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ABSTRACT

Sorting is a classical problem in computer science, whereas external sorting is what

is needed in almost every application; whether it be commercial or statistical.

In this thesis a set of important algorithms of external sorting have been thoroughly

studied theoretically and their relative performances have been evaluated by

carefully designing experiments. In these experiments we vary two important

parameters namely, number of files (F) and output to input buffer ratios (BR) t6 find

the best values at which total computational time for sorting is minimum. This study

shows that polyphase merging technique is the best among these algorithms, for any

given BR values and for permissible values of F. It has been further revealed that

for small number of records, the order of merging has little effect on the total

sorting time. However, this is not true as the number of records increases in which

case the order of merging becomes a dominant parameter.

Since balanced merge makes complete passes over all the records, computational

time is piecewise linear with different slopes in different intervals of number of

records with a jump at the end of each interval. Moveover, with the increase in the

number of records slope also increases. In case of polyphase and cascade merging

techniques computational time grows faster than linear curves.
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INTRODUCTION

General:

Sorting is the rearrangement of items into ascending or descending order. It is hard

to imagine using a dictionary if its words were not listed in alphabetical order. In

a similar way, the order in which items are stored in a computer memory (primary

or secondary) has a profound influence on the speed and simplicity of algorithms

which manipulate them.

Let us define sorting a little more clearly, and introduce some terminology

commonly used in this area. Suppose we are given N items

Rl'~'~" .... , RN

to be sorted; we shall call them records. A record is a collection of information

items about a particular entity. For example, a record may consist of information
about a passenger on an airplane flight, or an article sold at a retail distribution

store. A field of a record is a unit of meaningful information about an entity. The

different items of a passenger record may be passenger's name, address, seat

number, and menu restrictions.

A collection of records involving a set of entities with certain aspects in common

and organized for some particular purpose is called a file. In the above case, the
entire collection of N records will be called a file or the collection of all passenger

I



records for the passengers on a particular flight constitutes a file. In a data file, the

field which uniquely identifies a record is called the key field or simply key, Kj.

In the passengers file, individual passengers records can be uniquely identified by

the passenger's name, assuming duplicate names do not occur for a particular flight.

If required, the seat number item can also be used as a key, since seat numbers are

uniquely assigned for a given flight.

It is common practice to order the records in a file according to key. Therefore, if

the passenger's name is selected as the key item, the record for Adams appears

before the record for Chowdhury, which appears before the record of Kato in

lexical ordering by surname. There may be additional information (different fields),

besides the key in a record. This extra information has no effect on the sorting

process except that it remains with the same record.

Mathematically, the goal of sorting IS to determine a permutation

pel) p(2) ..... peN) of the records, which puts the keys in non-decreasing (i. e. ,

increasing or same) order:

Kp(l) ,; Kp(2) ,; ••••• ,; Kp(N)'

Types of Sorting:

Sorting can be classified generally into two types: internal sorting and external

sorting. In internal sorting, the volume of the records to be sorted must be small

enough to hold in the computer's high-speed random access memory at once.

Internal sorting allows more flexibility in the structuring and accessing of the data

and there are many good algorithms for internal sorting. Again, external sorting is
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applicable when there are more records than can be hold in memory at once. In this

situation, sorting is done in a piecemeal fashion and frequent accessing of the
.external storage devices is necessary. But accessing the external devices is very

slow, and as a result external sorting is too time consuming, and external sorting

algorithms show how to live with this stringent accessing constraints.

Importance of the Study:

It is well known that, sorted computer output are more suitable for human

understanding. Sorting is also an aid to searching and it leads to an efficient
searching algorithm. If we only need to search a file once, it is faster to do a

sequential search than to do a complete sort of the file; but if we need to make

repeated searches in the same file, it is wiser to put the records in order.

External sorting is quite different from internal sorting, even though the problem

in both cases is to sort the records of a given file into non-decreasing order of their

keys. The data structures must be arranged so that comparatively slow peripheral

memory devices (disks, drums, tapes etc.) can quickly cope with the requirements
of the sorting algorithms. Because there is a great emphasis on minimizing the
input/output time, comparatively primitive data structures are used for external

sorting. Consequently most of the available internal sorting techniques are

virtually useless for external sorting and it is necessary to consider the whole

question separately.

Due to its slow response time, the efficient storage accessing on external devices is

a subject of concentration. It is usually economical to access a list of information

in sequence from the beginning to end, instead of skipping around at random in the
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list, unless the list is small enough to be held in the high-speed random-access

memory of a computer.

As a very simple example, we can consider the formation of a large data file from

the collected data. Usually the collected data are stored in small internally sorted

files. To form a final data file from these individual files, we have to combine

them. Then to store this final data file for convenient processing, it is necessary to

organize it in a sorted form. But if the volume of the collected data are too large to

hold in the computer's memory (which is usual), then none of the internal sorting

algorithm will be applicable in this situation and external sorting is the only way to

organize the total collected data in a sorted order.

External sorting has been used mostly for business data processing. As a particular

example, let us consider the computerized billing system of a large public utility

company, with tens of thousands of subscribers. The master file of this billing

system would contain a single record for each subscriber. Again each record would

contain several fields, such as subscriber's identification number, name, address,

area code, amount due etc. The very practical size of such a master file would be

several tens of megabytes. During bill collection, transaction files would be

produced to hold transaction records, where each transaction record would contain
subscriber's identification number and amount deposited. Periodically it would be

necessary to update the master file according to transaction records. If both the files

are in random order then it would be very time consuming task to complete the
above mission. But if the files are sorted on the identical key field into the same

order then it is possible to find all the matching entries in one sequential pass

through them, without moving forward and backward. As the master file is large

enough to hold in the random-access memory of a computer, external sorting

routine is necessary to do this ordering.
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For another example, let us consider a file of 8000 records, R1 IS .... Rsooo to sort,

and that each record R; is 40 words long. We have a computer system which can

hold 2000 of these records at once in its high-speed internal memory. Clearly,

none of the internal sorting algorithms will be useful in this situation. One

fairly obvious solution is to start by sorting each of the four sub-files

R1 ••• lSooo, Rwol ... R4000, R400I ••• R6OO(J' R6001 ••• Rsooo' independently, then to

merge the resulting sub-files together. Fortunately, the process of merging uses only

a very simple data structure, namely linear lists which are traversed in a sequential

manner. Hence, merging can be done without difficulty on the least expensive

external memory devices.

There are numerous practical applications of external sorting and undoubtedly it

deserves to be studied seriously. The process just described, internal sorting

followed by "external merging" is very commonly used, and we shall devote most

of our study of external sorting to variations of this theme.

Historical Perspective:

Before making any further comment on external sorting algorithms, it may be

helpful to put things in historical perspective. A search for the origin of today's

sorting techniques takes us back to the nineteenth century (1880), when the first

machines for card sorting were invented by Herman Hollerith, a 20 year old

employee of the Census Bureau of the United States. The story of Hollerith's early

machines and its sorting techniques has been told in interesting details by

Truesdell [26].

The idea of merging goes back to card-walloping machine - the collator, which

was invented in 1938. With its two feeding stations, it could merge two sorted decks
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of cards into one, in only one pass. The technique for doing this was clearly

explained in the first IBM collator manual (April, 1939).

Then computers arrived on the scene and John von Neumann prepared programs for

internal merge sorting in 1945. The details of this interesting development have

been described in an article by Knuth [19].

To organize large databases using early computers made it natural to think of

external sorting. Eckert and Mauchly [6] pointed out that a computer augmented

with magnetic tape devices could simulate the operations of card equipment,

achieving a faster sorting speed. This progress report described balanced two-way

merging (called "collating"), using four magnetic tape units. Mauchly lectured on

"Sorting and Collating" at the special session on computing presented at the Moore

School in 1946, and the notes of his lecture constitute the first published discussion

of computer sorting.

Shortly afterwards, Eckert and Mauchly started a company which produced some

of the earliest electronic computers, the BINAC and the UNIVAC. At this time it

was not at all clear that computers would be economically profitable; computing
machines could sort faster than card equipment, but they cost more. Therefore, the
UNIVAC programmers, led by F. E. Holberton (see [18]), put considerable

effort into the design of first commercial external sorting routines. According to
their estimates, 100 million lO-word records could be sorted on UNIVAC in

9000 hours (i.e., 375 days)!

In July 1951, UNIVAC I was designed with features like block read/write, forward

or backward read/write capability on tapes, and simultaneous reading/writing

computing was also possible.
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Seward [23] introduced the idea of replacement selection to produce initial runs

longer than high-speed internal memory size. Friend [7] remarked on the expected

size of the runs produced by replacement selection. E. F. Moore (see [18]) proved

that average expected run length produced by this method is double the

memory sIze.

The comprehensive paper by Friend [7] was a major milestone in the development

of both internal and external sorting. Although numerous techniques have been

developed since 1956, this paper is still remarkably up-to-date in many respects.

Friend gave careful descriptions of different external as well as internal sorting

techniques.

The three file case of perfect Fibonacci distribution of runs for polyphase merge had

been discovered by Betz [3]. The general pattern for perfect Fibonacci distribution

for polyphase merge was developed by Gilstad [9]. Actually the Fibonacci numbers

of higher order used in polyphase merge was first studied by Schlegel [22].

Sackman [21] suggested the horizontal method of initial run distribution for

polyphase merge to equalize the number of dummy runs on tapes or on files.

The general pattern of cascade merge was actually discovered before polyphase

merge by Betz and Carter [4].

Thesis Organization and Objective:

This thesis compnses seven chapters. Chapter one discusses balanced merge

techniques. The chapter starts with a discussion on preparation of initial

runs - which is a fundamental step in external sorting. Through proper examples,

we show the gradual improvements of the balanced merge algorithm.
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Chapter two discusses polyphase merge, where initial runs are distributed on files

according to perfect Fibonacci numbers of appropriate order. Algorithms are

provided for smoother transition of sorting time for consecutive numbers of initial

runs. Another type of external sorting algorithm called cascade merge is discussed

in detail in chapter three.

Replacement selection algorithm is discussed in chapter four. Through examples and

step by step discussions, the algorithm is presented to produce long initial runs,

which would be longer than the computer's high-speed internal memory capacity.

In chapter five, different practical aspects of external sorting are discussed. Among

different aspects, the factors affecting external sorting time and the techniques to

reduce them are mainly emphasized.

