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Abstract

Computers work on binary principlc. The number system. basic operators, logic circuits are all binary.

In the thesis a new basic principlc of computing systems has becn investigated. The architecture of the

Cllmputer's computing part is such that it can do operations taking two operands at a time. The

algorithms that use binary divide and conquer approach use the facility of this binary architecture fully.

Sul1icient improvement has becn attained applying hinary dividc and conquer approach in traditional

algorithms. Binary search and quick-sort arc the examplcs of such algorithms. k-nary search algorithm

and quick-sort with k-partitions usc diviLIc and ConqULT approach dividing the problem into k

partitions. The extensively used part of computcr by thcse algorithms is comparator. It seems to be

more efficient for these algorithms to use <1 comparator which can compare one element with more

than two elements. Three comparator circuits have bcen proposcd here that work in multi-valued

Llshion. The performance analysis of binary search and quick-sort algorithms has been presented for

thaI comparator architecture. The analysis shows that the performance of quick-sort algorithm has

improved from O(nlog2 n) to O(l1logk 11)with the introduction of new architectures. To achieve this

improved performance on required numbcr of comparisons we have to make some additional data

transfer operations. The estimated time requirements itJr compare instruction by proposed comparators

have been calculated in terms of unit time. The tolal cost of k-nary search algorithm and quick-sort

algorithm with k partitions has been calculated in terms of time requirement. This cost has been

minimized and optimal value's of kit)r different architectures have also been detcrmined. It has been

found lhat whatever hardware have been used k-nary search algorithm shows inferior performance

compared to binary search algorithm. Hut substantial improvement with respect to time rcquirements

have been found for quick-sort algorithm with k-partitions using different proposed hardware for

multi-valued comparator.
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Chapter I

Introduction

This chapter is the review of the thesis. In the lirst section some literatures have bccn

In the subsequent sections the objecti,,:,e and scope or thi:?research have been described in a nutshell. The methods of the

research and the techniques to be applied ill our research have also hccn mcntioned ill the scction just before last section.

J. I Literature Review

Thc primitive computers were all analog computers. Thcse computers were able to give multi level

outputs. Not only computers in old age but also thc electronic devices of current age are divided into

two types - analog devices and digital devices. Analog computers arc obsolete now. The main reason

of this is the complexity of analog circuitry. It is very dinicult to design analog circuits and the

cOlllplexity of stable analog devices is very high. Thc invcntion of transistors and bistable electronic

circuits has facilitated scientists to design binary computers and electronic circuits. Thcre is no doubt

that Binary circuits are very casy and very stable ltl!' designing very sophisticated and challenging

Illachines like computers. Thc architecturcs and conccpts of operators in the instructions are also based

on the binary concepts. The reputation of binary systeills has inspircd the scientists to explore

algorithms using binary logic rather than Illulti-valued logic. In different algorithms for problem

solving binary concept as a problem solving strategy has been used successfully. For exaillple Binary

Search. Quick-sort and Heap-sort are some of the examples. Using binary concept in Divide and

Conquer Approach problems can be solved more enJeiently than by any trivial approach. But some of

the papers published in journals show that if we proeced one step ahead and use the less traditional

concept i.e., k-nary concept (k = 3.4 ) then very good results can be achieved. For example

SCI-IAFFER [12] shows the improvement of Heap-sort algorithm using ternary trees. Similarly

CiOl3EL [3] shows the advantages of ternary trees and KA YKOBAD [7J shows the superiority of 3

over 2 as algorithmic parameter. Actually this is a current trend to usc 3 rather than 2 as parameter in

problem solving. In computer hardware the ternary systems lor memory and error detection code have

been proved more ellicient but it is yct not possiblc to implemcnt bccause such stable hardwarc is not

available. PINTER [II] shows how ternary trces arc used in VLSI arrays and MEGIDDO [10] shows

inkrinrity of binary encoding for problem language relationship. Enthusiasm of multi-valued

architecture could notllourish due to non availability of suitable electronic devices. So very few papers

have bcen found related to this topic. Lack of sllit'lblc Illulti-valued architecture and device is a hurdle



to apply k-nary algorithms with full el1iciency. So it may he worthwhile to design multi-valued

architecture using binary logic systems which can improvc thc perlonnance substantially. That is, a

pseudo multi-valued system can serve the purpose to some extent. It may seem going back to the old

age of analog computers but this research demonstrates the very stable multi-valued system which may

be proved efficient at the samc time.

1.2 Significance of the Topic

The topic of the thesis is "Multi-valued Logie System in Computer Architecture". As mentioned in the

.previous section the logic system of the computer is 2-valued or binary. There are only two states in

clectronic circuits. One state is OV and the other is 5V. The modern computers are based on these two

states of electrical voltage. We can say that the architecture of computer uses this"binary eoncept.

Current instruetion sets i.e .. addition. multiplication. subtraction. eomparison are all binary. So the

architectures to support these operations are also binary. The title signifies the idea of replacing binary

system with multi-valued ones. This is a concept of a new architecture which ean support multi-valued

addition. subtraction and comparison. Thus a \vide range of research scope in computer architecture

will be discussed in the topie.

1.3 Scope and objective of the Thesis

The scope of the thesis is to study multi-valued architeetures in computer system. As the computer is a

problem solving machine it also ineludes study of multi.valued algorithmic parameter for problem

solving method. Proposing a new architecture of computer systems or one of the portion of the

computing unit of computer as well as reviewing existing research are the main theme of the thesis.

The objeetive of the thesis together with its scope is described below with mentioning its scope.

Sf/Il/V o{sofar invented architectures and algorithms: At lirst some of the architectures and algorithms

l"ing binary logic will be discussed. There are different algorithms using multi-valued logie system.

The performance of these architectures and algorithms will be observed. The performance of the binary

algorithms and architectures must be discussed lelr comparison and justification of the validity of

multi-valued architecture.
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Proposed Architecture: Three architectures will bc mcntioncd with dctailed block diagrams for multi-

valued architecture. These architectures may usc thc binary logic circuit but the concept of the

architectures are multi-valued. The relativc timc rcquircment of multi-valued operation will be

evaluated analytically with some assumption to comparc it with binary one.

Proposed Change in Algorithms: Some algorithms will be proposed by modifying the algorithms

which use binary concept to use the extra bcnefit of multi-valued architecture. The detailed analysis

will be made to detcrmine thc cost of the algorithms using ncw architcctures. Thc cost of the different

ncw algorithms will bc compared with the cost of currently uscd algorithms.

EYjJerimental Results: As our computers use binary architectures it is not possible to determine the

actual time requiremcnt of the algorithms. So it can be determined by simulating the architecture in

programs or uSll1g some empirical data and equations I'Hl11dli'om experiments or on the basis of

proposed architectures.

1.4 Methodology used ill the Research

The main research carried out in the thcsis is to dcsign a multi-valued architecture for comparator

circuit. To design the architecture thc idea of simplicity has been employed. To design such an

architecture is not less complex than designing any processors. So special care has been taken to

design the proposed architecture. 'riming of the circuit has been carefully maintaincd. Actually these

arc sequential circuits. Pipelining idca for processor design and parallel processing concept have also

been applied in designing the proposed architecture.

To determine the time requirement of a particular architccturc thc processing Ilow of any processing

unit has been examined carefully. Then the averagc time requircment of the architecture has been

calculated by summing up all the time componcnts of the processing Ilow. This is determined in terms

of a particular unit time, which may be a clock tick timc or data transfer time from one location to

anuther location of the memory.

Designing algorithms using multi-valued arehitccture is not vcry difficult. For a particular suitable

average case the cost of the algorithms will be detcrmined in terms of data transfcrs. comparisons and

index comparisons. The total cost will be determined in terms of time. The time requirement has been

3
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expressed using algebraic expressions. This expression can be easily minimized for a particular value

of k. the degree of multi-valued architecture. To lind out the optimal k numerical methods of finding

roots of equation have been applied.

I.S Organization of the Thesis

This thesis has been organized into the following chapters.

In Chapter 2 preliminary concepts on multi-valued architecture have been discussed. Multi-valued

number system. memory storage requirement for multi-valued number systcm. concepts of multi-

valued Logic gates and some important logic circuits have bcen discussed for this purpose. The

concept of multi-valued ALU organization has also been discussed.

In Chapter 3 the biilary concept introduced in the algorithm has been discussed. Divide and conquer

approach and its complexity have been presented. The algorithms like binary search and quick sort

which uses this concept have been discussed with their eomplcxity analysis.

In Chapter 4 some multi-valued comparator circuits have been proposed. The proposed comparators

arc comparators using bit comparison. parallcl comparators and 'pipclining comparators. These have

been discussed mentioning their architectures and processing Ilow. The time requirements of these

architectures for a comparison instruction have been roughly estimated in this chapter.

k-nary search algorithm, its complexity analysis lor diff'crent architectures have been discussed JI1

chapter 5. The optimal values of k for different architectures have been calculated in this chapter.

Chapter 6 is the most important chapter of thesis. An algorithm lor quick-sort with k-partitions has

been presented and the complexity analysis of the algorithm for difTerent architectures has been

presented. The optimal values of kiaI' diff'crent size of problcm space have been determined in this

chapter. This chapter contains the achievements we have I(HlI1din our research.

In chapter 7 some experimental results on quick-sort and binary search have been presented. The

mclhod of carrying out the experimcnt has also been described. Chapter 8 contains some suggestions

1,)1' further improvement, further research plan and shortcomings of our research.

4



Chapter 2

Preliminaries

In this chapter some preliminary ideas have been presented. The idea of ternary number system has been presented after

introducing binary number system and other popular number system. The optimality criteria of k-nary number system has

also been presented here. Important binary logic circuits and gales have also been described because of using it in the next

chapters for designing of circuits. Concept or multi-valued archilccllllT has been introduced here. A vcry preliminary block

diagram of pseudo multi-valued ALU has been presented here.

2.1 Binary Number System

Binary number system is a number system which uses only two digits to express any number. The

digits used here are only 0 and I. For example. a number 47 C'1Il be represented hy tbe 1()lIowing string

of Os and Is.

101III

The least significant bit or rightmost bit has the value I. The next rightmost bit has the value twice of

its adjacent right bit. In a generalized format if 11 bit binary numhers are denoted by the following

expression then the value of the number can be expressed by the following equation.

hu_,bn_? •••••••••••••••••••••••• bJhO

II-I

N=I2'b,
i,,(J

The main reason of using binary number system is the availability of binary stable circuits. Generally

thc.two numbers can be represented by two separate electrical voltages OV and 5V. These two voltages

arc clearly defined and easily deteetahle by thc logic circuits. The basic component of digital circuit is

transistor. Transistor has the bistable property. If OV and 5V are applied in the input terminal of a

transistor then it operates in two easily separable regions. This is the inevitable reason for using binary

number system.

