p,,"_,).

Comparing between equation (II) and equation (12) eachli(x) (for I = I, ..., s) can be
factored in GF(qm) into a product of some of the (x-p}) (for) = I, ..., qm_l) linear terms. This,fi(x) is the

minimal polynomial of fJ}. Thus, generator polynomial, g(x) is the product of any subset of the minimal

polynomials of zeros of GF(qm). Since zeros of GF(qm) can easily be found from equation (3.12), to
find g(x), we have to find zeros ofGF(qm) at first, then minimal polynomials of these zeros.

But g(x) may not be composed of all the minimal polynomials. So, we have to find these
minimal polynomials. Let, these polynomials have zeros p" p" ... , Pr in GF(qm). So, g(x) has also zeros
P" P" ..., Pr in GF(qm). We have to distinguish these zeros from others. Before this, we have to proof
the following theorem.

TheMe", 3.2.2.2 ,
A polynomial e(x) over GF(q) is a codeword polynomial iff ecp,) = ecp,) = ... =

eCPr)= O.When ecpi) is calculated in GF(qm) for i= I, ..., r.

P,oof,
At first let e(x) be codeword polynomial. So,
e(x) = m(x)g(x) for some m(x).
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~ c(f3i) = m(f3i)g(f3i)
= m(f3i)'O
=0

[J3i are zeros of g(x)]
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D

Now, let c(f3i) = O.We can write, e(x) = Q(x)fi(x) + R(x). Here deg R(x) < degf;(x) and

f;(x) is the minimal polynomial of fJi.
Therefore, e(f3i) = Q(f3i) f;(f3i) + R(f3i).

~ 0 = Q(f3i).O + R(f3i).
~ R(f3i) = O.

That is, R(x) = O. Then e(x) must be divisible by the minimal polynomials,f;(x). Hence e(x) = Q(x)fi(x).
So, e(x) is a codeword, asf;(x) forms g(x).

From theorem (3.2.2.2),we can easily distinguish desirable zeros PI' p" ... , Pr in GF(qm)
from others. Again minimal polynomials may have degree greater than I. So, they must have more than
one zeros in GF(qm). For this reason, iffl (x), ... fr(x) are minimal polynomials of PI' p" ... , Pr, then two P
s may have same minimal polynomials, i.e ..f(x)s may not be distinct. So,

g(x) = LCM[fI(x), ... fr(x)] (3.16)

Let the minimal polynomial.f(x) of phave degree m', then it must have m' zeros in GF(qm). Therefore,
if we can find these zeros, we can then find.f(x). We can identify the additional zeros of.f(x) (other than
,8)with the following two theorems-

Theo.e", 3.2.2,3 ,
The number of elements in the smallest subfield of GF(q) is called@e

characteristics of GF(q). Let p be characteristics of the field GF(q). Then for any polynomial s(x) (j£er
GF(q) and any integer m.

[

d,g ,,(x) ]"m d'g ,.(x)
[ ]p"' '"' i '"' pm ip"'s(x) = £..."'0S;X = £... s; X

;=0

and also if p is replaced by any power of p.

P.oof,
Here characteristic of GF(q) is p. Each galois field contains a unique smallest

subfield, which has a prime number of elements. Hence the characteristi,c of every galois field is a prime
number. The significance of characteristic, p of Galois field is that all integer arithmetic is modulo p in
that galois field. Now we start to prove the theorem. Let

s(x) =s'(x)x + so'
~ [s(x)JP = [s'(x) x + soJP.
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~ [s(x)lP = f (~)[S'(X)Xr st-i
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(3.17)

(3.18)

Here (p) = p! - pep - I)! and p is a prime and does not appear in ~he denominator unless i = 0 or
i i !(p - i) ! i !(p - i) !

i=p. Since all integer arithmetic is modulo pin GF(q), except for i= 0 or p, (~) is a multiple of p and

equals zero modulo p. So, from equation (3.17).

[s(x)lP = (~) [s'(x)x]ost-
O

+ (~) [s'(x)xlP stP

= st + [s'(x) lPxP
Now, applying the same reasoning to s'(x) and containing in this way, we can write,

deg .r(x)

[s(x)lP = LAxip
i=O

So,

= [d'Ix~/,xiP]P
i=O

deg .I'(x)

= L stxip2

;=0

This calculation can be repeated for any times. So,

[

d"'(X) ]pm
[sex)]""' = ~SiXi

Thus the theorem is proved.

[From (3.18)]

[From (3.19)]

(3.19)

(3.20)

T"'eo,em 3.2.2.4 ,

. . . Ifj{x) .is the minimal polynomial over GF(q) of fJ, an element of GF(qm). The(j{~)
IS also the minImal polynomial of fRo . .~.J
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P,oof,
It is known that q is some power of p.
Therefore, from equation (3.18)

deg [(xl

[f(x)]q = "[J/x;q.
i=O

But in GF(q), all elements/i satisfY

f/-1 = 1
=:> f;q = f,

(3.21)

From (3.21)
deg j(x) .

[J(x)]" = L f;(xq)'
;=0

= f(xq)
ButfljJ) = 0, so [f(ft)]q =j{j!l) = O.Thus fJI is a zero off{x), i.e.f{x) is also the minimal polynomial of
fJI.

From the above theorem, iff{x) is the minimal polynomial of fl, it is also that of fJI. Here
fland fJI are called conjugates. So, two elements ofGF(qm) are said to be conjugates, if they share the
same minimal polynomial over GF(q). Similarly if f(x) is minimal polynomial of fJI, it is also that of
(Jil)q = fJI' and so forth. Thus fix) is the minimal polynomial of any element of the set

{fl,flq ,flq' ,. .. ,flq.''}, where r is the smallest integer such that fl q' = fl . But in

GF(qm)flq"' = fl q"'-l.fl = I.fl = fl , so r$ m. Obviously, r ~ 1. Ifr < I, then the power of fl, qr.l is
not an integer. Thus 1 $ r $ m. This above set is called a set of conjugates, because all elements of the
set are conjugates. So, a single element can have upto m conjugates. Thus

f(x) = (x- fl)(x- fl q)... (x- fl q"') (3.22)
So, if we can know a nonzero element fl in GF(qm), then we can easily calculate its minimal polynomial
fix) in GF(q).

From the above discussion, we can write, in short, to find the generator, polynomial, .g{;~:)
of primitive cyclic code _ ,"h'~'

(i) Find the nonzero elements ofGF(qm) by equation (3.12).
(ii) Among these elements, find the zeros of g(x) by theorem (3.2.2.2).
(iii) For each of these zeros, find the minimal polynomial.
(iv) g(x) = LCM of the above minimal polynomials.

. . 1
Now we want to find prime polynomials of equation (3.10) for not primitive cyclic cod~~
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For primitive cyclic codes, these prime polynomials can easily be found by finding

nonzero elements of GF(qm) from equation (3.12). In that case, n = qm_\. As a result, (x.
m

-

I -I) is

divisible by g(x), since g(x) divides (xn-I). But here n;< qm_\. So, if we can take n, q, m such that (xn-I)

divides (X."-I - I) then, the process to find g(x) of primitive cyclic codes can be applied to not primitive

cyclic codes. For this, the following theorem is helpful:

Theo,em 3.2.2.5 ,

Ifn and q are relatively prime, then (xn-I) divides (X."-I -I), for some m.

P,oof,
At first, we have to prove n divides qm_1 for some m. For this reason, we have to

write following (n+ I) equations:
q = Qln+SI

q2 = Q2n+S2
q3 = Q3n+S3

qn = Qnn+Sn

qn+1 = Qn+ln+Sn+1

Since in the above equations, q, q2, ..., qn+ Iare divided by n so all remainders are between 0 and n-\.
Because there are (n+ I) remainders, two must be same. let, Si and Sj be same and i < j. Then

qi - qi = nQj + Sj - nQi - Si
~ qi(qi-i -I) = n(Qj - Qi) [':Sj = SiJ

Because n is relatively prime to q, n must divide qi-i_\. Setting m =j - i, we get n divides (qm_I).

Now let qm-l = nb for some nonzero positive integer b. So,
."-1 b bx -I = xn -I= (xn) -I

= (xn_I)(xn(b-l) + xn(b-2) +...+ xn + I)

Therefore, (xn-I) divides x."-I-I.

So, for a (n, k) cyclic code in GF(q), if n, q are relatively prime then (xn-I) divides

(X."-I - I) . Since g(x) divides (xn-I), g(x) also divides x.
m

-
I -I.
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Before further proceeding, we have to know what the primitive element IS and its
property.

A primitive element field element of GF(q) is an element a such that every field element
except zero can be expressed as a power of a.

P,opedy 3.2.2.4,
Order of primitive element, a in GF(q) = (q-I).

P'oof,
The number c is called order of a if a c = I in GF(q). So, we have to prove

c = q-1. ,.,
In GF(q), There are q elements of which (q-I) nonzero elements. Since, these (q_l)

elements can be represented as a power of a (a, d, d,...), highest power of a to represent these
elements must be (q-I) and aq.1 = I, otherwise I is not in GF(q). So, C= q_1.

Now, let a be primitive in GF(qm), qm_1 = nb and 13 = a b. Then all zeros of g(x) are
restricted to powers of 13 for nonprimitive cyclic codes.

P,oof,

Since a is a primitive element ofGF(qm), so, order of a is (qm_ I)
"' 1i. e. a q - = 1.

Now, 13 (q"'-I)/h= (ah )'q"'-I)/h

= a q"'-I

=1

So, 13 is a zero of (x(qm-I)/h - I)polynomial. Hence minimal polynomial of 13 divides ()qm_I)/h -I) and
serves as a generator polynomial for some cyclic blocklength, n = (qm-I)/b. Since this generator

polynomial g(x) is a minimal polynomial of 13,from equation (3.22), g(x) = (x-f3 )(x-f3 q) ... (x _ 13q'-I)
for smallest r, for which 13 q' = 13in GF(qm). Similarly 13 i is a zero of (x(qm-I)/h - I) [l(q",-I)/h:; I=
h,(qm_I)/h ((q",_I))' .
a = a = ]I = I] for any i. Thus all zeros are restricted to the power of 13 .

In summary, if we use 13= a b in place of a and restrict zeros to powers of 13, then we
obtain a cyclic code of block length n = (qm-I)/b

From the above theorem, we can easily find g(x) of nonprimitive cyclic codes.
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3.2.3 : 'Parity eheck 'Polynomial:
From property (3.2.2.3) of generator polynomial xn-I = h(x)g(x), for some polynomial

hex). This hex) polynomial is called parity-check polynomial. Since deg g(x) = n-k, then deg hex) = n-(n-
k) = k. This parity-check polynomial has following property:

Property 3.2.3.1,
Each codeword e(x) satisfies

Rx"_1 [e(x)h(x)] = 0

Proof:
e(x)h(x) =m(x)g(x)h(x)

[e(x) = m(x)g(x)
m(x) =message polynomial
g(x) = generator polynomial]

= [g(x)h(x)]m(x)
= (xn-I)m(x) [':xn-I = g(x)h(x)]

R,'_I [e(x)h(x)] = Rx'_! [(xn-l)m(x)]

=0.

(3.23)

3.2.4 : ~yndrome 'Polynomial:
Syndrome polynomial is calculated to detect and correct errors in the received

word.

Let e(x) be transmitted codeword polynomial, vex) received codeword polynomial, e(x)
error polynomial. e(x) has nonzero coefficient in those locations where channel errors occur. Thus,

~=~+eW 0.2~
vex)= e(x) when e(x) = 0, i.e. there is no error in transmitting messages.

Syndrome polynomial, sex) is defined as the remainder of vex) divided by the generator
polynomial, g(x), i.e. .

sex)= Rg(x)[v(x)]
So, sex) has degree less than deg g(x). That is

deg sex)= deg g(x) - I
= n-k-l

The syndrome polynomial, sex) has the following properties:

(3.25)

Property 3.2.4.1 :
sex) depends only on error polynomial, e(x) not on codeword polynomial, e(x) or

on message polynomial, m(x).

"
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P,oof,
From equation (3.25) s(x) = Rg(x)[v(x)]

= Rg(x)[e(x) + e(x)] [From equation(3.24)
v(x) = e(x) + e(x)]

= Rg(x)[e(x)] + Rg(x)[e(x)]
= 0 + Rg(x)[e(x)]

[":e(x) = g(x)m(x)]

= Rg(x)[e(x)].
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P,opedy 3.2.4.2 ,
Let d* be the minimum distance of a cyclic code 1;. Every error polynomial of

weight less than Y, d* has a unique syndrome polynomial.

P,oof,
Suppose eJ (x) and e2(x) each have weight less than Y, d* and the same syndrome

polynomial. Then
el (x) = QI (x)g(x) + S(x)
e2(x) = Q2(x)g(x) + S(x)

and
el (x) - e2(x) = [QI (x)-Q2(x)]g(x)

But by assumption, el (x) and e2(x) each have weight less than Y, dO, and thus the difference has weight
less than dO, the minimum weight of the code. Hence the right side is zero, and el(x) equals e2(x). This

proves the property.