Chapter six is intended to present the experimental results based on the algorithms

discussed so far in the previous chapters. This chapter compares different external

sorting strategies based on the experimental results. In chapter seven we make

conclusion of our findings and recommend some issues for further research in

this direction.

This thesis is an attempt to analyze the performance of external sorting techniques.

Mainly we have concentrated our study on time and space complexity of these

techniques. In external sorting initial runs are distributed on a number of files. The

total sorting time of different algorithms depend on the exact number of files used

in the operation. Thus, number of files can be used as an external sorting parameter

and our purpose is to find out the response of these algorithms under the variation

of this parameter.

8



External sorting is done in a piecemeal fashion and frequent disk access is

necessary. But disk access time is the most significant part of the total time required

for disk input/output and it is necessary to reduce the total disk access time. The

total disk access time can be reduced by allocating input and output buffers in the

computer's high-speed memory. In this case a large amount of data can be read

from disk to buffer or written from buffer to disk at once. Therefore, the total

number of disk accesses can be reduced. Also, it is possible to allocate buffers in

a variety of ways and our aim is to ascertain the behavior of different algorithms

under these variations.

We have designed simulation programs to foresee the response of all these external

sorting techniques with the variations of different sorting parameters and it is hoped

that these programs would be useful to sort any large database. All the simulation

experiments have been carried out on an IBM PC compatible machine having 80486

processor of 32 MHz speed with a 240 megabytes disk space.
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CHAPTER 1

BALANCED MERGE

1.1 Initial Runs:

The general strategy in external sorting is to begin by sorting small batches of

records from a file in internal memory. These small batches or the non-decreasing

sequences of records, which are produced by internal sorting phase, are often called

initial runs or simply runs (also called initial strings or run lists). The size of these

initial runs depends directly on how much internal memory is set aside to perform

the internal sorting. Actually, the initial runs are produced in a piecemeal fashion.

They are stored in a target file from which they are later retrieved and merged

together again to form fewer but larger runs. This process of merging runs to form

fewer but larger runs continues and eventually terminates with the formation of a

single run, which is the required sorted file. Since the number of initial runs

ultimately determines the cost of merging, we would like to find some method of

creating longer and hence fewer initial runs, which would be discussed in detail in

chapter four.

1.2 Sorting by Merging:

Merging means combining two or more ordered files into a single ordered file. For

example, we can merge the two ordered files with elements 337,532,569,658, and
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051, 356, 573 to obtain a single sorted file containing 051, 356, 337, 532, 569,

573, 658. A simple way to accomplish this is to compare the two smallest items

from the two ordered files, output the smallest one, and then repeat the same

process. Starting with

{
337 532 569 658 00

051 356 573 00

we obtain

{
337 532 569 658 00

051
356 573 00

then

. {532 569 658 00

051 337
356 573 00

and so on. An additional key" 00" has been placed at the end of each input file in

this example, so that the merging terminates gracefully.

1.3 Balanced 2-Way Merging:

Perhaps the simplest way to merge initial runs is the balanced 2-way merge. Let us

use four files in this process. During the first phase, non-descending runs produced

by internal sorting phase are placed alternately on Files I and 2, until the input is

exhausted. This phase is called the initial distribution phase. Then we merge the

runs from these two files, obtaining new runs which are twice as long as the

11



original ones; the new runs are written alternately on Files 3 and 4 as they are being

formed. If File I contains one more run than File 2, an extra "dummy" run of

length 0 is assumed to be present on File 2. Then the contents of Files 3 and 4 are

merged into quadruple-length runs recorded alternately on Files 1 and 2. The
.process continues, doubling the length of the runs each time, until only one run is

left (namely the entire sorted file). If S runs were produced during the internal

sorting phase, and if 2k-J < S ,;;2k, this balanced 2-way merge procedure makes

exactly k = r log2 S 1merging passes over all the data.

Let us consider the following sorting problem: we have a file of 5000 records,
RJ Rz •..• Rsooo to be sorted, and that each record Ri is 20 words long (although the

keys Ki are not necessarily this long). We have a computer system which can hold

1000 of these records at once in its high-speed internal memory.

To cope with this situation where 5000 records are to be sorted with an

internal memory capacity of 1000 records, we have to prepare five initial runs

RJ .•• RJOOO' RJOOJ' .. Rzooo' .••.• ,R400J •.• Rsooo by independent internal sorting.
If we consider 2-way merging, the initial distribution phase of the sorting process

places five runs on files as follows:

File I

File 2

File 3
File 4

RJ ..•. RJOOO; RzooJ •••• R:Jooo; R400J •.•• Rsooo

RJOOJ •.•• Rzooo; R:JOOJ •••• R4{)()()

(empty)

(empty)

12
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The first pass of merging then produces longer runs on Files 3 and 4, as it reads

Files I and 2, as follows:

File 3

File 4

R1 •••• Rum; R400I ••.• Rsooo
~OOI .••. R4000

A dummy run has implicitly been added at the end of File 2,. so that the last run

R400I •••. Rsoooon File I is merely copied, on to File 3. The next pass over the data

produces:

File 1

File 2

R1 •••• R4000

R4001 •••• Rsooo

Again that run R4001 .••• Rsooo was simply copied; but if we had started with 8000

records, File 2 would have contained R400I ..•. Rsoooat this point. Finally, after

another phase of merging, R1 •••• Rsooo is produced on File 3, and the sorting is

complete. The total number of records handled during this balanced 2-way merging

(except initial distribution) is 5000+5000+5000 = 15,000.

1.4 Balanced Multi-Way Merging:

Balanced merging can easily be generalized to the case of F files, for any F ;;,3.

We can choose any number P with 1 5: P < F, and divide the F files into two

"banks," with P files on the left bank and F - P files on the right bank. We can

distribute the initial runs as evenly as possible on to the P files in the left bank; then

do a P-way merge from the left to the right, followed by (F- P)-way merge from

right to the left, and so on, until sorting is complete.

13
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In general, if F = 2m, we can divide the files into two banks, with m files on each

bank. In this situation, if S is the total number of runs produced by internal sorting

phase and if m k-1 < S !,m k, then this m-way balanced merge procedure makes

exactly k = r logmS 1 merging passes over all the data. Therefore, by considering the

initial distribution pass, the total number of passes over the data is k+ 1.

Balanced two-way merging is the special case with F = 4 and P = 2. Let us

reconsider the previous example using more files, taking F = 6 and P = 3. The

initial distribution now gives:

File 1

File 2

File 3

R1 •••• R1OOO; Rwol .... R4000
R1OO1 •••• lSooo; R4001 •••• Rsooo
lSOOI ..•. R:Jooo

The first merging pass produces:

File 4

File 5

File 6

R1 .••. R:Jooo

R:JOOI .... Rsooo
(empty)

A dummy run has been assumed on File 3 to do the above merging. The second

merging pass completes the job, placing R1 .••. Rsooo on File 1. In this special case

with F = 6 is essentially the same as F = 5, since the sixth file is used only

when S ",7.

Three-way merging actually requires somewhat more computer processing time than

two-way merging, but this is essentially negligib!e compared to the time needed to

14



read and write. We can get a fairly good estimate of the runmng time by
considering only the total number of records handled during the merging process.

In this three-way merge the given problem required only two passes over the data,

compared to three passes when F = 4, so the merging takes only about two-thirds

as long when F = 6. The total member of records handled during this balance

.three-way merge is 5000+5000 = 10,000.

Balanced merging is quite simple, but if we look more closely, we find immediately

that it is not the best way to handle the particular case treated above. Let us

consider the problem in a little different way by using four working files and doing

two and three-way merging. After initial distribution the file contents would be:

File 1
File 2

File 3

File 4

R1 •••• R1OOO; ~OOI •••• ~ooo; R4001 •••• Rsooo
R1OO1•••• ~ooo; ~OOI"" R4000
(empty)

(empty)

Now doing a two-way merge and handling 4000 records we get:

File 1 R4001 •••• Rsooo
File 2 (empty)

File 3 Rl .... ~
"

File 4 ~OOI •••• R4000 j>r~r

Now we can do a three-way marge to get the sorted output on File 2. The total

number of records handled during this merging process is 4000+5000 = 9000.

,".,~.
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Again we can do the distribution and merging in another way using four files. Let

after initial distribution the contents of the files be:

File 1

File 2

File 3

File 4

R1 .... RuJOO; ~OOI"" R4000

R1OO1 •••• Rwoo; R4001 •••• Rsooo
~OOI •••• ~ooo
(empty)

Doing a three-way merge and handling 3000 records we get:

File 1

File 2

File 3

File 4

~OOI •••. R4000
R4001 •••• Rsooo
(empty)

R1 •.•• R:Jooo

Now we can do a three-way merge to get the sorted output on File 3. The total

number of records handled in this case is 3000+5000 = 8000.

Again, if we wish to do a five-way merging then it is possible to complete the

sorting by handling only 5000 records. In this case we have to distribute the initial

runs on five files and merge them on a sixth file.

These considerations indicate that the balanced merging is not the best merging

technique and it is interesting to look for improved merging patterns. . /

Though in the above example, balanced five-way merging handles only 5000

records whereas balanced two-way merging handles 15,000 records, there is no

guarantee that the five-way merging will require less time than two-way merging.
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In the mergmg process, we have to allocate input and output buffers in the

computer's high-speed internal memory to minimize the number of disk accesses.

Larger buffer size implies smaller number of disk accesses, and hence smaller

merging time. In five-way merging we have to allocate at least six buffers (five for

input and one for output), whereas in two-way merging we need three buffers only.

As the memory is in fixed size, buffers in five-way merging would be smaller than

that of the two-way merging. As a result five-way merging requires more disk

accesses than two-way merging. Again we have seen that five-way merging handles

smaller number of records than that of the two-way merging. Therefore, it is very

difficult to conclude from this information which merging scheme would require less

time. There are more improved merging patterns and buffer allocation techniques,

as well as the techniques to produce long initial runs, which we shall explore

throughout this thesis.

1.4.1 Pseudo Code of Balanced Merging:

Initialize F [ F is the total number of filed

p - IFI2l or P - LFI2J
Initialize TM [TM is total memory]

OFN - 0 [ OFN is output file no] .