2.2 Other Popular Number Systems

Binary codes are not easily understandable by human being. Every bits of the binary number does not

carry sufficient information to remind it !(1ra long time. So number system with radix more than two is

very popular in understanding computer cocles and instructions. These are Octal and Hexadecimal

5



number systems. Octal numbers use digits from 0 to 7 and Hex numbers use digits from 0 to F. These

two number systems have 8 and 16 digits respectively. They are nothing but application of binary

number system in the sense that each of thc X octal digits can be fully represented by 3 binary digits

and each of the 16 Hex digits c~n be fully represented by 4 binary digits. Octal and Hex numbers are

mainly used in expressing constants while writing programs.

Decimal numbers are the numbers. which is easily conceivable by humans. So this is very popular. It is

very easy to add, subtract, multiply and divide. Floating point operations are very easily handled by

using this type of numbers. So these numbers are used as a basis or intermediate format to transfer

numbers from one number system to another.

2.3 Ii-llary Number System

k-nary nlllnber system is the number system where the radix is k and the possible digits of the number

mav be li'om 0 to (k-l). Theoretically k may be any number. A number in k-nary number system is

deli ned by the following expression.

II-I

N = (h".,b"., b,h,,)= L: k'b,
;=,(1

where b, = 0, 1, 2, , (k - I).

This is the generalized formula for multi-valued number system. This type of number system is not

LlIl1iliar. For example, if the value of k=3 then the system will be called as ternary number system.

Ternary number system has some special property but this is not yet possible to implement because of

non availability of suitable electronic circuits. So I,ll' no tristate stable device has been invented which

maV be suitable for ternary system. So we call theoretically develop systems using ternary logic but

IXlsically these arc binary syst"ms.

2.4 Memory Storage for Ii-llary Multi-valued Nil/libel' System

Consider a memory organization which stores N numbers. The numbers to be saved will be in the

rangc from 0 to M-l. In a k.nary number system to represent one number it requires log,M digits. If the

space required or complexity for one k-nary bit is ('(k) then the total spaee required or complexity for

N numbers ean be shown by the following expression

S(k) = N log, MC(k)

considering C(k) = kT where T is a eonstant we get S(k) = NkT log, M
log, k

6



Differentiating both the sides for optimal value of k we get the following relation

dS = ~(NkT log" M)
dk dk log" k

= NT log M ~( k )
" dk 10 kg"

= NT 10 M log" k - 1
g" (I k)'og"

Now for the optimal value of k we get

dS = 0
dk

log" k - I
=> NT log" M ( )' = 0

log, k

=> log, k - 1= 0

=>k=e

So we can say that for k = 2,71 we hope to get an optimal number system, Putting k = 2 and k = 3 in

the expression of S indicates that 3 is superior. Now we are going to find out the maximum space

requirement for a ternary bit to get belleI' performance than binary number system, From the equation

ofS(k) we get the following equations,

S(2) = log, M C(2) S(3) = log] M C(3)

S(3) = log] M C(3) = log 2 C(3)
S(2) log, M C(2) 3 C(2)

Now for S(3) < S(2) we get

100, 2 C (3) < I
D, C(2)

=> C(3) < log, 3 C(2)
If the ternary device that may be invented ilJllows the above mentioned inequality in VLSI design

layout of RAM chip it will save our total space,

2,5 Biliary Logic Gates

Thc basic binary gate used in digital electronics is NAND gate, The other necessary gates are AND,

OR and NOT gates, NAND. AND and OR gates are all multiple (two or more) input gates with only

one output. NOT gate or inverter has only one input and the output is just the inverted signal of input.

7



Following diagrams and tables show the block diagram of 2 input single output gates and single input

single output gate with corresponding truth table. NAND gate is ealled the basic gate because all other

gales can be easily formcd hom thc NAND gate.

A

B
c A B

Figure I Block diagram of 2 input basic logic gates.

Table I Truth table for NAND gate.

A B C
0 0 I
0 I 1
I 0 1
1 I 0

Table 2 Truth table for AND gate.

A B C
0 0 0
0 I 0
I 0 0
I 1 1

Table 3 Truth tahle for OR gate.

A B C
0 0 0
0 1 1
1 () I
I I I

Table 4 Truth tahle for NOT gate.

A
o
I

8



2.6 Concept of Multi-valued Logic Gates

The truth table of ditlerent logic gatcs will he changed with thc introduction to multi-valued logic. In

ternary logic the following truth table has been proposed 1(11" error detecting codes. The digits of the

binary system has been changed to -1. 0 and 1.

Table 5 Truth table for ternary NOT gate.

A 13

-1(OV) I

O(2.5V) 0

1(5V) -1

The concept of AND, OR and NAND may be samc as binary logic bccause this ternary operations can

be casily derived from two consecutivc binary operations. 13ut the circuit must be modified with the

e~pected change in ternary basic logic circuit or with thc invention of ternary device in near future.

Obviously the time requirement in ternary operations will be more demanding. But this extra time

requirement will be compensated by the amount or computation done by ternary gates and will be

contributory to the performance of ternary systems.

2.7 Important Binary Digital Logic Circllit.\'

T'here are different logic circuits made by primitive logic gates. These circuits are very important in

computer and processor design and specially in designing any scquential circuit. Such circuits are

described below with block diagram.

Adder/Subtractor: Adder and subtractor arc implemented using the same circuit. The block diagram

or adder is shown below. A 13

S

Cin

Figure 2 Block diagram of Traditional Adder/Subtractor

9
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In the block diagram A and B are inputs with 11 hits. S is the output with 11 bits. Cin is the carry input

and Cout carry output. While subtracting 13li'om A (hc input 13will be changed to inverted B. This will

. serve the purpose with little modification'. This adder circuit is used as a comparator. When A is

compared with 13then subtraction is done at lirst then depending on the positive or negative result

corresponding flag is set and the result of comparison is found in the tlag register.

Registers: This is actually an array or J) Ilip-Ilops. D Ilip-Ilop is nothing but an Electronic delay

circuit. It has one input and one output. Some Ilip-Ilops supply inverted output also. The input reaches

the output line until and unless a positive clock pulse is applied in the clock input of the D flip-flop.

Some D flip-flops are leveled triggered. It means logical one input in the Enable pin allows the input to

propagate to output. Register is an array or J) Ilip-Ilops where the Clock inputs are tied together. The

block diagram or the register is shown below.

Cl
, ,

k
.

Figure 3 Block diagram of registers.

Counters: This is logically an array of T nip-nops which increments its value with each positive clock

edge. Actually it has input lines luI' loading the initial value or the counter as many as output lines. The

block diagram of counters are same as that of registers. Shill registers has the same principle of

operation and the internal elements or the shill register are D nip-flops. It shirts the bits one position at

a time in a particular direction specified by somc input pins in thc shirt register. Counters are used in

program counter and clock managemcnt and step detection eircuits in the computer.

Decuder: This circuit decodes the binary numbers. This is formed by basic gates. The main purpose of

the decoder circuit is shown in the next block diagram. There arc 11 inputs in the circuit and 2" outputs.

10



When a input is given .only one pin at the output is activated which corresponds to the input number in

the serial. It is used for coding purpose. This circuit is extensively used tor decoding instructions.

~

10
~

~

~

In-I

~

Oil

Figure 4 Block diagram of decoder.

2.S Binary Architecture of ALU

AUJ (Arithmetic Logic Unit) is one .of thc mast important part of microprocessor. This section is

rcsponsi ble for computing operations of program i.G.. addition. subtraction. shifting. multiplication.

comparison. division etc. So speed of the computer mostly dcpcnds an the principles of computing ckt

in ALU. Currently used conventional ALLJ are all capable of pcrfarming binary and unary operations.

For example. it can add twa numbers at a timc. So this architecture is called binary architecture. This

architecture is very simple in structurc. The most important part of this ALU is a cambinatianal circuit.

This circuit perfarms different actians on different selling parameters in control inputs.

Control

Signals

A

z

13

Figure 5 Block Diagram of binary ALU
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-A..•.. _~:"



The computing operations of ALU is done in one clock cycle and at the same time it saves the flag

registers depending on the result found.

2.9 Multi-valued Architecture of ALU

The ALU which can process more than two opcrands at a time can be called multi-valued ALD. Then

thc architecture of the ALU will be changed a lo\. Therc should be more input lines or more built in

rcgisters in ALU for data storing. This type of architccture must be capable of adding three or more

operands at a time. The multiplier circuit may takc the advantage of such an adder. The comparator

circuit will compare one data with more than onc data. This type of architecture will obviously be a

very good one for programmers point of view. Shorter programs will be suJlicient to do same task as

the current binary architectures do in less time. To Illrnish the ALU with this feature the architecture of

ALU must be changed. The ALU will be voluminous if wc want to do the same work by a

combinational circuit. Sequential circuit is an altcrnativc to this combinational circuit. But it requires

additional circuitry for time managemcnt. In sequential circuit ALU will work as a pseudo multi-

valued processor. In every step it will perform a binary operation and such several steps will be

required to perform like multi-valued system.

For multi-valued architecture of ALU the operations will be more complex. The Multi-valued addition

and comparison are different. So by thc same circuit this is impossible to perform simultaneously.

Dillcrent modules will be designed for the different multi-valued operators. Thus a multi-valued

architecturc of ALU can be shown by the following block diagram.

An-1

Adder

Logical Circuits.

An

Comparator

Figure 6 Conceptual block diagram of multi-valued ALU
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Chapter 3

Algorithms using binary Concept

This chapter describes the preview of the algorithms that Lise billary concept. Divide and Conquer approach has been

described with complexity analysis. The complexity analysis of binary search and quick-sort algorithm are also done here.

This chapter also discusses the need for a Ilew type or comparator that may be very efficient to improve the quality of

binary search and quick-sort algorithm.

3./ Divide and Conquer Approacll oj Problem Soh'illt:

This is actually a problem solving methodology in computer science. This approach itself an algorithm

which can be applied to simplify some algorithms. The main principle of this algorithm is defined by

the following steps.

Step I: To split the problem space into several smaller problcms.

Step 2: Solving the smaller problems separately.

Step 3: Merging the solution of smaller problems into the solution of the aetual problem.

In step 2 of the algorithm to solve the smaller problem spaces divide and conquer approach ean be

further applied. So divide and conquer approach will bc applicd in recursive manner. In general sense

Dividc and Conquer approach is consistent with multi-valued approach. The total problem space may

be divided into k parts. Traditional binary approach divides the problem space into two parts, i.e., k=2.

The recursive algorithm for divide and conquer approach of problem solving is shown below.

Procedure Divide_and_Conquer(P,low. high)

I' is the problem space and low and high arc the indexes of bottom and top of the problem space.

Begin

if low = high then return

Divide the problem spaee into k spaces I'". l'I l'k_1

for i+- 0 to k- I do

Divide_and _Conquer(Pj. lowj.high,)

end for

combine the small problem spaces I'". /'1 .I'k I to generate the solved problem space P

end procedure.

