
ESTIMATION OF FLOOD DISCHARGES IN BANGLADESH

MD. AMINUR RAHMAN

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ENGINEERING (WATER RESOURCES)

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY DHAKA: MAY, 1985.

65043#

BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF WATER RESOURCES ENGINEERING

May 11,1985

WE HEREBY RECOMMEND THAT THE THESIS PREPARED BY MD. AMINUR RAHMAN ENTITLED ESTIMATION OF FLOOD DISCHARGES IN BANGLADESH BE ACCEPTED AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ENGINEERING (WATER RESOURCES).

Chairman of the Committee

Member

Member

Member

Member

Head of the Department

Ahmed) Ŝ

(Dr.M. Shah jahan (Dr.S.K. Chowdhury)

(Mr.Mir Lutfor Rasul Munshi)

(Dr. A. Hannan

(Dr. A. Hannan

ABSTRACT

This thesis deals with the analysis of extreme value discharge data of Bangladesh. Yearly maximum discharge data having discharge record for a period of more than 10 years, which covers about 67% of all the existing discharge stations have been analysed and discussed in this thesis. The analysis has been done to find the possible coefficients and exponents of some general empirical formulas with the aim of arriving at some empirical relations for the estimation of flood discharges in Bangladesh, at places where no discharge station is available. Discharge data corresponding to different return periods have been calculated by using the double exponential distribution function.

The analysis shows coefficients and exponents like Dicken's formula in north-western region and Ryve's formula in north-eastern region may be used to roughly estimate the flood discharges. Relations between discharge per drainage area and drainage area have been obtained for south-eastern region and hydrologic area 17 of S.W.region Relations between discharge and drainage area at different return periods have also been developed for Sylhet hilly areas. An envelope curve (straight envelope) has been developed for Bangladesh.

The analysis also shows that the Horton formula, Lane formula and Davis and Wilson's formula are not applicable in Bangladesh. It was observed that the drainage area and few other flood producing parameters are not sufficient to describe the flood discharges in Bangladesh. A large number of flood producing parameters should be incorporated for any reasonable results.

ACKNOWLEDGEMENT

The author gratefully acknowledges his indebtedness to his supervisor Dr. Syed Mohib Uddin Ahmed, Associate Professor, Department of Water Resources Engineering, for his able guidence and warm inspiration at all stages of the study.

The author wishes to express his warm gratitude to other members of his thesis committee, Dr. A. Hannan, Professor and Head, Department of Water Resources Engineering, Dr. M.Shahjahan Professor, Department of Water Resource Engineering, Dr. S.K. Chowdhury, Associate Professor, Department of Water Resources Engineering and Mr. Lutfar Rasul Munsi, Chairman, BWDB, for their valuable comments, criticisms and suggestions regarding this study.

The author is indebted to all the officials of the Surface Water Hydrology, Directorate-II, BWDB for their help and cooperation in collecting the discharge data.

Finally the author wishes to thank Mr. Yusufjai, Mr. Abdul Ali and Mr. Md. Mafiz Uddin for their help in drafting and typing the report.

Md. Aminur Rahman

TABLE OF CONTENTS

Ð

. جي ا

CHAPTER			Page
	ABSTR	LACT	iii
	ACKNO	WLEDGEMENT	iv
	TABLE	OF CONTENTS	v
	LIST	OF TABLES	vii
	LIST	OF FIGURES	vii
	NOTAT	TONS	x
I	INTRO	DUCTION	1
	1.1.	General	1
	1.2.	Causes of floods	3
	1.3.	Design flood	5
	1.4.	Objectives of the study	7
	1.5.	Statement of the problem	8
II	REVIE	W OF LITERATURE	10
	2.1.	Introduction	10
	2.2.	The rational formula	10
	2.3.	The general flood flow formulas	13
	2.4.	Peak floods from hydrogeologic conditions of watersheds	14
	2.5.	Double exponential distribution function	15

4

3.1. Introduction 1	7
3.2. Collection of data from stations	7
3.3. Processing of raw data 18	8
3.4. Availability of processed data 19	9
3.4.1. Study regions 19	9
3.4.2. Inclusion of data in the present 20 study	D
3.5. Accuracy of the data 21	1
3.6. Analysis of data 21	1
IV DISCUSSION OF RESULTS 25	5
V CONCLUSIONS AND RECOMMENDATIONS 30)
5 _v 1 Conclusions 30)
5.2. Recommendations for future study 32	2
REFERENCES 33	3
APPENDICES	
Appendix - A : Tables 37	,
Appendix - B : Figures 89)

∀i

Page

LIST OF TABLES

TABLE	· · · · · · · · · · · · · · · · · · ·	Page
1.	Empirical formula	38
2.	Values of \bar{Y}_N and β_N as a function of sample size N.	56
3.	Index of discharge stations	57
4.	Annual maximum discharges in cusec	63
5.	Discharge-frequency relationships for individual stations	77
6.	Discharges in cusec at different return periods	82
7.	Data for Davis and Wilsons rainfall formula	86
8.	Index for stations(with higher discharges) used for envelope curve	88

Ļ

÷**†**Ť

vii

LIST OF FIGURES

FIGURES		Page
1 -	Peak runoff expected once in 100 years in Central Europe	90
2.	Peak runoff expected once in 100 years in New Jersey, U.S.A.	91
3.	Runoff coefficient curves and maximum known flood in New Jersey 1897-1972.	92
4.	Rating curves	93
5.	Map showing discharge stations of Bangladesh as on March, 1982	94
6	Map showing hydrologic areas of Bangladesh with area numbers	95
7	Map showing discharge stations of Bangladesh included in the study	96
8	Variation of percentage error of rating with number of gaugings	97
9	Recorded maximum discharge against drainage area for north-western region	98
10.	Recorded maximum discharge against drainage area for north-eastern region	99
11	Recorded maximum discharge against drainage area for south-western region.	100
12.	Recorded maximum discharge against drainage area for south-eastern region	101

. بى ا

÷

ž

viii.

ļ

FIGURE

+

rf.

13	Discharge relation for hydrologic area 17 in south-western region.	102
14	Discharge relations for south-eastern region	103
15	q _T against drainage area for north-western region	104
16	q _T against drainage area for north-eastern region	105
17	q _r against drainage area for south-western region	106
18	q _T against drainage area for sonth-eastern region.	107
19	Q _T against drainage area for north-western region	108
20	Q _r against drainage area for north-eastern region.	109
21	Q _T against drainage area for south-western region	-110
22	Q _r against drainage are a for south-eastern region	111
23	Discharge relations for different return period	8
	for hydrologic areas 14,15 & 16 (Sylhet area)	112
24.	Envelope curve for higher discharges in Bangladesh	113

iπ

Page

NOTATIONS USED

NOTATIONS	
A	Drainage/catchment area, sq.miles
A ₁	Drainage/catchment area, acres
A 2	Area of catchments, intercepted by irrgation, sq.miles
<mark>▲</mark> 3	Wooded area of the Watershed, sq.miles
В	Coefficient
C	Coefficient
Cmax	A limiting runoff coefficient corresponding to a recourance interval of 100 years
°2	Coefficient
F	Coefficient connecting characteristics of basin
F ₁	Frequency factor
F ₂	Multiplicative correction factor
K	Coefficient
L	Stream length, miles
N	Coefficient, sample size
P	Maximum rainfall over the catchment in 24 hours, inches
Q	Flood discharge, cusec
٩r	Flood discharge equalled or exceeded once in an average of T years, cusec.
Q _{T max}	Maximum flow at flood peak, cusec
R	Rainfall, inches
S	Standard deviation
T	Return period, years
Π	Parameter

3

4

X

NOTATIONS

1.,

x	Sample mean
Y _N	Theoretical quantity
6 _N	Theoretical quantity
)	Scalar parameter
θ	Apical angle of the tringles dividing the
	catchment area
a	Coefficient
h	Coefficient
b ₁	Average width of the catchment, miles
đ	Coefficient
i	Rainfall intensity, inch/hour
k	Shape factor of catchment, ratio
m	Exponent
n	Exponent
р	Probability of accedance
q	Flood discharge, cusec/sq. miles
ġ.	Flood discharge equalled or exceeded in a return
. ·.	period of T years, cusec/sq. miles.
t	Duration of rainfall, minutes
v	Velocity of runoff, ft/sec.
X · · · ·	Exponent, initial variate
У	Dimensionless reduced variate

xi

CHAPTER ONE

INTRODUCTION

1.1. General

From time immemorial, rivers and flood plains played an important role in human civilization. The natural facilities viz. adequate quantity of water for drinking and irrigation purposes; ease of travel, trade etc. through waterways; and the fertile agricultural land of the flood plains have attracted people to settle themselves near rivers and flood plains. These resulted in the implementation of various structures and projects in the areas for modernization of human life.

Once civilization start in such places, man's life fall in tremendous hazard by occasional flooding of the flood plains. The uncontrolled flood discharges erode river banks, damage flood plains and various engineering works therein, and causes loss of life and other natural resources. Sometimes flood is so much severe that it destroys civilization. To check these losses man always attempted to control floods.

For the control of floods, its measurement is very much important. Of the measurable features, the flood height,

area inundated, peak discharge, volume of flow are remarkable. The peak discharge can be estimated by various methods and the concepts of flood formula is one of such methods.

Flood flow formulas are usually used to estimate the peak flow corresponding to a given basin of small or moderate size. The formulas usually contain one or more parameters, the most common being the catchment area. Difficulties in the application of such relationships arise from the lack of knowledge of exact conditions under which they may be applied. More reliance can be placed, of course, on equations or relationships developed for the region under study.

Flood in Bangladesh is quite destructive. Millions of cusecs of flood water are carried in the country every year by the major three rivers and their numerous tributaries and distributaries. Flood flow varies here from place to place distinctly. There are about 135 flood measuring stations in the country? But it often become necessary to estimate the flood discharges to plan, design, and implement projects at places where no recorded data are available or a short duration data are available. It is, therefore, necessary to find means of estimating flood discharges in such situations.

Long-duration flood data for large rivers are usually available since the flood damage caused by them have always been of great concern to the public. For small and moderate size watershed flood data are inadequate. In Bangladesh almost all discharge stations, with a few exceptions, have recorded flood data for a period of about 5 to 20 years. In such situations flood frequency method is not always sutuable since flood record of at least 50 years are needed to establish reliable result.⁶ Difficulties are also encountered with the method of enveloping, which sometimes give too higher values for discharges and need a wide range of drainage areas. Empirical method may therefore be used for estimating flood discharges in Bangladesh for places where there is no or only a few flood data is available.

1.2. Causes of Floods.

It is evident that rainstorm is the principal cause of flood. As per discussion by Mead , the causes of floods can be summarized as follows :

1) Floods occur on a given drainage area when the following conditions are satisfied at the same time and flood intensity and duration increases as the conditions become more favourable to increased runoff :

A. When the rainfall on the drainage area is of :

a. great intensity

b. wide distribution

c. long duration.

B. When the surface of the drainage area is impervious from :

a. saturation by previous rainfall

b. frozen condition of ground

c. normal geological structures.

C. When retention is at a minimum on the drainage area from:

a. cool weather

b. absence of vegetation.

c. high humidity.

In addition to the above, floods sometimes result from or are augmented by ice and the failure of reservoir dams.

II) In the comparison of floods on different drainage areas other factors are important : Topography, geology, arrangement of tributaries, surface conditions, location relative to storm paths and sources of vapour, climatic conditions, temperatures, wind velocities etc. The maximum floods on all streams are due to a storm or a series of storms that have covered the drainage areas so as to produce a synchronism in the discharge of the various tributaries whereby the maximum flood accumulates at the locality under consideration.

While analyzing the causes of floods in India in the catchments with fluvial geomorphology, Rudra¹⁵ stated that all flood-prone areas are topographically dish-shaped. So rain falling on high lands naturally flow down and the rivers of the plain being characteristically shallow cannot accomodate these huge bulk of water and thus flood is caused. The sediment deposition at the river estuary, tidal in nature, due to flood protection embankments is also a cause of floods. The change of courses of rivers and their tributaries and defore station in the catchments also increases possibility of floods.

1.3. Design Flood.

The principal extreme events in hydrology are floods and droughts. Roudkivi¹³ stated that floods may be characterised by peak flow rate, flood elevation, flood volume and flood duration. But in designing a project, the design flood ars usually considered. The selection of the design

flood is, in principle, an assessment of the risk involved against the failure of a structure which has been designed to prevent any loss with floods equal to or less than that of the selected frequency. To define design flood Singh¹⁸ first classified floods into the following catagories :

- (i) Ordinary floods which are equaled or exceeded onceor twice in the lifetime of the structure.
- (ii) Maximum probable floods which are equalled or exceeded only on rare occasions which corresponds to 100 year frequency.
- (iii) Maximum possible floods which would occur only when the most severe flood producing combinations of meteorological and hydrological conditions to which the drainage basin is most susceptible would arise.

Kuiper⁸ also defined maximum possible flood in the same manner. The selection of one of the three classes as the design floed depend upon the damage or damage and calamity both caused by the occurance of flood. For damage the ordinary flood is taken as the design flood. But for both damage and calamity the flood between maximum probable and maximum possible flood is taken as the design flood.¹⁸

Usual practice is the use of empirical methods for the estimation of floods or design floods where a few or no hydrometeorological observations are available or observations of short duration are available. The empirical methods and relationships are based on the observed data and are applied for the estimation of floods in the places with similar meteorological and hydrological conditions as in the places of evolution. These empirical relationships are also, in principle, regional methods in that these relationships can be applied with reasonable confidence in the region from which the data has been collected.

1.4. Objectives of the Study.

In view of the facts discussed above, it is felt that there is a definite need to study the empirical flood flow relationships for estimating floods in Bangladesh. The main objectives of this study were therefore chosen as:

- (i) To examine the applicability of the general flood formulas⁵, with drainage areas as parameter, and to fix up the coefficients and exponents associated with them.
- (ii) To examine the applicability of the flood formulas involving frequency relations and to fix up the coefficients and exponent associated with them.

- (iii) To examine the applicability of the flood formulas connected to rainfall intensity and to fix up the coefficients.
- (iv) To develope an envelope curve for flood discharges in Bangladesh.
- 1.5. Statement of the problem.

In the present data based study, discharge data of about 56 stations with separate catchment areas have been considered. The stations near the offtake points of the rivers have been excluded from the study since their drainage areas, the most common parameter of the formulas, are either zero or very small in compared to discharges or not well defined. There are some stations near the international boundary whose full catchment area are not known (since a portion lies in I_n dia). These stations have also been excluded from the study All the stations having an available discharge record for a duration of less than 10 years have not been also considered. The data have been analysed and tested on each of the four hydrological regions namely north-western, north-eastern, south-western and south-eastern rigion of Bangladesh and also on 31 hydrologic areas of Bangladesh?

Applicability of the flood flow formulas in Bangladesh are being examined in this study. In doing so, several formulas

of different catagories have been considered. The scatterings of the plotted points of recorded flood discharge against different parameters of the formulas have been examined. In most of the cases the scattering of the plotted points were too much. When the plotted points were not widely scattered, the coefficients and exponents of each formulas have been found out from the average lines through the points which were either straight or curved lines as per trend of the plotted points.

Since the rainfall parameter is not readily available, the rainfall fermulas have not been used for all the regions under study. Only the north-eastern region of Bangladesh has been considered to study by the rainfall formulas because the rainfall parameter for this area has been readily available.¹¹

All the data analysed in this study were obtained from Bangladesh Water Development Board and Master Plan Organization.⁹ It is expected that this study will be of great help for the Engineers connected with different water resources projects.

CHAPTER TWO

REVIEW OF LITERATURE

2.1. Introduction

Numerous formulas, have been proposed by various authors for different parts of the world for the estimation of flood discharges. Vershney¹⁹ and some others^{1,14,16,17} collected some of these which are listed in table - 1. The formulas have usually been developed for certain streams or for certain areas in which the streams are believed to possess common characteristics. These areas also need to be of similar climatic and other conditions. From table-1 it is seen that some of the formulas can be generatised by some common formulas ⁵. In the following a brief description is made on the rational formula, the general flood flow formulas, estimation of peak floods from hydrogeologic conditions of watersheds in U.S.A. etc.

2.2. The Rational Formula

Probably the first logical attempt to estimate flood flow was made by a group of Irish engineers during the period 1842 to 1847². The method, in brief was for drainage channels capable of cryying a certain percentage of recorded maximum daily rainfall. Consequently the empirical formula

 $Q = C1A_1 \qquad \dots \qquad (2,1)$

was evolved as the first flood flow formula 2,13 where i is the rainfall intensity in inch/hour, C is a runoff coefficient, and A₁ is the area of the catchment in acres. The foundation of today's so-called rational method was laid by Thomas James Mulvaney² in a paper published in 1851. He suggested that for the maximum discharge to occur "a combination of circumstances as to fall of rain and the peculiar character of the catchment" may be required.

The rational formula was later recommended by fail Kuichling im 1889 and Lloyd-Davis in 1906 and it is at present known as kuichling formula in the United States and Lloyd-Davis formula in the United Kingdom after the names of the engineers who first introduced it in their respective countries². In 1932 Gregory and $A_{\rm r}$ nold³ developed a general rational formula like eqn. (2.1) in which

$$L = \frac{KT^{\mathbf{x}}}{t^{\mathbf{n}}} \qquad (2.2)$$

Where K is a coefficient depending on geographic location, T is the recurrance interval in years for a minfall intensity of i in inch/hour for a duration of t minte to be reached or exceeded, x, n are the exponents impending on geographic location, and t is the duration of rainfall intensity in minutes. In 1938 Bernard³ gave a formula for the coefficient C in the general rational formula (eqn.2.1)

 $C = C_{max} \left(\frac{T}{100} \right)^{x}$... (2.3)

where C_{max} is a limiting runoff coefficient corresponding to a recurrance internal of 100 years. He also prepared charts for values of C_{max} , n, K, and x for the humid central and eastern half of the United States. In Bangladesh the rational formula is sometimes used by the designers. Assuming the areas around the eastern U.S. Gulf Coast to be approximately comparable to Bangladesh the coefficients of the rational formula have been developed ⁴. Assuming a return period, T, of 10 years C has been calculated as 0.463. Also the value of i has been given by

$$i = \frac{68.2}{+^{0.73}}$$
 ... (2.4)

While applied to Sarai Basin ($A_1 = 27,500$ acres) in Rangpur district, the rational formula with these coefficients gave a discharge value of 2980 cusecs which is comparable with a measured peak of 3065 cusec ⁴.

The rational formula is based on many assumptions. Although these assumptions cannot be readily satisfied under actual circumstances, its simplicity has won its popularity. The formula is called rational because of numerical consistency of units of various quantities involved. Later the formula was found popular for design of drainage systems in urban areas and airport. Though the rational formula is sometimes used to compute discharge for drainage areas of many square

12₆,

miles, Chow³ made a comment that this formula should be limited to areas of less than 100 acres, possibly 200 acres at most.

2.3. The general Flood Flow Formulas

It can be observed from table-1 that some of flood flow formulas can be generalised by the following equations⁵.

$$Q = CA^{II} \qquad \dots \qquad (2.5)$$
$$Q = CA^{II} \qquad \dots \qquad (2.6)$$
$$Q = \frac{CA}{(a+bA)II} + dA \qquad \dots \qquad (2.7)$$

Where Q is the flood flow rate, A is the drainage area and C, a, b, d and n, m are coefficients and exponents respectively.

Many formulas have been developed by various authors with different values of the above coefficients and exponents for various parts of the world. Most of the formulas were developed by analysis of the flood data. In the Indo-Pak subcontinent many formulas have been used such as Dicken's formula with coefficient 825-2,500 and exponent 3/4; Ryve's formula with coefficient 450-2,700 and exponent 2/3; Inglis formula with coefficient 7,000, 1 and 4 and exponent 1/2; Bransby William's formula with coefficient 4,600 and exponent 0.52 etc, the values of the coefficients being in the FPS unit. For different values of the coefficients and exponents of equations - (2.5), (2.6) and (2.7) smooth lines can be obtained when calculated Q is plotted against A on log-log paper. Hence plotting of Q against A obtained from field can show whether any coefficient and exponent of equations-(2.5), (2.6) and (2.7) is possible for Bangladesh or not.

