
M.Sc. Engg. Thesis

1-Bend Orthogonal Drawings of
. Triconnected Planar 4-Graphs

by
Abu Hasnat Mohammad Ashfak Habib

Submitted to

Department of Computer Science and Engineering
in partial fulfilment of the requirments for the degree of
Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology(BUET)

Dhaka 1000

October 2007
r-- _.__.'--~-------,,

t
\

•,,L__

'),

(

This thesis titled "I-Bend Orthogonal Drawings of Triconnected Planar 4-
Graphs", submitted by Abu Hasnat Mohammad Ashfak Habib, Roll No. 040505057F,
Session April 2005, to the Department of Computer Science and Engineering, Bangladesh
University of Engineering and Technology, has been accepted as satisfactory in partial
fulfillment of the requirements for the degree of Master of Science in Computer Science
and Engineering and approved as to its style and contents. Examination held on October
31, 2007.

Board of Examiners

1.
Dr. Md. Saidur Rahman
Professor & Head
Department of CSE
BUET, Dhaka 1000

Dr. M. Kaykobad
Professor
Department of CSE
BUET, Dhaka 1000

3.
Dr. Masud Hasan
Assistant Professor
Department of CSE
BUET, Dhaka 1000

4.
Dr. Md. Lutfar Rahman
Professor
Department of CSE
Dhaka University, Dhaka 1000

Chairman
(Supervisor & Ex-officio)

Member

Member

Member
(External)

..,
.~
\... -

Candidate's Declaration

It is hereby declared that this thesis or any part of it has not been submitted elsewhere
for the award of any degree or diploma.

Abu Hasnat Mohammad Ashfak Habib
Candidate

11

t)-

"

Contents

Board of Examiners

Candidate's Declaration

Acknowledgments

Abstract

1 Introduction

1.1 Graph and Graph Drawing.

1.2 Graph Drawing Conventions

1.2.1 Planar Drawing .

1.2.2 Straight Line Drawing

1.2.3 Orthogonal Drawing

1.2.4 Rectangular Drawing

1.2.5 Grid Drawing

1.3 Drawing Aesthetics

1.4 Motivation and Literature Review

1.5 Objectives of this Thesis

1.6 Summary

2 Preliminaries

2.1 Basic Terminology

III

i

ii

vii

viii

1

1

2

2

3

3

4

5

6

7

11

11

13

. 13

)

CONTENTS IV

2.1.1 Graphs .. 13

2.1.2 Subgraphs 14

2.1.3 Paths and Cycles 15

2.1.4 Connectivity. 15

2.1.5 Trees 16

2.1.6 Planar Graphs 16

2.2 Review of the Previous Results 18

2.2.1 Rectangular Drawing 19

2.2.2 Orthogonal Drawing 20

3 I-Bend Orthogonal Drawing 25

3.1 Definitions . . 25

3.1.1 a-Face 25

3.1.2 Critical-Cycle 26

3.1.3 Good String and Bad String 26

3.1.4 Good Edge and Bad Edge 27

3.1.5 Valid 4-Component 28

3.2 Sufficient Condition. . . . 29

3.2.1 An Outline of the Constructive Proof . 30

3.2.2 Inserting Dummy Vertices 32

3.2.3 Inserting Dummy Edges 36

3.2.4 Finding a Rectangular Drawing 37

3.2.5 Patching the Feasible Orthogonal Drawings 38

3.2.6 Contracting the Dummy Edges 45

3.2.7 Proof for Sufficiency of Theorem 3.2.1 54

3.3 The Algorithm 54

4 Conclusion 58

List of Figures

1.1 Planar and non-planar drawings 3

1.2 A straight line drawing 3

1.3 A planar graph G and an orthogonal drawing of G . 4

1.4 A rectangular drawing . . . 5

1.5 A straight line grid drawing 5

1.6 Two different diagrams of the same Computer Network 8

1.7 Basic steps for finding a clear representation of a clumsy diagram 9

1.8 Triconnected Planar 4-graphs having no I-bend orthogonal drawing 10

2.1 A graph with six vertices and eight edges . 14

2.2 A subgraph of the graph in Figure 2.1 14

2.3 Connected and disconnected graphs 15

2.4 A tree 16

2.5 Three planar embeddings of the same graph 17

2.6 A plane graph G 18

2.7 3-legged and 4-legged cycles 18

2.8 A plane graph G and the rectangular drawing of G 19

2.9 Bad cycles, non bad cycles and maximal bad cycles 20

2.10 Green paths 21

2.11 A feasible drawing 23

2.12 Cycles in Co and the corresponding genealogical tree To 24

v

LIST OF FIGURES VI

3.1 An a-face F 26

32 Examples of critical-cycle. 26

3.3 Good strings and bad strings. 27

3.4 A triconnected plane 4-graph G and the 4-components of G 29

3.5 An overview of the constructive proof of Theorem 3.2.1 . . . 31

3.6 Labeling the vertices and edges of the strings and 4-components 35

3.7 Replacing the outer vertices of degree four with the dummy edges 37

3.8 A three legged cycle obtained from a cycle having more than three legs 40

3.9 Desired-paths 41

3.10 F, H, D(H) and D(G(C)) for case 3 44

3.11 Nine possible shapes of a dummy edge in the orthogonal drawing D 46

3.12 Contracted forms of the arrangements in Figure 3.11 47

3.13 Effect of dummy edge contraction for Case 1 49

3.14 Effect of dummy edge contraction for Case 2 51

3.15 The cycle of the non-t.ree component in Figure 3.6(d) is broken at enG 53

Acknow ledgments

At first, I would like to express my profound gratitude to Allah, the almighty and

the merciful, for giving me adequate physical and mental strength for doing this research

work.

I am grateful to my supervisor Professor Dr. Md. Saidur Rahman for allowing me

to carry out this thesis under his supervision. In the field of graph theory Professor Dr.

Rahman is a well known researcher at both home and abroad. I would like to thank him

for teaching me the fundamentals for doing research work. I express my gratitude for

his patience in reviewing my inferior drafts, for correcting my linguistic errors and for

showing me the new ways of thinking.

I would also like to thank the members of the board of examiners, Professor Dr.

M. Kaykobad, Dr. Masud Hasan and Professor Dr. Lutfar Rahman, for their valuable

suggestions.

Moreover, my special thanks goes to the members of our research group for their

valuable comments and suggestions. I thank my friends and colleagues who have given

me their time, companionship, professional and personal help.

I am especially indebted to my parents and my family members for their continuous

support and encouragement. Without their cooperation this work would have been hardly

p088ible.

Vll

Abstract

An orthogonal drawing of a planar graph is a drawing of the graph in which each

vertex is mapped to a point, each edge is drawn as a sequence of alternate horizontal and

vertical line segments, and any two edges do not cross except at their common end. In an

orthogonal drawing, a bend is a point at which the drawing of an edge changes its direction.

Every planar 4-graph i.e. a graph with vertices of the maximum degree at most four, has

an orthogonal drawing, but may need bends. If the bend per edge of an orthogonal

drawing is at most k,then we call the drawing a k-bend orthogonal drawing. It is already

known that every planar 4-graph except an octahedron has a 2-bend orthogonal drawing.

Moreover, it is an NP-complete problem to decide whether a given planar 4-graph has a

Q-bendorthogonal drawing or not. In this thesis we consider I-bend orthogonal drawings

for planar 4-graphs. But unfortunately not every planar 4-graph has a I-bend orthogonal

drawing. That is why it is also interesting to find which class of planar 4-graphs has 1-

bend orthogonal drawings. In this thesis we give a sufficient condition for a triconnected

planar 4-graph to have a I-bend orthogonal drawing. Furthermore, we give a linear-

time algorithm for finding I-bend orthogonal drawings of those graphs which satisfy the

sufficient condition.

Vlll

Chapter 1

Introduction

In this chapter we give an overview on the field of graph and graph drawing. Moreover,

we discuss the drawing conventions and drawing aesthetics. At the end of this chapter

we give an outline of this thesis.

1.1 Graph and Graph Drawing

By the word Graph people usually think about statistical graphs containing bars, lines,

circles, et.c. or a graph of a funct.ion drawn wit.h respect to two or more axes. But in

graph theory a graph is a mathematical model consists of a set of vertices and set of edges

that can illustrate a real life problem or a situation.

Most of t.heproblems of various research areas and most of the situat.ions around us are

act.ually some relat.ions between the object.s involved. A graph represents these relat.ions

between object.s and thus makes complex systems easily understandable and describable.

In comparison with other represent.ations graphs are often not only easier but also shorter

and more exact to define relations between objects. A drawing of a graph can be t.hought.

of as a diagram where the objects, called nodes or vertices, are normally drawn as points,

circles, squares, or other simple geometric figures and the relations between objects, called

1

/

CHAPTER 1. INTRODUCTION
,

2

edges, are normally drawn as line segments, each connecting two vertices.

Graphs can be used not only in computer science but also in other sciences, business,

management, and many more domains. A scientist can use graphs to model the molecular

structures of atoms. A network administrator can use graphs to represent computet

networks. A business man can use graphs to keep track of warehouses and retail outlets.

Road transport authority can model the road networks with the help of graphs. And the

list goes on. A graph can be drawn in various ways. In the next section we describe the

styles of graph drawings.

1.2 Graph Drawing Conventions

In this section we describe the common conventions or styles of graph drawings which

are largely studied in the various literatures due to their huge applications. In graph

drawing vertices can be represented by various symbols but here we assume that vertices

are represented by points and edges are represented by line segments. We now introduce

t.he followingdrawing convent.ions.

1.2.1 Planar Drawing

A planar drawing is a drawing of a graph in which any two edges do not. intersect. at any

point except at. their common end vertex. Figures l.I(a) and l.I(b) illustrate a planai'

drawing and a non-planar drawing of t.he same graph respectively. If a graph has a planar

drawing, then it is preferable to find it.. Because planar drawings are relative easy t.o

understand in comparison wit.h t.he non-planar drawings. Unfortunately not every graph

has a planar drawing. If a graph has a planar drawing, then it is called a planar graph.

CHAPTER. 1. INTRODUCTION

(a)

3

Figure 1.1: (a) A planar drawing, and (b) a non-planar drawing of the same graph.

1.2.2 Straight Line Drawing

Straight line drawing is one of the earliest graph drawing conventions. It is natural to

draw each edge of a graph as a straight line between its end vertices and a drawing of

a graph in which each edge is drawn as a straight line segment is called a straight line

drawing. Figure 1.2 depicts a straight line drawing of a graph.

Figure 1.2: A .straight line drawing.

1.2.3 Orthogonal Drawing

An orthogonal drawing of a planar graph is a drawing of that graph in which each vertex

is mapped to a point, each edge is drawn as a sequence of alternate horizontal and vertical

CHAPTER 1. INTRODUCTION 4

line segments and any two edges do not cross except at their cornman end. Figure 1.3(b)

illustrates the orthogonal drawing of the planar graph shown in Figure 1.3(a). In case of

orthogonal drawing a bend is a point where the drawing of an edge changes its direction.

(b)

Figure 1.3: (a) A planar graph G, and (b) an orthogonal drawing of G.

Orthogonal drawings have numerous applications in various fields like VLSI circuit

layouts, database management systems, software engineering, cartography etc. By virtue

of their multifarious applications orthogonal drawings have drawn much attention of the

researchers. Researchers are working on both two dimensional (2D) and three dimensional

(3D) orthogonal drawings. But in this thesis we have worked on 2D orthogonal drawings

and we have used the term orthogonal drawing to represent 2D orthogonal drawings only.

1.2.4 Rectangular Drawing

A, rectangular drawing of a planar graph G is a drawing of G such that each vertex is

drawn as a point, each edge is drawn as a horizontal or vertical line segment without'

edge-crossings and each face is drawn as a rectangle as shown in Figure 1.4. Moreover, a

rectangular drawing is an orthogonal drawing in which there is no bend and each face is

drawn as a rectangle.