To analyse the Divide and Conquer algorithm the following parameters have been defined.

13



T( 1 )=Cost of solving a problem with only one clcmcn\. This is actually the terminal condition.

N = Total number of clements in thc prohicm.

M(k. n) = Cost of merging k sub problems with 11 clcmcnts cach.

Thc total cost can be expressed as follows.

T( N) = kT( ~) + M( k, ~ }

= k[kT(;' )+M( k.;' )]+ M(k. :)

I (N) 1_' ( N ) 1_' ( N) ( N)=k T k' +k M k,k' +k M k,k'-' + +M k'k

N = k'
So the cost function can bc simplified to as I(,"ows .

.- I - N '( N M(k I) !!.. 'I k k !!.. M(k k') !!"M(k k'-I)7 (1\ ) - 7 I) + . ,+, l~ ( , ) +, . + + I 'k k' k' k
= NT(I)+ NI--h,M(k,ki)

;=00 k '

= N[T(I)+ N~ ?M(k.ki
)]

So thc cost function is dependent on the size N of problem and the value of k. We can determine the

optimal values of k for differcnt algorithms. Actually it depcnds on the nature of the function M.

3.2 Algorithms usillg Divide allll COllqller Approach

Divide and Conquer approach has been applied successfully in different algorithms. By applying this

approach the performance of differcnt algorithms can be improved. substantially. Binary search

algorithm uscs this approach that can improvc thc pCrf()I'll1anCC from U(I1) to U(log,I1). Quick sort

applies the Divide and Conquer approach which improves the sorting cost from 0(n2) to O(nlog,n).

Bcsides these, Divide and Conqucr approach has becn applicd successfully in solving Systems of

I..incar Equations and the cost can bc rcduccd by a constant factor. Strassen' s matrix multiplication

scheme uses the Divide and Conquer approach which can solve the problem with O(n'ng/) cost rather

than U(n3) cos\. This approach can also be applied in closest pair problem by dividing the space into

two parts in every recursive call of the algorithm. Allthesc algorithms split the problem space into two

parts. i.c .. only binary approach has hccn applied in thesc algorithms. Recently somc researchers havc

14



found that ternary approach in Divide and Conquer arrroach is very much efficient in computational

performance. So it is a matter of fact that exploration of algorithms using ternary Divide and Conquer

approach may be prospective.

3.3 Binary Search Algorithms

Binary search is the searching algorithm that can find out an element from a sorted array by applying

the Divide and Conquer approach. The main advantagc of applying Dividc and Conquer approach in

searching is that the searching space becomcs smallcr logarithmically in cvery step and there is no

nccd for combining search space. The algorithm is listed below.

Procedure BinSearch(A, low, high, 1')

Begin

while (low < high) do

mid <---I (low + high)/2l

if A [mid] > 1'then

high <--- mid

else if A[mid] < l' then

low <--- mid

else return mid

end while

end procedure.

The main cost incurred here is the cost of comparison. The three comparisons in each iteration can be

implemented by one COMPARE instruction of microprocessor. So in each step we need only one

comparison. So the numbcr of comparisons required in the worst casc is log2n. where n is the total

number of elements in the array. To determine the averagc numbcr of comparisons the following

analysis can be donc.

There is I element that can be found by only I comparison.

There are 2 elements that can be found by only 2 comparisons.

Therc are 22 elements that can be found by only 3 comparisons.

15
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There are i-I elements that can be found by only I comparisons.

So average number of comparisons required lor Binary scareh algorithm

I xl+2x2+2' x3+ .2/-' xl= ------------
n

=Iog,n-l

3.4 Quick-sort Algorithm

Thc Divide and Conquer approach may be used to arrivc at an eflieient sorting method. This method

makcs two partitions of the array to be s'ortcd. One partition contains elements less than a particular

element of the array and the other partition contains elcmcnts larger or equal to that value. The Quick-

sort algorithm is listed as follows.

Proccdure Quick-sort(A, p, q)

A is the array to be sorted from thc index p to q.

Begin

if p < q then

.i~q+1

partition( p, q,j)

Quick-sort(A,p.j -I)

Quick-sort(A,j + I, q)

endif

end Procedure.

The partition procedure plays the important role III Quick-sort. So the details of partitioning IS

discusscd below.

Procedure partition(m, p, qj

Wc are going to partitioning array A ii'om index m to p. Currently A(m) contains the partitioning

elcment. q contains the index of partitioning element after partitioning. Thus the whole array will be

partitioned by the value A(m) and the array contains the values satisfying the following conditions.

AU) <A(m) fora os i os (q-I)

AU) > A(m) for (q+l) OS i OSp

16



Begin

v ~ A(m) I*This is the partitioning clement *1

i~m

do

do i~ i+1 while AU) < v

do p ~ p - I while A(p» v

if i < p then

exchange AU) and A(p)

else

terminate ~ I

endif

while not terminate

A(m) ~A(p)

A(P) ~ v

end partition

3.5 Performance Analysis of Quick-sort Algorithm

For the simplicity of analysis we have considered a suitable average case. Let us consider n=2k and in

every partitioning process the array is partitioned into two equal parts. While partitioning the array all

thc elements of the array will be compared with all otber elcments of the array. So if there is n

elcments in the array then total number of comparisons for partitioning is n-I. Thus the comparison

cost can be defined as follows.

((n) = (n-I)+2c(~J
=(n-I)+2X(~-I)+4C( ~)

'-I (n ) ,( 11 )=(n-I)+(n-2)+ +2 2'-1 -1 +2 ( 2'

-( -I) ( -2) _)'-1- n + n + +n_

=kn-n=n(k-I)=n(log, n-1)
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Statistically in partitioning an elemcnt in one partition has the probability 0.5 to be transferred to the

othcr partition. So the number of swapping can bc delined as follows.

n n= - + - + .4 4
=

kn
4

So total number of data transfer operations

3.6 Need/or Multi-valued Architectures

3
=~ 11 log, 114 -

Binary search and Quick-sort algorithm need companson extensively and companson plays

contributory role in the cost function. If wc use ternary search algorithm or Quick-sort with more than

t\\'o partitions then it is necessary to compare one element with two or more elements. But our

conventional comparator circuit in ALU does not support this provision. So we have to write more

than onc comparison instruction for such multi-valued comparison. To execute such instructions it

rcquircs overheads for loading the instructions. So it requires more time. To get better efficiency we

can change the comparator circuit or add a new comparator unit in the ALU. Such type of unit should

be able to load the data and compare the elements to give the result by one instruction. Hopefully such

multi-valued comparator circuit will be able to improve the performance of Quick-sort and searching

algorithms because these algorithms usc this typc or ready made instructions. In the following

chapters such multi-valued comparators will bc discussed and the etTect on the performance of

algorithms will be also analysed.

18
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Chapter 4

Proposed Multi-valued Comparator Circuits

In this chapter the concept ofmulti-valuccl comparator h<ls been presented. Three architectures for multi-valued comparator

have been proposed in this chapter. These arc comparator by bit comparison. parallcl comparator and pipe lining

comparator. The block diagrams and processing flow or comparison have been discussed in details for each proposed

comparator blocks. From this liiscussion some assumption have been made to determine the time requirement of one

COMPARE instruction. With the same assumption lime requirement by COMPARE instruction by binary comparator and

new proposed multi-valued comparators have been estimated ill terms of T units of time where T denotes the time

requirement to load a data into a register from a physicalmcillory location.

4.J Binary comparison

Consider an element A. We want to compare this element with a value v. Then the function of

comparison is defined as follows

if v:s; A then compare(A, v) = 0

if" > A then compare(A, v) = 1.

The circuit which follows the above mcntioned criteria is called binary comparator.

4.2 Multi-valued Comparison

Now consider an array A with more than onc clcment. The (k-l) elements of the array with A [0]$,1 [1]

:s;.1[2] :O: $,1[k-2] are sorted. Thc value " will be compared with the elements of the array.

The comparison results may be described as i(lilows.

if F:O: A[O] then compare(A. v) = 0

il'A[O] < v :O:A[I] then compare(A. v) = I

if/I r 1] < v :s;A [2] then compare(A. v) ~ 2

if ,1[k-3] < v :s;A [k-2] then compare(A. v) = k-2

if" > A [k-2] then compare(A, v) = k-I

19



The circuit which follows thc ahovc mcntioned criteria is called the k-valued comparator. If the value

of k is 3, i.e., we are going to compare onc element with two other sorted elcments then the comparator

circuit is called ternary comparator and thc comparison is called ternary comparison. The result of

ternary comparison will be 0, 1 or 2. The result of k-valued comparison will be k integers from 0 to

(k - 1) and there are (k - 1) elements to he compared with.

4.3 Currellt Comparator Circllits used ill Computers

The following block diagram represents a typical II hit comparator circuit which may be used in the

ALU of the computer or equivalent to the Adder/Subtractor unit of ALU.

Vn An 11 JI
II-I '11-1

R R
11-1

R
/1-].

RO1/

P C P C P C1
II-I Po1/

1/
II-I 11-2

Figure 7 Detailed Block diagram of e0J!lparator.

The result of the comparison will he ]llllnd on RII The output will follow the following law

if,' > A then RII = I

if1' < A then Ro = 0

Pi is the output which states whether the value of comparison already determined or not. If Pi is I some

where only then the value of R, will be propagated to the next portion. Pi_]=O means Ri-] will be

determined depending on the value of Vi aild Ai. The truth table of the circuit is shown below
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Table 6 Truth tahle of hasie hlock of Comparator.

Vi Ai R; 1 Pi- I

0 () x 0

0 I 0 1

I () I I

I I x 0
_.1 __

p; 1 and R ;-1 are two intermediate rcsult stcps. thc Boolean expression of the these terms are shown

below. The value of Po will show whether the elemcnts are equal or not.

R' = AI-I i

P' = v EEl A
I-I I i

The truth table of the final output is shown below

Table 7 Truth table of final output of Comparator.

P R,I Pi-I,
0 R'; 1 Pi_oj

I 1 R; P;

The circuit diagram to implement the basic blocks is shown in the following figure.

~
1---

I',

II, 1__ 1- n __-,
:,=J~I-------'----I-""

, .

II,

Figure 8 Circuit diagram of basic h10ck of currently used comparators.
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4.4 Proposed Multi-valued Comparator Circuits

Thc concept of comparator for binary comparison cannot bc applied for the ternary comparators.

Because by comparing ol\ly one bit it is quite impossible to determine the position where v can be

inserted. There may be some alternatives to do this. These are listed below.

i) Multi-valued comparison can be donc by combinational circuits but it will be very voluminous

and non modular. So it may not bc Icasible

ii) For multi-valued comparison modular architecture with sequential circuit can be designed.

iii) Parallel architecture is very much suitable liw such structure.

iv) A pipelining achitecture can solvc the problem like a sequential circuit.