To detect and correct errors in the received polynomial, a table is constructed. If the
number of entries is not too large, this table can be realized in a memory or in a combinational logic
circuit. For each correctable error, there is a syndrome in the table as shown in the following figure:

..
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e(x) S(x)

I R'(X)[I]
x R.(x)[x]...;io

• R.(~)[~i]

I+x R.(x)[1 + x]

1';'/ R~(x)[I+~i]

This table is called the syndrome evaluator table. When a codeword, v(x) is received, then syndrome
polynomial, s(x) is calculated by

s(x) = Rg(x) [v(x)]
If s(x) = 0, then there is no error. Otherwise, the error can easily be detected from syndrome evaluator
table. Since each s(x) has its associated entry of e(x) in the syndrome evaluator table.
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~ l.3: MATRIX R£PR£5£NTATlON Of CYCLICCOD£5:
Here derivation of generator matrix and parity-check matrix from the respective

polynomials have been discussed. These matrices are often helpful in describing some cyclic codes.

In a (n, k) cyclic code, generator matrix is a k by n matrix and parity-check matrix is a (n-
k) by n matrix. At first, we want to generate generator matrix from generator polynomial.

3.3.1 : Generator 'Matrix Generation:
Let, the generator polynomial,

g(x) = gn_kxn-k + gn_k_lXn-k-! +...+ go

Then the generator matrix
rx'-Ig(x)l
I :

G'= x'g(x)
xg(x)
g(x)

kth column
J.l

000

[':degg(x) = n-k]

= 0 gll-k g,,-k-I

0 0 gil-I< g,,-k-I
0 0 0 gn-I< gn-k-l

"

go 0 0 k

gl go 0
g, gl go_

(3.26)

We know, codeword matrix =message matrix x generator matrix.
=> C=MG'

But the codeword is not systematic when generator matrix of equation (3.26) is used to generate the
codeword. Because in this codeword first k bits does not represent message bits and remaining (n-k) bits
does not represent parity bits. For this purpose, generator matrix would be following form :

G= [Ikl P]
Where Ik = k by k identity matrix.

P = k by (n-k) parity matrix.
To derive this generator matrix, G, we have to follow these steps:

1. Use g(x) as the kth row.
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2. To generate the (k-I)th row, cyclically shift the kth row one coluinn to the left. This
corresponds of course to the operation x.g(x). But the kth column from left entry must be zero to have the
systematic form. If this entry is nonzero, make it zero by linear combination with kth row (g(x)).

3. To generate the (k-2)th row repeat the same process: shift the (k-I )st row entries one
column to the left, make linear combination with g(x) if the kth column entry is not zero. Repeat this for

all other rows.

So, it is apparent that the matrix, G is obtained from the 'matrix G' by elementary row
operations. As a result the codeword does not change, but it simply reorders the codeword elements.
Now we want to generate parity check matrix.

3.3.2 : 'Parity eheck 'Matrix Generation:
From linear block codes, we know that parity check matrix,

H= [pTi In-kl
Where In-k = (n-k) by (n-k) identity matrix.

pT = transpose matrix of matrix P.
= (n-k) by k matrix.

From this equation, H can easily be derived from G. But here we want to generate parity check matrix
from parity check polynomial.

Let parity check polynomial,

hex) = hkXk + hk_lXk-1 + ...+ho

Hence parity check matrix,

[.: deg hex) = kl

Ix"-'h(x-') l
x"-'h(x-')

H' = x"-3h(x-l
)

lX'h~X-l) J
(k+ I)th column

U
ho hi h, h, 0 0 0

0 ho hi h,_, h, 0 0

0 0 ho h,_, h,_, h, 0 (n-k)

0 0 0 h,

"

" '.

. (3.27)
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Here is also H' is not systematic form. To generate systematic form of parity check matrix, H, we have to

follow these steps:
1. Use xn-Ih(x-I) as the 1st row.
2. To generate 2nd row, cyclically shift the first row one column to the right. This

corresponds, of course, to the operation xn-2h(x-I). But the (k+ I)th column from left entry must be zero,
to have the systematic form. If the entry is not zero, make a linear combination of the first row to it.

3. To generate 3rd row, repeat the same process: Shift the 2nd row entries one column to
the right. Make a linear combination with hex) if (k+l)th column entry is not zero. Repeat this process

for all other rows.

Now an example is given to generate G and H from g(x) and hex) respectively to clarify
the above process. Let, we want to generate G and H of an (7, 4) cyclic code in GF(2). We know that

x 7-I = g(x )h(x) for (7, 4) cyclic code.

Now, factoring (x7-I) into irreducible polynomials:
x7-1 = (1+x)(1+x2+x3)(I+x+x3)

Since deg g(x) = n-k = 7-4 = 3

Let g(x) = 1+x+x3

So, hex) = (I +x)(1 +x2+x3)
= l+x+x2+x4

Here deg hex) = 4 = k as it would be.

At first, we want to generate G,

I
fx[x' g(x) + g(x)] + g(X)jl

G= x'g(x)+g(x)
xg(x)

g(x)

r """:::J

•• ,I

o 11

: ~j
[':replacing x by I and blank by 0)

Here G = [Ik I P), where



[

I I

= 0 I
I I

CyeUoc~

II 0 11
p=l~ ~ ~\old

So, Hwould be, H= [pTi In-kJ

[

I I I 0 I 0 O~]= 0 I I 101
I 101 0 0

Now we want to calculate H from hex).

H =[ :::~:~:~ ]
x'h(x-') + x'h(x-')

=[xx~ :: :: Xl x

2

X =1]
X' - Xl

[replacing X by I and blank by OJ

Here H = [pT I In-kJ as would be desired, i.e. it is same as equation (3.28).

88

(3.28)

(3.29)
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9 l.4 : CYCLICCODES fOR CORRECTING SINGLE ERRORS:
We know that minimum distance;:: 2xerror +1. So, to correct one error, the minimum

distance must be at least = 2x I+I = 3.

The following theorem is helpful to find single error correcting (n, k) cyclic code over

GF(q).

Theo,em 3.4.6 ,
The (n, k) cyclic code over GF(q) with parity-check matrix H = [

pO, pi, ...,pn-I] where p= all-I, ais primitive in GF(qm) and blocklength, n = (qm_I)/
(q-l), has minimum distance at least 3 iffm and q-I are relatively prime.

P,oof,
Suppose two columns of h are linearly dependent, then pi = yp} where y is an

. element ofGF(q). Thus pi-} (=y) is an element ofGF(q). From equation (3.12), pi-} is a zero ofx<I-1 -I.

Every nonzero element of GF(q) and GF(qm) can be expressed as powers of a, the

primitive element of GF(qm). Again elements of GF(qm) are derived from m combinations of q elements

of GF(q). As a is the primitive element of GF(qm), aq"'-I = I and if a' is the primitive element of
GF(q) then (a' )q-' = I. Thus elements of GF(q) can be expressed as the first (q-I) powers of

a(q"'-I)I(q-l) .

So, P i-j = (a(q "'-I)I(q-I»)' = ank for some k. (3.30)

[':n = (qm_I)/(q_I)]
In our assumption i ;rj, so fJ i-j 7' pO = I. Therefore, k < q- I, otherwise if k = q- I, then

p i-j = (a(q",-I)I(q-I»)'

= (a(q "'-I)I(q-l)fq-I)
= aq"'-l

=1.
But pi-j 7' I in our assumption. So k < (q-I). From (3.30),

pi-j = ank

~ aCq-I)(i-j) = ank

~ (q-I)(i-j) = nk
Because k< (q-I), n> (i-j). Now

(q-I )(i-j) = nk
. ~ (i-j) = nk/(q-I)

,. ,'., ..,
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So, (i-j) has a solution iff nand (q-l) are not relatively prime. That is, H cannot have two linearly

dependent columns iffn and (q-l) are relatively prime.

We have seen in linear block codes, that a code has minimum distance not smaller than w
iff every set of(w-l) columns of H is linearly independent. Thus the given cyclic code has minimum

distance at least 3 iffn and (q-l) are relatively prime.
Now, n = (qm_l)/(q-l)

= (q_l)(qm-l+qm-2+ ...+1)/(q-l)
:. n=qm-l+qm-2+ ...+1 (3.31)

Again
qm-j -1 = (q_l)(q(mj)-I+q(mj)-2+ ...+l) for integerj.

=> qm-j -1 = (q-l)Sj [Letting Sj = q(m-j)-I+q(m-j)-2+ ...+1]

=> qmj = (q-l)Sj+ 1
1/1 III=> Lq(m-il = L[(q -1)S; + 1] [Taking sum overj from 1 to m]

j=\ )=\
m 11/

=> q(m-l)+q(m-2)+ ...+1 = (q-l) LSJ + Ll
;=:1 ]=1

, '
n=a[(q-l) S+m'] [m=am' and q-l =a(q-l)] (3.33)

Thus n must be divided by a. Since n and (q-l) are relatively prime, equation (3.33) is not possible. So,
m and (q-l) are also relatively prime.

m
=> n = (q-l) LS; +m [.: from equation (3.31)]

j=1

=>n=(q-l)S+m [LeUings=ts;] (3.32)

Now let m and (q-l) are not relatively prime but nand (q-l) are relatively prime and let a is a common
factor of m and (q-l). Therefore, from (3.32),

Similarly it can be proved that ifn and (q-l) are relatively prime then m and (q-l) are also
relatively prime. Thus nand (q-l) are relatively prime iffm and (q-l) are relatively prime.

Now we want to give an example to build a single error correcting code (Hamming code)

over GF(2) to clarify the above discussion. Let a be primitive element in GF(23) or GF(8). Then m = 3,
n = (23-1)/(2-1) = 7 and k = n - m = 7 - 3 = 4. Here m = 3 and (q-l) = 1 are relatively prime. Thus (7, 4)
hamming code is a single error correcting cyclic code over GF(2).

"I\J
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9 3.5 : CYCLIC CODES fOR CORRECTING DOV\llE ERRORS:
For double error correcting cyclic codes, over GF(q), let a generator polynomial having a

and a3 as zeros, where a is primitive element in GF(qm). We exhibit here a decoding procedure that
.corrects all single and double error. We have considered double-error-correcting code over GF(2) for

simplicity.

(3.3 7)

(3.36)

Then 81 = yea) = m(a)g(a)+e(a)
= m(a)xO + e(a) [from (3.35)]
= e(a)
= ai+ a;"

and 83 = v(a3) = m(a3)g( a3) + e(a3)

= v( a3)xO + e( a3)
= e(a3)
= a3i +a 3;'

let vex) be received codeword polynomial, m(x) be message polynomial, g(x) be generator

polynomial, e(x) be error polynomial. Then
vex) = m(x)g(x) + e(x) (3.34)

: here g(x) is the smallest degree polynomial in GF(2) with a and a3 as zeros in GF(2
m
). So

g(a) = g(a3) = 0 (3.35)
Since we are considering double error-correcting codes,

e(x) = 0 or xi or xi+ x;' for no, one or two errors respectively. The integers i and i' index

the location in which errors occur. Let the syndromes, 81 = v(a) and 83 =

v(a3).

In equation (3.36) and (3.37) ai, a;', a3i and a 3;' all elements in GF(2m). These are

called error location numbers. Let XI = ai and X2 = a;'. Here we have not considered burst errors but
only two consecutive errors. Also we have not considered cyclic errors, so i 0# i' and i, i' < n. Thus Xl
and X2 are unique. Here Xl =X2 = 0 for no error, X2 = 0 for one error and XI 0# X2 for two errors. From

equation (3.36) and (3.37)
81 =XI+X2

83 =XI3+X23

81 equals zero iff no error occurs. So, the decoder needs to proceed only if 81 is not zero. If the above
pair of nonlinear equations can be solved uniquely for XI and X2, the tw().errors can be corrected.

To solve these equations, a new polynomial in GF(2) is defined to have the error-location

numbers as zeros as :
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(x + XI)(x + X2) = x2 + (XI + X2)x + XIX2 (3.38)

But SI3 + S3 = (XI + X2)3 + (XI3+X23)

=X13 +3X12X2 +3XIX22+X23 +X13 +X23

= (XI 3 +X13) + (X12X2 + X12X2) +XI2X2 + (XIX22 + XIX22) + XIX22 +

(X23 +X23)

= XI2X2 +XIX22 [In GF(2), a + a = 0]

= XIX2(XI +X2)

=XIX2S1 [SI =XI +X2]

:.XIX2 = (S13 + S3)/SI (3.39)
Thus equation (3.38) becomes

(x +XI)(x + X2) = x2 + Slx+ (S13 + S3)/SI (3.40)
We know this equation because we know SI, S3 directly from equations(3.36) and (3.37). Thus roots of
equation (3.40) i.e. XI and X2 are easily found. Therefore the code is a double error correcting code.
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!i 3.6 : CYCLIC CODES FOR CORRECTING BVRST ERRORS:
(n, k) cyclic codes over GF(q) are designed to correct any random pattern of burst errors.

