
High Performance Queries on Multiple Tables for
Compressed Form of Relational Database

By
Mohammad Masumuzzaman Bhuiyan

Roll No. 040405004 F

A thesis submitted to the Department of Computer Science and Engineering in
partial fulfillment of the requirements for the degree of MASTER OF

SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

Department of Computer Science and Engineering
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA

September 2007

o

i

t

The thesis "High Performance Queries on Multiple Tables for Compressed
Form of Relational Database", submitted by Mohammad Masumuzzaman
Bhuiyan, Roll No. 040405004 F, Session: April 2004, to the Department of
Computer Science and Engineering, Bangladesh University of Engineering and
Technology, Dhaka, has been accepted as satisfactory for the partial fulfillment of
the requirements for the degree of Master of Science in Engineering (Computer
Science and Engineering) and approved as to its sty Ie and contents for the
examination held on 15th September, 2007.

Board of Examiners

~
I. Dr. Abu Sayed Md. Latiful Hoque

Associate Professor, Department of CSE .
BUET, Dhaka-IOOO

~. ;k.$~"'".~.
2. Dr. Muhammad Masroor Ali

Professor and Head, Department of CSE
BUET, Dhaka-lOOO

~ .

3. Dr. Mohammad Mahfuzullslam
Assistant Professor, Department ofCSE
BUET, Dhaka-lOOO

~
4. Dr. Reaz Ahmed

Assistant Professor, Department of CSE
BUET, Dhaka-lOOO

5. Dr. Mohammad ShorifUddin
Professor, Department of CSE
Jahangirnagar University, Dhaka

c;hairman
(Supervisor)

Member
(Ex-officio)

Member

Member

Member
(External)

Declaration

It is hereby declared that the work presented in this thesis or any part of this thesis

has not been submitted elsewhere for the award of any degree or diploma, does not

contain any unlawful statements and does not inlioinge any existing copyright.

Signature

(Mohammad Masumuzzaman Bhuiyan)

11

Table of Contents

Deelarati on ,i
Table of Contents : , : ii
List of Figures iv .
List of Tables v
Acknowledgement , vi
Abstract vii
Chapter I Introduction 1

1.1 Background 2
1.2 Problem Definition 2
1.3 Obj ective 2
1.4 Organization of the Thesis , 3

Chapter 2 Literature Survey 4
2.1 Compression Techniques .4

2.1.1 Loss-Less Compression Methods 5
2.1.2 Lossy Compression Methods 6
2.1.3 Lightweight Compression Methods 6
2.1.4 Heavyweight Compression Methods 6

2.2 Compression on Database Processing 7
2.2.1 Compression of Relational Structures 7
2.2.2 HIBASE Architecture 9
2.2.3 Three Layer Model 12
2.2.4 Columnar Multi Block Vector Structure (CMBVS) 13
2.2.5 Compression in Oracle 13

2.3 Query Processing 14
2.3.1 Uncompressed Query Processing 14
2.3.2 Compressed Query Processing 16

2.4 Summary 17
Chapter 3 DHIBASE Architecture and Compressed Query Proeessing 18

3.1 DHIBASE: Disk Based HIBASE Model 18
3.2 DHIBASE: Storage Complexity 19
3.3 DHIBASE: Insertion 20
3.4 DHIBASE: Deletion 20
3.5 D[-lIBASE: Update 21
3.6 Sorting of compressed relation according to code values 21
3.7 Sorting of compressed relation according to string values ,..23
3.8 Joining of compressed relations 24
3.9 SQL queries on compressed data 25

3.9.1 Queries on single compressed relation 25
3.9.1.1 Projection 26
3.9.1.2 Selection with single predicate 26
3.9.1.3 Selection with multiple predicates : 27
3.9.1.4 Selection with range predicate 27

111

3.9.2 Queries on multiple compressed relations 28
3.9.2.1 Projection 28
3.9.2.2 Selection with single predicate 28
3.9.2.3 Selection with multiple predicates 28
3.9.2.4 Set Union 28
3.9.2.5 Set Intersection 29
3.9.2.6 Set Difference 30

3.9.3 Aggregation on compressed relation 31
3.9.3.1 Count. 31
3.9.3.2 Maxi Min : , 32
3.9.3.3 Suml Avg 32

3.10 Summary 33
Chapter 4 Resul ts and Discussion 34
4.1 Experimental Environment 34
4.2 Storage Requirement 36
4.3 Query Performance 37
4.3.1 Single Column Proj ection 37
4.3.2 Single Predicate Selection 38
4.3.3 Double Predicate Selection 38
4.3.4 Range Predicate Selection , 39
4.3,5 Sorting of Relation 40
4.3.6 Aggregation: Count .41
4.3.7 Aggregation: Maxi Mini Suml Avg 41
4.3.8 Natural Join 42
4.3.9 Set Union 43
4.3.10 Set Union/ Set Difference 44
4.3.11 Bulk Update .45

4.4 Summary 46
Chapter 5 Conclusion and Future Research .47

5.1 Fundamental Contributions of the Thesis 47
5.2 Future Research .48

BibEograph y 49

t1

IV

List of Figures

Fig. No.

Fig. 2.1

Fig. 2.2

Fig. 2.3

Fig. 2.4

Fig. 3.1

Fig. 4.1

Fig. 4.2

Fig. 4.3

Fig. 4.4

Fig. 4.5

Fig. 4.6

Fig. 4.7

Fig. 4.8

Fig. 4.9

Fig. 4.10

Fig. 4.11

Fig.4.12

Title

Compression of CUSTOMER relation

Column-wise storage of a relation

The Three Layer Model

Querying a database in compressed form

DHIBASE Architecture

Storage comparison between DHlBASE and SQL Server

Single column projection

Single predicate selection

Double predicate selection

Range predicate selection

Sorting of Sales selection

Aggregation: Count

Aggregation: Max! Min! Sum! Avg

Natural join

Set union

Set intersection! Set difference

Bulk update

Page No.

10

11

12

16

18

36

37

38

39
40
40
41

42

42

43

44
45

Table No.

Table 2.1

Table 4.1

Table 4.2

Table 4.3

. Table 4.4

Table 4.5

Title

CUSTOMER: a simple relation

Item relation

Employee relation

Store relation

Customer relation

Sales relation

v

List of Tables

Page No.

9

34
34

35

35

35

VI

Acknowledgement

I want to express my cordial gratitude to my supervisor, Dr. Abu Sayed Md.

Latiful Hoque, Department of Computer Science and Engineering, Bangladesh

-University of Engineering and Technology, Dhaka for making this research as a

way of exploring new ideas in the tield of database compression. He grows inside

me the curiosity and also provides me the proper guidelines that make it possible

to complete the research. His profound knowledge and expertise in this field help

me to earn relevant knowledge in the field of database compression.

Finally, I would like to acknowledge all of my family members for their heartiest

wishes for completing the research.

-' '(\

I
\,

Vll

Abstract

Loss-less data compression is potentially attractive in database application for storage

reduction and performance improvement. The existing compression architectures work

well for small memory resident database. Some other techniques use disk-based

compression and therefore, can suppo11 large database. But all these systems can execute

a limited number of queries. Moreover, they cannot perform queries based on multiple

tables. We have developed a disk based compression architecture that uses dictionary

based compression. Each column is stored separately in compressed form. String data are

compressed and numeric data mayor may not be compressed based on the discretion of

the database designer. We have compared our system with widely used Microsoft SQL

-Server. The experimental result shows that the proposed system requires 10 to 20 times

less space. As the system is column oriented, schema evolution is easy. We have also

defined a number of query operators on compressed database. We have implemented

natural join, selection with range predicate, set operations and all aggregation functions.

These complex queries have not been explored in existing compression based systems.

Other than selection queries our system outperforms Microsoft SQL Server with respect

to query time. The performance of selection queries could be improved by introducing

indices. Also the system is appropriate for parallel computation by distributing the

compressed columns to separate processors.

1

(

Chapter 1

Introduction

Storage requirement for database system is a problem for many years. Storage capacity is

being increased continually, but the enterprise and service provider data need double

storage every six to twelve months [I]. It is a challenge to store and retrieve this

increased data in an efficient way. Rcduction of the data size without losing any

information is known as loss-less data comprcssion. This is potentially attractive in

database systems for two reasons:

• Storage cost reduction

• Performance improvement

The reduction of storage cost is obvious. The performance improvement arises as the

smaller volume of compressed data may be accommodated in faster memory than its

uncompressed counterpart. Only a smaller amount of compressed data needs to be

transferred and/or processed to effect any particular operation.

Most of the large databases arc often in tabular form. The operational databases are of

. - medium size whereas the typical size of fact tables in a data warehouse is generally huge

[2]. These data are write once-read many type for further analysis. Problem arises for

high-speed access and high-spced data transfer. The conventional database technology

cannot provide such performance. We need to use new algorithms and techniques to get

attractive performance and to reduce the storage cost. High performance compression

algorithm, necessary retrieval and data transfer technique can be a candidate solution for

large database management system. It is difficult to combine a good compression

technique that reduces the storage cost while improving performance.

2

1.1 Background

A number of research works [3, 4, 5, 6] arc found on compressIOn based Database

Management Systems (DBMS). Commercial DBMS uscs compression to a limited extent

to improve performance [7]. Compression can be applied to databases at the relation

level, page level and the tuple or attribute lcvel. In page lcvel compression methods the

compressed representation of the database is a set of compressed tuples. An individual

tuple can be compressed and decomprcsscd within a pagc. An approach to page level

compression of relations and indices is given in [8]. Thc Oracle Corporation recently

introduces disk-block based compression technique [9] to manage large database.

Complex SQL (Structured Query Language) queries cannot be carried out on these

databases in compressed form.

SQL:2003 [10] supports many diffei'ent types of operations. Compression based systems

like High Compression Database System (HlBASE) [11], Three Layer Model [12] and

Columnar Multi Block Vector Structure (CMBVS) [2] have limited number of query

statements compared to SQL.

1.2 Problem Definition

Many different techniques are now available for database compression [3, 4, 5, 6]. But

these systems primarily focus on comprcssion and have limited focus on efficient query

processing. These systems support insertion, deletion, updatc, projection and selection

operation on single table. Most of the database applications require supporting queries on

multiple tables. But thesc systems do not support queries on multiple tables, sorting of

compressed relations, join operations, aggregations and other complex queries. So size

reduction should not be the sole objective of a compressed database system. Efficient

query processing must be maintained and at the same time. all query operations must be

implemented.