2.4. Peak Floods From Hydrogeologic Conditions of Watersheds

A detailed investigation to develope empirical runoff formula based on hydrologic conditions and geologic formations of watersheds was made by George J. Halasi-Kun for New Jersey in U.S.A. • The author found from investigation in Czechoslovakia and West Germany that in rural areas the 100-year peak runoff of smaller watersheds (in the range of 300 km^2 or less) has upto a 90%-95% dependance on permeability of the geologic subsurface and on rainfall intensity. Vetetative cover and the form of the watershed were the factors causing the remaining 5%-10% of the flood. Configuration of the terrain, elevation above sea level, and average yearly rainfall values has practically no influence on the 100-year flood flow. The runoff values gained from research conducted in Central Europe(as in fig.1) was adjusted for New Jersey on the basis of point rainfall intensity characterization and area covered by storm centre. The general runoff formula took the following form

$$q_{100} = CA^{-0.43}$$
 (2.8)

where, q_{100} = 100- year peak flood flow in cusec/sq. miles, C= coefficient with a value from 100 to 2000 depending on geologic subsurface, peak point rainfall intensity, and average annual rainfall (Fig.2). The value of the exponent varies from 0.37 for slightly rolling plains to 0.48 for mountains. Actual flood data obtained from measuring stations was then applied (Fig.3). Local corrections of the runoff formula for the effect of lakes and swams, wooded areas, shape of watersheds, and urbanization were also made. For lake and swamp a multiplicative factor from 1.75 to 0.25 was suggested (lake and swamp area varied from 0.1% to 20% of the total drainage basin). For wooded areas the suggested correction is :

$$F_2 = 1 + 0.5 (0.5 - \frac{A_3}{A}) \qquad \dots \qquad (2.9)$$

where F_2 = multiplicative correction factor, A_3 = wooded area of the watershed, A= area of the entire watershed.

2.5. Double Exponential Distribution Function.

The double exponential distribution function of the largest value in its cumulative form is defined as :

$$p = F(X) = \exp(-e^{-y})$$
 ... (2.10)

and

 $y = \frac{x - U}{\beta} \qquad \dots \qquad (2, 11)$

Where y is the dimensionless reduced variate, x is the initial variate. The quantity U is the mode or location parameter of the distribution, β is a scaler parameter which is analoguus to the standard deviation, β , of normal distribution. The parameters U & β completely define the distribution.

Combining the above two equation, the distribution function may be written as $F(X) = \exp(-\exp(\frac{1}{\beta}(x-U)))$. It was introduced for extreme values by R.A. Fisher and I.H. Tippet²¹. This function is sometimes known in Hydrology as Gumbel Di distribution because of Gumbel's various studies using this distribution in the flood frequency analysis.

For the prediction equation of double exponential distribution function, it is necessary to compute the sample mean $\bar{\mathbf{X}}_{N}$ and the standard deviation \mathbf{S}_{N} of annual series of sample of size N. The estimators of two parameters U & Bare given by

 $U = \bar{\mathbf{X}} - \frac{\bar{\mathbf{Y}}_{N}}{\beta_{N}} \mathbf{s}_{N} \qquad \dots \qquad (2.12)$

$$\beta = \frac{S_N}{6_N} \qquad \dots \qquad (2.13)$$

where \bar{Y}_N and δ_N are the theoritcal quantities which are function of sample size only. Gumbel provides a table of values (Table - 2) for \bar{Y}_N and δ_N as function of sample size N. Therefore the prediction equation for discharge magnitude (Q_T) may be expressed by the following equation :

 $Q_{T} = U - \beta \ln \left(\ln \left(\frac{T}{T-1} \right) \right)$... (2.14)

CHAPTER THREE

COLLECTION AND ANALYSIS OF DATA

3.1. Introduction

The availability of flood data and the frequency of its occurance are very much important for the present study, the Estimation of Flood Discharges in Bangladesh. Bangladesh Water Development Board is the only organization which collect discharge data on many rivers of Bangladesh. Officials of the Hydrology Directorate of BWDB collect these data from field at definite intervals. In the following a brief description is made on the collection of data from field, the equipments and techniques used in the collection and the methods used for processing of the data.

3.2. Collection of Data from Stations

Data are collected at the gauging stations at regular intervals of time. Different intervals are used for different stations and different season. The intervals are decided on the size and importance of the catchment and also on the fund available.

During early sixties, Hydrological Survey Program of FAO/UNDP recommended to gauge the major rivers once in a week throughout the year and to gauge the other rivers once in a week during the monsoon season and once in a fortnight during the rest of the year. With this program 52 measurements were done for major stations and 39 observations in other stations in each year. The program was more or less followed till late sixties and from then gauging frequency started decreasing because of shortage of fund. Presently the major stations are gauged weekly during the monsoon season and fortnightly during the rest of the year while the other stations are gauged fortnightly during the monsoon and monthly during the rest of the year. But gauging frequency has been increased in certain cases for special requirement. For example at Hardinge Bridge the river is gauged daily from 1st. January to 31st. May and weekly during the rest of the year, and at Dalia the river is gauged weekly throughout the year.

3.3. Processing of Raw data.

The discharges obtained from the gauging stations at intervals mentioned earlier are processed by the Hydrology office, Dhaka to get the mean daily discharges. Presently the processing work is done partially by computer. With the observed discharges obtained from a station in a year, a rating curve is prepared as shown in figure-4. The mean daily discharges are then obtained from the rating curve against the corresponding daily stage as measured at the discharge stations. The mean daily discharges, the ten day mean, monthly mean etc. are

then produced on an "index card" from which data were obtained for this study. One index card contains discharges for one hydrological year from 1st. April to 31st. March.

3.4. Availability of Processed Data

There are 155 discharge measuring stations in Bangladesh⁷. Discharge measurement were going on at only 84 stations in March, 1982 as reported in Water Supply Paper-2 of Hydrology Directorate of BWDB⁷. The location of these 84 stations are shown in Fig.5. An upto-date discharge record, i.e. upto Water year 1982-83 and for some stations upto water year 1983-84 are available. Discharge record for different stations are available for different duration ranging from less than 10 years to 20 years and for a few stations upto 50 years. Hence all the stations were not possible to include in this study for a correct representation. To approach an accurate representation, the study regions, the hydrologic areas and the suitability of data in respect of duration of records were considered. A brief discussions are made on these in the following:

3.4.1. Study Regions

Bangladesh had been divided into four hydrological regions according to hydrometeorological and geological conditions. These regions are north-eastern region, north-western region. south-eastern region and south-western region. The present study covers all the regions.

M.P.0⁹ divided the whole Bangladesh into 31 small divisions each of which has been called a "Hydrologic Area". Each of the hydrologic areas consists of one or more discharge measuring stations and in tern one or more catchment areas with similar hydrometeorological conditions. The boundaries of these hydrologic areas with their area number and also the locations of the stations included in the present study are shown in Fig.6.

3.4.2. Inclusion of Data in the Present Study

Discharge data of 56 stations have been included in the present study. A map with the location of these stations is shown in fig.7. Also table-3 shows the regionwise index containing the M.P.O.'s hydrologic area number, BWDB number and name of stations and corresponding number and name of rivers alongwith period of record used, number of years of record, catchment area, recorded maximum of mean daily discharges, the average of annual maximum discharges and recorded maximum of mean daily discharges per unit catchment area. Stations having available discharge record for a period of less than 10 years have not been included in the present study. The annual maximum discharges of all the 56 stations for all the years available and used in the study are presented in table-4.

3.5. Accuracy of the Data

In river flow gauging, daily flows are computed from rating curve and daily water level. Rating curve developed on the basis of actual measurement depends upon number of gauging available, but more gauging means increased cost of flow computations. M.A. Matin, Director, BWDB did a study about the relation between percentage error of rating and frequency of gauging in Bangladesh¹⁰. He obtained a relation shown in fig.8 The figure shows that for number of observations from 51 to 34 in a year, the percentage error of rating increases very slawly from about 8% to 10%. But when number of observations drops below 34, the percentage of error drastically increases. In Bangladesh, 39 observations are made in a year for major stations whereas 20 observations are usually made for other stations with a few exceptions.

3.6. Analysis of Data

The analysis of data for the present study includes plotting of data on suitable type of graph paper in which scattering of the plotted points is minimum. In the following a brief description is made on the analysis of data to examine the applicability of some formulas for different regions and hydrologic areas of Bangladesh.

For the formulas like equations- (2.5), (2.6) and (2.7) logarithmic plotting of Q against A have been done which are shown in fig. 9 to 12. From the trend of the plotted points it may be decided that whether any formula of the catagory of equations (2.5), (2.6) and (2.7) fits the data and which one fits best. Descharge per drainage area, q, were also plotted against A on log-log papers. Some of these which followed a definite trend are shown in fig. 13 and 14. Also the possibility of new coefficient and exponent can be seen fine all these plottings.

To estimate flood discharges, a_T , in cusec/square miles at return period T years, Horton⁵ found the formula $a_T = 4021.5A^{-0.5}T^{-0.25}$. Plotting of a_T against A for particular return period can show whether this formula is applicable in Bangladesh or any new coefficient or exponent is possible. The discharges, a_T , for the present malysis were obtained as follows : The discharge equations were established for each station using the procedure mentioned in article 2.5. The equations are listed in table-5. From these equations, discharges of each station for return period of 2.33, 5, 10 and 20 years were obtained and are listed in table-6. From the values in table-6 discharges per drainage area (a_T) were obtained and plotted against drainage areas and em shown in figs. 15 to 18.

For the estimation of flood discharges, $Q_T(cusec)$, at return period T years, Lane¹⁹ developed the formula $Q_T=KA(LogT + B)$ where K and B are the coefficients. From this equation it is seen that for a particular return period, if the plotting of Q_T against A can give a coefficient then it (the coefficient) may equal the quantity K(LogT + B). If two such plottings at two different return periods give two different coefficients then K and B can be equated which may be valid at those two return periods only. The Q_T values obtained from table-5 and 6 were plotted against A on log-log paper for return periods of 2.33, 5, 10 and 20 years and are shown in Figs. 19 to 23.

Davis and Wilson developed the formula $Q=KPA^{2/3}$ where P is the maximum rainfall over the catchment in 24 hours in inches. The authors found the values of the coefficient K 100 for undulating country and 200 for mountainous country. For the present study the rainfall parameter was taken from the available raingauge stations within the catchment. Matin¹¹ analysed the annual maximum daily rainfall data of the northeastern region of Bangladesh. From his analysis the annual maximum daily tainfall for a return period of 20 years were taken as the parameter P since they constitute a more uniform set than the recorded maximum values. The parameter P is listed in Table-7. The values of K were calculated from $K=Q/PA^{2/3}$ (table-7) to see the variability of this coefficient.

An envelope curve for the rivers carrying very high discharges in comparison to the size of their catchments was prepared for Bangladesh. The stations used in the analysis are listed in table-8 with their discharges, drainage areas etc. The modified Mayer's¹⁹ formula Q= $C\sqrt{A}$ is usually used to express the straight envelope²⁰ while creager's³, 18, 19 formula Q=CA^{yAd} is used to develope the curved envelope²⁰. The coefficient and exponents can be determined on the basis of field data. For the present study the recorded maximum discharges were plotted; against drainage areas on log-log paper and is presented in fig.24. The enveloping straight line was then drawn from where the coefficient and exponent were determined.

CHAPTER FOUR

DISCUSSION OF RESULTS

(1) Logarithmic plotting of recorded maximum discharge against drainage area in Fig.9 for north-western region of Bangladesh shows scatterings of the plotted points. So accurate relation is not possible in this situation. This may be due to the want of incorporation of more flood producing parameters.

Any way, a careful observation through fig.9 shows that the points are seperated into two rough but more or less distinct populations. One population roughly relates data of the northern part of north-western region, that means hydrologic areas 1 and 2, by the equation :

$$Q = 1,208.7 A^{0.7574}$$
 (4.1).

which is comparable to Dicken's formula with coefficient 825-2500 and exponent 3/4 and used in north and central India.

The other population roughly relates the data of the southern part of north-western region, that means hydrologic areas 3, 4,5,6 and 7 by the equation:

 $Q = 200 A^{0.7574}$ (4.2)

Whose exponent is comparable to Dicken's formulae.

(2) Logarithmic plotting of recorded maximum discharges against drainage areas in Fig. 10 for north-eastern region also shows scattering of the plotting positions. So in this case also accurate relation is not possible. This may be due to the lack of incorporation of flood producing parameters. Any way, a critical observation through the plotted points of fig. 10 shows that the points are roughly separated into two populations. One population roughly relates the data of western part of north-eastern region (near the Brahmaputra river) that means hydrologic areas 8,9 and 10 by the equation:

 $Q = 1,548 A^{0.62}$ (4.3)

which is comparable to Ryve's formula with coefficient 450 to 2,700 and exponent 2/3 and used in South India.

The other population roughly relates the data of the eastern part of the north-eastern region that means the hydrologic areas of 12,13,14,15 and 16 by the equation :

$$Q = 800 A^{0.62}$$
(4.4)

which is also comparable to the Ryve's formula.

(3) Logarithmic plotting of recorded maximum discharges
 against drainage areas as shown in figure - 11 and 12
 for south - western and south - eastern region

respectively shows wide scattering of the plot ted points. Hence, relation by such plotting is not possible for these regions. This may be due to the fact that a large number of parameters need to be incorporated in these regions. However, by another way, a logarithmic plotting of recorded maximum discharges per drainage area against drainage area in fig. 13 for hydrologic area 17 shows the relation:

$$q = 30,636 A^{-1.1455}$$
 (4.5)

where q'is the recorded maximum discharge per drainage area. In a similar way, fig. 14 shows the relation :

$$a = 79.918.74 A^{-1.1945}$$
(4.6)

for south-eastern region.

(4). Logarithmic plotting of q_T (cusec/square miles) against drainage area in figs. 15 to 18 for different return periods shows wide scattering of the plotted points. Hence no conclusion could be drawn from these figures. This may be due to the fact that only a plotting of q_T against A is not sufficient to describe the coefficient and exponents of Horton formula. A number of parameters, which may be variable, need to be incorporated to find the coefficient and exponents. (5) Logarithmic plotting of Q_T against A in figs. 19 to 22 for return periods of 2.33, 5, 10 and 20 years for different regions show wide scattering of the plotted mints. Hence the values of K and B cannot be readily obtained from such plottings. Actually B is a constant for the region¹⁹. Hence to find the validity of Lane formula and to establish the values or K and B a number of flood producing parameters which also characterises the region need to be incorporated. However, the Logarithmic plotting of Q_T against A in Fig.23 for sylbet area comprising the hydrologic areas of 14,15 and 16 resulted the following relationships(unlike Lane formula):

(i)
$$Q_{2.33} = 3.89 \text{ A}^{1.4189}$$
 (4.7)

(ii)
$$Q_{5} = 8.81 \ A^{1.311}$$
 (4.8)

(iii) $Q_{10} = 14.08 \ A^{1.2523}$ (4.9)

(iv) $Q_{20} = 20.08 \ A^{1.2095}$ (4.10) (v) $Q_{50} = 29.04 \ A^{1.1669}$ (4.11) (vi) $Q_{100} = 36.522 \ A^{1.1414}$ (4.12)

which may have only a local applicability.

(6) For Davis and Wilson's formula, it can be seen from table-7 that the calculated values of K for marth-eastern

28

<u>ि</u>

region of Bangladesh varies from 40 to 219. This wide variability of K is not comparable to the values of K=100 for undulating country and 200 for mountainous country as found by the authors. This creats a doubt about the direct applicability of Davis and Wilson's formula in the region. The cause may be the lack of incorporation of more parameters.

(7) Logarithmic plotting of recorded maximum discharges against drainage areas in Fig.24 for stations carrying large discharges in comparison to their catchment areas (table - 8) gives the following equation of straight envelope :

$$Q = 24,696 A^{0.4127}$$
 (4.13)

which is not comparable to any of the existing formula but only nearly coutgane's formula, $Q=20,000\sqrt{A}$, developed for Newzealand rivers. The excessively large co-efficient of 24,696 may be due to the following reasons : (i) the envelope curve represents the top line below which all the plotted discharges lie, (ii) in Bangladesh some rivers sometimes carry unusual discharges, may be, due to breaking of dam in the upstream country, India, or due to flowshy character of the river etc.

CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

Conclusions 5.1.

The following conclusions can be drawn from the various analysis of flood discharges data presented in this study :

(1) Flood discharges can be roughly estimated by the equations :

 $Q = 1,208.7 A^{0.7574}$ (i) (4.1)in hydrologic areas of 1 and 2 and

(ii)
$$Q = 200 A^{0.7574}$$
 (4.2)

in hydrologic areas of 3,4,5,6 and 7. But for a correct representation more flood producing parameters should be incorporated.

(2) Flood discharges can be roughly estimated by the equations :

 $Q = 1,548 A^{0.62}$ (**i**) (4.3) in hydrologic areas of 8, 9 and 10 and

(ii)
$$Q = 800 A^{0.62}$$
 (4.4)

in hydrologic areas of 12,13,14,15 and 16. But for a correct representation more flood producing parameters should be incorporated.

(3) Equation :

$$q = 30,636 \,\overline{A}^{1.1455}$$
 (4.5)

gives the maximum flood discharge in hydroles area 17 in cubic feet per second per square miles.

(4) Equation :

$$q = 79,918.74 A^{-1.1945}$$
 (4.6)

gives the maximum flood discharges in south-entern region in cubic feet per second per square miles.

(5) Horton formula is not readily applicate in Bangladesh.

(6) Coefficients of Lane formula cannot be diained only from discharge data.

(7) Equations :

(i)	Q2.33	$= 3.89 \text{ A}^{1.4189}$		(4.7)
		8.81 A ^{1.311}	••••	(4.8)
		14.08 A ^{1.2523}	8 8 6 6 18400 jp -	(4.9)
(1 -)	Q ₂₀ =	20.08 A ^{1.2095}	0 0 0 0 0 (0) <u>00</u> .	(4.10)
(v)	۹ ₅₀ =	29.04 A ^{1.1669}	• • • • •	(4.11)
(v i)	Q ₁₀₀ =	36.522 A ^{1.1414}	// ● ● ● ● •●•207	- (4,12)

may have only a local applicability in the Sylhet area comprising the hydrologic areas of 14,15 and 16. The number in the suffix represents the return period in years.

(8) Davis and Wilson's formula is not readily applicable in north-eastern region of Bangladesh. More parameters should be incorporated to find the value of coefficient K.

(9) Equation :

 $Q = 24,696 A^{0.4127}$ (4.13)

envelopes the major discharges of Bangladesh.

5.2. Recommendations for Future Study

The following recommendations are made for future study for the estimation of flood discharges in Bangladesh :

(1) Similar analysis of discharge data for all the stations of Bangladesh including the stations at the cartakes and also the stations whose drainage areas lies partly in India.

(ii) Study for the estimation of peak floods from hydrologic conditions of geologic surfaces of water-shears and

(iii) Study for the estimation of flood discharges for the tidal areas of Bangladesh.

REFERENCES

1. Bhalerao, S.M., Kelkar G.R., & Rahman S.B., "Rainfall runoff relations for small catchments in high rainfall zone of Vidarbha (Maharashtra)", Proceedings of the symposium on hydrology of rivers with small and medium catchments, Technical papers on hydrological characteristics-surface waters volume-I, Central Board of Irrigation and Power Publication No.130, New Delhi, March 1978.

 Biswas, A.K., "A history of hydrology in the nineteenth century", journal of Water Power, Page 16, Vol.21, No.I, London, January 1969.

3. Chow, V.T., "Handbook of applied hydrology", page 25-5, McGraw-Hill book Company, U.S.A. 1964.

4. Design Directorate, Hydrologic and hydraulic design procedures for drainage structures, Bangladesh Water Development Board, Dhaka.

5. Gray, D.M., & Wigham J.M., "Peak flow-rainfall events", Section-VIII, Handbook on the principles of hydrology, A general text with special emphasis on Canadian conditions, A Water Information Centre Publication, Port Washington, 1973.

- 6. Halasi-Kun, G.J., "computations of peak floods with inadequate hydrologic data", Decisions with inadequate hydrologic data, proceedings of the second international symposium in hydrology, page 57, Fort Collings, Colorado, U.S.A., September 1972.
- 7. Hydrological Survey of Bangladesh, Bangladesh Water Development Board, Index of Surface Water hydrological observation stations in Bangladesh as on March 1982, Water Supply Paper-I, Dhaka, May 1982.
- 8. Kuíper, E., Water resources development, London Butterworths, 1965.
- 9. Master Plan Organisation, "National Water Plan Project", Second interim report, Volume-IV, floods and drainage, June, 1984.
- 10. Matin, M.A., "Frequency of discharge measurement and accuracy of the computed mean daily discharge", Bangladesh journal of Water Resources Research, Vol.3, No.1, Dhaka, December, 1982.
- 11. Matin, Md. Abdul, "Analysis of rainfall data for estimating the intensity-duration-frequency relationships for the north-eastern region of Bangladesh", A M.Sc.Engg. thesis submitted to the department of Water resources Engg., BUET Dhaka, June, 1984.

- 12. Mead, D.W., "The fundamental basis of hydraulic engg.", Hydrology, McGraw-Hill book Company, New York, London, 1919.
- Raudkivi, A.J., "Hydrology", An advanced introduction to hydrological processes and modelling, William Clowes (Beccles) Limited, London, 1979.
- 14. Richards, B.D., "Flood estimation and control", Third Edition, London, 1955.
- 15. Rudra, K., "Causes of floods-some investigations in fluvial geomerphology", Indian Journal of Power and river valley development, page 43, February, 1979.
- 16. Santos, A.Jr., "The statistical treatment of flood flows", Journal of Water Power, Page 63, Vol.22, No.2, London, February, 1970.
- 17. Shahane & Iyengar, "Outlines of Problems in Irrigation Engineering", Sangam Press, Poona, India.
- 18. Singh, C., "Design flood for design of spillways", Indian Journal of Power and river valley development, Page-222, September-October, 1979.