A burst of length 1 is defined to be a set of 1GF(q) elements, the first and the last of which are nonzero
elements of GF(q). That is, burst error of length 1has first and last (I-th) positions are in error with the
(t-2) positions between either in errors or correct.

A I-error-correcting (n, k) cyclic code has the following bounds:

Bo",,,d 3.6.1 ,
The t-error correcting cyclic code cannot have a burst of length 21 or less as a

codeword.

Proof,
From linear block code, minimum distance <': 2t+ I. Since codelength must be at

least equal to its minimum distance, the code cannot have a burst length 21or less as a codeword.

Bo",,,d 3.6.2,
The cyclic code in GF(q) must have at least 21parity symbols.(Rieger bound).

Proof,
Suppose the code corrects all burst of length 1 or less. Then there is no codeword

that is a burst of length 21(from bound 3.6.1). Now if two vectors are in the same coset, then their
difference is a codeword. Choose any two vectors that are zero except in their first 21 components. If
these are in the same coset of the standard array, then their difference is a codeword; it is burst oflength
21, and we have seen there are no such codewords. Therefore two such vectors must be in different
cosets, and the number of cosets is at least as large as the number of such vectors. There are q21 vectors
that are zero except in their first 21 components; hence there are at least q21 cosets. But we know there
are qP,ntY'ymbol, cosets in the standard array(from linear block code). Hence at least 21parity symbols.

Cyclic codes can also correct cyclic burst errors. A cyclic burst of length t is a vector
whose nonzero components are among 1 (cyclically) successive components, the first and the last of
which are nonzero. In this case, the following bound can be obtained:

Bo",,,d 3.6.3,
The parity symbols of the cyclic codes in GF(q) must be at least

(t-I+logqn).

Proof,
The 1 error correcting (n, k) cyclic code has to correct ql-I (1-1(starting

position))different bursts starting on a given position. These burst can start at any position of the
blocklength n. Thus, the code has to correct nql-I burst errors.
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But there are qn-k co sets of the cyclic code(from linear block code). So, the code can

correct at most qn-k errors. Then
qn-k ~ nql-I

~ (n - k) ~ logqn + t - I
Since (n - k) is the number of parity symbols of the (n, k) cyclic code, this bound is proved.

From bound (3.6.3), we can easily determine the capability of the burst correcting cyclic
code. for example, let a (7,3) cyclic code over GF(2). Then n = 7, k = 3 and q = 2. So,

7 - 3 ~ log27 + t - I
~ 4 ~ 2.8 + t-I
~ 4 ~ 1.8 + t
~ t $2.2

Thus t = 2 i.e. the (7, 3) cyclic code can correct burst oflength 2 or less.

Now let we have already a t error correcting (n, k) cyclicl code of generator polynomial
g(x). Then we can get jt burst correcting (jn, jk) cyclic code of generator polynomial g(xi) by the
technique of interleaving.

P,oof:
Since g(x) divides (xn-I) [from property (3.2.2.3)], then g(xi) divides (xl?i-I) and

thereby generates a codeword of length jn. Again deg g(xi) is j times larger than deg g(x), so the code
hasjk information symbols. [deg g(xi) =j x deg g(x). ~ jn - k' =j(n-k). ~ k' =jk] Thus g(xi) generates
(jn,jk) cyclic codes.

Now consider aj by n array in which each row is an n element cyclic codeword generated
by g(x). The array can be shifted so that the ith element in the kth row replace the ith element in the
(k+I)th row if k <j and in the first row if k = j. Thus the whole array can be considered as a (jn, jk)
cyclic codeword generated by g(xi). Since each row is a (n, k) cyclic code with the t burst correcting
ability, the whole array is ajt burst correcting (jn,jk) cyclic code with the generator polynomial g(xi).

Thus we can easily construct longer burst correcting cyclic code from shorter burst
correcting cyclic code by interleaving. . '

Now let us to clarify the interleaving technique. To form a (jn, jk) codeword from (n, k)
codeword, we have to take j (n, k) codewords. Let these are

CI (x) = ml (x)g(x)
C2(x) = m2(x)g(x)



CycUv-C~ 95

C/x) = Irlj(x)g(x)
To form interleaved codeword, the symbols of each of these codewords are spread out with (i-I) zeros
inserted after every symbol. These codewords are added to form interleaved codeword, i.e.

C(x) = CI (xi) + xC2(xi) + ...+ xi-IC/xi)

=mI (xi)g(xi) + xm2(xi)g(xi) +...+ xi-I mlxi)g(xi)

= [ml (xi) + xm2(xi) +...+ xi-Imlxi)]g(xi) (3.41)
This bracketed term is the interleaved message and can be replaced by m(x). So from equation (3.41)

C(x) =m(x)g(xi)

Burst correcting cyclic codes can be constructed analytically. The fire codes are a class of
such codes. Fire codes are defined as follows:

3.6.1 : 'Fire €ode :
A fire code is a cyclic burst correcting code over GF(q) with generator polynomial g(x) =

(x21-1_I)p(x), where p(x) is a prime polynomial over GF(q) whose degree m is not smaller than 1and p(x)
does not divide x21-LI.The blocklength of the Fire code is the smallest integer n such that g(x) divides
xn-I. Here n = e(21-1), where e is the smallest integer such that p(x) divides xe-I.

f.-.
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!i 3.7: SOME IMPORTANT CYCLICCODES:
3.7.1 : The 'Binary Golay eorle :

The binary Golay code is a (23, 12) binary cyclic code over GF(2). This Golay code is
generated either by the polynomial:

g(x) = x II + xl 0 + x6 + x5 + x4 + x2 + I
or by the polynomial:

g(x) = xII + x9 + x7 + x6 + x5+ x + I

These above two polynomials are reciprocal to each other. That is g(x)= xllg(x-I) and g(x) =

xII g( X-I ) From property (3.2.2.3) of generator polynomial, we can write

x23_1 = a(x)g(x)
andx23-1 = b(x)g(x)

for some a(x) and b(x). If can be proved that a(x) = (x-I) g( x) and b(x) = (x-I )g(x) i.e.
x23_1 = (x-I)g(x)g(x) over GF(2) (3.42)

P.oof,
R.H.S.

(x-I)g(x)g(x)= (x-I)(xll + xlO + x6 + x5 + x4 + x2 + I)

(xII +x9+x7 +x6+x5+x+ I)
= (x_I)(x22 + x20 + xl8 + xl7 + xl6 + x12 +xll +

x21 +xI9+xI7 +xI6+xI5 +xll + xlO+
xl7 +xI5+x13 +x12 +xll +x7 +x6+
xI6+xI4+xI2+xll +xlO+x6+x5+
xl5 +x13 +xll +xIO+x9+x5 +x4+
x13+xll +x9+x8+x7+x3+x2+
xII +x9+x7 +x6+x5 +x+ I).

= (x_I)(x22 + x21 + x20 + xl9 + xl8 + xl7 +
x 16 + x 15 + x 14 + x 13+ x 12 + x II +

. ,
xlO +x9 + x8+ x7 + x6 +x5 +
x4 + x3+ x2 + x + I)

= (x23 +x22 + x21 +x20 + xl9 +x18 + xl7 +
xI6+xI5+xI4+xI3+xI2+xll +

xlO + x9 + x8+ x7 + x6 + x5 +
x4+x3+x2+x)-
(x22 +x2l + x20 +x19 + xl8 +x17 +
xI6+xI5+xI4+xl3+xI2+xll +
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xlO + x9 + x8+ x7 + x6 + xS +
x4 + x3+ x2 + x + I)

= x23 - 1= L. H. S.

This binary (23, 12) Golay code has following property:

Peopedy 3.7.1.1,
Minimum weight of the binary Golay code is at least 7.

97

Peoof:
To prove this, we have to find the zeros of g(x) and g(x) in a suitable extension

field of GF(2). We have already prove that ifGF(2m) is an extension field. of GF(2) and if a be primitive
in GF(2m) and if2m-1 = nb and if p= a b, then all the zeros of the generator polynomial are restricted to
powers ofp.

Let the GF(211) be the extension field of GF(2). Let a be primitive in GF(211) and 211_1
= 2047 = 23 x 89, where n = 23 and b = 89. Thus if P = a 89, then all the zeros of the generator

polynomial are restricted to powers of p and p has order 23, because p 23 = a 89x23 = a 2"-1 =1.

Similarly p -I has also order 23. Let g(x) andg(x) have zeros of power p and p -I respectively. That is,

g(x) and g(x) are minimal polynomial of pand p-I respectively. So, from equation (3.22) we can write,

g(x) = (x- fJJ(x- P2) ... (X _ p2'.')
and

it (x) = (x- p.I)(X- p.') ... (x _ p-2")
Since p and pi has degree 23, the set of conjugates are

B= {p2mmod23}

and
Jj = {p.,m mod23} for some m.

That is, B = {P, p2, p', p', P 16,r,pi', P 13,p3, p6, p12}
and Jj = {p-',p.2,p",p.',p.16,p.',p.18,p.13,p.3,p.6,p.12}
Thus Band Jj are the sets of zeros of g(x) and it (x). Since B contains consecutive four roots 0, from
property of cyclic codes, its minimum distance is greater than 4.
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(3.43)

Now let c(x) = a(x) g(x) be a binary Golay code, whose weight w is even. So, c(x) =
22

Ic;x; where even number of Ci are equal to I. Then c(l) = 1+1+ ... even number Is = O. Thus I is a
;=0

zero of c(x) i.e. (x-I) divides c(x). We have seen that g(x) has weight 7, an odd number, thus g(l) *- 0, i.e.
(x-I) does not divide g(x). So, c(x) = b(x)(x-l) g(x) for some b(x), that is not divided by (x-I). Now the
reciprocal codeword polynomial is,

c(x) = a(x) g(x)
22-" ;- LJC22_;X
;=0

22

= X
22Icjx-i

;",,0

Therefore, c(x) c(x)= b(x)(x-l)g(x) a(x) g(x)
= b(x) a(x)(x-I)g(x) g(x)
= b(x) a(x) (x"-I) [from equation (3.46)]

Again c(x) c(x) = (~c;X;)(~C22_JXJ)

22 22

= I Ie;C22_j xi
+)

)=0 ;=0

44 22

= I Ic;C22_(H) xk

k =0 ;",0

44 22
= IIc;C22+i_jX.i

i=O ;=0

[Putting k = i+j]

[Puttingj = k]

21 22 22 22 44 22

= IIc;C22+i_jXi + IIc;C22+i_jXi + IIc;C22+i_jXi
)=-0 ;=0 )=22 ;=0 j==B ;=0

21 22 22 44 22

= ILCjC22+i_jXJ + LC;C22+i_22X22 + LLCjC2Z+i_jXJ
I=O ;=0 ;=0 )=23 ;=0

21 21 22 44 22

_"" J+'" 22 +"" J- LJLJC;C22+i_jX LJC; X LJLJCjC22+i-jX
)=0 ;=0 ;=0 )=23 ;=0

(3.44)

But over GF(2) c;' = Ci.. Because if ci = 0 then c;' = 0 = Ci. and if ci = I then c; = I = Ci.. So, middle
term of equation (3.44)

22 22ICj

1
X
22 =x22LCj

;=0 ;=0

= 0 [':Even number ofCi.'S are equal to one]
For Ci., i is between 0 and 22. In third term of equation (3.44), if we take the limit of i from -a to a for
simplicity, where Ci- = 0 for i < 0 and i> 22. Thus equation (3.44) can be written as
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2[ 22 44 a

C(X) C(X) = LLC;C22+;_;X; + L LC;C22+;_;X;
)=0 ;",0 )=23 i==-a

Substituting i' = i+22-j in second term and }' =} in both terms.
21 22 44 a

c(x) C(X)= LLC;C22+;_j'X;' + L LC;'+i'_22C;,Xj'
.i'=O;=0 )'=23 ;'=-a

Substituting} = j' +I in first term and i = i' and} = }' -22 in second term
2222 22a

C(X) C(X) = LLC;C21+;_;X;-1 + L LC;+;C;X;+22
(,:1 ;=0 )=1 ;=-a

99

(3.45)
From equation (3.43) C(X) c(x) is a multiple of(x21_1). So,

22

L[C;C2l+;_; + c;c;+;] = 0 for} = 1,2, ...,22
;=0
22

=> LC;[C2l+i-; + C;+;]= 0 for} = 1,2, ...,22
i=O

This equation holds under modulo-2 addition. Hence evaluating the left hand side under normal integer
addition, must give an even number. So,

22

L C;[c,,+;_; + C;+i]= 2a} for} = I, 2, ..., 22 and for some aj-
;=0

(3.46)
Replacing} by 23-j,

, ,

22

LC;[c2l+;_; +C;+i]= 2a"j
;=0

Equating equation (3.46) and equation (3.47), a} = a"j . Therefore
22 22 22
LLc;(C2J+;-J + C;+i)= 2 La;
j=l i=O )=1

II 22

=2La;+2La;
)=1 )=12

II 22

=2LQi+2La,,-; [':a} =a"jJ
)=1 j=12

11 11

= 2" a +2" a
LJ.I L..Ji
»=1 )=1

11

= 4La;
)=1

(3.47)
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= 4a for some a
Now let j' = 23-j in the first term and i =i' -j in the second term. Then

22 22 22 22

LLC,C,+/ + LLC"C,.-.i =4a
;'=1 i=O )=1 ;'=0

22 22

~ LLc,[C'+i + C'-.i]= 4a
j=\ ;=0

22 22

~ LLC,[C'+i +C'-.i]= 4a
j",O j=l

22~ LLC,C; = 4a forj = 1,2, ...,44
;=0 I#i

~ (fc,)(~c;) = 4a
1=0 )'1-1

100

(3.48)

Let binary nonzero component, Ci is nonzero in w places. So weight of the code, c(x), w.
22

Then in normal integer addition LC, = wand LC.i = I less than the number of nonzero component, w
;=0 j#

= (w-I). Therefore from equation (3.48), w(w-I) = 4a. So, w is a multiple of 4. Thus every Golay
codeword of even weight must be divisible by 4. Therefore, weight of the nonzero Golay codeword
cannot be 1,2,3,4,6,10,14,18 or 22.

