### Date : 01/07/2015

### BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 B. Sc. Engineering Examinations 2013-2014

Sub :  $ME \ 265$  (Thermodynamics and Heat Transfer  $\mathbf{I}$ )

Full Marks : 280 Time : 3 Hours

The figures in the margin indicate full marks. Assume a reasonable value for any missing data. USE SEPARATE SCRIPTS FOR EACH SECTION

### $\underline{SECTION - A}$

There are FOUR questions in this Section. Answer any THREE.

| 1. | (a) Define Zeroth law of thermodynamics. Explain its importance.                            | (10)                              |
|----|---------------------------------------------------------------------------------------------|-----------------------------------|
| •  | (b) Differentiate between reversible and irreversible process. What are the main causes     |                                   |
|    | that render irreversibility in a system?                                                    | (12)                              |
|    | (c) Steam enters a turbine operating at steady state with a mass flow rate of 4600 kg/h.    |                                   |
|    | The turbine develops a power output of 1000 kW. At the inlet, the pressure is 60 bar, the   |                                   |
|    | temperature is 400°C, and the velocity is 10 m/s. At the exit, the pressure is 0.1 bar, the |                                   |
|    | quality is 0.9(90%) and velocity is 50 m/s. Calculate the rate of heat transfer between the |                                   |
|    | turbine and surroundings.                                                                   | (24 <sup>2</sup> / <sub>3</sub> ) |
| 2. | (a) At the beginning of compression process of an air standard diesel cycle operating with  |                                   |
|    | compression ratio of 18, the temperature is 300 K and pressure is 0.1 MPa. The cutoff       |                                   |
|    | ratio for the cycle is 2. Determine:                                                        | (24 <sup>2</sup> / <sub>3</sub> ) |
|    | (i) the temperature and pressure at end of each process of the cycle.                       |                                   |
|    | (ii) the thermal efficiency, and                                                            |                                   |
|    | (iii) the mean effective pressure                                                           |                                   |
|    | (b) Deduce an expression for the thermal efficiency in terms of pressure ratio of a         |                                   |
|    | Brayton cycle.                                                                              | (22)                              |
| 3. | (a) Give the following statement of second law of thermodynamics:                           | (10)                              |
|    | (i) Clausius statement                                                                      |                                   |
|    | (ii) Kelvin-Planck statement                                                                |                                   |
|    | (b)What do you understand by boiler mountings and accessories? Give Five examples of        |                                   |
|    | each category.                                                                              | (12)                              |
|    | (c) What is an economizer? With a net sketch explain its working principle.                 | (12%)                             |
|    | (d) How can the efficiency of the Rankine cycle be increased? Explain briefly.              | (12)                              |

Contd ..... P/2

### **ME 265(IPE)**

| 4. | (a) What are the differences between conventional and Renewable source of energy? |       |
|----|-----------------------------------------------------------------------------------|-------|
|    | Explain the nuclear Fusion reaction.                                              | (16%) |
|    | (b) Explain different techniques that can be employed to utilize solar energy.    | (14)  |
|    | (c) With a neat sketch and T-s diagram, briefly describe combined gas-vapor power |       |
|    | cycle.                                                                            | (10)  |
|    | (d) What do you mean by "Perpetual motion machine of First kind (PMM-I)"          | (6)   |

#### <u>SECTION – B</u>

There are FOUR questions in this Section. Answer any THREE.

5. (a) A plate consists of two layers of insulation pressed against each other. Do we need to be concerned about the thermal contact resistance at the interface in a heat transfer analysis or can we just ignore it? Why?

(b) The interior of a refrigerator having inside dimensions of 50 cm  $\times$  50 cm base area and 120 cm height needs to be maintained at 5°C. The walls of the refrigerator are constructed of two mild steel sheets (each 3 mm thick) and a glass wool insulation layer of 5 mm between them. The convective heat transfer coefficient inside the refrigerator is 10.6 W/m<sup>2</sup>°C. The refrigerator is placed in a kitchen at 27°C and with a convective transfer coefficient of 25 W/m<sup>2</sup>°C. Assuming that the refrigerator gains heat only by the side walls, determine the rate of heat gain.

Assume, k (mild steel) =  $46.4 \text{ W/m}^{\circ}\text{C}$ , and k (glass wool) =  $0.0464 \text{ W/m}^{\circ}\text{C}$ .

(c) An electrical current of 500 A flows through a stainless steel cable having a diameter of 5 mm and an electrical resistance of  $6 \times 10^{-4} \Omega/m$  (per meter of the cable length). The cable is in an environment having a temperature of 30°C, and the heat transfer coefficient between the cable and environment is approximately 25 W/m<sup>2</sup>.K.

(i) If a very thin coating of electric insulation is applied to the cable, with a contact resistance of 0.02 m<sup>2</sup>.K/W, what will be the insulation outer surface temperature? (ii) What thickness (t) of this insulation (k = 0.5) W/m.K) will yield the lowest value of the maximum insulation temperature?

6. (a) Define Biot number and Nusselt number. Write down their physical significance.
(b) Prove that for a body with negligible internal thermal resistance, the transient temperature response for heating or cooling can be obtained from the relation-The symbols have their usual meanings.

$$\frac{T(t) - T\infty}{T_i - T\infty} = e^{-bt} \qquad \text{where} \qquad b = \frac{hA_s}{\rho VC_p}$$

The symbols have their usual meanings.

Contd ..... P/3

(20)

 $(22\frac{2}{3})$ 

(8)

(18)

(4)

= 2 =

### <u>ME 265(IPE)</u>

### Contd ... Q. No. 9

(c) Cylindrical pieces of size 60 mm dia and 60 mm height with density = 7800 kg/m<sup>3</sup>, specific heat = 486 J/kgK and thermal conductivity = 43 W/mK are to be heat treated. The pieces initially at 35°C are placed in a furnace at 800°C with convection coefficient at the surface of 85 W/m<sup>2</sup>K. Determine the time required to heat the pieces to the required temperature of 650°C.

If by mistake the pieces were taken out of the furnace after 300 seconds, determine the shortfall in the temperature requirement.

7. (a) What do you understand by the velocity and thermal boundary layers? (10)

(b) How does fouling deteriorate the performance of a heat exchanger?

(c) Why is Logarithmic Mean Temperature Difference (LMTD) used in the analysis of heat exchanger?

(d) Glycerin ( $C_P = 2400 \text{ J/kg}^\circ\text{C}$ ) at 20°C and 0.3 kg/s is to be heated by ethylene glycol ( $C_P = 2500 \text{ J/kg}^\circ\text{C}$ ) at 60°C in a thin-walled double-pipe parallel-flow heat exchanger. The temperature difference between the two fluids is 15°C at the outlet of the heat exchanger. If the overall heat transfer coefficient is 240 W/m<sup>2</sup>°C and the heat transfer surface area is 3.2 m<sup>2</sup>, determine (a) the rate of heat transfer, (b) the outlet temperature of the glycerin, and (c) the mass flow rate of the ethylene glycol.

8. (a) Write down the assumptions that are made for an ideal vapor-compression refrigeration system.

(b) What are the main differences between window-type and split-type air conditioning system?

(c) Define a refrigerant. Write down the chemical formula and type for the following refrigerants – R12, R717, R134, R50, and R290.

(d) A refrigeration plant running on an ideal vapor-compression refrigeration cycle operated between the condensing and evaporating pressures of 0.9 MPa and 200 kPa, respectively. For a refrigerant R-134a, the saturated refrigerant vapor coming out of the evaporator has an enthalpy of 244.5 kJ/kg and superheated refrigerant vapor at the end of the compression process has an enthalpy of 275.8 kJ/kg. The condensed refrigerant has an enthalpy of 101.6 kJ/kg. The amount of heat dissipated to the environment by the condenser is 56 kW.

Show this cycle on a T-s diagram and determine-(i) The mass flow rate of refrigerant, (ii) Refrigeration effect in kW, and (iii) The COP

How, also determine the isentropic efficiency of the compressor if the superheated refrigerant vapor at the end of the compression process has an enthalpy of 292.5 kJ/kg.

(8)

(8)

 $(20\frac{2}{3})$ 

 $(20\frac{2}{3})$ 

(8)

(8)

(10)