- 19. Vershney, R.S., "Empirical formula and envelope curves", Engineering hydrology, Chapter 12, Page-530, Nem Chand & Bros., Roorkee (U.P.), 1979.
- 20. World Meteorological Organisation, Economic Commission for Asia and Far East, Assessment of the Magnitude and Frequency of Flood Flows, Water Resources Series No.30, New York, 1967.
- 21. Yevjevich, V., "Probability and Statistics in hydrology" Water Resources Publication, 1972.

ŧ);

APPENDIX

TABLES

Ę,

T ABL	8 -	1
-------	-----	---

EMPIRICAL FORMULAE

No	Author Author	Formula in metric unit	Formula in f.p.s.unit	Limitations
		INDIÁN FORMULAÉ		مىسىنىدىنىيە مىرا بىرى بىلىغان
1.	Dicken Professional Paper on Indian Engg.Vol.II, 1865	Q = $CA^{3/4}$ Q in cumec, A in sq.Kms., C = 11.42 for areas with annual rainfall 600-1250 mm; max value of C = 35.	$Q = CA^{3/4}$ Q in cusec. A in sq.miles C = 825 = 2500 max.	Generally appli- cable for moderate size basins in North and Central India.
2.	Ryves	$Q = CA^{2/3}$ C = 6.8 within 80 km.of coast; 8.3 for areas bet- ween 80 and 2400 kms. from the the coast; 10.0 for limited area near the hills. Actual observed values are upto 40.	$Q = CA^{2/3}$ C = 450 to 2700	Derived from a study of river basins in South India.

3

38

e

EMPIRICAL FORMULAE

ï

1

1

No	Author	Formula in metric unit	Formula in f.p.s.unit	Limitations
3.	Craig Proc.of Inst. of C.E.Vol. L XXX 1884 - 85 pp. 201	$Q = 7.75 \text{ Nb}_{1} \log_{e} (4.97 \frac{L^{2}}{b_{1}})$ $N = 0.12 \text{ to } 0.18$ $b_{1}^{=} \text{ average width of}$ $strip \text{ in km}.$ $L = \text{ length of strip in km}$ $Q = 10 \text{ CVi } \log_{e} (\frac{4.97L^{2}}{b_{1}})$ where $C = \text{ coefficient of discharge}$ $V = \text{ velocity in m/sec.}$ $i = \text{ rainfall in cms}$	$Q = 440 \text{ Nb}_{1} \log_{e}(\frac{8L^{2}}{b_{1}})$ $N = 0.12 \text{ to } 0.18$ $b_{1} \& L \text{ in miles}$ or $Q = 440 \text{ CVi } \log_{e}(\frac{8L}{b_{1}})$ $V = \text{velocity in ft/sec.}$ $i = \text{rainfall in}$ inches.	Area should be divided into a number of triangu lar strips before application; gives too low values in practice.
4.	Lillie Proc.of Inst. of C.E.Vol. CCXVII-1923- 24pp. 295	Q = 0.058 VCa $\Sigma(\Theta L)$ a = (1.1+log 0.621L) C = 2+ $\frac{P}{38 \cdot 1}$ P = annual rainfall in cm L = length of arm in km V = velocity of flow in m/sec. Θ = apical angle of the triangles dividing the catchment area.	$Q = VCa\Sigma \theta L$ $a = (1 \cdot 1 + \log L)$ C = 2 + P/15 P in inches L in miles V= in ft/sec.	The catchment area has to be divided into a number of sectors of circles Formula gives too high values.

. . . .

EMPIRICAL FORMULAE

No	Author	Formula in metric unit	Formula in f.p.s. unit	Limitations
5•	Inglis Tech.Paper No.30,Bombay P.W.D.1940	$Q = \frac{124 \text{ A}}{\sqrt{A+10.4}}$	$Q = \frac{700Q}{\sqrt{(A + 4)}}$	Derived on the basi of rivers of Maha- rashtra.
б.	Ali Nawaz Jung Author's original note	Q = $C(0.386)$ (0.925-1/14 log(0.386A) A) C = 49 to 60; max value = 86	(0.925-1/14.log A) Q=C(A) C=1700 to 2100; maximum value= 3000	Lower values for south India and upper values for North India.
7.		$Q = 0.095 \frac{C SRa}{L} x(0.386 A)$ S = average slope in m/km for 5 km above the site. Ra = greatest average rainfall in cms. P = index. L = greatest length of the catchment in km. $C = a coefficient which$ varies as $\frac{Ra}{L}$	Q= CSRAA L S = average slope of river in ft/ mile for 3 miles above the site. Ra= greatest average annual rainfall in inches. L = in miles	Drived on the basis of data of some Indian rivers. Formula is not of much practical utility.

1

40

-Ĺ

TABLE - 1 (Contd.) EMPIRICAL FORMULAE

No	Author	Formula in metric unit	Formula in f.p.s. unit	Limitations
8.	Dredge and Burge U.S.G.S. water supply Paper	$Q = 19.5 \text{ W} \cdot \text{L} \text{ or } $ = 19.5 A/L ^{2/3}	Q = 1300 WL or = 1300 A/L	Based on Indian records but not useful.
	No. 771	W = average width of basin in km.	W and L in miles	
		L = length of basin in km.		
9.	Hyderabad formula for Tunghbhadra	Q = 49.6(0.386x) (0.92-1/14 log 0.386A) A)	Q = 1,750x A ^(0.92-1/14 log A)	Local Application
10.	Madras formula for Tunghbhadra. IV I.C.O.L.D. 1951	Q = $56.7(0.386x)$ (0.89-1/15 log 0.386a)	Q = 2,000x (0.89-1/15 logA) A	Local Applicabilit
11.	Bransby William	$Q = 80 A^{0.52}$	0.52 Q = 4,600 A	For Western Indian catchments. A \geq 25
12.	Bourges	$Q = 19.6 \ A/L$	2/3 Q = 1300 A/L	sq. km.

S.

° 41

ì

 \mathbf{O}

*

EMPIRICAL FORMULAE

·· · -

No	Author	Formula in metric unit	Formula in f.p.s.unit	Limitations
		OTHER FORMULAE		
1 •	Fanning.Treatise on Hydraulics and Water Supply pp.65 & "Hydrology and Water Sypply" by Fanning.	Q = 2.64 A	$\frac{4/5}{Q} = 200 \text{ A}$	Based on data of New England Appalacian basins in America.
2.	U.S. Geological survey for colum- bia (Paper by Coutagne)	0.476 Q = 25.2 A	0.476 Q = 1400 A	A between 2500 and 60,000 sq.km.
3.	Ghamier-Proc.Inst. C.E.Vol CXXW Part IV 1897-78 pp.313	3/4 Q = 3.5 CR A R = in cms/hour C = 0.25 to 0.65	$Q = 640 \text{ CR A}^{3/4}$ R = greatest rain-fall in inches/hour. C = 0.25 to 0.65	Applicable to small catchments.
4 •	Murphy- U.S.G.C. Water Supply Paper 162, 1906.	Q = (1325/(A+831) +0.164) A	Q = (46,790/(A+320)) +15) A	Mainly applicable to North-eastern U.S.A.and areas between 15 and 5000sg.km.

42

1

T

EMPIRICAL FORMULAE

No	Author	Pommilo in metudo unit		
		Formula in metric unit	Formula in f.p.s. unit	Limitations
5.	Metcalf and Eddy Drainage and flood Control Engineering by Pickels pp.75.	$Q = 6.22 A^{0.72}$	$Q = 440 A^{0.72}$	Local application to water sheds over 500 sq.km.in area for American conditions.
5.	Burkli Ziegler- Trans.ASCE Vol. 77,1914 pp.616	$Q = 4 \cdot 12 A$	3/4 Q = 296 A	Local application for American conditions.
*7 ; *	Possenti-Trans. AS.C.B. Vol.77, 1914 pp. 5 16	$Q = 48.4 \sqrt{A}$	$Q = 2,856 \sqrt{A}$	Local application derived in W.S.A.
ي م	Bremner-Drainage and Flood Control Engineering by Pickels pp.75	$Q = 26.4 \ A/(2.42+\sqrt{A})$	Q =3,000 A/(3+2\A)	For design of water way openings in C.B. & Q.R.R. in U.S.A. Applicable to small basins.
9.	Gangulliet- Trans A.S.C.E. Vol.77, 1914 pp.615	$Q = 25 A/(5 + \sqrt{A})$	$Q = \frac{1,421A}{3.11+\sqrt{A}}$	Applicable to Swiss Strems.

7

.+

न 1

EMPIRICAL FORMULAE

No	Author	Formula in metric unit	Formula in f.p.s. unit	Limitations
10.	Formula Trans.A.S.C.E.	$Q = \frac{32 \text{ A}}{0.5 \pm \sqrt{A}}$	$Q = \frac{1.819 \text{ A}}{0.31 + \sqrt{A}}$	For streams in Italy
	Vol.77,1914, pp.615	$Q = \frac{45 \cdot 7 \mathbb{A}}{(0 \cdot 5 + \sqrt{A})}$	$Q = 2,600 A / (0.311 + \sqrt{A})$	For small brooks in Italy.
11.	0'Cornell- Trans.A.S.C.E. Vol.77, 1914 pp.615	$Q = 9.53(A+0.0182)^{1/2}$	$Q = \sqrt{(458(640A+4.58)-45.8)}$	American origin - Local application
12.	Gramer-Trans. A.S.C.E.Vol.77 1914 pp.616	$Q = \frac{0.884}{1+0.09854} \frac{A}{1/2}$	$Q = \frac{80.6 \text{ A}}{1+0.1347 \text{ A}} \frac{1/3}{4}$	For Mohawak river U.S.A.
13.	Lanter Burg- Trans.A.S.C.E. Vol.77,1914 pp.616.	$Q = \frac{6710}{6000+A} + 0.085)A$	$Q = \left(\frac{615}{6+0.00259A} + 0.53\right) A$	American origin- local applicability.
14•	Coutgane (Newzealand).	Q = 352√Â	$Q = 20,000 \sqrt{A}$	For Newzealand river which are usually small.

i

00

) T EMPIRICAL FORMULAE

.

No	Author	Formula in metric unit	Formula in f.p.s.mnit	Limitations
15.	Kuiching U.S.G.S.Water Supply Paper-771	$q = (\frac{1245}{A+440} + 0.022)$	$q = (\frac{44,000}{4+170} + 20)$	For occasional floods
	owherd takerallt	$q = (-\frac{3,590}{A+960}, 0.061)$	$q = (\frac{1,27,000}{4,7.4}, 7.4)$	For rare floods
	:	q = cumec/sq.km.	q = peak flood in cusec per sq. mile	Areas upto 13,000 sq. km; mainly derived for Mohawak river in U.S.A.
16.	Cooley Drainage and Flood Control Engg.by Pickels pp.75	$Q = 0.015(145A+A^{2/3})$ for return period 5 to 10 years.	$Q = 200 A + A^{2/3}$	For Mississippi Valley-local appli- cability.
17-	Fuller W.E. Trans.A.S.C.E. Vol.77,1914 pp.564.	$Q_{av} = 0.013 CA^{0.8} = C_1 A^{0.8}$ $Q = Q_{av} (1 + 0.8 \log T)$ $Q_{max} Q(1 + 2.5 A^{-0.3})$	$Q_{av} = CA^{0.8}$	Constants derived on records of U.S.A.basins If at least 10 years data is available it it applicable with sufficient reliability.
		Q = yearly average flood	· ·	

đ

٦

45

Ē

EMPIRICAL FORMULAE

VO	Author	Formula in metric unit	Formula in f.p.s.unit	Limitations
		Q = max.24 hr.flood for frequency once in T years.		
		Q = maximum instantan- max eous flood disch- arge	$Q = Q_{av}(1+0.8 \log T)$ $Q_{max} = Q(1+2 A_{v}^{-0.3})$	
	1	C varies from 0.026 to 2.27	C varies from 2 to 210	
8.	Grunsky Trans A.S.C.E. Vol.85,1922 pp 66-136	$Q = \frac{13.6 \text{ a. } R.A.}{t^{1/2}}$	$Q = \frac{3,200 \text{ a.R.A.}}{t^{1/2}}$	Derived in California,not widely used.
		R = rainfall in gms.	R = rainfall in inches	
		t = critical time in minutes	$C_1 = 0.5 \text{ to } 250$	-
		$a = 60/(60+c_1^{3/t})$	•,	
		$c_1 = 0.5$ to 250.		

3 **3**

No	Author	Formula in metric unit	Formula in f.p.s.unit	Limitations
19.	Myer Modified Trans. A. S. C. R.	Q = 176p \sqrt{A}	$Q = 10,000 p \sqrt{A}$	Based on long data
Trans.A.S.C.E. Vol.89,1926 pp. 985.	<pre>p = a factor, depends on drainage fac- tors and frequency of floods,usually unity.</pre>		of U.S.A. rivers. Wider applicability for first approxi- mation.	
20.	Horton, Trans. A.S.C.E. Vol.	$q = 114.1 T^{0.25} / A^{-0.5}$	$q = 4021.5T^{0.25}A^{-0.5}$	Constants variable
•	77, 1914 pp. 665	<pre>q = flood discharge in cumec/sq.km.equall- ed or exceeded in an average interval of T years.</pre>	q = cusec/sq.mile	& determinable on the basis of actual data.Hence not readily applicable.
21.	Lane, Trans,	$Q = k(\log T + B)A$	$Q = k(\log T + B) A$	K and B determinable
	A.S.C.E. Vol.89,1926 pp. 1048.	T = return period in years.	· .	on the basis of actual data
•		B = a constant for the region.		

EMPIRICAL FORMULAE

No	Author	Formula in metric unit	Formula in f.p.s. unit	Limitations
22.	Pettis Major "A new theory of	$Q = C(pW)^{1.25}$	$Q = C(pW)^{1.25}$	
	river flood flow" 1927. & The Engg. News Record.June 21, 1934.	C varies from 0.195 for desert areas to 1.51 for humid areas.	C varies from 310 for humid areas to 40 in desert areas	
		<pre>p = precipitation(100 year maximum) 1 day rainfall in cms.</pre>	P in inches and W in miles.	Catchment between 2,600 to 26,000 sq. km.
		W = average width of the basin in km.		
23.	Switzer and	$Q = P \cdot C \cdot W^{1 \cdot 5}$	$Q = P \cdot C \cdot W^{1 \cdot 5}$	For Miami Conser-
	Miller Floods Cornell	P = rainfall in cms.	C = 80 (usually)	vancy district
	Univ.Engg.Exp. Stn.Bulletin 13, Dec.,15, 1929.	C = 0.436 usually.	P = rainfall in inches.	

EMPIRICAL FORMULAE

No	Author	Formula in metric unit	Formula in f.p.s. unit	Limitations
24.	Boston Society. Journal of the Boston Society of Civil Engi- neers Septem- ber,1930. Dec.,1952 and Jan.,1942 Report of the Committee on floods.	Q = (5.54 P/T)A T' = Base period of hydrograph in hours p = rainfall in cms	Q = (1290 P/T)A P = rainfall in inches.	Wide applicability if some actual hy- drograph and rain- fall data are available.
25.	J.M. Baird & J.F.Mcillwraith. -IV I.C.O.L.D. world peak.	$Q = 3010A(277+A)^{0.78}$	Q = 131,000 A/ (107+A) ^{0.78}	Maximum recorded flood flows through- out the world.
26.	Australia	$Q = \frac{5100A}{(277+A)^{0.9}}$	$Q = \frac{22,2000A}{(107+A)}$	Max. recorded worst cloud bursts in Australia.

-49

EMPIRICAL FORMULAE

.

10	Author	Formula in metric unit	Formula in f.p.s.unit	Limitations
27•	Coutagne -France	Q = (10 to 70) A	/	Mild rain, A between 3,000 and 160,000 sq.km.
		$Q_a = 150 A$:	Violent rain; A bet- ween 400 and 3,000 sq.km.
		$Q_m = 200 A$		A between 30 and 10,000 sq.km.
		$Q_a = 54 \pm 6 A$		River Garonne; A between 300 and 35,000 sq.km.
		$Q_{\rm m} = 10.76$ A	. 1	For dams of Massif Central France
8.	Bransby Williams.U.K.	$Q_{\rm m} = 37.5 \ {\rm A}^{0.75}$	$Q_{\rm m} = 2700 \ {\rm A}^{0.75}$	A < 25 sg.km.
		, .	· · · · · · · · · · · · · · ·	· · · ·

ł

EMPIRICAL FORMULAE

.

.

÷.

 \cap

No	Author	Formula in metric unit	Formula in f.p.s.unit	Limitations
29.	Fridrich (Germany)	Q = 24.12 A Mean flow		A from 15 to 200,000 sq.km.
30.	Whistler(Italy)	$Q_{m}^{=}$ (1538/A(A+259)+0.054)A	. ,	A between 1,000 to 12,000 sq.km.
	Pagliaro(Italy)	$Q_{\rm m} = (2900/(A+90)) A$		A ≤ 1,000 sq.km.
	Scimemi(Italy)	$Q_{\rm m} = (600/(A+10)+1)A$		A ≤ 1,000 sq.km.
	Baratta(Ita k y)	$Q_{\rm m} = (280/A + 2) A$		For mountain basin
	Giandotti(Italy)	$Q_{\rm m} = (532.5/(A+16.2)+5)A$		For mountain basins
	Forti (Italy)	$Q_{\rm m} = (1625/(A+125)+1) A$		$A \leq 1,000 \text{ sq.km.}$ max. rainfall 400 mm in 24 hrs.
•	Forti (Italy)	$Q_{\rm m} = (1175/(A+125) + 0.5) A$		Max.rainfall 200 mm in 24 hours.

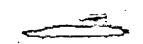
i

 \succeq

4

EMPIRICAL FORMULAE

.


No	Author	Formula in metric unit	Formula in f.p.s. unit	Limitations
31.	Creager	$Q_{\rm m} = C_1 (0.386 {\rm A})$	$Q_{\rm m}^{-0.048} = 56^{0.894 {\rm A}^{-0.048}}$	
		C ₁ = 130 usually	C = 100 usually	,
32.	Hunter & Wilmot	$Q_{\rm m} = 38.5 \ {\rm A}^{0.72}$	$Q_{\rm m} = 2,700 ~{\rm A}^{0.72}$	A ≤ 25 sq.km.
	U•K•	$Q_{\rm m} = 80 {\rm A}^{0.52}$	$Q_{m} = 4,600$ $A^{0.52}$	A > 25 sq.km.
33.	Lazarevic R.H. (Morocco) Int.Symp. Leningrad,1967	· .		
	CentralRif.	$Q = 15.55 A^{0.776}$	<u>^</u>	Rainfall 100 - 130cm
	Western Rif.	$Q = 9.68 A^{0.793}$		80 - 100
•	Bastern Rif	$Q = 7.58 A^{0.808}$		60 - 80
	H.Atlas Sahara	$Q = 9.38 A^{0.742}$		20 - 40

52

.

			EMPIRICAL	FORMULA	2			
						· · ·		`.
Formula	in	metric	unit	Formula	in	f.p.s.	unit	Lim
,	· ·	· · .	· · · · ·			•		

No	Author	Formula in metric unit	Formula in f.p.s. unit	Limitations
الفصنية غيب	Middle Atlas	$Q = 14.94 A^{0.636}$		Rainfall 70 - 90
	. u	$Q = 13.51 A^{0.613}$		50 - 70
	" (Karst)	$Q = 13.41 A^{0.587}$	1	40 - 70
34.	Besson	$Q_m = (P_m/P_r) Q_r$		Very rational. Appli- cable to all places
	1	$Q_m = max.$ expected flood		where data is available.
		Q_r = observed max. flood		· · ·
		$P_m = Expected max. rainfall$		
		P_r = Rainfall that caused Q_r	•	
35.	Jarvis C.S. Proc.ASCE 1924	$Q = C\sqrt{A}$	$Q = C \sqrt{A}$	For large catchments in U.S.A.
		C = 17.6 to 176	Q = 1000 to 10,000	
			· · ·	

7

53

 \mathcal{I}

1

BEMBIRICAL FORMULAE

1

. . .