4.5 Comparator by Bit comparisoll

I I b (k I) d I .AIO) Alii AI21 /131 Alk-2) b d . h I"et t lere e - sorte va ues . "'J. • I to e compare WIt one va ue v.

Each values are of length n bits. This mClhodlinds the result of comparison by applying the following

algorithm.

. L A OJb h '} b'.f d Iii) F ." I b' . C . h A (01 A (I) A (2) A (3)I) et Vi, i e t e It1 It 0 val1 i . 01 CdCl It I Olnpare Vi Wit I, i , i , i •...••..••.•

to find the index) such that Vi= A/illor lowest value of).

ii) Go to the next bit comparison if such index is found and start comparison step (i) from).

iii) It may be found that thcrc is no valuc in the array from j to k-2 which follows the above

mentioned conditions in step (i). Then the search terminates deciding the following results of

the comparison.

if Vi < Api then the result is (j - I).

if Vi ?AiOJ then the rcsult isj.

4.5.1 H/W to implement this type olcompurator

The block diagram of the comparator performing the above mentioned operations is shown in the next

pagc. Here we are describing thc different parts of thc comparator unit.

4.:".2 Comparator olbils between Vi und I//il

The inputs of this block are Vi and A,o'- There are three outputs:-
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(i) OF (Output Found), i.e, the circuit has found a position in the array for value v.

(ii) RIO ( Row Increment Order). This output shows that thc bits A/') is lower than Vi, so the

position of the insertion in the array must increase by one.

(i i i ) BIO ( Bit Increment Order). This output shows that "i

valueless and the next bit should bc comparcd.

A,iii, so searching In this row IS

R d)URIUI iiiI i lltpUI eR y
C

\'
Comparator of bit position

BIO ComparatoRegisters holding I

elk
I' the values to be

compared RIO
r r

Clock generator - Clock generator ~
It)!' row countcr. of bit position

, PCLI\. CCLK

Counter for Counter for bit
array position position

c
Value v I-- TCr c

. Final
OF

Oulput Thc position of Output signal ~
insertion generator

~

Figure 9 Block Diagram of the proposed comparator unit by bit comparison,

The truth table of the above mentioned circuit is givcn as follows.

Table 8 Truth table for finding OF, RIO,B10

v, A,'I OF RIO BIO

0 0 () 0 I

0 1 0 1 0

1 0 1 0 0

I 1 () () I



The logic equations of the OF, RIO, BIO output is given below.

OF=vArJ), ,

RIO = vAUI, ,
BIO = VAUI + VAUI

I I / I

4.5.3 Position counter

This is a normally cdgc triggcrcd countcr. Thcrc must havc a clock input. Thc clock elk is the clock

of comparator. The width of the clock must bc suflicicnt to do all thc work of the comparator circuit.. .,
Thc minimum width of clock can be discusscd atlcr describing all the portions and functions of this

comparator.

This clock of this counter gives zcro to high transition whcncver thc circuit begins to compare with

ncw element. Actually this is not thc rcgular clock of thc comparator. Thc generation of this clock is

dctermined by

PClk = RIO.elk

The output of the position counter is r which actually shows which row of the array is going to be

scarchcd. This can be easily implemented by reeogni;l:ing the output bits of thc counter. Terminal

condition of the counter can be found by the output TR(Terminal Row). TR=R]R2RrRo, if the

comparator is 16 valued comparator. If thc comparator is 10 valued then

TR = R)R,R,R"
The number of bits in the countcr depends on the degree of comparison. If the comparator is k valued

the number of bits in the position counter is Ilog, k l.
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-I j -I Bit Counter

The input of bit counter is a pulse. This pulse goes low to high when next bit is going to be searched

instead of current bit. The pulse is generated by another circuit of which logic equation is shown

below.

CClk = BIO.Clk, where Clk is the clock of comparator.

The output of the counter is the value of hit position whieh is going to be searched currently. The

number of bits required is denoted by IIog2 11l. where 11 is the number of bits of elements to be

compared. Another important output is TC (Terminal Column). This is determined by recognizing the

terminal bit position indicator in the counter. This can be determined by the same way as that of TR.

Both Bit and Position counter must havc a clear control signal input to reset the counters at the

hegining of comparison.

-1.5.5 Output Available Signal

The output of the comparator is the position of the array where the element v can be inserted in the

sorted array. Actually this position number is stored in the countei' at the time of comparison. The time

when output is available is determined by the following events.

(i) Terminal Row has been reached.

(ii) Terminal Column has been reached and "j and A/Ii are equal.

(iii) OF is high or On.

Combining all the events the following logic equation can he derived

OR' (Output Ready) = TR + TC .OF + OF

To make the OR available in the next half of the clock cycle it is passed through edge triggered flip

nop hy the following way. '

OR!!'rcv)
Delay Flip Flop

elk

OR

Figure 10 Block diagram of Output Ready signal generator,
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This OR signal is used as a strobe signal of level triggered latch. We can say that the output of the

circuit will be available at the output buller ilJr insert position in the array when OR signal is On and

Clk signal is Off. That is when OR .Clk' is high it shows the operation of comparison has come to an

end.

_I
elk

OR

Output available

Figure 11 Timing diagram of Cloek and Output Ready signal.

4.5.0 Registers Holding the array

There must be as many registers as the degree of comparisons. Each register is a shift register. The

"

(k- t ) to t
encoder

A (Ii,

Figure 12 Blnek diagram of Register Array
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registers shift their value one bit left in each low to high clock cdgc. So the clock input of the registers

may be BClk used in Bit position counter and gcncrated Irom the main comparator circuit. An encoder

may be placed at the end of the registcr array. Thc scrial output of each register will be connected to

thc encoder. The output of position countcr i.c .. (R"I.R,,-2 Ro) will bc connccted to the input of

cncoder. The block and symbolic diagram of rcgistcr array is shown in the Figure 12. For taking input

to thc register there should bc somc conncction hct wccn registcr input to thc microprocessor bus. Each.,]
register must have an enable input pin which allows to cntcr data from system bus to the register.

Scparatc instructions can be employcd to load data to thc rcgisters .

./5 7 Value Register

This is the shift register which contains thc value to bc inserted. The register can be loaded like the

register array. Only one clock input (BClk) is suflicicnt to usc this register. The block diagram of this

rcgister is the same as the array rcgistcrs discussed in the previous subsection.

The following components will be ncccssary lor thc k-valucd comparator.

(i) /1 bit shift rcgistcr k units.

(i i) k-I to I cncodcr.

(iii) h = IIog2kl bit position countcr and latch.

(iv) Ilog2/1 l bit counter to detcrminc which bit is going to be compared now.

Thc following are fixed H/W for comparator unit of any degrec.

(v) Comparator circuit

(vi) Logic Circuit for OR, PClk and BClk.

(vii) Flip t10p to hold the value of OR.

4.6 Parallelism in Comparison

In parallel architecture the (k-I) operands of the k-valued comparison will be compared with the

I'

CDlllparalor

c

Figure 13 Single unit comparator

27



value v simultaneously by (k-l) traditional hinary comparators. The result of each comparison IS

one bit binary value. Such a binary comparator is dcscribcd below.

C, = I, if v :":A,

C,=O,ifv>A,

Thc output of comparator C;s are thcn fed to a combinational circuit. This combinational ckt

dctermines the position where the value l' can be inserted in the sorted list A. The organization of the

comparator can be shown in the fiJllowing ligure.

Ao A, l'
Au

-
C,_

C" C C,_,I

Position Detector

r R

Figurc 14 Block diagram of parallel comparator

R is the value from 0 to (k-l) detecting position where the value is going to be inserted. It req1l1res

IIog2kl bits to represent R. The position dctcctor circuit can be implemcntcd by the following way.

The circuit PO, works according to the following principle

ccc0 1 -'-I
Do D, D, 1)'_2 D,_,-- POD PO, 1'0,,_, ---.:

Ro R, Rk-l

Encoder

R

Figurc IS Block diagram of position dctcctor
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If D;_I is 0 then it does indicate the position is yet to detect. So 11; and D; would be C;. If D;_I is I

then no need to detect position as it has already detected and 11;= O.

Thus The equations IIi and D; can be expressed as 1()lIows.

The last input to the encoder is ('1-1 that is thc value l' is greater than all the values of sorted

alTay A.

4.7 Comparator Using Pipelinillg Idell

We know that modern processors usc pipdining in different stages. For example. in instruction

exccution different phases can be pipdined together. Operand fetching. memory addressing,

arithmetic unit processing and storing result can bc pipelined. This method speeds up the processing

substantially. Generally any repetitive job can be pipclined by dividing the job into some phases. For

example if there are p phases of a process where each phase needs input from previous phase then

the block diagram of pipelined process is shown in the next page.

Nmv if the process runs 11 times then the required time is dclined by

(I + 11 ~ I )T
Where T is the time required to run a single process without pipclining.

Tbc' main function to design a pipelined processor is to divide the phases such that it can be done

scparately. To get optimal output. the phases should bc equal in time requirement. If highest time

requirement in anyone of the phases is T,,, other than (Tip) then total time requirement to run the 11

processes is detined by

T+1;,,(n-l)
ami the lirst process requires the full timc.

Multi-valued comparison can be easily done by using pipdining idea. We can assume multi-valued

comparison as a repetition of single valued comparison. The algorithm is given bclow:-
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Step 1: load the value v,

Set the value of i+---0

Phase I

Phase 2

I.

Phase p

Figure 16 Pipe line Procesor

Step 2: load the element A[i] from memory.

Step 3: compare the value v with A[i]

Step 4: Incrementing a counter i

Step 5: If the result of comparison is like v 2' Ali] or i 2' k then no need to execute the iteration.

Otherwise, go to Step 2.

Step 2 to Step 5 of the algorithm work in a repetitive fashion. So these steps can be pipelined easily.

Careful study shows that the phases and components to implement that phase are listed below.
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Phase 1

This phase is responsible for calculating the address of data in the sorted array. The address of the

operands will be stored in the instruction and this phase will do the following operations:-

i) Fetching operand address from memory

ii) Determining the physical address of mcmory hy MMU.

Phase 2

This phase puts the physical address to the malll memory or cache and waits for data, after read

operations. Generally it takes same timc to retrievc a byte. word, long word. floating point and double

precision numbers. The rcason hchind it is that 64 hits are retrieved at a time from memory.

In phase I more than onc addrcsses can be retrieved li'om the instruction. So it is not necessary to

aceess memory in each iteration. Determining thc physieal address by MMU takes less time than data

rctrieval. So Phase I and Phase 2 take idcntical time.

Phase 3

This phase is responsible for arithmetic opcration. This actually needs a subtraction operation. The

time requirement seems to be same as phasc I and phasc 2. This ph~isc needs logic circuits to

compare two values.