 $(20\frac{2}{3})$ 

|              |                  | Spec             | TED STE<br>vol.<br>-kg | Int. E<br>kJ/  | ner.         | Enth<br>kJ/                 | alpy         | Entr<br>kJ=(k           |                |
|--------------|------------------|------------------|------------------------|----------------|--------------|-----------------------------|--------------|-------------------------|----------------|
| v            |                  | Sat.             | Sat.                   | Şat.           | Sat.         | Sat.                        | Sat.         | Sat.                    | Sat.           |
| T            | P                | liq.             | vap.                   | lig.           | vap.         | lig.                        | vap.         | tiq.                    | vap.           |
| °C           | bar              | Vr               | vg                     | Uf             | սց           | hr                          | hg           | S <sub>f</sub>          | Sg             |
|              | . (              | X 1000           |                        |                |              | - <u> </u>                  | 2501         | 0                       | 9.156          |
| 0.01         | 0.0061           | 1.0002           | 206.1                  | 0.01           | 2376<br>2381 | 0.01<br>16.79               | 2501<br>2509 | 0.061                   | 9.150          |
| 4            | 0.0081           | 1.0001<br>1.0001 | 157.2<br>147.1         | 16.79<br>21.00 | 2383         | 21                          | 2511         | 0.0762                  | 9.026          |
| 5            | 0.0087           | 1.0001           | 137.7                  | 25.21          | 2384         | 25.21                       | 2512         | 0.0912                  | 9.000          |
| 6<br>8       | 0.0093<br>0.0107 | 1.0001           | 120.9                  | 33.61          | 2387         | 33.61                       | 2516         | 0.1212                  | 8.950          |
| 10           | 0.0107           | 1.0001           | 106.4                  | 42.01          | 2389         | 42.01                       | 2520         | 0.151                   | 8.901          |
| 11           | 0.0123           | 1.0007           | 99.86                  | 46.19          | 2391         | 46.19                       | 2522         | 0.1658                  | 8.876          |
| 12           | 0.0140           | 1.0007           | 93.79                  | 50.40          | 2392         | 50.4                        | 2523         | 0.1806                  | 8.852          |
| 13           | 0.0150           | 1.0007           | 88.13                  | 54.59          | 2393         | 54.59                       | 2525         | 0.1953                  | 8.828          |
| 14           | 0.0160           | 1.0007           | 82.85                  | 58.80          | 2394         | 58.8                        | 2527         | 0.2099                  | 8.805          |
| 15           | 0.0170           | 1.0007           | 77. <del>9</del> 3     | 62.99          | 2396         | 62.99                       | 2529         | 0.2245                  | 8.781          |
| 16           | 0.0182           | 1.0013           | 73.34                  | 67,17          | 2397         | 67.17                       | 2531         | 0.239<br>0.2535         | 8.758<br>8.735 |
| 17           | 0.0194           | 1.0013           | 69.05                  | 71.36          | 2399         | 71.36                       | 2533<br>2534 | 0.2535                  | 8.712          |
| 18           | 0.0206           | 1.0013           | 65.04                  | 75.57<br>79.76 | 2400<br>2401 | 75.57<br>79.76              | 2534         | 0.2823                  | 8.690          |
| 19<br>20     | 0.0220           | 1.0013<br>1.002  | 61.30<br>57.79         | 79.76<br>83.94 | 2403         | 83.94                       | 2538         | 0.2966                  | 8.667          |
| 20<br>21     | 0.0234<br>0.0249 | 1.002            | 54.52                  | 88.13          | 2403         | 88.13                       | 2540         | 0.3108                  | 8.645          |
| 21           | 0.0249           | 1.002            | 54.52                  | 92.32          | 2404         | 92.32                       | 2542         | 0.3251                  | 8.623          |
| 22           | 0.0284           | 1.0026           | 48.58                  | 96.50          | 2407         | 96.5                        | 2544         | 0.3392                  | 8.601          |
| 23           | 0.0298           | 1.0026           | 45.89                  | 100.7          | 2409         | 100.7                       | 2545         | 0.3533                  | 8.579          |
| .25          | 0.0317           | 1.0032           | .43.36                 | 104.9          | 2410         | 104.9                       | 2547         | 0.3673                  | 8.558          |
| 26           | 0.0336           | 1.0032           | 41.00                  | 109.0          | 2411         | 109.0                       | 2549         | 0.3814                  | 8.537          |
| 27           | 0.0357           | 1.0032           | 38.78                  | 113.2          | 2412         | 113.2                       | 2551         | 0.3953                  | 8.515<br>8.495 |
| 28           | 0.0378           | 1.0038           | 36.69                  | 117.4          | 2414         | 117.4                       | 2553<br>2554 | 0.4093<br>0.4231        | 8.475          |
| 29           | 0.0401           | 1.0038           | 34.73                  | 121.6          | 2415<br>2416 | 121.6<br>125.8              | 2554<br>2556 | 0.4251                  | 8.453          |
| 30           | 0.0425<br>0.0450 | 1.0045<br>1.0045 | 32.90<br>31.17         | 125.8<br>130.0 | 2418         | 130.0                       | 2558         | 0.4507                  | 8.433          |
| 31<br>32     | 0.0450           | 1.0045           | 29.54                  | 134.1          | 2419         | 134.1                       | 2560         | 0.4644                  | 8.413          |
| 32<br>33     | 0.0503           | 1.0051           | 28.01                  | 138.3          | 2421         | 138.3                       | 2562         | 0.478                   | 8.393          |
| 34           | 0.0532           | 1.0057           | 26.57                  | 142.5          | 2422         | 142.5                       | 2563         | 0.4917                  | 8.373          |
| 35           | 0.0563           | 1.0057           | 25.22                  | 146.7          | 2423         | 146.7                       | 2565         | 0.5053                  | 8.353          |
| 36           | 0.0595           | 1.0063           | 23.94                  | 150.8          | 2425         | 150.8                       | 2567         | 0.5188                  | 8.333          |
| 38           | 0.0663           | 1.007            | 21.60                  | 159.2          | 2427         | 159.2                       | 2571         | 0.5457                  | 8,295          |
| 40           | 0.0738           | 1.0076           | 19.52                  | 167.5          | 2430         | 167.5                       | 2574         | 0.5725                  | 8.257          |
| 45           | 0.0959           | 1.010            | 15.26                  | 188.4          | 2437         | 188.4                       | 2583         | 0.6386<br>0.7037        | 8.165<br>8.076 |
| 50           | 0.1235           | 1.012            | 12.03                  | 209.3<br>230.2 | 2443<br>2450 | 209.3<br>230.2              | 2592<br>2601 | 0.7679                  | 7,991          |
| 55           | 0.1576           | 1.015            | 9.569<br>7.671         | 250.2          | 2450<br>2457 | _250.2<br>_251.1            | 2610         | 0.8311                  | 7.910          |
| 60<br>65     | 0.1994<br>0.2503 | 1.017            | 6.197                  | 272.0          | 2463         | 272.0                       | 2618         | 0.8934                  | 7.831          |
| 65<br>70     | 0.2303           | 1.023            | 5.042                  | 293.0          | 2470         | 293.0                       | 2627         | 0.9549                  | 7.755          |
| 75           | 0.3858           | 1.026            | 4.131                  | 313.9          | 2476         | 313.9                       | 2635         | 1.016                   | 7.682          |
| 80           | 0.4739           | 1.029            | 3.407                  | 334.8          | 2482         | 334.9                       | 2644         | 1.075                   | 7.612          |
| 85           | 0.5783           | 1.033            | 2.828                  | 355.8          | 2488         | 355.9                       | 2652         | 1,134                   | 7.544          |
| <b>9</b> 0   | 0.7013           | 1.036            | 2.361                  | 376.8          | 2494         | 376.9                       | 2660         | 1.193                   | 7.479<br>7.416 |
| 95           | 0.8455           | 1.039            | 1.982                  | 397.9          | 2501         | 398.0                       | 2668<br>2676 | 1.250<br>1.307          | 7.355          |
| 100          | 1.013            | 1.044            | 1.673                  | 418.9<br>461.1 | 2507<br>2518 | 419.0<br>461.3              | 2676<br>2691 | 1.418                   | 7.239          |
| 110          | 1.433<br>1.985   | 1.052<br>1.060   | 1.21<br>0.892          | 503.5          | 2510         | 401.3<br>503.7              | 2706         | 1.528                   | 7,130          |
| 120<br>130   | 2.701            | 1.060            | 0.669                  | 546.0          | 2529         | 546.3                       | 2720         | 1.634                   | 7.027          |
| 140          | 3.613            | 1.080            | 0.509                  | 588.7          | 2550         | 589.1                       | 2734         | 1.739                   | 6.930          |
| 150          | 4.758            | 1.091            | 0.393                  | 631.7          | 2559         | 632.2                       | 2746         | 1.842                   | 6.838          |
| 160          | 6.178            | 1.102            | 0.307                  | 674.9          | 2568         | 675.5                       | 2758<br>2769 | 1 <i>.</i> 943<br>2.042 | 6,750<br>6,666 |
| 170          | 7.916            | 1.114            | 0.243                  | 718.3<br>762.1 | 2576<br>2584 | 71 <del>9</del> .2<br>763.2 | 2769         | 2.042                   | 6.586          |
| 180<br>190   | 10.02<br>12.54   | 1.127<br>1.141   | 0.194<br>0.157         | 806.2          | 2584         | 807.6                       | 2786         | 2.236                   | 6.508          |
| 200          | 12.54            | 1.156            | 0.127                  | 850.6          | 2596         | 852.4                       | 2793         | 2.331                   | 6.432          |
| 200          | 19.06            | 1.172            | 0.104                  |                | 2600         | 897.8                       | 2798         | 2.425                   | 6.358          |
| 220          |                  | 1.190            | 0.086                  | 940.8          | 2603         | 943.6                       | 2802         |                         | 6.286          |
| <b>230</b> · | 27.95            | 1.209            | 0.072                  | 986.7          | 2603         | 990.1                       | 2804         | 2.610                   | 6.215          |
| 240          | 33.44            | 1.229            | 0.06                   | 1033           | 2603         | 1037.3                      | 2804         | 2.702                   | 6.144          |
| 250          | 39.73            | 1.251            | 0.05                   | 1080           | 2603         | 1085.3                      | 2802<br>2707 | 2.793<br>2.884          | 6.073<br>6.002 |
| 260          | 46.88            | 1.275            | 0.042                  | 1128           | 2600<br>2502 | 1134.4<br>1184.5            | 2797<br>2790 | 2.864                   | 5,930          |
| 270          | 54.98            | 1.302            | 0.036<br>0.03          | 1177<br>1227   | 2592<br>2587 | 1236.0                      | 2790         | 3.067                   | 5.857          |
| 280<br>290   | 64.11<br>74.36   | 1.332<br>1.365   | 0.03                   | 1227           | 2573         | 1289.0                      | 2766         | 3.159                   | 5.782          |
| 290<br>300   | 85.81            | 1.403            | 0.022                  | 1332           | 2560         | 1344.0                      | 2749         | 3.253                   | 5,704          |
| 320          | 112.7            | 1.499            | 0.015                  | 1445           | 2531         | 1461.5                      | 2700         | 3.448                   | 5,536          |
| 340          | 145.9            | 1.638            | 0.011                  | 1570           | 2462         | 1594.1                      | 2622         | 3.659                   | 5.336          |
| 360          | 186.5            | 1.893            | 0.007                  | 1725           | 2351         | 1760.5                      | 2481         | 3.915<br>4.430          | 5.053<br>4.430 |
| 374.14       | 220.9            | 3.155            | 0.003155               | 2030           | 2030         | 2099.3                      | 2099         | 4.450                   | 4,430          |

<del>Ŷ</del>

| ATURATED | STEAM - | PRESSURF | TARLE |
|----------|---------|----------|-------|
|          |         |          |       |
|          |         |          |       |
|          |         |          |       |

| ،<br>بېرىسىنى | ····· | SAT   | URATE    | ED STEAM - PRESSURE TABLE |         |                |         |       |         |
|---------------|-------|-------|----------|---------------------------|---------|----------------|---------|-------|---------|
|               |       | Sp    | ec. vol. | Int                       | . Ener. |                | nthalpy |       | ntropy  |
|               |       |       | n³=kg    |                           | cJ/kg   |                | kJ/kg   |       | =(kg°K) |
| Ρ             | T     | Sat.  | Sat.     | Sat.                      | Sat.    | Sat.           | Sat.    | Sat.  | Sat.    |
| bar           | °C    | liq.  | vap      | llq. '                    | vap,    | llq.           | vap.    | tiq.  | vap.    |
|               | · · · | ٧r    | Vģ       | Uf                        | Ug      | h <sub>f</sub> | hg      | Sf    | Sg      |
|               |       | ×1000 |          |                           |         |                | 2       |       | . ¥     |
| 0.04          | 28.96 |       | 34.80    | 121.4                     | 2415    | 121.4          | 2554    | 0.423 | 8.475   |
| 0.06          | 36.15 |       | 23.75    | 151.5                     | 2425    | 151.5          | 2567    | 0.521 | 8.331   |
| 0.08          | 41.5  | 1.008 | 18.11    | 173.8                     | 2432    | 173.8          | 2577    | 0.593 | 8.229   |
| 0.1           | 45.8  | 1.010 | 14.68    | 191.8                     | 2438    | 191.8          | 2585    | 0.649 | 8.150   |
| 0.2           | 60.07 | 1.017 |          | 251.4                     | 2457    | 251.4          | 2610    | 0.832 | 7.908   |
| 0.3           | 69.11 | 1.023 | 5.229    | 289.2                     | 2468    | 289.2          | 2625    | 0.944 | 7.769   |
| 0.4           | 75.87 | 1.026 | 3.994    | 317.5                     | 2477    | 317.6          | 2637    | 1.026 | 7.670   |
| 0.5           | 81.33 | 1.030 | 3,240    | 340.4                     | 2484    | 340.5          | 2646    | 1.091 | 7.594   |
| 0.6           | 85.94 | 1.033 |          | 359.8                     | 2490    | 359.9          | 2653    | 1.145 | 7.532   |
| 0.7           | 89.95 | 1,036 | 2.365    | 376.6                     | 2494    | 376.7          | 2660    |       | 7.480   |
| 0.8           | 93.5  | 1.039 | 2.087    | 391.6                     | 2499    | 391.7          | 2666    | 1.233 | 7.435   |
| 0.9           | 96.71 | 1.041 | 1.870    | 405.1                     | 2503    | 405.1          | 2671    | 1.270 | 7.395   |
| 1             | 99.62 | 1.043 | 1.694    | 417.3                     | 2506    | 417,4          | 2675    | 1,303 | 7,359   |
| 1.5           | 111.4 | 1.053 | 1.159    | 466.9                     | 2520    | 467.1          | 2694    | 1.434 | 7.223   |
| 2             | 120.2 | 1.061 | 0.886    | 504.5                     | 2530    | 504.7          | 2707    | 1.530 | 7.127   |
| 3             | 133.6 | 1.073 | 0.606    | 561.1                     | 2544    | 561.5          | 2725    | 1.672 | 6.992   |
| 4             | 143.6 | 1.084 | 0.463    | 604.3                     | 2554    | 604,8          | 2739    | 1,777 | 6.896   |
| 5             | 151.9 | 1.093 | 0.375    | 639.7                     | 2561    | 640.2          | 2749    | 1.861 | 6.821   |
| 6             | 158.9 | 1.101 | 0.316    | 669.9                     | 2567    | 670.6          | 2757    | 1.931 | 6.760   |
| 7             | 165.0 | 1.108 | 0.273    | 696.4                     | 2573    | 697.2          | 2764    | 1.992 | 6.708   |
| 8<br>9        | 170.4 | 1.115 | 0.240    | 720.2                     | 2577    | 721.1          | 2769    | 2.046 | 6.663   |
|               | 175.4 | 1.121 | 0.215    | 741.8                     | 2580    | 742.8          | 2774    | 2.095 | 6.623   |
| 10            | 179.9 | 1.127 | 0.194    | 761.7                     | 2584    | 762.8          | 2778    | 2,139 | 6.586   |
| 20            | 212.4 | 1.177 | 0.100    | 906.4                     | 2600    | 908.8          | 2800    | 2,447 | 6.341   |
| 30            | 233.9 | 1.217 | 0.067    | 1005                      | 2604    | 1008           | 2804    | 2.646 | 6.187   |
| 40            | 250.4 | 1.252 | 0.050    | 1082                      | 2602    | 1087           | 2801 -  | 2.796 | 6.070   |
| 50            | 264.0 | 1.286 | 0.039    | 1148                      | 2597    | 1154           | 2794    | 2.920 | 5.973   |
| 60<br>70      | 275.6 | 1.319 | 0.032    | 1205                      | 2590    | 1213           | 2784    | 3.027 | 5.889   |
| 70            | 285.9 | 1.352 | 0.027    | 1258                      | 2580    | 1267           | 2772    | 3.121 | 5.813   |
| 80            | 295.1 | 1.384 | 0.024    | 1306                      | 2570    | 1317           | 2758    | 3.207 | 5.743   |
| 90            | 303.4 | 1.418 | 0.021    | 1350                      | 2558    | 1363           | 2742    | 3.286 | 5.677   |
| 100           | 311.1 | 1.453 | 0.018    | 1393                      | 2545    | 1408           | 2725    | 3.360 | 5.614   |
| 110           | 318.Z | 1.489 | 0.016    | 1434                      | 2530    | 1450           | 2706    | 3.429 | 5.553   |
| 120           | 324.8 | 1.527 | 0.014    | 1473                      | 2513    | 1491           | 2685    | 3.496 | 5.492   |
| 130           | 331.0 | 1.567 | 0.013    | 1511                      | 2496    | 1532           | 2662    | 3.561 | 5.432   |
| 140           | 336.8 | 1.611 | 0.012    | 1549                      | 2477    | 1571 -         | 2638    | 3.623 | 5.372   |
| 150           | 342.3 | 1.658 | 0.010    | 1586                      | 2456    | 1611           | 2611    | 3.685 | 5.310   |
| 160           | 347.4 | 1.711 | 0.009    | 1623                      | 2432    | 1650           | 2581    | 3.746 | 5.246   |
| 170           | 352,4 | 1.770 | 0.008    | 1660                      | 2405    | 1690           | 2547    | 3.808 | 5.178   |
| 180           | 357.0 | 1.839 | 0.008    | 1699                      | 2375    | 1732           | 2510    | 3.871 | 5.105   |
| 190           | 361.5 | 1.924 | 0.007    | 1740                      | 2338    | 1776           | 2465    | 3.938 | 5.024   |
| 200           | 365.8 | 2.036 | 0.006    | 1786                      | 2295    | 1826           | 2411    | 4.013 | 4.931   |
| 220.9         | 374.1 | 3.155 | 0.003    | 2030                      | 2029    | 2099           | 2099    | 4.430 | 4.430   |
|               |       |       | ·····    |                           |         | 2017           | 2099    | 4.450 | 4.430   |