1.3 Objective

The objective of this research is to design a compression-based architecture that can be

used for efficient querying of compressed relational database. This objective will be

achieved in three steps:

3

o Defining of a number of opcrators for querYll1g compression-based

relational database system,

o Designing algorithms for these operators,

o Evaluating algorithms in terms of time and space.

The features of the proposed architccture arc as follows:

• Records are directly addressable in compressed storage into memory. or

disk block.

• Reduced disk transfer time due to compression.

• Decompression overhead will be minimized as only the final result will be

translated in uncompresscd from.

1.4 Organization of the Thesis

In chapter 2, a survey of the research in compression methods and query processing in

_ database systems is presented. We have developed disk-based system which is an

extension of HIBASE architecture. The dictionary organization and compressed

relational structure of HIBASE are discussed.

Chapter 3 presents the overview of our proposed architecture, Disk Based HIBASE

(DHIBASE). The structure stores database in column wise format so that the unnecessary

columns need not to be accessed during query processing and also restructuring the

database schema will be easy. Each attribute is associated with a domain dictionary.

Attributes of multiple relations with same domain share the same dictionary.

Chapter 4 gives the detailed analysis of query processing of DHIBASE system. SQL-like

query operators in compressed format have been defined and algorithm of each operator

and analysis of the algorithms are also provided.

Chapter 5 describes the experimental work that has been carried out. Results obtained are

thoroughly discussed.

Chapter 6 presents conclusions and suggestions for future work.

r

4

Chapter 2

Literature Survey

The amount of information does not strictly depend on the volume of data. Insight

depends on information; the volume of data depends on its own representation. For cost

and performance reason the data should be made as concise as possible. Over the last

decade computer memory cost has been significantly reduced. But at the same time,

storage size of data and information has also been increased. Therefore, storage cost for

large-scale databases is still a great problem [5].

Combining compressIOn with data processll1g provides performance improvement.

Database systems need to provide efficient addressability for data, and generally must

provide dynamic update. It is difficult to incorporate these features with good

compression techniques [14]. Many research works [4, 6] have been done in database

systems to exploit the benefit of compression in storage reduction and performance

improvement.

2.1 Compression Techniques

- Based on the ability of the compressed data to be decompressed into the original data,

data compression techniques can be classified as either loss-less or lossy. A loss-less

technique means that the compressed data can be decompressed into the original without

any loss of information. On the other side, a compression method that cannot reconstruct

the original data from the compressed form is called lossy compression. This type of

compression is appropriate for compressing image, voice or video data.

Based on how the input data is treated during compreSSIOn, we can categorize the

compression techniques as lightweight or heavyweight scheme. Lightweight scheme

compresses a sequence of values. Heavyweight scheme compresses a sequence of bytes.

This scheme is based on patterns found in the data, ignoring the boundaries between

values, and treating the input daia as an array of bytes.

5

2.1.1 Loss-Less Compression Methods

The loss-less property is essential for many types of application e.g., word-processing

and database applications. The loss-less compression methods can be further classified as

follows:

• Statistical Encoding

• Dictionary Based Methods

Statistical Encoding

Statistical encoding uses the probabilities of occurrence of each character and each group

of characters, assigns short codes to frequently occurring characters or groups of

characters while assigns longer codes to less frequently encountered characters or groups

of characters [15]. The widely used statistical compression methods are Huffman [16]

and Shannon-Fano [17,18] encoding. These methods are static and require a prior

knowledge of the probability of occurrence of each character in the input string.

Performance degrades if the frequency of occurrences changes. Static methods require at

least two passes: one pass to determine the probability of occurrences of the input

alphabet and the other pass to encode the string. To maintain the efficiency of the

resulting code obtained by compressing data, adaptive or dynamic compression schemes

have been developed by many researchers [19. 20].

Dictionary Based Methods

In dictionary based compression methods. the encoder operates on-line, inferring its

dictionary of available phrases from previous parts of the message and adjusting its

dictionary after the transmission of each phrase. This allows the dictionary to be

transmitted implicitly, since the decoder simultaneously makes similar adjustment to its

dictionary after receiving each phrase. The Lempel-Ziv families of compression methods

[21,22, 23] are of this type and are uscd in many file storage and archiving systems.

These methods perform better than the character-based methods in terms of speed and

space. The main drawback of these methods for database applications is the .locality of

reference. The encoded data using the initial part of the dictionary is not the same as the

encoded data using the later part or the dictionary. Therefore the compressed data is not

c,-.~

r:
\"1':

6

directly addressable in these methods [II]. These techniques require decompression all,

or a large amount of the data even if only a small part of that data is required.

Alternatively, a complete dictionary is created in advance using the full message. The

dictionary is included explicitly as part of the. compressed message. This scheme is highly

efficient for decompression, and the compressed data can be searched directly [24].

2.1.2 Lossy Compression Methods

All real world measurement of audio-visual data inherently contains a certain. amount of

noise. If the compression method includes a small amount of additional noise, no harm is

done. Compression techniques that result in this sort of degradation are called lossy. This

phenomenon is important because lossy compression techniques can give greater

compression ration over the loss-less methods. The higher the compression ratio, the

more noise added to the data. Lossy compression is advantageous for image, voice and

video data because the additional noise has little effect on the user's perception. lPEG

((Joint Photographic Expert Group) and MPEG (Moving Picture Expert Group) are

standards for compression of image, voice and video data using lossy compression

methods.

2.1.3 Lightweight Compression Methods

Lightweight compression techniques work on the basis of some relationship between

values, such as when a particular value occurs often, or if we encounter long runs of

repeated values. Run length encoding [25], delta encoding and dictionary encoding [5, 6,

26] are some examples of lightweight comprcssion techniques. In a light-weight

compression technique, the compression algorithm is simple and fast. The compression

and decompression time is more important than the amount of compression.

2.1.4 Heavyweight Compression Methods

LZO (Lempel Ziv Oberhummer) [27] is a modification of the original Lempel Ziv [21]

dictionary coding algorithm. [21] works by replacing byte patterns with tokens. Each

time the algorithm recognizes a new pattern. it outputs the pattern and then it adds it ~oa

/

7

dictionary. The next time it encounters that pattern, it outputs this 'token from the table.

The first 256 tokens are assigned to possible values of a single byte. Subsequent tokens
"

are assigned to larger patterns.

Details on the particular algorithm modifications added by LZO are undocumented,

although the LZO code is highly optimized and hard to decipher. LZO is heavily

optimized for decompression speed. It provides the following features:

• Decompression is simple and very fast.

• Requires no memory for decompression.

• Compression is fast.

• The algorithm is thread safe.

• The algorithm is loss-less.

2.2 Compression on Database Processing

Compression has now become an essential paI1 of many large information systems where

large amount of data is processed, stored or transferred. This data may be of any type

e.g., voice, video, text, tables etc. No single compression technique is suitable for all

types of data. Lossy compression is appropriate for voice or video data where as loss-less

compression is suitable for other data types. Compression methods e.g., Huffman [16),

Lempel-Ziv [21, 22), LZW [23) etc cannot be used where efficient searching in the

compressed data space is required. Cormack [3) has used a modified Huffman code [16)

for the IBM IMS database system. Westmann et al. [4) has developed a lightweight

compression method based on LZW [23) for relational databases. Moffat et al. [28) use

the Run Length Encoding [25) method for a parameterized compression technique for

sparse bitmaps of a digital library.

2.2.1 Compression of Relational Structures

We shall certainly get some benefits if we compress relational databases. We can

improve the index structures such as B-trees by reducing the number of leaf pages. We

can reduce the storage requirements for information. We have reduction in transaction

turnaround time and user response time as a result of faster transfer between disk and

8

main memory in I/O bound systems. In addition, since this will also reduce I/O channel

loading, the CPU can process many more I/O rcquests and thus increase channel

utilization. We may have better ctlicicncy of backup sincc copies of the databasc could
(

be kept in compressed form. This reduces the number of tapes required to store the data

and reduces the time of reading from, and writing to, these tapes. The whole or the major

portion of processing ,data in compressed form may be memory resident. Main memory

access time is several orders of magnitude faster than the secondary storage access time.

This improves performance.

Compression can be applied to databases at the relation level, page level and the tuple or

attribute level. In page level compression the database is represented as a set of

compressed tuples. An individual tuple can be compressed and decompressed within a

page. When a particular tuple is required, the corresponding page is transferred to the

memory and decompression is necessary only if the decompressed tuple is required. An

approach to page level compression of relations and indexes is given in [8]. The

important aspects of the technique are that each compressed data page is independent of

the other pages and each tuple can be decompressed based on the information found on

that specific page. A compressed tuple can be referred by a page-no and an offset. The

degree of compression greatly depends on the range of values in each field for the set of

tuples stored on a page.

Wee et al. [29] has proposed a tuple level compression scheme using Augmented Vector

Quantization. Vector quantization is a lossy data compression technique used in image

and speech coding [30]. However Wee et al. [29] has developed a loss-less method for

database compression to improve pcrformance of I/O intensive operations.

A similar compression scheme has been given in [4] with a different approach. The work

presented a set of very simple and light-weight compression techniques and shows how a

database system can be extended to exploit these compression techniques. Numeric

compression is done by suppressing zeros; string compression is done by classical

Huffman [16] or LZW [23]. Dictionary-based compression methods, however, are used

for any field containing a small number of different values.

, 9

2.2.2 HIBASE Architecture

The HIBASE architecture by Cockshot, McGregor and Wilson [11, 31] is a more radical

approach to model the data representation.

In the relational approach, the database is a set of relations [13]. A relation represents a

set of tuples. In a table structure, the rows represent tuples and the columns contain

values drawn from domains. Queries are answered by the application of the operations of

the relational algebra, usually as embodied in a relational calculus-based language such

. as SQL.

Table 2.1: CUSTOMER: a simple relation

Customer Name Street City Status

Beauty South - Gazipur Married

Kalal11 South Dhaka Single

Johan North Gazipur Married

Anika West Gazipur Married

Zoinal South Dhaka Married

Belal South Gazipur Married

Shamim West Dhaka Married

Johan West Gazipur Single

The objective of the compression architecture is to trade off cost and performance

between that of conventional DBMS and main memory DBMS. Costs should be less than

the second, and processes faster than the first [II]. The architecture's compact

representation can be derived from a traditional record structure in the following steps:

Creating dictionaries: A dictionary for each domain is created which stores string

values and provides integer identitiers for them. This achieves a lower range of

identifiers, and hence a more compact representation than could be achieved if only a

single dictiOliary was generated for the entire database.