There exists a Golay codeword with all ones, because from equation (3.42),
(x-I )g(x) g (x) = x2)_1

22

= (x-I) LX'
22

~g(x)g(x)= LX'
;=0

Thus g(x) g (x) is a codeword with all ones. It's weight is 23. If all ones codeword is added to another
codeword of weight w then another codeword results with weight (23-w). Therefore the weight of the
Golay codeword cannot be (23-2) = 21, (23-3) = 20, (23-4) = 19, (23-6) = 17,
(23-10) = 13, (23-14) = 9 or (23-18) = 5.

Thus the weight of the nonzero Golay codeword may be 7, 8, II, 12, IS or 16. Therefore,
minimum weight of the nonzero Golay code is 7.

From equation d 2: 2/ + I, where d = minimum distance of a code and / = number of
errors that can be corrected, the Golay code corrects 3(7 2: 21+1 ~ /::; 3) or less error. So, the (23, 12)
Golay code is a 3 error correcting code.



n= 2m_I
k~ n-mt
dmin~2t+1

,
i.t,
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P,oof, .
A perfect code satisfies the Hamming bound

q".k ~ 1+(~) (q_I)+ (;) (q_I)2+ ...+(;) (q-I)' with equality. Now for 3 error correcting binary

Golay code, q = 2, n = 23, k = 12, t = 3. Then 223
-
12 = 211 = 2048 and

1+(2n+G3)+G3) =2048

Thus the Golay code satisfies the Hamming bound with equality. Therefore the Golay code is a perfect

code.

3,7.2: 'Bose- €haudhuri-'Hocquenghem ('B€'H) €odes

BCH codes are another important group of codes. They belong to the family of cyclic
codes with a wide variety of parameters. The most common BCH codes are characterized as follows.
Specifically, for any positive integers m (equal to or greater than 3) and t[less than (2m_I)/2] there exists
a binary BCH code with the following parameters:

Block length:
I Number of message bits:
Minimum distance:

Each BCH code is a t error correcting code in that it can detect and correct up to t
random errors per codeword.

BCH codes offer flexibility in the choice of code parameters, namely, block length and
code rate. Furthermore, at block lengths of a few hundred or less, the BCH codes are among the
best known codes of the same block length and code rate. The following table shows some BCH
code parameters.

II k t Gellerato/" Po(rnolllial
7
15
15
31

4
II
7
26

I
I
2
I

1011
10011

111010001 .•
100101

Therefore, a (15,7) BCH code will have generator polynomial g(x) = De+ D7+ D6+ D4+1.
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Proof,
A perfect code satisfies the Hamming bound

qn-k 2: I+(~) (q_I)+ (~) (Q_I)2+...+(;) (q-I)' with equality. Now for 3 error correcting binary

Golay code, q = 2, n = 23, k = 12, t = 3. Then 223-12=il = 2048 and

1+(2n +G3) +G3) =2048

Thus the Golay code satisfies the Hamming bound with equality. Therefore the Golay code is a perfect
code.

3.7.2: 'Bose- ehaudhuri-'Hocquenghem ('Be'll) eodes

BCH codes are another important group of codes. They belong to the family of cyclic
codes with a wide variety of parameters. The most common BCH codes are characterized as follows.
Specifically, for any positive integers m (equal to or greater than 3) and t [less than (2m_I)/2] there exists
a binary BCH code with the following parameters:

Block length:
I Number of message bits:
Minimum distance:

Each BCH code is a t error correcting code in that it can detect and correct up to t
random errors per codeword.

BCH codes offer flexibility in the choice of code parameters, namely, block length and
code rate. Furthermore, at block lengths of a few hundred or less, the BCH codes are among the
best known codes of the same block length and code rate. The following table shows some BCH
code parameters.

II k t Gellerlltor PO(l'lIolllilll

7
15
15
31

4
II
7
26

I
I
2
I

1011
10011

111010001
100101

k-.,
Therefore, a (15,7) BCH code will have generator polynomial g(x) = DB+ D7+ D6+ D4t'{"~
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S 4.1 : INmODVCTJON :
The convolutional coder consists of a k - stage shift register. Input data bits are shifted along the

register one bit at a time . The constraint length of a convolutional coder , expressed in terms of
message bits, is defined as the number of shifts over which a single message bit can influence the
encoder output. In an encoder with M-stage shift register , the memory of the encoder equals M
message bits, and k = M+ I shifts are required for a message bit to enter the shift register and finally
come out, so over k shifts the output is influenced by that message bit. Hence the constraint length of
the encoder is k . Modulo - 2 sums of the contents of the shift register stages are shifted out at a rate v
times as fast. There are thus v bit out for every bit in . (In a symbol encoder, v symbols are shifted out
for every symbol in ) . An R bit/s input data stream thus gives rise to an Rv bit/s coded output stream.
A coder outputting v bits for every bit in is called a rate l/v coder.

An example of a k =3 ,v =2 convolutional coder appears in the figure given below.

Output

2

Input Data

Figure 4.1 : Figure of an k =3 ,v =2 convolutional encoder

Calling the data bits in each of the three stages dl, d2, d3 with the output coded bits labeled CI

and C2 corresponds to the two output bits, we have

CI = dl tfJ d2 (fJ d3

C2 = dl (fJ d3

The coding is carried out continuously, on all data bits as they are shifted through the register.
An equivalent encoder ( produces the same output sequence when the input sequence is the same) of
the above encoder with smaller number of states is given in figure 4.2 :
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Output

2

Input Data

Figure 4.2 : An k =3 ,v =2 convolutional coder in minimized form

Because the above encoder is equivalent to a four state machine, the trellis diagram has only
four horizontal line sections and the tree diagram has just four distinguishable nodes from the third level
on (detail explanation is given later) .

More generally, a constraint-length k , rate -lIv coder would have its output (coded) bits
appearing in the form

CI = hll dl$ h12d2$ $ hlkdk
C2= h21 dl$ hnd2$ $ h2kdk

The hij 's are I or 0 , depending on whether a connection is made or not. The convolution of F

*G of the functions F(t) and G(t) is defined as the function F(t) * G(t) =! F( r )G(t - r )dr , also
convolution in time domain is equivalent to multiplication in frequency domain. The v encoded bits (or
symbols in a more general encoder ) are outputted sequentially after each input shift. This form
represents a modulo 2 convolution of the input data bits with the hij 's , so the name convolutional
encoder or convolutional coder , and the code is called convolution code.

If g J(D) ~ which stages are connected to adder j then for convolutional coder of 4.I(a)
generator polynomial gl(D) = I+D+D2, l(D) = I+D2

. For message sequence (10011) , we have
polynomial representation m(D) = 1+D3 +D4

. D means delay due to memory stage.
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With Fourier transformation, convolution in time domain is equivalent to multiplication in D
domain. The output polynomial of path I is given by

c1(D) = fg( r )m( t - ddT (convolution in time domain)
= gl(D).m(D) , (multiplication in D domain)
= (I+D+D2)( 1+D3 +D4)

= l+D+D2 +d +D6

From this, the output sequence for path 1 is immediately deduced as (1111001).

Similarly the output polynomial of path 2 is

c2(D) = l(D).m(D) ,
= (I +D2)( l+d +D4)

= 1+D2 +D3 +D4+ DS +D6 .

'~I"

The output sequence of path 2 is therefore (1011111), finally multiplexing the two output
sequences of path 1 and 2 , we get the encoded sequence c = (11, I0, 11,11,01,01,11).

To produce the same encoded sequence for same code using generator matrix representation we
have to collect connection vector for each stage to all adder.

gl = vectors representing adders connected to stage 0 (current information bit).
g2 = vectors representing adders connected to stage 1.

And so on
:. gl = [1 1]

= [coefficient of DO for adder 1 coefficient of DO for adder 2 ]

g2=[1 0]
= [coefficient of D for adder 1

g3=[1 1]
= [coefficient of D2 for adder 1

coefficient of D for adder 2 ]

coefficient of D2 for adder 2 ]

Considering shifting over time the second row of the generator matrix would be the shifted
form of the first row of the generator matrix by one time unit, the third row would be the shifted form of
the first row by two time units.



g, g, g, l
I

generator matrix G= g, g, g) I
g, g, gJ I

g, g, gJ I
g,Jg, g,

The unspecified elements are all zero vector of size 1x2

11 10 II 00 00 00 00100 11 10 II 00 00 00
00 00 11 10 11 00 00=
00 00 00 II 10 11 ooJ
00 00 00 00 II 10 11

:. m(D).G= (11,10,11,11,01,01,11)

105
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!i 4.2 : CONCEPTS ADOVT CONVOlVTIONAl CODE:
4.2.1 : Truncation:

Though the main information sequence may be arbitrarily long, actually, even during
convolutional coding very long information sequence is segmented into blocks. This process is called
truncation. And each block size is called the dividing length ( L ).

4.2.2 : Tail 'Bits:
After getting the last information bit of a message block and encoding in the presence of

it, we get v channel or encoded bits. Ifwe stop at this point only v output bits (bits on one code branch
on the tree representation. Tree is discussed later) are affected. But each of all other information bits of
a information block or message block affects lev output bits. So, to treat the last bit of an information
vector like other bits of the information vector, (constraint length -1) that is k-I additional known bits
(usually O's ) should be appended to the information sequence and then to be encoded. This bits are
called tail bits.

4.2.3 :'WhYcAll ~ero 'Path 'Is eonsideredcAs Transmitted (9r 'Reference codeword 'During
cAny ealculation :

If all paths are equally likely, any path may be chosen as the correct one and the
probability of deviating from it is the probability of error. For simplicity and without loss of generality,
let this path is the all zero path.

j-f'"'4.,
i\.' ..."..~,- -"";

..........:
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S 4.3: PARITY CH£CJ{CONVOlVTJONAl £NCOD£R:
Inside the parity check convolutional encoder there is

C'
2. some modulo 2 adders. There is no register which is fed by the output of the adders inside ..

.",'

the encoder like linear block encoder. n
For communicating an L bit message vector x = (XI ,X2 , ... , XL ) in which L may be greaterJ

than the constraint length k . First, the content of all k stages of the shift register are set equal to zero fl.!
Next, the first bit XI is shifted into the stage I of the shift register. The v modulo 2 adders are sampled
one after another when each bit of x (input vector or information vector or message vector) is inserted
into the shift register. So, adders are sampled after each bit loading, not only after with all the k bits of
a message available in the shift register. At each sampling interval ( the time span during which the
adders are sampled) when the v th or last adder output has been sampled and transmitted, the second
bit (X2 ) ofthe message is shifted into stage I of the shift register, which causes XI to shift into stage 2 .
Each of the v modulo 2 adder outputs are again sampled and transmitted. This procedure continues until
the last bit XL of x has been shifted into stage I of the X register. After this, with each adder output
being sampled and transmitted, k O's (tail bits) are fed in turn (in each shift) into the X register ,
thereby returning the shift register to its initial condition. During each shift the symbol (in our case bit)
forced out of the k-th stage of the shift register is discarded.

I. one x register having number of stages equal to constraint length k ( when is the encoder
representation is not minimized ,otherwise in the equivalent minimized form there would be k-I
stages in the shift register).

It will suffice to insert (k-I) O's (tail bits) instead of k O's into the X register after the last bit of
a message block, because the L th bit (last) bit will shifted out of the x register when the first digit of a
new message is shifted in .But if there is no other message block, in that case k O's should be inserted

Let, the information block is x = (XI ,X2 , ... ,XL ) and for this whole information block total
(L+k)v bits output is denoted as y

Since the X register is initially set to zero, the first v bits of y , obtained by shifting the first
component of x into stage I of the shift register and sampling v adders, depend only on XI . Similarly
the second v bits depends only upon XI and X2 . In general, the v bits of output y obtained immediately
after shifting component Xh into the X register depends only on Xh and (h-l) components of-"x
preceding Xh ,when h <k . But depends only on Xh and (k-I) components of x preceding Xh , when h ~ k .
If two information vectors agree in their first (h-l) coordinates, the corresponding output vectors agree
in their first (h-l)v coordinates.
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4.3.1 : 'Properties (9f eonvolutional eode :
P,opedy 4,3.1,1 , Linearity:

A convolutional code is a linear code .That is if, Ci and Cj . are two code words,

then Ci + Cj IS also a codeword.