Not every planar graph has a rectangular drawing. A planar graph G has a rectangular

drawing if at least one embedding of G has a rectangular drawing. Rahman et at. [RNN9S]

oj
,

CHAPTER 1. INTRODUCTION 5

Figure 1.4: A rectangular drawing.

derived a necessary and sufficient condition for a class of planar graphs to have rectangular

drawings.

1.2.5 Grid Drawing

A drawing of a graph in which vertices and bends are located at grid points of an integer

grid as illustrated in Figure 1.5 is called a grid drawing. Grid drawing is useful for drawing

the embeddings on the raster devices. Moreover, area requirement for a grid drawing can

be calculated and can be compared with the other grid drawings.

Figure 1.5: A straight line grid drawing.

CHAPTER 1. INTRODUCTION

1.3 Drawing Aesthetics

6

A graph has an infinite number of drawings. Some drawings are better than others in

conveying information on the graph. Various criteria have been proposed in the literature

to evaluate the aesthetic quality of a drawing. In this section we introduce some aesthetic

criteria of graph drawings which we generally consider [NR04].

Edge Crossings An edge crossing is a point where two edges intersect each other. Each

edge crossing of a graph is a source of confusion. Therefore, it is better to keep

the number of edge crossings of a graph minimum. Moreover, in case of VLSI

circuit design less number of edge crossings can minimize the number of layers of

semiconductors.

Area Area of a drawing means the area of the convex hall of that drawing. If the area

of a drawing is too small, then the drawing becomes unreadable. On the contrary if

the area becomes too large, then the drawing cannot be accommodated in a single

page or in the monitor. Both of these situations should also be avoided. Therefore,

one major objective is to minimize the area of a drawing up to a certain limit. For

VLSI f100rplanning smaller area drawing is preferred because it helps us to avoid

wasting of valuable space in the chip.

Bends In a polyline drawing a bend is a point where an edge changes its direction. It

implies that the increased number of bends on an edge increases the difficulties of

following the course of the edge. Therefore, the number bends per edge should be

kept small. Moreover, bends increase the manufacturing cost of a VLSI chip. That;

is why the total number of bends of a drawing should also be kept small.

Aspect Ratio The aspect ratio of a drawing is the ratio of the length of the longest

side to the length of the shortest side of the smallest rectangle which encloses that

drawing. A drawing with high aspect ratio may not be conveniently placed on a

J

CHAPTER 1. INTRODUCTION 7

workstation screen, even if it has modest area. Hence, it is important to keep the

aspect ratio small.

Angular Resolution The angular resolution of a polyline drawing is the smallest angle

formed by two adjacent edges or two successivesegments of an edge of that drawing.

It is desirable to maximize the angular resolution for displaying a drawing on a raster

device.

Shape of Faces A drawing in which every face has a regular shape looks better than a

drawing having faces of irregular shape. For VLSI floorplanning it is desirable that

each face is drawn as a rectangle.

Symmetry Symmetry is an important aesthetic criteria in graph drawing. Symmetry

of a two-dimensional figure is an isometry of the plane that fixes the figure. Where

possible, a symmetric view of the graph should be displayed. Because, increasing

the local symmetry displayed in a graph drawing increases the understandability of

the graph.

1.4 Motivation and Literature Review

In this section we give the motivation of the problem considered in this thesis and mention

some related results.

Assume that a Network Administrator is trying to establish a .computer network and

he has drawn the diagram of the proposed network by hand as shown in Figure 1.6(30).The

same computer network can also be represented by a diagram as shown in Figure 1.6(b).

Among these two diagrams the second diagram is obviously easier to understand. Because

in the second diagram the relations between the network components are relatively clear.

When the number of components and interconnections are small then it is feasible for a

person to draw a clear diagram as shown in Figure 1.6(b), from a clumsy diagram which

.1",..

CHAPTER 1. INTRODUCTION 8

is shown in Figure 1.6(a). For a computer network having thousands of components and

interconnections and hundreds of overlappings of the interconnections the task becomes

almost impossible for a person to carry out. We can use machine (computer) to solve such

type of problems. But the challenging issue is, how machines can solve such a problem.

(a)

Figure 1.6: Two different diagrams of the same Computer Network.

The basic methodology for finding a clear diagram from a given clumsy diagram is

already known. Suppose the clumsy diagram in Figure 1.7(a) is given. At first we can

represent the given diagram by a graph as shown in Figure 1.7(b) by representing each

of the components by a vertex and each of the interconnections by an edge. For identifi-

cation we can number the network components arbitrarily and then put similar numbers

to the corresponding vertices of the obtained graph. Secondly, we can find an orthogo-

nal drawing for the obtained graph as illustrated in Figure 1.7(c), provided the obtained

graph is a planar graph. Finally, we can get the resultant clear diagram as shown in

Figure 1.7(d) by replacing each of all the vertices and edges by their corresponding net-

work components and interconnections, respectively. Therefore, we can solve the problem

through these three major steps, as shown in Figure 1.7. The first and the last steps are

simple transformations. The most critical step is the second step Le. to find an orthogonal

drawing of the obtained graph. This is just an example of a problem domain but lot of

similar problems can be solved in a similar fashion. For solving those problems the main

difficulty is to find an orthogonal drawing of a given graph. This is the general problem

CHAPTER 1. INTRODUCTION

we have studied in this thesis.

, "
, ,

,

, 2 J

•
(c)

9

Figure 1.7: Basic steps for finding a clear diagram of a given clum.sy diagram..

We now investigate the relevant works which have already been done on this topic.

Due to the huge applications of orthogonal drawings in various fields like VLSI circuit

design, database systems, software engineering, cartography, etc. [NR04, She95] numerous

algorithms for finding orthogonal drawings have been studied in the literature. Many

relevant works have been done on 3-graphs. In the year 1996 Kant [Kan96] proved that

every planar 3-graph, except K4, has a I-bend orthogonal drawing. In 1999 Rahman et

al. [RNN99] developed an algorithm for finding a bend-optimal orthogonal drawing for a

triconnected cubic graph. In 2002 Rahman and Nishizeki [RN02] introduced an algorithm

for finding a bend-minimum orthogonal drawing for a plane 3-graph. In 2003 Rahman et

al. [RNN03] developed another algorithm for finding a O-bend orthogonal drawing for a

plane 3-graph if O-bend orthogonal drawing exists. Here we have mentioned only some

of the selected good results regarding 3-graphs where all the mentioned algorithms are of

linear-time. .~, '
, ~.
. T

"

\)

CHAPTER 1. INTRODUCTION 10

This thesis deals with 4-graphs and the results regarding 4-graphs are as follows. In

1998 Biedl and Kant [BK98] proved that every planar 4-graph, except an octahedron,

has a 2-bend orthogonal drawing. In the same year Liu et al. [LMS98]developed same

result with the only difference that they considered biconnected planar 4-graphs. In 2001

Garg and Tamassia [GTOI] found that it is an NP-complete problem to decide whether a

given planar 4-graph has a O-bend orthogonal drawing or not. Recently in 2006 Tayu et

al. [TNU06] developed an O(n2) time algorithm for finding I-bend orthogonal drawing

for every series parallel 4-graph. In this thesis we work on triconnected planar 4-graph

which is a larger class of graphs than series parallel 4-graphs. The target of this thesis is to

develop a linear-time algorithm for finding a I-bend orthogonal drawing for a triconnected

planar 4-graph. But unfortunately not every triconnected planar 4-graph has a I-bend

orthogonal drawing. Figure 1.8 illustrates two examples of triconnected planar 4-graphs

which do not have any I-bend orthogonal drawing. Therefore, it is interesting to derive

a condition for identifying the triconnected planar 4-graphs to have I-bend orthogonal

drawings.

(b)(a)

Figure 1.8: Two examples of triconnected Planar 4-graphs which do not have I-beri'd;)

orthogonal drawings.

;,'

CHAPTER 1. INTRODUCTION

1.5 Objectives of this Thesis

11

In this thesis we introduce the objectives of this thesis.

The problem we work on is an orthogonal drawing generating problem. We are con-

cerned about finding I-bend orthogonal drawings of triconnected planar 4-graphs. The

specific objectives of this thesis are as follows:

a) We have to derive a sufficient condition fOra triconnected planar 4-graph to have a

1-bend orthogonal drawing.

b) We have to develop a linear-time algorithm for finding one bend orthogonal draw-

ings of those triconnected planar 4-graphs which satisfy the sufficient condition

mentioned above.

1.6 Summary

In this section we summarize the results obtained in this thesis. Moreover, at the end of

this section we give an outline of this thesis.

The results of this thesis are summarized as follows:

a) We are concerned about the triconnected planar 4-graphs. By extensively examin-

ing the characteristics of triconnected planar 4-graphs we have derived a sufficient

condition for triconnected planar 4-graphs to have I-bend orthogonal drawings.

b) We have given a constructive proof for the sufficient condition and from that con-

structive proof we have developed a linear-time algorithm for finding one bend or-

thogonal drawings of those triconnected planar 4-graphs which satisfy the sufficient

condition.

The remainder of this thesis is organized as follows. In chapter 2 we give the prelim-

inary definitions and mention two results that we use for finding our desired algorithm.

...
, i

CHAPTER 1. INTRODUCTION 12

In chapter 3 we introduce the sufficient condition and give a proof for the sufficiency of

the condition. We also give an algorithm at the end of that chapter. In chapter 5 we

conclude the thesis with an outline of future research works.

Chapter 2

Preliminaries

2.1 Basic Terminology

In this section we give the definitions of those graph-theoretical terms which we have used

throughout the remainder of this thesis.

2.1.1 Graphs

A graph G is represented by G = (V, E) where V be the finite set of vertices of G and E be

the finite set of edges of G. The finite set of vertices and edges of G are often denoted by

V (G) and E(G), respectively. Moreover, we denote the number of vertices of G by n(G)

and the number of edges ofG by m(G), i.e. n(G)= IV (G) 1and m(G) = 1E(G) I. Figure 2.1

depicts a graph G where V(G) = {VI, V2, V3, V4, VS, V6}, E(G) = {el' e2, e3, e4, e5, e6, e7, es},

n(G) = 6 and m(G) = 8.

If more than one edges join the same pair of vertices, then the edges are called multiple

edges. Besides a loop is an edge which joins a vertex itself. If a graph G has no multiple

edges or loops, then G is called a simple graph. All the graphs, which we consider in this

thesis, are simple graphs.

We denote by dc(v) the degree of a vertex V in G, which represents the number of

13

CHAPTER 2. PRELIMINARIES

Figure 2.1: A graph with six vertices and eight edges.

14

edges incident to v in G. We also denote by L'>.(G)the maximum degree of vertices of G.

Moreover, G is called a k-graph if L'>.(G) :s; k. The graphs of our interest are 4-graphs

where the maximum degree of the vertices is at most 4. The graph in Figure 2.1 is an

example of 4-graph.

2.1.2 Subgraphs

A 8ubgraph of a graph G is a graph G' in which the vertex and edge sets are the subsets

of those of G. Figure 2.2 illustrates a subgraph G' of the graph G in Figure 2.1.

G'

Figure 2.2: A subgraph of the graph in Figure 2.1.

'":..o.:j

CHAPTER 2. PRELIMINARIES

2.1.3 Paths and Cycles

15

A walk, Vo, e], V], ... , VI_], el, and VI in a graph G is an alternating sequence of vertices

and edges of G, beginning and ending with a vertex, in which each edge is incident to two

vertices immediately preceding and following it. If the vertices Va, V], ... , VI are distinct

(except possibly Va, VI), then the walk is called a path and usually denoted either by the

sequence of vertices va, V], ... , VI or by the sequence of edges eo, e], ... ,el. The length of

the path is I, one less than the number of vertices on the path. A path or walk is closed

if Vo = VI. A closed path containing at least one edge is called a cycle. If a closed path

contains exactly one edge, then it is called a loop.