## SUPERHEATED STEAM

|     | -     |        | 7    | // ky, ir iii | KJ/Kg, 3 11 | $P = 0^{\circ}$       | 35 bar |       |
|-----|-------|--------|------|---------------|-------------|-----------------------|--------|-------|
|     | P     | = 0.06 | bar  |               |             | <u>. 1 – 01.</u><br>U | h      | s     |
| T   | v     | u      | h    | S             | <u></u>     | 2484                  | 2646   | 7.756 |
| 80  | 27.13 | 2487   | 2650 | 8.580         | 4.625       |                       |        | 7.863 |
|     | 28.68 | 2516   | 2688 | 8.685         | 4.895       | 2513                  | 2684   | 7.863 |
| 100 |       | 2545   | 2726 | 8.784         | 5.163       | 2542                  | 2723   |       |
| 120 | 30.22 | _      | 2802 | 8,969         | 5.696       | 2601                  | 2801   | 8.152 |
| 160 | 33.30 | 2603   |      | 9.140         | 6.228       | 2660                  | 2878   | 8.324 |
| 200 | 36.38 | 2661   | 2880 |               | 6.757       | 2720                  | 2957   | 8,483 |
| 240 | 39.46 | 2721   | 2958 | 9,298         |             | 2781                  | 3036   | 8.631 |
| 280 | 42.54 | 2782   | 3037 | 9.446         | 7.286       |                       | 3116   | 8.771 |
| 320 | 45.62 | 2843   | 3117 | 9.586         | 7.814       | 2843                  |        |       |
| _   | . –   | 2905   | 3198 | 9.718         | 8.341       | 2905                  | 3197   | 8.903 |
| 360 | 48.69 |        | 3280 | 9,843         | 8.872       | 2969                  | 3279   | 9.029 |
| 400 | 51.77 | 2969   |      | 9,992         | 9,532       | 3049                  | 3383   | 9.178 |
| 450 | 55.62 | 3050   | 3383 |               | 10.19       | 3132                  | 3489   | 9.319 |
| 500 | 59.47 | 3132   | 3489 | 10.13         | 10.17       | 21.52                 |        |       |

### SUPERHEATED STEAM

|       |       | 1         | - u lo k | Vka h in | kJ/kg, s in                               | kJ=(kg° | K)   |       |  |  |
|-------|-------|-----------|----------|----------|-------------------------------------------|---------|------|-------|--|--|
|       |       |           |          |          | $J/kg, s in kJ=(kg^{\circ}K)$<br>P= 1 bar |         |      |       |  |  |
|       | ł     | b = 0.7 k | bar      |          | v                                         | u       | h    | S     |  |  |
| T     | ٧     | U         | h        | S        | 1.695                                     | 2506    | 2676 | 7,361 |  |  |
| 100   | 2.434 | 2510      | 2680     | 7.534    | 1.793                                     | 2537    | 2717 | 7,467 |  |  |
| 120   | 2.571 | 2540      | 2720     | 7.637    |                                           |         | 2796 | 7.660 |  |  |
| 160   | 2.841 | 2599      | 2798     | 7.828    | 1.984                                     | 2598    | 2875 | 7.834 |  |  |
| 200   | 3,108 | 2659      | 2877     | 8.001    | 2.172                                     | 2658    |      | 7.995 |  |  |
| 240   | 3.374 | 2719      | 2956     | 8.161    | 2.359                                     | 2719    | 2954 |       |  |  |
| - · · | 3.639 | 2780      | 3035     | 8.310    | 2.545                                     | 2780    | 3034 | 8,144 |  |  |
| 280   |       | 2842      | 3115     | 8,450    | 2.730                                     | 2842    | 3115 | 8.285 |  |  |
| 320   | 3,904 |           | 3196     | 8.583    | 2.917                                     | 2904    | 3196 | 8.417 |  |  |
| 360   | 4,170 | 2905      |          | 8,708    | 3,102                                     | 2968    | 3278 | 8.543 |  |  |
| 400   | 4,434 | 2968      | 3279     |          | 3.334                                     | 3049    | 3382 | 8,693 |  |  |
| 450   | 4.764 | 3049      | 3383     | 8.858    | 3,565                                     | 3132    | 3488 | 8.834 |  |  |
| 500   | 5.094 | 3132      | 3488 -   | 8.999    |                                           |         | 3596 | 8.969 |  |  |
| 550   | 5.423 | 3213      | 3593     | 9.129    | 3.796                                     | 3216    |      | 9.097 |  |  |
| 600   | 5.753 | 3298      | 3701     | 9.257    | 4.027                                     | 3302    | 3705 | 7.071 |  |  |
| 000   | 0.100 |           |          |          |                                           |         |      |       |  |  |

### SUPERHEATED STEAM

|     | v     | in m <sup>3</sup> =k | (g, u in k | U/kg, h in | kJ/kg, s in | $kJ = (kg^{\circ})$ | <)<br>bar |         |
|-----|-------|----------------------|------------|------------|-------------|---------------------|-----------|---------|
|     | F     | P= 1,5 ∣             | bar        |            | h           | Ś                   |           |         |
| l l | V     | u                    | ħ          | S          |             |                     | XXX       | XXX     |
| 120 | 1,188 | 2533                 | 2711       | 7.269      | XXX         |                     | 2782      | 7.128   |
| 160 | 1,317 | 2595                 | 2793       | 7.466      | 0.6506      | 2587                |           | 7.311   |
| 200 | 1.444 | 2656                 | 2873       | 7.643      | 0.7162      | 2651                | 2866      |         |
|     | 1.570 | 2717                 | 2953       | 7.805      | 0.7802      | 2713                | 2947      | 7.477   |
| 240 |       | 2779                 | 3033       | 7.955      | 0.8438      | 2775                | 3029      | 7.630   |
| 280 | 1.694 |                      | 3113       | 8.096      | 0.9067      | 2838                | 3110      | 7.772 . |
| 320 | 1.819 | 2841                 | 3195       | 8.229      | 0.9692      | 2901                | 3192      | 7.906   |
| 360 | 1.943 | 2903                 |            | 8.355      | 1.031       | 2966                | 3275      | 8.033   |
| 400 | 2.067 | 2967                 | 3277       | 8.505      | 1.109       | 3047                | 3380      | 8,183   |
| 450 | 2.221 | 3048                 | 3382       |            | 1.186       | 3130                | 3486      | 8.325   |
| 500 | 2.376 | 3131                 | 3488       | 8.646      | 1.180       | 3215                | 3594      | 8.460   |
| 550 | 2.530 | 3216                 | 3595       | 8.781      |             | 3301                | 3703      | 8.589   |
| 600 | 2.684 | 3302                 | 3704       | 8.910      | 1.341       | 3301                | 2103      | 0.001   |

SUPERHEATED STEAM

|     | V      | In m <sup>3</sup> =k | n. u in k. | J/kg, h ln     | kJ/kg, s in l | cJ=(kg⁰k | ()     |       |
|-----|--------|----------------------|------------|----------------|---------------|----------|--------|-------|
|     |        | p = 5 ba             |            |                | <u>.</u>      | P= 7     | bar    |       |
| 200 |        |                      | <u>h</u>   | s              | V             | u        | h      | S     |
| T   | V      | <u>U</u>             | 2767       | 6.865          | XXX           | XXX      | XXX    | XXX   |
| 160 | 0.3836 | 2576                 |            | 7.059          | 0.2999        | 2635     | 2845   | 6.886 |
| 200 | 0.4249 | 2643                 | 2855       |                | 0.3292        | 2702     | 2932   | 7.064 |
| 240 | 0.4644 | 2708                 | 2940       | 7.230          | 0.3574        | 2767     | 3017   | 7.223 |
| 280 | 0.5034 | 2771                 | 3023       | 7.386          |               | 2831     | 3101   | 7.370 |
| 320 | 0.5416 | 2835                 | 3105       | 7.531          | 0.3852        |          | 3185   | 7.506 |
| 360 | 0.5795 | 2899                 | 3188       | 7.666          | 0.4125        | 2896     |        |       |
|     | 0.617  | 2963                 | 3272       | 7,793          | 0.4397        | 2961     | 3269   | 7.635 |
| 400 |        | 3045                 | 3377       | 7.945          | 0.4735        | 3043     | 3375   | 7.787 |
| 450 | 0.6642 |                      | 3484       | 8.087          | 0.507         | 3127     | 3482   | 7.930 |
| 500 | 0.7109 | 3128                 | 3592       | 8.223          | 0.5405        | 3212     | 3590 - | 8.066 |
| 550 | 0.7575 | 3213                 |            | 8.352          | 0.5738        | 3298     | 3700   | 8.195 |
| 600 | 0.8041 | 3300                 | 3702       | 8.352<br>8.476 | 0.6071        | 3387     | 3812   | 8.320 |
| 650 | 0.8505 | 3388                 | 3813       |                | 0.6403        | 3477     | 3925   | 8.439 |
| 700 | 0.8969 | 3477                 | 3926       | 8.595          | 0.0403        | 3477     |        |       |

### SUPERHEATED STEAM -kg, u in kJ/kg, h in kJ/kg, s in kJ=(kg°K)

| ·   |             |            | <u>y, u ⊪i ∧</u><br>ar | J/Kg, it in | K37 Kg; 3 m | P= 1 | 5 bar |       |
|-----|-------------|------------|------------------------|-------------|-------------|------|-------|-------|
|     |             | <u>u u</u> | h                      | S           |             | U    | h     | S     |
| 1   | V<br>0.7050 | 2622       | 2828                   | 6.694       | 0.1325      | 2598 | 2797  | 6.455 |
| 200 | 0.2059      | 2622       | 2920                   | 6.882       | 0.1482      | 2677 | 2899  | 6.663 |
| 240 | 0.2275      | 2093       | 3008                   | 7.046       | 0.1627      | 2749 | 2993  | 6.838 |
| 280 | 0.248       | _          | 3094                   | 7.196       | 0.1765      | 2817 | 3082  | 6.994 |
| 320 | 0.2678      | 2826       |                        | 7.335       | 0.1899      | 2884 | 3169  | 7,136 |
| 360 | 0.2873      | 2892       | 3179                   | 7.465       | 0.203       | 2951 | 3256  | 7.269 |
| 400 | 0.3066      | 2957       | 3264                   |             | 0.203       | 3035 | 3364  | 7.424 |
| 450 | 0.3304      | 3040       | 3371                   | 7.618       | 0.2352      | 3120 | 3473  | 7.570 |
| 500 | 0.3541      | 3124       | 3478                   | 7.762       | 0.2552      | 3206 | 3583  | 7.707 |
| 550 | 0.3776      | 3210       | 3587                   | 7,899       |             | 3200 | 3694  | 7.838 |
| 600 | 0.4011      | 3297       | 3698                   | 8.029       | 0.2668      | 3299 | 3806  | 7.964 |
| 650 | 0.4245      | 3385       | 3810                   | 8.153       | 0.2825      |      | 3920  | 8.084 |
| 700 | 0.4478      | 3475       | 3923                   | 8.273       | 0.2981      | 3473 | 3720  | 0.004 |

SUPERHEATED STEAM

|   |         | v      | in m <sup>3</sup> =k | q, u in k | J/kg, h in | kJ/    | kg, s in l                               | kJ=(kg⁰∦ | ()    |       |
|---|---------|--------|----------------------|-----------|------------|--------|------------------------------------------|----------|-------|-------|
| • | ******* |        |                      | ar        |            | 444444 | www.er////////////////////////////////// | P=30     | ) bar |       |
| • |         | · V    | u                    | h         | S.         |        | v                                        | U.       | h     | S     |
| • | 240     | 0.1084 | 2660                 | 2876      | 6.495      |        | 0.0682                                   | 2620     | 2824  | 6.226 |
|   | 240     | 0.1004 | 2736                 | 2976      | 6.683      |        | 0.0771                                   | 2710     | 2941  | 6.446 |
|   | 320     | 0.1308 | 2808                 | 3069      | 6.845      |        | 0.085                                    | 2788     | 3043  | 6.624 |
|   | -       | 0.1300 | 2877                 | 3159      | 6.992      |        | 0.0923                                   | 2862     | 3139  | 6.780 |
|   | 360     | 0.1411 | 2945                 | 3248      | 7.127      |        | 0.0994                                   | 2933     | 3231  | 6.921 |
|   | 400     | 0.1635 | 3030                 | 3357      | 7.284      |        | 0.1079                                   | 3020     | 3344  | 7.083 |
|   | 450     | 0      | 3116                 | 3468      | 7.432      |        | 0,1162                                   | 3108     | 3456  | 7.234 |
|   | 500     | 0.1757 | 3203                 | 3578      | 7.570      |        | 0.1244                                   | 3196     | 3569  | 7.375 |
|   | 550     | 0.1877 |                      |           | 7.702      |        | 0.1324                                   | 3285     | 3682  | 7.508 |
|   | 600     | 0.1996 | 3291                 | 3690      | 7.828      |        | 0.1404                                   | 3375     | 3796  | 7.636 |
|   | 650     | 0.2114 | 3380                 | 3803      |            |        |                                          | 3466     | 3912  | 7.757 |
|   | 700     | 0.2232 | 3471                 | 3917      | 7.949      |        | 0.1484                                   | 2400     | J/12  |       |