Phase 4

Thc opcrations carried out by this phase are

• lncreasing a counter by I

• Taking decisions from the value of flags whether the processor has already found the final result.

• Irthe result is round then sending the index to accumulator or any othcr register of the processor.

This phase requires Icss time than previously mentioned phases.

4.8 Time Requirement in three proposed Architecturejor comparison

Thc proposed three architectures of the comparators require di fferent amount of time to compare data.

In the following subsections the cost (timc rcquircment) of different architectures will be discussed.
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4.8.! Time Requirement by Traditiona! Bin(//y Comparison

The time requirement for binary comparison can be divided into two steps.

(i) Time requirement to load the operand.

(ii) Time requirement to compare the hits.

To load the operand in the ALU it requires three stcps to bc pcrformed. These are

(a) Fetching address and instruction.

(b) Physical address calculation hy MMIJ.

(cl Finally memory content will be transferred to the ALU.

To perform these three operations we can assumc that it rcquircs T units of timc for each steps on the

averagc. On the other hand comparison circuit rcquircs 712 timc units because it requires nl2

comparIsons on the average to perform the total comparison. So time required by the compare

instruction is 7T12.

-1.8.1 Time requirement oj'Compa/'(ftor hy doing Hil comparison

The time requirement for k-valued comparison can bc divided into two parts.

(i) Time requirement to load (k-l) values in rcgister.

(ii) Time requirement to compare the hit positions by the circuit.

Loading (k - 1) values from memory requlI"Cs a vcry high timc in comparison to second part and

main part of the comparison. So we suggest a pipelining structurc for loading values from memory. It

may have three parts. Theses are listed below:

Stcp 1: This step includes fetching thc addrcss of mcmory addresses from the instruction words stored

in memory. At a time two or more addresscs can bc rctricvcd from mcmory.

Step 2: In this step the physical addresses of thc mcmory contents of the array is calculated from their

logical addresses. This opeyation is done by MMU (Mcmory Management Unit).

Step 3: In this step the physical address is supplied 10 thc mcmory and thc data is retricved from the

memory. The data is stored in thc registcr.
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All the above mentioned operations require about equal time. Let, the time requirement in any step

take l' time units.

So. to load (k-I) values of stored array the time requirement is shown as follows:

=Time requirement to load first value of the array + Time requirement to load next (k-2) values of the

array

= 31'+ (k-2)T

. = k1'+ l'

= (k+I)T

We can assume the time taken to determine the position of insertion in the array as T units. This

includes

i) Comparing n/2 bits on the average

ii) Increasing the position counter (k-I )/2 times on the average

iii) Increasing the bit counter 11/2 timcs on the average

We hope that to do these operations it requires at best l' units of time.

So total time rcquirement for k-valued compare instruction = (k+2)1'

.J.8.3 Time requirement of Parallel Comparator

The time requircment for k-valued comparison can be divided into three parts.

i) Time requirement to load (k-I) valucs in the rcgister.

ii) Time requirement to compare cach clement ofthc array with the value in each comparators in

parallel.

iii) Time requirement in position detection.

We can use the similar pipelining strategy to load the data ii'om memory to registers of the comparator

as described in the comparator circuit by bit comparing. It actually rcquires three pipelining steps. All

the steps require no more than l' units of time to complete their job. So. timc requirement by loading

(k-\) operands is given by following expression.

3 r+ ( k - 2 )1' = ( k + 1)1'



Comparing one value with other i.e., binary comparison require fixed l' units of time considering all

the bits are compared to get result. Position decoder requires at best l' units of time. These two steps

require same time because the internal circuits are samc. So total time requirement in k valued

comparison is (k + 3)T.

.f. 8. .f Time requirenlent.!iJr Comparators Il'ith pil,elil7iJJK

Observing the microprocessor Data Hand hook wc have found that following are the comparative time

requirement in different phases

Table 9 Time requirement in diffuent steps of pipelined comparator.

Phase numhcl:' Timc rcq.

Phase I T

Phase 2 T

Phase 3 T

Phase 4 T/2

Wc hope that the cost of k-valucd compare instruction will hc equal to comparing (k - 1)/2 elements

on the average. So, roughly the cost rcquircment is defined by-

41' (for comparing first element) + (k - I) x T/2 (For comparing other elements)

= kT/2 +71'/2 = (k+ 7)T/2
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Chapter 5

Multi-valued k-nary Search

In this chapter k-nary search algorithm has bl:l:1I prl'SClllcO. The cost requirements of k-nary search algorithm by using

binary architecture and new proposed architectures have heen analysed here. The cost function have been minimized for

optimal values of k. The discussion shows thhi 1H'1l~ of the lllulti-valued architectures for comparator is efficient for k-nary

search algorithm. Binary search algorithm is thl' hest in the worst case even after introducing multi-valued comparator. The

chapter concludes with a table comparing the lime requirement by different comparators for k-nary search algorithm.

5.1 Algorit"m of mlll1i-Vllllled k-1wr.l'Sellrc"

k-nary search algorithm can be easily written by slightly modifying the binary search algorithm. The

search space is divided into k diffcrcnt parts in every iterations of the algorithm. In every iteration the

value is compared with (k -I) boundary values or the partition segments and then the appropriate

partition segment is chosen. The moditicd binary search algorithm is listed below.

Procedure k-narySearch(A, low, high, \'. k)

A is the array to be searched. 1011' and high are the indexes of lower and upper boundary. v is the value

to be searched. k is the degree of multi .., alued comparison.

Array parlilion[k]

Begin

while (low < high) do

if high - low + I < k thcn

for i~ low to high by I do partition[i - low] ~ A [I]

return compare(partition. k. I')

endif

. . . iii,," -lOll' + I
parltlI0J1_,\'IZC!'(- -'----

k
for i~ 0 to (k - 2) do

parlilion[i] ~ I"""c partilio}] size x i

end for

parI ilion [k - I] ~ high

j ~ comparee partition. k. 1')

if AU] = v then return the index.

else
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low ~ parlitiol7[j]

high ~ parliliol7[j + 11- I

endif

end while

End Procedure.

5.2 Cost Requirement using Binary COlllparator

Ignoring the cost of index comparison or calculation thc main cost incurred here is the cost of element

comparison. In every step of the itcration it requires (k - I) comparison in the worst case and

(k+I)I2-l/k comparisons in the average case for k > 2. So thc total cost can be expressed by the

following formula.

('(I7.k)=C(!!..- k)+~-~. k ' 2 k

=C(~.k)+ k+l_~+~_~
k' . 2 k 2 k

= C( ;, .k ) + I x k ~ 1-I x :

. k + 1 1 ,
= L(Lk) + I x -- -I x - as 17 = k. 2 k

= ( k ; 1 _ : ) log k n , when k 2 3

But when k=2 then in every iteration it requires onc comparison so the cost of comparison is defined

hy IOg217.From the two type of cost it can be easily shown that

('(17.2) = 310g, n
('(11.3) Slog} 17

0.6 log, 3< 1

So l3inary Search algorithm is better than tcrnary scarch algorithm lor conventional comparator circuit.

Now we are going to find out the value of k lor which thc cost is minimum for k 2 3. To do this we

havc to differentiate the function ('(17. k).

d(, d {( k + 1 1 ) l
dk = dk -2- - k log, 17 f = 0

~ ~{(~_~)log,. n} = 0
dk 2 k log,. k
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=> log. n~J~1-}1= 0
, dk 1 log, k

(1 1) l(k+l I)
=>log,.k2.+T'~ -i 2 -k =O=>log k(-~+_I )_~(k+l_~)=O

(log, k)' , 2 k' k 2 k

We can get the optimal value of k solving this equation. But unfortunately for k?J there is no values of

k which satisfies the equation. It means the cost function is ever increasing from k=3_ It shows the

optimal valuc of k is 3. It can also be shmvn by obscrving thc C(n,k + I) term.
C(n,k)

5.3 Cost Requirement IIsillg Comlul/'{/tor.\"by Bit comparison

Time time requirement for a single multi-valued comparison instruction is (k+2)T as shown in section

4.:'. Now the cost function will be changed as follows

C(n,k) = C(:,k ) + (k + 2)T

= CU
1
"k )+(k + 2)r +(k + 2)T

= e( ;1, ' k ) + I x (k + 2)T

=C(1,k)+lx(k+2)T asn=k'

= (k + 2)T log k n

Similarly differentiating both the sidcs of the cost function we get

de d
- = -ilk + 2)Tlog, n}= 0
elk dk

=> !!.-{(k + 2)T log, n} = 0
dk log, k

=> T log. n_d_{_k_+_2_} = 0
, dk log " k
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k+2log k - .
" k=> -0

(log" k)'
2

=> log k -1- - = 0, k

Applying the bisection method of solving roots of equation wc have found that the roots of equation

lics between k = 4 and k = 5, The exact root is k = 4,32, Putting the value k = 4 and k = 5 in CCn, k) it

shows that CCn, 4) is lower. So for comparator by bit comparison processor the optimal degree of

multi-valued comparison is k = 4,

5.4 Cost Requirement using Parallel cOIIIIJllratOI'

As the time requirement for one multi-valued comparison instruction is (k + 3)1' as shown in 4,8.3 we

can determine the cost function for k-nary search using parallel comparator is given below:

C(k,l1) = (k + 3)Tlog, 11 unit time,

Now differentiating both the sides we get the following function of k,

310" k ~ 1- - = 0~" k
Applying the bisection method of solving roots of equation we have found that the roots of equation

lics between k = 4 and k = 5, The exact root is k = 4,97, Putting k = 4 and 5 in the cost function we get

Ic1I'parallel comparator the optimal degree of multi-valucd comparison is k =5,

5.5 Cost Requirement using pipelined comparatol'

As thc timc requirement fClf one multi-valued comparison instruction is (k + 7)T/2 as shown in 4,8.4

we can determine the cost function 1t1l'k-nary search using parallel comparator is given below:

(k+7) , ,C(k,IJ)= -2-1'log,n u11ltlime,

Now differentiating both the sides we gel the fc,llowing function of k,

710" k -1 - - = 0~, k
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Applying the bisection method of solving roots of equation we have found that the roots of equation

lies between k = 7 and k = 8. The exact root is k = 7.1 'i. Putting k = 7 and k = 8 in cost function we get

for comparator by pipelining processor the optimal degree of multi-valued comparison is k=7.

5.6 Comparison among the optimal performance tI{ different comparators for k-nary searching

algorithm
The following table shows the approximate time requirement for searching algorithm by different type

of comparators.

Table 10 Complexity of k-nary search for different multi-valued comparator

Type of Time required Optimal Timc rcquired for

Comparator for one valuc of k searching in an array of

companson 11 elements

Binary 7T/2 3 5.83 T1og]n
,

Bit Comparison (k+2)T 4
..