Let when the L bit input vector x has Xii = 1 and all other components each equal
to zero, the output vector y is /I, . Let x = ( 1 , 0,0,0, ..., 0) .And gJ denotes which of the modulQ
adders are connected to the J th stage of the shift register .

x 1st stage 2nd stage k th stage

1
v modulo 2 adders

1

Encoded bits out

Figure 4.3 : A general form of a Convolutional Encoder

For the k = 4 , v = 3 convolution coder of figure 4.4

the shift register . Then
If g; = (gJI ,gn, ... ,g,J,)

gt=(1,I,I)
gz = (0,1,0)
g3 = (0,1,1)
~ = (0,1,1)

J = 1, 2 , ... ,k means stage number in

,,' '<;[,

" .
:';.:
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x 1Sl stage 2nd stage 3rd stage 4th stage

y

Figure 4.4 : A k=4, v= 3 convolutional coder

we identify II = (gl , gl, ..., ~ , ° ,0, ...,0)
4 "- .4 \... .L zero vectors of

k v bits each
vectors
of v
bits.
each

The commas in the definition of Ih indicates when the shift register shifts
right. Where L is the dividing length of the message that is it is the length of a information block or
information vector.

6xpioMtio" , for L zero vectors instead of T (number of tail bits for last
information bit):

Let, the information vector has L bits. There are

I. (L-I) information bits in the information vector, before the last
bit. Therefore correspondingly (L-I)v bits in the output.

2. For the last bit in the information vector, v bits are out. If
there are no other message block to consider, then tail bits T = k = constraint length of the encoder. So ,
correspondingly kv output bits. -

Total number of output bits = (L-I)v +v+kv
= (k+L)v bits
= (k+L) vectors ofv bits each

If x = (0, I ,0, ... ,0)
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Then output y = /z = ( 0, gh g2 ,...,~ ,0 ,0, ...,0)
~ ~41 \ ~

L k+ I vectors I.. L -I zero
of v bits vectors of v
each bits each

Because, when only the second bit of x , i.e. X2 is I . The output y is the
delayed replica of the output when only XI = I in x. If we delete the explicit mention of the vectors
{OJ , the {fi,} may be described pictorially as shown in figure 4.5 for k = 4 and L = 6.

colum Colum column column column colum column column column column

n n 3 4 5 n 7 8 9 10

I 2 6

II: gl g2 gJ ~
/2: gl ~ gJ ~

!J: gl g2 gJ g4
/4: gl g2 ~ ~

Is: gl ~ gJ g4

16: gl g2 gJ g4

M Figure 4.5 : Linearity property and formation of Convolutional Code

When considering 16 the current information bit is X6 . From the h th
column of the figure -it is clear that the v digits of Y is produced when Xh is first shifted in .The v output
digits are computed from Xh. gl EllXh_1 . g2 Ell... EllXh _ k -I . ~ .And taking into consideration, more
than I bit of x to be I , output Y=XI ./1 EllX2./Z Ell ... EllXL -IL .The effect of the tail bits are included
in the construction of fi, , h = 1,2, ..., L . Ih's are vector and Xi'S are scalar over the same finite field
GF(2) and operations are modulo 2 , therefore according to the definition of vector space, and vector
(section 2.2.4 , 2.2.5, 2.2.6) the convolutional code is a linear code. When XI . fi is a convolution
codeword , X2 . /z is a convolution codeword, and so on , their sum y is also a codeword of that
convolution code with information vector is the sum of the information vectors of the two codewords
So, it is proved that a convolutional code is a linear code.

Normally block length (L) of a message IS greater than the constraint
length k. But let us consider for example a case of x = (101) (k > L)'

.~
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"= outputbitsfor
enteringlai)

bits

Adding (mod 2) column by column
Y = XI ./1 (j) X2 ./2 (j) X) .13

gl g, g, g, 0 0 ol
= [XI X2 X)) 0 gl g, g) g, 0 ~J0 0 g, g, g) g,

XI ./1 =XI. gl
(j) Xz . /z = Xz . 0
(j) Xl ./1 = Xl . 0

XI . gl
XZ. gz
Xl. gl

L zerovectorsof v bits

4 Leach.
XI.O XI.O XI.O XI.O

Xz . gl Xz. 0 Xz. 0 Xz . 0
Xl . g2 X) . g) Xl' 0 X) . 0

•

(4.1)
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The matrix defined with g i 's is the generator matrix. But g i 's are not
generator polynomial, they indicates to what adders, stage j is connected. It is clear (as first column
has only gl non zero, the rows of the generator matrix are linearly independent .The generator matrix
has rows of size equal to the message size, i.e. is equal to the dividing length L .

So , from equation (4.1)
XI .fi = 111 010 011 011 000 000 000 000
X2 ./2 = 000 000 000 000 000 000 000 000
X) .13 = 000 000 111 010 011 011 000 000

y = 111 010 100 001 011 011 000 000

The encoder is a systematic coder because, the first adder takes as input,
only the current information bit, and no other stage of the shift register is fed to it . So , other shift
register stages have no effect in the first bit of each group of v output bits of rate l/v encoders. Also
for this, except gl all other gj 's have first component equal to zero.

For, infinitely large message, the generator matrix is semi-infinite ,that
it grows to down and to right. If message vector is x = [XI, X2, ... ) and k is the constraint length, the
generalized form of the generator matrix is (The bounding braces of the generator matrix is not cloied
downward , as it is infinite.) : ,"
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gl & g3 gk 0

0 gl & gk-l gk

0 0 gl gk-2 gk-l

: I

The downward growth is for the growth in the size of the message vector
and the right side growth is to provide infinite number of shifts for message vector of infinite size. Also
, each row is the right shifted form of the previous row .

P,opedy 4.3.1.2 , Time invariance:
If the, input to output mapping functionfunu changes with time u ,i.e. changes

of function occur, as a new bit of a message vector enters the shift register, then all input bits are not
treated equally. In this case the coder and code is time variant. But if the function is fixed with time,

i.e.
fun

u
=fun for all u ,0"; u < L+T, then the coder and code are time invariant (fixed over time). Here, L

is the message length and T is the length (number) of tail bits.

x 1st stage 2nd stage k th stage...

1
function (fun,,)

1

HI Encoded bits out

Figure 4.6:A Convolutional Encoder for discussing
time invariance

. As a convolution code is linear, the mapping function is made with addition (mod
2 for bmary case) . Also, the convolution code is time invariant, as the shift register stage to adders
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connection is fixed over time. The stage, to adder connection defines the generator matrix of the code, as

is shown in section 4.1.



!i4.4: (Ot)£ TREE. TR£U.IS. ANt) STATE DIAGRAM:
The structural properties of a convolutional encoder can be shown

anyone of three equivalent diagrams:

• Code tree
• Trellis
• State diagram

114

in graphical form by using

All the graphical forms are discussed below in the context of encoder of figure 4.9(a) .

4.4.1 : 'free:Each branch of the tree represents an input symbol, with the corresponding pair of output
binary symbols indicated on the branch. The convention used to distinguish the input binary symbols 0
and I is as follows . An input zero specifies the upper branch of a bifurcation , where as input I
specifies the lower branch. A specific path in the tree is traced from left to right in accordance with the
input (message sequence) . The corresponding encoded sequence is found by concatenating labels on
the followed branches .The diagram is called a tree because of its tree like structure. For example, let
us consider, the message sequence 10011 applied to the input of the encoder of figure 4.9(a) .
Following the procedure just described , we find the corresponding encoded sequence is

(11,10,11,11,01) .

From the tree diagram , we observe that the tree becomes repetitive after the first 3
(equal to constraint length k) branches. Beyond the third branch, the two nodes labeled a are identical,
the two nodes labeled b are identical and so on .

4.4.1.1 : Explanation Of The RepetitiveProperty :
The encoder has memory M = k-I = 2 message bits. Hence when the third

message
bit enters the encoder, the first message bit (which is the reason of the first upper and lower branch or
reason of variation ) is shifted out ofthe encoder .When points A2 or B2 is reached the encoder state is
same (00) . So , input of same message bits causes the same output at branch 4 . Count for same output
after third level is 2 because of the variation of AD, BO message bits in figure 4.7.

"\J.
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4.4.2 : Trellis:In another way , the explanation is . after the third branch , the message sequences (100
m] m4 .. ') and (000 m] m4 ... ) generate the same encoded symbols or code symbols. And the pair of nodes
a may be joined together. The same reasoning may be applied to other nodes. Accordingly, we may
col1apse the code tree of figure 4.7 into a new form cal1ed trel1is . It is socal1ed since a trellis is a
treelike structure with merged branches. The convention used to distinguish between input symbol 0
and 1 is as fol1ows . ( But in the trel1is for different cases of Viterbi algorithm this convention is not
followed, instead tlie upper branch diverging from a node is for 0 input and the lower branch diverging

from a node is for input bit 1)

• A code branch produced by an input 0 is drawn as a solid line.
• Whereas a code branch produced by an input 1 is drawn as a dashed line.
Each input sequence corresponds to a specific path through the trellis . The message

sequence (10011) produces the encoded output sequence (11,10,11,11,01)

State
Binary description

a 00

b 10

c 01

d 11

Table 4.1 : State table for the convolutiOnal encoder
of figure 4.9(a)

•
01

•

II

•

• II • II
00 \

d

Level j =
0 I 2 3 4 5

00 00 00 00 00 00

a

\ II

b

c

transition only for
o bits (tail)

L.j L L+I L+2 •• ~
00 00 00 00

Figure 4.8 : A trellis with return to the al1 zero state
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But in the trellis for different cases of Viterbi algorithm this convention of solid and
dashed branch is not followed, instead the upper branch diverging from a node is for input bit 0 and the
lower branch diverging from a node is for input bit I.

A trellis is more instructive than a tree in that it brings out explicitly the fact that the
associated convolutional encoder has finite number of states. The state of a rate I Iv encoder is defined
as the (k-I) message bits stored in the encoder's shift register. -/.

At time} , the portion of the message sequence containing the most recent k bits are
written as (mj-k+l, ... , mj_\, mj )_ from oldest to newest, where mj is the current bit .The (k -I) bit state of
the encoder at time} is therefore written as (mj_1 , ... , mj-k+2 ,mj-k+1 ) .In our example (k-I) = 2. Hence,
the state of the encoder can assume anyone of the four possible values (l-I = 2

2
= 4 states).

The trellis contains L +k levels ( level is also termed as depth ), where L is the length of
the incoming message sequence , and k is the constraint length of the code . The levels of the trellis

are labeled as} = O,I, ...,L+k-1.

The first (k-I) levels correspond to the encoder's departure from the initial state a and
the last (k-I) levels correspond to the encoder's return to the state a , that is not all four states can be
reachable in these two portions ofthe trellis.

However, the central portion of the trellis, for which the level} lies in the range k-I sis
L, all states of the encoder are reachable . The central portion of the trellis shows a fixed periodic

structure.

4.4.3 : ~ignal 'Flow Graph (9r !!>tate'Diagram: '
Next, let us consider a portion of the trellis corresponding to times) and}+ I . We

assu~e }?2 , so that all four states a,b,c,d appears in the trellis . The left nodes represent the four
pOSSible current states of the encoder, whereas the right nodes represent the next states. We may
coalesce the left and right nodes. By doing so , we obtain the state diagram of the encoder.

a 00 a

o
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I. A transition from one state to another in response ofinput' ° is represented by writing

on the branch.
a °

The nodes ofthe above figure represent the four possible states of the encoder, with each
node having two incoming branches and two outgoing branches. The state diagram is given in figure

4.9(b).

2. A transition from one state to another in response to input 1 is represented by writing a

1 on that branch.

3. A binary label (in our examples it is a two tuples )on each branch represents the
encoder's output (encoded sequence) as it moves from one state to another.

For example, let us assume that, the current state of the encoder is e (01) . The
application of input 1 to the encoder causes the state to be state b (10) and the encoded output is 00 .

4. From this state diagram, for any incoming message sequence, we can determine the
output ofthe encoder. For this we simply start at state a (00) (because initially the encoder is at all zero
state ), the all zero initial state , and walk through the state diagram in accordance with the message
sequence .We follow a branch labeled ° if the input is a ° and a branch labeled 1 if it is a 1 . As each
branch is traversed, we output the corresponding binary label (in our examples two tuples) on the
branch. For example ,for the message sequence 10011 , we follow the path abeabd , and therefore the

output sequence is (11,01,11,11,01).

We shall find it convenient to write illl.v) and illl.v) for the sequences ill' ill+! , ... ,iv and ill

, ill+1 , ... , iv.1 respectively and similarly for tlll.v] and t(lI.v) .