ده ويعلوني ال	وماد بعدى متري معرسة الودن ميد وجري معارفها ماكر ماكر ماكر من يورد مع المناف المكر الكركة العالية -	ر بعار بین از میزود نواند بر بار می بر می از در از نمان از در از مراح و این است بر ناز است با نقاب و به معموما از می می ا	ومواريه والتقاصيني والمحود المحود المتقولية والمحود التقا فالتقا المحد الوحد والمراجع والمحاوية والقات المات	
No	Author	Formula in metric unit	Formula in f.p.s. unit	Limitations
36.	Davis & Wilson Irrigation Engg.	$Q = k P_{av} A^{2/3}$	$Q = k P_{av} A^{2/3}$	
		$P_{av} = in cms.$	k = 100 for undulating country	
	·	k = 0.6 to 1.2	= 200 for mountainous country	
		· · · · · · · · · · · · · · · · · · ·	P = Max. rainfall over av the catchment in 24 hours in inches	
7.	Waitt F.W.F. Report of the Stornmater stan- dards Committee of I.O.E. Australia	$Q = \frac{176 \text{ A}}{0.8 + \sqrt{A}}$	$Q = \frac{10,000 \text{ A}}{0.5+ \sqrt{A}}$	
			1	

EMPIRICAL FORMULAE

No	Author	Formula in metric unit	Formula in f.p.s.	unit	Limitations
38.	Iszkowski-zeits- chrift oesterv	zkowski-zeits- $Q = 3.171 C_{h}$ mI.A			<u>مەرە - بەرە مەرە بەرە ئەرە ئەلەر بەرە بەرە مەرە تەرە بەرە بەرە بەرە بەرە بەرە بەرە ب</u>
	des eichischer Ingenieur and Architckton verein Vol.XXXVIII Wien 1886	C _h = coefficient of annual runoff-0.017 to 0.8	· · ·		
		I = annual rainfall cms.			
		m = a coefficient relating max. to average discharge - 1 to 10.			
	,	· · ·			•
	,				
		·			· · ·
				1	
	•	×			

Source : VERSHNEY, R.S., 1979, "Engineering Hydrology", Nem Chand & Bros.

55

1.1

TABLE - 2

VALUES OF \overline{y}_N AND 6_N AS A FUNCTION OF SALPLE SIZE N.

	-				
N	<u>y</u> n	6 _N		y _N	6 _N
8 9 1 1 2 3 4 5 6 7 8 9 0 1 2 3 3 3 3 3 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 5 3 5 5 5 5 3 3 5 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.48430 0.49020 0.49920 0.49960 0.50350 0.50700 0.51280 0.51280 0.51280 0.51200 0.52020 0.52200 0.52355 0.52520 0.52830 0.52830 0.52960 0.53200 0.53200 0.53430 0.53530 0.53530 0.53800 0.53800 0.53800 0.53960 0.53960 0.53960 0.53960 0.54034 0.54100 0.54100 0.54300 0.54362 0.54480 0.54530 0.54530 0.54530 0.54630	0.90430 0.92880 0.94970 0.96760 0.98330 0.99720 1.00950 - 1'.02050 1.03160 1.04110 1.04930 1.05660 1.06283 1.06960 1.07540 1.09110 1.09110 1.09145 1.09145 1.09610 1.10470 1.11238 1.11238 1.11260 1.12550 1.12847 1.12550 1.12847 1.13130 1.13630 1.13630 1.13630 1.14990 1.15185	46 47 490 123 455 555 555 555 555 555 555 555 555 55	0.54680 0.54730 0.54770 0.54810 0.54890 0.54890 0.54970 0.55010 0.55040 0.55040 0.55040 0.55150 0.55180 0.55180 0.55208 0.55208 0.55270 0.55330 0.55380 0.55430 0.55610 0.55610 0.55610 0.55650 0.55688 0.55720 0.55800 0.55800 0.55830 0.55830 0.55980	1. 15380 1. 15570 1. 15740 1. 15900 1. 16066 1. 16230 1. 16380 1. 16530 1. 16670 1. 16670 1. 16810 1. 16960 1. 17210 1. 17210 1. 17700 1. 17700 1. 17700 1. 17700 1. 17700 1. 17930 1. 18340 1. 18536 1. 18730 1. 18900 1. 19960 1. 19960 1. 19960 1. 19530 1. 19980 1. 19940 1. 20073 1. 20200 1. 20550 1. 20649 1. 22534 1. 23292

Source : RAUDKIVI, A.J., 1976, Hydrology; Pergamon Press.

INDEX OF DISCHARGE STATIONS

11. .10	M.P.O's Hydrolo- gic Area Number	Name of	N	Period of From to	record No.of years		Catchment area in sq.miles	Recorded max.flood discharges in cusec	Average of Annual max. flood disch- arges in cusec.	*** q in cuse per sq mile
	<u></u>			North-Wes	etern Re	gio	n	ی پر بان پی او با نوی این او پر بار او پر ا	****	
1.		142.'1 Bushir Bandar	57 Karotoa * Atrai Gur - Gumani - Hura - sagar	**1964 65	1980-81	14	787	88,604	37,882	112.6
2.	11 .	142 Khansama	rt .	67-68	80-81	12	737	161,321	74,436	218.9
3.	17 .	140 Panchagarh	n	64–65	82-83	17	197	187,798	37,237	953.3
4.	n	285 Thakurgaon	105 Tangaon	64-65	82-83	15	103	17,968	8,856	174•4
5.	2 2	294 Kaunia	104 Tista	59-60	83-84	22	1320	327,584	173,211	248.2
б.		81 Pateswari	36 Dudh Kuma	r 68-69	82-83		1417	253,807+	125,065	
* ∦	3 1	16.1 Malonchi	9 Boral	65-66	82-83	•••	87	36,359	20,397	179•1
8.	4 1	155 Mohimagonj	59 Kahak	64-65	82-83		1204*	39,889	19,270	417.9
) a	" 3 B	312 Talora Rly Bridge	. 120 Nagor	64-65	79-80		128	7,378	3,170	33•1 57•6

** Water year 1964-65 means 1st April, 1964 to 31st March, 1965.

*** Recorded maximum flood discharges per unit catchment area.

4

* Catchment area partly in Bangladesh. + Second highest discharge. The highest(8,15,430 cusec) is exceptionally higher than the lowest (9,990 cusec).

INDEX OF DISCHARGE STATIONS

	M.P.O's Hydrolo- gic Area Number	- Name of	BWDB No.& Name of river	Period From	To	No.of years	Catchment area in sq.miles	max.flood	Average of Annual max. flood disch- arges in cusec.	q *** in cus per sq mile
10.	5	65 Bogra	28 Deonai- 1 Charal-Kata Jamuneswari- Karotoa	1984-65	1982-83	18	220	9,743	3,377	44•3
t 1• [‡]	tt .	306 Gabtoli	115 Isamati	64-65	1977-78	3 12	5 9	3,954	1,538	67.0
12.	•	313 Nangoora R.B.	121 Nangoora	64-65	79–80	15	134	32,158	11,016	240.0
13.	n	-	28 eonai-Cha- Charal-Kota Jamunesswari- Karotoa	- 64-65	82-83	18	2007* 1	1,01,664	34,782	50 • '7
14.	6	238 Rohanpur	89 Punarbhaba	66–67	82-83	16	938	26,934	17,339	28.7
15.	7	147 Atrai R.I	B 57,Karatoa- Atrai-Gur- Guma ni- Hurasquar	60–61	82-83	19	2875 [*]	28,664	18,122	10.0
16.	T\$	149.1 Gumani Rly.Bridge	11	64 -65	80-81	16	984	55,422	23,984	56•3

* Catchment area partly in Bangla desh. * Water year 1964-65 means 1st April, 1964 to 31st. March, 1965

58

196877-

INDEX OF DISCHARGE STATIONS

- -

31. . c	M.P.O' Hydrol gic Ar Number	o- Name of ea Station	BWDB No.& Name of river	<u>Peri</u> From	od of To	record No.of years	Catchment Érea in sq.miles	Recorded max.flood discharges in cusec	Average of Annual max. flood disch- arges in cusec.	*** q in cu per s mile
17.	7	17.1 Boral Rly Bridge	• 9 Boral	1964–65	1982-83	17	60	16,273	8,580	271.2
·8.	H	83.11 Naldanga Rly.bridge	37 Fakirni- Barnai	65-66	82-83	15	214	5,401	4,015	25.2
:9.	31	90 Hardinge Bridge	39 Ganges	34-35	8 3- 84	49	3,50,100*	25,83,960	17,71,916	7•4
				No	rth - Ea	atern R	legion			······································
×0.	8	34 Nakuagaon	17 Bhogai- Kang a a	64-65	79-80	15	187 #	35,653	15,431	190.1
<u>]</u> 1.	**	314 Ghosegaon	122 Nitai	64-65	82-83	17	150 *	23,722	12,137	158.1
'2 ·	rk.	263A Durgapur	99 Sameswari	66-67	8081	14	915 *	64,600	45,983	70.6
3.	9	1344 Bausi R.B	52 Jhenai	64-65	77-78	13	54	17,085	10,052	316.4
4 •	H	134 Jokerchar	52 Jhenai	65- 66	80-81	13	98	27,358	20,860	279.2
25-1	n 2	28.5 Mymensingh	86 01d Brah- maputra	64 - 65	82-83	16	430	1,34,846	102,163	313.6
6.	78	9 Kaoraid	6 Banar	65 - 66	76-77	10,	75	10,590	6,594	141.2
7•	11	14 Mirjapur	8 Bangshi	65-66	81-82	12	552	32,724	13,991	59.3
;		* Catchment area		nglades	3h. ***	Recorde	d max.flood d	ischarges p	per unit catch area.	ment

59 "

INDEX OF DISCHARGE STATIONS

	M.P.O's Hydrolo- gic Area Number	- Name of	BWDB No.& Name of river.	<u>Period</u> From	d of To	record No.of years.		max.flood	Average of Annual max. flood disch- arges in cusec.	q in cusec per s miles
28.	10	301 Kaliakoi -r	111 Turag 1	1965-66	1982-83	3 15	44 4	42,714	26,964	96 , 12
29 . '	n	14.5 Nayerhat	at 8 Bangshi	64-65	79-80	0 15	1,175	1,14,726	65,929	97.6
30.	Ħ	302 Mirpur	111 Turag	63-64	82-83	3 18	410	56,481	35,451	137.'8
31.		230.1 Bhairab Bazar	86 Old Brah- maputra	- 64-65	75-76	5 1 1	24,993*	5,08,320	223,096	20.3
32.		36 Jariajan- gail	17 Bhogai- Kangsa	64-65	82-83	i. 17	686*	44,126	32,389	64•3
33.	14	192 Motigonj	73 Lungla	64-65	80-81	1 11	86 *	4,095	4,213	47.6
34.	15	267 Sylhet	102 Surma- Meghna	64 - 65	81-82	2 14	1,080*	87,544	73,008	81 • 1
35.	16	201 Manu R.B.	77 Manu	64-65	81-82	2 16	390*	26,687	18,994	68.4
36.	Ħ	67 Kamalganj	29 Dhalai	64-65	80-81	15	195*	11,684	7,672	59 •9
37.	31 4 k	46.91, Bahadura bad	a-22 Brahmapu- tra-Jamuna	- 65-66	82–83	5 17	2,06,895	32,15,830	23,09,243	15.5

* Catchment area partly in Bangladesh.

ر ال.ر. *** Recorded maximum flood discharges per unit catchment area.

INDEX OF DISCHARGE STATIONS

No H g	[ydro]	s BWDB No.& Lo- Name of rea Station	BWDB No.& Name of river.	<u>Peric</u> From	To N	ecord lo. of ears.	Catchment Area in st. miles	Recorded max.flood discharges in cusec.	Average of Annual max. flood disch- arges in cusec.	*** 9 in cusec per so miles
38 .	31	91.9L Baruria Transit	39 Ganges	1966–67	1983-84	16	2,24,000*	39,88,900	30,65,143	17.8
39.	Ħ	93.51 Mawa	39 Ganges	65-66	83-84	16	6,03,701*	39,18,300	30,72,865	6.5
		a 1 		South-	Western	Region		ندهه همینان این این این این این این این این این		
40.	17	101.5 Kamar- Khali Tr.	42 Gorai-Modh mati Baleshwa	u-62-63 r	81-82	17	362	2,80,988	1,96,766	776.2
/ 2	10	171 Goraganj	65 Kumar (Jessore)	61-62	82-83	19	336	9,637	2,981	28.7
* *) _N	\$, *,	205 Kast pur	79 Mathabhanga	a 67-68	82-83	15	59	17,897	8,860	303.3
1	93	206 He Joalia	79 Mathabhanga	a 67-68	82-83	19	230	14,861	8,060	
1.5	eş.	208 1020 23	79 Mathabhanga	a 66-67	82-83	16	64 6	14,438	9,326	22.3
	18	5. Telling	25 Chitra	65 - 66	77-78	11	139	1,108	584	8.0
• •4•• •	10	*50dezerdi o	54 Kusar(Farid Surj	1-65-66	76 - 77	11	229	9,390	5.1 5	tin and and and and and and and and and an

* Cathedree area partly in Bangladesh.

7

www support ab manipuum flood discharges per unit catchment area.

INDEX OF DISC	HARGE	STATIONS
---------------	-------	----------

		· · · ·								
51. No.	Hydro	o's BWDB No.& olo-Name of Area Station er	BWDB No.& Name of river.	Peri From	od of To	record No. of years	Catchment Area in sq. miles	Recorded max.flood discharges in cusec.	Average of Annual max. flood disch arges in cusec.	q ir cusec per s miles
47.	21	162 Jhikarga cha	a-62 Kobadak	1965-66	1977-78	10	226	4,201	1,142	18.6
				Sout	h-Eastern	n Region	<u></u>	· · · · · · · · · · · · · · · · · · ·		
48.	11	114 Jibanpur (Gumti branch)	43 Gumti- Burinadi	65-66	82-83	17	911	21,780	10,582	23,9
49•	25	110 Comilla	43 Gumti- Burinadi	65-66	82-83	17	874	25,769	15,848	29.5
50.	27	212 Parsuram	81 Muhuri	65 66	81-82	16	263	24,145	10,243	91•8
51.	4	119 Panchpukur	ia 44 Halda	65-66	82-83	17	315	20,580	12,035	65.3
52.	28	124 Thand achar	i 47 Isamati	65-66	82-83	14	60	41,655	12,645	694•'2
5 3 •	n	40 Ramu	19 Bhogai	65-66	82-83	17	186	28,770	14,226	154•7
54.	Ĥ	247 Bandarban	92 Sangu	65-66	82-83	15	895	79,778	46,855	89 • 1
5 5 •	ri	203 Lama	78 Matamuhur:	1 65-66	82-83	17	401	78,013	41,478	194•5

*** Recorded maximum flood discharges per unit catchment area.

Water Year	142.1 Bushir- Bandar	142 Khansama	140 Pancha- garh	285 Thakurgaon
1964–65	35,265	_	17,968	7,272
65-66	32,758		14,544	3,812
66-67	42,360	-	51,044	6,178
67-68		66,384	27,463	17,968
68 69	88 ,604	1,32,022	5 7 ; 539	-
69-70	44,478	94,957	24,463	9°°213
70-71	3 9,536	75,895	16,485	8,578
71-72	, <u> </u>	·		
72-73	30, 076	87,897	1,87,798	4,660
73-74	27,675	31,452	15,497	7,731
74-75	43,419	48,714	25,381	-
75-76	27 , 781	63,893	34,876	.
76-77	27,463	61,775	18,886	13,379
77 - 78	-	-	-	7,731
78 -79	25,416	30,676	20,086	4,448
79– 80	33,464	25,557	29 , 899	10,202
8081	32,052	1,61,321	39, 183	11,508
81-82	-	-	40, 948	8,719
82-83	-	-	10,978	11,437
83-84	-	-	 y	-

ANNUAL MAXIMUM DISCHARGE IN CUSEC

Water Year	81 Pates- wari	1651 Malonchi	155 Mohima- gonj	312 Talora R.B.
1964-65	ی جب این این کاری این کری این کری دی این این دی این این این این این این این این این ای		19,592	7,378
65 66	-	13 , 132	9,566	2,446
66–67	-	36,359	19,309	2,107
67–68		35,159	12,002	2,676
68 69	8,15,430	23,580	15,779	3,989
69-70	83, 308	20,792	17,897	3,145
70 -7 1	1,64,851	18,356	25,981	3°, 117
71-72		 ,	-	-
72-73	1,49,642	13,202	11,790	2,489
73-74	35,053	25,275	39,889	4,766
74-75	57,892	22,274	39,536	4,518
75-76	40,948	24,463	24,887	2,676
76-77	2,53,807	24,675	25,381	3,336
77–78	28°, 558	14,473	1 9, 980	3,166
78-79	14,049	26,016	18,391	5 75
79-80	39; 536	11,296	20,121	1,168
80 81	23,263	17	4,413	_
81-82	9,990	17,191	5,401	-
82-83	34,559	102	16,944	· _
83-84	.	-	й , —	-
				•

- 2.0 Å

later Year	65 Bog ra	306 Gabtoli	313 Nangura R .B.	66 Ullapara
	2,828	ه هم هو بده برو برو برو منه یک کو د محمد نیم عده برو برو برو منه یک کو د	32,158	98,8 <u>40</u>
65-66	2,898	812	17,756	1,01,664
66-67	1,747	-469	15,532	74,130
67–68	1,419	544	4,695	22,486
68–69	4,836	1,338	8,190	25,487
69-70	4,342	1,119	9,178	23,792
70-71	4,695	1,899	9,531	37,418
71-72	<u> </u>	-	-	
72 -7 3	1,949	854	6,389	20,686
73-74	9,743	3,954	12,179	4,589
74- 75	4,942	2,499	12,496	52 °, 597
75-76	2,139	1,977	4,624	15,285
76-77	3,742	1,758	7,590	25,769
77–78	2,708	1,239	10,590	27,463
78-79	2,916	. ~	6,001	15,814
79-80	1,709	-	8,331	18,709
80-81	4,589	-	- · · ·	27,816
81–82	1,532	-	-	20,827
82-83	2,062	-	-	12,708
83-84	-	. -	- /	-

.

ANNUAL MAXIMUM DISCHARGE IN CUSEC

Water Year	238 Rohanpur	149:1 Gumani R.B	17:1 Boral R.B.	83:1 Naldanga R.B
1964-65	— ¹	55,422	16,273	-
65-66	- -	28,911	14,551	3,989
66-67	16,485	20,792	7,943	3,276
67–68 -	18,003	19,274	7,201	2,828
69 4 70	22,168	26,262	11,084	4,66 0
70-71	23,969	24,181	9,555	3,601
71-72	-	- `	-	-
72-73	10,096	16,697	6,213	~
73-74	19,909	22,063	8,613	-
74-7 5	21,392	21,780	9,249	3,477
75-76	8,366	21,462	7,554	2,736
76-77	17,438	26,475	8 , 170	4,095
77-78	13,944	22,769	9,55	3,883
78 79	16,662	22,310	-	4,589
79-80	14,085	23,333	6°9551	5,154
80-81	13,873	16,626	6,285	4,13
81-82	16,838	-	5,683	5,401
8 <u>2</u> -83	17,262	-	3,452	3,495
83-84	-	- · · · · · · · ·	· · · · - ·	_

ANNUAL MAXIMUM DISCHARGE IN CUSEC

, v				•••
Water Year	34 Nakuagaon	314 Ghosegaon	, 134 A Bausi R.B.	134 Jokerchar
 1964 - 65	8,225	8 , 50 7	8,684	
65 -6 6	16,838	-	5,154	19,768
66-67	9,955	8,260	6,707	19,380
67–68	13,979	9,990	11,790	21,286
68–69	24,957	12,673	9,355	20,086
69-70	5,083	21,780	9,708	22,168
70-71	12,743	142897	12,885	26°2863
71-72	-	-	-	-
72-73	15,567	9,778	13,485	16,768
73 -7 4	10,872	10,590	14,402	16,167
74– 75	35,653	10,696	17,085	27,358
75-76	20,580	12,885	6,813	24,181
76-77	11,790	6,848	4,624	1 7, 579
77-78	15,885	7,660	9,990	-
78 –79	7,943	9,778		-
79 – 80	21,392	12,214	-	14,579
80-81	 .	8,119	-	24,992
81-82	-	23,722	-	-
83-84	-	17,932	24 	-

67

ł

. .

- . -

.