6T1og411

Parallel (k+ 3)T 5 8T log;n

comparator

Pipelined (k+ 7)T12 7 7T log7n

COlllparator

Frolll the table we see that all the comparators using Illulti-valucd architecture require more time than

thc binary architecture. So Binary search by binary architecture givcs the best performance.
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Chapter 6

Quick-sort with k partitions

This chapter is the most important chapter in the thesis. In this chapter quick~sort algorithm using k partitions has been

presented in details. Different types of cost related with this algorithm have been calculated in the following section. The

cost requirements in terms oftimc have been calculated for different types of proposed hardware for comparator. This time

requirement has been calculated 011 some 1~1vollrahh.: assumptions, The optimum degree of multi-valued comparators for

different hardware have been evaluated by dirlCrclltiating expressions. A comparative study of different architectures for

quick-sort algorithm has been tabulated at the end of the chapter.

6. J Algorithm of Quick-sort with k partitiolls

The concept of dividing the problem space into k partitions in each recursive call can easily modify

quick-sort algorithm. Although the algorithm or quick-sort recursive procedure will be slightly

changed the partitioning algorithm will undcrgo a major change. Firstly we are going to write the

quick-sort algorithm.

Procedure Quicksort (A, i,j, k)

. A is an array. The elements from i toj will be sorted. k is the degree of partition.

Parfl'oinf[j - an array contains the beginning of each partition points.

Begin

if (i - i+ I) ~ k then

Sort the elements by any well known method.

else

Sort the elements AU) to AU + k - I) using any method

111~ Parfifion(A. i.j. k)

lor 111= i to (k + I) do

Quicksort(A. parlpoinl(III).l'arlpoinl(1II + 1)-1. k)

endif

endProc

While partitioning some elements on an array. a dirferent approach may be applied. For each element

of the array an extra space is required. This cxtra space is only to store the result of the comparison, a

value from 0 to (k - I). So only one byte is suflicient.
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Now the array to be partitioned can bc simulated as follows:

o

AU)

k-'2

AU+k-'2)AU+k-l) A(j)

The array R contains the results of comparison. We can express this as follows:

R(k)

=

0,

1,

ifA(k) ~ A(i)

if A(k) ~ A(i+])

k-2, ifA(k)~ A(k-2)

k-'l. ifA(k) > A(k-2)

At first all the values of array R will be detcrmincd by k-valued comparison. This is the only cost

rcquired for comparing the values. The ncxt step is partitioning the elements. For k partitions two more

arrays of size k are required.

Consider the array S which contains the size of each partition.

Sci) contains the number of elements in jth partition. This can be easily determined at the time of

companson. From these values of Sci) an array !(i) it can be easily determined by the following

l'lrillUla

!(O)(-j

!(i).slart (- !(i-]) start + Sci)

!(i).end (- J(i+ 1).start-I

!(k ~ 1).end (-j

Now consider a dummy array for swapping the c1cments. The array must be of size k, Let P be the

name of the array.

!'(i).value = the elemcnt to be swapped

41
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P(i).index = Destination partition of the elcmcnt.

This queue is initialized by the misplaccd clcments in thc array. Then these misplaced elements in the

array, are placed in the original array by swapping another mi'splaccd clcment in other partition.

6,2 Partitioning algorithm

Procedure partition(A, i,j, k)

Let A[] be the array to be sortcd. i,j be thc starting and ending index of thc c1cmcnts to be partitioned.

k is the degree of partition. partpoint[] be the global array holding the starting and ending index of

partition that will be used in quick-sort routine.

Begin

for m ~ i to (i + k - 2) do

R(i) ~(i - m) f* Results of initially sortcd partitioncd values *f

SCi~ m) ~ 1 f* Initializing thc sizcs of partitions *f

endfor

for m ~ i + k -1 toj do

R(m) ~ eompare(A(m), A(i), A(i + I), , A(i + k - 2))

S(R(m» ~ S(R(m» + I f* counting the size of partition *f

endfor

I(O).start ~i

partprint(O) ~ i

for m ~ I to (k - I) do

1(m ).start ~ 1(m-] ).start + S( i)

partpoint(m) ~ 1(m ).start

endfor

1(k - ]),end ~ j

for m ~ (k - I) to ] do by - J

1(m~1 ).end ~ 1(m).start ~ 1

endfor

for m ~ 0 to (k - 1) do

start ~ I(m).start
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end <c-J(m).end

while R(startj = m and start ~ end do

start <c-start+ 1

endwhile

J(m).start <c-start

if start ~ end then

P(m).vaille <c-A(start)

P(m).index <c-R(start)

endif

endfor

needJorJurtherJooping <c-0

do
for m <c-0 to (k - I) do

destn <c-P(m ).index

if (destn 2:0) then

start <c-J(destn).start

end <c-J(destn).cnd

A(start) <c-P(m).vaillc

R(start) <c-P(m).index

while R(start) = destn and start ~ end do

start <c-start + I

endwhile

J(dcstn).start <c-start

if (start ~ end) then

P(m).vaille <c-A (start)

P(m).index <c-R(start)

need_l"orJlIrthcrJooping <c-I

else

P(m).il1llex <c--I

endif

endif
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end for

while (needJor Jurther Jooping)

End procedure

6.3 Complexity of Multi-valued Quick-sort Algorithm

Consider that in each step' k partitions are being done In every recursIve call of quick-sort. For

simplicity we can assume that the total number of elements in the array is k' and in each step the

array or sort space will be divided into k equal parts. So the sorting will be terminated at the level

where all the sorting spaces are of size k. Now total multi-valued comparison cost can be expressed by

the following recursive formula:

C,(I1,k)

= kC,(~,k ) + (/1 ~ k + I)

=k{kC,(;"k )+(~-k+I)}+(I1-k+I)

=k'C,(;, ,k)+k(~-k+I)+(I1-k+l)

= e-'c,(k:' ,k) + e-'( k:' - k + I)+ e-'(k:' - k + J) + + kO(/1- k + I)

= e-'C, (k,k) + /1- (k -l)e-' + /1- (k -l)e-' + + /1- (k -I)k"

[
1- ' ]= (1-1)/1- (k -I) I + k + k -

e-' -1
=(I-I)/1-(k-I)--

k -I
/1

= 11/- 11 - - + I
k

11
= I1log /1-/1 - - + I

k k •
To sort (k - I) elements by selection sort algorithm it requires (k - 2)(k - 1)/2 binary comparison.Total

binary comparison cost can be expressed as follows:

C (11, k)

=kC,(rk)+ (k-2~(k-l)

=k'c:,(!!",k)+kX (k-2)(k~1) + (k-2)(k-l)
- k" 2 • 2

,_,. (/1 ) (k - 2)(k -1) (/-' '_.' )=k CJ --,k +----- k +k + +1- e-' 2
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=!!.-C (k k)+ (k - 2)(k -1) x k'-I -1
k 2 ' 2 k-l

= !!.- k(k -1) + (k - 2) (!!.- -1)
k 2 2 k

= 11(\-1) +(~-1)(~-1)
11k 11 k

= -----+ 1
2 k 2

This is 0(11) complexity.

Total binary index comparison (byte comparison) can be expressed by the following recursive

expression.

C(I1,k)

= kC] (~, k) + 11

= k{kC3(;, ,k )+~}+11
= k'-IC3(k7_1 ,k )+11+11+ +11

=(1-1)11

= l1(log, 11-1)

[(l-I)s]

The cost of swapping depends on the statistical properties of observations. Swapping may be done in

different steps. These are

(i) Swapping for sorting the partitioning elements.

(ii) Swapping for partitioning of sorting space.

To sort k elements by selection sort on the average it takes k/2 exchange or swap operations. So, total

exchange operations is defined by

S,(I1,k)

(

11 ) k-l=kS, k,k +-2-

l (11 ) k-1J k-l
= k kS, k' ,k +-2-+2
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k'-IS(kk) k-l(k'-' k'-;= I' + -- - + - + .
2 .

k I k - 1 k I-I _ I
=-+--x---

2 2 k - 1

=~(n+:-I)

................ + I)

Total data transfer operation required is dell ned by

T (k,n) = 2-(n +~-l)
'2k

To partition sorting space it requires a very large number of swapping operations. Let us assume that

wc are going to make k partitions. So probability or an clcmcnt belongs to its own partition is 11k. So,

Iln partitioning n elements total number or swapping required is C~-:I}.
The data transfer requirement for partitioning is dcllned by the following expression

T,(n,k)

=kT,("--.k)+2(k-l)n
- k k

= k{kT (-"--- k) + 2(k -I) n} + 2(k -1)11, e' k k k

= k'-'T,( k7-, ,k) +2(k: I)n+2(k: 1)11 + +2(k: 1)11

k -I
= 2(1-1)--11

k
k -1= 2(logk n-I)--nk

In every call of quick-sort k - I data will be loaded to the rcgisters. So total data loading requires for k-

nary comparison operation is defined by the following expression.

L(I1.k)

=kL(~.k)+(k-l)

=k2L(k
n
, ,k )+k(k -I)+(k -I)

= (k -1)(1 +k' + +k'-'}
k'-' - I n

=(k-I)x ---I
k -1 k
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6.4 Time Requirement in Quick-sort witll k-partitiolls

There are several types of cost related with quick-sort algorithm with k-partitions. We have to calculate

and combine all of them. The related costs are discussed below.
(i) Data loading to registers for k-nary search. If loading is done by pipelining processor (k - I)

data in registerrequires 2 l' +(k - 2)T = kT unit time.

(ii) Each binary comparison requires 77'/2 unit time as shown in section 4.8.1.

(iii) k-nary comparison. It rcquires diflCrent time ror dirlCrent types of architecture. For example by

using bit comparison comparator it requires l' units time for each compare instruction. Parallel

comparator requires 21' units timc ror each compare instruction. In pipelining architecture there

is no provision to p're-load the operands. So it requires no data loading time but (k+ 7)1'12 units

time for k-nary comparison. Binary comparator requircs (k+l )/2-1Ik binary comparison for k-

nary companson.

(iv) Data transfer cos\. It requires 21' unit time.
(v) Byte comparison. This type of comparison can be ignored as it requIres very small time

comparing floating point numbers.
On the basis of the above mentioned parameter the time requirement for Quick-sort by different

architecture is discussed in the next subsections.

6.-1.1 Time requirement olQuick.sort lrith k-partilio/1S using Binwy comparator

Total time requirement can be defined by the following expression.

(',,,,,,,,.,(n,k)

Now differentiating both the side with respect to k the following equation can be found after

simplification.
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dC'hilllln" --0
dk

~2{_ nlog,. n +~}(k + I _~)+2( nlog" n -n-~ + I)(~+_I)
2 k(Iog,k)' k' 2 2 2llog,k k 2 k'

+2(~+_n _~) __3n _ 410g,.n .. (1_~)I1+i_I(_)g_",_n_1)_1 n=O
2 2 k' 2 k' k(Iog,. k)' k llog,. k k'

8y solving this equation by bisection mcthod for differcnt values of n, we find optimal value of k for

dilTerent values of n.