2.1.4 Connectivity

A graph G is connected if for any two distinct vertices u and V there is a path between

11 and V in G. The graph in Figure 2.3(a) is a connected graph. A graph which is not

connected is called a disconnected graph. The graph in Figure 2.3(b) is a disconnected

graph because there exist no path in between V] and V9'

(b)

Figure 2.3: (a) A connected graph, (b) a disconnected graph.

The connectivity K,(G) of a graph G is the minimum number of vertices whose removal

results in a disconnected graph or a single vertex graph. G is called k-connected if K,(G) 2':

k. The graph in Figure 2.3(a) is a 3-connected graph because at least three vertices should

CHAPTER 2. PRELIMINARIES 16

be removed to make this graph disconnected. We can make this graph disconnected by

removing V3, V6 and V8 as shown in Figure 2.3(b). Note that 3-connected graphs are also

known as triconnected graphs.

2.1.5 Trees

A tree is a simple connected graph which contains no cycle. The vertices in a tree are

usually called nodes. Every vertex of degree one of a tree is called a leaf. The nodes other

than the leaf nodes of a tree are the internal nodes. If a node of a tree is designated,

then the tree is called a TOoted tree and the designated node is called the TOot of the tree.

Usually, the root of a tree is drawn at the top. Figure 2.4 illustrates a tree in which v) is

the root, V5, V6 and V7 are the leaf nodes and rest of the vertices are the internal nodes.

Figure 2.4: A tree.

2.1.6 Planar Graphs

A graph is planar if it has at least one embedding in the plane such that no two edges

intersect at any point except at their common end vertex. A planar graph may have an

exponential number of planar embeddings. Figure 2.5 illustrates three different planar

embeddings of the same planar graph.

CHAPTER 2. PRELIMINARIES

2

6

3

2

17

Figure 2.5: Three planar embeddings of the same graph.

Plane Graphs

A plane graph G is a planar graph with a fixed planar embedding in the plane as shown in

Figure 2.6. A planar embedding of a graph divide the plane into some connected regions

called faces. The shaded region of the graph G in Figure 2.6 is an example of a face.

The outermost unbounded region of a plane graph is called the outer face of the graph.

If a graph is 2-connected and if it has at least three vertices, then the boundary of each

face of the graph is a cycle [NR04]. The boundary of the outer face of G is called the

outer boundary of G and denoted by Co(G). If Co(G) is a cycle, then Co(G) is called the

outer cycle of G. Any vertex v on Co(G) is called an outer vertex of G; otherwise v is

called an inner vertex of G. The vertices V7, Vs, and Vg of the graph G in Figure 2.6 are

the inner vertices and rest of the vertices are the outer vertices of G. Similarly, any edge

eon Co(G) is called an outer edge of G; otherwise e is called an inner edge of G.

For a cycle C in a simple graph G we denote by G(C) the plane subgraph of G inside

C, including C. An edge of G which is incident to exactly one vertex of a cycle C and

located outside C is called a leg of the cycle C. The vertex of C to which a leg is incident

is called a leg-vertex of C. A cycle C in G is called a k-legged cycle of G if C has exactly

k legs in G.

We assume that G is a simple triconnected planar 4-graph. Therefore, in case of G no

I-legged cycle or 2-legged cycle can exist. Any cycle C in G must have at least three legs

('\ .

\ I

\i

CHAPTER 2. PRELIMINARIES

Figure 2.6: A plane graph G.

18

which are incident to three different leg vertices. Note that since G is a 4-graph, more

than one and at most two legs can be incident to the same leg vertex of G. The cycles Gl,

G2, and G3 in Figure 2.7, which are indicated by the dotted lines, are 3-1eggedcycles. But

the cycle G4 in Figure 2.7 is a 4-1eggedcycle. In Figure 2.7 the leg vertices are colored

with gray color.

bt----.c,, ', '
, I
\ .'.

, . ,
~- - - ~

------ C
~ _', '-.' 2, ,, ,, ,

\ ,"
, ~-., ~"I

-----~
'rl-!j----- c, . -, 3, ,, ,, ,
\ - ,-'I

, ,
" ,"? ".

,-----'"

Figure 2.7: 3-1egged and 4-legged cycles.

For a simple cycle G in a plane graph G we denote by G(G) the plane subgraph of G

inside G (including G). We say that cycles G and G' in a plane graph G are independent

if G(G) and G(G') have no common vertex.

2.2 Review of the Previous Results

In this section we present two known algorithms which we have used in our proposed

algorithm. The first one is a rectangular drawing algorithm and the second one is an

algorithm for finding bend minimal orthogonal drawings.

CHAPTER 2. PRELIMINARIES

2.2.1 Rectangular Drawing

19

A rectangular drawing of a plane graph is a drawing of that graph such that each vertex

is drawn as a point, each edge is drawn as a horizontal or vertical line segment without

edge-crossings, and each face is drawn as a rectangle. The graph in Figure 2.8(a) is a

plane graph G and Figure 2.8(b) illustrates the rectangular drawing of G.

(b) .

Figure 2.8: (a)A plane graph G, (b)rectangular drawing of G.

Not every planar graph has a rectangular drawing. A planar graph G has a rectangular

drawing if at least one embedding ofG has a rectangular drawing. Rahman et al. [RNN98]

derived a necessary and sufficient condition for a class of plane graphs to have rectangular

drawings. They proved the following lemma.

Lemma 2.2.1 fRNN98) Let G be a connected plane graph such that all vertices are of

degree three except four vertices of degree two on the outer cycle Co(G) of G. Then G

has a rectangular drawing if and only if G has none of the following three types of simple

cycles fTh084}:

(r1) 1-1egged cycles;

(r2) 2-1egged cycles which contain at most one vertex of degree two; and

(r3) 3-1egged cycles which contain no vertex of degree two.

Furthermore one can check in linear-time whether G satisfies the condition above and

if G does, then one can find a rectangular drawing of G in linear-time.

..t{)

CHAPTER 2. PRELIMINARIES 20

Linear-time algorithms for finding a rectangular drawing of a plane graph satisfying

the condition in Lemma 2.2.1 have been obtained in [KH97]and [RNN98]. Our proposed

drawing algorithm uses the algorithm in [RNN98]. In this thesis we call the algorithm of

[RNN98]as Rectangular-Draw.

A cycle of type (rl) or (r2) or (r3) of Lemma 2.2.1 is called a bad cycle. Since in this

t.hesiswe consider triconnect.ed planar graphs, no I-legged or 2-legged cycle can exist in

t.he given graph. Figure 2.9 illustrates some 3-legged cycles where the cycles C1 C2 and

C5 contain no vertex of degree two. Therefore, t.heset.hree cycles are bad cycles. Whereas

the cycles C3 and C4 cont.ain one and t.wovert.ices of degree t.wo respectively. That is

why t.hese t.wocycles are not the bad cycles. Now a bad cycle which is not cont.ained

in anot.her bad cycle is called a maximal bad cycle. The cycles C1 and C5 in Figure 2.9

are maximal bad cycles. Whereas the cycle C2 is not a maximal bad cycle because it. is

cont.ained in another bad cycle C5.

Figure 2.9: Bad cycles (C1; C2; C5), non bad cycles (C3; C4) and maximal bad cycle (C1;

C5).

2.2.2 Orthogonal Drawing

In the year 1999 Rahman et al. [RNN99] developed a linear t.ime algorit.hm for finding

bend-optimal orthogonal drawings of triconnected cubic plane graphs. A part of that

CHAPTER 2. PRELIMINARIES 21

algorithm is another algorithm which can find an orthogonal drawing of a maximal bad

cycle such that the drawing can be patched into another orthogonal drawing. This part

is termed as Feasible-Draw in [RNN99] and in our proposed algorithm we use this

algorithm. Before discussing the algorithm Feasible-Draw we need to present following

definitions.

Green Path and Red Path

Let G be a triconnected cubic plane graph and C be a 3-legged cycle in G. Each 3-legged

cycle like C in G is divided into three paths PI, P2 and P3 by the three leg-vertices x, y

and z of C as illustrated in Figure 2.10. These three paths PI, P2 and P3 are called the

contour paths of C. Each contour path of C is classified as either a green path or a red

path. Green paths and red paths are defined [RNN99]from the following three cases.

x

(a) Case I

p.
3

(b) Case 2

C

(e) Case 3

C

Figure 2.10: Green paths.

Case 1: C has no child cycle as shown in Figure 2.1O(a). In this case all the three

contour paths of C are classified as green paths. In Figure 2.1O(a)green paths are indicated

by dotted lines.

Case 2: Let CI,C2, ... ,Cl be the child-cycles of C and none of the child-cycles of C

has a green path on C. In this case all the three contour paths of C are classified as green

paths. In Figure 2.10(b) the child-cycles of Care CI,C2, ..• , C5, and all green paths of

CHAPTER 2. PRELIMINARIES 22

t.hem,drawn by t.hick lines, do not lie on C. Therefore, all the three cont.our pat.hs of C

are the green paths and those are indicated by dotted lines.

Case 3: Let.C], C2, •.. , C1 be the child-cyclesof C and at least one of the child-cycles

of C has a green path on C. In this case a contour pat.h Pi, 1 :S i :S 3, is classified as a

green path if a child-cycle of C has its green path on Pi. Otherwise, Pi is classified as a

red path. In Figure 2.10(c) p] and P2 are green paths but P3 is a red path.

Feasible Orthogonal Drawing

Let C be a 3-legged cycle in a triconnected cubic plane graph G and x, y and z be the

three leg vertices of C in G. One may assume that x, y and z appear on C in clockwise

order. For a green path P, with ends x and y on C, an orthogonal drawing of G(C)

is defined [RNN99] to be feasible for P if the drawing satisfies the following propert.ies

(pl)-(p2)

(pI) At least one bend appears on the green path P.

(p2) The drawing of G(C) intersects none of the followingsix open halflines.

• the vertical open halfline with the upper end at x .

• the horizontal open halfline with the right end at x .

• t.he vertical open halfline with the lower end at y .

• the horizontal open halfline with the left end at y .

• t.he vertical open halfline with the upper end at z .

• the horizontal open halfline with the left end at z.

The property (p2) implies that in the drawing of G any vertex of G(C), except x, y

and z, is located in none of the following three areas (shaded in Figure 2.11): the third

quadrant with the origin x, the first quadrant with the origin y, and the fourth quadrant

. ,.".'

CHAPTER 2. PRELIMINARIES 23

with the origin z. It should be noted that each leg of C must start with a line segment

on one of the six open halflines above if an orthogonal drawing of G is extended from an

orthogonal drawing of G(C) feasible for P. Figure 2.11 illustrates an orthogonal drawing

feasible for a green path P. An orthogonal drawing of G(C) feasible for a green path of

C is often simply called a feasible orthogonal drawing of G(C).

z

Figure 2.11: A feasible drawing.

Let us present the results regarding the feasible orthogonal drawing which ware ac-

tually developed and proved by Rahman et al. [RNN99]. They proved the following

lemma.

Lemma 2.2.2 (RNN99) Let G be a triconnected cubic plane graph. For any 3-legged

cycle C of G and any green path P of C, G(C) has an orthogonal drawing feasible for P.

The algorithm for finding a feasible orthogonal drawing of G(C) is described in the

proof of Lemma 2.2.2 and that algorithm is called Feasible-Draw. We also have the

following lemma regarding Feasible-Draw.

Lemma 2.2.3 (RNN99) Algorithm Feasible-Draw finds a feasible orthogonal drawing

of G(C) for a 3-legged cycle C in linear-time, that is, in time O(n(G(C))).

Rahman et al. [RNN99]also defined the followingterm which we also use for describing

our proposed algorithm.