_______ ...•• t~2)

•• lflt

'--------~.
figure 4.9 (a): A binary convolutional encoder (noncatastrophic and nonsystematic).

The above encoder has memory M = 2 and constraint length k = M + 1= 3 .
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The signal flow chart or state diagram can be constructed asYollows :
There is a node for every state [i".! , i".2] .From each state there is a directed edge to each of

the possible successor states, the directed edge is labeled with current input bit i" . As for example,
from state [i".!, i".]] to one of the possible successor states [0, i".,] or [L i".!] there is directed path.
As i" = 0 or i,,= 1 is shifted into the first stage of the shift-register, corresponding move of i".! to the
second stage of the shift register and shifting out of i".2 occurs).

The directed edge is labeled with Z" or D" , where w is the hamming weight of the

encoded branch [t(1), t(2)] that results from the transition from a state to its successor state. For
1I 1I

instance when [i"., , i".2] = [1,1] the input i" = 0 causes the encoded branch [t~1), t~)] = [0,1] and
causes the next state to be [0,1] _Since the hamming weight (i.e. number of nonzero digits) of the
branch is I , the transition from state [1,1] to the state [0, I] is labeled with zI or D' .

In the general case of GF(q) , and when the shift register has memory (k-l) and each
input symbol ~ is an m-tuple over GF(q) then there are lk.!}m states or nodes in the signal flow graph or
state diagram. So ,even in the binary case (q = 2 ) the construction of the flowchart is impractical
unless (k-l)m is quite small. For our example in figure 4.9(b) k =3 and m= I bit.

rT~
z (i)

() current input bit for which the transition occurso corresponding encoded bits

figure 4.9(b): State diagram of the noncatastrophic encoder of figure 4.9 (a)
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4.4.3.1 : Why There Is A Self Loop In The All Zero State:
Since the input iu = 0 applied to the state [iu-I , .. , , iu-M] = [0, ...,0] (where Mis

the encoder memory) , it always results in tu = 0 , the zero vector (t" is the vector of encoded bits, each

distinct encoded bit of t" is denoted as [t(l), t(2) , ... , t(v) ] where v = l/rate . The all zero state
U U U

would return to the all zero state and the state diagram will always have a self loop labeled 'fl = I at

the zero state.
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!3 4.5: CATASTROPHICCONVOlVTIONAl £NCOD£RS:
A convolutional code is catastrophic if and only if there is an information sequence of infinite

weight which produces an encoded sequence of finite weight .The convolutional coder is catastrophic
if there is any other self loop in the state diagram at a state other than the all zero state having label :t'

= I , i.e. whose loop gain is I ( unity gain ).

Mathematically, a convolutional encoder is catastrophic if and only if there is an information
sequence i(o. "'J with hamming weight WH(i(o.",)) = 00 that produces an encoded sequence tlll."'l for which
WH(tIO."'l) < 00 • To see this equivalence we note that if the signal flow graph or state diagram has a
closed loop of weight zero besides the self-loop at the zero state, then the information sequence iIO."'l
which drives the encoder to a state on the former loop and moves around the loop forever for an
infinite weight message sequence which produces a finite weight encoded sequence . Conversely , if
there is no zero weight or unity gain loop besides the self - loop at the zero state, then an information
sequence of infinite weight must drive the encoder through infinitely many loops besides the self-loop
at the zero state and thus must produce an encoded sequence of infinite weight also.

More explanation of the above statement:
Let the transmitted sequence be the all zero codeword. But it is received with few bit

error. If there is a self-loop (loop I) with unity gain other than that (100p2) at the all zero state, then a
received sequence which drives the encoder to a state having the former loop (loop I) , loops forever
as this loop has gain ZOand the loop can be traveled without increasing weight (number of non zero
bits) of the estimate of the codeword - this path would be followed or preferred in making decoding
decisions if the travel along other path to return to the all zero state would increase the weight or (as
convolutional code is linear ) the hamming distance (because less errors between received and
transmitted sequence is most likely- we always prefer that path that is at minimum hamming distance

from the received sequence).

When loop I has gain Z" and a * 0 , to reduce hamming weight of the received word ,
the decoder would eventually return to the all zero state as a preferred path and loops there in order to
keep the hamming weight low.

As the convolutional code is linear any example can be shown with respect to the all zero
code word as the all zero vector is in the set of valid code words.

The encoder in figure 4.9(a) is non catastrophic. The encoder given in figure 4.10(a) is
catastrophic because besides the self loop of label:t' at state [0,0] , in the state diagram there is
another self loop with unity gain, namely the selfloop at state [1,1] .
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figure 4.10(a): A binary convolutional encoder (catastrophic and nonsystematic).

(D
@:i]

b

a

z

a ,b, c, d represents states.

figure 4.10 (b): State diagram of the catastrophic encoder of figure 4. IO(a)
When an infinite number of decoding errors are caused by a finite number of transmission errors

(that is the received vector contains error ) the convolutional coder is then subject to



• for a prescribed constraint length k , the free distance that can be attained with systematic
convolutional codes is usuany smaner than for the case of non systematic convolution codes - so ,
correspondingly poorer error performance (this is obvious from the fact that one of (may be the first)
each v output bits in the case of systematic code is the current input bit itself - so no coding built into

it).

catastrophic error propagation , and the code is caned the catastrophic code. This case arises due to

improper coder design.
• A systematic convolutional code can not be catastrophic.

• For catastrophic coder, calculation of T(D) leads to no solution.

Let us consider the case that for the encoder of 4.10(a) , the transmitted codeword is the an zero
codeword (0000000 ...000) (so also the input is an zero). The correct path corresponds to staying in
state a. For occurrence of error if the transmitted codeword is received as 11100000000 ...00 . That is ,
there is finite number of error (3 bit ) . For this error , the preferred path (with respect to the lowest
hamming weight between received and estimated bits) the path a-b-d-d- ...-d-d instead of a-b-c-a-a-
...a-a (does not cause infinite number of errors in making input bit decision) . The incorrect path a-b-d-
d- ...dd has a distance 6 independent of the number of times the selfloop at the state d is traversed. A
decoder selecting this path as correct one would incorrectly decode the data or input bit sequence as
two I's for the (a-b and bod portions ofthe path) plus a 1 (cause of infinite number of errors in input
bit decision) each time the selfloop at d is traversed, because of the self loop of unity gain at state d
there is increase in hamming weight due to infinite traversal along this self loop and so no chance of
return to the correct path after few erroneous decision.

If the self loop at d has non unity gain, then due to transmission error if ever this path were
selected as correct one by the decoder and the actual codeword was the an zero code word , before
infinitely looping at this selfloop or along other loop (but not selfloop) the decoder would return to the
an zero state. Because, traversal infinitely along any other loop except the self loop at the an zero state
would increase the hamming weight of the estimated transmission, eventuany after few looping at d
the path c-a-a- ...a-a would be traversed and as such no catastrophic error propagation is possible.

When the coder of a convolutional code and corresponding code are systematic, no self loop
other than that at the an zero state can have gain tJ = I , because in a systematic coder one of the v
output bits (due to an input bit) is the input bit itself. Also there are only two possible self loop in the
state diagram for a coder over GF(2) - at the an zero state and at the an one state .The an one state
would be at the an one state when the current input is 1 so at least one output bit is also 1 , for this the
self loop can not have label of tJ = I , and if the decoder incorrectly reaches at this state it eventuany
(with a finite number of erroneous decision) would return to the an zero state.

T' • .,

( \
\ ,-I
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Figure 4.1 I(a) : A binary convolutional encoder or coder
(noncatastrophic and systematic) .

~
(I)

(I)
z

[in

b

c

[i0 I Q) z z

(I) l~J @)
lOQ

a

a ,b, c, d represents states.

Figure 4.11 (b) : State diagram of the encoder of figure 4.11 (a)
.~;\;~,
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gz means the vector representing which adders are connected to stage 2 (in non minimized form

) of the shift register in the encoder. And so on .

In the discussion of linearity of convolutional code we have mentioned that gl means the vector
representing which adders are connected to stage I (in non minimized form) of the shift register in the

encoder.

Let gl = (all, alZ, .... , alv)

Delay associated with I st stage = I . Delay associated with 2nd stage = D
1
. delay associated

with 3rd stage = d. delay associated with k th stage = D k.1

Collecting stages over same adder A I = (all, aZI, ..... , akl ) = connection vector from all stages
to first adder. Az = (al2, an, ... , akz) = connection vector from all stages to 2nd adder. Similarly A

v =
(al

v
, az" ..... , akv) = connection vector from all stages to v th adder. (there are k stages in the shift

register) .

where aij = I or 0 ,means connection or no connection between state i and adder j . I means

connection.
gz = (a21 , azz, .... , azv) . And so on .

For, figure 4.4

A I = (I 0 0 0 ) [vector representation]
= connection vector from all stages to first adder.
= I [polynomial representation]

Az = (1 I I I)
= connection vector from all stages to 2nd adder.
= I+DI +Dz+D3

A3 = (1 0 I I)
= connection vector from all stages to 3rd adder.
= 1+Dz+d

These A/ s are generator polynomials.

4.5.1 : 'Non eatastrophic eonvolution eode :
A convolutional code whose generator polynomials A I ,Az , ... ,Av satisfy GCD [A I ,

Az , ... , A
v

] = D a ,for some a 2': 0 is called a non catastrophic convolutional code. Otherwise it is
called a catastrophic convolutional code .GCD means greatest common divisor.

Without loss of meaningful generality we can take D a = I , that is a = 0 , because
otherwise it corresponds to a simple delay in each stage of the shift register.

1"
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TheO'e~,4.5.1,1 , A Systematic Code is Always Non Catastrophic:
From the definition in section 4.5.1 we can prove that a systematic code is always

proof Because for a non catastrophic code GCD of generator polynomials is
D a . There is one generator polynomial (connection of stages to an adder, and an adder output is one
of the encoded bits for a new input ) which has only one term D a , this means the input is when
multiplied by this generator polynomial of the generator matrix , the corresponding output ( from
the adder representing D a ) is only the delayed replica of the input bit. 1f the delay is D 0 = 1 , we
get the current input directly to the output without delay - which is true for systematic code . So a

systematic code is always non catastrophic (from definition ).

non catastrophic.

in/ ~ out
delay = D 0 =1
that is no delay.

in ---0-- out

delay = D I

o represents memory or
shift register slage

""~

out

delay = D 2 . Figure 4.12 : Concepts about delays and number of shift register
stages.

4.5.2 : 'Way (9f 'Forming 'Non eatastrophic eoder 'From eatastrophic eoder:
For the catastrophic coder of figure 4.10(a) the transfer function matrix formed from

generator polynomials AI, Az is

T(D) = [AI A2]
= [1+D I+D2

]

= [l+D 1+2D+D2]
[1+D (I +D)2 ]

(as over mod 2 operation 2D = 0 )

T(D) = (1+D)[1 1+D]
= (1+D) T'(D) LetT'(D)=[l 1+D]

Here T '(D) is a new transfer function matrix. 1f one divides each entry of the transfer
function matrix T (D) (i.e. one row of the generator matrix) for a catastrophic convolutional coder by
the GCD , transfer function matrix T '(D) for a simpler convolutional coder with memory M =1
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(highest power of D) is found, it has do = 2 (0 means 1 branch ), di = 3 , for i ~I (2 or more branch)
just as was the catastrophic coder of figure 4.1O(a) from which it is derived . The coder from T '(D)
and its state diagram is given below.

ill

Figure 4.13(a) : Coder based on T'(D)
~ t~2)

2'
0 00 II

t' 10

2 0 01 2

Figure 4.13(b): State diagram for the noncatastrophic coder of
figure 4.I3(a)

So (as T '(D) is formed by removing OCD from T (D) ) from any catastrophic
convolutional coder one can obtain an equivalent non catastrophic convolutional coder with same di
and perhaps less memory (for binary case memory is highest power of D, in non binary cases and when
each input is an m tuple, memory is multiple of highest power of D ).

4.5.3 : 'Why eatastrophic eoder ~hould 'Be.;\. voided:
I. Due to the fact that finite number of transmission errors results in infinite number of

errors in decoding decisions.

2. For any catastrophic convolutional coder one can find an equivalent non catastrophic
convolutional coder with the same minimum free distance (dF) and perhaps less memory .And it is
always desired to have less memory with same (dF) , to reduce cost.
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~ 4.6 : VIT£RUI DECODING:The equivalence between maximum likelihood decoding and minimum distance decoding for a
binary symmetric channel implies that, we may decode a convolutional code by choosing a path in the
code tree whose coded sequence differs from the received sequence in the fewest number of places.

Since a code tree is equivalent to a trellis, we may equally limit our choice to the possible paths
in the trellis representation of the code. The reason for preferring the trellis over the tree is that the
number of node at any level of the trellis does not continue to grow as the number of incoming
message bits increases, rather it remains constant at i-I, where k is the constraint length of the code.