Replacing field values by integer identifiers: Thc range of the identifiers need only be

sufficient to unambiguously distinguish which string of the domain dictionary is

indicated. In Fig. 2.1, since there are only 7 distinct customer names, only seven

, identifiers are required. This rangc can be represented by only a 3-bit binary number.

10

Therefore in the compressed table each tuple requires only (3 bits: Customer name, 2

bits: Street, 2 bits: City, 2 bits: Status) a total of 9 bits instead of the 25 bytes (6 bytes:

Customer name, 5 bytes: Street, 7 bytes: City, 7 bytes: Status) for the uncompressed

relation. This achieves a compression of the table by a factor of over 22. The actual

compression ratio is somewhat lower due to the space requirements of domain

_ dictionaries. Generally some domains are present in several relations and this reduces the

dictionary overhead by sharing them among different attributes. In a domain a specific

identifier always refers to the same tield value and this fact enables some operations to be

carried out directly on compressed table data without examining dictionary entries until

string values are essential (e.g. for output). It may be noted that dictionary entries start

with I not 0, this is because a 0 in a field will indicate a null or missing value.

CustName Street City Status
Beauty South Gazipur Married
Kalam South Dhaka Single
Johan North Gazipur Married
Anika West Gazipur Married
Zoinal South Dhaka Married
Belal South Gazipur Married

Shamim West Dhaka Married
Johan West Gazipur Single

Compression
Engine

001 01 01 01
010 01 10 10
011 10 01 01
100 II 01 01
101 01 01 01
110 01 01 01
III II 01 01
011 II 10 10

Status
Married
Single

------- ---_.---

.QtL
Gazipur
Dhaka

,....------ -
Id CustName Street
I Beauty South
2 Kalam North
3 Johan West
4 Anika
5 Zoinal
6 Belal
7 Shalllil!l.~__ .___ .._.

Fig. 2.1: Compression of CUSTOMER relation

Dictionary structure: All distinct attribute values (lexemes) are stored in an end-to-end
"

format in a string heap. A hashing mechanism is used to achieve a contiguous integer

identifier for the lexemes. This reduces the size of the compressed table. It has three

important characteristics:

r

II

I. It maps the attribute values to their encoded representation during the

compression operation: encode(lexeme) -> token

2. It performs the reverse mapping from codes to literal values when parts of the

relation are decompressed: decode(token) -> lexeme.

3. The mapping is cyclic such that lexeme = decode(encode(lexeme)) and also

token = encode(decode(token)).

The structure is attractive for low cardinality data. For high cardinality and primary key

data, the size of thc string hcap grows considcrably and contributes very little or no

compressIOn.

Column-wise storage of relations: The architecture stores a table as a set of columns

(Fig. 2.2), not as a set ,of rows. This makes some operations on the compressed database

considerably more efficient. A column-wise organization is much more efficient for

dynamic update of the compressed representation. A general database system must

support dynamic incremental update, while maintaining efficiency of access. The

processing speed of a query is enhanced because queries specify operations only on a

subset of domains. In a column-wise databasc only the specified values need to be

transferred, stored and processed. This requires only a fraction of the data that required

during processing by rows.

CuslName

Beauty
Kalam
Johan
Anika
Zoinal
Belal

Shamim

001
010
011
100
101
110
III
011

Street

South
North
West

01
01
10
II
01
01
II
II

Next Field

Fig. 2.2: Column-wise storage of a relation

12

2.2.3 Three Layer Model

The Three Layer Model was developed by Hoque et al. [12]. This database architecture

was designed for storage and querying of structured relational databases, sparsely

populated e-commerce data and semi-structurcd XML. They have proved the syste~ in

_ practice with a variety of data. They have achieved significant improvement over the

basic Hibase model [11] for relational data. Their system perfonns beller than the

Ternary model [32] for the sparsely populated data. They compared their results with

UNIX utility compress. The system performs a factor of two to six more in reduction of

data than compress, maintaining the direct addressability of the compressed form of data.

The architecture has three layers:

Layer 1: The lowest layer is the vector structures to store the compressed form of data.,.
As queries are processed on the compressed form of data, indexing is allowed on the

structure such that we can access any element in the compressed form without

decompression. The size of the element can vary during database update. The vector can

adapt dynamically as data is added incrementally to the database. This dynamic vector

structure is the basic building block of the architecture.

Layer 2: The second layer is the explicit representation of the ofT-line dictionary in

compact fonn. They have presented a phrase selection algorithm for off-line dictionary

method in linear time and space [33].

Layer 3: The third layer consists of the data models to represent structured relational

data, sparsely populated data and semi-structured XML.

(Application program i.ntel"face) User quelies intelface

! !
XML database,
Sparse e-COlluuerce

Relations,

Ma:.ive table

LaJ-er2 Toke~d data Indices

Fig. 2.3: The Three Layer Model

,

13

2.2.4 Columnar Multi Block Vector Structure (CMBVS)

The proposed compression based data management system architecture [2] can be used to

handle terabyte level of relational data. The existing compression schemes e.g. Hibase

[II] or Three Layer Database Compression Architecture [12] work well for memory

resident data and provide good performance. These are low cost solution for high-

performance data management system but are not scalable to manage terabyte level of

data. CMBVS is a disk based columnar multi-block vector structure that can be used to

store relational data in a compressed representation with direct addressability. Parallel

data access can be achieved by distributing the vector structure into multiple servers to

improve the scalability. The structure is capable of carrying out query directly on the

compressed data. This reduces query time drastically. The system has been compared

with the conventional relational DBMS. The architecture is significantly efficient in

storage reduction and also faster than conventional systems in retrieval time performance.

2.2.5 Compression in Oracle

The Oracle ROBMS recently has introduced a compression technique [9] for reducing the

size of relational tables. This compression algorithm is specifically designed for

relational data. Using this compression tcchnique. Oracle is able to compress data much

more effectively than standard compression techniques. More significantly, Oracle
'.

incurs virtually no performance penalty for SQL queries accessing compressed tables. In

fact, Oracle's compression may provide performance gains for queries accessing large

amounts of data, as well as for certain data management operations like backup and

recovery.

The compression algorithm. used in Oracle compresses data by eliminating duplicate

values in a database block. The algorithm is a loss-less dictionary-based compression

technique. One dictionary (symbol table) is created for each database block. Therefore,

compressed data stored in a database block is sel1~contained. That is, all the information

is available within the block to recreate the uncompressed data in that block. This

compression technique has been chosen to achieve local optimality of compression ratio.

The algorithm is greedy, meaning that it tries to load as many rows as possible into each

block. It does not attempt to achieve any form of global compression ratio optimality.

14

The problem of global compression ratio optimality is highly computationally intensive.

If global compression, ratio optimality is desired, the entire set of rows to be compressed

needs to be buffered before blocks can be populated. For large data warehouses this is

not feasible because it would potentially require to buffer terabytes of data, which is not

practical.

2.3 Query Processing

Query processing refers to the range of activities involved 111 extracting data from a

database. The basic steps involved in query processing are

I. Parsing and translation

2. Optimization

3. Evaluation

The first action the system must take in query processing is to translate a given query into

its internal form. Given a query, there are generally a variety of methods for computing

the answer. In SQL, a query could be expressed in several different ways. Each SQL

query can itself be translated into one relational-algebra expression in one' of several

ways. We can execute each relational-algebra operation by many different algorithms. To

specify fully how to evaluate a query, we need not only to provide the relational-algebra

expression, but also to annotate it with instructions specifying how to evaluate each

operation. Annotation may state the algorithm to be used for a specific operation, or the

particular index or indices to use. DifTerent query-evaluation plans for a given query have

different costs. Based on these cost estimates, a particular plan is accepted. The given

query is evaluated with that plan and the result of the query is output.

2.3.1 Uncompressed Query Processing

Parsing of query languages differs little from parsing of traditional programmlI1g

languages. Main parsing techniques were covered in [34], but here optimization is

presented from a programming language point of view. A excellent description of

external sorting algorithms, including an optimization that create initial runs that are (on

the average) twice the size of the memory, is described in [35].

(

15

Query optimization: Much work has been done in query optimization. Access-path

selection in the System R optimizer is described in [36], which was one of earliest

relational query optimizers. Volcano, an equivalence-rule based query optimizer, is

described in [37]. Query processing in Starburst is described in [38]. Query optimization

in Oracle is briefly outlined in [39].
. I.

The SQL language poses several challenges for query optimization, including. the

presence of duplicates and nulls, and the semantics of nested sub-queries. Extension of

relational algebra to duplicates is described in [40]. Optimization of nested sub-queries is

discussed in [41].

Multi-query optimization, which is the problem of optimizing the execution of several

queries as group, is described in [42]. If an entire group of queries is considered, it is

possible to discover common sub-expressions that can be evaluated once for the entire

group. Optimization of a group of queries and the use of common sub-expressions are

considered in [43]. Optimization issues in pipelining with limited buffer space combined

with sharing of common sub-expression are discussed in [44] ..

Join operation: In the mid 1970s, database systems used only nested-loop join and

merge join. These systems, which were related to the development of System R,

determined that either the nested-loop join or merge join nearly always provided the

optimal join method [45]; helice, these two were the only join algorithms implemented in

System R. The System R study did not include an analysis of hash join algorithms. Today

hash join algorithms are considered to be highly efficient.

Hash join algorithms were initially developed for parallel database systems. Hash join

techniques are described in [46], and extensions including hybrid hash join are described

in [47]. Hash join techniques that can adapt to the available memory is important in

systems where multiple queries may be running at the same time. This issue is described

in [48]. The use of hash joins and hash teams, which allow pipelining of hash joins by

using the same partitioning for all hash joins in a pipeline sequence in the Microsoft SQL

Server is presented in [49].

16

Aggregation: An early work on relational algebra expressions with aggregate functions

is found in [50]. More recent work in this area ineludes [51]. Optimization of queries

containing outer joins is described in [52].

Views: A survey of materialized view maintenance is presented in [53]. Optimization of

materialized view maintenance plans is described in [54]. Query optimization in the

presence of materialized views is addressed in [55].