".f-,

CHAPTER 2. PRELIMINARIES

Genealogical Tree

24

Let C be a 3-legged cycle in a triconnected cubic plane graph G. Then the three leg-

vertices of C are distinct with each other since G is cubic. We denote by Ce the set of

all 3-legged cycles of Gin G(C) including C itself. For the cycle G in Figure 2.12(a)

Ce = C, CI, G2, ... , C7, where all cycles in Ce are drawn by thick lines. For any two

3-legged cycles C' and Cn in Ce, we say that Cn is a descendant cycle of C' and C' is

an ancestor cycle of Gn if Cn is contained in G(G'). We also say that a descendant cycle

Cn of C' is a child-cycle of G' if Cn is not a descendant cycle of any other descendant

cycle of C/. In Figure 2.12(a) cycles GI, C2, •.. , C7 are the descendant cycles of C, cycles

CI, C2, ... , C5 are the child-cycles of C, and cyclesG6 and C7 are the child-cycles of C4. It

is shown in [RNN99]that if C is a 3-legged cycle in a 3-connected cubic plane graph G,

then the child-cycles of G are independent of each other. It implies that the containment

relation among cycles in Ce can be represented by a tree as illustrated in Figure 2.12(b);

the tree is called the genealogical tree of G and denoted by Te.

I
I

I,,,,,,
,,,,,,,,,,,

(a) c

Figure 2.12: (a) Cycles in Ce and (b) Genealogical tree Te.

In the next chapter we use these definitions and results for describing our proposed

algorithm.

Chapter 3

I-Bend Orthogonal Drawing

In this chapter we first give a sufficient condition for triconnected planar 4-graphs to

have I-bend orthogonal drawings. We next give a constructive proof for the sufficient

condition. We finally give an algorithm for finding I-bend orthogonal drawings of those

graphs which satisfy the sufficient condition based on the constructive proof.

3.1 Definitions

By extensively examining the characteristics of triconnected planar 4-graphs we derive a

sufficient condition. Before introducing the condition we need to define some terms.

3.1.1 a-Face

Let F be a face of a triconnected planar 4-graph G. We call the face F in G an a-face if

the boundary of F contains at least four vertices of degree three. Figure 3.1 illustrates a

graph G in which the shaded face F is an a-face.

25

{

CHAPTER 3. I-BEND ORTHOGONAL DRAWING

Figure 3.1: An a-face F.

3.1.2 Critical-Cycle

26

Let C be a cycle in a simple 4-graph G and let C have exactly three distinct leg vertices,

each of which has one or two legs incident to it. We call the cycle C a critical-cycle if

two of the three contour paths of C do not contain any edge e such that e connects two

vertices of degree three. Three examples of critical-cycles are illustrated in Figure 3.2,

where x, y and z are the leg vertices.

y

Figure 3.2: Examples of critical-cycle.

3.1.3 Good String and Bad String

Let G be a triconnected plane 4-graph in which the outer face is an a-face. It implies

that the outer cycle Co(G), which is also the boundary of an a-face, contains at least four

vertices of degree three. These four vertices divide the outer cycle Co(G) into four paths.

If we arbitrarily choose one edge from each path, then we find four edges on Co(G) and

we call each of these four edges a safe-edge of G.

CHAPTER 3 I-BEND ORTHOGONAL DRAWING 27

The auter cycle Co(G) may have same vertices af degree faur. We call a maximal path

P an Co(G) a string af G if P cantains anly vertices af degree faur and daes nat cantain

any safe-edge af G.

Figure 3.3 illustrates an auter cycle Co(G) af a graph G in which the auter face is an

Cl'-face.In Figure 3.3 81, 82, 83 and 84 are the faur safe-edges af G and the strings (SI, S2,

S3, S4 and S5) af G are marked with the datted lines.

'J..
2'0
),
.4"0::,,: '

6" 0:
t., i8,

2

",82

Figure 3.3: Good strings and bad strings.

We call a string S af G a good string af G if nO'safe-edge af G is incident to' any vertex

af S, On the cantrary we call a string S af G a bad string af G if exactly ane safe-edge

af G is incident to' a vertex af S. Nate that by the definitian af safe-edge a string Scan

have at mast ane safe-edge incident to' a vertex af S, Amang the strings in Figure 3.3 S2

and S5 are the gaad strings af G, whereas SI, S3 and S4 are the bad strings af G.

3.1.4 Good Edge and Bad Edge

Let S be a string af a tricannected plane 4-graph G and the auter face af G is an Cl'-face.

Since every vertex af a string is af degree faur, every vertex af S has faur edges incident

tail" Amang these four edges two edges are outer edges and the other two edges are inner

edges.

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 28

Suppose 8 is a bad string of G and a safe-edge e of G is incident to an end vertex v of

8. Let e' be the inner edge which is incident to v such that e and e' are contained in the

same inner face. We assign number 1 to e' and assign numbers to the rest of the inner

edges incident to the vertices of 8 sequentially. In this way we assign numbers to the

inner edges of G which are incident to the vertices of all bad strings of G. We now call the

odd numbered edges as good edges of G and the even numbered edges as bad edges of G.

In Figure 3.3 t.he odd numbered and the even numbered inner edges which are incident

to the bad strings 81, 83 and 84 of G are the good edges and bad edges, respectively.

If 8 is a good string of G, then no safe-edge is incident to any vertex of 8. Let e" be

an outer edge of G, other than the edges of 8, such that e" is incident to an end vertex v

of 8. Let e' be the inner edge which is incident to v such that e' and e" are contained in

the same inner face. We assign number 1 to e' and assign numbers to the rest of the inner

edges incident to the vertices of 8 sequentially. After numbering the inner edges of G if

we find that the odd numbered edges are mostly connected with inner vertices of degree

four, then we call the odd numbered edges as good edges of G and the even numbered

edges as bad edges of G. Otherwise we call the even numbered edges as good edges of

G and the odd numbered edges as bad edges of G. The good string 85 in Figure 3.3 has

eight inner edges which are numbered sequentially and the 2nd, 4th and 7th inner edges

are incident to inner vertices of degree four. Therefore, for this case the even numbered

edges are good edges and the odd numbered edges are bad edges.

3.1.5 Valid 4-Component

Let G be a triconnected plane 4-graph in which the outer face F is an a-face. If we delete

from G the outer cycle CorG) and all the inner vertices of degree three of G, then we

may get some connected subgraphs of G in which all the vertices are of degree four. We

call each of these connected subgraphs of G a 4-component of G. Figure 3.4(a) illustrates

a triconnected plane 4-graph G in which the outer face is an a-face. After removing

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 29

Co(G) and all the inner vertices of degree three from G we get the 4-components of G

as illustrated in Figures 3.4(b)-(d). The 4-components of G can be classified into two

types: tree components and non-tree components. We call a 4-component H of G a tree

component of G if H does not contain a cycle, otherwise we call H a non-tree component

of G. Figures 3.4(b) and 3.4(d) illustrate the tree components and Figure 3.4(c) illustrates

a non-tree component of the graph G in Figure 3.4(a).

. ... :..'
(d)

(c)
(b)

Figure 3.4: (a) A triconnected plane 4-graph G, (b-d) 4-Components of G.

We call a tree component H of G valid if at most one bad edge of G is incident to a

vertex of H. Besides we call a non-tree component H of G valid if H has at most one

cycle and if no bad edge of G is incident to any vertex of H.

3.2 Sufficient Condition

We are now ready to introduce the sufficient condition for a triconnected planar 4-graph

to have a I-bend orthogonal drawing. The sufficient condition is as follows.

Theorem 3.2.1 A triconnected planar 4-graph G has a j-bend orthogonal drawing if G

has at least one ex-face F such that the planar embedding of G having F as the outer face

contains only valid 4-components and contains no critical-cycle.

CHAPTER 3. i-BEND ORTHOGONAL DRAWING 30

We give a constructive proof for the sufficiencyof Theorem 3.2.1. Let us assume that

G is the given simple triconnected planar 4-graph and G satisfies the condition of Theorem

3.2.1. It means G has at least one a-face F and the planar embedding of G in which F

is the outer face contains only valid 4-components and contains no critical-cycle. More

than one a-faces like F may exist in G. We therefore arbitrarily choose one a-face like

F of G and call it a desired a-face of G. In a triconnected graph minimum degree of the

vertices is three and in a 4-graph maximum degree of the vertices is four. Therefore, the

minimum degree of the vertices of G is three and maximum degree of the vertices of G is

four. We next give an outline of the constructive proof.

3.2.1 An Outline of the Constructive Proof

An outline of the constructive proof of Theorem 3.2.1 is illustrated in Figure 3.5. The

given graph G is illustrated in Figure 3.5(a). At first we find a planar embedding Gj

of G in which the outer face is a desired a-face. The shaded face, illustrated in Figure

3.5(a), is a desired a-face of G. This a-face is transformed to the outer face in the planar

embedding Gj of G as shown in Figure 3.5(b). For this particular embedding of G we find

a I-bend orthogonal drawing. After this step we can consider that Gj is a plane graph.

Since the outer face of Gj is an a-face, we can find four safe-edges of Gj on the outer

cycle of Gj. We next put four dummy vertices of degree two on four safe-edges of Gj and

obtain a graph G2 as shown in Figure 3.5(c), where the gray colored vertices represent

the dummy vertices. We then replace each vertex of degree four of G2 by a dummy edge

end points of which are incident to two vertices of degree three. In Figure 3.5(c) the

vertex v of G2 is of degree four. We replace v by a dummy edge e and obtain the graph

G3 as shown in Figure 3.5(d). This step converts the given triconnected 4-graph to a

triconnected cubic graph, except the four dummy vertices.

The obtained graph G3 contains several cycles and from those cycles the maximal bad

cycles are contracted along with their inner subgraphs. Figure 3.5(e) illustrates how the

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 31

R

"
c

o

(g)

O'

(0)

o

=r
..

(i)

Figure 3.5: An overview of the constructive proof of Theorem 3.2.1.

maximal bad cycle C (marked with a dotted line) of G3 is contracted to a vertex Vi of

degree three. Let G4 be the resulting graph. The graph G4 satisfies the necessary and

wfficient condition of Lemma 2.2.1. Therefore, G4 has a rectangular drawing. We next

apply an efficient linear-time algorithm of [RNN98] on G4 in order to get a rectangular

drawing R as shown in Figure 3.5(f). The rectangular drawing R contains some vertices

of degree three like Vi which represent the location of previously contracted maximal bad

cycles. We now find feasible drawing for each of the contracted maximal bad cycles and

patch those feasible drawings to their corresponding locations. After patching the feasible

drawing of C at the location of Vi in R we get the drawing D as shown in Figure 3.5(g).

Next the dummy edges like e of the resulting drawing are contracted and thus the original

vertices of degree four are retrieved. After contracting the dummy edge e from D we find

CHAPTER 3. i-BEND ORTHOGONAL DRAWiNG 32

the drawing D' as shown in Figure 3.5(h). Finally we replace each of all the dummy

vertices of degree two with a bend and thus get the final drawing. By replacing all the

dummy vertices of D' with bends we get the final I-bend orthogonal drawing D" of the

planar embedding GI of the given graph G as shown in Figure 3.5(i).

In this section we give the outline of the constructive proof. In the following sections

we give the detail proof. In section 3.2.2 and section 3.2.3 we present the technique for

transforming the given graph so that it satisfies the necessary and sufficient condition of

Lemma 2.2.1. How to find rectangular drawing is discussed in section 3.2.4. In section

3.2.5 we explain the patching operation. How the dummy edges are contracted is discussed

in section 3.2.6. In section 3.2.7 we show how we get the resulting I-bend orthogonal

drawing by replacing the dummy vertices with bends and we give a proof for sufficiency

of Theorem 3.2.1.