Calculate IBS [IBS is input buffer size]

Calculate OBS [OBS is output buffer size]

Calculate RBS [RBS is runs read buffer size]

Open runs file

Set buffer to runs file

Create and open F merge files
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For j = 1 to P
Set input buffer to merge file(P)

[ For initial distribution]

Distribute initial runs on file(l) to file(P) as evenly as possible

CONTROL<- I [If CONTROL = 1, left bank of files is the source of the

merging; otherwise right bank]

Merge:

If(CONTROL = 1)

SFSN <- 1 [SFSN is the source file start no]

SFEN <- P [ SFEN is the source file end no]

TFSN <-P + 1 [TFSN is the target file start no]

TFEN <-F [TFEN is the target file end no]

CONTROL<- 0

else
SFSN <-P + 1
SFEN <- F

TFSN <- I

TFEN <-P

CONTROL<-1

For i = SFSN to SFEN

Set buffer to file(i)

18
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Repeat

For OFN = TFSN to TFEN

Set buffer to file(OFN)

Merge one run from each file(SFSN) to file(SFEN) to

file(OFN)

If there is only one run on the file(OFN) and all source files

reach their end

Print("Sorting complete and output is on file(OFN)");

Exit from the program

until end of all source files is reached

goto Merge.
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CHAPTER 2

POLYPHASE MERGE

2.1 Fibonacci Numbers:

The sequence

0,1,1,2,3,5,8,13,21,34, ... ,

in which each number is the sum of the preceding two, plays an important role in

many algorithms of computer science. The numbers of this sequence are generally

denoted by Fn and are defined as follows:

Fa = 0, F1 = 1, Fn + 2 = Fn + 1 + Fn; n" 0.

Actually the sequence represented by this definition is the 2nd order Fibonacci

numbers.

Again the sequence

0,0, 1,1,2,4,7, 13,24,44, ... ,

is called 3rd order Fibonacci numbers. Here the sequence starts with two O's, and

then a I, and then each number is the sum of the preceding three numbers. In a

similar way we can generate Fibonacci numbers of any order as we shall see in

subsequent sections.
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2.2 Polyphase Merge on Three Files:

Let us consider a balanced merge example using only three files FI, F2 and F3,

where two files is on the left bank and rest on the right bank, i. e., with P = 2 and

F = 3. The merging steps would take the following form:

Step I: Distribute initial runs alternately on files FI and F2.
Step 2: Merge runs from FI and F2 onto F3; then stop if F3contains only

one run.
Step 3: Copy the runs of F3 alternately onto FI and F2, then return to

Step 2.•

.If the initial distribution pass produces S runs, the first merge pass will produce
rS/21 runs on F3, the second will produce rS/41, etc. Thus if, say, 17;; S;; 32, we

will have I distribution pass, 5 merge passes and 4 copy passes. In general, if

S> 1, the number of passes over all the data is 2 rlog2S 1.

The copying passes in this procedure are undesirable, since they do not reduce the

number of runs. Half of the copying can be avoided if we use a two-phase

procedure:

Step I: Distribute initial runs alternately on tiles FI and F2.

Step 2: Merge runs from FI and F2 onto F3; then stop if F3 contains only

one run.

Step 3: Copy half of the runs from F3 onto Fl.

Step 4: Merge runs from FI and F3 onto F2; then stop if F2 contains only

one run.
Step 5: Copy half of the runs from F2 onto Fl. Return to Step I .•
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The number of passes over the data has been reduced to ~ r log2 S 1 + 1., since
2 2

Step 3 and Step 5 do only "half a pass"; about 25 percent of the time has,

therefore, been saved.

The copying can actually be eliminated entirely, if we start with Fn runs on Fl and

Fn_1 runs on F2, where Fn and Fn_1 are consecutive 2nd order Fibonacci numbers.

Let us consider, for example, the case n = 7, S = F" + F"_t = 13 + 8 = 21:

Contents of FI Contents of F2 Contents of F3 Remarks

Phase I: 1,1,1,1,1,1,1,1,1,1,1,1,1 1,1,1,1,1,1,1,1 Initial distribution

Phase 2: 1,1,1,1,1 2,2,2,2,2,2,2,2 Merge 8 runs to F3

Phase 3: 3,3,3,3,3 2,2,2 Merge 5 runs to F2

Phase 4: 5,5,5 3,3 Merge 3 runs to FI

Phase 5: 5 8,8 Merge 2 runs to F3

Phase 6: 13 8 Merge 1 run to F2

Phase 7: 21 Merge 1 run to FI

Here, for example, "3,3,3,3,3" denotes five runs of relative length 3, considering

each initial run to be of relative length I. Second order Fibonacci numbers are

present everywhere in this chart.

Only phases 1 and 7 are complete passes over the data; phase 2 processes only

.16/21 of the initial runs, phase 3 only 15/21, etc., and so the total number of

"passes" comes to (21 + 16 + IS + IS + 16 + 13 +21){21 = Si if we assume that the
7

initial runs have approximately equal length. This three-file case of perfect

distribution of runs had been discovered earlier by Betz [3]. But if we use balanced

merging using three files would require 10 passes over the data for these 21 initial
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runs. Again, the two-phase procedure described would require 8 passes to sort these

21 initial runs.

2.3 Generalized Polyphase Merge:

The idea of polyphase merge can be generalized to F files, for any F ~3, using

(F - I)-way merging. The generalized pattern involves generalized Fibonacci
numbers. Let us consider the following seven-file example by distributing 321 initial

runs:

Initial runs

Fl F2 F3 F4 FS F6 F7 processed

Phase 1: 163 162 160 156 148 132 321

Phase 2: 131 130 128 124 116 632 6x32 =192

Phase 3: lis 114 112 18 1116 616 11x16=176

Phase 4: t7 16 14 218 118 68 21 x8=168

Phase 5: 13 12 414 214 114 64 41 x4=164

Phase 6: II 812 412 212 112 62 81x2= 162

Phase 7: 1611 811 411 211 111 61 161x1=161

Phase 8: 3211 321 x1=321

Here phase 1 is for initial distribution and 163represents 63 runs of relative length

1, etc.; six-way merges have been used throughout. This general pattern was

developed by Gilstad [9], who called it the polyphase merge.

In order to make polyphase merging work as in the above examples, we need to

have a .perfect Fibonacci distribution" of runs on the files after each phase.
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2.4 Rules for Perfect Fibonacci Distribution:

When F = 6, we have the following perfect distribution of runs, from where we

can get the idea about perfect Fibonacci distribution:

Final output

Level Fl F2 F3 F4 FS F6 Total will be on

0 1 0 0 0 0 0 1 F1
1 1 1 1 1 1 1 6 F7
2 2 2 2 2 2 1 11 F6
3 4 4 4 4 3 2 21 F5
4 8 8 8 7 6 4 41 F4
5 16 16 15 14 12 8 81 F3
6 32 31 30 28 24 16 161 F2
7 63 62 60 56 48 32 321 F1
8 125 123 119 111 95 63 636 F7
9 248 244 236 220 188 125 1261 F6

.....

n an bn Cn dn en In tn F(k)

n+ 1 an + bn an + cn an + d~ an+ en a +f. an tn+5an F(k-1) (1)n n
................ . ....

The file F7 will always be empty after initial distribution. The rule for going from

level n to level n+ 1 shows that the condition
(2)

will hold in every level.
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In fact, it can be easily shown from the perfect distribution (I) that

f. = a._I,

e = a +/. = a +an n-l n-l n-l n-2,

d=a +e =a +a +an n-l n-l n-l n-2 n-3,

C =a +d =a +a +a +an n-l n-l n-l n-2 n-3 n-4,

b =a +c =a +a +a +a +an n-l n-l n-l n-2 n-3 n-4 n-S,

a =a +b =a +a +a +a +a +an n-l n-] n-l n-2 n-3 n-4 n-S n-6,

where a = 1 and where we let a = 0 for n = -I -2 -3 -4 -5On"""

The pth order Fibonacci numbers F:;') are defined by the rules

(3)

F(P) = F(P) + F(P) + •••. + F(P)
n n-] n-2 n-p' for n :?p;

F(P) = 0 for•
. Fp~)1= 1.

O$n$p-2;

In other words, we start with p - 1 O's, then ai, and then each number is the sum

of the preceding p values. When p = 2, this is the usual Fibonacci sequence; for

large values of p the sequence was first studied by Schlegel [22].

Equation (3) shows that the number of runs on Fl during a seven-file polyphase

merge is a sixth-order Fibonacci number: a. = F~~5
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In general, if we set P = F - 1, the polyphase merge distributions for F files will

correspond to Pth order Fibonacci numbers in the same way. The kth file gets

F(P) +F(P) +.... +F(P)
n+P-2 n+P-3 n+k-2

initial runs in the perfect nth level distribution, for 1 ,;;k ,;;P, and the total number

of initial runs on all files is therefore

t = P F(P) + (P -1) F(P) +.... +F(P)
n n+P-2 n+P-3 11.-1'

2.5 Polyphase Merge Sorting Algorithm:

This algorithm takes initial runs and disperses them to files one run at a time, until

the supply of initial runs is exhausted. Then it specifies howthe files are to be

merged, assuming that there are F = P + 1 <: 3 files, using P-way merging. File F
may be used to hold the input, since it does not receive any initial runs. In this
algorithm we would deal with "logical file numbers" whose assignment to physical

file varies as the algorithm proceeds. The following tables are maintained:

A[j], l,;;j,;;F

D[j], l,;;j,;;F

FILE[j], l,;;j,;; F

The perfect Fibonacci distribution we are trying for.

Number of dummy runs assumed to be present at

the beginning of logical file number}.