2.3.2 Compressed Query Processing

Very few systems execute queries directly on compressed data without any

decompression. Hibase Architecture [II]. Three Layer Model [12]. Columnar Multi
"
Block Vector Structure (CMBVS) [2] are the systems that execute queries directly on

compressed data (Fig. 2.4). The query is translated to compressed form and then

processed directly against the compressed relational data. Less data needs to be

manipulated and this is more efficient than the conventional alternative of processing an

uncompressed query against uncompressed data.

QUER'(

/ Compre:.::.sioo
Engine

ECOJ ECOJ
c=:::::J

Dictionaries

Decc1mpre::::::ed [[[]: : :
Result : : :

, , ,
, , ,

Decornpn::::s:ion l'
Engine r;:',

.•. ~/" 1
ISCAN I~ 0 0 0 .

<:',;orn~' r -= ~ J'-:0.1
T."bl,.

Fig. 2.4: Querying a database in compressed form

The final answer will be converted to a normal uncompressed form. However, the

computational cost of this decompression is low because the amount of data to be

decompressed is only a small fraction of the processed data. All thesc systems are

capable of executing querIes on single compressed relation. Queries on multiple

compressed relations have not been designed so far.

17

Compression technique used in Oracle is differcnt than that used in Hibase Architecture

[11], Three Layer Model [12] and CMBVS [2]. As separate symbol table is created for

each database block, the compressed data is not directly addressable in compressed form.

Therefore, it is hard to implement queries directly on multiple compressed relations. In

fact, Oracle's compression algorithm is particularly well suited for data warehouses

environment, which contains large volumes of historical data with heavy query

workloads. The system is targetcd mostly for read-only applicaiions where simple

queries are involved.

2.4 Summary

This chapter described different types of existing compression techniques, compression

of relational database, development in query processing both in uncompressed and

compressed form. We have thoroughly discussed the l-I1BASE architecture because we

taken this model as the basis of our architecture (which we call DHIBASE). But there are

fundamental differences between l-llBASE and DHIBASE. Differences are observable in

storage structure of compressed data, number and types of query processing.

(

18

Chapter 3

DHIBASE Architecture and

Compressed Query Processing

This chapter describes the details of the proposed DHIBASE architecture for storage of

compressed relational data. The chapter also describes the details of the query processing

techniques of the proposed system. We develop the system for single processor system.

Query is evaluated directly on compressed data.

3.1 DHIBASE: Disl{ Based HIBASE Model

The basic HIBASE architecture is memory based. We have developed a more general

architecture (Fig. 3.1) that supports both memory and disk based operations. We have

made two assumptions:

a. The architecture stores relational database only

b. Single processor system architecture

DHIBASE

Fig. 3.1: DHIBASE Architecture

Although the architecture is designed for single processor system, it can easily be

expanded for other architectures. The Input Manager (1M) takes input from different

sources and passes to Compression Manager (CM). CM compresses the input, make

necessary update to appropriate dictionaries and stores the compressed data into

respective column storage.

(

19

Query Manager (QM) takes user query and passes to Query Compression & Execution

Unit (QCEU). QCEU translates the query into compressed form and then applies it

against compressed data. Then it passes the compressed result to Decompression Unit

(DU) that converts the result into uncompressed form.

Each compressed column is stored across multiple disk blocks. Each disk block has fixed

size. Compressed data are stored in end-to-end position in disk block. No data is split

over two disk blocks. The total database is kept into the main memory when the database

is small enough to be placed into the memory. For large databases, recently active parts

are placed into the main memory. The last disk block of each column and each dictionary

is always kept into main memory. All insertions are committed in this memory block.

The Insert or Update operation in disk based HlBASE model requires 'string' look up in

the dictionary. Efficient decoding [9] li'om code to 'string' may be achieved by two 'table

look-up' operations. So we do not need to search the entire dictionary in the worst case. If

the 'string' is present in the dictionary the operation does not need a reorganization of the

vector structure. If the 'string' is not present in the dictionary it is inserted into the

dictionary. This insel1ion might result an increase of the element width. In this case the

operation requires a reorganization of the vector structure. Deletion is performed by

replacing the desired record with the last record and then reducing number of records by

one. Dictionary entries are not deleted.

3.2 DHIBASE: Storage Complexity

SCi=n * Cj bits

_ Where SCi= space needed to store column i in compressed form

n = no of records in the relation

Ci = no of bits needed to represent ilh attribute in compressed form

= Ilg(m) l ;m is no of cntries in the corresponding domain dictionary

p
Total space to store all compressed columns, See = ISei bytes; no of column is p

i=1

If we assume that domain dictionaries will occupy an additional 25% of Sec, then

Total space to store the compressed relation, SeR= 1.25 Sec

((

20

p
Total space to store the uncompressed relation, SUR = Inxxi x8 bits; xiis the size

i=!

(in bytes) of i'h attribute in uncompressed form.

. 5'1/1 px(nxxx8) xx8CompressIOn factor,CF =---=------=---; assuming that all attributes have
5('/1 1.25xpxnxc 1.25c

equal width in both compressed and uncompressed form.

3.3 DHIBASE: Insertion

Insertion of a value into a field of a record needs the search for compressed code of the

given lexeme in the dictionary. If the lexeme is not in the dictionary then we have to add

that lexeme to the dictionary which may require widening of the compressed column.

Using hash structure, the search requires 2 seeks and 2 blocks transfers. As the last block

of the dictionary is in memory, the insertion of the lexeme in the dictionary requires no

seeks or block transfers. The complexities of widening operation are given bellow.

Let, 8 I and 82 memory blocks are allocated to initial compressed column and widened

compressed column respectively. Total block transfers are bI = r nlgm land b2 =
8b

r n (Igm + I) l . I . I fl" I' . If' .. I---- respecllve y; n IS t le no 0 tup es III given re atlon, m IS tota no 0 111111a
8b

entries in corresponding dictionary, b is disk block size (in bytes) and we increase width

of the field by I bit whenever widening is necessary. Total no of seeks is ~+-~~.
Bl B2

3.4 DHIBASE: Deletion

Deletion is performed by replacing the desired record with the last record and then

reducing no of records by one. Dictionary entries are not deleted. Deletion from last

memory block needs no seeks or no block transfers. Replacing the desired record by last

one requires 2 seeks and 2 blocks transfer for each field.

(

21

3.5 DHIBASE: Update

If the new lexeme is not in the dictionary then we have to insert the new lexeme in the

dictionary, which requires all operations of insertion as described in section 3.3.

Updating of the desired field of the desired record requires 2 seeks and 2 blocks transfer.

3.6 Sorting of compressed relation according to code

values

Sorting of table according to code values is required for some queries like natural join. As

table is stored in column-wise format, an Auxiliary Column (AC) will be used to help the

sorting process. AC has so many rows as the number of records in the table. Initially each

row of AC will contain its own position in the column. That is, the ith row of AC contains

i. We first sort the column that contains the sorting attribute. Let us consider the

following table which will be sorted by Cus/Name.
Table 3.1: A relation to be sorted

CustNamc Street City Status

Johan North Gazipur Married
Kalam South Dhaka Single
Anika West Gazipur Married
Beauty South Gaziour Married

The actual storage (based on dictionaries of Fig. 2.1) is given in Fig. 3.2.

CustName
3
2
4
I

Status
I
2
I
I

Fig. 3.2: Initial content of Auxiliary Column (AC)

During sorting of Cus/Name column AC will be reordered so that after Cus/Name column

is sorted, i'h row of AC will contain the initial position of i'h row of Cus/Name column

(Fig. 3.3).

CustName
I
2
3
4

Fig. 3.3: Content of AC after sorting of eus/Nume

,. t

22

This AC will be used to sort other columns of the table. We make a copy of the desired

data column. Now we scan the AC. From CUITcntrow i of AC we find row no j of

duplicated column t~at should be stored in row i of desired data column. Now we copy

row j of duplicated column to row i of data column. When we finish scarming AC, the

data column is sorted. Now duplicated column is deleted. In this way we sort other

columns. When all other columns are sorted, AC will be deleted. The above sorting

method is given in Algorithm I.

Algorithm I: Sorting according to code values

Sub SortByCode(byte t. byte c) //sorts t''' table by its c'" colull1n

n:::::no a/records in table I

Read all disk blocks of colull1n c of table t into DataO

For each record no i of table t. set AC(i) ~ i

call ShellSartCode(Data. AC. n)

Write all blocks in Data() to disk

For each column cl other than c, call Sor,Co/(Dalll, AC cl. n)

Delete Data(), AC()

End Sub

Sub SortCal(Data(), AC(), c, n)

Read all disk blocks af colull1n c in Data()

For each entry' in AC(), Write the lh compressed record stored in Dala(j [0 /, location a/D()

Write all blocks of D() to disk

End Sub

Sub ShellSartCode(Data(). AC(), n)
sorls all of n compressed records slored in Dolu(j, wl1cmiver /" und kill compressed records are

interchanged, the same record no's ufAC() are also inLerchunged.

End Sub
----------~-~-_. __ ._---~--~-- ._---- - .. - .--_. .---- _._• ---~--_.._-----_._-~---_._--_._-----------

Let, the column containing the sorting attribute has B disk blocks and M memory blocks

are available for sOlting disk data. Using external merge sort total no of block transfers to

sort the column is B * (2 r10gM_I(B/M)l+ I) and total no seeks is 2 * rB/M l + rB/M l (2

* 10gM_I(B/M)- I). No of disk blocks to store the Auxiliary Column (AC) is r n'gnl; n ~
. 8b

no of records and b ~ block size in bytes.

23

. - 3.7 Sorting of compressed relation according to string

values

The procedure for sorting a table according to string values is similar to that of sorting

according to code values. The only difference is in the method of comparison of two

values. Sorting by codes requires comparing only code values stored in the table and

needs not checking the corresponding dictionary entries. But sorting by string SOliS the

table according to dictionary entries of the corrcsponding code values. This forces to look

up strings in the dictionary and then compare those strings. If the strings are very long,

the comparison time will be considerably long. To reduce the comparison time we create

a dictionary (we call this SorlDic, shown in Fig. 3.4) for each string domain that stores

the sorting position of each code value of the dictionary.

Id CustName
I Beauty
2 Kalam
3 Johan
4 Anika
5 Zoinal
6 Belal
7 Shamim

Sort Pas
2
5
4
1
7
3
6

Fig. 3.4: Die and SorlDie of ellslNallle

Let us consider the entries 101 (Zoinal) and III (Shamim) 111 CuslName column.