The viterbi decoder operates iteratively frame by frame, tracing through a trellis identical to that
used by the encoder in an attempt to emulate the encoders behavior .The algorithm operates by
computing a metric or discrepancy for every possible path in the trellis. The metric for a particular path
is defined as the hamming distance between the coded sequence represented by the path and the received
sequence. Thus, for each node (state) in the trellis, the algorithm compares the two paths entering the
node. The path with the lower hamming distance metric is retained, and the other path is discarded The
computation is repeated for every level j of the trellis in the range M5, j 5:L , where M = k-! is the
encoders memory and L is the length of the incoming message sequence. The path that are retained by
the algorithm are called the survivor or active paths. For a convolutional code of constraint length k=3
for example, no more than i-I =2M =22 = 4 survivor paths and their metrics will ever be stored. The
list of 2k-1 paths is always guaranteed to contain the maximum likelihood choice .

4.6.1 : 'Viterbi .,Algorithm:
Step1 , Initialization:

Let us label the left most state of the trellis (i.e. , the all-zero state at level 0) as
0, since there is no discrepancy at this point in computation.

Step2 ,Computation 5tep j+!
.. . let ,j=0,1,2, ... , and suppose that at the previous step j we have done two things

: Identified all survivor paths to each state .Stored the survivor path and its metric for each state of the
trellis .Then , at level (clock time) j+! the metric for all the paths entering each state of the trellis is
found.
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survivor up to
level) +1

Entering or incoming
branches to 8,

) )+/

Figure 4.14 ; Calculation of Survivor

By adding the metric of incoming branches WH(Ym) for some m , with the metric
of connecting survivor up to level j+ I for state 82 . Let metric I = WH(X1)+ WH(Y1 ) .And metric 2 =
WH(X2) + WH(Y2). From this two metric, the metric which have lowest value defines the survivor
path to state 82 , at level j+ I , and as such , metric for each state at each level is updated.

The iteration of computation is continued until the algorithm reaches the all zero
state .( If there is error introduced in the tail, even then return to the all zero state would occur as the
trellis is formed in that way for L+T, but the label of the traversed path may be different. ) At which
time it makes a decision on the maximum likelihood path. All zero path should be reached because of
the added tail bits. At this time the decoder makes a decision on the maximum likelihood path (
minimum probability of error) . The sequence of information which causes the transition along the path
is the decoded information sequence.

11001101

(oldest and left
most bit)
information of

frame I

infonnation
of
frame 2

When the received sequence is very long (near infinite), the storage requirement
of the viterbi algorithm becomes too high (if decoding window width is 15 and no tie, then for rate l/v
coder of constraint length k, IX 15x2k•1 bits are required for estimated information bit storage) but
when no truncation of received sequence is employed, if the whole information has length L , then
IxLxi.1 (when no tie) bits are required and this approaches to infinity when L ~ OCJ • The active path
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through the trellis could be represented as a table. Let information sequence of active path is as given
above.

To reduce the storage requirement some compromises must be made . The usual
approach is to "truncate" the path memory of the decoder as described here. A decoding window of
length L is specified, and the algorithm always stops after L steps. A decision is then made based on
the "best" path and the information bit symbol associated with the first branch on the path is released to
the user. Next, the decoding window is moved forward one time interval, and the decision for the
next information bit is made, and so on. The decoding decision with truncation employed is no longer
truly maximum likelihood. Because when the whole received sequence is considered without truncation
and when error is within correctable range then only unambiguous (one) decision is made taking path
with lowest metric (lowest probability of error) as the most likely path.

But , when truncation is employed , and decoding window width is so small that
unambiguity may not be resolved, in such case decoding failure occur - choosing path with probability
of lower error leads to no solution - in some cases no longer most likelihood - due to decoding error
probability of error is high. This problem can be resolved by choosing the decoding window width long
enough.

o

level 0 level I

Figure 4.15 Ambiguity in Decision

If both I and 0 can be decided in the first frame due to be part of path of same
discrepancy, no unambiguity in decision is possible.

Theorem 4.6.2 : A path that is not part by part optimum cannot be optimum as a whole
p,oof:

Suppose that Y[ 0, L+T) is the sequence received over the channel
where Y[ O. L+T) = [YO,YI, ''',YL+T.' ] and where each Yu is a v (=l/rate ,for our example 2 bit) tuple of
channel output letters.

sequence i[ ° . L+T) ,

maximizes

Similarly let x[ 0 . L+T] be the encoded sequence of the information
A maximum likelihood decoder chooses as its estimate "OJ+I') which

{j
';--.'

-.'
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1,+1'-1

p(Y(o,l+nIX(oJ+n) = np(Y" Ix,,)
11",,0

Y x each are v bits1/' II

or equivalently which maximizes the statistics

(4.2)

discussion, for compactness we can write simply

LO(XI"."I) = 10gp(YI"."liX(",'I)

since Y will be fixed throughout our

(4.3)

And from (4.2) and (4.3)

,.
Lo(xI","J) = LLo(x, )

i"" 1/

In fact, it is not needed that Lo always be the logarithmic function, but it
is simply a statistics whose maximization yields an MLD (maximum likelihood decoding) and which is
additive .As for example the statistics can be hamming distance ( minimum hamming distance
maximizes statistics ). So we can take

LO(Xi) = -d(Xi, Yi) i.e., the negative hamming distance.
I
If the paths i(o." I and il~." J terminates at the same node of the trellis and

Lo(X(O."I) > Lo(xro."J) (4.4)

Then the nonoptimum path il~." J cannot be the first u+I branches of the

path (optimum path or the path which maximizes statistics) if 0, L+T) which maximizes Lo(x(oJ.+1"J) .
The portion of the optimum path is also optimum. Suppose, that not 1(0./.+, J ,but

(4.5)

(The • denotes concatenation of sequences) maximizes the statistics Lo .
L t 'd th th" -". '" Th d d '-'. 'e us const er epa '[0.1-+1') -"0.11) '[11+1,1,+1')" e enco e sequencex[O,I.+T) - X'O,If) xlu +1./,+7')

must have xi" +1,1.+1")= XI~' +1./.+1") since iio." J and il~." J terminates on the same node and we have
used the same subsequent information sequence (branch) ir,,+I,/.+1") in both cases .Also, ito ./.") has

encoded sequence xro, /. ,1") = xro." ). xi:, +1,1. ,1")' Now

o.,



By 4.4

LO(X(O.L+Tl) = Lo(X(o.II]*xtll +u+T))

= Lo(X(o.II]) + Lo(X(;, +J.L+T))

> Lo( Xto.II]) + Lo( x[~, +J.L +T))

=:' LO(XtO.L+T])
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That is if Lo( Xio.II]) > Lo( xro.II]) , iro ./. +f ) does not maximize the statistics ( if its
portion is nonoptimal by (4.4» as is initially assumed - a contradiction.

The viterbi algorithm is based on this logic . When decision is based on the
whole information sequence viterbi algorithm is optimum . But , when truncation is employed on
received sequence (that is decision is made after seeing a portion) and there are multiple optimum
paths and on guessing one of the several optimum path is selected for making decision, in later portions
of the received words the selected path may not be optimum - causing suboptimum decision on the
whole sequence - in such case the viterbi algorithm is no longer optimum - but becomes suboptimum.

"",
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The maximum likelihood solution is to always select the path with the largest likelihood
metric, the metric or path retained for entering each state is called the survivor. Since the maximum
likelihood solution is to always select the path with the largest metric ,a path with a smaller metric that
has been rejected could never have caught up with the survivor. So , always selecting the survivor of
the two, entering each state thus retains the optimum (maximum likelihood character of the solution) .

The number of surviving path always remains at i-I, never increasing exponentially
with L (like il

For binary GF(2) encoder there are only two possible ways of leaving (2) or entering (2)
a state for each bit input.

The metric for 2k-1 survivors are kept.

4.6.2 : 'Difficulties 'In 'l'he,;\pplication (l;)f 'Viterbi,;\lgorithm :
When paths entering a state are compared and found to have identical metric there is a

problem in selecting survivor. Solution: the decoder may either break a tie by guessing or keep all such
paths (in our case two paths to a state) until they are replaced by a more likely path.

As the decoder progress through many frames, the accumulating discrepancies continue
to increase. Overflow may occur .To avoid overflow problems, they must be reduced occasionally. A
simple procedure is to periodically subtracting the smallest discrepancy from all of them .This does not
affect the logic of path choice.

When the received sequence is very long (near infinite) , the storage requirement of the
Viterbi algorithm becomes too high (number of state • length of information sequence ), and some
compromise must be made. The approach usually taken is to truncate the path memory of the decoder.
A decoding window of length I is specified, and the algorithm always stops after I steps. A decision is
then made on the "best" path and the symbol associated with the first branch on that path is released to
the user and this stored symbol is dropped. Next, the decoding window is moved forward one time
interval ,and a decision on the next information bit is made, this stored information bit is also dropped
out.

Since at each level there are i-I comparisons, k cannot be too large .

. ,
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4.6.3 : Examples (9f 'Different eases 'With 'Viterbi .Algorithm:

Path exists to more
than one node of the
oldest frame

00 300 3

1514

00 3

1312II

00 3
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Figure 4.16: Trellis for an encoder with generator polynomials
gl(x)=x2+x+1 and g2(x)=i+1

The code has two error correcting capability (clear from state diagram and minimum free
distance value which is equal to 5)_ But, the received word is all zero codeword with three errors
(1010000010000 ...) . So, even if we change the decoding window width ,the ambiguity in making
decision can never be removed or resolved. From the above figure up to decoding window width 15,
there are two survivors, correspondingly two decoded information sequence 0000000 ... or 1010000 ....
Increasing the window width , the problem can not be solved as the error has exceeded the error
correction capability.

Crossed path means path out of consideration due to nonoptimality - not surviving path.
It is previously stated that of the two paths diverging from a node, the upper one is for input 0 and the
lower one is for input I .
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4.6.3.1 : Within correctable range errors can be corrected with choosing
appropriate window width:

The vertical and thin dotted line means span (Last boundary is shown, not first
boundary )of decoding window width .Thick dotted line means survivor. This convention is used in all
the next trellis.

Whe" decodi"9 wi"dow width ;s 5 ,
The overlapping double line (dotted and solid) means survivor for the

whole decoding window width.
First frame

o

10

8

00

7543

00 1 00

10

11

01

State 00
00

Figure 4.17: Example with the same encoder having trellis of
figure 4.16 ( to show the effect of decoding window width
on information bit decision ).

Let All zero codeword is received as 10 00 00 10 00 00 00
decoding window width is 5 two available paths for the first information bit decision.

Two available paths o.: .
•••••

1 •• ..••
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If decision is made at this moment, information frame decision in the first frame
may be both I and 0 , because two paths have smallest and equal discrepancy 2 up to decoding window
width 5 , both of them are survivors.

\l\JheV\ decodi¥\9 wiY\dow width is 6 :

First frame
out

level
0 3 4 5 6 7 8

00 00 1 2

• p,

Figure 4.18 : The Trellis of figure 4. I6 with decoding window width 6.

10 00
The all zero codeword is received as

00 10 00 00 00 00

When decoding window width is 6 , one path has the smallest discrepancy (2).
Taking this path we decide the first information frame is 0 .

o
----single path for first information bit deCision.



~ 4.7: M1NIMVM fREE DISTANCE:
4.7.1: 'Distance:
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.
o

Xo .
X,

.
2

X,
.
3

Subscript i=2 but number of branch =3

d; is the minimum hamming distance between two paths i+1 (because Xo , X), ..., X; )
branches in length, which diverge at the root node of the trellis .Because the convolution code is linear
, d; is the minimum hamming weight of encoded path c[o.;J resulting from an information sequence
with io (first information bit) '1' 0 . Let, WHdenotes the hamming weight of a sequence,

c=i. G
:. d;= minWII(c)

ill1" 0

r rGo G, G, G tJ I

"miowt'"'i"'it 0

Go G, G;o'I j+\ rows
10'" 0 . t0 0 0 GoJ

•• j+\ co[umns ----
But , for infinite message sequence , this 0 is called djree or dj (minimum free

distance) . And the generator matrix is semi infinite matrix - infinite to the right and below. So the free
distance of a convolutional code is defined as the minimum hamming distance between any two words
in the code. (codes start and ends at zero state). Where M is the number of encoders memory units.

r rGo G, GM

" miow,,1[;.,;"t Go G, GM-, GM
drf('f! Go

1",0 l
A convolutional code with free distance drree can correct 1 errors if and only if djree is

greater than 21 . Any nonzero code sequence corresponds to a complete path beginning and ending at the
all zero state. In decoding we starts from all zero state, because initially there is no discrepancy .And
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this process ends at the all zero state, because of all zero tail bits. For this return to the all zero state, doo

= drm = lim d i exists and finite for non catastrophic code. For catastrophic code it may be infinite, as
i400

the all zero state may never be reached.

Unlike block coding , the use of non systematic codes is ordinarily preferred over
systematic codes in convolutional coding. Because ,though from systematic code it is easy to retrieve
information frames but it has lower minimum distance than corresponding nonsystematic code -
correspondingly poorer error correcting ability.