Number of physical file corresponding to logical file

number}.
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2.5.1 Pseudo Code of the Algorithm:

Step 1: [ Initialize]
for j = 1 to F do

A[l1 - 1; 0[11 - 1; FILE[l1 - j

A[F] - 0; O[F] - 0; FILE[F] - F

1-1;j-1

Step 2: [ Input to file j]

Write one run on file number j

. 0[11 - 0[11 - 1

If end of the input file is reached

rewind all files

goto Step 5

Step 3: [ Advance j]

If 0[11 < OU + 1]

j - j + 1; goto Step 2

else if 0[11 = 0
goto Step 4

else

j - 1; goto Step 2

Step 4: [ Up a level]

1- 1+ 1; a - A[l]
for j = 1 to P do

0[11 - a + AU + 1] - A[l1

A[l1 -a + AU + 1]

j - 1; goto Step 2
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Step 5: [ Merge]
If/=O

print("sorting is complete and the output is on FILE[1]");

Exit from the program
else

[ merge runs from FILE[I], .. ,FILE[P] onto FILE[F] until
FILE[P] is empty. Merging process should operate as
follows, for each run merged:]
If 0[11 > 0 for all} = I to P

O[F] .•...O[F] + 1

for} = 1 to P do
0[11 .•...0[11 - 1

else
merge one run from each FILE[ll for all} = 1 to P
provided 0[11 = 0
for} = 1 toPdo

If 0[11 ~ 0
0[11 .•...0[11 - 1

[Thus dummy runs are imagined to be at the
beginning of the file, instead of at the ending]

Step 6: [Oown a level]
I .•...1 - 1

rewind FILE[P] and FILE[F]
FILE[I] .•...FILE[F]; 0[1] .•...O[F]

for} = 1 to P do
FILE[j + 1] .•...FILE[ll
O[j + 1] .•...0[11

goto Step 5 •
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The distribution rule which is stated in Step 3 of this algorithm is intended to

equalize the number of dummies on each file as well as possible. Fig. 2.1.

illustrates the order of distribution when we go from level 4 (41 runs) to level 5 (81

.runs) in a seven-file polyphase merging. If for example, there were only 61 initial

runs, all runs numbered 62 and higher would be treated as dummies. The runs are

actually being written at the end of the file, but it is best to imagine them being

written at the beginning, since dummies are assumed to be at the beginning ..
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F 1 Immmmmmmmm::mm::m::::m:m::mmmm::::143 47 52 57 63 69 75 81 1

F2 Immmm:m::m:m:mm::mm::m:mm:::::mm:::m142 46 51 56 62 68 74 801

F3 1:mmmm::m::mm::m::::m::::m:::::mmm:mmm145 50 55 61 67 73 791

F4 I mm:m::m:::mm::m:mmmmm::::m::::m:144 49 54 60 66 72 781

F 5 I :mm:::::mm::m::::::mmmmm:mm148 53 59 65 71 771

F6 Imm::m:mmm::mm::::158 64 70 761._------
Beginning of file

Fig. 2.1 The order in which runs 42 through 81 are distributed on files, when

advancing from level 4 to level 5 of a seven-file case of polyphase merge.

Shaded areas represent the first 41 runs which were distributed when level 4

was reached.
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CHAPTER 3

CASCADE MERGE

3.1 Development of Cascade Merge:

Another basic pattern, called the "Cascade merge," was actually discovered before

polyphase. A cascade merge, like polyphase, starts with a "perfect distribution" of

initial runs on files, although the rule for perfect distribution is somewhat different

from those of polyphase merge. The general pattern of cascade merge was

developed by Betz and Carter [4].

Let us consider an example of cascade merge with five files and 707 initial runs.

The file contents after initial distribution and different phases of merge are as

follows:

Fl F2 F3 F4 F5

Initially: 1246 1216 1160 185

Phase 1: 1161 1131 175 485

Phase 2: 186 156 375 485

Phase 3: 130 256 375 485

Phase 4: 130 256 375 485

Here 1246 stands for 246 runs of relative length 1, etc. Each line in the above table

represents a partial pass over the data. Phase 1, for example, is obtained by doing
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a four-way merge from Fl, F2, F3, F4 to F5, until F4 is empty (this puts 85 runs

of relative length 4 on F5). Phase 2 is obtained by doing a three-way merge from

Fl, F2, F3 to F4. Similarly a two-way merge to F3, and finally a one-way merge

(copying operation) from Fl to F2, to obtain subsequent phases.

Now if we do a four-way merge to Fl, then three-way merge to F2. and so on, we

will obtain the following file contents at different phases:

Fl F2 F3 F4 F5

Initially: 130 256 375 485

Phase 1: 1030 226 345 455

Phase 2: 1030 926 319 429

Phase 3: 1030 926 719 410

Phase 4: 1030 926 719 410

To complete the merging, we have to repeat the same process, until a single run is

produced. We can show the whole process in a more compact form in the following

way:

Initial runs

Fl F2 F3 F4 F5 processed

Phase 1: 1246 1216 1160 185 707

Phase 2: 130* 256 375 485 707

Phase 3: 1030 926 719 410* 707 C.
Phase 4: 104* 197 269 3010 707

Phase 5: 854 753 562 301* 707

Phase 6: 851* 1601 2161 2161 707

Phase 7: 7071 707
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It is clear that the copying operations are unnecessary, and they could be omitted.

Actually, however, in five-file case this copying takes only a small percentage of

the total time. The items marked with an asterisk in the above table are those which

were simply copied. Only 225 of the 4949 (=707x7) runs processed are of this

type. Most of the time is devoted to four-way and three-way merging.

It is not hard to derive the "perfect distribution" for a cascade merge, with five files

they are:

Level Fl F2 F3 F4 Total

0 I 0 0 0 0
1 1 I I 1 4

2 4 3 2 I 10
3 10 9 7 4 30
4. 30 26 19 10 85
5 85 75 56 30 246
6 246 216 160 85 707
7 707 622 462 246 2037

n
n+l

an
a +b +c +dn n n n

a+b+c+dn n n n

3.2 Initial Distribution of Runs:

When the actual number of initial runs is not perfect, we can insert dummy runs as

usual. A superficial analysis of this situation indicates that the method of dummy

run assignment is immaterial, since cascade merging operates by complete passes.
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If we have 707 initial runs, each record is processed seven times as in the above

example, but if there are 708 we must apparently go up a level so that every record

is processed eight times. Fortunately, this abrupt change is not actually necessary.

David E. Ferguson (see[18]) has found a way to distribute initial runs so that many

of the operations during the first merge pass reduce to copying the contents of file.

When such copying relations are by passed by simply changing "logical" file

numbers relative to the "physical" file numbers, we obtain a relatively smooth

transition from level to level.

Ferguson's method of distributing runs to files can be illustrated by considering the

process of going from level 4 to level 5 in above perfect distribution. Assume that

"logical" files (FI, .. ,F4) contain respectively (10, 19, 26, 30) runs, and that we

want eventually to bring this up to (85, 75, 56, 30). The procedure may be

summarized as follows:

Add to FI Add to F2 Add to F3 Add to F4

Step (I, I) 19 0 0 0

Step (2, 2) 7 26 0 0

Step (2, I) 19 0 0 0

Step (3, 3) 4 4 30 0

Step (3, 2) 7 26 0 0

Step (3, I) 19 0 0 0

Here we first put 19 runs on Fl, then (7, 26) on Fl and F2, etc.
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3.3 Cascade Merge Sorting Algorithm:

The algorithm takes initial runs and disperses them to files, one run at a time, until

the supply of initial runs is exhausted. Then it specifies how the files are to be

merged, assuming that there are F ~ 3 files, using at most (F - I)-way merging and

avoiding unnecessary one-way merging. The following table are maintained:

A[j], 1 ~ j ~F

AA[j], 1 ~j ~F

D[j], 1~j ~ F

FILE[j], 1~j~F:

The perfect cascade distribution we have most recently

reached.

The perfect cascade distribution we are striving for.

Number of dummy runs assumed to be present on

logical file number j.
Maximum number of dummy runs desired on logical

file number j.

Number of the physical file corresponding to logical

file number j.

3.3.1 Pseudo Code of the Algorithm:

Step 1: [ Initialize]

for k = 2 to F do

A[k] <- 0; AA[k] <- 0; D[k] <- 0

A[I] <- 0; AA[I] <- I; D[I] <- I

for k = I to F do

FILE[k] <- k

i <- F - 2; j <- I; k <- I

I <- 0; m <- 1; goto Step 5
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[This maneuvenng is one way to get everything started, by

jumping right onto the inner loop with appropriate settings of the

control variables]

Step 2: [ Begin new level]

[ We have just reached a perfect distribution, and since there is

more input we must get ready for the next level]

1-1+1
for k = 1 to F do

A[k] - AA[k]

. for k = 1 to F - 1 do

AA[F - k] - AA[F - k + 1] + A[k]

for k = 1 to F - 1 do

temp[k] - FILE[k]

for k = 1 to F - 1 do

FILE[F - k] - temp[k]

for k = 1 to F do

D[k] - AA[k + 1]

i-I

. Step 3: [ Begin ith sub-level]

}-i

[The variable i and} represents .Step (i,})" in the example shown

previously to go from level 4 to level 5 of perfect distribution]

Step 4: [ Begin Step(i,]}]

k - }; m - A[F - } - 1]

lfm=Oandi=}
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i <- F - 2; goto Step 3

Ifm = Oandi~}

goto Step 2
[ Variable m represents the number of runs to be written onto

FILE[k]; m = 0 occurs only when I = 1]

Step 5: [Input to FILE[kj]

If m 5: 0

goto Step 6
Write one run on FILE[k]
D[k] <- D[k] - 1

If input finished

rewind all the files

goto Step 7

Step 6: [ Advance]

m<-m-l

Ifm>O

goto Step 5

else
k<-k-l

Ifk>O

m <- A[F - } - 1] - A[F - )1
goto Step 5

else
}<-}-l

If} > 0
goto Step 4
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else

i-i+l

Ifi<F-I

goto Step 3

else
goto Step 2

Step 7: [ Prepare to merge]
[ At this point the initial distribution is complete, and the A, AA,

D, and FILE tables describes the present states of the files]

for k = 1 to F - 1 do

M[k] - AA[k + I]

FIRST - I
[Variable FIRST is non-zero only during the first merge pass]

Step 8: [Cascade]

Ifl=O

print("sorting is complete and the output is on FILE[I]");

Exit from the program

else
for p = F - 1 to I by -I do

a p-waymerge from FILE[I], . . . ,FILE[P] to

FILEfp + 1] in the following way:

Ifp=1

[simulation of a one-way merge by simple

interchange]

rewind FILE[2]

FILE[I] - FILE[2]
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else if FIRST = 1 and Dfp - 1] == Mfp - 1]
[simulation of a p-way merge by simple
interchange]

FILEfp] - FILEfp + 1]

for k = 1 to P - 1do

D[k] - D[k] - Mfp - I]

M[k] - M[k] - Mfp - 1]

else

for k = 1 toP - 1 do

M[k] - M[k] - Mfp - 1]

for} = 1 to p do

if D[ll < Ml71
merge one run from each FILElll and

put the output on FILEfp+ 1]

for} = 1 top do

if Dill > Mill

Dill - Dl71- 1
continue merging in this way until FILEfp] is empty

Step 9: [ Down a level]
[-[-I

FIRST - 0
for k = 1 to F do

temp[k] - FILE[k]
for k = 1 to F do

FILE[F - k + 1] - temp[k]
[At this point all D's and M's are zero and will remain so]

goto Step 8 •

39

.C/ i



J

CHAPTER 4

REPLACEMENT SELECTION

4.1 Tree Selection Sorting:

This is an important internal sorting technique, based on the idea of repeated

selection. The principle of tree selection sorting are easy to understand in terms of

matches in a typical ~knock-outtournament." Consider, for example, the result of

the ping-pong contest shown in Fig. 4.1; where Q, R, S, T, U, V, Wand X are the

names of the eight players. Here Q beats Rand S beats T, then in the next round

S beats Q, etc.