3.2.2 Inserting Dummy Vertices

Every planar graph has a planar embedding [NR04]. Therefore, G must has a planar

embedding. Many algorithms have been developed for finding planar embeddings of pla-

nar graphs. Chiba et al. [CNA085] and Mehlhorn and Mutzel [MM96]gave linear-time

algorithms for finding a planar embedding of a planar graph. Shih and Hsu [SH99]gave

a simple linear-time algorithm which performs planarity testing and finds a planar em-

bedding of a planar graph simultaneously. Using anyone of these algorithms we can find

a planar embedding G' of G. Since G contains a desired a-face, we can find that desired

a- face in G' by checking the faces of G'. After finding the desired a-face of G in G' we

modify the embedding G' such that in the modified planar embedding G I the desired

a-face of G becomes the outer face. GI is the planar embedding of G for which we find

the final I-bend orthogonal drawing. Therefore, from now on we thus assume that G I is a

plane graph such that CorGI) is an a face, all 4-components in GI are valid 4-components

and GI contains no critical-cycle.

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 33

Since G! is a triconnected plane 4-graph, the degree of a vertex of G! is either three or

four. But according to Lemma 2.2.1, a graph must have at least four vertices of degree two

on its outer cycle to have a rectangular drawing. It implies that for getting a rectangular

drawing of G! the outer cycle Co(GJl of G! must have at least four vertices of degree

two. We therefore put four dummy vertices of degree two on Co(G!). We now show that

Co(G!) has enough edges to accommodate four dummy vertices of degree two.

Each of the four dummy vertices is finally replaced by a convex bend, (i.e., bend of

inner angle 900). If we place more than one dummy vertex on a single edge, then after

replacing those dummy vertices by bends more than one bends appear on a single edge,

which violates our claim that our algorithm gives I-bend orthogonal drawings. Therefore,

at most one dummy vertex of degree two can be placed on a single edge on Co(G!).

Four dummy vertices of degree two should be placed on Co(G!) for having a rectan-

gular drawing and at most one dummy vertex can be placed on a single edge on Co(G!).

Therefore, CorGJl must contain at least four edges. Since the outer face of G! is an

a-face, Co(G!) contains at least four safe-edges on it. We now put four dummy vertices

of degree two on four safe-edges of Co(G!). Let G2 be the resulting graph as shown in

Figure 3.5(c) where dummy vertices are colored with gray color. In this thesis we often

call this operation of inserting four dummy vertices of degree two on four safe-edges of

CorG!) as vertex-insertion operation.

We next find the strings and 4-components of G2 and label their vertices and edges.

We use this labeling later for the ease of explanation. Suppose p, g, r, and s are the four

dummy vertices on CorG2) and these vertices appear on CorG2) in clockwise order. The

dummy vertices p, g, r, and s divide Co(G2) into four contour paths. Since Co(G2) is also

the boundary of an a-face and p, g, r, and s are placed on four different safe-edges on

Co(G2), each contour path contains at least one vertex of degree three.

Let us first investigate the method of labeling the edges and vertices of the strings in

between p and g. Same method can be followed for the rest of the contour paths. If the

i
j

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 34

contour path pq contains no string, then we label none of the edges and vertices of pq. If

the path pq contains any string (either good or bad), then we label all the vertices and

edges of that string. If a string S on pq contains n' vertices, then in O2 there are n' + 1

outer edges and 2n' inner edges incident to the n' vertices of S.

If S is a bad string, then one end vertex of S has a safe-edge incident to it. We label

the safe-edge of S with ebl' Other outer edges ofGz which are incident to the vertices of S

are labeled sequentially with eb2, eb3, ... , and eb(n'+I), respectively. We label the vertices

of S sequentially starting from the vertex to which ebl and ebZ are incident. We label

these vertices with bl, bz, ... , and bn" respectively. Each vertex of S has two inner edges

incident to it. The inner edge which is incident to bl and which share a common face with

ebl is labeled with eblo' The other inner edge which is also incident to bl is labeled with

ebJc- Similarly the inner edge, which is incident to bz and share a common face with 8b2,

is labeled with eb20' The other inner edge which is incident to b2 is labeled with eb2e' The

other inner edges which are incident to the vertices of S are labeled similarly. We follow

this technique of labeling for all the bad strings on pq as well as on Co(02)'

If S is a good string, then we label the vertices and edges of S starting from the end

which is found first, while traversing Co(Gz) to the clockwise direction. We label the

vertices of S with 91, 9z, ... ,9n', respectively. The edges of S including the outer edges

which are incident to 91 and 9n' are sequentially labeled with e91, e92,'" , eg(n'+I) and

9],92, ... , 9n', respectively. The inner edges are labeled following the similar technique as

discussed for bad strings with the exception that the alphabet b is replaced with 9. After

labeling the inner edges if we find that the inner edges, having the suffix e, are mostly

connected with the inner vertices of degree four in comparison with the inner edges having

the suffix 0, then we replace all 0 with e and all e with 0 of that string. We follow this

technique of labeling for all the good strings on pq as well as on Co(Gz). Figure 3.6(a)

illustrates an outer cycle of a graph like Gz, where the vertices and edges are labeled.

We now explain the technique of labeling for a 4-component H of Oz. A tree compo-

CHAPTER 3. I-BEND ORTHOGONAL DRAWING

e'3

35

el3 eo
'3 e t2- 3
'2 e 12

e"

(b)

(c)

Figure 3.6: Labeling the vertices and edges of the strings and 4 -components.

nent can have at most one bad edge incident to a vertex of it. If H is a tree component

and H has a bad edge incident to a vertex of H, then we start labeling from the bad

edge and we label it with etQ. We next label with tj the vertex to which the bad edge is

incident. If the vertex tj has one or more neighbor vertices in H, then we label all of those

neighbor vertices by t2. If the vertices of H which are labeled by t2 have any number

of unlabeled neighbor vertices in H, then we label all of those neighbor vertices by t3.

Similarly we label all the vertices of H. If H has no bad edge, then we start labeling from

any vertex of H by labeling it with tl. Rest of the vertices of H are labeled in the same

way as explained earlier. After labeling the vertices of H we label the edges in between

tl and t2 by etl-2. Similarly the edges in between t2 and t3 are labeled with e'2-3. In this

CHAPTER 3. 1-BEND ORT'HOGONAL DRAWING 36

way we label all the edges in between any two vertices of H. We next label the unlabeled

edges of H. If an edge is incident to t], then we label it with et]. If this type of edges

are incident to t2 we denote them by et2 and so on. In this way we label all the vertices

and edges of all the tree components of G2. Figures 3.6(b) and 3.6(c) illustrate two tree

components in which the vertices and edges are labeled.

A non-tree component has exactly one cycle. Let H be a non-tree component. We

first label any edge on the cycle in H with enO. The edge enO is incident to two vertices

on the cycle of H and we denote anyone of those two vertices by n]. We next cut the

edge enD and thus the non-tree component becomes a tree component. We now label

all the vertices and edges of this 4-component following the technique explained for tree

components. The only difference is that we consider n in the place of t. In this way we

can label all the vertices and edges of all the non tree components of G2. Figure 3.6(d)

illustrates a non tree component in which the vertices and edges are labeled.

3.2.3 Inserting Dummy Edges

In this section we show that the graph G2 can be converted to a triconnected cubic plane

graph, except four dummy vertices of degree two on the outer cycle.

The graph G2 is a plane graph in which all the vertices are of degree three or of

degree four, except the four vertices of degree two on the outer cycle Cor G2). We next

replace each of all the vertices of degree four of G2 with a dummy edge end points of

which are incident to two vertices of degree three. This step converts the graph G2 to

a triconnected cubic plane graph in which all the vertices are of degree three, except

four vertices of degree two on the outer boundary. Let G3 be the newly obtained graph.

Figures 3.5(c) and 3.5(d) illustrate how a vertex of degree four is replaced by a dummy

edge. In this thesis we often call this operation of replacing all the vertices of degree four

of G2 with dummy edges as edge-insertion operation.

G2 has two types of vertices of degree four: some are inner vertices and some are outer

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 37

vertices. Each of these vertices has four edges incident to it. In case of an outer vertex

of degree four two incident edges are outer edges and the other two incident edges are

the inner edges. Figure 3.7(a) partially illustrates the outer cycle of G2 which contains

an outer vertex v. of degree four. Such an outer vertex of degree four can be replaced by

a dummy edge in two ways. We can either connect the two outer edges to the alternate

end points of the same dummy edge or we can connect them to the same end point of a

dummy edge. For the first type of replacement the dummy edge becomes an outer edge

and for the second type the dummy edge becomes an inner edge. The vertex V4 in Figure

3.7(a) is replaced in two different ways by the dummy edges e and e' as shown in Figures

3.7(b) and 3.7(c), respectively. Among these two ways of replacements we prefer the first

one (see section 3.2.6 for the reason). It means the outer vertices of degree four of G2 are

replaced by dummy edges such that the dummy edges become the outer edges. In case

of an inner vertex of degree four all of the four incident edges are inner edges. Therefore,

during the replacement of the inner vertices of degree four with the dummy edges there

is no such restriction.

(a) (b) (e)

Figure 3.7: (a) A vertex v. of degreefour on the outer cycle, (b) dummy edge as an outer

edge, (c) dummy edge as an inner edge.

3.2.4 Finding a Rectangular Drawing

In this section we show that the graph G3 can be modified such that the modified graph

has a rectangular drawing.

In the graph G3 all the vertices are of degree three, except four vertices of degree two

on Co(G3). According to Lemma 2.2.1 G3 has a rectangular drawing if and only if G3

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 38

contains no bad cycle. The construction of Ga implies that Ga may have some bad cycles.

Since Ga is a triconnected cubic plane graph (except four dummy vertices of degree two

on the outer cycle), Ga has no 1- or 2-legged cycle. It implies that any bad cycle in

Ga is a 3-legged cycle. Moreover, all maximal bad cycles in Ga are independent of each

other [RNN99]. We now contract all the maximal bad cycles Ci of G3 along with their

inner subgraphs G(Ci) in Ga into their corresponding vertices Vi of degree three, where

1 ::::i ::::I and I is the total number of maximal bad cycles in Ga. Let G4 be the graph

obtained from Ga by contracting all the maximal bad cycles in Ga. Figures 3.5(d) and

3.5(e) illustrate how a maximal bad cycle is contracted to a vertex of degree three. It

implies that the graph G4 is a triconnected cubic plane graph and it contains no bad

cycle i.e. G4 satisfies the necessary and sufficient condition of Lemma 2.2.1. Therefore,

the graph G4 has a rectangular drawing. If we apply the rectangular drawing algorithm

Rectangular-Draw of [RNN98] on the obtained graph G4, then we get a rectangular

drawing R of G4 as shown in Figure 3.5(f).

3.2.5 Patching the Feasible Orthogonal Drawings

In this section we show that all the contracted maximal bad cycles of Ga has a feasible or-

thogonal drawing which can be patched to their corresponding locations in the rectangular

drawing R.

Ga is a triconnected cubic plane graph (except four dummy vertices on Co(Ga)) and

contracted maximal bad cycles of Ga are the 3-legged cycles of Ga. Therefore, according

to Lemma 2.2.2 every contracted maximal bad cycles of Ga has a feasible orthogonal

drawing. If we use the algorithm Feasible-Draw of [RNN99] we can find the feasible

orthogonal drawings of all the contracted maximal bad cycles of Ga. But unfortunately

we cannot use those drawings because the maximal bad cycles of Ga contain dummy

edges and those dummy edges should be contracted later. Therefore, we should modify

the algorithm Feasible-Draw according to our need.

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 39

A 3-legged cycle C of G3 may have more than one green paths Pi where 1 <::: i <::: 3

and the algorithm Feasible-Draw can find orthogonal drawing of C feasible for any

green path Pi of C. Since a 3-legged cycle C of G3 may contain dummy edges and

those edges should be contracted later, we cannot choose any green path Pi for finding

orthogonal drawing feasible for Pi' We need to definewhich path of C should be selected.

Before defining it we need to define another term called desired-edge for the simplicity of

explanation. We call any edge e on a three legged cycle C of G3 a desired-edge if e is

not a dummy edge and if the end vertices of e are of degree three having no dummy edge

incident to them. We have the following lemma.