SUPERHEATED STEAM

|               | v      | in m³=k | g, u in k | J/kg, h in | kJ. | /kg, s in i | kJ=(kg⁰ł | <)   |       |
|---------------|--------|---------|-----------|------------|-----|-------------|----------|------|-------|
| , <del></del> |        |         | ar        |            | -   |             | P= 6     | bar  |       |
| . <del></del> | V      | u       | h         | S          | -   | v           | u        | h    | S     |
| 280           | 0.0555 | 2680    | 2902      | 6.257      | -   | 0.0332      | 2605     | 2804 | 5.925 |
| 320           | 0.062  | 2767    | 3015      | 6.455      |     | 0.0387      | 2720     | 2952 | 6.184 |
| 320           | 0.0679 | 2846    | 3117      | 6.621      |     | 0.0433      | 2811     | 3071 | 6.378 |
|               | 0.0734 | 2920    | 3213      | 6.769      |     | 0.0474      | 2893     | 3177 | 6.541 |
| 400<br>450    | 0.0734 | 3010    | 3330      | 6.936      |     | 0.0521      | 2989     | 3302 | 6.719 |
|               | 0.0864 | 3100    | 3445      | 7.090      |     | 0.0567      | 3082     | 3422 | 6.880 |
| 500           |        | 3189    | 3560      | 7.233      |     | 0.061       | 3175     | 3541 | 7.029 |
| 550           | 0.0927 |         | 3674      | 7.369      |     | 0.0653      | 3267     | 3658 | 7.168 |
| 600           | 0.0988 | 3279    | 3790      | 7.497      |     | 0.0694      | 3360     | 3776 | 7.299 |
| 650           | 0.1049 | 3370    |           | 7.620      |     | 0.0735      | 3453     | 3894 | 7.423 |
| 700           | 0.1109 | 3462    | 3906      |            |     | 0.0776      | 3547     | 4013 | 7.542 |
| 750           | 0.1169 | 3556    | 4023      | 7.737      |     | 0.0770      | 2041     | -010 |       |

### SUPERHEATED STEAM

|     | v      | in $m^3 = k$ | a, u in k    | J/kg, h in | kJ         | /kg, s in i | kJ=(kg°l | <u>م</u> |       |  |  |
|-----|--------|--------------|--------------|------------|------------|-------------|----------|----------|-------|--|--|
|     |        |              | ar           | -          | P= 100 bar |             |          |          |       |  |  |
|     | v      | <u> </u>     | h            | -          | V          | u           | h ·      | S        |       |  |  |
| 320 | 0.0268 | 2663         | 2877         | 5,949      |            | 0.0193      | 2588     | 2781     | 5.710 |  |  |
|     | 0.0200 | 2773         | 3020         | 6.182      |            | 0.0233      | 2729     | 2962     | 6.006 |  |  |
| 360 | 0.0307 | 2864         | 3138         | 6.363      |            | 0.0264      | 2832     | 3096     | 6.212 |  |  |
| 400 | 0.0343 | 2966         | 3272         | 6.555      |            | 0.0297      | 2944     | 3241     | 6.419 |  |  |
| 450 | 0.0382 | 3065         | 3398         | 6.724      |            | 0.0328      | 3046     | 3374     | 6.597 |  |  |
| 500 |        | 3160         | 3521         | 6.878      |            | 0.0356      | 3145     | 3501     | 6.756 |  |  |
| 550 | 0.0451 | 3254         | 3642         | 7.020      |            | 0.0384      | 3241     | 3625     | 6.903 |  |  |
| 600 | 0.0485 | 3234         | 3762         | 7.154      |            | 0.041       | 3338     | 3748     | 7.040 |  |  |
| 650 | 0.0517 | 3444         | 3882         | 7.281      |            | 0.0436      | 3434     | 3870     | 7.169 |  |  |
| 700 | 0.0548 |              | 300Z<br>4003 | 7.402      |            | 0.0461      | 3532     | 3993     | 7.291 |  |  |
| 750 | 0.0579 | 3540         | 4003         | 1.402      |            | 0.0 101     |          |          |       |  |  |

### SUPERHEATED STEAM

|     |         | The made life |                  | I/ka h in           | kJ/kg, s in l    | kJ=(kg°)     | $\overline{0}$ |                |
|-----|---------|---------------|------------------|---------------------|------------------|--------------|----------------|----------------|
| ,   |         |               | g, u in k<br>bar | <u> 37 kg, 11 m</u> | K.37 (9, 5 )     | P= 14        | 0 bar          |                |
|     | بر<br>V | - 120 C       | h                | S                   | v                | u            | h              | <u>S</u>       |
| 360 | 0.0181  | 2678          | 2896             | 5.836               | 0.0142           | 2618         | 2816           | 5.660          |
| 400 | 0.0211  | 2798          | 3051             | 6.075               | 0.0172           | 2761         | 3002           | 5.945          |
| 450 | 0.0241  | 2919          | 3208             | 6.300               | 0.0201           | 2893         | 3174           | 6.192          |
| 500 | 0.0268  | 3027          | 3348             | 6.487               | 0.0225           | 3007         | 3322           | 6.390<br>6.562 |
| 550 | 0.0293  | 3129          | 3480             | 6.653               | 0.0247           | 3113         | 3459<br>3591   | 6.717          |
| 600 | 0.0316  | 3229          | 3608             | 6.804               | 0.0268           | 3216<br>3316 | 3720           | 6.860          |
| 650 | 0.0339  | 3327          | 3734             | 6.944               | 0.0288<br>0.0307 | 3416         | 3846           | 6.994          |
| 700 | 0.0361  | 3425          | 3858             | 7.075               | 0.0307           | 3515         | 3972           | 7,120          |
| 750 | 0.0382  | 3524          | 3982             | 7.199<br>7.305      | 0.0344           | 3604         | 4085           | 7.227          |
| 800 | 0.0403  | 3611          | 4095             | 1.305               | 0.0344           | 500          |                |                |

Color

#### Date : 08/07/2015

Time : 3 Hours

### BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 B. Sc. Engineering Examinations 2013-2014

Sub : IPE 207 (Probability and Statistics)

Full Marks : 280

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

### <u>SECTION – A</u>

There are FOUR questions in this Section. Answer any THREE.

- 1. (a) Explain ordinal-level data and ratio-level data.
  - (b) Explain relative frequency distribution and cumulative frequency distribution. (12)

(c) Two computers A and B are to be marketed. A salesman who is assigned a job of finding customers for them has 60 percent and 40 percent chances respectively of succeeding in case of computers A and B. The computers can be sold independently. Given that he was able to sell at least one computer, what is the probability that the computer A has been sold?

2. (a) In a Gambling game, a woman is paid \$3 if she draws a jack or a queen and \$5 if she draws a king or an ace from an ordinary deck of 52 playing cards. If she draws any other card, she loses. How much should she pay to play if the game is fair?

(b) If a machine is set up correctly it produces 90 percent good items, if it is incorrectly setup then it produces 10 percent good items. Chances for a setting to be correct and incorrect are in the ratio of 7 : 3. After a setting is made, the first two items produced are found to be good items. What is the chance that the setting was correct?

(c) A manufacturing firm receives shipments of machine parts from two suppliers A and B. Currently, 65 percent of parts are purchased from supplier A and the remaining from supplier B. The past record shows that 2 percent of the parts supplied by A are found defective, whereas 5 percent of the parts supplied by B are found defective. On a particular day the machine breaks down because a defective part is fitted to it. Given the information that the part was bad, using Baye's theorem find the probability that it was supplied by supplier B.

3. (a) Suppose, on an average, one house in 1000, in a certain town, has a fire during the year. If there are 2000 houses, what is the probability that (i) exactly 3 houses, (ii) more than 2 houses will have fire during the year?
(b) Explain the Properties of Poisson Process.

(12)

 $(20\frac{2}{3})$ 

(14)

(14)

 $(20\frac{2}{3})$ 

(16)

(10)

### **IPE 207**

### Contd ... Q. No. 3

(c) A government task force suspects that some manufacturing companies are in violation of federal pollution regulations with regard to dumping a certain type of product. Twenty firms are under suspicion but all cannot be inspected. Suppose that 3 of the firms are in violation.

= 2 =

(i) What is the probability that inspection of 5 firms finds no violations?

(ii) What is the probability that the plan above will find two violations?

### 4. (a) What do you mean by Nonparametric methods.

(b) Explain the limitations of Chi-Square test.

(c) The bank credit card department of Carollna Bank knows from experience that 5 percent of the card holders have had some high school, 15 percent have completed high school, 25 percent have had some college, and 55 percent have completed college. Of the 500 card holders whose cards, have been called in for failure to pay their charges this month, 50 had some high school, 100 had completed high school, 190 had some college, and 160 had completed college. Can we conclude that the distribution of card holders who do not pay their charges is different from all others? Use the .01 significance level.

#### **SECTION – B**

There are FOUR questions in this Section. Answer any THREE.

- 5. (a) Describe the reasons for sampling. What do you understand by stratified random (12+5=17)sampling?  $(7\frac{2}{3})$ 
  - (b) Briefly explain the central limit theorem.
  - (c) What are the factors influencing the appropriate sample size?

(d) Marty Rowatti recently assumed the position of director of the YMCA of South Jersey. He would like some current data on how long current members of YMCA have been members. To investigate, suppose he selects a random sample of 40 current members. The mean length of membership of those included in the sample is 8.32 years and the standard deviation is 3.07 years.

(i) What is the mean of the population?

(ii) Develop a 90% confidence interval for the population mean.

(iii) The previous director, in the summary report she prepared as she retired, indicated the mean length of membership was now "almost 10 years." Does the sample information substantiate this claim? Cite evidence.

 $(20^{2/3})$ 

(6)

(15)

 $(25\frac{2}{3})$ 

(6)

(16)

### <u>IPE 207</u>

- 6. (a) Define the following terms-
  - (i) Hypothesis testing
  - (ii) Level of significance
  - (iii) Test statistic
  - (iv) Critical value
  - (v) P value
  - (b) Explain type-I error with an example.

(c) Ms. Lisa is the budget director for Nexus Inc. She would like to compare the daily travel expenses for the sales staff and the audit staff. She collected the following sample information.

| Sales (\$) | 131 | 135 | 146 | 165 | 136 | 142 |     |
|------------|-----|-----|-----|-----|-----|-----|-----|
| Audit (\$) | 130 | 102 | 129 | 143 | 149 | 120 | 139 |

At the 0.10 significance level, can she conclude that the mean daily expenses are greater for the sales staff than the audit staff? What is the p-value?

7. (a) Explain the characteristics of the F distribution.

(c) Recently four airlines have surveyed random passengers regarding their level of satisfaction with a recent flight. The sample scores are given below. The highest possible score was 100. Is there a difference in the mean satisfaction level among the four airlines? Use 0.01 significance level.

| Eastern | TWA | Northern | Ozark |
|---------|-----|----------|-------|
| 94      | 75  | 70       | 68    |
| 90      | 68  | 73       | 70    |
| 85      | 77  | 76       | 72    |
| 80      | 83  | 78       | 65    |
|         | 88  | 80       | 74    |
|         |     | 68       | 65    |
|         |     | 65       |       |

- 8. (a) Define coefficient of correlation. Write down the characteristics of coefficient of correlation.
  - (b) What is the significance of coefficient of determination?

(c) The National Highway Association is studying the relationship between the number of bidders on a highway project and the winning (lowest) bid for the project. The collected data are as follows. Determine the regression equation and the coefficient of determination. Interpret your answers.