. Fig. 4.1 shows that S is the champion of the eight players, and 8 - 1 = 7 matches
(i. e., comparisons) were required to determine this fact. U is not necessarily be the

second-best player; any of the people defeated by S, including the first-round loser

T, might possibly be the second best. We can determine the second-best player by

having T play Q, and the winner of that match plays U; only two additional matches
are required to find the second-best player, because of the structure we have

remembered from the earlier games.

In general, we can "output" the player at the root of the tree, and replace him/her

by an extremely weak player. Substituting this weak player means that the original

second-best player will now be the best, so he/she will appear at the root if we
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Fig. 4.1 A ping-pong tournament in tree form.
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recalculate the winner in the upper levels of the tree. For this purpose only one path

in the tree must be changed. If N is the number of players in the tournament, less

than rlog2 Nl further comparisons are needed to select the next-best player.

4.2 Tree form of Multi-Way Merging:

Let us assume that we have been given P ascending runs, i.e., sequences of records

whose keys are in non-decreasing order. The obvious way to merge them is to look

at the first record of each run and to select the record whose key is the smallest.

This record is transferred to the output and removed from the input, and the process

is repeated. At any given time we need to look at only P keys (one from each input

run) and select the smallest. If two or more keys are smallest, an arbitrary one is

selected.

When P is not too large, it is convenient to make this selection by simply doing

P - 1 comparisons to find the smallest of the current keys. But when P is, say, 8

or more, we can save work by using selection tree. For the case of selection tree

only about log2 P comparisons are needed each time, once the tree has been setup.

Consider, for example, the case of four-way merging, with a two-level selection

tree:

Step I: 237
{

237 653 00

237
320 987 00

{
304 576 00

304
762 00
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Step 2: 237 304
{
653 00

320
320 987 00

{
304 576 00

304
762 00

Step 3: 237304 320
{
653 00

320
320 987 00

{
576 00

576
762 00

Step 8: 237 304 320 576 653 762 987 00

An additional key .00", which is assumed to be higher than any actual key, has

been placed at the end of each run. in this example, so that merging terminates

gracefully. Since external merging generally deals with very long runs, the addition

of records with 00 keys does not add substantially to the length of the data or to the
amount of work involved in merging and such extra records frequently serve as a

~
useful way to delimit the runs on a file.

Each step after the first in the above process consists of replacing the smallest

element by the succeeding element in its run, and changing the corresponding path

in the selection tree. Thus the three positions of the tree which contain 237 in Step 1

43



are changed in Step 2; the three positions containing 304 in Step 2 are changed in

Step 3, and soon. The process of replacing one key by another in the selection tree

is called replacement selection. From one standpoint, we can look at this four-way

merge as equivalent to three two-way merges performed concurrently.

4.3 A Tree of Losers:

Fig. 4.2 shows the complete binary tree with 8 external (square) nodes and

7 internal (circular) nodes; the external nodes have been filled with keys and the

internal nodes have been filled with the .winners" if the tree is regarded as a

tournament to select the smallest key. The smaller numbers above each node show
the traditional way to allocate consecutive storage positions for complete binary tree.

When the smallest key, 07, is to be replaced by another key in the selection tree of

Fig. 4.2, we will have to look at the keys 24, 17 and 44, and no other existing

keys, in order to determine the new state of the selection tree. Considering the tree

as a tournament, these three keys are the losers in the matches played by 07. This
suggests that what we really ought to store in the internal nodes of the tree is the

loser of each match, instead of the winners; then the information required for

updating the tree is readily available.

Fig. 4.3 shows the same tree as Fig. 4.2, but with the losers represented instead of

the winners. An extra node number has been appended at the top of the tree, to
indicate the champion of the tournament. Actually, each key except the champion

is a loser exactly once, so each key appears once in an external node and once in

an internal node. In practice, the external nodes at the bottom of Fig. 4.3 will

represent fairly long records stored in computer memory, and the internal nodes will

represent pointers to those records.
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Fig. 4.2 Eight keys in binary tree form to select the smallest One.
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Fig. 4.3 Same keys as Fig. 4.2, but the losers are shown instead of the

winners; the champion appears at the very top of the tree. ~,
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4.4 Initial Runs by Replacement Selection:

The technique of replacement selection can be used also in the first phase of

external sorting, if we essentially do a P-way merge of the input data with itself.

In this case we take P to be fairly large, so that the internal memory is essentially

filled. When a record is output, it is replaced by the next record from the input. If

the new record has a smaller key than the one just output, we cannot include it in

.the current run; but otherwise we can enter it into the selection tree in the usual

way, and it will form part of the run currently being produced. Thus the runs can

contain more than P records each, even though we never have more than P records

in the selection tree at any time. Following table illustrates this process for P = 5;

numbers in the parenthesis are waiting for inclusion in the following run.

EXAMPLE OF A FIVE-WAY REPLACEMENT SELECTION
In memory At output

514 631 212 647 186 186
514 631 212 647 978 212
514 631 334 647 978 334
514 631 925 647 978 514
992 631 925 647 978 631
992 (626) 925 647 978 647
992 (626) 925 739 978 739
992 (626) 925 (046) 978 925
992 (626) (582) (046) 978 978
992 (626) (582) (046) (845) 992
(767) (626) (582) (046) (845) (end of run)
767 626 582 046 845 046
767 626 582 590 845 582
767 626 (312) 590 845 590

and so on.
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This important method of forming initial runs was first described by Harold

H. Seward (see [18]), who argued that the runs would contain more than 1.5P

records when applied to random data. E. H. Friend (see [18]) remarked that "the

expected length of the sequences produced eludes formulation but experiment

suggests that 2P is a reasonable expectation."

A clever way to show that 2P is indeed the expected run length was discovered by

E. F. Moore (see [18]), who compared the situation to a snowplow on a circular
track. Consider the situation shown in Fig. 4.4; flakes of snow are falling uniformly

on a circular road, and a lone snowplow is continually clearing the snow. Once the

show has been plowed off the road, it disappears from the system. Points on the

road may be designated by real numbers x, 0 :s:x < 1; a flake of snow falling at

position x represents an input record whose key is x, and the snowplow represents

the output of replacement selection. The ground speed of the snowplow is inversely

proportional to the height of snow it encounters, and the situation is perfectly

balanced so that the total amount of snow on the road at all times is exactly P. A

new run is formed in the output whenever the plow passes point O.

After this system has been in operation for a while, it is immediately clear that it

will approach a stable situation in which the snowplow runs at constant speed

(because of the circular symmetry of the track). This means that the snow is at
constant height when it meets the plow, and the height drops off linearly in front

of the plow as shown in Fig. 4.5. It follows that the volume of snow removed in

one revolution (viz the run length) is twice the amount present at anyone time

(viz P).

In many commercial applications the data is not completely random, it already has

a certain amount of existing order. Therefore, the runs produced by replacement
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Fig. 4.4 A snowplow clearing the snow on a circular road.
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selection will tend to contain even more than 2P records. As the time required for

external merge sorting is largely governed by the number of runs produced by the

initial distribution phase, so that replacement selection becomes specially desirable;

other types of internal sorting would produce about twice as many initial runs

because of the limitations of memory size.

4.5 Replacement Selection Algorithm:

Let as now consider the process of creating initial runs by replacement selection in

detail. This algorithm incorporates a nice way to initialize the selection tree. The

principal idea is to consider each key as a pair (S, K), where K is the original key
and S is the run number to which this record belongs. When such extended keys are

lexicographically ordered, with S as major key and K as minor key, we obtain the

output sequence produced by replacement selection.

This algorithm uses a data structure containing P nodes to represent the selection

tree; the jth node X(J1 is assumed to contain c words beginning in
LOc(Xvl) = I...o+ cj, for 0 ,;;.j < P, and it represents both internal node number
j and external node number P + j in Fig. 4.3. There are several named fields in

each node:

KEY -

RECORD=

LOSER -

RN -

FE -
FI -

the key stored in this external node;

the record stored in this external node (including KEY as a

sub-field);
pointer to the "loser" stored in this internal node;

run number of the record pointed to by LOSER;

pointer to internal node above this external node in the tree;

pointer to internal node above this internal node in the tree.
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For example, when P = 8, internal node number 3 and external node number 11

of Fig. 4.3 would both be represented in X[3], by the fields KEY = 44,

LOSER = Lo + lOe (the address of external node number 13), FE = Lo + 5e,

FI = Lo + Ie.

.The algorithm reads records sequentially from an input file and writes them

sequentially onto an output file, producing RMAX runs whose length is P or more

(except for the final run). There are P ,,2 nodes, X[O], ... ,X[P-l] having fields

as described above.

4.5.1 Pseudo Code of the Algorithm:

Step 1: [ Initialize]

RMAX Eo-- 0; RC Eo-- 0; RQ Eo-- 0

LASTKEY Eo-- 00; Q Eo-- LOC(X[O])

[ RC is the number of the current run and LASTKEY is the key of

the last record output. The initial setting of LASTKEY should be

larger than any possible key.]

For j = 0 to P do

J Eo-- LOC(X[J1); LOSER(J) Eo-- J; RN(J) Eo-- 0

FE(J) Eo-- LOC(X[ L(p + j)/2J ])

FI(J) Eo-- LOC(X[ [j/2J ])

[The settings of LOSER(J) and RN(J) are artificial ways to get the

tree initialized by considering a fictitious run number 0 which is

never output.]
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Step 2: [ End of run?]

IfRQ = RC
goto Step 3.

[Otherwise RQ = RC + I and we have just completed run

number RC; any special actions required by merging pattern for

subsequent passes of the sort would be done at this point.]

IfRQ > RMAX
print("initial run preparation complete")

Exit from the program

else RC +- RQ.