Water Year	228:5 Mymensingh	9 Kaoraid	14 Mirjapur	301 Kaliakoir
1964–65	99,899		-	-
65–66	1,14,019	10,590	15,356	18,88 6
66–67	1,23,197	4,413	13,555	31,382
67–68	1,05,900	5,083	11,084	26,475
6869	99,193	7,519	13,202	33,853
69-70	97,781	5,895	15,779	
70 –7 1	1,14,725	8,649	-	42,714
71-72	-	·	< -	-
72-73	-	·· •• -	. 13, 273	35,265
73-74	***	4,942	8,507	30 , 570
74-75	1,34,846	7,166	10 , 872	38 , 124
75 76	1,08,018	6,425	4,660	20,968
76-77	1,13,313	5,260	12,990	17,968
77–78	1,25,315	-	-	23,898
78-79	97,781			15,391
79-80	92,839	-	32,724	16 , 556
80-81	1,17,902		-	35,653
81 82 .	2,686	_	15,885	-
82-83	87,191	 ,		16,768
83-84	-	-	- ;	-

Water Year	1475 Nayerhat	230:1 Bhairab Bazar	114 Jibanpur (Gumti Br;)	36 Jariajangai]
1964-65	75,895	4,34,190	-	27,075
65 66	69,894	4,27,130	10,378	31,876
66-67	87,544	5,08,320	12,779	, 34, 771
67-68	56,480	4,48,310	9,107	34,876
68-69	95 , 310	4,69,490	10 ,166	33,253
69 - 70	61,422	20,968	11,578	-
70-71	1,14,726	28,381	6,354	30 , 182
71-72	-		. – .	-
72-73	59 , 657	24,992	5,789	35 ,653
73-74	84,367	24,392	9,496	26,087
74-75	96,722	42,007	9',002	44,126
75-76	33, 464	25,875	12,885	31,558
76-77	34,382		21,780	27,358
77–78	47,302	·	11,120	31,876
78-79	38,830	 ,	18,886	30,076
79 - 80	32,935	-	11, 155	36, 288
80-81	, .	-	7,413	29,511
81-82	-		6,989	29,334
82 - 83	-	.	5,013	36,712
83-84	-	-	-,/	-

. ·

t

		•		
Water Year	263 4 Durgapu r	192 Motiganj	267 Sylhet	201 Manu R.B
 196 4 -65		2,097	75,595	18,780
65-66		505	57,504	— ,
66–67	44,831		82,839	16,344
67-68	40,948		71,800	10,767
6869	58,951		69 °, 506	26,687
69–70	44,125	. —	74,998	14,402
70 -7 1	44,831	1,638	73,98 9	23,263
71-72	-	- •	` 	-
72-73	64,600	- .	63,399	15,391
73-74	32,970	1,370	79 , 199	22,168
74-75	57,186	1,338	74,998	19,592
75-76	30,252	. 621	80,837	17,968
76–77	48,361	2,097	87 , 544	20,862
77-78	39,536	4,095	64 , 2 46	21,568
78 -79	44,125	2,146	-	20,474
79–80	51,397	1,980	-	16,979
80-81	39,571	2,845	-	17,862
81-82	 .	-	65,658	20,792
82-83	-	-		-
83-84	-		<u></u>	-
				r •

ANNUAL MAXIMUM DISCHARGE IN GISEC

Water Year	67 Kamalganj	46.9L Bahadurabad	91.9L Baroria Transit	93.5L Mawa
 1964-65	6,884	_		_ ·
65-66	-	22,66,260		30,25,210
66-67	7,731	24,32,170	28 ,69,890	30,07,560
67-68	7,448	24 , 56,880	22,45,080	24,42,760
68 - 69	9,496	21,99,190	28,31,450	32,19,360
69–70	7,943	19,76,800	25 ,65,510	34 ,6 6,460
70-71	5,719	26,47,500	29 ,72,5 0	30,07,560
71-72			-	-
72-73	5,613	23°,50,980	27,05,980	27,74,580
73-7 4	7,378	23,75,690	32 ,08, 770	35,30,000
74-75	7,272	32,15,830	39,88,900	39,18,300
75-76	6,707	18,42,660	32 , 95 ,490	-
76-77	7,590	23,15,680	29 ,4%,55 0	29,79,320
77 78	11,684	31,27,580	28,87,540	-
78-79	7,378	19,97,980	28 , 38, 120	31,24,050
79-80	6,742	23 , 33 , 330	-	27,99,290
80-81	9,496	21,60,360	38,47,700	38 , 47,700
81–82	 '	15,92,030	31 ,13,4 50	27,28,690
82-83	-	19,66,210	31 ,62,8 80	23,08,620
83-84	200		35 ,6 5,300	29,86,380

71

ł

ANNUAL MAXIMUM DISCHARGE IN CUSEC

later Year	205 Kazipur	206 Hatboalia	208 Darsana	54 Kaliganj
1964-65	-	-	-	· _
65 –66	-	-	-	822
66-67	 .	•••	5,436	
67–68	9,355	8,684	10,872	48 7
68–69	6,107	6,389	6,566	1,108
69-70	10,202	10,202	12,284	939
70 7 1	5,189	6,495	8,613	964
71-72	. –		-	
72-73	4,130	4,024	4,201	317
73-74	7,413	6,813	9,002	5 47
74-75	8,472	8,613	9,249	- 533
75-76	8,825	7,342	8,790	340
76-77	10,696	8,543	11,190	554
77-78	7,307	6,954	9 ,999	907
78–79	12,214	11,578	12, 179	-
79-80	3°,989	4,448	5,577	-
80-81	17,897	11,155	14,438	
81–82	6,001	4,801	8,507	-
82-83	15,108	14,861	12,320	

72

ANNUAL MAXIMUM DISCHARGE IN CUSEC

Water Year	162 Jhikargacha	169 Muzurdia	110 Comilla	212 Parsuram
1964-65	4,201	3,954	18,955	7,201
66-67	53 7	5,683	22 ,910	13,626
67–68	1,670	5,919	15 ,3 91	8,119
68–69	1,077	7,519	25,769	16, 167
69–70	_ [±]	9,390	18,35	6,283
70-71	3,989	7,095	13, 132	7,484
71-72		-	 ,	_
72-73	-	3,812	8,57	6,531
7374	1,348	8,579	15,003	13,732
74-75	2,429	9,390	14,897	9,602
75–76	1,063	5,789	19,485	5,507
76-77	897	5 , 295	16,379	3,019
77 - 78	1,207	-	15,497	15,285
78–79	-	- .	17,791	12,990
79–80	-		13,051	6,954
80-81	-	-	7,625	7,237
81-82		-	9,919	24,145
82-83	· · · ·	_	16,752	_
83-84	-	-	-	_

/

k

ANNUAL MAXIMUM DISCHARGE INMISEC

Water Year	119÷1 Panchpuku- ria	124 Thanda- chari	40 Ramua	247 Barlin- bar	203 Lama
 1964–65		-		+	
65-66	9,672	22,380	11,472	62,51	15,638
66-67	11,296	4,342	18,497	79 , 778	68 , 482
67-68	10,273	13,873	12,602	15. S T	20,862
68 -69	10,802	5,189	14,791		29,970
69–70	13,767	13,096	11,684		43,419
70-71	11,684	-	28,770	39,两	53 , 056
71-72	-		-	-	-
72-73	9 ,9 19	-	28,169	2 2, 70	13,485
73 -7 4	6,001	-	7,590	26,31	29,758
74-75	10,872	6,036	12,990	55,225	71,306
75-76	13 , 449	5,472	10,484	33,59 -	64,952
76-77	10,272	5,966	4,660	67,776	49',067
77-78	14,897	8,296	13,979	22,55	24,569
78-79	15,481	41,655	6,248	77,30	37,418
79 - 80	5,224	9,602	14,085	37,55	28,946
8081	17,509	8,296	12,567	48,步1	78 ,013
81-82	12,920	6,107	15,567	67,776	27,816
82-83	20,580	26,722	17,685	46,255	49,067
83-84	-	—		·	-

Water Ye	ear 294 Kaunia	147 Atrai R.B.	302 Mirpur	101.5 Kamarkiali Transit	171 Garaganj
1959–60	73,429		ہے سی وی بندر ہودہ چین کہ ان ا 	بی نوع می منتریس منبر بنه می می می می اما امان این بر س	د منه منه رست زمین که منه منه هم منه منه منه منه منه منه منه
60 –61	1,26,727	8,543	-	-	-
61–62	2,62,632	8,084	_	-	0 637
62-63	1,84,972		-	1,09, 077	9,637
63-64	1,75,794	<u> </u>	42,007	-	3,389
64–65		12,885	39,183	_	
65-66	- ,	19,380	42,360	1,08,724	1 042
66–67	1,18,961	19,062	24,286	1,99,798	1,942
67–68	2,17,801	15,779	42,713	1,65,910	1,153 2,153
68 –69	3,27,584	22,168	28,381	1,79,677	2,199 2,648
69-70	1,32,728	20,580	37,418	1,86,737	2,648 4,660
70-71	1,44,730	23,792	,-	1,94,150	
71-72	àcat .		*		2,457
72-73	2,20,625	10,872	31,170	1,52,849	1:400
73 7 4	2,17,801		36,006	2,05,799	1,490
74-75	1,79,677	20°,968	56,481	2;00;133 2;80;988	1,818
75 - 76	1,96,974	15,497	26,969	2,26,626	1,889
76-77	1,65,910	28,664	24,569	2,33,686	3,424
77-78	2,15,683	18,180	32,970	2,27,332	2,298
78 -79	1,10,842	, 17,015	25,345	2,23,096	3,707
7980	1,75,088	20,580	35,229	2,32,627	2,054
80-81	1,33,434	23,086	55 , 774	2,08,976	5,330
81–82	1,94,150	20,050	30,676	2,08,976	2,107
82-83	84,014	18,497	26,581	-,00,710	3,004
83-84	1,51,084			-	1,472

Water year	99 Gorai R.B.	90 Hardinge Bridge	Water year	99 Gommi R.H.	90 Hardinge Bridge
1934–35	-	16,44,980	1959-60	1,95,95	18,60,310
35-36	-	15,53,200	60-61	1,45,789	16,94,400
36-37	-	15,99,090	61–62	1,29,004	25,83,940
37-38	-	13,90,820	62-63	1,18,99	20,72,110
38 - 39	-	16,87,340	63-64	-	19,80,330
39-40	-	12,67,270	63-65	2,05,7	17,29,700
40 41		13,80 <u>,</u> 230	65 –66	1,68,78	12,99,040
41-42		13,51,990	66–67	2,06,55	14,79,070
42-43	-	15 ,77,9 10	67-68	2,42,86	17,93,240
43 -44	-	15,28,490	68–69	2,92,67	15,95,560
44-45	-	15,28,490	69-70	2,66,988	19,48,560
45-46	-	14,89,660	70-71	1,78,971	17,19,100
46-47	-	17,33,230	71-72	· -	
47-48 1	,63,792	18,07,360	72-73	1,77,900	13,48,460
4 94 9 1	¥ ,77,9 12	21,56,830	73-74	2,54,1	17,89,100
49-50 1	,70,852	18,56,780	74-75	2,98, 6 7	17,89,710
50-51 1	,90,973	18,56,980	75-76	2,10,33	18,03,830
51–52 1	,27,080	14,89,660	76-77	2,33,7	23,08,620
52–53 1	,51,084	18,56,780	77-78	2,07,54	18,03,830
53-54 1	,75,794	17,96,770	78-79	2,45,5	23,96,870
54 - 55 2	,12,859	20,68,580	79–80	1,49,889	13,02,570
55-56	-	21,28,590	80-81	2,31,5	20,40,340
56-57 1	,54,967	21,21,530	81-82	2,34,09	16,90,870
5 7 * 58 1	,29,9 04	16,30,860	82-83	2,40,7	21,74,480
58-59 2	,06,858	19,87,390	83-84		21,28,590

TABLE - 5

 \vec{r}_{i}

DISCHARGE - FREQUENCY RELATIONSHIPS FOR INDIVIDUAL STATIONS

يو جمع هيد قدة هيد نامة 1-10 1-12 تقدة عدم	ور و و و و و و و و و و و و و و و و و و	(,
M.P.O's hydrolo- gic area- No:	BWDB No & name of station	Equation by double emonential distribution function (Q _T in cusec, T in years)
	North-	-Wêstern Region
1	142.1 Bushir Bandar	$Q_{T} = 29,848 - 15_{T} \ln(\ln(\frac{T}{T-1}))$
	142 Khansama	$Q_{T} = 52,318 - 41,355 \ln(\ln(\frac{T}{T-1}))$
·	140 Panchogarh	$Q_{T} = 16,849 - 39_{3} = \ln(\ln(\frac{T}{T-1}))$
	285 Thakurgaon	$Q_{T} = 6,986 - 3.67 \ln(\ln(\frac{T}{T-1}))$
2	294 Kaunia	$Q_{T} = 1,44,421 - 54,50 \ln(\ln(\frac{T}{T-1}))$
	81 Pateswari	$Q_{T} = 34,792 - 75,525 \ln(\ln(\frac{T}{T-1}))$
3	16.1 Malonchi	$Q_{T} = 15,878 - 8_{T} \frac{1}{2} \ln(\ln(\frac{T}{T-1}))$
4.	1 55 Mohimaganj	$Q_{T} = 14,479 - 9,203 \ln(\ln(\frac{T}{T-1}))$
· ,	312 Talora R.B	$Q_{T} = -2,363 - 1,731 \ln(\ln(-T_{-1}))$
5.	65 Bogra	$Q_{T} = 2,206 - 1,932 \ln(\ln(-\frac{T}{T-1}))$
• •	306 Gabtoli	$Q_{T} = 1,037 - \mathfrak{M} \ln(\ln(-\frac{T}{T-1}))$
	313 Nungoora R.B	$Q_{T} = 7,523 - 6 m \ln(\ln(\frac{T}{T-1}))$
	66 Ullapar a	$Q_{T} = 20,667 - 27.15 \ln(\ln(\frac{T}{T-1}))$
6	238 Rohanpur	$Q_{T} = 14,920 - 4,62 \ln(\ln(\frac{T}{T-1}))$

DISCHARGE - FREQUENCY RELATIONSHIPS FOR INDIVIDUAL STATIONS

M.P.O' Hydrol gic ar No	o- name of	Equation by do bble exponential distribution function (Q _T in cusec, T in years)
7	147 Atrai R.B.	$Q_{T} = 15,514 - 4,987 \ln(\ln(\frac{T}{T-I}))$
	149-1 Gumani R.H	$B_{T} = 19,424 - 8,863 \ln(\ln(\frac{T}{T-1}))$
	17.1 Boral 3.B.	$Q_{T} = 7,030 - 2,970 \ln(\ln(\frac{T}{T-1}))$
	83.1 Naldanga	$Q_{T} = 3,615 - 779 \ln(\ln(\frac{T}{T-1}))$
31	90 Hardinge Bridge	$Q_{T} = 1629465 - 259899 \ln(\ln(\frac{T}{T-1}))$
- -		· · ·
	North-eas	stern Region
8	34 Nakuagaon	$Q_{T} = 11,510 - 7,646 \ln(\ln(-\frac{T}{T+1}))$
	314 Ghosegaon	$Q_{T} = 9,706 - 4,692 \ln(\ln(\frac{T}{T-1}))$
9	1344 Bausi R.B.	$Q_{T} = 8,145 - 3,762 \ln(\ln(\frac{5T}{T-1}))$
	134 Jokerchar	$Q_{T} = 18,777 - 4,106 \ln(\ln(-T_{-1}))$
		$Q_{T} = 87,432 - 28,564 \ln(\ln(\frac{T}{T-1}))$
·	9 Kaoraid	$Q_{T} = 5,589 - 2,030 \ln(\ln(\frac{T}{T-1}))$
		$Q_{T} = 10,548 - 6,837 \ln(\ln(\frac{T}{T-1}))$

DISCHARGE - FREQUENCY RELATIONSHIPS FOR INDIVIDUAL STATIONS

یہی ہیں خد سے جد سے ا		
M.P.O's Hydrolo- gic area No	BWDB No.& name of station	Equation by double exponential distribution function $(Q_T $ in cusec, T in years)
10	301 Kaliakoir	$Q_{T} = 22,441 - 8,823 \ln (\ln(-\frac{T}{T-1}))$
•	14.5 Nayerhat	$Q_T = 52,852 - 25,501 \ln(\ln(\frac{T}{T-1}))$
	302 Mirpur	$Q_{T} = 30,627 - 9,274 \ln(\ln(\frac{T}{T-1}))$
11	230-1 Bhairab Bazar	$Q_{T} = 106,703 - 232,973 \ln(\ln(\frac{T}{T-1}))$
12	36 Jariajangoi	$1 Q_{T} = 30,173 - 4,277 In(ln(\frac{T}{T-1}))$
8	2634 Durgapur	$Q_{T} = 40,962 - 9,554 \ln(\ln(\frac{T}{T-1}))$
14	192 Motiganj	$Q_{T} = 1,366 - 1,039 \ln(\ln(\frac{T}{T-1}))$
15	267 Sylhet	$Q_T = 68,804 - 8,244 \ln (\ln (\frac{T}{T-1}))$
16	201 Manu R.B	$Q_{T} = 17,085 - 3,709 \ln (\ln (\frac{100}{T-1}))$
	67 Kamalgonj	$Q_{\rm T} = 6,892 - 1,520 \ln (\ln (\frac{100}{\rm T-1}))$
31 4	46:9L Bahadu- rabad	$Q_{T} = 2103, 193-397703 \ln(\ln(\frac{T}{T-1}))$
• •	91.9L Baruria Transit	$Q_{T} = 2839696 - 437168 \ln(\ln(\frac{T}{T-1}))$
<u></u>	93:51 Mawa	$Q_{T} = 2849544 - 433045 \ln(\ln(\frac{T}{T-1}))$

.79

DISCHARGE - FREQUENCY RELATIONSHIPS FOR INDIVIDUAL STATIONS

	O's colo- area	BWDB No.& name of station	d .	ist	tion b ributi c, T i	on j	uble emmential unction in ars)
	بية حديدة بدلية المتحكمة بحديد عدمة م 		loūt)	h	Weste:	rn r	egion
17	101:5	Kamarkhali Transit	Q _T	_	1,74,73	31 –	42,532 $\ln(\ln(\frac{T}{T-1}))$
	171	Ganagonj	QT	=	2,01	19 -	$1,842\ln(\ln(-\frac{T}{T-1}))$
	205	Kazipur	Q _T	=	6,88	30 -	$3,861 \ln(\ln(\frac{T}{T-1}))$
	20 6	Hatboalia	Q _T	=	6,57	76 -	$2,895\ln(\ln(\frac{T}{T-1}))$
	208	Darsana	Q _T	=	7 , 89	95 -	$2,775\ln(\ln(\frac{\pi}{T-1}))$
18	54	Kaligonj	Q _T	=	54	3 -	282 $\ln(\ln(\frac{T}{T-1}))$
21	162	Jhikargacha	Q _T	=	1,16	9 -	$1,399 \ln(\ln(-\frac{T}{T-1}))$
19	169 ·	Muztrdia	Q _T	=	_5,66	1 -	- 2,030 $\ln(\ln(\frac{T}{T-1}))$
و هي الله در دي	و بینم هک رسن (سم چی اطل عند 20						وری هیچ بری وی
	, 	South	e	asi	tern Re	gior	
11	114	Jibanpur	Q _T	=	8,40	2 -	4,207 $\ln(\ln(\frac{T}{T-1}))$
25	110	Comilla	Q _T	=	13,50	0 -	4,531 $\ln(\ln(\frac{T^{3/2}}{T-1}))$
27	212	Parsuram	Q _T	H	7,56	4 —	5, 19# $\ln(\ln(\frac{T}{T-1}))$
	119.1	Panchpukuria	^{ر Q} T	=	10,14	3	3,652 in $(\ln(\frac{T}{T-1}))$

f-

\$

DISCHARGE - FREQUENCY RELATIONSHIPS FOR INDIVIDUAL STATIONS

M.P.O's
Hydrolo-
gic areaBWDB No.&
name of
stationEquation by double exponential
distribution function $(Q_T \text{ in } Q_T \text{ in } Q_T \text{ station})$ 28124 Thandachari $Q_T = 7,236 - 10,606 \ln(\ln(\frac{T}{T-1}))$ 40 Ramu $Q_T = 10,999 - 6,227 \ln(\ln(\frac{T}{T-1}))$ 247 Bandarban $Q_T = 36,353 - 20,480 \ln(\ln(\frac{T}{T-1}))$ 203 Lama $Q_T = 31,450 - 19,434 \ln(\ln(\frac{T}{T-1}))$

TABLE - 6

DISCHARGES IN CUSEC AT DIFFERENT REMEN PERIOD	DISCHARGES	IN	CUSEC	AT	DIFFERENT	REFIEN	PERIODS
---	------------	----	-------	----	-----------	--------	---------

M.P.O's hydrologic area No.		BWDB No*& name of station	T= 2.33 Yr	rs T= 5 yrs	. T= 10 y	rs T= 20 yrs				
North-Western Region										
1	142.1	Bushir Bandar	38,962	53,473	65,297	76,636				
	142	Khansama	76,518	115,054	146,441	176,549				
·	140	Panchagarh	39,618	75,876	105,407	133,739				
	285	Thakurgaon	9,096	12,456	15 , 193	17,818				
2	294	Kaunia	176,041	226,392	267,403	306,741				
	81	Pateswari	77,333	145,075	2 00,2 50	253, 175				
3	16.1	Malonchi	20,948	29,020	35 , 596	41,903				
4	155	Mohimaganj	19 , 808	28,292	35,2 03	41,832				
	312	Talora R.B	3,274	4,724	5,905	7,035				
5	65	Bogra	3,489	5,252	6,688	8,066				
	306	Gabtoli	1,615	2,531	3,279	3,997				
·	313 ·	Nungoora RB	11,464	17,739	22,850	27,753				
	66	Ullapara	36,367	61,367	81,730	101,262				
6	238	Rohanpur	17,634	21,957	25,478	28,855				
7	147	Atrai R.B	18 , 404	22,999	26 , 742	30 , 331				
	149.1	Gumani R.B	24,552	32 ,7 19	39,370	45,750				

f

DISCHARGES IN CUSEC AT DIFFERENT RETURN PERIODS

M.P.O hydro area	logic r	BWDB No.& name of station	T=2.33 Yrs.	T= 5 Yrs	• T = 10 Y1	rs.T = 20 Yrs
7	17.1	Boral R.B	8,748	11,485	13,714	15,852
	83-1	Naldanga R.B	4,066	4,783	5,368	5,928
31	9 0	Hardinge Bridge	17,79,840	2019,299	2214 , 334	2401 , 417
•••• •		ے میں نیچ سے سیر سے میں میں میں سے ملے سے ا این خدة فيل غنب جلب سے ملک میں میں میں میں جب	North-easte	rn Region	ہے سے بیٹے میں سنا ایک شنو کی ورب قبل انتخاب 	جمع میں بینے اپنے نہیں ہیں میں منبع منبع کی جو حص میں ہے۔
8	34 Na	ikuagaon	15,934	22,978	28,716	34,219
`	314 0	hosegaon	12,421	16,744	20,265	23,642
9	134A	Bausi R.B	10,322	13,788	16,610	19,318
	134 J	Iokerchar	21,153	24,937	28,019	30,974
	228.5	5 Mymensing	h 103,959	130,277	151,712	172,273
	9 Ka	oraid	6,763	8,634	10,157	11,618
	14 Mi	rjapur	14,504	20,804	25,934	30,856
10	301 K	aliakoir	27,545	35,674	42,294	48,645
	14.5	Nayerhat	67,606	91 , 102	110,239	128,595
	302 M	lirpur	35 , 993	44,540	51,497	58 , 173
11	230.1	Bhairab Bazar	241,498	456,148	630,977	798,677
12	36	Jariajan- gail	32,648	36,588	, 39°,79 8	42,876
8	263A	Durgapur	46,490	55 , 292	62,462	69,339
14_	192	Motiganj }	1,967	2,923	3,703	4,450

83

P.