Lemma 3.2.2 Let C be a three legged cycle of a triconnected cubic plane graph G. G

is obtained from a triconnected plane 4-gmph G' by the edge-insertion operation. If G'

contains no critical-cycle, then at least two contour paths of every three legged cycle C of

G contain desired-edges.

Proof. Every three legged cycle C' of G' is also a three legged cycle of G but may have

some dummy edges. Moreover, G has some extra three legged cycles which are created

due to the edge-insertion operation. Each extra cycle of G is generated from a cycle C"

of G' such that C" has three leg vertices but more than three legs in G'. We have the

followingtwo cases.

Case 1: C of G is obtained from a three legged cycle C' of G'.

C' is a three legged cycle of G'. Therefore, C' has three leg vertices in G'. Since G'

has no critical-cycle, at least two contour paths of C' of G' contain desired-edges. C of

G is obtained from C' of G' by the edge-insertion operation. Moreover, edge-insertion

operation creates no new face and doesn't change the edges and the vertices of degree

three of C'. Therefore, the desired-edges of C' of G' remain unchanged on the contour

paths of C of G.

Case 2: C of G is obtained from a cycle C" having three leg vertices and more than

three legs in G'.

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 40

C" of G' has three leg vertices and more than three legs. Therefore, at least one leg

vertex of C" of G' is of degree four and has two legs incident to it. Since C of G is a

three legged cycle, during the edge-insertion operation each leg vertex of degree four of

C" of G' is replaced with a dummy edge such that the dummy edge becomes a leg of C

of G. Figure 3.8 illustrates an example of C and C" where the dummy edges are drawn

with the dotted lines. The other vertices of degree four of C" are replaced by normal

edge-insertion operation. Similar to case 1 for this case the edge-insertion operation does

not create any new face and does not change any existing edges and vertices of degree

three of C". Therefore, we can say that the desired-edges exist on any two contour paths

of C of G.

(a) (b)

Figure 3.8: (a) A cycle C" having three leg vertices but more than three legs, (b) a three

legged cycle C obtained from C".

o

Lemma 3.2.2 implies that every three legged cycle C of G3 has three contour paths

and at least two of them contain desired-edges. We have the following lemma.

Lemma 3.2.3 Let C be a three legged cycle of a triconnected cubic plane graph G. G

is obtained from a triconnected plane 4-graph G' by the edge-insertion operation. If G'

contains no critical-cycle, then at least one contour path of C of G contains a desired-edge

and doesn't contain any edge common with the outer cycle Co(G) of G.

Proof. Suppose for a contradiction that all of the three contour paths of C completely

lay on Co(G). Therefore, the three leg vertices of C of G also lay on Co(G). It implies

1 .
\ '~.:..'

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 41

that the total cycle C completely coincide with Co(G), which is contradictory with the

definition of three legged cycle of G. Again for contradiction we assume that three leg

vertices and two contour paths of C completely lay on Co(G). Then we find that one leg

vertex of Con Co(G) has no leg incident to it because Co(G) is the outer cycle of G. This

is contradictory with the definition of three legged cycle of G. Therefore, at least two

contour paths of C of G have no edge common with Co(G). We call a contour path of C

having no edge common with Co(G) an inner contour paths of C. According to Lemma

3.2.2 at least two contour paths of C contain desired-edges. Therefore, among the two

inner contour paths of C at least one has desired-edge on it. o

According to Lemma 3.2.3 every three legged cycle C of G3 has at least one contour

path P such that P contains a desired-edge but contains no edge common with the outer

cycle Co(G3) of G3. For every three legged cycle C of G3 we need to define one contour

paths P of C as desired-path. We find the definition of desired-path from the following

ca.ses.

Case 1: C has no edge common with Cor G3) or with any other ancestor three legged

cycle of C in G3 as shown in Figure 3.9(a). In this case any contour path of C having

desired-edge can be termed as desired-path of C. C mayor may not have any child cycle

and C mayor may not be a child cycle of any other three legged cycle of G3. In Figure

3.9(a) the desired paths of C are indicated by the dotted lines.

(a) Case 1

CoIG}

(b) Case 2

Figure 3.9: Desired-paths.

(c) Case 3

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 42

Case 2: C has no edge common with Co(G3) but at least one contour path of C

lays on any ancestor three legged cycle of C in G3 as shown in Figure 3.9(b). In this

case if the contour path of C, which lays on an ancestor three legged cycle of C, contains

any desired-edge, then that contour path is termed as desired-path of C. Otherwise the

contour paths which do not lay on any ancestor three legged cycle but contain desired-

edges are termed as desired-paths of C. In Figure 3.9(b) desired paths of C are indicated

by dotted lines beside the paths whereas the edges drawn with dotted lines represent the

dummy edges.

Case 3: At least one edge of C is common with Co(G3) as shown in Figure 3.9(c). If C

has one edge common with Co(G3), then the total contour path of C having that common

edge lays on Co(G3). According to Lemma 3.2.3 at least one inner contour path of C

contains desired-edge and for this case we call that inner contour path as a desired-path.

We now have the following lemmas.

Lemma 3.2.4 At least one of the three contour paths of every 3-legged cycle in G is a

desired-path under the classification above.

Proof. Immediate. o

Lemma 3.2.5 Let G be a triconnected cubic plane graph. For any 3-legged cycle C of G

and any contour path P of C, G(C) has an orthogonal drawing feasible for P.

Proof. This lemma is a slight modification of Lemma 2.2.2. We have the following

cases to consider.

Case 1: C has no child cycle as shown in Figure 2.10(a). According to Lemma 2.2.2,

G(C) has an orthogonal drawing feasible for any green path of C. In this case all of the

three contour paths of C are green paths. Therefore, we can say G(C) has an orthogonal

drawing feasible for any contour path P of C.

Case 2: None of the child-cycles of C has a green path on C as shown in Figure

2.1O(b). All of the three contour paths of C are green paths for this case also. Therefore,

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 43

similar to Case 1 we can say that G(C) has an orthogonal drawing feasible for any contour

path P of C.

Case 3: Otherwise, (see Figure 2.1O(c)).

In this case C has at least one and at-most two red paths. Other path(s) of C is(are)

green path(s). According to Lemma 2.2.2 G(C) has an orthogonal drawing feasible for

any green path of C. But this lemma claims that G(C) has an orthogonal drawing feasible

for red path also.

Let C], C2, ••• , C1 be the the child cycles of C, where 1 2': 1. At first for each i,

1 ::; i ::;I, we choose an arbitrary green path of Ci and find an orthogonal drawing

D(G(C,)) of G(C,) feasible for the green path in a recursive manner.

We next construct a plane graph F from G(C) by contracting each G(Ci), 1::; i ::;I,

to a single vertex Vi. Figure 3.10(a) illustrates F for G(C) in Figure 2.1O(c)where the red

path P is assumed to be Pa. We add a dummy vertex t on any of the edges of P as shown

in Figure 3.1O(b) and let H be the resulting plane graph. All vertices of H have degree

three except the four vertices x, y, z, and t of degree two on Co(H). Moreover, H has

no bad cycle. Therefore, by Rectangular-Draw we can can find a rectangular drawing

D(H) of H with four corners on x, y, z, and t. Figure 3.lOc illustrates a rectangular

drawing of H for C and P = Pa in Figure 2.10(c).

Finally, patching the drawings D(G(Cj)), D(G(C2)), ••• , D(G(C1)) into D(H), as

explained in Feasible-Draw, we can construct an orthogonal drawing D(G(C)) of G(C)

as shown in Figure 3.1O(d). Clearly t is a bend on P and patching operation doesn't

produce new bend. Thus the orthogonal drawing of G(C) is feasible for P. o

For any 3-legged cycle C of Ga the algorithm Feasible-Draw can find orthogonal

drawing of G(C) feasible for any green path of C. Since C may contain dummy edges

and those edges should be contracted later, weshould not use Feasible-Draw as it is.

We should slightly modify Feasible-Draw before use. Let Modified-Feasible-Draw,
be the algorithm which we are going to use for finding feasible orthogonal drawing of

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 44

x

"

(a) F

V,

-1-

v,

y

y

(b) H

(e) D(H)
• Original Vertex

o Contracted Vertex

o Dummy Vertex

(d) D(G(C))

Figure 3.10: F, H, D(H) and D(G(C)) for case 3.

G(C). Before introducing the algorithm Modified-Feasible-Draw we have the following

lemma.

Lemma 3.2.6 Let G be a triconnected cubic plane graph and G is obtained from a tricon-

nected plane 4-graph G' by edge-insertion operation. If G' has no critical-cycle, then for

any 3-legged cycle G of G and any desired-path P of G, G(G) has an orthogonal drawing

feasible for P.

Proof. Lemma 2.2.2 states that G (G) has an orthogonal drawing feasible for any green

path of C, whereas Lemma 3.2.5 states that G(G) has an orthogonal drawing feasible for

red path of C also. Therefore, G(G) has an orthogonal drawing feasible for any contour

path of G. Since G' has no critical-cycle, G also has no critical-cycle. Moreover, according

to Lemma 3.2.4, every three legged cycle G of G haS at least one desired-path. Therefore,

we can say that G(G) has an orthogonal drawing feasible for any desired-path P of G. D

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 45

Let C be a three legged cycle of a triconnected cubic plane graph and G. The algo-

rithm Feasible-Draw can find orthogonal drawing of G(C) feasible for any green path

of C. For finding a feasible orthogonal drawing of G(C) Feasible-Draw always inserts a

dummy vertex t of degree two on an arbitrary green path of C. The algorithm Modified-

Feasible-Draw inserts t on a desired-edge of an arbitrarily chosen desired-path P of C

for finding orthogonal drawing feasible for any desired-path P of C. This is the only

differencebetween Feasible-Draw and Modified-Feasible-Draw.

Lemma 3.2.6 implies that the algorithm Modified-Feasible-Draw can find the or-

thogonal drawings of the previously contracted maximal bad cycles of G3 feasible for their

corresponding desired-paths. After finding those feasible orthogonal drawings we patch

those drawings to their corresponding locations in the rectangular drawing R following

the technique explained in Modified-Feasible-Draw. We often call the operation of

finding and patching the feasible orthogonal drawings of the previously contracted three

legged cycles to their corresponding location in R as patching operation. This patching

operation converts the rectangular drawing R to an orthogonal drawing D as shown in

Figure 3.5(g).

The feasible orthogonal drawing of every three legged cycle C of G3 contains a bend

on a desired-path of C at the location of the dummy vertex t. Since none of the three

legged cycles of G3 has a desired-path on the outer cycle Cor G3), no new bend appears

on the drawing of Cor G3) after the patching operation. It mean the rectangular outer

boundary of R remains rectangular in D.

3.2.6 Contracting the Dummy Edges

In this section we show that after contracting the dummy edges of the orthogonal drawing

D we get a I-bend orthogonal drawing.

Since patching operation doesn't introduce any bend [RNN99]on the existing edges

of R, the orthogonal drawing D has no bend. Therefore, the dummy edges in D can take

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 46

anyone of the nine possible shapes, illustrated in Figures 3.11(a)-(i), or their rotated

forms. In Figure 3.11 the dummy edges are drawn with the dotted lines and the other

edges which are incident to the end vertices of the dummy edges are drawn with the solid

lines.

:rL (~l t ~l r(a)

-J L -l.. t -J r(d) (e) (f)

(g) t L
(h) t L

(i) t L

Figure 3.11: Nine possible shapes ora dummy edge in the orthogonal drawing D.

If we contract the dummy edges, then bend appears on the edges which are incident

to the end vertices of the dummy edges. Each of the nine shapes in Figure 3.11 can

be contracted in two ways. Figure 3.12 illustrates the contracted forms of the shapes in

Figure 3.11, where 0] and 02 are the two contracted forms of the shape in Figure 3.11(a).