From state diagram 4.9 (b) do=2 ,dl = 3, d2= 4, d3=4, d4=4, ds (a-b-c-a-a-a-a) = 5;
d6 (a-b-c-a-a-a-a-a)=5 . By gaining weight 5 by the path of ds and then again and again moving along
the self loop at the all zero state we can keep the d; = 5 for i ~5 . :. dFee = 5 (2 errors can be
corrected , using formula 2.26 ) . If dJree is larger , more errors can be corrected - so better error
performance.

We may want to determine the error correcting ability of a code. The larger the hamming
distance, the more transmitted bits are in error and less likely that particular event is to be selected in
MLD .The path with the smallest hamming distance away from the all zero path thus represents the most
probable error event.



CHAPTER FIVE: .
. EXPERIMENrALRESUL 1S AND

.RECOMMENDATIONS
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!:i 5.1 : DESIGN OF EXPERIMENTS:
Studies have so far been carried out on Error Control Codes. A thorough study leads to

verification of the concepts learned along with attempts to discover properties. The scope of the current
work spans linear block codes, cyclic codes and convolutional codes. The underlying concepts behind
their formation and construction, their representation, error-correction capabilities and encoding and
decoding algorithms along with some other related topics were covered in previous parts of this thesis. A
solid foundation for experimentation has been laid through these studies. Examination through
experiments is therefore possible using computer programs. This chapter focuses on the experiments
carried out during the current work and their outcomes.

Computer programs have been developed for the purpose of experimentation by taking
representatives from different groups and families of codes. The idea is to develop programs which
implement the representatives of families of codes and examine their performance parameters of interest
in connection with the current work. During the study phase, families of block and cyclic coes were
taken into account. Encoding and decoding of these families of codes have been a major consideration of
the study. The encoding and decoding of both these codes can be done using generator and parity check
matrices. The idea behind this sort of encoding and decoding is to form a codeword of the derived code
by multiplying information vector with generator matrix. This information is transmitted through
channels or store in database. Upon receiving the codeword or retrieval from database, its correctness is
verified by multiplying with parity check matrix. If errors are encountered within correctable range, they
are corrected through a process called syndrome decoding. Since both these families follow the same
procedure, a code that belongs to both of them, i.e. Hamming Code has been taken as representative for
experimentation purpose. Again, there are codes which follow different but specialized procedure in
encoding and decoding although normal methods of encoding and decoding equally apply to them. A
representative from this sort of code, namely Reed Muller code with Reed algorithm for decoding has
been taken as representative.

The programs developed for these codes implement their encoding and decoding and
measure the operations and time requirement in doing so. Therefore an analysis of impact of blocklength
on encoding and decoding of these codes can be made.

!:i 5.2: EffECT OF 13l0CKlENGTH ON ENCODING:
5.2.1 : 'Hamming eodes :

Experiments with different values of m yielding different sizes of generator matrices were
performed. Each value of m represented a different Hamming Code. The time requirements in encoding
for different values of blocklength have been computed. The values are also normalized to represent the
time requirement for carrying equal length information bits. All these figure have been shown in table
5.1. The values indicated in columns dealing with time are some multiple of unit time. They are quoted
for the purpose of comparison. The reason for multiplication by some suitable factor is to make the data
presentable.

From the entries of table 5.1, it is seen that time requirement increases with the increase
in blocklength as expected. However, the normalized time column reveals some interesting information
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Table 5.1 : Effect of block length on Encoding of Hamming Code

M Block Information Time Normalized Time
length n length k (k~/20)

3 7 4 0.11 3.30
4 15 II 0.60 6.55
5 31 26 2.26 10.43

6 63 57 9.06 19.07
7 127 120 36.74 36.74

that if smaller blocks of codeword with smaller information length or information content are
transmitted several times to carry the same amount of information, even then the required time for
decoding is less than larger blocklength. It is to be noted here that all values of m as shown in table 5.1
represent different Hamming Codes each with single error correcting capability. Therefore for example
if a Hamming Code with m=3 is used instead ofm=7, then to carry the same amount of information as in
the case with m=7 the m=3 code has to be transmitted 30 times. As such, 30 single errors can be
corrected against only one error correcting ability with m=7. Therefore, Hamming Codes with smaller
blocklength seem more desirable than longer blocklength in terms of encoding complexity and error
correcting capability. Since Hamming Codes have cyclic property, this observation also makes smaller
blocklength Hamming Codes excellent candidates for being used in interleaved form. The above
mentioned m=3 code can then correct a burst error oflength up to 30.

However this overwhelming performance of smaller blocklength codes have some other
not so attractive aspects too. Using smaller blocklength codes would cause the total transmitted
codeword length to become higher than their larger counterparts if both are meant to carry the same
amount of information.

The above statistics can also be presented graphically as in figure 5.1.

',0",

4

....•......
3

..,.
567

Values olm •
! --+-- Actual Time ..•... Normalized Tillie
1 1

40
35
30

i r ~~I 15

I 10
5.

'1 0Time
I Requirement

I
i

Figure 5.1: Hamming Code: Effect of block length on Encoding
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5.2.2: 'Reed 'Muller eodes :
Experiments with different values of m and r(r<m) yielding different sizes of generator

matrices were performed. Each value of m and r represented a different Reed Muller Code. The time
requirements in encoding for different values of blocklength have been computed. The values are also
normalized to represent the time requirement for carrying equal length information bits. All these figure
have been shown in table 5.2. The values indicated in columns dealing with time are some multiple of
unit time. They are quoted for the purpose of comparison. The reason for multiplication by some suitable
factor is to make the data presentable.

Table 5.2: Effect of blocklength on Encoding of Reed MIIllerCode

m r Block Information No. of errors Actual Time Normalized Time
length. n length. k correctable, / (k=I27)

7 1 128 8 31 0.88 13.79
2 29 15 3.90 17.08
3 64 7 10.55 20.94
4 99 3 19.00 24.37
5 120 1 25.27 26.74
6 . 127 - 27.85 27.85

6 1 64 7 15 0.39 7.08
2 22 7 1.48 8.54
3 42 3 3.46 10.46
4 57 I 5.27 11.74
5 63 - 6.26 12.62

5 I 32 6 7 0.16 3.39
2 16 3 0.55 4.37
3 26 I 1.04 5.08
4 31 - 1.43 5.86

4 1 16 5 3 0.06 1.52
2 II 1 0.22 2.54
3 15 - 0.3.3 2.79

The figures in table 5.2 show that smaller information length codes take less time in encoding- a natural
expectation. Here, however the information length remains unchanged for a particular value of m.
Therefore, information content for a particular blocklength varies with the value of r. The number of
errors that can be corrected increases with the decrease of r for a particular blocklength (i.e. value of m).
In the normalized time column it is seen that if smaller information containing codes are used repeatedly
even for a fixed blocklength, the time requirement for encoding to carry as much information as is
carried by larger information length codes would be smaller. This justifies using smaller values of k (i.e.
smaller values of r) from encoding point of view. Suppose one is to employ encoding for Reed Muller
Code using m=7, n=128, k=120 and t=1. One can use a Reed Muller encoding with m=7, n=128, k=8,
t=31 fifteen times instead to carry the same amount of information but taking less time to encode. The
error correcting ability would then become 31* 15 in 15 blocks of 128 bit codeword. This however
reveals the fact that channel utilization would then become 15 times higher. Thus, though smaller
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Thus, though smaller information length Reed Muller codes are desirable from encoding and. error
correcting ability point of views, they are less attractive when channel capacity is relatively small.

The statistics presented in table 5.2 have been shown graphically in figure 5.2 and figure

5.3.
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Figure 5.2: Effect of block length on Encoding o/Reed Muller Code
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Figure 5.3: Effect of block length on encoding of Reed Muller
Codes(Normalized Time)

~ 5.3: Ef1'£CT OF BtOCI,tENGTH ON DECODING:
5.3.1 : 'Hamming eodes :

Experiments with different values of m yielding different sizes of parity check matrices
were performed. Each value of m corresponds to a different Hamming Code. The time requirements in
decoding for different values of blocklength have been computed. 'The values are also normalized to
represent the time requirement for carrying equal length information bits. All these figures have been
shown in table 5.3. The values indicated in columns dealing with time are some multiple of unit time.
These values are significant for the purpose of comparison. The reason for multiplication by some
suitable factor is to make the data presentable.

{~'-'
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Table 5.3 : Effect of blocklength on Decoding of Hamming Code

M Block Information Time Normalized Time

. length n length k (k~/20)

3 7 4 5 150.00

4 15 11 9 98.20

5 31 26 17 78.46

6 63 57 33 69.47

7' 127 120 65 65..PO

The decoding process involves calculation of the syndrome for the received information
vector, then comparison of the syndrome with the syndrome table is made and upon finding the
syndrome in the syndrome table, the information vector is found. Therefore the process does not involve
equivalent amount of operations all the times. Rather, the syndrome finding process is probabilistic.
Hence the average amount of operations or time requirement has taken into account for the calculations
in table 5.3. Here it is observed that decoding in case of repeated sequence of smaller blocklength
corresponding to information length equal to higher blocklength require more operations than decoding
in case of higher blocklength. Figure 5.4 depicts the scenario.

o
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I

2 3 4 5 6 7 .[
Values of m _ ./

i -+-- Actual tirre --- Normalized lirre I

c
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i'!
.~ 100

l
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Figure 5.4 : Effect of blocklength on Decoding of Hamming
Code

The decoding normalized curve is seen to decrease as block length increases. That is, the
decoding time requirement decreases with higher blocklength. However the merits of smaller block
length as observed in case of encoding should not be overcast by this apparent decoding demerit since
smaller blocklength Hamming Codes provide higher numbers of error correcting capability and if
interleaved, can correct burst errors. Moreover, if decoding involves only syndrome calculation without
search into the syndrome table than the smaller blocklength codes outperform their longer blocklength
counterparts in terms of statistics presented in table 5.3. .
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5.3.2: 'Reed 'Muller eodes :
Experiments with different values of m and r yielding different sizes and numbers of

checksums were performed. Each value of m corresponds to a different Reed Muller Code. The time
requirements in decoding for different values of blocklength or informatipp length have been computed.
The values are also normalized to represent the time requirement for cariying equal length information
bits. All these figures have been shown in table 5.4. The values indicated in columns dealing with time
are some multiple of unit time. These values are significant for the purpose of comparison. The reason
for multiplication by some suitable factor is to make the data presentable.

Table 5,4 : Effect of blocklength on Encoding of Reed Muller Code

M r Block Information No. of errors Actual Time Normalized Time
length, n length. k correctable. t (k=120)

7 \ \28 8 31 384 5760
2 29 15 1024 4237
3 64 7 1568 2940
4 99 3 1840 2230
5 120 I 1920 \920
6 \27 - - -

6 1 64 7 15 160 2743
2 22 7 384 2095
3 42 3 536 153\
4 57 I 592 1248
5 63 - - -

5 I 32 . 6 7 •.64 \280
2 \6 3 '136 1020
3 26 I 172 794
4 31 - - -

4 1 \6 5 3 24 576
2 11 I 44 480
3 15 - - -

The decoding operation has been performed using Reed algorithm. The Reed Muller code
can be decoded using normal syndrome decoding but the specialized Reed algorithm works good here.
The points of interest is that here also smaller blocklength codes have better performance in terms of
operational or timing requirements to correspond to same amount of information. And as usual the no of
errors that can be corrected would be higher in case of using repeated smaller blocklength codes instead
of their larger blocklength counterparts. In fact, using Reed algorithm for decoding involves fixed time
requirement for a particular value of m and r. Here the majority resolver has been assumed to require
equal amount of time for each case and the decoding sequences have been assumed to be available
previously. A point to note is that whenever r =m-I, no errors can be corrected. Therfore, the
corresponding entries have been left blank in table 5.4. The above facts are also represented in figure 5.5
and figure 5.6.
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Figure 5.5 : Effect of blocklength on Decoding of Reed Muller
Code

7000
Q)

E 6000 .
.~
" 5000c-
Q)
II: 4000 -.-m=4Q)

~ 3000 .• -x- •. m=5

"0

__ m=6
Q)

~ 2000 ----M--m=7

'"E 1000
0
Z O.

2 3 4 5 6
Values of r

Figure 5.6: Effect of blocklength on Decoding of Reed Muller
Codes(Normalized Time)

!iM:RECOMMENDATIONS fOR fVTVRE WORK IN RUATED fIUDS:

The current work has dealt with three families of Error Control Codes and examined the
effect of blocklength on encoding and decoding of these codes. Further works in related fields may
examine the behavior of these codes in context of different transmission channels. In case of cyclic
codes interleaving is an interesting property to work with. Therefore, effect of interleaving in different
cyclic codes can be analyzed using computer programs. Performance analysis of Viterbi decoding in
different scenario may also be an interesting area to deal with. Lastly, similar works in case of families
of codes not covered by current work may also be carried out.
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