Step 3: [ Output top oftred
[ Now Q points to the "champion" and RQ is its run number]

IfRQ ~ 0
output RECORD(Q); LASTKEY +- KEY(Q)

Step 4: [Input new record]

If end of the input file is reached
RQ +- RMAX + I; goto Step 5

else
RECORD(Q) +- next record from the input file

IfKEY(Q) < LASTKEY [so that this new record does not belong

to the current run]
RQ +- RQ + I

ifRQ > RMAX
RMAX<-RQ
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Step 5: [ Prepare to update]

[Now Q points to a new record, whose run number is RQ]

T •....FE(Q)

[ T is a pointer variable which will move up the tree]

Step 6: [ Set new loser]

If (RN(T)<RQ) or «RN(T)=RQ) and

(KEY(LOSER(T» < KEY(Q» )

LOSER(T) - Q; RN(T) - RQ

[ variables Q and RQ keep track of the current winner and

its run number]

Step 7: [Move up]

If T = LOC(X[l])

goto Step 2

else

T •....FI(T)

goto Step 6 •
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CHAPTER 5

PRACTICAL CONSIDERATIONS

5.1 External Storage Devices:

All the information that is processed by a computer should not reside in computer's

. costly high-speed internal or main memory. There are large volumes of data and

computer usable information, that are commonly stored in computer's external or

secondary memory as special entities calledfiles.

Any location in main memory can be accessed very quickly. A typical access time

of any location in main memory is less than one microsecond. Main memory

provides for the immediate storage requirements of the central processor for the
execution of programs, including users programs, assemblers, compilers and

supervisory routines of the operating system.

The storage capacity of main memory is limited by two major factors - the cost

of main memory and the technical problems in developing a large-capacity main

memory. The storage requirements for programs and the data on which they operate

exceed the capacity of main memory in virtually all computer systems. Therefore,

it is necessary to extend the storage capabilities of a computer by using devices

external to the main memory.
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An external storage device may be loosely defined as a device other than main

memory on which information or data can be stored and from which the information
can be retrieved for processing at some subsequent point in time. External storage

devices have a larger capacity and are less expensive per bit of information stored

than main memory. The time required to access information, however, is much

greater for these devices.

The most common external storage devices are magnetic tapes, drums and disk

units. The first compact external storage medium to be widely used was magnetic
tape. In early days external sorting was done on magnetic tapes. Though they were

cheapest form of external bulk storage of data, they were not fast enough for on-line

input output operations. Therefore, soon they were replaced by magnetic disk

devices. Again, the maximum storage capacity for magnetic drum devices is limited

and drums have been declining in popularity primarily due to the success of

magnetic disk devices. Disk devices provide relatively low access time and

high-speed data transfer.

5.2 Magnetic Disk Packs:

The magnetic disk packs consists of a number of metal platters which were stacked

on top of each other on a spindle. The upper and lower surfaces of each platter are

coated with ferromagnetic particles that provide an information storage medium.
The surfaces of each platter are divided into concentric bands called tracks. Again,
track is further subdivided into sectors, which are the addressable storage units.

Information is transferred to or from a disk through read/write heads. Each

read/write head floats just above or below the surface of a disk, while the disk is

rotating constantly at a high speed.
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The storage area on the disk to or from which data can be transferred without

movement of the read/write heads is termed as cylinder or seek area. Hence,

cylinder is a set of vertically aligned tracks which reside on the platters of a disk.

Disk storage devices are the most versatile storage devices available. They can

provide large capacity and relatively fast access time and satisfy the requirements

of most computer systems.

5.3 Disk I/O Time:

The amount of time required to read or write a disk file is essentially the sum of

three quantities:

Seek time: Disk storage can be viewed as consisting of consecutively ,

numbered cylinders. A seek is a movement of the read/write head to locate

the cylinder in which a'particular track resides and the seek time is the time

to move the access arm to the proper cylinder. The time for a seek is the

most significant delay when accessing data on a disk.

Latency time: In disk units there is a rotational delay or latency in waiting

for the disk surface to rotate to a sector, where a data transfer can
commence. In other wards, latency time is the rotational delay until the

read/write head reaches the right spot to read or write data.

Therefore, the disk access time associatedwith a particular I/O operation can
.......-.-.,...•..-"1

be expressed as the sum of the seek time and the latency time. ,,'
"
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Table 5.1 Characteristics of Magnetic Disk Packs:

System IBM DEC Commodore

Model 3330 3380 RM80 09090

Usable surfaces/unit 19 15 7 6

Tracks/surface 404 885 1,122 153

Sector size (chars) variable variable 512 256

Chars/track 13,030 47,476 15,360 8,192

Chars/unit (megabytes) 100 630 124 9.5

Avg. seek time (ms) 30 16 25 153

Avg. latency time (ms) 8.3 8.3 8.3 8.3

Transmission rate (chars/ms) 806 3,000 1,212 500

Transmission time: The transmission time, also called flow time, is the time
to read or write the record or series of records (as dictated by the I/O

operation), given that the heads are positioned over the disk location of the

first record to be read or written. The transmission time depends directly on

how fast the disk rotates.

Therefore, the total time to complete a disk operation is the sum of three

components i.e. the seek time, the latency time and the transmission time.
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The characteristics of a few representative magnetic disk units are summarized in

Table 5.1.

5.4 Factors Affecting External Sorting Time:

External sorting time depends on many factors, such as seek time, latency time and

transmission time of magnetic disks, and computer's main memory capacity,

characteristics of the sorting algorithm, number of files used for merging or sorting.

operation, number of initial runs to be processed, number of passes required over

the data, speed of the computer etc.

5.4.1 Effect of Disk I/O Time:

We know that external sorting is done in a piecemeal fashion and frequent disk

access is necessary. But it is apparent from Table 5.1 that disk access time (sum of

the seek time and the latency time) is the most significant part of the total time

required for disk input/output. Calculation shows that one disk access time is almost

equivalent to 30 - 50 kilobytes of information transmission time.

The influence of disk access time can be clearly explained with the help of an

example. Let it is required to write 100 kilobytes of information to a disk file. For
this purpose, we consider an IBM 3380 magnetic disk pack, the characteristics of

which are shown in Table 5.1. We can write this 100 kilobytes of information in

a single disk access or in multiple disk accesses. Thus, the total disk access time

would be different, depending on the number of disk accesses required. But the total

transmission time would be remain constant, irrespective of the number of disk

accesses. For different writing strategies, the total time required to write this 100

kilobytes of information can be calculated as follows.
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Total transmission time (which is always constant)

= 100x 1024x _,_1_ milliseconds
3000

= 34 milliseconds

Total writing time (if 1 byte of information is written at once)

= 100x1024(16+8.3)+34 milliseconds

== 2488320+34 milliseconds

= 41.5 minutes

Total writing time (if 1 kilobyte of information is written at once)

= 100(16+8.3)+34 milliseconds

= 2430+34 milliseconds

= 2.464 seconds

Total writing time (if 100 kilobytes of information are written at once)

= 16+8.3+34 milliseconds

= 58.3 milliseconds

In this example, 99.99, 98.62 and 41.68 percent of total writing time is spent for

disk accesses respectively, for the three strategies of disk writing shown above. If .

we consider the case of reading in place of writing then a similar timing values

would also appear. Thus disk access time is an important factor for disk

input/output operations. Again, most of the external sorting time is spent for disk

operations. Therefore, we can conclude that disk access time is one of the major

factor which affect the external sorting time.
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Data transmission rate of the magnetic disk have also influence on the external

sorting time. Faster the data transmission rate, smaller would be the external sorting

time.

5.4.2 Effect of Number of Initial Runs:

External sorting time also depends on the number of initial runs produced by

internal sorting phase. We have seen previously that if S runs were produced during
the internal sorting phase, and if 2k-1 < S S 2k, then balanced 2-way merge

procedure makes exactly k = r logz S1 merging passes over all the data. Also, if
mk-l < Ssm k, then m-way balanced merge procedure makes exactlyk = r logm S 1
merging passes over all the data. Again, asthe number of merging passes increases,
the amount of data handling would also increase. Similarly, for the case of

polyphase and cascade merging also, the amount of data handling would also

increase with the increase in the number of initial runs.

We can more easily express the fact with the help of an example. Suppose we want

to sort a large data file. If 50 initial runs were produced from this data file by

internal sorting phase, then using a 4-way balanced merge procedure, it would

require three merging passes over all the data. But if 75 initial runs were produced
by internal sorting phase then, the same 4-way balanced merge procedure would

require four merging passes over all the data. Therefore, for the same data file, the

number of passes over the data may vary due to the change in the number of initial

runs produced. Thus, we can establish that the total amount of data to be handled
by external sorting routine would increase with the increase in the number of initial

runs produced by internal sorting phase, resulting an increase in the external sorting

time.
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5.4.3 Effect of Algorithms:

Characteristics of the algorithms have also influence on the external sorting time.

Balanced merge algorithm makes complete merging passes over all the data, while

polyphase and cascade merge algorithms make partial merging passes over the data.

As balanced merge algorithm make always completepasses over the data, therefore,

it is not always possible to get smooth transition for sorting time for consecutive

number of runs. But, it is almost always possible for the case of polyphase and

cascade merge algorithms, because these algorithms sometimes make partial

merging passes over the data depending on the number of initial runs distributed.

Let us consider a 3-way balanced merge example to show that for the case of

balanced merging, it is not always passible to get smooth transition for sorting time

for consecutive number of runs. Suppose, we have 27 initial runs, which would

require three merging passes over all the data, for this 3-way balanced merging.,
The number of runs handled during this merging process is 81 (= 27 x 3). But, if

we have 28 initial runs, then the number of merging passes over all the data would

be four and the number of runs handled during this merging passes is
112 (=28x4). For the case of 29 initial runs, the number of runs handled is
116 (=29x4) and for the case of 26 initial runs, the number of runs handled is

78 (=26x3).

Summarizing, we can write that for the case of 26, 27, 28 and 29 initial runs, the

number of runs handled by 3-way balanced merge routine is 78, 81, 112 and 116

respectively. Here it is observed that, as the number of initial runs changes from 27

(a power of 3) to 28 the number of runs handled have abruptly changed from 81 to

112. But for the other two cases (26 to 27 and 28 to 29) the changes in the number

of runs handled is relatively small. But for the case of polyphase and cascade merge
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algorithms, the above type of abrupt change in the number of initial runs handling

can be avoided because these algorithms use partial passes over the data.

Actually, for an m-way balanced merge algorithm, there would be an abrupt change

in the number of initial runs handled by sorting routine, when the number of initial

runs to be processed by the sorting routine cross the number m x, where x is any

positive integer.