 $(7\frac{2}{3})$ 

(24)

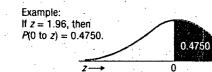
 $(11\frac{2}{3})$ 

(35)

(12)

 $(4\frac{2}{3})$ 

(30)


Contd ..... P/4

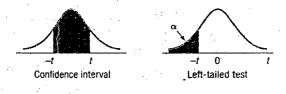
# <u>IPE 207</u> <u>Contd ... Q. No. 8(b)</u>

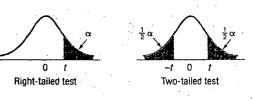
|         |            | Winning Bid    |         |            | Winning Bid    |
|---------|------------|----------------|---------|------------|----------------|
|         | No. of     |                |         | No. of     |                |
| Project |            | (\$ millions), | Project |            | (\$ millions), |
|         | Bidders, X |                |         | Bidders, X |                |
|         |            | Y              |         |            | Y              |
| 1       | 9          | 5.1            | 9       | 6          | 10.3           |
| 2       | 9          | 8.0            | 10      | 6          | 8.0            |
| 3       | 3          | 9.7            | 11      | 4          | 8.8            |
| 4       | 10         | 7.8            | 12      | 7          | 9.4            |
| 5       | 5          | 7.7            | 13      | 7          | 8.6            |
| 6       | 10         | 5.5            | 14      | 7          | 8.1            |
| 7       | 7          | 8.3            | 15      | 6          | 7.8            |
| 8       | 11         | 5.5            |         |            |                |

# Appendix B: Tables

### **B.1 Areas under the Normal Curve**




|              | •        |        |        |        |          |                |         |        | <ul> <li>.</li> </ul> |        |
|--------------|----------|--------|--------|--------|----------|----------------|---------|--------|-----------------------|--------|
| Z            | 0.00     | 0.01   | 0.02   | 0.03   | 0.04     | 0.05           | 0.06    | 0.07   | 0.08                  | 0.09   |
| 0.0          | 0.0000   | 0.0040 | 0.0080 | 0.0120 | 0.0160   | 0.0199         | 0.0239  | 0.0279 | 0.0319                | 0.0359 |
| 0.1          | 0.0398   | 0.0438 | 0.0478 | 0.0517 | 0.0557   | 0.0596         | 0.0636  | 0.0675 | 0.0714                | 0.0753 |
| 0.2          | . 0.0793 | 0.0832 | 0.0871 | 0.0910 | 0.0948   | 0.0987         | 0.1026  | 0.1064 | 0.1103                | 0.1141 |
| 0.3          | 0.1179   | 0.1217 | 0.1255 | 0.1293 | 0.1331   | 0.1368         | 0.1406  | 0.1443 | 0.1480                | 0.1517 |
| 0.4          | 0.1554   | 0.1591 | 0.1628 | 0.1664 | · 0.1700 | 0.1736         | 0.1772  | 0.1808 | 0.1844                | 0,1879 |
| 0.5          | 0.1915   | 0.1950 | 0.1985 | 0.2019 | 0.2054   | 0.2088         | 0.2123  | 0.2157 | 0.2190                | 0.2224 |
| 0.6          | 0.2257   | 0.2291 | 0.2324 | 0.2357 | 0.2389   | 0.2422         | 0.2454  | 0.2486 | 0.2517                | 0.2549 |
| 0.7          | 0.2580   | 0.2611 | 0.2642 | 0.2673 | 0.2704   | 0.2734         | 0.2764  | 0.2794 | 0.2823                | 0.2852 |
| 0.8          | 0.2881   | 0.2910 | 0.2939 | 0.2967 | 0.2995   | 0.3023         | 0.3051  | 0.3078 | 0.3106                | 0.3133 |
| 0.9          | 0.3159   | 0.3186 | 0.3212 | 0.3238 | 0.3264   | 0.3289         | 0.3315  | 0.3340 | 0.3365                | 0.3389 |
| 1.0          | 0.3413   | 0.3438 | 0.3461 | 0.3485 | 0.3508   | 0.3531         | 0.3554  | 0.3577 | 0.3599                | 0.3621 |
| 1.1          | 0.3643   | 0.3665 | 0.3686 | 0.3708 | 0.3729   | 0.3749         | 0.3770  | 0.3790 | 0.3810                | 0.3830 |
| 1.2          | 0.3849   | 0.3869 | 0.3888 | 0.3907 | 0.3925   | 0.3944         | 0.3962  | 0.3980 | 0.3997                | 0.4015 |
| 1.3          | 0.4032   | 0.4049 | 0.4066 | 0.4082 | 0.4099   | 0.4115         | 0.4131  | 0.4147 | 0.4162                | 0.4177 |
| 1.4          | 0.4192   | 0.4207 | 0.4222 | 0.4236 | 0.4251   | 0.4265         | 0.4279  | 0.4292 | 0.1306                | 0.4319 |
| 1.5          | 0.4332   | 0.4345 | 0.4357 | 0.4370 | 0.4382   | 0.4394         | 0.4406  | 0.4418 | 0.4429                | 0.4441 |
| `1. <b>6</b> | 0.4452   | 0.4463 | 0.4474 | 0.4484 | 0.4495   | 0.4505         | 0.4515  | 0.4525 | 0.4535                | 0.4545 |
| 1.7          | 0.4554   | 0.4564 | 0.4573 | 0.4582 | 0.4591 🖌 | 0.4599         | 0.4608  | 0.4616 | 0.4625                | 0.4633 |
| 1.8          | 0.4641   | 0.4649 | 0.4656 | 0.4664 | 0.4671   | 0.4678         | 0.4686  | 0.4693 | 0.4699                | 0.4706 |
| 1.9          | 0.4713   | 0.4719 | 0.4726 | 0.4732 | 0.4738   | 0.4744         | .0.4750 | 0.4756 | 0.4761                | 0.4767 |
| .2.0         | 0.4772   | 0.4778 | 0.4783 | 0.4788 | 0.4793   | 0.4798         | 0.4803  | 0.4808 | 0.4812                | 0.4817 |
| 2.1          | 0.4821   | 0.4826 | 0.4830 | 0.4834 | 0.4838   | 0.4842         | 0.4846  | 0.4850 | 0.4854                | 0.4857 |
| 2.2          | 0.4861   | 0.4864 | 0.4868 | 0.4871 | 0.4875   | 0.4878         | 0.4881  | 0.4884 | 0.4887                | 0.4890 |
| 2.3          | 0.4893   | 0.4896 | 0.4898 | 0.4901 | 0.4904   | 0.4906         | 0.4909  | 0.4911 | 0.4913                | 0.4916 |
| 2.4          | 0.4918   | 0.4920 | 0.4922 | 0.4925 | 0.4927   | 0.4929         | 0.4931  | 0.4932 | 0.4934                | 0.4936 |
| 2.5          | 0.4938   | 0.4940 | 0.4941 | 0.4943 | 0.4945   | 0.4946         | 0.4948  | 0.4949 | 0.4951                | 0.4952 |
| 2.6          | 0.4953   | 0.4955 | 0.4956 | 0.4957 | 0.4959   | 0.4960         | 0.4961  | 0.4962 | 0.4963                | 0.4954 |
| 2.7          | 0.4965   | 0.4966 | 0.4967 | 0.4968 | 0.4969   | .0.4970        | 0.4971  | 0.4972 | 0.4973                | 0.4974 |
| 2.8          | 0.4974   | 0.4975 | 0.4976 | 0.4977 | 0.4977   | 0.4978         | 0.4979  | 0.4979 | 0.4980                | 0.4981 |
| 2.9          | 0.4981   | 0.4982 | 0.4982 | 0.4983 | 0.4984   | 0.4984         | 0.4985  | 0.4985 | 0.4986                | 0.4986 |
| 3.0          | 0.4987   | 0.4987 | 0.4987 | 0.4988 | 0.4988   | 0.498 <b>9</b> | 0.4989  | 0.4989 | 0.4990                | 0.4990 |
|              |          |        | 7      |        | -        |                |         | -      |                       |        |


1.96

# Appendix B B.2 Student's *t* Distribution

 $\mathbb{C}$ 

00





| _   |         |          | Confidence  | e Intervals, | C .          |         |    |                                                     | Co       | nfidence in | tervals, c   | •             |         |  |  |  |  |
|-----|---------|----------|-------------|--------------|--------------|---------|----|-----------------------------------------------------|----------|-------------|--------------|---------------|---------|--|--|--|--|
|     | 80%     | 90%      | <b>9</b> 5% | 98%          | 99%          | 99.9%   |    | 80%                                                 | 90%      | 95%         | 98%          | 99%           | 99.9%   |  |  |  |  |
| -   |         | Level of | Significanc | e for One-Ta | iled Test, a | · · ·   | -  | 1                                                   | Level of | Significanc | e for One-Ta | ailed Test, a |         |  |  |  |  |
| đf  | 0.10    | 0.05     | 0.025       | 0.01         | 0.005        | 0.0005  | đļ | 0.10                                                | 0.05     | 0.025       | 0.01         | 0.005         | 0.0005  |  |  |  |  |
|     |         | Level of | Significanc | e for Two-Ta | iled Test, a |         |    | Level of Significance for Two-Tailed Test, $\alpha$ |          |             |              |               |         |  |  |  |  |
|     | 0.20    | 0.10     | 0.05        | 0.02         | 0.01         | 0.001   |    | 0.20                                                | 0.10     | 0.05        | 0.02         | 0.01          | 0.001   |  |  |  |  |
| 1   | 3.078   | 6.314    | 12.706      | 31.821       | 63.657       | 636.619 | 36 | 1.306 ·                                             | 1.688    | 2.028       | 2.434        | 2.719         | 3.582   |  |  |  |  |
| 2   | 1.886   | 2.920    | 4.303       | 6.965        | 9.925        | 31.599  | 37 | 1.305                                               | 1.687    | 2.026       | 2.431        | 2.715         | 3.574   |  |  |  |  |
| .3  | 1.638   | 2.353    | 3.182       | 4.541        | 5.841        | 12.924  | 38 | 1.304                                               | 1.686    | 2.024       | 2.429        | 2.712         | 3.566   |  |  |  |  |
| 4   | 1.533   | 2.132    | 2.776       | 3.747        | 4.604        | 8.610   | 39 | 1.304                                               | 1.685    | 2.023       | 2.426        | 2.708         | 3.558   |  |  |  |  |
| 5   | 1.476   | 2.015    | 2.571       | 3.365        | 4.032        | 6.869   | 40 | . 1.303                                             | 1.684    | · ·2.021    | , 2.423      | . 2.704       | 3.551   |  |  |  |  |
| 6   | 1.440   | 1.943    | 2.447       | 3.143        | 3.707        | 5.959   | 41 | 1.303                                               | 1.683    | 2.020       | 2.421        | 2.701         | 3.544   |  |  |  |  |
| 7   | 1,415   | 1.895    | 2.365       | 2.998        | 3.499        | 5.408   | 42 | 1.302                                               | 1.682    | 2.018       | 2.418        | 2.698         | . 3.538 |  |  |  |  |
| 8   | 1:397   | 1.860    | 2.306       | 2.896        | 3.355        | 5.041   | 43 | 1.302                                               | 1.681    | 2.017       | 2.416        | 2.695         | 3.532   |  |  |  |  |
| 9   | 1.383   | 1.833    | 2.262       | 2.821        | 3.250        | 4.781   | 44 | 1.301                                               | 1.680    | 2.015       | 2.414        | 2.692         | 3.526   |  |  |  |  |
| 10  | 1.372   | 1.812    | 2.228       | 2.764        | 3.169        | 4.587   | 45 | 1.301                                               | 1.679    | 2.014       | 2.412        | 2.690         | 3.520   |  |  |  |  |
| 11  | 1.363   | 1.796    | 2.201       | 2.718        | 3.106        | 4.437   | 46 | 1.300                                               | 1.679    | 2.013       | 2.410        | 2.687         | 3.515   |  |  |  |  |
| 12  | 1.356   | 1.782    | 2.179       | 2.681        | 3.055        | 4.318   | 47 | 1.300                                               | 1.678    | 2.012       | 2.408        | 2.685         | 3.510   |  |  |  |  |
| 13  | 1.350   | 1.771    | 2.160       | 2.650        | 3.012        | 4.221   | 48 | 1.299                                               | 1.677    | 2.011       | 2.407        | 2.682         | 3.505   |  |  |  |  |
| 14  | 1.345   | 1.761    | 2.145       | 2.624        | 2.977        | 4.140   | 49 | 1.299                                               | 1.677    | 2.010       | 2.405        | 2.680         | 3.500   |  |  |  |  |
| 15  | 1.341   | 1.753    | 2,131       | 2.602        | 2.947        | 4.073   | 50 | 1.299                                               | 1.676    | 2.009       | 2.403        | 2.678         | 3.496   |  |  |  |  |
| 16  | 1.337   | 1.746    | 2.120       | 2.583        | 2.921        | 4.015   | 51 | 1.298                                               | 1.675    | 2.008       | 2.402        | 2.676         | 3.492   |  |  |  |  |
| 17  | 1.333   | 1.740    | 2.110       | 2.567        | 2.898        | 3.965   | 52 | 1.298                                               | 1.675    | 2.007       | 2.400        | 2.674         | 3.488   |  |  |  |  |
| 18  | 1.330   | 1.734    | 2.101       | 2.552        | 2.878        | 3.922   | 53 | 1.298                                               | 1.674    | 2.006       | 2.399        | 2.672         | 3.484   |  |  |  |  |
| 19  | 1.328   | 1.729    | 2.093       | 2.539        | 2.861        | 3.883   | 54 | 1.297                                               | 1.674    | 2.005       | 2.397        | 2.670         | 3.480   |  |  |  |  |
| 20  | 1.325   | 1.725    | 2.086       | 2.528        | 2.845        | 3.850   | 55 | 1.297                                               | 1.673    | 2.004       | 2.396        | 2.668         | 3.475   |  |  |  |  |
| 21  | 1.323   | 1.721    | 2.080       | 2.518        | 2.831        | 3.819   | 56 | 1.297                                               | 1.673    | 2.003       | 2.395        | 2.667         | 3.473   |  |  |  |  |
| 22  | 1.321   | 1.717    | 2.074       | 2.508        | 2.819        | 3.792   | 57 | 1.297                                               | 1.672    | 2.002       | 2.394        | 2.665         | 3.470   |  |  |  |  |
| 23  | 1.319   | 1,714    | 2.069       | 2.500        | 2.807        | 3.768   | 58 | 1,296                                               | 1.672    | 2.002       | 2.392        | 2.663         | 3.466   |  |  |  |  |
| 24  | 1.318   | 1.711    | 2.064       | 2.492        | 2.797        | 3.745   | 59 | 1.296                                               | 1.671    | 2.001       | 2.391        | 2.662         | 3.463   |  |  |  |  |
| 25  | 1.316   | 1.708    | 2.060       | 2.485        | 2.787        | 3.725   | 60 | 1.296                                               | 1.671    | 2.000       | 2.390        | 2.660         | 3.460   |  |  |  |  |
| 26  | · 1.315 | 1.706    | 2.056       | 2.479        | 2.779        | 3.707   | 61 | 1.296                                               | 1.670    | 2.000       | 2.389        | 2.659         | 3.457   |  |  |  |  |
| 27- | 1.314   | 1.703    | 2.052       | 2.473        | 2.771        | 3.690   | 62 | 1.295                                               | 1.670    | 1.999       | 2.388        | 2.657         | 3.454   |  |  |  |  |
| 28  | 1.313   | 1.701    | 2.048       | 2.457        | 2.763        | 3.674   | 63 | 1.295                                               | 1.669    | 1.998       | 2.387        | 2.656         | 3:452   |  |  |  |  |
| 29  | 1.311   | 1.699    | 2.045       | 2.462        | 2.756        | 3.659   | 64 | 1.295                                               | 1.669    | 1.998       | 2.386        | 2.655         | 3.449   |  |  |  |  |
| 30  | 1.310   | 1.697    | 2.042       | 2.457        | 2.750        | 3.646   | 65 | 1.295                                               | 1.669    | 1.997       | 2.385        | 2.654         | 3.447   |  |  |  |  |
| 31  | 1.309   | 1.696    | 2.040       | 2.453        | 2.744        | 3.633   | 66 | 1.295                                               | 1.668    | 1.997       | 2.384        | 2.652         | 3.444   |  |  |  |  |
| 32  | 1.309   | 1.694    | 2.037       | 2.449        | 2.738        | 3:622   | 67 | 1.294                                               | 1.668    | 1.996       | 2.383        | 2.651         | 3.442   |  |  |  |  |
| 33  | 1.308   | 1.692    | 2.035       | 2,445        | 2.733        | 3.611 . | 68 | 1.294                                               | 1.668    | 1.995       | 2.382        | 2.650         | 3.439   |  |  |  |  |
| 34  | 1:307   | 1.691    | 2.032       | 2.441        | 2.728        | 3.601   | 69 | 1.294                                               | 1.667    | 1.995       | 2.382        | 2.649         | 3.437   |  |  |  |  |
| 35  | 1.306   | 1.690    | 2.030       | 2.438        | 2.724        | 3.591   | 70 | 1.294                                               | 1.667    | 1.394       | 2.381        | 2.648         | 3.435   |  |  |  |  |