6.-1,2 Time requirement o/Quick-sort lrith k-p(/rlilions /Ising hit comparison

Total time requirement can be defined hy the following exprcssion.

eM' (n,k)

= C,(n,k)xT +C,(n,k)x 7'1'+ T,(n,k)x 2'1'+ '1',(n,k)x 2'1'+ L(n,k)x ~
- 2 - k-j

(
n) (nk n k ) 7'1'= nlog n - n - - + j x'1'+ - - - - - + 1 x-

'. k 2k22

n _ I

+ ~(n +~ -l)X 2'1'+ 2(log, n-l{ k -I )nx 2'1'+ ~k_kT
2 k \ k k-I

Now differentiating both the sides with respect to k the following equation can be found after

simplification.

de hi< = 0
dk

=>{_ nlog,.n +!!...}++2(~+!!..._~)_3n_ 4log,n (I-~)n
k (10 k)' k 2 2 2 k 2 2 k 2 k (I k)' kg, og"

+ 4( log, n _ I) _1_n + 1 - n = 0
log,.k k' (k-I)'

By solving this equation by bisection mcthod for differcnt values of n we find optimal value of k for

di Ilerent values of n.
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0.-1.3 Time requirement o{Quick-sort with k-partilions /Ising parallel comparator

Total time requirement can be defined by the following expression.

C"",. (n, k)

=C,(n,k)x21'+C,(n,k)x 71' +7',(I7,k)x27'+7'.(I7.k)x21'+L(I7,k)x~
- 2 - k-l

(
17 ) " (17k 17 k ) n= 17log . 17- 17- - + I x 21 + - - - - - + I x-

k k 2 k 2 2

17 -1
3( n) ( \k-1) k+- n+--1 x21'+210g.I7-1 --l7x21'+--k1'
2 k kkk_I

Now differentiating both the sides with respect to k the following equation can be found after

simplification.

de PI//'--=0
Jk

:::>2X{- nlog,.n, +-;}+2(~+~_~)_31: _ 410g,.I7,(I_~)n
k(1og, k)' k 2 2 k' 2 k' k(1og, k)' k

4(
IOg"17 1) 1 1-17 - 0+ --- -17+
log,. k k2 (k -1)'

Solving this equation by bisection method for different values of n we find optimal value of k for

different values of 17.

0..J.-I Time requiremel7t o{Quick.sort with k.p"rtililll7s usil7gpipelinil7g colI/parator

Total time requirement can be de1ined by the following expression.

C . ( k)
1"11<'/111(' n,

=C, (17,k) x ( k ; 7 )1' + C, (17,k) x 7;' + 1;(17.k) x 2'J + 1~(17,k) x 27'

( n ) {k + 7} (nk 17 k ) n= 1710". 17- 17- - + 1 x -- l' + - - - - - + 1 x-
10k k 2 2 k 2 2

3( n) ( {k-l).+'2 17+/;-1 x21'+210gk n-I\-k- I7x21'
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Now differentiating both the sides with respect to k the following equation can be found after

simpl itication.

dCpi}Jt'lilll'-----0
dk

~ {- -kn_(IO_I:-~.-'k-)-'+ -;, }(_k _;_7) + H-';-:):-'~-"k-11 - 11- ~ + IJ

+H~+ k
l1
, - ~) - ~7- k~~Og~'k)' (I - H7+ 4( ::~:: -I J k\ 11= 0

By solving this equation by bisection method 1'01' difTerent values of 11 we find optimal value of k for

d irrerent values of 11.

6.5 Optimal degree for Differellt Comparator Arcl1itectllres ill Quick-sort Algorithm

The following table shows the optimal value or k ror dirferent values of II from 100 to 100000000000.

This has been found by applying bisection method or finding roots of equation.

Table 11 Optimal values of k for different multi-valued comparators.

11 Binary Bit Comparison Parallel Pipelining

Archi tecture comparator comparator

kOpli/lllll!' k'/I/I k"I/lilllllll! k'"il k,{!/iwlIIlI k'lJil kflfJ/illl/l1il k.'1li'

100 3.55 4 4.12 4 4.66 5 5.20 4

1000 3.38 , 4.95 5 5.65 6 5.88 6J

]0000 3.29 , 5.73 6 6.57 7 6.38 6.J

100000 3.23 , ..
7.40 6.77J 6.45 6 7 7

1000000 3.20 , 7. ]3 7 8.20 8 7.07 7J

10000000 3.16 , 7.79 8 8.95 9 7.32 7J

100000000 3.15 , 8.41 8 9.66 10 7.51 8.J

, 90 I
..

10.35 10 7.68 8]000000000 3.13 J 9

10000000000 3.12 , 9.59 10 11.02 11 7.82 8J

100000000000 3.10 , 10.16 10 11.68 12 7.95 8.J

.. .1.. ___ . ... .
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k",'h"'''''' = Optimum value of k for a particular comparator architccture and problem space size.

k",""hI,= The physically suitable value k Illl" which cost function is minimum and near 101"1,,",,'"

Table 12 shows the time requiremcnt of different mcthods for different values of n at optimal strategy

with respect to binary architecture. The terms used in the table is defined below.

I" = Time requirement for quicksort with two partitions (traditional) using binary comparator.

'M,,= Time requirement for quicksort with k partitions using hinary comparator.

1,,"= Time requirement for quicksort with k partitions using hit comparison.

'"",.= Time requirement for quicksort with k partitions using parallel comparator.

'"I,,,.= Time requirement for quicksort with k partitions using pipelining comparator.

Tahle 12 Ratio of time requirement for multi-valued architecture with respect to binary quick-

sort with hinary architecture.

n !hill/I" t hit! f h !pa/lh 'pipe/tb

100 1.000 0.578 0.636 0.830

1000 1.025 0.512 0.572 0.811

10000 1.037 0.4 72 0.532 0.798

100000 1.044 0.445 0.503 0.788

1000000 1.049 0.424 0.480 0.781

10000000 1.052 0.407 0.463 0.775

100000000 1.055 0.394 0.448 0.771

1000000000 1.057 (U82 0.436 0.767
-- f.-.~ ..

0.425 0.76310000000000 1.058 0.372

100000000000 1.060 0.364 0.416 0.761

The table shows thc pcrformance of quick-sort algorithms theoretically. Our analysis shows that quick-

sort with k partitions at optimal stratcgy is better than traditional quick-sort algorithm for any multi-

valued comparator architecture. It also shows that the performance of comparator by bit comparison is

the best and that of pipelining comparator is the worst. The reason bad performancc of pipelining
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comparator is its basic principle. It docs not provide the facility of loading the sorted array in the

register and so for each comparison reloading has to be done. The pcrformance of parallel comparator

is worse than comparator by bit comparison because parallel comparator requires more time for

comparison. The performance of binary architccturc lor quick-sort with 3 partition is always worse

than traditional algorithm. Beller performance can bc lound by modi fying the partitioning algorithm as

mentioncd in KA YKOBAD [9]. In this paper a spccial partitioning algorithm has been applied for only

three partition and so it gives bettcr perl(1I'manee even using binary comparators. For variable

partitioning such algorithm is diHicult to establish and a subject of future research.
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Chapter 7

Experimental Results

In this chapter some experimental results have been tabulated alter writing programs of quick-sort and k-nary search

algorithm. The time requirements of these two algorithms shoWIl in this chapter are all estimation. The environment of the

experiment, methods of the experiment and the theoretical assumptions of the estimation have been mentioned in this

clwptcr. The response of practical result with respect to Illcorclil.:al result has been discussed at the end or tile chapter.

7.1 Ellvirollmellt of the Experimellt

Performance of the new algorithm and new architecture can be determined by writing programs. We

have done experiments with a very large number 01' data. So 16 bit compilers are not sufficient to do

such experiments. Any 32 bit compiler can servc thc purpose correctly. Again the OIS which does not

support virtual memory or huge memory is not capable to run program which uses large memory. Even

careful programming is not enough for that purpose. For the above mentioned reasons we have run our

program under Windows95 OIS platform. 'rhis OIS uses all the facilities of virtual memory modeL The

m,lchine used for this purpose has the following spccilication

• Pentium 133MHZ Intel Proees~;or.

• 3.1 GB HOD.

• 256KB cache.

• 32MB RAM.

This specification allows the Windows 95 to run smoothly.

The compiler used for programming is Microsoft Visual C++ 5.0. This is a 32 bit compiler and very

flexible to write program and implement algorithms. This compiler has an integrated Developer Studio

that allows the program to cdit. write. debug and run programs. Microsoft Visual C++ 5.0 is a product

of Microsoft corporation and runs under the Windows 95 platform, So we can easily write and run

program under same environment.

7.2 How was the experiment done?

To perform the quick-sort operation an array has been initialized with random numbers. Then the

algorithm of quick-sort described in section 6.1 has been implemented. This is actually the algorithm

which use quick-sort with k partitions using binary comparators. We can easily find the time required

by this algorithm. But this is not sufficient It)\'our experiment. We have to compare the performance of

di fkrent H/Ws that have been proposed in chapter 4 l'or quick-sort algorithm. But these HIWs are not
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available in Pc. So, we have made an estimation of time requirement for four kinds of comparator

arehitectures.

The data used herc is double preCISIon tloating point numbers. At first writing a program which

comparcs and transfers a large number of data wc havc ealculated thc time rcquirement for a binary

comparison of current PC and data transfer time li'om one loeation of onc array to another location of

atHlthcr array. The results wc have found are given below.

Time requirement for one double precision floating point comparison = 0.000000609 sec.

Time requirement for one double precision floating point data transfer = 0.000000423 sec.

Now we can easily determine thc time requirement of the following components.

Time requirement for k-nary companson hy hit companson

hi nary comparison.

T~- x time required for one
7'ii

Timc requirement for k-nary comparison by parallel comparator =

hinary comparison.

2T~-x7T;; time required for one

(k + 7)T 2 .Time requirement for k-nary comparison by pipelining comparator = ----x ~ xtllllC
2 7T

j(,r one binary comparison.

required

Timc requiremcnt for data loading = 2T
~- x time rec]uired for one binary comparison.7T;;

Thcsc parameters have been used to cstimatc the time requiremcnt by different comparators during

quick-sort.

We have determined the optimal value of k thcoretically from the equations derived in previous

chapters for ditferent values of 11. Then the quick-sort algorithm is allowed to run for different values

of k. Each execution for different optimal valuc of k gives the fi)liowing parameters.

• Total number of binary comparisons.

• Total number of k-nary comparisons.

• Total number of k-nary data load operations.

• Total number of data transfcr operatiot1"
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As estimated time requirement for all these operations are known we can easily determine the

estimated time cost for different architecture in quick-sort algorithm. This estimated value is more than

enough to compare the performance of dilTerent architectures.