DISCHARGES in CUSEC AT DIFFERENT RETURN PERIODS

M.P.O' hydrol area N	logic	BWDB No.& name of station		yrs. T= 5 y:	rs: T= 10 j	yrs. T-20 yrs.
15	· 267	Sylhet	73 , 573	81,169	87,356	93 , 290
16	201	Manu R.B	19,226	22,636	23,413	28,076
	67	' Kamalganj	7,772	9,172	10,313	11,407
31			2333,299	2699 , 718	2998,170	32,84,448
		91 Baruria Transit		3495,421	3823 , 483	41,38,169
	93¥5	51 Mawa	3100 , 416	3499,086	38 24, 550	41,35,773
	ے _{کہ} جو میں ^{ہی} ں میں ا	یں ہے جن سے پیغ میں جب سے ^{عمر ا} می میں جب سے مع	South-Wes	stern Region	، سے بی برو نوو سے تعارف اس سے بھی سے ،	
17	101;	5 Kamarkha li Tr.	- ¹ 199,339	238,526	270,443	3,01,058
	171	Garaganj	3,085	4,781	6,163	7,489
	205	Kazipur	9,114	12,671	15,568	18,348
	206	Hatboalia	8,251	10,918	13,090	15,174
	208	Darsana	9,501	12,058	14,140	16,138
18	54	Kaliganj	7!6	965	1,177	1,380
21	162	Jhikargacha	a 1,955	3,207	4,226	5,204
19	169 _1	Muz a rdia	6,835	8,706	10,229	11,691
ر ہے ہے جا ک لیے ^{ہی} ج	بو بین جرو دند کی بندر بی وی متد دی بند ۲	Sr	outh-east	ern Region /	,	<u>م م م م م م م م م م م م م م م م م م م </u>
11	(Jibanpur (Gumti Br.)	10,838)	14,712	17,870	20, 898
25	110 (Comilla	16,122	20,297	23,697	26,958
27	212 I	Parsuram	10,569	15 , 355	19,253	22,992
						•

DISCHARGES IN CUSEC AT DIFFERENT RETURN PERIODS

												-	
M.P.O hydroi area	logic	BWDB No & name of station	T1	2:33	yrs`.	T= 5	yrs:	 T=	10	yrs.	T=	20	yrs
	1191	Panchpu- kuria	12,	,256		15,62	21	18,	362)	20,	901	· · · · ·
28	124	Thanda- chari	13,	372		23,14	15	31,			-	738	
	40	Ramu	14,	603		20, 3	340	25,	013	5 †	29,	49 6	
· .	247	Bandarban	48,	202		67 , 07	'1	82,	440	}.	97,	182	
	203	Lama	42,	695		60,60	0	75 ,	184		89,	173	5

TABLE - 7

-

. **.** .

.

ןי ד

DATA FOR DAVIS AND WILSON'S RAINFALL FORMULA

M.P.O' Hydro- logic Area No.	• Dis	and Name of charge tion	Rai	and name of ngauge tion	Drai- nage Area in sq. miles	Recorded max.Dis- charges in cusec.	Recorded max.dai- ly rain- fall in inches	Yearly max.daily rainfall(P) for 20-yrs. return pe- rdod in inches	PA ^{2/3}	$K = \frac{Q}{PA^2/3}$
8	34	Nakuagaon	R74	Nalitabari	187	35,653	10.64	10.104	330.41	108
	314	Ghosegaon	R74	Nali tabari	150	23,722	10.64	10,104	285.25	83
х Х	263a	Durgapur	R74	Nalitabari	915	64 ,600	10,64	10,104	952.30	68
9	134A	BausicR.B.	R67	Jamalpur	54	17,085	10.50	10.372	148.21	115
	134	Jokerchar	R13	Gopalpur	98	27,358	10.05	8.860	188.33	145
	228.5	Mymensingh	R73	Mymensingh	430	134,880	8.36	10,807	615.67	219
	9	Kaoraid	R5	Bhaluka	75	10,600	10.42	9.997	177.79	60
	14	Mirjapur	R2	Atia	552	32,724	8.32	7.530	506.70	65
10	301	Kaliakoir	R17	Joydebpur	24 24 24	41,714	7.46	9.150	532.53	78
	14.5	Nayerhat	R31	Savar	1175	1,14,726	9.70	9.910	1103.48	104
	302	Mirpur	R31	Savar	410	56,481	9.70	9.910	546.93	103

1311

87

DATA FOR DAVIS AND WILSON'S RAINFALL FORMULA

M.P.Ga Hydro- logic Area No.	No.and Name of Discharge Station.	No.and name of Raingauge Station.	Drai- nage Area in sq. miles	Recorded max.Dis- charges in cusec.	max.dai- ly rain-	Yearly max daily rain- fall(P)for 20 yrs. return per- iod in incs.	PA 73	$K = \frac{Q}{PA^2/3}$
12,	36 Jariajangai	1R68 Jariajangail	686	44,126	13,41	14.275	1110.34	49
14.	192 Motiganj	R126 Srimangal	86	28,452	7.96	8.606	167.67	170
15.	267 Sylhet	R128 Sylyst	1080	87,544	14,32	13.170	1386.34	63
16.	201 Manu R.B.	R114 Kamalganj	390	26,687	7.30	7.516	401,20	67
	57 Kamalganj	R114 Kamalganj .	195	11,684	7.30	7.516	252.74	46

*

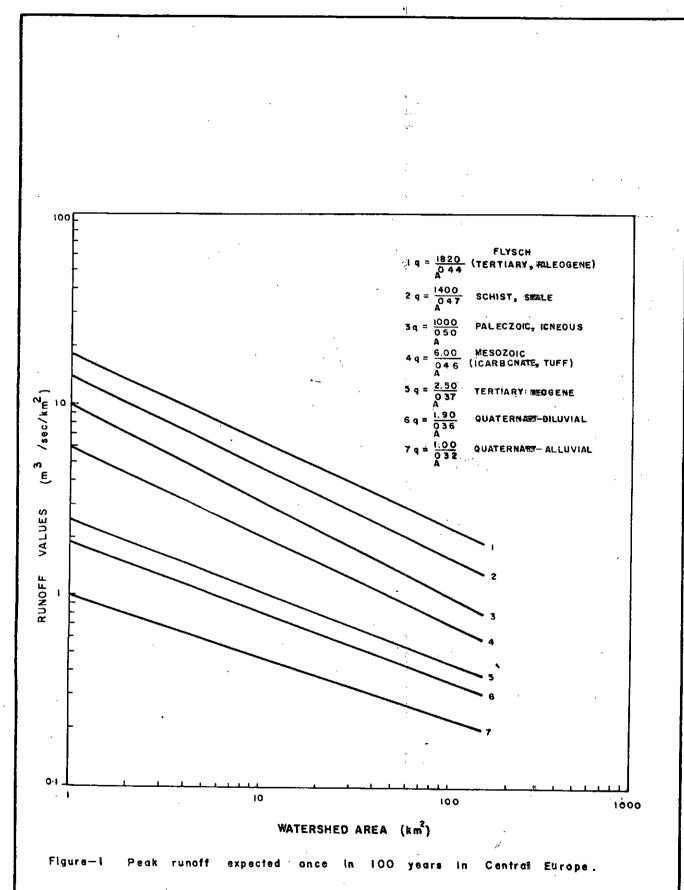
÷.

INDEX FOR STATIONS (WITH HIGHER DISCHARGES) USED FOR ENVELOPE CURVE

، خد سر خد سر حد حد حد می	ہ سے بندہ سے دعد ہیے مند	ہے ہے جب جے دور ہے ہے	ین بست نشبه ا		• • • • • • • • • • • • • • • • • • •	
M.P.O's Hydrologi area Numb	e nar	ne of		e of	Drainage area in sq.miles	Recorded max.disch- arges in cusec
1	140 ⊉a	anchagarh	57	Karatoa- Atrai	197	187,798
2	228.5	Mymensin- gh	86	Old Brah- maputra	430	134,846
- 11	230 _ë 1	Bhairab Bazar	86	Old Brah- maputra	24,993	508,320
17	101:5	Kamar- khali Transit	42	Gorai-Mad umati-Bal war		280,988
31	90	Hardinge Bridge	39	Ganges	3,50 , 100	2583 , 960
	91°91	Baruria Transit	39	Ganges	2,24,000	3988,900
	93 : 51	Mawa	39	Ganges	603,701	3918 , 300
	46.9L	Bahadura- bad	• 22	Brahmapu- tra Jamun	206 , 895 a	3215,830

-88

The second secon


· · ·

APPENDIX B

FIGURES

.

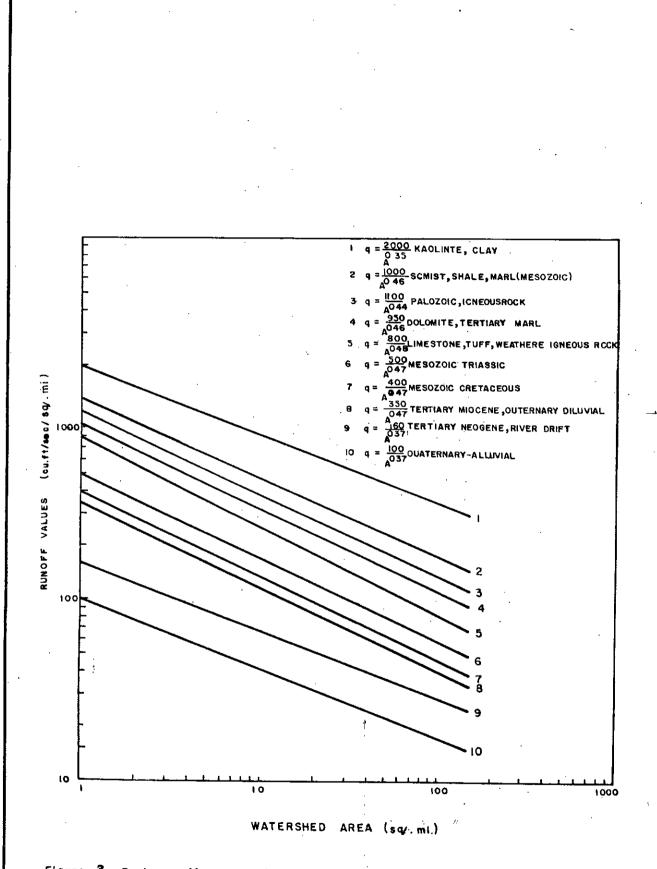
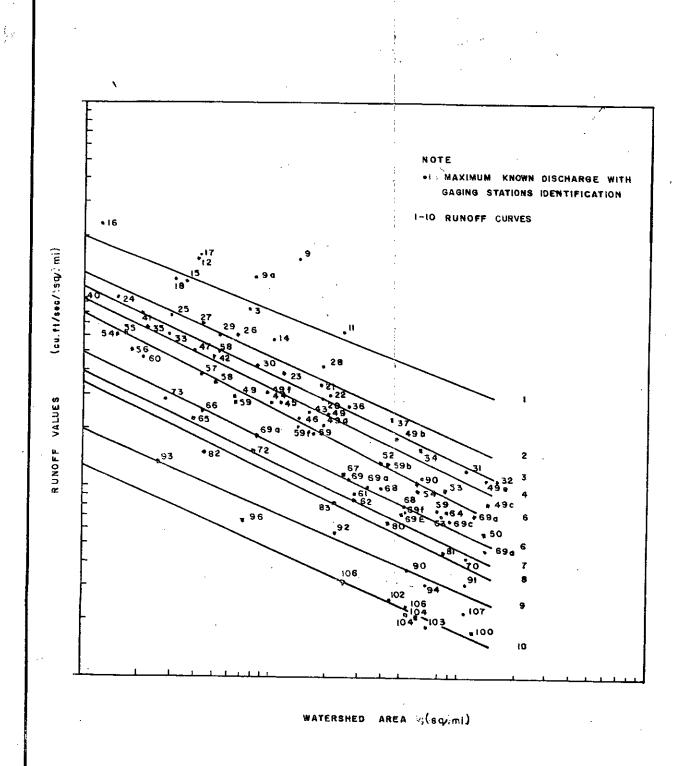
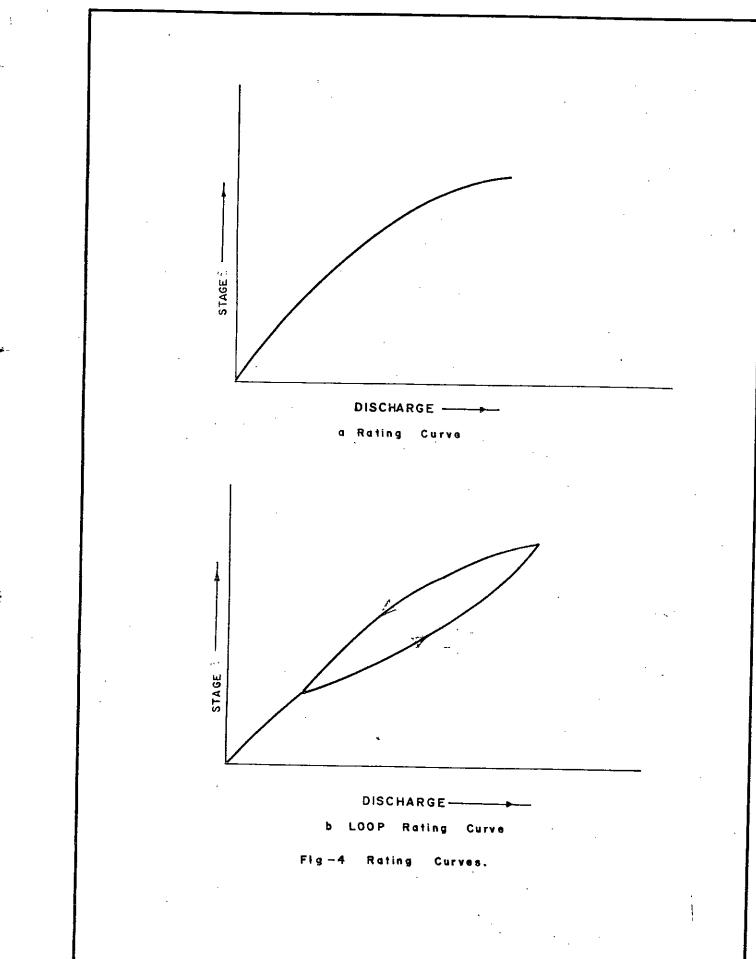
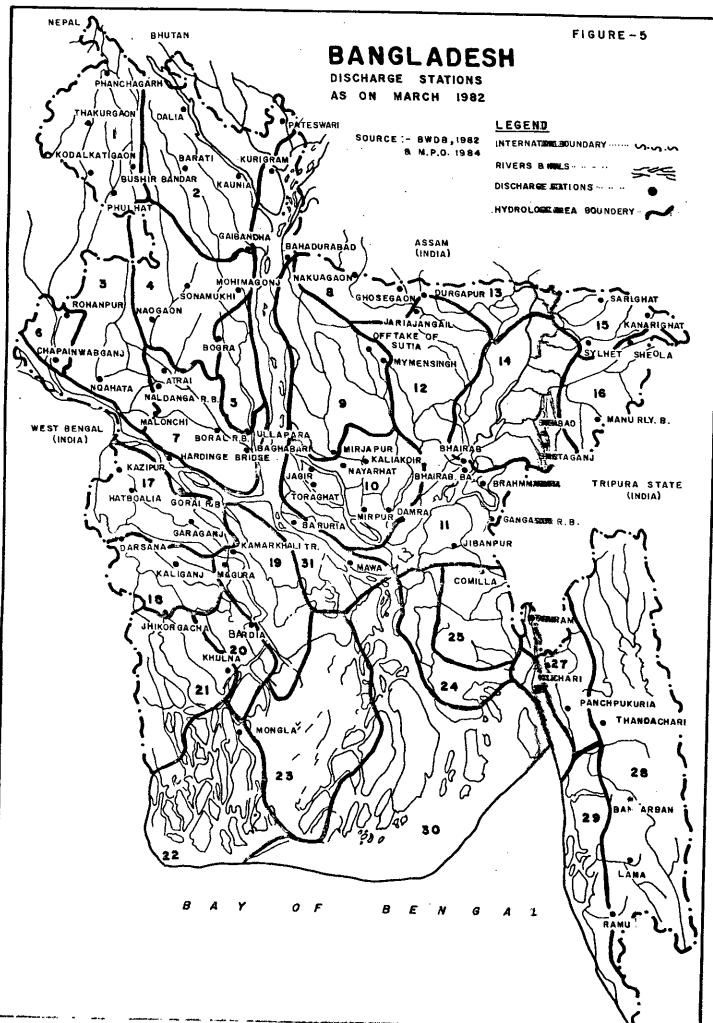
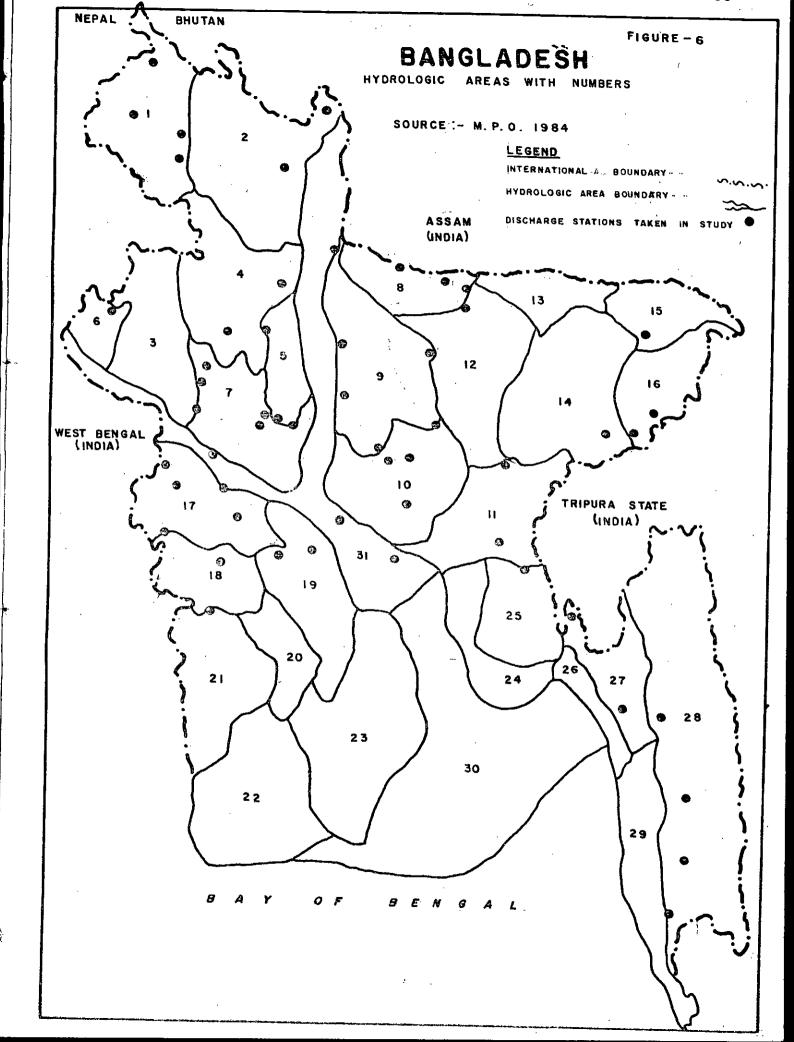
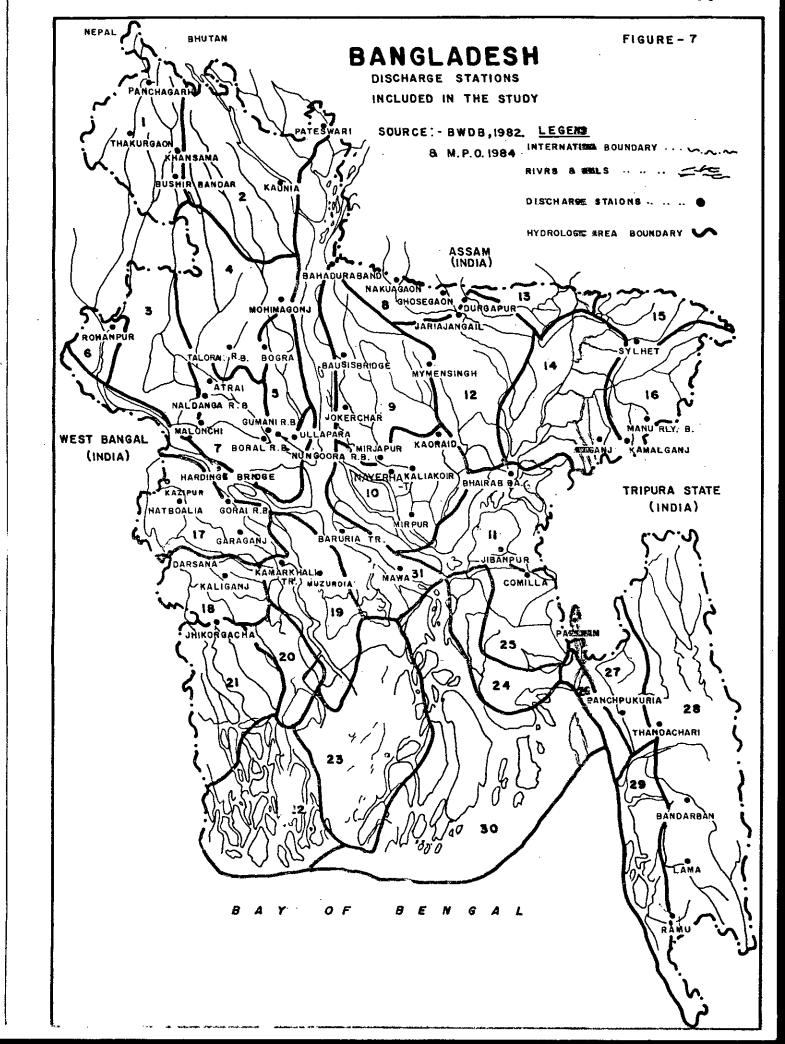
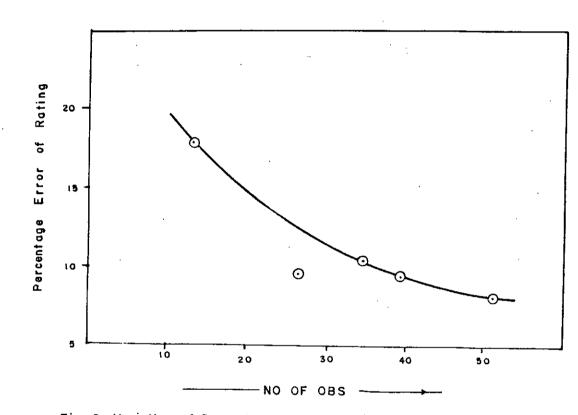
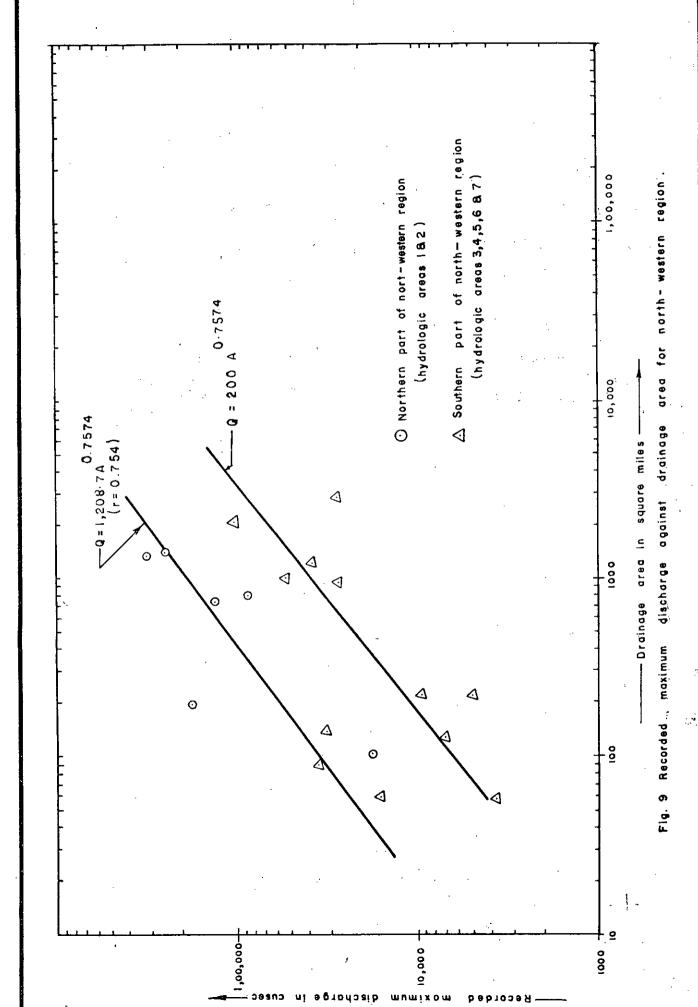