According to the SorIDic(CusIName), SarlDic(lOI) = 7 and SarIDic(lll) = 6. Therefore,

'11 1(shamim)' < 'IOI(Zoinal)'. So with SorlDic we can avoid long string comparison

and thus have faster sorting process. Of course, we have additional space to store

SarlDic. SarlDic only contains integer values. So they themselves may be stored in
,

compressed form. Hence a particular Sorl Die consumes a small amount of space and it

- may be completely kept into main memory to avoid disk access. Also SorlDic may be

created offline to reduce processing time. Algorithm II describes the technique of sorting

by string.

.--_. __ ._--_ ...~.._~-_.-

Algorithm II: Sorting according to string values

SlIb SortBySlring(byle I. byle c) Iisoris 1'" lable by ils c", COIIlIllI1

n ~ no of records in lable I

Read all disk blocks ofcolllllln c of table I il110Data()

24

For each record no i of table t, set AC(i) ~ i

call SheIlSortString(Data, Ae. n)

Write all blocks in Data/} to disk

For each column cl other than c, call SortCol(Dala, Ae. cl, n)

Delete Data(), AC()

End Sub

Sub SheIlSortString(Data/}, AC/}, n)

same as ShelfSortCodeO; but instead of comparing /', and kill compressed. records in Da/aO. dh and viII

d d. I ,r .," d k'" ..entries of corresponding Sar/Die are compare. Here u an v are mleger va ues oJ I an entries in

Data/}

End Sub

The Sar/Die is also stored in compressed form. If the domain dictionary has m entries

rm1gml .
then the no of disk blocks to store Sar/Die, N = ; b = block size in bytes. Ifwe

8b

assume that we have N memory blocks to store the entire Sur/Die then all estimates are

same as in Algorithm I.

3.8 Joining of compressed relations

In DHIBASE architecture, columns of same domain share the same single dictionary.

Therefore, the same data has same compressed code in all positions in all tables. So we

can join two tables based on compressed codes without checking the exact 'string'

values. Algorithm III describes the natural join of two tables.

Algorithm III: Natural join of TI and T2 based on attribute A

Sub NaturalJoin(TI. :C/, Tl, Cl) II Tl has total recurd,. less than that

IlofTI. TI has column CI and Tl has culumn ClfiJ,. allrihule A

Sort TJ according to code values (~rcO/limn CI

Surt T2 according to code vulues U/CO/lIIlIl1 C2

Read all disk blocks of column CI ofTi into DI/)

Read all disk blocks of column Cl ofTl into Dl/)

Set I to both m and j

For each record no k of table TI {

While k'" entry of 01 /} ~ J'" entry of D2/} And j < ~ NoO/Records(T2) {

Set k'" entlY of 0 I/} to m'" position ofD/)

25

Sel k 10 m'" posilion oj ACI()

Sel} 10m'" posilion oj AC2()

Increment m and j

Write all blocks oj D() 10 disk

For each columnk ojTI olherlhanCI, Cull AJjusI(T1 , k. ACI, DI())

For each columnk ojT2 a/her /han C2" Call AJjusl(f2, k, AC2, D2())

Delele D(), DI(), D2(), ACI(), AC2()

End Sub

Sub Ad}us/(T, C, AC(), Da/a())

Read all disk blocks ojeolumn C ojT inlo Dala()

For each k'" enlry I oj AC(),se/ /', en/ly oj Dala() 10 k'" posilion oj D()

Wri/e all blocks oj D() 10 disk

End Sub

------------_._---------_._ .._-_ ..__ ._ ••_~--~-------~------

We assume that relations Tl and T2 are already sorted, Tl has BI disk blocks and h~ nl

- tuples and the no's for T2 are B2 and n2 respectively. Mj and M2 are the no of memory

blocks allocated to store disk blocks of Tl and T2 respectively, Total no of,disk block

transfers is BI + B2. If, on average, PI tuples of TI arc matched to P2 tuples of T2 then

total disk seeks is 2 * max(Inl 1 (MI * Pill, In21 (M2 * P2ll). No of disk blocks to store

r n] 19n] lACI() and AC2() are I---~ and
8b

size in bytes.

respectively where b is block

3.9 SQL queries on compressed data

This section describes query processing on compressed data. Section 3.9.1 describes

query processing on single compressed relation, section 3.9,2 describes query processing

on multiple compressed relations and section 3.9.3 describes aggregation functions on

compressed table.C1

3.9.1 Queries on single compressed relation

Queries on single relation are generally projection, selection and aggregation operations.

Following two sub-sections describe projection and selection in details. Aggregation is

described in section 3.9.3.

(

26

3.9.1.1 Projection

SeleCI C From T. The algorithm is given below:

Algorithm IV: Projection of single column

Read ott disk blocks of Dic(C) into DO

For each disk block b ofcolulI1n c {

For each record r in b {

Print r'" enllY of DO

Delele DO

----_._._---_._------------------_._----_ .._-_._._----------------

r n Igm l
no of seek = I. no of disk block rcad = -~-

8b

here n = no of records and m = no of entries in the domain dictionary.

3.9.1.2 Selection with single predicate

Seleci C From T Where Cj = 'xx', The algorithm is given below:

Algorithm V: Single predicate selection

Pari-I:

v:::::;code/or 'xx' in domain Dic(CJ

Seli ~ I

For each disk block b of colulI1n C, {

For each record r ~ v in block b (

Sel r 10 /', posilion of ACO

Increment i

Part-2:

Read ott disk blocks of Dic(C) inlo D()

For each each entry I in ACO, Prinl 1''' enlry of DO

Using hash structure to search domain dictionary we can find the code for a given 'string'

in 2 disk seeks and 2 disk-block reads. To select tuples of selection column we need 1

r nlgm ldisk seek and blocks transfer. The same no is needed for each projected
8b

r n Ign l
column. No of disk blocks to store AC() is ------.- ..

8b

27

3.9.1.3 Selection with multiple predicates

Select C From T Where ~. = 'xx' And Ck =)1)' '. The algorithm is given below:

Algorithm VI: Multiple-predicate selection

Par/-! of Algorithm V

u ~ code for JY' in domain Die(CJ

For each entry' qf ACO, If/" record of co/umn Ck is 110!1I, remove Ifrom AC()

Parl-2 of Algorilhm V

Selection with q predicates: to search code in domain dictionaries we need q • 2 disk

. r- nIgml
seeks and q • 2 blocks read. To create AC() another q * I seeks and q' 1---

8b

. r-nIgnl .
blocks read are needed. AC() needs 1--- blocks for storage.

. 8b .

3.9.1.4 Selection with range predicate

Select C From T Where C >= 'xx' And C < = yy'. The algorithm is given below:

Algorithm VII: Range-predicate selection

k = code jiJr 'xx' in Dic(C)

j ~ code jor)'y' in Die(C)

I! ~k'" enlry ofSor/Die(C)

12 ~ l' enlry of SortDie(C)
Now execute the query:

Seleel C From T Where SortDie(C» ~ II And SorIDie(C)<: ~ 12

SortDic(C). is stored in compressed from. We assume that the total SortDic(C) IS 111

memory which consumes mcmory blocks where m is the no of entries in

Dic(C). In worst case when the edge values orthe given range are not in Dic(C), we have

to search the entire dictionary which requires I seek and D blocks transfer (Dic(C) has D

28

r n1gl11l
blocks). The modified query further needs 1 seek and a total of 1--- blocks

. '.' 8b

transfer where n is the total no of records in table T.

3.9.2 Queries on multiple compressed relations

Queries on multiple relations are set operations and queries based on the join of two or

more relations. Natural join has already been described in section 3.8. The following

subsections describe different queries on multiple relations.

3.9.2.1 Projection

Seleel Tl.C From TI, T2. The algorithm is given below:

T = NaturalJain(TI, T2)

set eet C ' From T

3.9.2.2 Selection with single predicate

Seleel Tl.C From TI, T2 Where Tl.ej = 'xx'. The algorithm is given below:

T ~ NaturalJoin(TI, T2)

Select C' From T Where C', ~ 'xx'

3.9.2.3 Selection with multiple predicates

Seleel Tl.C From TI, T2 Where TI.Cj ~ 'xx' And T2.Ck =)'Y'. The algorithm is

. given below:

T = NaturaiJain(TI. T2)

Select C' From T Where C:i = 'xx' And C 'f, ==)/)"

3.9.2.4 Set Union

The SQL operation union operates on relations and corresponds to relational-algebra

operation u. The relations participating the union operation must be compatible, that is,

they must have the same set of attributes. The union operation automatically eliminates

duplicates.

(Seleel C1 From Tl) Union (Seleel C2 From T2). The algorithm is given below:

29

Algorithm VIII: Sel union

Read all disk blocks ofCI ofTI.inlO DI(), Read all disk h/acks orC2 ofT2 inlo D2()

OulPUI will be slored into D()

While bolh DI() and D2() have more elemenls {

I ~nexl value from D I()

while D I () has more values and I = next vallie of D I () {

move 10 nexl value of D I()

While D20 has more values and I ~nexl value ofD20 (

move lonexl value ofD20

inserl I inlo DO

lfDl() isfinished Ihen (

Insert distinct values remaining in D2{) into DO

Else

Insert distinct values remaining in D/() into DO

Wrile all biocks of DO /0 disk

Let, B I, B2 and B memory blocks arc allocated to C I, C2 and output column

, ,r n Igl11 l r n Igl11 l r n Ig 111lrespectIvely, Totahblock transfers are bl = I , b2 = , and b = .--
. 8b'. 8b 8b

respectively, nl, n2 and n are the no of tuplcs in TI, T2 and output respectively, and m is

I f' . . d' d" T I f k' bl h2 btota no 0 entnes 1I1correspon I11g lC110nary, ota no 0 see's IS -+- +-.
Bl B2 B

3.9.2.5 Set Intersection

The intersect operation, like union operation. also operates on relations, The operation

corresponds to relational-algebra operation n. The relations participating the intersect

operation must the same' set of attributes, The intersect operation automatically

eliminates duplicates,

(Select CI Frum TI) lnlersec:tiun (Select C2 Frum T2). The algoritlm1 is given

below:

30

Algorithm IX: Set intersection

Read all disk blocks ofCI ofTI into DI(). Head all disk hlocks ofC2 ofT2 into D2()
(

Output will be stored into D()

While both DI() and D2() have more elements!

t ~ next valuefrom DI()

while D I () has more values and t ~ next value of D I () (

move to next value of D I ()

counter = 0

While D2() has more values and t = next valuI! (?(D2{) l

move to next value of D2() and incremenl counter

If counter ;< a then insert t into D()
Write all blocks of D() to disk

---~--------------_.~ ._-_ _ _---_ ..-." ..__ ._----_ .._--_._------------

Complexities are same that shown in section 3.9.2.4 (Set Union).