To compare the results of binary search almost similar process has been performed. The sorted array

fi'om the quick-sort algorithm has becn used as thc scarch space. Then a particular amount of random

numbers have been generated and storcd in an array. k-nary scarching has been done for different

values of kop'lma/with the data to be searched. We call get the following parameters from the execution

oJ' the k-nary search.

• Total number of binary comparison.

• Total number of k-nary search.

These two data is suf1ieient to estimate the timc rcquirement of k-nary scarch by difTerent multi-valued

architectures.

7.3 Experimental Results

Thc Jallowing table shows the estimated time requircmcnt to sort 100.1000 1000000 data
\
using quick-sort with k partitions for different 1l1lilti-valuedcomparators. The data used here have been

initialized by random numbers of Mierosol\ Visual C++. The time requirement is actually average time

requirement of 10 different sets of data of samc sizc.

Table 13 Time requirement of quick-sort algorithm for different multi-valued architecture.

Number of Binary Binary k-valued k-valued k-valued

observations. quick sort arehitceture architecture parallel pipelined
11 Ih t hil1(1/:\ using bit comparator. comparator

C(llllparIS()1l '''lImllel '{Jipt'!lIIc

I hil

~ilo 0.000559 0.000861 0.000466 0.000512 0.000669
11100 0.009144 0.015388 0.0061 J7 0.006855 0.009849
i'(Ii)()O - ----

0.1255010.120208 0.193927 O.On959 0.083109
\ij()OOO 1.504866 2.453354 0.819259 0.930527 1.471242

1000000 17.435128 44.755805 9.147047 10.500548 18.682495
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From the table shown above it has been noticed that for smaller value n the time requirement becomes

20 times higher than that of previous value of 11. This ratio becomes lower as the value of n increases.

The complexity of quick-sort is O(l1log, 11). So if the value of 11 becomes lO times the complexity

should be lOlogllllOI1 times higher. This valuc is ncar 20 f(lr 11=10and as n incrcases it becomes near

10. The result also shows the achievemcnt or the performance of quick-sort algorithm with the

introduction of multi-valued architecture. Among the three proposed architectures the comparator with

bit comparison shows the best pcrrormance. Besidcs this. it has lower optimal degree of multi-valued

architecture than other two architectures. Actually it olTers higher pcrrormance with lower cost. So our

experimental result complies with the thcoretical achievement here. The practical performance of

pipelined processor does not comply with our theoretical result. This is only because of our

assumption. The time requirement jClrdata transfer was assumed 21' roughly but in practical case it

sccms to he higher than this. So practically pipc\ined processor shows less efrective performance than

that of traditional quick-sort with 2 partitions.

From Theoretical result we have found that the cost of quick-sort by bit comparison is nearly 1/3 of

traditional quick-sort using hinary architecture. But the practical result shows that the ration is y,.

There may be several reasons for this variation between theoretical and practical result. These are

listed helow.

(i) The analysis we have done is on the hasis of most favorable case. This may not represent the

practical or average case situation.

(ii) The ratio is higher for smaller values of 11. But for higher values of n it becomes lower. It does

indicate that the set of ohservations approach to symmetrical distribution for higher values of 11.

We hope that for very large values or 11 it will fully comply with the theoretical outcome.

(iii) /n the experimental result we haw (llllld an estimated result. This is not a true result from a

real program which uses multi-valued architecture. Even ir somehody uses the multi-valued

architecture the theoretical result will not be proved fully correct. We have ignored several cost

in the analysis. These are cost or index calculation and cost of byte comparison for partitioning.

These are the trivial costs and iI'we consider the double precision floating point data then these

can be hopefully ignored.

(iv) The additional space requirement Illr storing the result of multi-valued comparison is one of the

important cost related with the newly proposed algorithm.
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Table 14 Time requirement of k-nary search algorithm for different multi-valued architecture.

Si~e of search Binary k-nary k-valued k-valucd k-valucd

space and search with search with architecture parallel pipelined

number of Binary Binary using bit comparator. comparator

observations architecture architecture companson

have been /" f /iiI/iii:' //," 'fI'lI"Itlld fpijJdil1(,

searched

n

100 0.000413 0.000524 0.000643 0.001414 0.001725

1000 0.006042 0.007669 0.009745 0.024129 0.029110

10000 0.078007 0.103417 0.125792 0.306922 0.366021
--"----- -- --------100000 0.813527 1.317981 1.1,77988 4.186050 4.935621

1000000 7.959615 15.275028 19.953241 48.875601 59.817610

Table 14 shows the estimated time requirement to search 100.1000 .1000000 data using k-

nary search for different multi-valued comparators in a sorted array of size 100.1000 •...........• 1000000

respectively. The data used hcre has been initializcd by random numbers of Microsoft Visual C++. The

time requirement is actually average time requircmcnt of 10 different sets of data of same size.

In the experiment we have done i1 number of k-nary compansons. So the complexity becomes

O(nlogkn). So same response is expected as quick-sort for the ratio of time requirement. From the table

shown above it has been noticed the response is far beller than the quick-sort algorithm. This may be

bccause of additional terms in the complcxity function of quick-sort. The data shown in the table

justiiics the thcoretical result thaI multi-valucd search is nol bettcr alier introducing multi-valued

architecture. The reason behind it is that the multi-valued comparison is not used with its full

efliciency and the data is loaded for every level of searching algorithm. Pipelined processor shows the

\lorst pcrformanee in searching algorithm as well as sorting algorithm. Actually for binary comparison

it :civcs worse pcrformance than dedicatcd binary comparator without pipelinc. So wc can reach into

such a conclusion that pipelining idca in cnmparator is not succcssli.i1 for both sorting and searching

algorithm.
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Chapter 8

Further Improvement

This chapter discusses the sh011comings and fUliher development that may be possible future research plan on this topic.

Only plans are describe here with few words. Eight research proposals have been presented here. Some of them may be

feasible and some are not feasible till the invention of suitable electronic devices.

8./ Shortcomings of the thesis

• In our research we havf made some assumptions. Thcse assumptions have been done by doing

experiment in normal Pc. The assumptions made may not be valid in other machines and

computers.

• In the proposed H/W design the architecture we have proposed is only for positive integer

comparison. This is actually a conception. Generally we are interested in comparison of large and

complex data. For example, double precision data type. We have made an assumption that the

operations on double precision numbers are comparable with normal integer data types.

• The estimation of time requirement in sorting algorithm has been done for most favorable cases.

Now compilers use different types of optimization. Without knowing details of the compiler

processing the exact estimation is not possible.

• While determining the complexity we have mcasured the complexity for favorable cases. This is

not average case. The average case analysis is very ditlicult because we have to consider all

possible combinations. Besides thcse, the complexity of index comparison has been ignored.

• Random number generator of C compiler has been used hcrc. Random numbcrs for particular

statistical model should be applied for worst case and best case performancc analysis or analysis of

a particular type of data.
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8.2 Future Research Plan

8.2.1 New Device to implemell/ ternwy logic:

Transistor is a device which has two stable statcs. This is the basic element of modern digital electronic

circuits. Such circuit is not availablc till now that gives 3 stable output states. This type of device is a

hot topic of researeh for the electronic engineers. Such device ean ehange the idea of information

technology and at the same time the world also. If such device is invented then the internal eircuit of

logic gates i.e., AND. OR. NOT'. NAND gates will he changed. The input. output. noise margin and

opcrating conditions will bc dclincd again with nc\\ valucs. Thcsc arc thc ruture research topics 1"11"

.multi-valued logic circuit.

822 True Multi-valued Architecture

The architecture we have designed and discussed in the thesis is pseudo multi-valued architecture. The

truc multi-valued architecture is that which gives Illultiple output for a particular decision. That is the

comparator must have more than one outp"t 1'01' Illulti-valued comparison. In the thesis such structure

has not been described and the algorithm 1'01' that type or architecture has not been derived. The

investigation of such architecture is a potcntial rcscarch plan.

8.:;.3 VLS] design ollernwy memo,.), cell

Only a ternary device is not suflicient to design ternary system. We have to make cost benefit analysis

ol'the proposcd architecture or system. II'we introduce ternary mcmory system. i.e. the hits will store 3

I"glc levels instead of 2 then the memory cell will hc changed. It will require more space individually.

Additional circuit may be needed to read. write and rerresh the contents of the memory. So total space

requirement will be changed and time rcquircmcnl It»" di rrcrcnt operations arc not same. A detailed

VI.SI design of this type of memory architecture is compulsory to determine the power requirement.

delay and space requirement of the circuit. Then it will he helprul to take decision on introducing

ternary memory system.
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8.1.-1 Double Precision Floating Point Comparator

Double precision comparators are not easy like integer comparator. We have to compare the separate

parts of the double precision number separately. For designing multi-valued double precision floating

point comparator we have to be carellI!. Additional circuits must be added for such type of

comparators.

8.2.5 Detailed circui! diagram
L

.The tirst step of system design is block diagram. The second step is circuit diagram. The final step is

VL.SI layout design of different layers. The second steps i.e.. detailed circuit diagram of multi-valued

integer and double precision floating point comparators may bc a research project. There are so many

circuit simulators which is very helpful to justify the circuit atier designing.

8. 2. n Cost Benefit Analysis

It is obvious that introducing multi-valued system requires additional cost and additional space. But we

also found that the more the degrce of multi-valucd comparator the more benefit we can earn by using

it Illr quick-sort algorithm. There arc so many algorithms that may use the multi-valued comparators

successfully. These algorithms arc the future development of the topic. Introducing some positive

weights on quick response and negative weights on II/W complexity we can establish a formula which

mal be helpful lor decision making of introducing multi-valued comparators.

8. 2.7 Exact Simulation of Multi-valued Comparator

As wc are not getting readyillade multi-valued comparator, simulation is the only way of research. To

simulate different comparators we have to simulate the work !low ofthc comparators. The integers and

Iloaling point numbers will be stored in a character array as a stream of as and I s and the program will

work only with.os and 1s. The operations will be done on these bit streams only during the simulation.

This may be the exact simulation of the processor. Thc time requirement of this simulation may be

helpful to compare thc architecture. Besic\cs this. VI i1)L representation can serve the purpose also.
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8.2.8 Perfect Analysis o{Multi-valued Quick-sol'/using lIIul/i-valued comparator

The average case analysis of multi-valued quick-sort is very necessary to determine the perfeet

Cl1ll1plexity of multi-valued quick-sort algorithm. Without this complexity analysis the performance

criteria of multi-valued architecture cannot bc estimated perfectly. Statistical probability analysis is

also necessary for this purpose. Researchcrs with strong mathematical and statistical background may

carry out such research. The average case complexity analysis of other multi-valued partitioning

algmithms are also prospective futurc rescarch area .

•
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