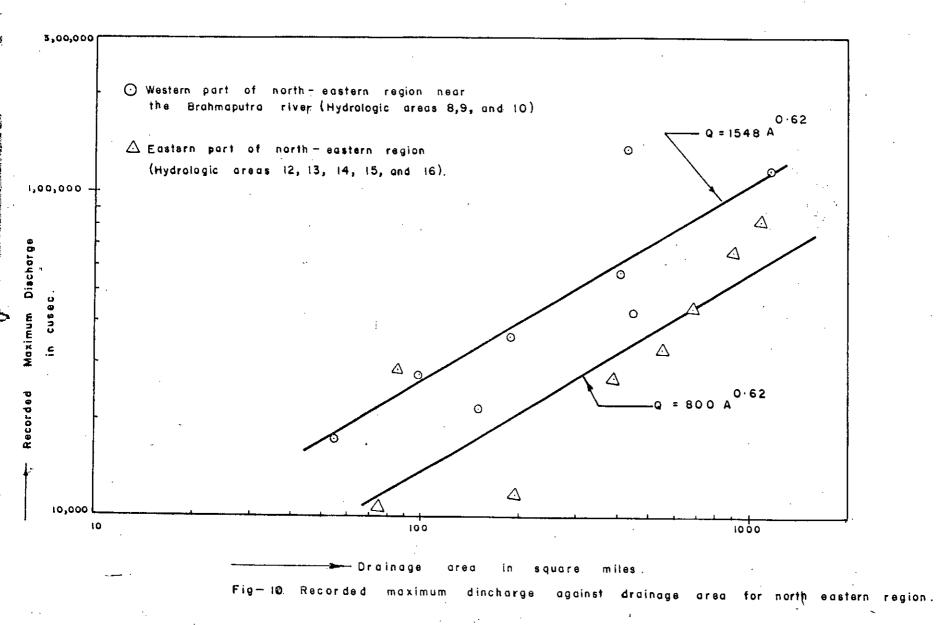
Figure -2 Peck runoff expected once ۱n 100 years in U.,S. A.

9 l

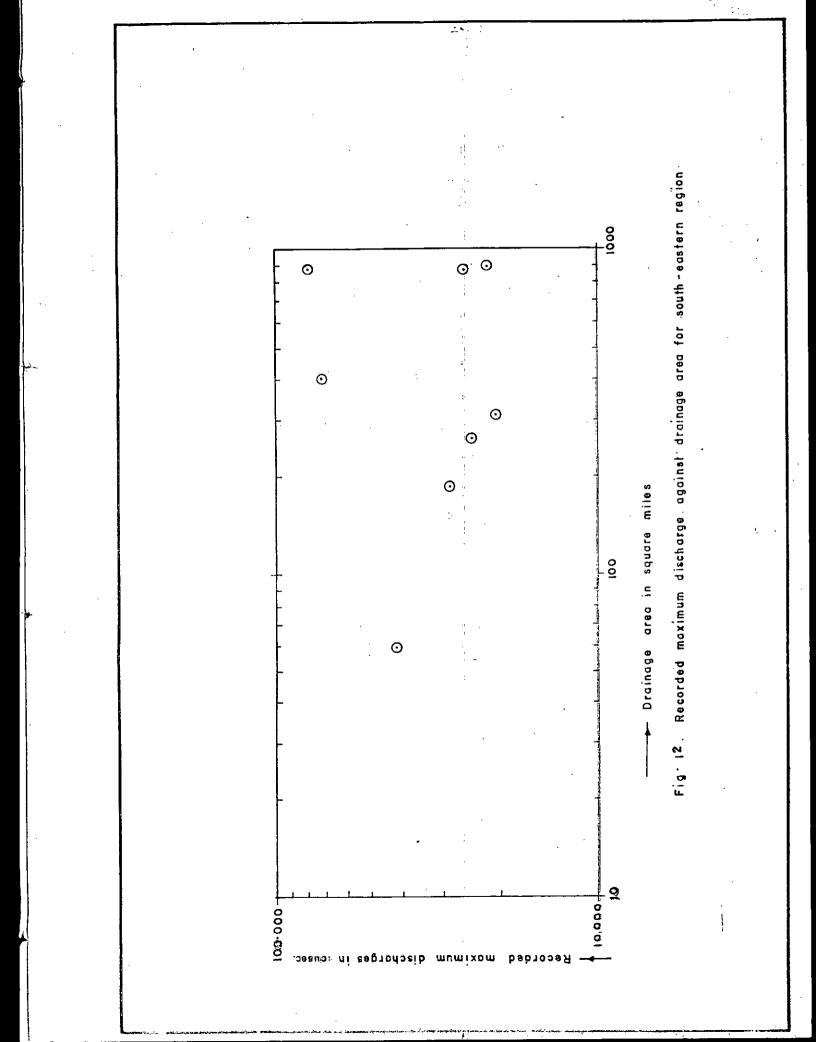

Figure — 3 Runoff coefficient curves and maximum known flood in NEW Jersey 1897 – 1972. //

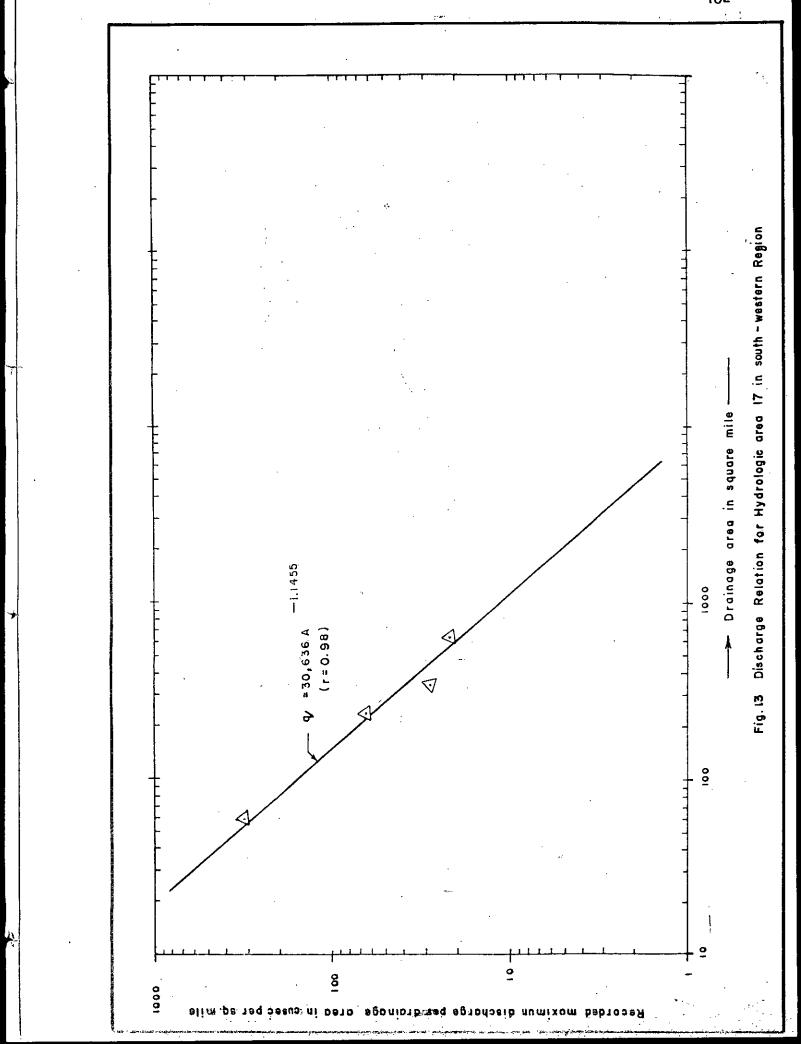


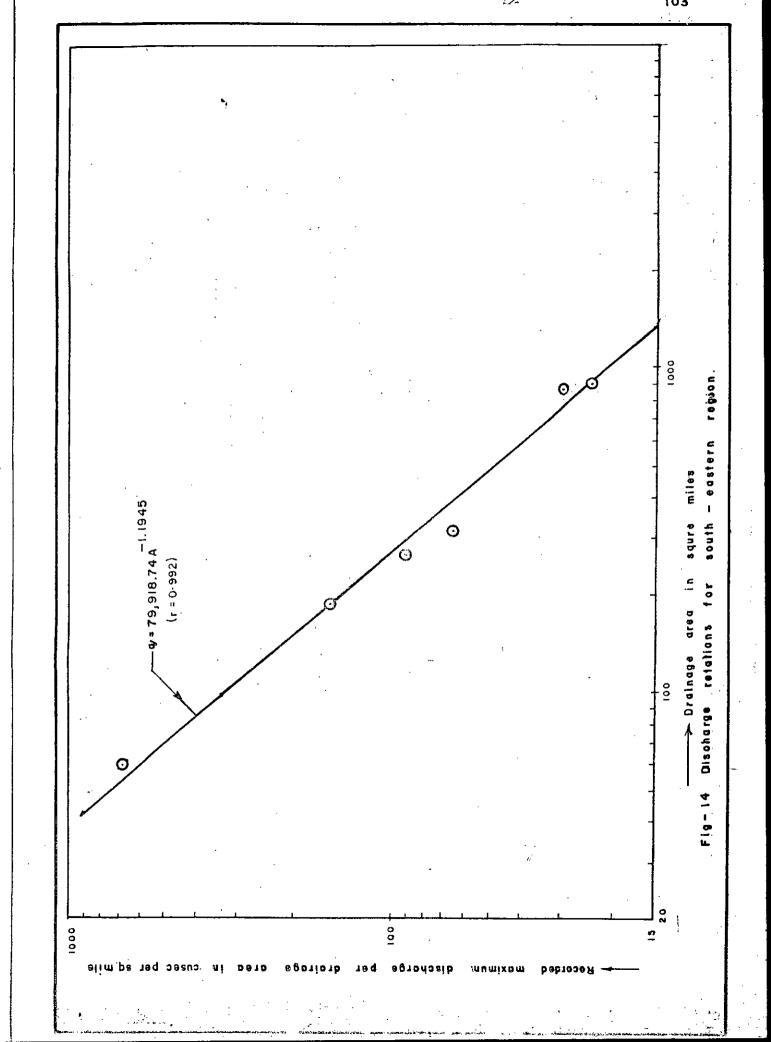


. .

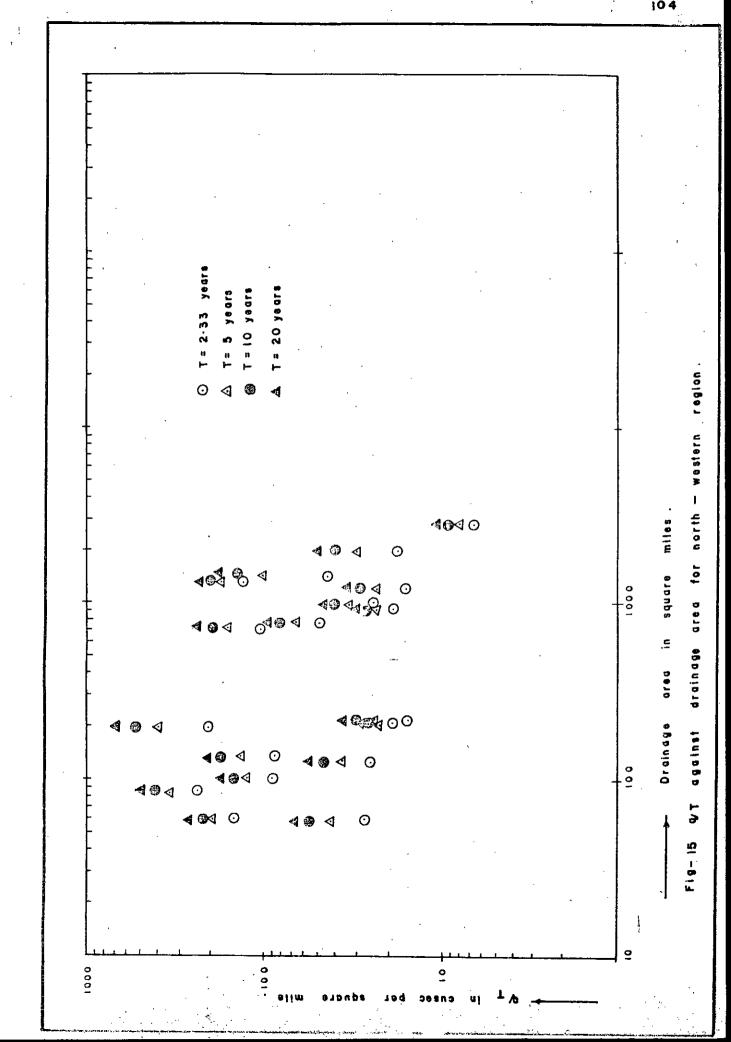
.