3.9.2.6 Set Difference

The except operation, like union and intersect operations, also operates on relations. The

operation cOITesponds to set difference operation -. The relations participating the except

operation must the same set of attributes. The except operation automatically discards

duplicates.

(Selecl C1 From Tl) Except (Select C2 From T2). The algorithm is given

below:

,

Algorithm X: Set difference

Read all disk blocks ofCI ofTI into DI(). Read oil disk blocks ofC2 ofT2 into D2()

Output will be stored into D()

While both DI() and D2() hove more elements (

t ~ next valueji-om DI()

while DI() has more values ondt ~ next volue oIDI() (

move to next .value of D I()

counter = ()

While D2{) has mure values und I = next valul! ufD2() (

move to next value of D2() and increment cuunler

If counter ~ a then insertt into D()

If D I () is not finished then {

31

insert distinct values remaining in D/()inlo D()

Wrile a/l blocks a/DO 10 disk

Complexities are same that shown in section 3.9.2.4 (Set Union).

3.9.3 Aggregation on compressed relation

Aggregate functions are functions that take a collection (a set or multi set) of values as

input and return a single value. SQL provides five different built-in aggregate functions:

count, max, min, sum and avg. The input to sum and llvg must be a collection of

numbers, but other operators can operate on collections of non-numeric data types, such

as strings, as well.

For aggregation queries we shall consider the followingrelation:

accounl(accounl_no. branch _name. balance)

3.9.3.1 Count

seleci branch_name. counl(branch_name) FOIll account group by branch_name.

The algorithm is given below:

Algorithm XI: Count aggregation function

Sort account by branch_name

Read all disk blocks vlbranch_l1ume column into DO

Pari-I:

Sel c ~ I

For each record k in DO {

((recenl k is different Ihan previous k Ihen (

Set D I (i) ~ previous k

Set D2(1) = lotal no ojrer,;ol'ds having same value as

previous k

Sel c = I
Parl-2:

Write a/l blocks olD I 0 and D20 10 disk

32

If M blocks are allocated to each of D(), D I () and D2() then no of block transfer is

Inlgm l for D() and I(nln)lgm l for each of DI() and D2(). No of seeks is 3 *
8b 8b

Inlgm l.Where ~ is the average size of each group.
8Mb

3.9.3.2 Max/ Min

select branch_name, max(balace) Fom account group by branch_name. The

algorithm is given below:

Algorithm XII: MaxI Min aggregation function

Sort account by brC!nch_name

Read all disk btocks of branch _name column inlO DO

Pari-I of algorithm given in seclion 3.9.3.1

Read all disk blocks of column balance inlo DO

base = 0

For each record i q(D20 {

max:= maximum o/(base+I/' 1o (base+i/II element a/DO

sel D2(i) ~ max

Increment base by i

Wrile all blucks ofDIO und D20 1o disk

Complexities are double that shown in section 3,9.3.1 (Count).

3.9.3.3 Sum/ Avg

select branch_name. sum(halace) Fom account group by branch name. The

algorithm is given below:

Algorithm XIII: Sum/ Avg aggregation function

Sort account by branch_name

Read all disk blocks of column branch_name inlo DO

Parl-'I of algorilhm given in seclion 3.9.3.1

Readall disk blocks of column balance inlo DO

33

base ~ 0

For each record i 01D2() {

max = sum of (base+ I)'" to (base+i)''' elemem o.lDO
1/ in case ofavg make average u/these elements

set D2(i) = max

Increment,base by i

Write all blocks olDI() and D2() /0 disk

Complexities are same that shown in section 3.9.3.2 (Max).

3.10 Summary

In this chapter we have presented an attractive compression-based architecture, called

DHIBASE. Due to disk based compression DHIBASE support very large database with

acceptable storage volume. Insertion, deletion and update mechanisms on the architecture

have been presented and analyzed. The architecture executes query directly. on

compressed data and it is capable of executing all types of SQL queries. Moreover, we

have designed. a sOliing algorithm of compressed relation stored in column wise format

which is perhaps new. Algorithms of query operators given in this chapter have been

thoroughly analyzed.

34

Chapter 4

Results and Discussion

The objective of the experimental work is to verify the applicability and feasibility of the

proposed DHIBASE architecture. The _experimental evaluation has becn performed with

large synthetic data. The experimental result is compared with widely used Microsoft

SQL Server 2000. Our target was to handle large relations and justify the storage

requirements and query time in comparison with SQL Server.

4.1 Experimental Environment

DHIBASE has been tested on a machine with 1.73 GHz Pentium IV processor and 256

MB of RAM, running on Microsoti Windows XP. We have created 5 different relations

as given in Table 4.1 to Table 4.5. A random data generator has been used to generate

synthetic data and large no of records have been inserted into each table. Each query has

been executed 5 times and the average execution time has been taken.

Table 4.1: Item relation

Compressed field
len th (bit)

10

Uncompressed field
__length (byte)

81000

Cardinality

Item id
(Primary key)

Type 7 6 3------ - - .._._ .._.--------- .._-_. _._ ..._" -_.,._~._---~--~_._._...._ .._------
Description 100 20 7---- ---_._---_._--_. __ ..~_.__ .._- ._-- ---~----,- --_.- .. _. _.--------_ ..._----

Total 34 bytes 20 bits (CF = 13.6)

Attribute Name

Table 4.2: Employee relation

24 bits38 bytes

._---_----.0-- ------9-----1
20

----- ._ ..._-----_._----- ----
8 4

(CF = 12.67)

- _.------~--,-_._.__ ._--- ------------~
Uncompressed tield Compressed field

1~£1g..!~(by teL_ length (bit)

10 11

--
Attribute Name Cardinality

-_ .•._-
Employee _ id 2000
(Primary key)

Name 400
----_.

Department 15

Total
------- . -_ .•._-- .._._.-

•

Table 4.3: Store relation

35

Attribute Name Cardinality Un compressed field Compressed field
lenl!.th (byte) length (bit)

Store id .
(Primary key) 100 6 7

Location 10 10 4

Type 6 6 3

Total 22 bytes 14 bits (CF = 12.57)

Table 4.4: Customer relation
--

Attribute Name Cardinality Uneompressed field Compressed field
lenl!.th (bvte) length (bit)

Customer id 10000 10 14
(Primary key) .~-_ ..

Name 2000 20 II
._.- ---_ .

City 30 12 5.
-----~ --_. __ ._-~------

District 14 12 4

Total 54 bytes 34 bits (CF = 12.71)

Table 4.5: Sales relation

Attribute Name

Sales id
(Primary key)

Employee_id
(Foreign key)

Customer id
(Foreign key)

Item id
(Foreign key)

Store id
(Foreign key)

Quantity

Priee

. Total

Cardinality

Upto I million
(Numeric)

2000

10000

1000

100

Numeric

Numeric

Uncompressed field
_~length (byt~ __

4

10

10

8

6

2

4

44 bytes

Compressed field
length (bit)

32
(Un compressed)

II

14

10

7

122 bits (CF = 2.89)

36

4.2 Storage Requirement

Our data generator has generated 1000, 2000, 100, 10000 records for Item, Employee,

Store and Customer relations respectively and these records remained fixed during

experiments. 0.1; 0.4, 0.7 and 1 million records were stored in Sales relation for each

experiment. Compression factor (CF) of each relation is given in table 4.1 to 4.5. Table

4.6 shows overall CF's for different number of records in Sale~' relation. CF's are

calculated with respect to Microsoft SQL Server 2000. We observe that the proposed

system outperforms SQL Server by a factor of 10 to 20. It was expected that with JTIore

records in Sales relation the CF would increase; but we found opposite result. The reason

is that we have used some uncompressed attribute in the Sales relation (uncompressed 80

bits out of total 122 bits) tei speed up query processing and due to these uncompressed

attributes the overall CF decreases with the increase in the no of records in Sales relation.

CF '= lOis still a great achievement. If someone wants higher compression factor then he

has to make performance degradation in query processing.

Table 4.6: Compression Factor (CF) achieved

No of tuples in Sates Overall CF
relation

0.1 million 20.3

0.4 million 17.7

0.7 million 12.4

1.0 million 10.1.

Fig. 4.1 shows a graphical companson betwecn DHIBASE and SQL Server storage

requirements

160
140 , .
120 ..

iii" 100
~ 80.
.~ 60
Ul 40

2~ ••L-,
0.1 0.4 0.7

IIISQl Server
ODHIBASE

No of tuples (million)

Fig. 4.1: Storage comparison between DHIBASE and SQL Server

37
(

4.3 Query Performance,

To assess query performance, we carried out queries on both DHIBASE and SQL Server.

The performed queries and obtained results are described in the following sub-sections.

In all cases Sales relation contains 0.1, 0.4, 0.7 and 1 million records. Item, Employee,

Store and Customer relations contain 1000, 2000, 100, 10000 records respectively. All

queries executed in DHIBASE system are directly applied on compressed data. Given

query is first converted into compressed form and compressed query is executed.

4.3.1 Single Column Projection

We have executed the following query and the result is shown in figure 4.2.

select Customer _id }i'om Sales

I!!lSOL Ser.er

ODHIBASE

40,
35 :
30

g 25
1J).~~~L
I- 1;ALLJ =~ .~__""

0.1 0.4 0.7

No of tuples (million)

Fig. 4.2: Single eolul11l1projeetiol1

(
Figure 4.2 shows thaI DHIBASE is much faslcr than that of SQL Server.in case of

projection operation. This is obvious because DHIBASE stores data in compressed form

and in column wise format. Therefore, it nceds 14 bits data to process one record. But

SQL Server stores data in row wise format and it needs (44 * 8)-bit data to process one

record. So, in case of 0.1 million records. DI-IIBASE examines 43 disk blocks (block size

= 4K) where SQL Server has to examine a minimum of 1075 disk blocks. This is the

main reason of speed-gain in DHIBASE system.

38

4.3.2 Single Predicate Selection

We have executed the following query and the result is shown in figure 4.3.

select Customer _idfrom Sales where Store _id = "100075"

2.
1.8.
1.6

" 1.4 i
•• 1.2!