(continued)

Appendix B B.4 Critical Values of the F Distribution at a 5 Percent Level of Significance Degrees of Freedom for the Numerator 10 250 19.5 8.62 225 19.2 9.12 6.39 5.19 230 19.3 9.01 6.26 5.05 215 19.2 9.28 234 237 200 19.0 9.55 19.5 19,4 8,74 5,91 4,68 161 19.4 8.79 5.96 4.74 19.4 19,4 19.3 8.94 19.4 8.89 19.4 19.4 18.5 8.66 5.80 4.56 8.70 8.64 8.54 8.81 6.00 4.77 8.85 10,1 5.86 4.62 5.77 5.75 4.50 5.72 6.09 4.86 6.04 6.59 5.41 6.16 6.94 4.45 7.71 4.53 4.82 4.95 6.61 5.79 3.84 4.06 4.00 3.94 3.87 4.28 3.87 3.58 3.37 3.22 4.10 4.39 4.21 4.15 4.53 4.76 3.41 3.38 3.57 3.28 3.07 2.91 3.34 5.99 5 14 3.64 3.51 3.22 3.44 3.79 3.73 3.68 4.12 3.84 3.97 4.74 4.35 3.04 5.59 3.15 3.12 2.90 3.08 3.35 3.14 3.50 3.29 3.14 3.39 3.69 3.44 4.07 5.32 2.86 2.83 4.46 3.01 2.85 2.94 2.77 3.23 3.07 3.18 3.86 3.63 .3.48 3.48 5.12 4.26 2.70 2.74 3.02 2.98 3.33 3.71 4.96 4.10 2.72 2.62 2.53 2.46 2.57 2.47 2.53 2.43 2.79 2.69 2.61 2.85 3.09 3.00 2.92 2.85 2.79 2.90 3.01 2.91 2.95 2.85 3.20 3.59 3.36 3.98 2.54 2.51 2.75 2.80 2.71 3.11 3.03 2.96 2.90 3.49 3.26 2.34 2.27 4.75 3.89 2.46 2.39 2.33 2.42 2.38 2.60 2.67 2.83 2.76 2,77 2.70 3.81 3.41 3.18 2.31 2.25 4.67 2.35 2.29 2.53 2.48 2.60 2.54 2.65 2.59 3.11 3.34 4.60 3.74 2.20 2,40 2.71 2.64 3.29 3.06 3.68 4.54 2.24 2.19 2.15 2.35 2.28 2.42 2.85 2.81 2.77 2.59 2.54 2.49 2.49 2.74 2.66 3.24 3.20 3:16 3.01 2.19 2.15 2.10 4.49 2.45 2.38 2.31 2.23 2.70 2.61 2.58 2.55 4.45 3.59 2.96 17 2.41 2.38 2.27 2.15 2.11 2.06 2.19 2.34 2.51 2.46 2.93 2.66 3.55 4.41 2.03 18 2.42 2.39 2.11 2.07 2.23 2.20 2.16 2.31 2.48 2.45 2.74 2.63 2.54 2.51 4.38 3.52 3.13 2.90 2.87 1.99 19 20 2.12 2.08 2.04 2.28 2.35 2.71 2.60 4.35 3.49 3.10 2.01 2.25 2.23 2.18 2.10 2.05 2.42 2.37 2.32 2.49 2.57 2.68 21 22 23 3.07 1,94 4.32 3.47 2.15 2.07 2.03 1.98 2.30 2.27 2.55 2.34 2.32 2.46 2.40 2.37 3.05 2.82 2.66 4,30 4,28 3.44 2.01 1.96 1.91 2.05 2.20 2.13 2.64 2.53 2.51 2.44 120 6.85 6.63 3.03 3.01 3.42 2.80 1.89 2.11 2.03 1.98 1.94 2.30 2.28 2.25 2.24 2.42 2.36 2.18 2.62 2.60 2.78 4.26 4.24 24 3.40 1.96 1.92 1.87 2.16 2.09 2.01 2.49 . 2.40 2.34

2.76 2.99 3.39

2.69 2.61

2.53 2.45 2.37

2.92

2.84

2.76

2.68 2.60

3.32

3.15

3.07 3.00

2.42 2.34 2.25 2.18 2.10

2.53 2.45 2.37

2.29

2.27 2.18

2.10 2.02

2.33 2.25

2.17 2.09 2.01

2.16

2.08 1.99

1.83 1 88

2.21

.2.12

2.04

1.96 1.91 2.09

2.00 1.92

1.83 1.75

2.01

1.92

1.84 1.75

1.67

1.93

1.84

1.75 1.66 1.57

1.79

1.70

1.61 1.52

25

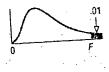
30-

A۵

60

120

4.08 3.23


4.00

3.92 3.84

Appendix B

 $\widehat{}$ 

B.4 Critical Values of the F Distribution at a 1 Percent Level of Significance (concluded)



|                                        |      |       |          |        |        |         |       |                                        |           |           | <u> </u>     |         |              |              |          |      |       |      |              |      |           |
|----------------------------------------|------|-------|----------|--------|--------|---------|-------|----------------------------------------|-----------|-----------|--------------|---------|--------------|--------------|----------|------|-------|------|--------------|------|-----------|
|                                        |      |       |          |        |        |         |       | Deg                                    | rees of l | Freedon   | n for U      | He NUIT | herator      | 12           | 15       | 20   |       | 24   | 30           | 40   |           |
|                                        |      |       |          |        | -r-    | •       | 5     | 6                                      | 7         | .8        | .9           | 1.1     | -+-          |              | 6157     | 620  | 19 6  | 5235 | 6261         | 625  |           |
|                                        |      | 1     | 2        | 3      |        |         |       | 5859                                   | 5928      | 5981      | 6022         |         |              | 6106         | 99.4     | 99.  |       | 99.5 | 99.5         | 99.  |           |
|                                        | 11   | 4052  | 5000     |        | ••   • | ~~~ (   |       | 99.3                                   | 99.4      | 99.4      | 99.4         |         |              | 99.4         | 26.9     | 26   |       | 26.6 | 26.5         | 26   |           |
|                                        | 2    | 98.5  | 99.0     | 99     |        |         | 28.2  | 27.9                                   | 27.7      | 27.5      | 27.3         | 1       |              | 27.1         | 14.2     | 14   |       | 13.9 | 13.8         | 13   |           |
|                                        | 3    | 34.1  | 30.8     |        |        |         | 15.5  | 15.2                                   | 15.0      | 14.8      | 14.7         | 1.      |              | 14.4<br>9.89 | 9.72     | 9.5  |       | 9.47 | 9.38         | 9.2  | <u>'9</u> |
|                                        | 4    | 21.2  | 18.0     |        |        | 6.0     | 11.0  | 10.7                                   | 10.5      | 10.3      | 10.2         | 2 1 1   | 0.1          | a.0a         | 3.72     |      |       |      |              | 1 7. | i A       |
|                                        | 5    | 16.3  | 13.3     | 1   12 | 2.1    | 11.4    | 1.0   |                                        | 1         |           | 7.9          | ۰ł -    | .87          | 7.72         | 7.56     |      | - · · | 7.31 | 7.23<br>5.99 | 5    |           |
|                                        | - 1  |       |          | 1.     | 78     | 9.15    | 8.75  | 8.47                                   | 8.26      | 8.10      | 6.7          | - 1     | .62          | 6.47         | 6.31     |      | 16    | 6.07 | 5.99         |      | 12        |
|                                        | 6    | 13.7  | 10,      | · · ·  |        | 7.85    | 7.46  | 7.19                                   | 6.99      | 6.84      | 5.9          | - 1     | 5.81         | 5.67         | 5.52     |      | .36   | 5.28 | 4.65         | -    | .57       |
|                                        | 7    | 12.2  | 9.5      |        |        | 7.01    | 6.63  | 6.37                                   | 6.18      | 6.03      | 5.3          |         | 5.26         | 5.11         | 4.96     |      | .81   | 4.73 | 4.03         |      | .17       |
|                                        | 8    | 11.3  | 8.6      | ~ (    |        | 6.42    | 6.06  | 5.80                                   | 5.61      | 5.47      | 4.9          | - 1     | 4.85         | 4,71         | 4.56     | 14   | .41   | 4.33 | 4.23         |      |           |
| ÷                                      | 9    | 10.6  | 7.5      |        | 5.55   | 5.99    | 5.64  | 5.39                                   | 5.20      | 5.06      | 1            |         |              |              |          | 1.   | .10   | 4.02 | 3.94         | 1 3  | .86       |
| 5                                      | 10   | 10.0  | 1 1.5    |        |        |         |       |                                        | 4.89      | 4.74      | 4.1          | 53      | 4.54         | 4.40         | 4.25     |      | 3.86  | 3.78 | 3.7          |      | .62       |
| , at                                   | 11   | 9.65  | 1 7.     | 21 0   | 5.22   | 5.67    | 5.32  | 5.07                                   | 4.64      | 4.50      | 4.           | 39      | 4.30         | 4.16         | 4.01     |      | 3.66  | 3.59 | 3.5          | 1 3  | 3.43      |
| Ē                                      | 12   | 9.33  | 6.       | 93     | 5.95   | 5.41    | 5.06  | 4.82                                   | 4.44      | 4.30      |              | 19      | 4.10         | 3.96         | 3.8      | - 1  | 3.51  | 3,43 | 3.3          |      | 3.27      |
| ū.                                     | 13   | 9.07  | 1 6.     | 70     | 5.74   | 5.21    | 4.86  |                                        | 4.28      | 4.14      |              | 03      | 3.94         | 3.80         | 3.6      | ~ I  | 3.37  | 3.29 | 3.2          | 1 :  | 3.13      |
| ē                                      | 14   | 8.86  |          | 51     | 5.56   | 5.04    | 4.69  | 4,46                                   | 4.14      | 4.00      |              | .89     | 3.80         | 3.67         | 3.5      | 4    | J.J.  |      |              | · 1  |           |
| ŝ                                      | 15   | 8.68  |          | 36     | 5.42   | 4.89    | 4.56  | 1 4.34                                 | 1 7.17    | 1 .       |              |         |              | 3.55         | 3.4      |      | 3.26  | 3.18 |              |      | 3.02      |
| ē                                      | , '5 |       | 1        |        |        | 4,77    | 4.44  | 4.20                                   | . 4.03    | 3.8       |              | 78      | 3.69         | 3.46         | - t - `. |      | 3.16  | 3.08 |              |      | 2.92      |
| Ę                                      | 16   |       | - 1      | 23     | 5.29   | 4.67    | 4.34  | 4.10                                   | . 3.93    | 3.7       | • <u>1</u> · | .68     | 3.59<br>3.51 | 3.37         |          |      | 3.08  | 3.00 | 1 -          | 92   | 2.84      |
| 5                                      | 17   | 8.4   |          | 11     | 5.18   | 4.58    | 4,25  | 4.01                                   | 3.84      | 3.7       |              | 3.60    | 3.5          | 3.30         |          |      | 3.00  | 2.9  | - 1          | 84   | 2.76      |
| Ĕ.                                     | 18   |       | ~ 1 `    | 5.01   | 5.09   | 4.50    | 4.17  | 3.94                                   | 3.77      |           | ~ 1          | 3.52    | 3.43         | 3.2          |          | 09   | 2.94  | 2.8  | ô   2.       | 78   | 2.69      |
| đ                                      | 19   |       | - 1      | 5.93   | 5.01   | 4.43    |       |                                        | 3.70      | ) 3.5     | 56   1       | 3.46    | 3.51         | 3.4          |          | 1    |       | 1    |              | .72  | 2.6       |
| , se                                   | 20   | ) 8.1 | 0        | 5.85   | 4.94   | 1 ***   |       |                                        | 1         | 4 3       |              | 3.40    | 3.31         | 3.1          |          | .03  | 2.88  | 2.8  | - 1          | .67  | 2.5       |
| Degrees of Freedom for the Denominator | · .  |       |          | 5.78   | 4.87   | 4.37    | 4.04  |                                        |           | - H C.    | 45           | 3.35    | 3.26         | 3.1          |          | .98  | 2.83  |      | - 1          | .62  | 2.5       |
| -                                      | _    |       | 02<br>95 | 5.72   | 4.82   | 4.31    | 3.9   |                                        |           | ••• I = - | 41           | 3.30    | 3.21         | 3.0          |          | .93  | 2.78  |      |              | 2.58 | 2.4       |
|                                        | 2    | - 1   | 88       | 5.66   | 4.76   | 4.2     |       |                                        |           |           | .36          | 3.26    | 3.17         |              | ~ 1.3    | .89  | 2.74  |      |              | z.54 | 2.        |
|                                        |      | · · · | .82      | 5.61   | 4.72   |         |       |                                        |           |           | .32          | 3.22    | 3.13         | 3 2.9        | 39   4   | 2.85 | 2.70  | 2 2  |              |      |           |
|                                        |      |       | .77      | 5.57   | 4.68   |         | 8 3.8 | 3.6                                    | 3 3.4     | ·•   ·    |              |         | 1            |              |          | 2.70 | 2.5   | 5 2  | 47           | 2.39 | 2.        |
|                                        | -    | 25 7  |          |        | 1      |         |       | 70 3.4                                 | 7 3.      | 30 1 3    | 3.17         | 3.07    | 2.9          | ~ ( -        |          | 2.52 | 2.3   |      | .29          | 2.20 | 2         |
|                                        |      | 30 7  | .56      | 5.39   | 4.5    |         |       |                                        |           | 12        | 299          | 2.89    | 2.8          | -            | <b>2</b> | 2.32 | 2.2   |      | 2,12         | 2,03 | 11        |
|                                        |      |       | 7.31     | 5.18   | 4.3    |         |       | •••••••••••••••••••••••••••••••••••••• |           |           | 2.82         | 2.72    |              | ~ ( -        | .50      | 2.35 | 2.0   |      | 1.95         | 1.86 | 1         |
|                                        |      |       | 7.08     | 4.98   | 4.1    | • 1 ·   |       |                                        |           |           | 2.66         | 2.56    |              |              | .34      | 2.04 | 1.1   |      | 1.79         | 1.70 |           |
|                                        | ÷.,  |       | 6.85     | 4,79   | 3.9    | 15   3. | 48 3. |                                        |           | 64        | 2.51         | 2.4     | 1 2.         | 32 2         | .18      | 2.04 |       | ·    |              |      |           |