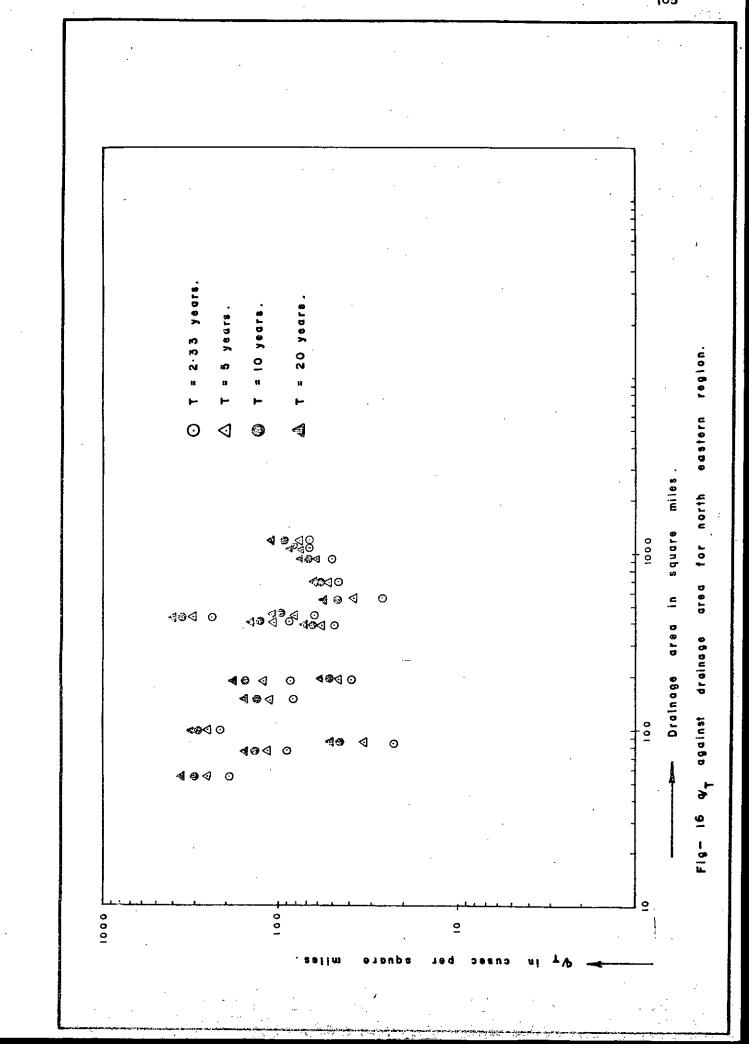


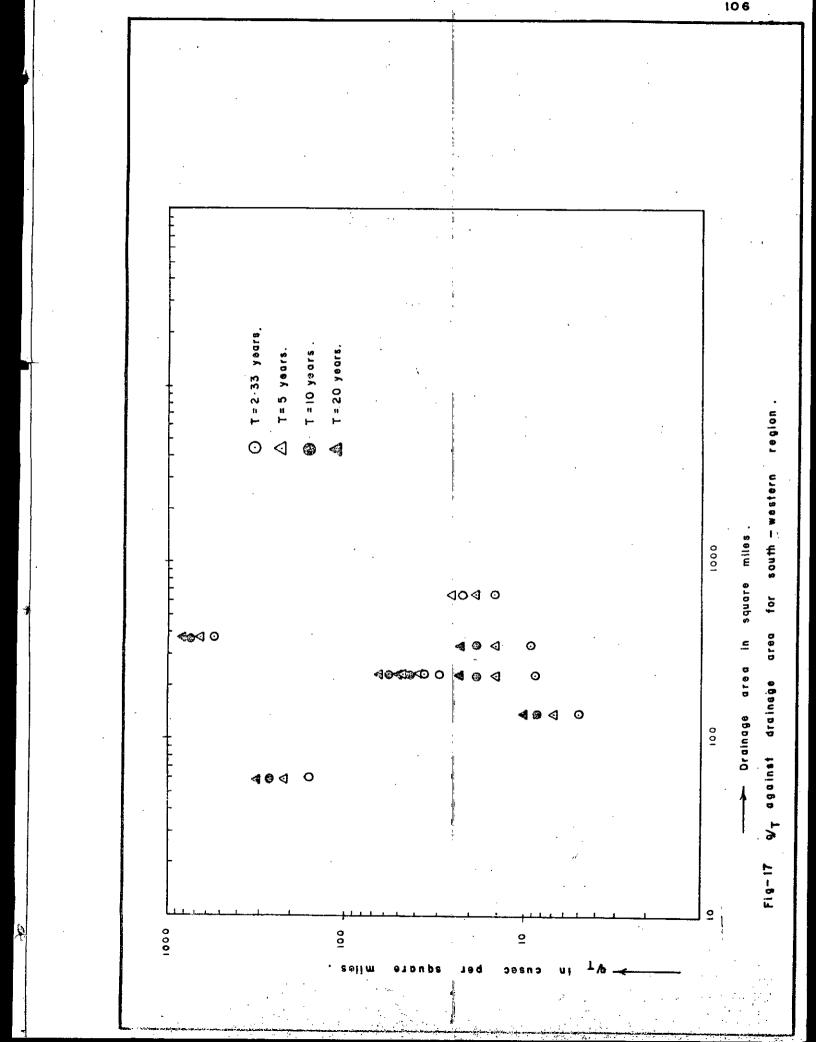

.

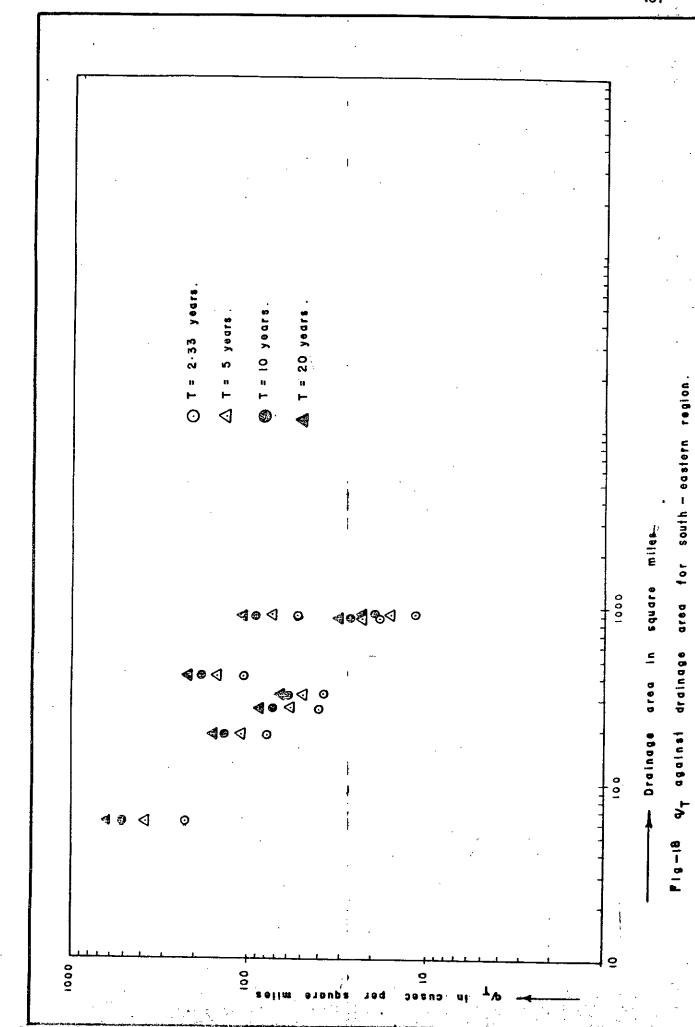


>

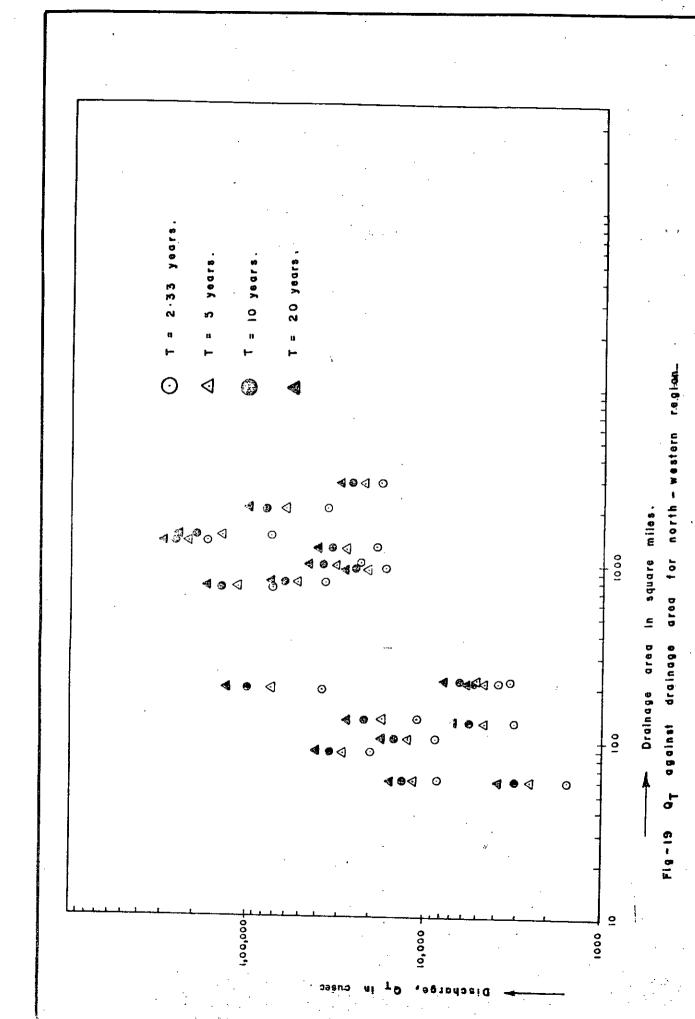

Fig. 11 Recorded maximum discharge against drainage area for south-western region

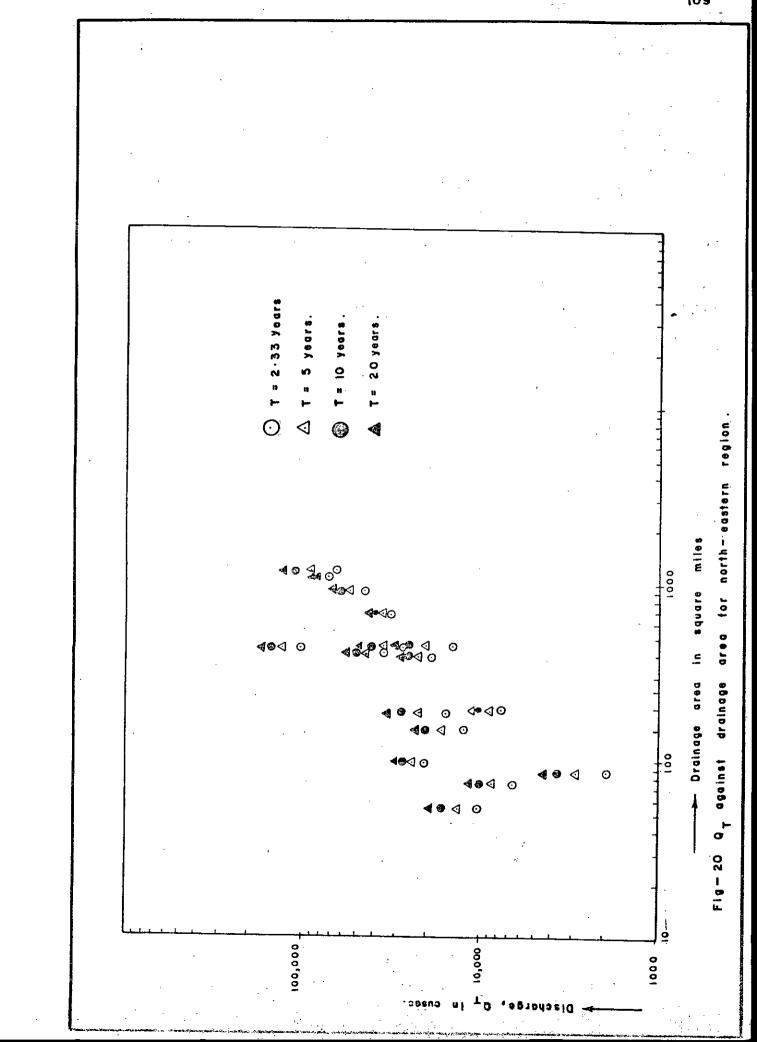



÷

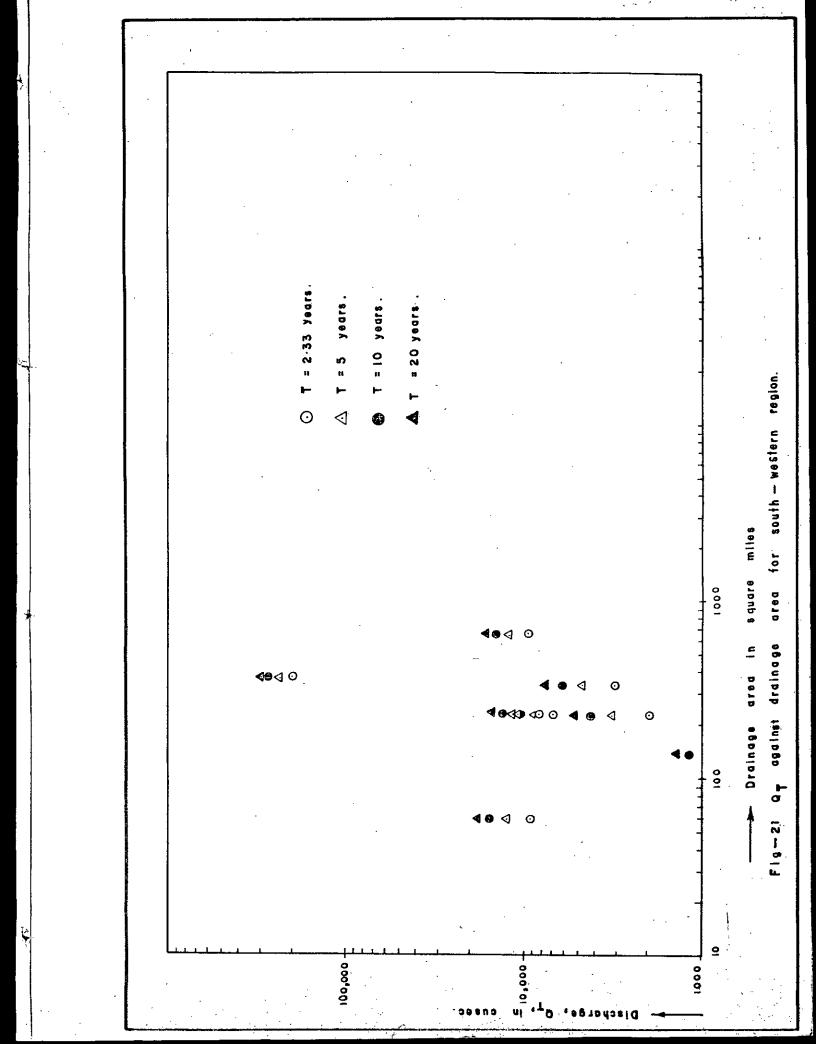


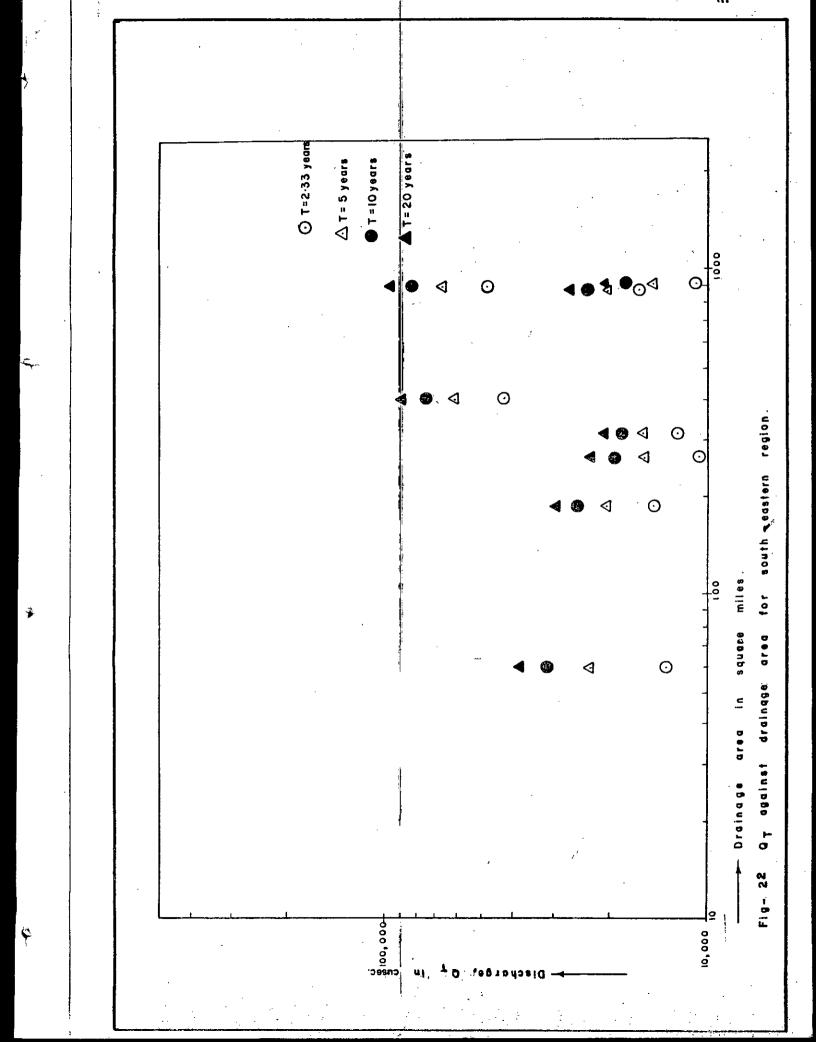
j,

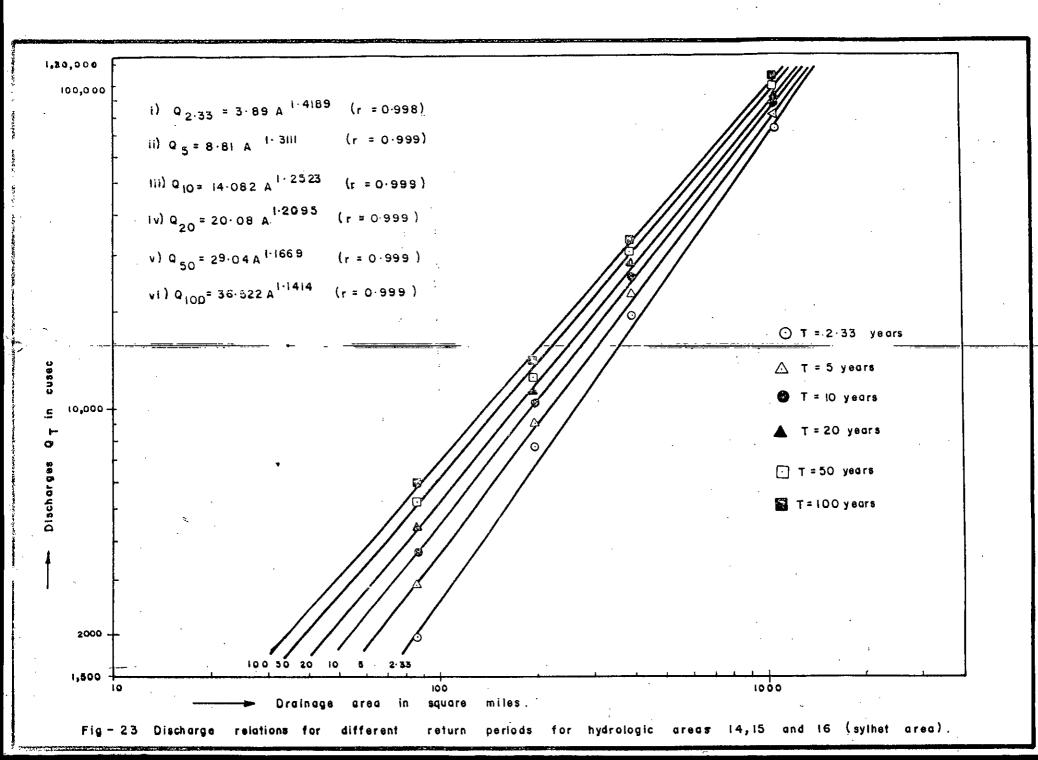

¥.

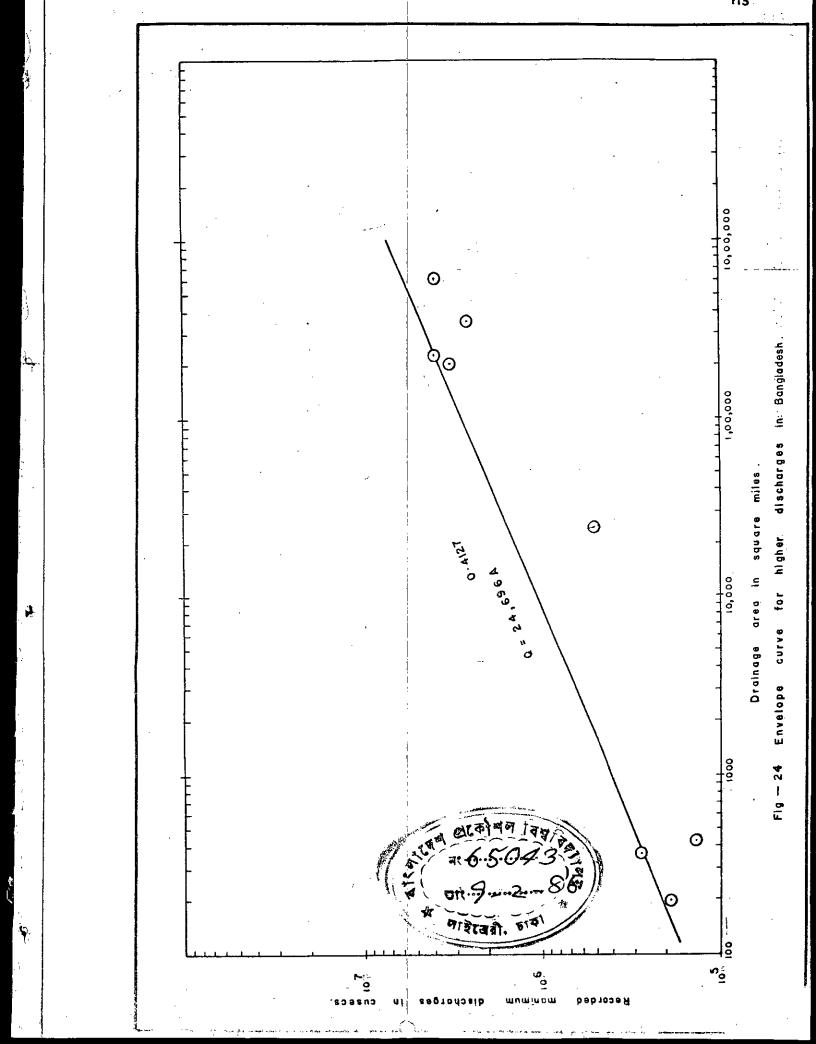


+


Ş.




Ŷ



. A.