~ o.~' i It... .. i.
i= 0.6.1:
0.4.1] ..;
o.~A ~ .'~__~L/;",.

0.1 0.4 0.7 1

No of tuples (million)

Fig. 4.3: Single predicate sclection

I!ISOL Serwr

oDHIBASE

Figure 4.3 shows that DHIBASE is faster than SQL Server in case 0.1 million to 0.4

million records but slower in case 0.7 million and 1.0 million records. DHIBASE does

not use any indices. In case of 1 million records, it reads all 214 disk blocks to check the

Store id column for making a list of desired row no's. If 100 records satisfy the selection

predicate and each of them resides in different disk block then another 100 disk blocks

read is necessary to project the CustoI17e1'_id's.But SQL Server uses index on Store _id

field. So it reads I disk block to find pointers to disk blocks containing each of 100

desired records, and needs another 100 disk blocks to read the desired records. So total no

of disk block read in SQL Server is 101, which was 314 in DHIBASE.

4.3.3 Double Predicate Selection

We have executed the following qucry and the rcsult is shown in tigure 4.4,

select Customer _idFom Sales where Store_id = '/O()()75' and 1te1l1_id=

"10000300"

39

2

1.5 '0-
Cl)

!!!-
Cl) 1, .

~ 05!: ~>: ! .:
. i ilfn >: • •.

i. ',', :,-:: : I

o ~_.~~m'1_,.~~~~'"'¥.L...~.":,J.mL_ ..._.~
0.1 04 OJ 1

No of tuples (million)

Fig. 4.4: Double predicate selection

IIISOL SeMlr ,

ODHIBASE "

Figure 4.4 shows result similar to the result of single predicate selection. DHIBASE does

not use any indices. In case of I million records, it reads all 214 disk blocks to check the
(
Store_id column for making an intermediate list of desired row no's. If 100 records

satisfy the first predicate and each of them resides in different disk block then another

100 disk blocks read is necessary to check the Ilem~hl column for making the final list of

desired row no's. If 10 records satisfy the second predicate and each of them resides in

different disk block then another 10 disk blocks read is necessary to project the

Customer ~id's.But SQL Server uses indices on Slore _id and Ilem_id fields. So it reads 1

disk block to find pointers to disk blocks containing each of 100 desired records

containing Store_id, also reads I disk block to lind pointers to disk blocks containing

each of 10 desired records containing Ilem id and needs another 10 disk blocks to read

the desired records. So total no of disk blocks read in SQL Server is 12, which was 324 in

DHIBASE. 12 disk blocks read in SQL Server is theoretically minimum. But the actual

index structure is not known. And SQL Server uses storagc optimization Therefore, the

actual no is higher than 12.

4.3.4 Range Predicate Selection

We have executed the following qucry and the result is shown in figure 4.5.

seleel Cuslomer id li'om Sales where Store id >= ..IOOOYI .. and Slore id <=- . - -

- "100100"

'0
Q)

.!!!.
Q)

E
i=

12

10

8

6

:JbILh
0.1 0.4 0.7

No of tuples (m illion)

IIISOL Server

ODHIBASE

40

Fig. 4.5: Range predicate selection

- Figure 4.5 shows that DHIBASE is much faster than SQL Server. DHIBASE does not

use any indices. In case of 0.1 million records, it reads all 22 disk blocks to check the

Store _id column for making a list of desired row no's. Range predicate checking involves

access to SortDic(). As SurtDic() is totally in menlory, access to it does not require extra

disk block transfer. The records satisfying the selection predicate may scatter across all

disk blocks of Customer_id column. So another 43 disk blocks read is necessary to

project the Customer_id's. But SQL Server, in worst case, may require all. 1075 disk

blocks to process the scattered Custollwr_id's.
(

4.3.5 Sorting of Relation

Figure 4.6 shows sorting time needed to sort .'lull'S relation with 0.1,0.4, 0.7 and 1.0

million records.

0.1 0.4 0.7

No of tuples (million)

Fig. 4.6: ~orting of Sales sC1eCti~1l

41

(When we sort a relation based on dictionary codc ;"'C do not need to rcfer to the

dictionary during sorting. But when we sort a rdationbased on string order we have to

refer to the dictionary. But we avoid this dictionary access by using SortDic(). The

technique is described in section 3.7 in details. As thc SorIDic() is also compressed and

requires small amount of memory, it can be kept into memory during sorting. So the time

shown in Fig. 4 indicates that the time nceded for sorting based 'on dictionary code and

the time needed for sorting based on string order arc same.

4.3.6 Aggregation: Count

We have executed the following query and the result is shown in figure 4.7.

select Slore _id, count (Store _id) .Ii'olll Suit's group by Slore _id

2.5
2,

I!IlSQL S8f\er

oDHIBASE

,ii:?"'

No of tuples (million)

Fig. 4.7: Aggregation: COUllt

DHIBASE does not use any indices. We assume thai the relation Sales is already sorted

by Store_id field according to dictionary code. In ease of 0.1 million records, DHIBASE

reads all 22 disk blocks of Slore id eolumll 10 calculate the result. SQL Server uses

indices but still it has to read all 1075 disk blocks to process the entire Sales relation.

Therefore, DHIBASE performs bettcr than SQL Scrver.

4.3.7 Aggregation: Max/ Min/ Sum/ Avg

We have executed the following qucries and the result is shown in figure 4.8.

select Store_id, max (Qual1lity)./i'om Sull's ,~J'()UP by Srore_id

select Store _id, sum (Price) Fom Sules group by Store _id

select Store _id, avg (Price) Fum Suit's gl'llup bySrore _id

42

3.5 :
3.!

2.5. '" ,"
j 1.; D' I~~

0.5 . IlL .•' U.
oIlJ.ilil<.;e< .• ,~"

0.1 0.4 07

No of tuples (million)

, I!!lSOL Server,

''0 DHIBASE

Fig. 4.8: Aggregalion: MaxI Min! Sllflll :\vg :

We assume that the relation Sales is already sorledby Store _id field according to

dictionary code. In Sales relation, both Ql/al/lill' and I'rice fields are uncompressed. So

aggregation functions may directly be ,ipplied on Ihell1. In case of 0.1 million records,

DHIBASE reads all 22 disk blocks 10 e\:llIIille Sllire ~id field for making group

. information. Using this group information it I"eads 'I') djsk blocks (Quan/ily) or 98 disk

blocks (Price) to compute the result. Therelore. time needed fOLmax, min, sum or avg is

same. But SQL Server has to read 1075 disk blocks 10 process the entire Sales relation.

Therefore, DHIBASE performs better than SQI. Server.

4.3.8 Natural Join

We have executed the following query and the 1"('slIll is shown in tlgure 4.9.

selecl Sale,\'_idFom Sales. ('LIs/oilier \I 'iI, '/"(.S, des, ('l/.I'IOllIer_id=

Customer. Customer id

40
35
30

"" 25.e. 20
"
E 15 L;::

1~AlL..il~ . :,,;r

I!!lSOL Server;

ODHIBASE :

0.1 0.4 07

No of tuples (million)

Fig. 4.9: Natural join

43

DHIBASE performs much better because it is possihk to calculate the partial join and

project the result. DHIBASE does not use any i"dices. Wc assume that the relations Sales

and Customer are already sorted by Custoliler id Jicld ,according to dictionary code. We

have to scan Customer _id columns of both rclalions to Ilwke AC()'s (section 3.8). In case

of 0.1 million records, DHIBASE rcads 5 disk hlueks, to check Customer_id field of

Customer relation and 43 disk blocks to chcek CUS/"IIl('/"id ficld of Sales relation. If the

result is scattered across all disk blocks thcn anothcr 'IX ~Iisk blocks read is necessary to

project Sales_id field of Sales relation. But SQL Servcr ,ieeds to read 134 disk blocks of

Customer relation and 1075 disk blocks ,of Sule's relation to compute the join. SO SQL

Server reads a total of 1209 disk blocks read "I,ik DIIIIlASE read only 141 d'isk blocks.

This is why DHIBASE is much fastcr.

4.3.9 Set Union

We have exec'uted the following qucry and the result is shown in ligure 4.10.

(select Customer_idfi"om Customer) /IIli,1/1(.1'('/,"'(('us/o/ller_idfi"om Sale.l)

3

2.5
0' 2
CI>

'"-; 1.5

~ 0.: I
o ..<LLB

0.1 0.4 0.7

!!!J SOL Server

ODHIBASE

No of tuples (million)

Fig. 4.10: Set union

DHIBASE performs better becausc it is possihk to ",dc(datc the result only by scanning

Customer_id fields of Customer and Sales rclal ions. I>I1111ASEdoes not use any indices.

We assume that the Customer_id fields of rL.latiolls Sales and Customer are already

sorted according to dictionary code. DHIBASE n.:ad~5.disk blocks and 43 dis~ blocks.for

the relations. But SQL Server reads minimlllll 134 disk blocks and 1075 disk blocks

44

respectively. So SQL Server reads a minimum or I~O<)disk blocks read while DHIBASE

read only 48 disk blocks. This is why DHIBASI: is l11uchlilster.

4.3.10 Set Intersection/ Sct Diffcrcncc

We have executed the following queries on DlliHAS!':.

(select Customer_idfrom Cuslomer) ill!asec! (,eiecl Cus!omer _idfrom Sale~)

(.I'elec!Customer_id.from Customer) eXIT/)! (:'t'/,.cI ('us!o/Jler_id/i'om Sale~)

But SQL Server does not support inlersec! alld except operator directly. So we have

executed the following queries on SQL Server. .

select distinct Customer id /i'om Custo/t/,.r ,,'//ere Cus!omer id in (select- . -

Cus!omer _id from Sale.l)

select distinc! Customer _id.fi"om Cus/olller II'here ('us!olller_id no/ in (select

Customer id .from Sale,l)

In the worst. case, both DHIBASE and Sl)L Scrv<;r have to examllle the entire

Customer_id columns of relations of CUS!O/JU'"and Su/"s j,)r both queries, and therefore,

time requirements will be similar. Time requircl11cnts arc shown in figure 4.11.

I!!ISOL Ser\er .