Other forms are labeled similarly. For the ease of identification, thick incident edges

in Figure 3.11 are also represented by thick edges in Figure 3.12. Other edges can be

identified by their corresponding angular position with respect to the thick edge. From

the contracted forms in Figure 3.12 we have the following three observations.

Firstly, in the contracted forms some incident edges are safe (i.e. do not hold any

bend) and the others are not (i.e. hold a bend). The incident edges which are safe in

a contracted form of a shape are not safe in the other contracted form of that shape.

Similarly, the incident edges which are not safe in the first contracted form are safe in the

second form of contraction.

The second observation is: there are two groups of incident edges. Before character-

CHAPTER 3. I-BEND ORTHOGONAL DRAWING

Figure 3.12: Contracted forms of the arrangements in Figure 3.11.

47

izing these groups let us define two terms. If two edges, which are incident to the end

vertices of the same dummy edge, share a common face, then we call these two incident

edges as the adjacent incident edges; otherwise, we call these edges as the opposite inci-

dent edges. Two adjacent incident edges are of same group if they are 900 apart from each

other. Moreover, two opposite incident edges are of same group if they are 1800 apart

from each other. After contraction if a member of a group contains bend, then all other

members of that group contain bend.

The third observation is: after contraction of a dummy edge anyone of its four incident

edges can always be kept safe (i.e. we can always contract a dummy edge without putting

bend on a particular incident edge). We cannot always keep more than one incident edge

safe. Because, two or more incident edges do not always exist in the same group. For

example the thick edge and its opposite incident edge do not reside in the same group in

all possible shapes in Figure 3.11. In the shapes in Figures 3.11(a), 3.11(f), 3.11(h) and

3.11(i) those edges reside in the same group because they are 1800 out of phase with each

other. But in the other shapes in Figure 3.11 those edges reside in the alternate groups.

The orthogonal drawing D contains no bend but contains the dummy vertices only.

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 48

Before replacing these dummy vertices with bends D is a zero bend orthogonal drawing

of G3. Moreover, D contains dummy edges and the outer boundary of D is a rectangle.

From the contracted forms in Figure 3.12 it is clear that if we contract the dummy edges

of D, then bend may appear on those edges which are incident to the end vertices of the

dummy edges. Therefore, during the contraction of the dummy edges we should follow

some rules so that more than one bend cannot appear on a single edge. From the proof

of the followinglemma we get an algorithm for the contraction of the dummy edges of D.

Lemma 3.2.7 Let G be a hiconnected plane 4-graph such that the outer face of G is an

a-face, all the 4-components of G are valid 4-components and G has no critical-cycle. Let

G' be the graph obtained from G after vertex-insertion and edge-insertion operation and

the contraction of the bad cycles of G and let R be a rectangular drawing of G'. Let D

be a zero bend orthogonal drawing obtained from R after the patching operation. If we

contract all the dummy edges of D, then the resulting drawing is a one bend orthogonal

drawing of G.

Proof. We give a constructive proof for this lemma which gives an algorithm for

contracting the dummy edges of D. For the ease of explanation we use the labeling

convention discussed in section 3.2.2. Since D is a zero bend orthogonal drawing, to

prove the claim it is sufficient to show that the contraction of dummy edges are possible

without introducing more than one bend on a single edge in the resulting drawing. We

have the followingcases to consider.

Case 1: Dummy edges of D are created from the bad strings of G.

Let b" b2, ... , bn be the vertices of a bad string Sb of G as shown in Figure 3.13(a),

whcre n is the number of vertices of degree four in Sb and 1 ~ n. The gray colored

vertices represent the dummy vertices of degree two. After edge-insertion operation Sb in

Figure 3.13(a) is transformed to a string as in Figure 3.13(b), where the dummy edges

are represented by the dotted lines. In the zero bend orthogonal drawing D the part of

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 49

the outer cycle of G' in between two successive dummy vertices of degree two becomes a

straight path as illustrated in Figure 3.13(c). The inner edges which are incident to the

end vertices of the dummy edges on Sb become perpendicular to this straight path.

(a)

ebn eb3 e
eb(n+I) ...r----,T1b2..

_\ . ebl
e b2e e

~e eboo eb20 bleep

(b)

""+
~ l::, ""l •••••~ ~ ~ ~ ~m-j--i-Tln

(c)

r-r----lbn, , rr---
(d)

Figure 3.13: Effect of dummy edge contraction for Case 1.

The corresponding dummy edge for any vertex bk on Sb, 1 :::;k :::;n, and the other

four edges incident to the end vertices of the dummy edge in D take the shapes shown

in Figure 3.11(c). This dummy edge can be contracted in two ways as shown in Figures

3_12(C1)and 3.12(c2)' If we choose the first form of contraction, then a bend appears on

the outer edge ebk, while the other outer edge eb(k+1) remains safe (i.e. no bend appears

on it). If we choosc the second form of contraction, then the alternate situation occurs.

But in this algorithm we contract the corresponding dummy edge for bk such that the

outer edge ebk remains safe and bend appears on eb(k+1)' At the same time the inner edge

ebko remains safe and bend appears on ebke' It means bend appears on every bad edge

whereas the good edges remain safe. Figure 3.13(d) illustrates the drawing obtained after

contracting the dummy edges in Figure 3.13(c).

In this case the contraction of the dummy edges cannot produce more than one bcnd

on a single inner edge, because each inner edge is connected with at-most one end vertex

of a dummy edge. We are now going to show that for this case the contraction operation

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 50

cannot produce more than one bend on the outer edges also.

Suppose for contradiction let us assume that contraction operation produced two bends

on the outer edge ebk. This outer edge ebk interconnects two outer vertices of degree four

and those vertices are b(k-l) and bk. Since the contraction of a dummy edge can produce

at-most one bend on an incident edge, two bends of ebk are produced by the contraction

of the corresponding dummy edges of b(k-l) and bk. It means during the contraction

of dummy edge for bk, eb(k+l) is kept safe and a bend appears on ebk. This contradicts

the technique we follow for contraction. Moreover, the outer edge ebl is kept safe after

contraction. Therefore, if we replace the dummy vertex of degree two on ebl with bend,

then the drawing will remain one bend drawing.

Case 2: Dummy edges of D are created from the good strings of G.

Let 91, 92, ... , 9n be the vertices of a good string 5g in G as shown in Figure 3.14(a),

where n be the number of vertices of degree four in 5g and 1 :'0 n. In the graph G'

the string 59 is transformed as shown in Figure 3.14(b), where the dummy edges are

represented by the dotted lines. In D the part of the outer cycle of G' in between two

successivedummy vertices of degree two is a straight path as illustrated in Figure 3.14(c).

Moreover, the dummy edges become the outer edges. The inner edges which are incident

on the end vertices of the dummy edges become perpendicular to this straight path.

The shape of the dummy edges and the other incident edges are same as case 1. For

this case we contract the corresponding dummy edge for 9k such that the inner edge egko

remains safe and bend appears on the inner edge egke. If we keep egko safe, then the outer

edge which share a common face with egko and which is incident to a common vertex with

egko remains safe. Therefore, bend appears on the other outer edge which is incident to

an end vertex of the dummy edge for 9k. Bend appears on every bad edge for this case

also, whereas the good edges remain safe. Figure 3.14(d) illustrates the drawing obtained

after contracting the dummy edges in Figure 3.14(c). Similar to case 1 it can be easily

shown that the contraction of the dummy edges cannot produce more than one bend on

CHAPTER 3. I-BEND ORTHOGONAL DRAWING 51

(a)

(c)

g2
---~

(d)

Figure 3.14: Effect of dummy edge contraction for Case 2.

a single edge for this case also.

Case 3: Dummy edges of D are created from the tree components of G.

In this case the vertices of a tree component are always inner vertices. Therefore,

the dummy edges, which are created from the vertices of tree components, and the other

edges, which are incident to the end vertices of those dummy edges, are always the inner

edges. In the orthogonal drawing D these inner dummy edges can take anyone of the

nine shapes in Figure 3.11 or their rotated forms. According to the third observation of

contraction we can say that after contraction of a dummy edge at most one edge, which

is incident to an end vertex of that dummy edge, can always be kept safe.

Since G contains only valid 4-components, a tree component H of G can have at most

one bad edge incident to a vertex of H. Figures 3.6(b) and 3.6(c) illustrate two tree

components in which the first one has a bad edge which is labeled by etO. We start our

contraction from the corresponding dummy edge of the vertex t1• If t1 has any bad edge

incident to it, then after contraction we keep that bad edge safe and bend appears on the

other three incident edges. If t1 has no bad edge incident to it, then we keep any of the

four incident edges safe and create bend on the other three incident edges. Next after

the contraction of the corresponding dummy edge of tk, k > 1, we keep the incident edge

CHAPTER 3. i-BEND ORTHOGONAL DRAWING 52

et(k-l)-k safe and create bend on the other three incident edges.

We now show that, for this case the contraction operation cannot produce more than

one bend on a single edge. Suppose for contradiction that an edge e'k-(k+l) in between

two vertices tk and t(k+l) of a tree component contains two bends on it. It is observed that

one contraction operation can produce one bend on an edge. Therefore, one of the two

bends on etk-(k+l) is produced due to the contraction of the corresponding dummy edges

of t(k+l). According to our algorithm, after the contraction of the corresponding dummy

edge of t(k+l) the edge e'k-(k+l) is kept safe. Therefore, e'k-(k+l) cannot contain more than

one bend on it. Moreover, the bad edge is also kept safe during the contraction so that

the edge also cannot contain more than one bend. The rest of the edges are either good

edges or they are connected with the vertices of degree three. Therefore, the contraction

operation cannot produce more than one bend on a single edge i.e. after contraction the

drawing will remain one bend drawing.

Case 4: Dummy edges of D are created from the non-tree components of G.

In this case both the dummy edges and the other incident edges are the inner edges.

In the orthogonal drawing D the inner dummy edges can take anyone of the nine shapes

in Figure 3.11 or their rotated forms. Therefore, after the contraction of each dummy

edge at most one edge, which is incident to an end vertex of that dummy edge, can always

be kept safe.

Since G contains only valid 4-components, a non-tree component of G can have at

most one cycle in it and can have no bad edge incident to a vertex of it. Figure 3.6(d)

illustrates a non-tree component. We start our contraction from the dummy edge created

from the vertex nl. According to the labeling technique, nl is a vertex on the cycle of that

4-component and an edge enO of that cycle is incident to nl. During the contraction of

the dummy edge for nl we keep enO safe and bend can appear on the other three incident

edges. We next contract the dummy edge which is created from nk, k > 1. During the

contraction we keep the incident edge en(k-l)-k safe and create bend on the other three

CHAPTER 3. I-BEND ORTHOGONAL DRAWING

incident edges.

53

We now show that, for this case the contraction operation cannot produce more than

one bend on a single edge. If we break the cycle of the non-tree component in Figure

3.6(d) at the edge enO as shown in Figure 3.15, then the non-tree component becomes a tree

component., The contraction technique is the same as the technique for tree component,

where the contraction is started by keeping enO safe. Since the contraction technique for

tree component doesn't produce more than one bend on a single edge, this technique will

also do the same. Therefore, after contraction the drawing will remain one bend drawing.

enS
enS enS enS

nS
en4-

n4
en3-

n3

Figure 3.15: The cycle of the non-tree component in Figure 3.6(d) is broken at the edge

o

We call the algorithm for the contraction of the dummy edges of the zero bend or-

thogonal drawing D, which is described in the proof of Lemma 3.2.7, as Dummy-Edge-

Contract. After contracting the dummy edges of D, using this algorithm, we get an

orthogonal drawing D' as illustrated in Figure 3.5(h).

In the next section we give a proof for sufficiency of Theorem 3.2.1.