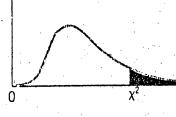
4.61

1.79

1.69

1.59 1.50

1,39


1.74

1.65 1.55 1.46

Appendix B

### **B.3 Critical Values of Chi-Square**

This table contains the values of  $\chi^2$  that correspond to a specific right-tail area and specific number of degrees of freedom.



Example: With 17 df and a .02 area in the upper tail,  $\chi^2 = 30.995$ 

| Degrees of     | Right-Tail Area |        |        |          |  |  |  |  |  |  |
|----------------|-----------------|--------|--------|----------|--|--|--|--|--|--|
| Freedom,<br>df | 0.10            | 0.05   | 0.02   | 0.01     |  |  |  |  |  |  |
| · 1            | 2.706           | 3.841  | 5.412  | 6.635    |  |  |  |  |  |  |
| 2              | 4.605           | 5.991  | 7.824  | 9.210    |  |  |  |  |  |  |
| 3              | 6.251           | 7.815  | 9.837  | 11.345   |  |  |  |  |  |  |
| 4              | 7.779           | 9.488  | 11.668 | 13.277   |  |  |  |  |  |  |
| 5              | 9.236           | 11.070 | 13.388 | 15.086   |  |  |  |  |  |  |
| 6              | 10.645          | 12.592 | 15.033 | . 16.812 |  |  |  |  |  |  |
| 7              | 12.017          | 14.067 | 16.622 | 18.47    |  |  |  |  |  |  |
| 8              | 13.362          | 15.507 | 18.168 | 20.090   |  |  |  |  |  |  |
| · 9            | 14.684          | 16,919 | 19,679 | 21,666   |  |  |  |  |  |  |
| 10             | 15.987          | 18.307 | 21.161 | 23.20    |  |  |  |  |  |  |
| 11             | 17.275          | 19.675 | 22.618 | 24.72    |  |  |  |  |  |  |
| · 12           | 18.549          | 21.026 | 24.054 | -26.21   |  |  |  |  |  |  |
| 13             | 19.812          | 22.362 | 25.472 | 27.688   |  |  |  |  |  |  |
| 14             | 21.064          | 23.685 | 26.873 | 29.14    |  |  |  |  |  |  |
| . 15           | 22.307          | 24.996 | 28.259 | 30.578   |  |  |  |  |  |  |
| 16             | 23.542          | 26.296 | 29.633 | 32.000   |  |  |  |  |  |  |



÷.

#### Date : 02/08/2015

#### BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 B. Sc. Engineering Examinations 2013-2014

Sub : ME 243 (Mechanics of Solids)

Full Marks: 210

Time : 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

### <u>SECTION – A</u>

There are **FOUR** questions in this Section. Answer any **THREE**. Symbols have their usual meanings. Assume any reasonable value for missing data.

1. (a) A uniform bar AB of weight w = 25N is supported by two springs as shown in fig. 1(a). The spring on the left has stiffness  $k_1 = 300$  N/m and natural length  $L_1 = 250$  mm. The corresponding quantities for the right spring are  $k_2 = 400$  N/m and  $L_2 = 200$  mm. The distance between the springs is L = 350 mm, and the spring on the right is suspended from a support that is distance h = 80 mm below the point of support of left spring. At what distance x from the left-hand spring should a load P = 18 N be placed in order to bring the bar to a horizontal position?

(b) A nylon bar having diameter  $d_1 = 8.89$  cm is placed inside a steel tube having inner diameter  $d_2 = 8.92$  cm as shown in fig. 1(b). The nylon bar is then compressed by an axial force P. At what value of the force P, will the space between the nylon bar and the steel tube be closed?

(For nylon, assume E = 2.8 GPa and v = 0.4).

- 2. (a) A shaft composed of segments AC, CD, and DB is fastened to rigid supports and loaded as shown in fig. 2(a). For bronze, G = 35 GPa, aluminum, G = 28 GPa, and for steel, G = 83 GPa, Determine the maximum shearing stress developed in each segment.
  (b) Two-shafts 12.7 cm in diameter are to be joined by a bolted coupling. If the maximum allowable shearing unit stress in the shafts is 6.895 × 10<sup>4</sup> kPa the diameter of the bolt circle is 25.4 cm and the allowable shearing unit stress in the connection.
- 3. (a) An aluminum column of length L and rectangular cross-section has a fixed end at B and supports a centric load at A as shown in fig. 3(a). Two smooth and rounded fixed plates restrain end A from moving in one of the vertical planes of symmetry but allow it to move in the other plane. Determine-

(i) the ratio a/b of the two sides of the cross-section corresponding to the most efficient design against buckling.

(ii) Design the most efficient cross-section for the column knowing that L = 59.8 cm, E = 70 GPa P = 22.24 kN and factor of safety FS = 2.5 are required.

Contd ..... P/2

(20)

(20)

(15)

(20)

### <u>ME 243(IPE)</u>

### Contd ... Q. No. 3

(b) An axial load P is applied to the 32-mm-square aluminum bar BC as shown in fig. 3(b). When P = 24 kN, the horizontal deflection at C is 4 mm. Use E = 70 GPa and determine (i) the eccentricity of the load, (ii) the maximum stress in the bar.

(15)

(18)

(17)

(18)

(17)

4. (a) The solid rod (as shown in fig. 4) has a radius of 0.75 cm. If it is subjected to the loading shown, determine the stress at point A. Also draw the stress distribution at A. (25)
(b) A timber beam is reinforced with steel plates rigidly attached at the top and bottom as shown fig. 4(b). Determine the amount of moment for the steel plate reinforcement if n = 15 and allowable stresses in wood and steel are 8 MPa and 120 MPa respectively. (10)

### <u>SECTION – B</u>

There are FOUR questions in this Section. Answer any THREE.

5. (a) A simply supported beam is subjected to a triangular distribution of load over, half of its length and a couple as shown in Figure 5(a). Draw the shear force and bending moment diagrams.

(b) A simply supported beam of 50 mm  $\times$  100 mm is subjected to a couple of 6 kNm and a concentrated load of 5 kN as shown in Figure 5(b). Find the maximum flexure stress and the maximum shearing stress developed in the beam.

6. (a) Using double integration method find an expression of maximum deflection of a cantilever beam of length L subjected to a uniformly distributed load of w over half of its length form its free end, as shown in Figure 6(a).

(b) Using area moment method find an expression of maximum deflection of a cantileverbeam of length L subjected to three equal concentrated loads P as shown in Figure 6(b). (17)

- 7. (a) A thin-walled cylindrical pressure vessel is fabricated from the steel plate of thickness 10 mm. If the length and internal diameter of the pressure vessel are respectively 2.5 m and 500 mm, determine the maximum internal pressure that can be applied. Tangential stress is limited to 80 MPa and longitudinal stress is limited to 100 MPa. (15)
  (b) Derive expressions of maximum radial and maximum tangential stresses for a thick-walled cylinder subjected to external pressure only. (20)
- 8. (a) A stepped circular bar made of steel is placed between two rigid walls in close fit condition at temperature 20°C as shown in Figure 8(a). Determine the stresses in the portions AB and BC, when the temperature increases to 90°C. Consider d = 20 mm,  $E_{st} = 200$  GPa and  $\alpha = 12 \times 10^{-6}$  m/m°C.

(b) A C-frame is subjected to a load P = 2.5 kN, as shown in Figure 8(b). Determine the normal stresses at the inner and outer fibers along the section a - a. (18)

= 2 =

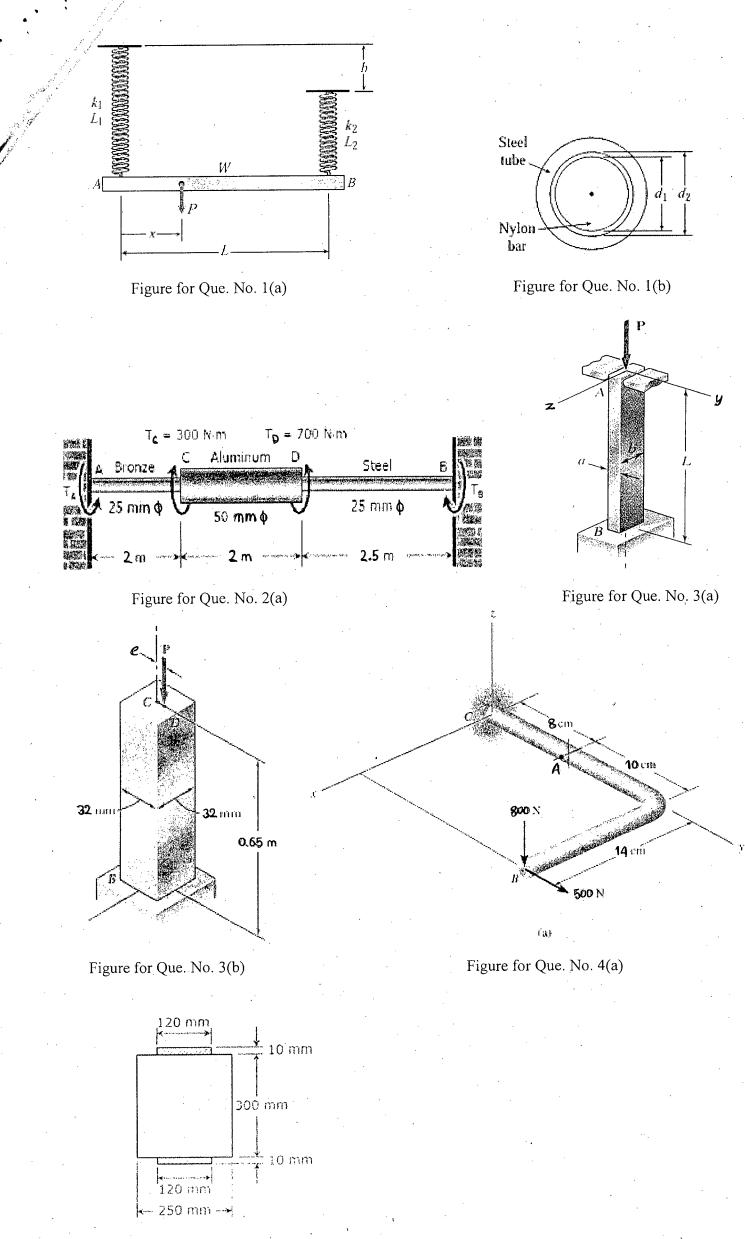
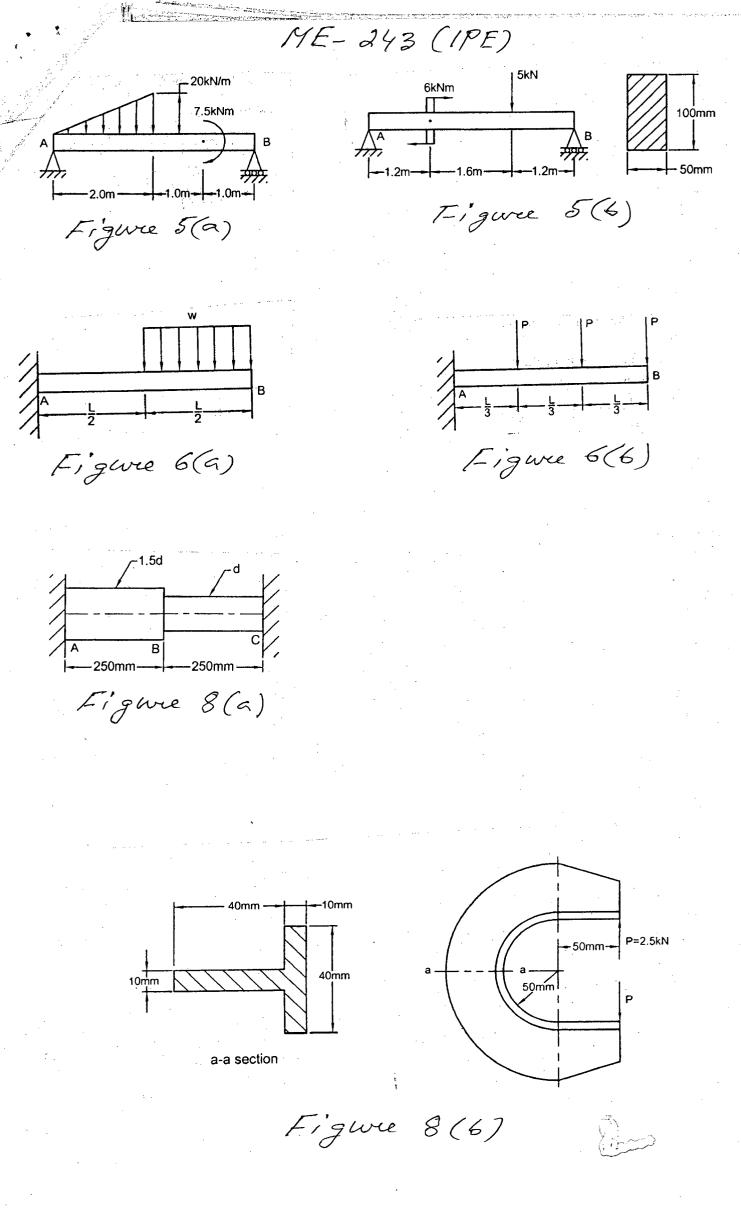