Again, merging time is proportional to the number of initial runs handled by the

sorting routine. Therefore, we can conclude that for polyphase and cascade merge

algorithms the external sorting time changes smoothly for consecutive number of

initial runs, but for balanced merge algorithm external sorting time do not change

smoothly. This conclusion indicates that external sorting time also depends on the

sorting algorithm.

5.4.4 Effect of Order of Merging:

External sorting time depends on the number of files used in merging operation. For

an easy explanation of this fact, let us define a new term called order of merging.

The order of merging is the number of data items that are compared and then

merged in a merging operation.

To explain the dependence of external sorting time on the order of merging, let us

consider a simple example. Suppose 100 initial runs are given and it is required to

merge them. We can easily merge this runs by simply doing a 100-way merging.

But to perform a 100-way merging, we have to allocate 101 buffers (100 for input

and 1for output) in computer's memory. As computer's allocable memory is always

limited is size, therefore, larger the number of buffers, smaller would be the
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individual buffer size, results larger number of disk accesses, which increase the

total external sorting time.

But if we perform a 2-way balanced merging, the only three buffers (two for input

and one for output) are required and the buffers would be relatively many times

larger than those of the lOO-way merging. Therefore, the number of disk accesses

would be reduced drastically and at the first glance, it may be natural to think that

external sorting time would also be accordingly diminished.

But actually the fact is different. In IOO-way merging, only one merging pass is

required over all the data, while in 2-way balanced merging, seven complete passes

over all the data is required. Therefore, in IOO-way merging, smaller would be the

number of initial runs handling but larger would be the number of disk accesses;

while in balanced 2-way merging, larger would be the number of initial runs

handling but smaller would be the number of disk accesses. And it is difficult to

establish, which merging scheme would require smaller amount of time. But it may

conclude that the order of merging is a factor which affect the external sorting time.

5.4.5 Effect of Computer's Speed:

The computational speed of the computer have also influence on the external sorting

time. But practically, most of the external sorting time is spent for disk input and

output operations and an insignificant percentage of total sorting time is spent for

internal computation. Therefore, computational speed of the computer is not a

seriously considerable factor for external sorting time estimation. But for a speedy

computer, the sorting time would be diminished.
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5.5 Techniques to Reduce External Sorting Time:

The major techniques to reduce external sorting time is to maintain an appropriate

buffering strategy for read/write operations and to prepare longest initial runs by
replacement selection algorithm. Also, it is essential to use a good sorting algorithm

with an optimum order of merging to complete the external sorting within shortest

possible time.

5.5.1 Buffering:

The main problem with external sorting is that it require frequent disk access, which
cost more from the point of time requirement. Larger the number of disk accesses,

more the sorting time. Therefore, it is necessary to reduce the number of disk

accesses to diminish the external sorting time. To reduce the number of disk

accesses or seek, we can allocate input and output buffers in the computer's

high-speed internal memory. In this case, the information to be written to a disk file

accumulated initially in the output buffer and when the buffer is full, it is physically
written (flushed) to the disk file. Thus, for a large buffer, a sizeable amount of
information can be written to the disk file, with the expense of only one seek.

Again, in the case of read operation from a disk file, a full buffer of information

is read at once and then they are used from the buffer when necessary. In this

situation also, only one seek is required to read a full buffer of information.

Thus it is apparent from the above discussion that for the read/write operations,

input/output buffers can be used to reduce the number of disk accesses. Larger the

buffer size, smaller would be the number of disk accesses. But we cannot increase

the buffer size as we wish, due to the limitations of total allocable memory for this

purpose.
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5.5.2 Unequal Buffering:

To reduce the number of disk accesses, we have mentioned about the input/output

buffers. But up to this point, nothing is specified about their relative sizes. Actually,

it is quite straightforward to allocate all the buffers of equal size. But practically,

in external sorting, data from several source files are merged into a target file. Thus

one output and several (one for each source file) input buffers are essential for

efficient disk input/output operation. Careful examination shows that it is better to

make the output buffer larger than input buffers to reduce the number of disk

accesses. The following simple example can reveal the fact.

Let a small computer system for external sorting. The memory space available for

buffer allocation for this system during the merging operation is equivalent to the

45 records of a database at once. At a particular step of the external sorting, source

file FI and F2 contain 1500 records each. It is required to merge these two files

into the target file F3. Straightforwardly, we can equally divide the allocable

memory into input/output buffers. The following table calculates the total number

of disk accesses necessary for this situation.

Table 5.2 Equal Buffer Allocation

J'

I I File FI I File F2 I File F3 I Total I
Number of records to be read from or 1,500 1,500 3,000written to the file

Buffer size 15 15 15(in terms of the number of records)

Number of disk accesses required 100 100 200 400 ,
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where, the number of disk accesses required

= r Number of records to be. read from or written to the file 1
Buffer size (in terms of number of records)

Again, if we properly make the output buffer larger than input buffers, then the

total number of disk accesses may be reduced, which is shown in the following

table.

Table 5.3 Efficient Buffer Allocation

I I File FI I File F2 I File F3 I .Total I
Number of records to be read from or 1,500 1,500 3,000written to the file

Buffer size 13 13 19(in terms of the number of records)

Number of disk accesses required 116 116 158 390

But for the case of unequal buffers, if the buffer size is not properly set, then the
number of disk accesses may be larger than those of the equal buffers. The

following table illustrates the fact for the same example.

Table 5.4 Inefficient Buffer Allocation

I I File FI I File F2 I File F3 I Total I
Number of records to be read from or 1,500 1,500 3,000written to the file

Buffer size 10 10 25(in terms of the number of records)

Number of disk accesses required ISO ISO 120 420
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Among the above three illustrations, Table 5.3 represents an efficient buffer

allocation, where number of disk accesses are minimum. Therefore, to optimize the

number of disk accesses, it is not sufficient to maintain the input and output buffers

only, but it requires appropriate consideration to their relative sizes.

5.5.3 Long Initial Runs:

We have discussed in the previous section that there is another factor which has a

profound influence on the total external sorting time. We know, sorting time

increases with the increase in the number of initial runs produced by internal sorting

phase. Therefore, by any means, if it is possible to reduce the number of initial runs

formed from a given data file, then the total sorting time may shorten. The

reduction of number of initial runs produced from a data file means individual runs
would be longer in size. But the size of the initial runs produced by conventional

internal sorting methods is limited to the maximum size of the computer's

high-speed internal memory capacity. By adopting special techniques of internal

sorting, called replacement selection algorithm, it is possible to produce initial runs
larger than the computer's memory capacity, which have been discussed in detail

in chapter four.
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CHAPTER 6

EXPERIMENTS AND RESULTS

6.1 Design of Experiments:

This thesis is an endeavor to analyze the performance of external sorting techniques.

Here our main purpose is to examine the time complexity of these techniques. Due

to the unavailability of any standard formula for external sorting time calculation,

we have taken an elaborate process of sorting a large data file under various sorting

conditions by varying different external sorting parameters to find the time

complexity.

As the first step of external sorting, replacement selection routine has been prepared

to produce long initial runs larger than the computer's high-speed internal memory

capacity. Then to merge these initial runs, merging routines have been prepared

using balanced, polyphase and cascade merging algorithms.

In external sorting, data is read from several hard disk files and after processing it

in the computer's memory, it is written back to the hard disk in a different file.

Thus, necessary hard disk capacity for external sorting must be at least twice as that

of the size of the data file to be sorted.
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For the purpose of our experill)ent and by considering the availability of disk space

for this work, we have chosen a normalized data file with 1.05 million records,

where the size of each record is 80 bytes, i.e., the size of our data file is 84

megabytes. Keys of these records - based on which the records are to be sorted,

have been randomly generated using a random number generator. The remaining

places of the records - which have no influence on the sorting process, except it

remains with the records, have been filled with spaces.

6.1.1 Replacement Selection Routine:

We know, as the number of initial runs decreases the total external sorting time also

decreases. Therefore, to produce longer and smaller number of initial runs,

replacement selection routine has been prepared. The method of producing long

initial runs larger than the computer's high-speed internal memory capacity has been

discussed in detail in chapter four.

The size of the initial runs produced by replacement selection algorithm depends on

the amount of memory allocated for the selection tree. We have adapted the
replacement selection routine in such away, so that during run time of the program,

it can obtain the information about the available allocable memory size. From this
total available memory, two 10 kilobyte buffers have been allocated, one for input
and the other for output of disk file for this replacement selections routine. Also to

avoid any run time hang up of the computer, another 10 kilobytes of memory have

been reserved for program's run time use. Then the remaining available memory

have been allocated for the selection tree.

After all the above consideration, 448 kilobytes of memory is allocable for the

selection tree for our computer system. We know, the average length of the runs
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produced by replacement selection is twice as that of the size of the available

memory for the selection tree. Therefore, the average size of the runs produced by

replacement selection is 896 kilobytes, which is equal to the size of 11,200 records.

In other words, on the average, each run contains 11,200 records. Since, the data

file size is equivalent to 1.05 million records, the number of runs produced by

replacement selection routine is 94.

During the development of this replacement selection routine, great care has been

taken to allocate and free the far heap memory by using far heap management
routines available in C. As far heap memory is used by the program, it is compiled

in huge model and register variables are used throughout the program to speed up

the internal computations.

6.1.2 Merging Routines:

To merge the long initial runs produced by replacement selection procedure,

merging routines have been developed using balanced, polyphase and cascade

merging algorithms. The theoretical aspects of these algorithms have been discussed
in detail in chapter one, two and three respectively. Theoretically, the algorithms

are quite different from each other and each one merge runs on its own way. We

have taken all the measures to develop these external sorting routines, so that they

can perfectly follow their own rules to merge the initial runs.

From chapter five we know that to reduce the total external sorting time it is

necessary to minimize the number of disk accesses. Again number of disk accesses

can be minimized by maintaining appropriate buffers for input and output disk files.

Also it has been shown that unequal buffers can reduce the number of disk accesses,

making it minimum at certain value of output to input buffer ratio (BR) > 1.
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The merging routines in this thesis have been developed in such a way, so that

during run time of the program they can get information about the available

allocable memory ofthe computer system. From this available memory 10 kilobytes

have been reserved for programs run time use, as was done in case of replacement

selection, to avoid any run time hang up of the computer. The remaining memory

have been allocated for buffers of input and output disk files. We have maintained

output buffer larger than input buffers, by using BR to be equal to 4, 8, 10, 12,

and 16.