CHAPTER 3. I-BEND ORTHOGONAL DRAWING

3.2.7 Proof for Sufficiency of Theorem 3.2.1

54

We transform the given triconnected planar 4-graph G into a triconnected cubic plane

graph G. such that G4 satisfies the necessary and sufficient condition for a graph to

have a rectangular drawing. We can find G4 by contracting the maximal bad cycles

of a graph G3 such that G3 is obtained from G by the vertex-insertion and the edge-

insertion operations. Lemma 2.2.1 implies that G4 has a rectangular drawing. We can

find a corresponding rectangular drawing R of G4 by using the algorithm Rectangular-

Draw. According to Lemmas 3.2.4 and 3.2.6, every contracted maximal bad cycle of

G3 has a feasible orthogonal drawing. We can find the feasible orthogonal drawings of

the contracted maximal bad cycles by the algorithm Modified-Feasible-Draw. By

patching these feasible orthogonal drawings into R we can get a no bend orthogonal

drawing D. We can contract the dummy edges of D using the algorithm Dummy-Edge-

Contract. According to Lemma 3.2.7 the resulting drawing D' is a I-bend orthogonal

drawing. We now replace each of all the dummy vertices of degree two of D' with a

bend. The dummy vertices are placed either on the safe-edges or on the desired-edges.

The algorithm Dummy-Edge-Contract produce bend neither on the safe-edges nor on

the desired-edges. Therefore, the resulting drawing is a I-bend orthogonal drawing of the

given triconnected planar 4-graph G. 0

In the next section we formally describe our algorithm.

3.3 The Algorithm

We are now ready to present our algorithm for finding one bend orthogonal drawings of

the graphs which satisfy the sufficient condition of Theorem 3.2.1. As a pre-processing we

find a planar embedding of the given graph by a simple linear-time algorithm (e.g. the

algorithm of Shih and Hsu [SH99])and let G be the resulting graph. The algorithm is as

follows.

CHAPTER 3, I-BEND ORTHOGONAL DRAWING

Algorithm 1-Bend-Ortho-Draw(G)

55

begin

1 find the desired (X-faceand convert that face to the outer face;

2 let G, be the resulting graph;

3 add four dummy vertices of degree two on four safe-edges of Co(G,);

4 let G2 be the resulting graph;

5 replace each of all the vertices of degree four of G2 with a dummy edge;

6 let G3 be the resulting graph in which C" C2, "" C1 be the maximal bad

cycles;

7 for each i, 1 ::; i ::; I, construct genealogical trees To, and determine the desired-

paths for every cycle in To,;

8 for each i, 1 ::; i ::; I, find an orthogonal drawing D(G(C;)) of G(Ci) feasible for

any desired-path of Ci by Modified-Feasible-Draw;

9 let G4 be a plane graph obtained from G3 by contracting each G(Ci), 1 ::; i ::;l,

to a single vertex v;;

10 find a rectangular drawing D(G4) of G4 by Rectangular-Draw;

11 patch the drawings D(G(C,)), D(G(C2)), "" D(G(C1)) into D(G4) to get a

zero bend orthogonal drawing D;

12 contract all the dummy edges of D by Dummy-Edge-Contract to get a 1-

bend orthogonal drawing D';

13 replace each of all the dummy vertices with a bend to get a 1-bend orthogonal

drawing of G;

end.

We now have the following theorem regarding the time complexity of the algorithm

1-Bend-Ortho-Draw,

Theorem 3.3.1 Let G be a triconnected planar 4-graph and G contains at least one (X-

CHAPTER 3. l-BEND ORTHOGONAL DRAW1NG 56

face F such that the planar embedding of G having F as the outer face contains only valid

4-components and contains no critical-cycle. Then the algorithm I-Bend-Ortho-Draw

finds a j-bend orthogonal drawing of G in linear time.

Proof. The input of this algorithm is a planar embedding of G which is obtained from

G by using a linear time algorithm of Shih and Hsu [SH99].

We can find the desired a-face F of G by traversing the contours of the faces of G and

this can be done in linear time. After finding F, we can change the embedding of G such

that F becomes the outer face of the new embedding. This new embedding of G can be

found in linear time [NR04].

If we traverse the outer cycle of G[once, then we can find the four safe-edges of

Co(G[). After finding the safe-edges the vertex-insertion operation takes constant time.

We can find all the vertices of degree four of G2 by checking all the vertices of G2

once. Therefore, the edge-insertion operation takes linear time.

According to the Lemma 3 of [RNN99] the genealogical tree Tc; of a maximal bad

cycle Ci of Gs can be found in linear time. Using Tc;,we can determine the desired-paths

for all the descendant cycles in Tc; in linear time.

The algorithm Feasible-Draw finds an orthogonal drawing D(G(Ci)) of G(Ci) feasi-

ble for any green path of Ci whereas the algorithm Modified-Feasible-Draw finds an

orthogonal drawing D(G(Ci)) of G(Ci) feasible for any desired-path of Ci. According to

the Lemma 2.2.3 the algorithm Feasible-Draw finds D(G(Ci)) in linear time. There-

fore, the algorithm Modified-Feasible-Draw can find an orthogonal drawing D(G(Ci))

of G(Ci) feasible for any desired-path of Ci in linear time.

It is also shown in Lemma 13 of [RNN99]that contracting all the maximal bad cycles

of Gs and patching all the feasible orthogonal drawings in D both takes linear time.

For finding the rectangular drawing D(G4) of G4 we use the linear time algorithm

Rectangular-Draw of [RNN98].

If the labels of the four edges, which are incident to the end vertices of a dummy edge

CHAPTER 3. l-BEND ORTHOGONAL DRAW1NG 57

e, are given, then the dummy edge e can be contracted in constant time. Therefore, the

algorithm Dummy-Edge-Contract takes linear time to contract all the dummy edges

of D.

Finally, we can replace each of all the dummy vertices with a bend in linear time

and thus get a l-bend orthogonal drawing of G. The above discussion implies that the

algorithm I-Bend-Ortho-Draw finds a l-bend orthogonal drawing of G in linear time.

o

Chapter 4

Conclusion

In this thesis we have studied the orthogonal drawing generating problem for the tricon-

nected planar 4-graphs. The results of this thesis are summarized as follows:

• We have derived a sufficient condition for the triconnected planar 4-graphs to have

1-bend orthogonal drawings.

• We have given a constructive proof for the sufficient condition and from that con-

structive proof we have developed a linear-time algorithm for finding the I-bend

orthogonal drawings of those triconnected planar 4-graphs which satisfy the suffi-

cient condition.

Some interesting directions in which the future research works can be done are as

follows.

• A necessary and sufficient condition can be derived for the triconnected planar

4-graphs to have I-bend orthogonal drawings. It can be easily shown that a tricon-

nected planar 4-graph must contain an a-face to have a I-bend orthogonal drawing.

If the arrangements of the dummy edges in 'the rectangular drawing can be predicted,

then the necessity of having valid 4-components and not having critical-cycles can

be proved.

58

CHAPTER4 CONCLUillON 59

• Not every planar 4-graph has I-bend orthogonal drawing. Therefore, it is interesting

to find the classes of planar 4-graphs that have I-bend orthogonal drawings. Con-

dition can also be derived for every planar 4-graphs for having I-bend orthogonal

drawings.

Bibliography

[BK98] Biedl, T. C. and Kant, G., A better heuristic for or.thogonal graph drawings,

Computational Geometry Theo. App!., Vol-9, pp 159-180, 1998.

[CNA085] Chiba, N., Nishizeki, T., Abe, S. and Ozawa, T., A linear algorithm for em-

bedding planar graphs using PQ-trees, J. Comput. Syst. Sci., Vol-30, pp 54-76, 1985.

[GTOl] Garg, A. and Tamassia, R., On the computational complexity of upward and rec-

tilinear planarity testing, SIAM J. Comput., Vol-31(2), pp 601-625, 2001.

[Kan96] Kant, G., Drawing planar graphs using the canonical ordering, Algorithmica,

Vol-16, pp 4-32, 1996.

[KH97] Kant, G. and He, X., Regular edge labeling of 4-connected plane graphs and its

applications in graph drawing problems, Theoretical Computer Science, Vol-l72, pp

175-193, 1997.

[LMS98] Liu, Y, Morgana, A. and Simeone, B., A linear algorithm for 2-bend embeddings

of planar graphs in the two-dimensional grid, Discrete Applied Mathematics, Vol-81,

pp 69-91, 1998.

[MM96] Mehlhorn, K. and Mutzel, P., On the embedding phase of the Hopcroft and Tarjan

planarity testing algorithm, Algorithmica, Vol-16, pp 233-242, 1996.

[NR04] Nishizeki, T. and Rahman, M. S., Planar Graph Drawing, World Scientific, Sin-

gapore, 2004.

60

BIBLIOGRAPHY 61

" [RN02] Rahman, M. S. and Nishizeki, T., Bend-minimum orthogonal drawings of plane

3-graphs, ProC. of WG '02, Lect. Notes in Computer Science, Springer, Vol-2573, pp

367-378, 2002.

[RNN03] Rahman, M. S., Nishizeki, T. and Naznin, M., Orthogonal drawings of plane

graphs without bends, Journal of Graph Algorithms and Applications, Vol-7, No.4,

pp 335-362, 2003.

[RNN98] Rahman, M. S., Nakano, S. and Nishizeki, T., Rectangular grid drawings of

plane graphs, Compo Geom. Theo. App!., Vol-10(3), pp 203-220, 1998.

[RNN99] Rahman, M. S., Nakano, S. and Nishizeki, T., A linear algorithm for bend-

optimal orthogonal drawings of triconnected cubic plane graphs, Journal of Graph

Alg. and App!., http://jgaa.info, Vol-3(4), pp 31-62,1999.

[SH99] Shih, W. K. and Hsu, W. L., A new planarity test, Theoretical Computer Science,

Vol-223, pp 179-191, 1999.

[Shc95] Sherwani, N., Algorithms for VLSI Physical Design Automation, Kluwer Aca-

demic Publishers, Boston, 1995.

[Tho84] Thomassen, C., Plane representations of graphs, Progress in Graph Theory, Aca-

demic Press Canada, Ontario, pp 43-69, 1984.

[TNU06] Tayu, S., Nomura, K. and Ueno, S., On the Two-Dimensional Orthogonal Draw-

ing of Series-Parallel Graphs (Extended Abstract), ISCAS, pp 1796-1799, 2006.

http://jgaa.info,

Index

a-face, 25

he-connected, 15

he-graph, 14

4-component, 28

valid, 29

adj acent incident edge, 47

ancestor cycle, 24

bad cycle, 20

bad edges, 28

bend, 4

child-cycle, 24

connected, 15

connectivity, 15

contour path, 21

critical-cycle, 26

cycle, 15

descendant cycle, 24

desired a-face, 30

desired-edge, 39

desired-path, 41

disconnected, 15

62

drawing, 1

grid drawing, 5

orthogonal drawing, 3, 4

rectangular drawing, 4, 19

straight line drawing, 3

edge-insertion, 36

feasible orthogonal drawing, 22, 23

genealogical tree, 24

good edges, 28

graph, 1, 13

green path, 21

independent, 18

inner contour path, 41

inner edge, 17

inner vertex, 17

internal node, 16

k-legged cycle, 17

leaf, 16

leg, 17

leg-vertex, 17

'.ii,
~.

INDEX

loop, 13, 15

maximal bad cycle, 20

multiple edges, 13

node, 16

non-tree component, 29

opposite incident edge, 47

outer boundary, 17

outer cycle, 17

outer edge, 17

outer face, 17

outer vertex, 17

pfltching operation, 45

path, 15

drawing, 2

graph, 2, 16

plane graph, 17

red path, 21

root, 16

rooted tree, 16

safe-edge, 26 .

simple graph, 13

string, 27

bad, 27

good, 27

subgraph, 14

tree, 16

tree component, 29

triconnected, 16

vertex-insertion, 33

walk, 15

63

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072