Figure for Que. No. 4(b)



### Date : 06/08/2015

### BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 B. Sc. Engineering Examinations 2013-2014

### Sub : IPE 205 (Manufacturing Process-I)

Full Marks : 210

### Time : 3 Hours

The figures in the margin indicate full marks.

USE SEPARATE SCRIPTS FOR EACH SECTION

# $\underline{SECTION - A}$ There are FOUR questions in this Section. Answer any THREE.

| 1. | (a) Write short notes on the following:                                                   | (12) |
|----|-------------------------------------------------------------------------------------------|------|
|    | (i) Cope and drag pattern                                                                 |      |
|    | (ii) Follow board pattern                                                                 |      |
|    | (iii) Dry and molding                                                                     |      |
|    | (b) With the help of suitable diagrams, describe the following:                           | (14) |
|    | (i) Squeeze casting                                                                       |      |
|    | (ii) Gravity die casting                                                                  |      |
|    | (c) What are the functions of a chill? Discuss the considerations that must be taken into |      |
|    | account for designing risers in molds.                                                    | (9)  |
|    |                                                                                           |      |
| 2. | (a) Describe the following cold working of metals using sketches:                         | (15) |
|    | (i) Metal piercing                                                                        |      |
|    | (ii) Metal hobbing                                                                        |      |
|    | (iii) Isothermal forging                                                                  |      |
|    | (b) Describe the common types of forging hammers. With the help of simple sketches,       |      |
|    | describe different types of mechanical presses.                                           | (12) |
|    | (c) With the help of suitable sketches, mention the different types of tube drawing       |      |
|    | operation. List some of the common defects of extrusion and discuss the possible causes   |      |
|    | of each defect.                                                                           | (8)  |
|    |                                                                                           |      |
| 3. | (a) With the help of diagrams, describe the following sheet metal forming operations:     | (12) |
|    | (i) Flanging                                                                              |      |
|    | (ii) Press Break Forming                                                                  |      |
|    | (iii) Building                                                                            |      |
|    | (b) With the help of diagrams, describe the following sheet metal forming operations:     | (14) |
|    | (i) Hydroform process                                                                     |      |
|    | (ii) Explosive forming process (Standoff technique)                                       |      |
|    | (c) Explain deep drawing and Ironing, using sketches. What are the stages involved in     |      |
|    | manufacturing beverage can? Explain using sketches.                                       | (9)  |
|    |                                                                                           |      |

Contd ..... P/2

= 2 =

### <u>IPE 205</u>

| 4. | (a) Compare the major differences between glass, ceramics and metals. Explain why |      |
|----|-----------------------------------------------------------------------------------|------|
|    | ceramics are weaker in tension than in compression.                               | (10) |
|    | (b) With the help of diagrams, discuss the following shaping methods for glass:   | (15) |
|    | (i) Pressing (ii) Blow forming (iii) Rolling                                      |      |
|    |                                                                                   |      |

(10)

(c) Explain briefly the general characteristics of various types of composite materials.Compare the advantages and disadvantages of metal-matrix composites and ceramic matrix composites.

### <u>SECTION – B</u>

There are **FOUR** questions in this Section. Answer any **THREE**.

| 5. | (a) With neat sketches, describe briefly the investment casting. Discuss the advantages      |      |
|----|----------------------------------------------------------------------------------------------|------|
|    | and limitations of investment casting in comparison with sand mold casting.                  | (12) |
|    | (b) What is the difference between open-die and close-die forging? Why is open-die           |      |
|    | forging not a practical technique for large scale production of identical products?          |      |
|    | Explain.                                                                                     | (11) |
|    | (c) List some operations that can be classified as bending. With the help of diagram,        |      |
|    | describe a compound, a progressive and a transfer die.                                       | (12) |
| 6. | (a) Briefly describe different types of welding joints. What is the purpose of using flux    |      |
|    | and filler rod in welding operation?                                                         | (15) |
|    | (b) What are the similarities and differences between TIG welding and MIG welding            |      |
|    | process?                                                                                     | (12) |
|    | (c) Write down the necessity of electrode force in resistance welding. What happens if       |      |
|    | electrode force is not appropriate?                                                          | (8)  |
| 7. | (a) Describe the reactions that take places in oxyacetylene welding. Explain different       |      |
|    | types of flames used in gas welding.                                                         | (12) |
|    | (b) How different types of seams can be produced in resistance welding?                      | (8)  |
|    | (c) Explain the working principle of Honing and lapping processes.                           | (15) |
| 8. | (a) Discuss the working principle of a thermo-chemical welding.                              | (8)  |
|    | (b) Differentiate soldering and brazing. Briefly describe soldering joint design principles. | (12) |
|    | (c) Describe the main causes and remedies of Cracking, Inadequate Joint Penetration,         |      |
|    | Porosity, Inclusion and Incomplete Fusion in welding joint.                                  | (15) |

-----

1

### Date : 10/08/2015

### BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

L-2/T-2 B. Sc. Engineering Examinations 2013-2014

Sub : IPE 209 (Engineering Economy)

Full Marks : 140

The figures in the margin indicate full marks.

Time : 3 Hours

USE SEPARATE SCRIPTS FOR EACH SECTION

### <u>SECTION – A</u>

There are **FOUR** questions in this Section. Answer any **THREE**.

1. (a) Discuss the elements that should be considered in deciding on an interest rate to be used in the evaluation of public projects.

(b) List the factors that would have a significant effect on a city's decision to develop a mass transportation system. Indicate which factors could be quantified and which would be considered non-quantifiable.

(c) A township has \$5,000,000 available to spend on flood-control projects. Project A is expected to generate flood prevention benefits of \$460,000 per year for an investment of \$3,000,000 and annual maintenance expenses of \$57,000. Project B, costing \$4,000,000 with maintenance expenses of \$81,500 per year, is expressed to produce annual savings of \$613,000 due to reduced flooding. Both projects are expected to last 40 years. For an interest rate of 10%, compute the benefit-cost ratio for each project and then calculate the incremental benefit-cost ratio. Which approach does provide the correct result?

2. (a) What s MACRS? Discuss its advantages.

(b) Exactly 10 years ago, Boyditch Professional Associates purchased \$ 100,000 in depreciable assets with an estimated salvage of \$10,000. For tax depreciation the SL method with n = 10 years was used, but for book depreciation, Boyditch applied the Double Declining Balance (DBB) method with n = 7 years and neglected the salvage estimate. The company sold the assets today for \$12,500. (i) Compare this amount with the book values using the SL and DDB methods. (ii) If the salvage of \$12,500 had been estimated exactly 10 years ago, determine the depreciation for each method in year 10. (c) There are 3 different life (recovery period) values associated with a depreciable asset. Identify each by name and explain how it is correctly used.

 (a) What are the principles of engineering economy? Briefly discuss with appropriate examples.

(b) Do you agree or disagree with the following statement? "Most business would not obtain maximum profits by maximizing revenue". Justify your answer.

(c) Define *standard cost* and list some of its typical uses.

Contd ..... P/2

(5)

(8)

(10 1/3)

(10 ½)

(8)

(10)

(8)

**(5**<sup>1</sup>/<sub>3</sub>**)** 

### <u>IPE 209</u>

 (a) What is cost-driven design optimization? Outline a general approach for optimizing a design with respect to cost.

= 2 =

(b) The cost of operating a large ship (C<sub>0</sub>) varies as the square of its velocity ( $\nu$ ); specifically,  $C_0 = kn\nu^2$ , where n is the trip length in miles and k is a constant of proportionality. It is known that at 12 miles/hour, the average cost of operation is \$100 per mile. The owner of the ship wants to minimize the cost of operation, but it mist be balanced against the cost of the perishable cargo (C<sub>c</sub>), which the customer has set at \$1,500 per hour. (i) At what velocity should the trip be planned to minimize the total cost (C<sub>r</sub>), which is the sum of the cost of operating the ship and the cost of perishable cargo? (ii) How do you know that your answer for the problem in Part (i) minimizes that total cost?

(c) A company produces and sells a consumer product and is able to control the demand for the product by varying the selling price. The approximate relationship between price and demand is

$$p = \$38 + \frac{2,700}{D} - \frac{5,000}{D^2}$$
, for  $D > 1$ ,

where p is the price per unit in dollars and D is the demand per month. The company is seeking to maximize its profit. The fixed cost is \$1,000 per month and the variable cost  $(c_v)$  is \$40 per unit. (i) What is the number of units that should be produced and sold each month to maximize profit? (ii) Show that your answer to Part (i) maximizes profit.

#### <u>SECTION – B</u>

There are FOUR questions in this Section. Answer any THREE.

5. (a) Describe the differences between

(i) Equity capital and debt capital

(ii) Simple interest and compound interest

(iii) Nominal interest rate and effective interest rate

(b) Find the value of the unknown quantity in the cash flow diagram below to establish equivalence of cash inflows and outflows. Let i = 12% per year. (13  $\frac{1}{3}$ )

(7)

**(8**<sup>1</sup>/<sub>3</sub>)

(10)

### <u>IPE 209</u>

per year.

- 6. (a) If nominal interest rate is 18%, what is the effective annual interest rate if compounding takes place monthly. If compounding take place continuously?
  (b) You purchased a building five years ago for \$100,000. Its annual maintenance expense has been \$5,000 per year. At the end of third years, you spent \$9,000 on roof repairs. At the end of the fifth years (now), you sell the building for \$120,000. During the period of ownership, you rented the building for \$10,000 per year paid at the beginning of each year. Use the AW method to evaluate this investment when your MARR is 12%
  - .
- 7. (a) What is Minimum Attractive Rate of Return (MARR)? What are the major considerations in determining MARR.

(b) You are presented with the summary of projected costs and annual receipts for new product line. Calculate the IRR for this investment opportunity. The company's MARR is 10% per year.

| End of year | Net Cash Flow, \$ |
|-------------|-------------------|
| 0           | - 450,000         |
| 1           | - 42,500          |
| 2           | + 92,800          |
| 3           | + 386,000         |
| 4           | + 614,600         |
| 5           | 202,200           |

Rework the problem with ERR method, when C = MARR per year.

8. (a) You bought a \$1,000 bond at par (face value) that paid nominal interest at the rate of 10%, payable semiannually, and held it for 10 years. You then sold it at a price that resulted in a yield of 8% nominal interest compounded semiannually on your capital. What was the selling price?

(b) How much should be deposited each year for 12 years if you wish to withdraw \$309 each year for five years, beginning at the end of the 15th year? Let i = 12% per year. (10  $\frac{1}{3}$ )

(10)

 $(13\frac{1}{3})$ 

(7)

(17 ½)

(13)