To design the merging routines, far heap management procedures available in C

have been properly used to manage all the available memory of the computer

system. The programs have been compiled in huge model so that it can use 32 bit

address to access the memory beyond its current data segment and register

variables have been used to speed up the internal computations.

In order to compare performance of various external sorting algorithms, we have

used total computational time as a summarized criterion.

6.2 Balanced Merge:

To find the performance of balanced merge techniques with the variation of

different external sorting parameters, the balanced merge routine has been
developed in C. We have taken F and BR as parameters for this sorting technique.

Initially, considering smaller values of F (6, 10 etc.), we have sorted different

amount of data. But this showed that the sorting time is too large. Then by several

trials we have found that for F=22, the sorting time is minimum for large number

(>400,000) of records. When value of F exceeds 22 the sorting time again

increases. Therefore, we have decided to take the experimental data around F=22,
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namely for F=20, 22, 24 and 26. We have discarded any odd values of F because,

the sorting time for these cases are similar to the corresponding even values.

For different values of BR (4, 8, 10, 12 and 16), with different values of F,

experimental data have been gathered and it is observed from graphs 6.1-6.5 that
for all values of BR, minimum sorting time occurs when F=22, for large number

of records. Among these different minimum sorting times for different BR values,

the minimum occurs when BR is 10. Therefore, for our experimental environment

with large number of records minimumsorting time occurs when BR =10 and F= 22

(see graph 6.3).

Again, sorting time is not minimum with F=22 when number of records to be

sorted is small «200,000). For this case F=26 is better than other values of F as

shown in graphs 6.1-6.5.

For this algorithm there is an abrupt change in sorting time when the number of

records to be handled cross the numbers 112, 123, 134 and 146 thousand for the

case of F=20, 22, 24 and 26 respectively. This is because, at these values of
number of records the required number of passes over the data increases from two

to three.

Graphs 6.6-6.9 show that for small number of records, the sorting time is not

sensitive to BR and for all values of BR it is nearly same. But as the number of

records increases, the sorting time gradually become more and more sensitive

to BR.
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In this case the variation in sorting time for different number of files for different

values of BR is not constant. From graphs 6.1-6.5 it is clear that this variation is

smallest when BR is 8.

6.3 Polyphase Merge:

For the purpose of study the performance of polyphase merge algorithm under the

variation of different sorting parameters, we have designed polyphase merge routine

in C language, similar to that of balanced merging. We have taken F and BR as the

parameters for this sorting technique. At the beginning, by several trials of sorting

data, we have found that for F= 13 the sorting time is minimum and we have taken

the experimental data for F=I1, 12, 13 and 14.

For different values of BR (4, 8, 10, 12 and 16) by varying F, sorting times have

been taken. Using these data graphs 6.10-6.18 have been plotted. Graphs 6.10-6.14

reveal that for F= 13 sorting time is minimum for all values of BR. Again, sorting

time is minimum of all when F= 13 and BR= 10, which is shown in graph 6.12.

For smaller number of records the sorting time is not very sensitive to BR and F.

But as the number of records increases the sorting time become more sensitive to

BR and F, similar to balanced merging. The variation in sorting time for different

number of files with different BR is not constant. From graphs 6.10-6.14, it is

observed that this variation is minimum when BR=8 (see graph 6.11).

Again graphs 6.15-6.18 show that for small and larger values of F compared to the

optimal one (which is 13), the sorting time increases sharply for values of BR

significantly different from the optimal one.
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6.4 Cascade Merge:

Cascade merge routine has been developed in C, to study the performance of

cascade sorting technique under the variation of different sorting parameters. The

variable F and BR have been taken as sorting parameters for this algorithm also. At

the start of the experiment using several trials, the optimum value of F for which

the sorting time is minimum is found. For this algorithm the optimum value of F

is 12. For other values of F the sorting time is greater than that of the F= 12. The

experimental data are generated for F= 10, 11, 12 and 13 with different values

of BR.

The data obtained from the above experiments have been plotted in

graphs 6.19-6.27. From graphs 6.24-6.27, it is apparent that the sorting time is

minimum when BR=IO. Graphs 6.19-6.23 reveals that for F=22, sorting time is

minimum for all values of BR. Thus, sorting time is minimum of all when F= 12

and BR= 10. Sorting time changes sharply for values of F and BR significantly

different from the corresponding optimal values.

It can be seen from graphs 6.19-6.23 that the sorting time changes smoothly for

consecutive number of initial runs, which is different from balanced merging but

similar to polyphase merging. It is also apparent from these graphs that the curves

in every plot become divergent as the number of records increases. It can be

concluded from here that difference in sorting time for different order of merging .
"'-".... .•.•... ,

is more sensitive as the number of records increases. .. '-'-.r
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6.5 Comparison of Optimum Sorting Times:

Graphs 6.28-6.32 shows the comparison of balanced, polyphase and cascade merge

sorting techniques for different values of BR and optimal values of F. It is apparent
from these plots that the sorting time for polyphase and cascade merging are nearly

same for small number of records, but for large number of records polyphase merge

is more efficient than the cascade merge. Graph 6.30 is the most efficient among

these five graphs, where value of BR is 10. The sorting time for balanced merging

is not enough good for any number of records except for very small number of

records.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions:

From the results given in chapter six, it is obvious that performance of various

external sorting algorithms is sensitive to certain parameters. Graphs 6.1-6.5 show

the response of balanced merge algorithm under different output to input buffer

ratios (BR). For small number of records the sorting time for all values of BR is

nearly the same. But as the number of records increases the sorting time becomes

sensitive to the values ofBR. WhenBR is 10, the balanced merge time is minimum.

For this algorithm, there is an abrupt change in sorting time when the number of

records is around 125 thousand, because at these points, the number of times each
run is to be handled is increased by one, where the number of initial runs

distributed on files exceeds the order of merging. Thus we can say that these

number of records, at which these abrupt changes occur, increases with the increase
in the order of merging, as can be seen from the graphs 6.1-6.5.

We have seen previously that if S runs were produced during the internal sorting
phase, and if mk-l < S ~m k, then m-way balanced merge procedure makes exactly

k = r 10gm S 1 merging passes over all the data. This statement clarifies, why for a
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higher order of merging, more records are required to reach the point of this abrupt

change of sorting time.

It can also be seen from graphs 6.1-6.5 that for small number of records the sorting
time is minimum when F is 26. But it is interesting to note that as the number of

records increases, the sorting time for 26 files deteriorates. Actually, for small

number of records the order of merging is more important. As the amount of data

handling is small, the number of seek is small, so higher order of merging requires

small amount of time. But when amount of data handling increases, total seek time

becomes more dominant, and therefore, minimization of the number of seeks

becomes crucial for performance. It can be seen from the graphs 6.1-6.5 that for

large number of records optimum value of F is 22.

It can also be seen that response time graph for balanced merge is piecewise linear

since balanced merge works on the complete passes over the data. The constant of

slope in different intervals increases as the number of records increases, which

confirms the lower bound theory that no comparison based sorting algorithm of

order less than nlogmn can exist, where nand m are positive integers.

Graphs 6.6-6.9 show the response of balanced merge algorithm under different

number of files with changes in the values of BR. These graphs show that for small
number of records, the sorting time is not sensitive to BR. But as the number of

records increases, the sorting time gradually become more and more sensitive to
BR. For any number of files the sorting time is minimum when BR is 10. For other

values of BR sorting time is worse.
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For balanced merging the variation in sorting time for different number of files for

different values of BR is not constant. From graphs 6.1-6.5 it can be seen that this

variation is minimum when BR is 8.

Graphs 6.10-6.14 show the time response of polyphase merge under different values

of BR and F. In this case the minimum sorting time occurs when F is 13. For other

values of F the sorting time increases. In this algorithm the sorting time is not

piecewise linear and there is no abrupt change in the sorting time, since polyphase

merge do not always make complete passes over the data and this algorithm makes

partial passes over the data depending on the number of initial runs distributed on

different files.

For smaller number of records the sorting time is not very sensitive to the values

of BR and F, but as the number of records increases the sorting time becomes more

sensitive to them, as in the case of balanced merge. Optimal value of BR for

polyphase is 10 irrespective of the order of merging. For this algorithm the

variation in sorting time for different values of BR and F is not constant. From

graphs 6.10-6.14 it is apparent that this variation is minimum when BR is 8.
Graphs 6.15-6.18 show that for small and large values of F compared to the optimal

one (which is 13), the sorting time increases sharply for values of BR significantly

different from the optimal one.

Graphs 6.19-6.23 show the variation of external sorting time with variation of BR

and F for cascade merge. For all the combinations, the sorting time changes

smoothly for consecutive number of initial runs. It is apparent from these graphs 1
that the curves in every plot become divergent as the number of records increases.

Thus, it can be concluded that difference in sorting time 'for different order of

merging is more sensitive as the number of records increases.
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For this merging technique also the minimum sorting time occurs when BR is 10.

For other values of BR sorting time increases. Among different number of files the

sorting time is minimum when F is 12. From graphs 6.24-6.27 it is clear that the
sorting time changes sharply also for .cascade merge for values of F and BR

significantly different from the corresponding optimal values.

Graphs 6.28-6.32 shows the comparison of balanced, polyphase and cascade merge

techniques for different values of BR and optimal values of F. For small number of

records the response time for polyphase and cascade merge techniques are nearly

similar. But as the number of records increases polyphase merge becomes more

efficient than cascade merge. Among graphs 6.28-6.32, graph 6.30 is the most

efficient, where value of BR is 10.

7.2 Suggestions for Further Study:

If more than one physically separate hard disk units are available in a computer

system to be used in external sorting then the total sorting time can be significantly

reduced. But due to the unavailability of such computer system, we have restricted

our study with a single disk unit. In the case of multiple disk units on the same
computer system, a significant percent of total disk read, write and internal

computation can be overlapped by maintaining appropriate buffering strategy.

Therefore, one can attempt to design external sorting routines on a multi-disk

computer system and study their responses with the variation of different sorting

parameters.

The amount of random access memory has a profound influence on the external
sorting time. Thus, one can undertake a task of designing external sorting routines

for a computer systems with larger amount of random access memory. Also
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throughout this thesis we have confined our study to a data file of fixed record size.

Attempt should be made to design external sorting routines to handle variable-length

records and study their responses with the variation of different external sorting

parameters.
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