ODHIBASE':.l"L ~"
01 04 0.7

2.5
2

0"
(1) 1.5

.!!!.
OJ
E
j::

(

No of tuples (million)

Fig. 4.11: Set intersectionl Set di lrt:rctlc~

DHIBASE performs much better because it is pllssiblc 10 calculate the result only by

scanning Customer _id fields of Customer and Su/,.s relatiolls. DHIBASE does not use

any indices. We assume that the Customer iii liclds llr relations Sales and Customer are

already sorted according to dictionary code. DH I13AS!': reads 5 disk blocks and 43 disk

45

blocks for the relations. Bu.t SQL Servc.r reads 13,1 disk blocks and 1075 qisk blocks

respectively. SO SQL Server reads a total of 1209 disk blocks read while DHIBASE read

(only 48 disk blocks. This is why DHIBASE is muuh faster. It is mentionable that the

result size of four different data sets is same. In case or intersection, DHIBASE reads the

smaller relation first. As soon as, this smaller rdatioll linished scanning DHIBASE stops

and thus saves time necessary to scan the rest ol.lhe other relation.

4.3.11 Bulk Update

We have created a table with three fields. We have inserted data into first and third fields

but retain nulls in the second field. Then we updated the nulls in the second field with

values. The time needed for this bulk update. of the second column is compared for

DHIBASE and SQL Server in figure 4.12 ..

250

200

0-
150 ,Q)

.!!!.
Q)

E 100j::

50.

IIISOL Server.
ODHIBASE

No of tuples (m illion)

Fig. 4.12: Bulk update

DHIBASE performs exceptionally beller than Sl)l. Server. DHIBASE stores data in

column wise format. Therefore, column reorganization ~Ioes not incur extra overhead. But

SQL Server stores data in row wise format and also it optimizes storage for faster query

processing. SQL Server optimizes the nulls in the second column for fast indexing. When

the update commands come into the sccond coltllnn .. it has to reorganize all data

previously stored in first and third columns, which nceds huge time.

46

- 4.4 Summary

In this chapter we have presented the. experimelltal evaluation of the DHIBASE

architecture. We evaluated the storage per1(Jl"tnallce ill comparison with Microsoft SQL

Server 2000, a widely used database system. The storage performance that is achieved in

DHIBASE is 10 to 20 times better than that of SQL Server. The projection query shows a

great speed-gain compared with SQL Server. The experimental' result shows that

DHIBASE is 22 to 30 times faster than SQL Server ill ~illgle column projection. In case

of selection queries DHIBASE is slightly slower than SQL Server. This is because of the

absence of indices in DHIBASE. But all other queries can run significantly faster in

DHIBASE than in SQL Server. Finally, in case of bulk updatc,DI-IIBASE exceptionally

outperforms SQL Server.

47

Chapter 5

Conclusion and Future Research

Database compressIOn IS attractivc for two reasons: storagc cost rcduction .and

performance improvement Both arc csscntial for management of large databases. Direct

addressability .of compressed data is necessary !{)r faster query processing. It is also

important for queries to be processed in eomprcssl;xt" form without any decompression.

Literature survey shows that compression tcchl1iqucs used in mcmory resident databases

are not suitable for large databascs when databasc cannot fit into memory. We have

improved the basic HIBASE modcl [9] for disk support. We also improved query-

processing capability of thc. basic system. We .have dcJlm:d a number of opcrators for

querying compression-based relational database system, designed algorithms for these

operators and thoroughly analyzcd these algorithms.

5.1 Fundamental Contributions of the Thesis

.:. The main contribution 01" this rcseareh is to develop a disk based HIBASE

(DHlBASE) architecture with increased qucry processing capability .

•:. Compressed data arc stored using the DIIIHASE arehiteeture with disk support.

This overcomcs the scalability problcms .01' the memory residcnt DBMS.. ,

.:. Considerable storage rcduction is achieved using the DHlBASE architecture. The

experimental results show that DHIBASE architecture is 10 to 20 times space

ctIicient than that 01" eonvcntional DBMS like SQL Server.

.:. Each compressed column is kept in separate disk file. Consequently schema

evolution and/ or bulk update is highly efficient.

48

.:. We developed techniques for sorting of comprcsscd relation according to both

code ordcr and string order. We introduccd a compressed auxiliary dictionary

which facilitates sorting according to string order without accessing the relevant

dictionary. Using samc compressed dictionary we have implcmented selection

opcration with range predicatc without acccssing thc main dictionary .

•:. We havc designed algorithms for all rclational algebra operations that support

most of thc SQL:2003 standard. Experimental'results show that the DHIBASE..
systcm has significantly tastcr qucry performance for projection on single

relatiori, multiple relation join, set aIld aggrcgation opcrations compared to SQL

Server. Iri case of selection operation, DI-IIBASE IS slower. But introducing

indices can easily eliminatc this drawback.

- 5.2 Future Research

The DI-IIBASE architecture has been implenlenlcd in a single processor system and

achieved significant performance improvement over eonvcntional DBMS. DHIBASE is a

disk based database compression architecture. The future expansion of this research is to

explore the following issues:

.:. The architecture can be used for parallel database environmcnt to achieve scalable.

performance for data warehousc application .

•:. We. have not considered any back-up and recovcry mcchanism for DHIBASE

architecture. Thcse 'featurcs may be included. We did not use any index.

Techniques should be considered for indexing .

•:. To achieve concurrent access to DI-IIBASE architccturc, a multi-threaded

algorithm can be considered to supportl1lulti-uscr DBMS.

49

.Bibliography

[1] . Tashenberg, C. B., "Data management isn't what it was", Data Management Direct

Newsletter, May 24, 2002.

[2] Rouf, M. A., "Scalable storage Il1 compressed representation for terabyte data

management", M. Sc. Thesis, Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka, Bangladesh, 2006.

[3] Cormack, G. V., "Data compression on a database. system", Communication of the

ACM, Vol-28, No. 12, pp 1336-1342, 1985.

[4] Helmer, S., Westmann, T.. Kossmann, D. and Moerkolte. G., "The implementation

and performance of compressed databascs". SlGMOD Record, Vol-29, NO.3, pp

55-67,2000.

, [5] Roth, M. A. and Van Horn, S. 1., "Database compression", SIGMOD Record, Vol-

22, NO.3, pp 31-39,1993.

[6] Graefe, G. and Shapiro, L.. "'Data compressIOn and database performance",

ACM/lEEE-CS Symposium on Applied Compuling, pp 22-27. April 1991.

[7] Oracle Corporation, "Table compression in Oracle 9i: a performance analysis, an

.Oracle whitepaper",

http://otn.oracle.com/products/bi/pdll09i 1'2_comjjression _performance _twp. pdf.

[8] Ramakrishnan, R., Goldstein. J. and Shan. U., "Compressing relations and

indexes", Proceedings of the IEEE Conference on Data Engineering, pp 370-379,

Orlando, Florida, USA, February 1998.

[9] Poess, M. and Potapov, D., "Data ~omprcssion in Oracle", Proceedings ,of the 29'h

VLDB Conference, pp 937-947. Berlin. Germany. Scptcmber 2003.

[10] Silberschatz, A., Korth, l-l. F. and Sudarshan, S.. "Database systcm concepts", 5th

Edition, McGraw-Hill, 2006.

[II] McGregor, D., Cockshott, W. P. and. Wilson. 1., "High-performance operations

using a compressed architecture". The Computer Journal, Vol-4I. NO.5. pp 283-

296, 1998.

http://otn.oracle.com/products/bi/pdll09i

50

. [12] Latiful Hoque, A. S. M., "Compression of structured and semi-structured

information", Ph. D. Thesis, Department of Computer and Information Science,

University ofStrathclyde,Glasgow, UK, 2003.

[13) Codd, E. F., "A relational model of data for large shared data banks",

Communication of the ACM, Vol-I3, NO.6, pp 377-387, 1970.

[14) McGregor, D. R. and Hoque, A. S. M. L., "Improved compressed data

. representation for computational intelligence systems", In UKCI-O I, Edinburgh,

UK, September 2001.

, [15) Held, G. and Marshel, T. R. ,"Data and Image Compression", Number 0-471-

95247-8, John Wiley and Sons Ltd, West Sussex, England, 1996.

[16) Huffman, D.A., "A method for the construction of minimum-redundancy code", In

ProceedingsofIRE, Vol-40, No. 9,pp 1098~1101,.1952.

[17) Fano, R.M., "The transmission of information", In Research Laboratory for

Electronics, MIT Technical Report, (65), 1949.

[18) Shannon, C.E., "A mathematical theory of communications", In Bell system

Technical Journal, Vol,27, pp 379--423 and 623--656, 1948.

(19) Viller, J.S.,"Design and analysis of dynamic I-Iuffman code", In Journal of the

ACM, VoI-34, NO.4, pp 825~845, Octobcr 1987.

[20) Gallager, R.G., "Variations on a themc by Hufli11an", In IEEE Transaction on

Information Theory, Vol-24, NO.6, pp 668 -674, Novcmbcr 1978.

[21) Lampcl; A. and Ziv, J., "A universal algorithm for sequential data compression",.In

IEEE Transaction on Information Theory, Vol-23, I?P337--343, 1977.

[22) Lampel, A. and Ziv, J., "Compression ol'individual sequcnces via variable rate

coding", In IEEE Transaction on Information Theory, Vol-24, pp 530-536, 1978.

[23) Welch, T. A, "A technique for high-peri<1I'lnanee data compression", In IEEE

Computer, Vol-I7, No.6, pp 8~19,)984.

- [24) Larson, N. J. and Moffat, A., "Off-line dictionary-based compression", In

Proceedings of the IEEE Data Compression Conference, Snowbird, Utah, March

2000.

[25) Golomb, S. W., "Run-length encodings", In IEEE Transaction on Information

Theory,,Vol-12, NO.3, pp 399-401,1966.

51

[26] Chen, Z:, Gehrke, J. and Korn, F., "Query optimization in compressed database

systems", In SIGMOD '01: Proceedings of the 2001 ACM SIGMOD International

Conference on Management of Data, pp 271-282, ACM Press, 2001.

[27] Oberhummer, M. F. X. J. , "LZO: A rcal-time data comprcssion library", 2002,

http://www.oberhumer.com/o penso urce/.!zo/l zod oc.php.

[28] Moffat, A. and Zobel, J., "Parameterised compression for sparse bitmap", In

Proceedings of the 15'h.Annual Intel:national SIGIR 92, pp 274-285, ACM, 1992.

[29] Wee, K. N. and Ravishankar. C. V.. "Relational databasc compression using

augmented vector quantization ", In Proccedings of the I Ith International

Conference on Data Engineering, pp 540-550, Taipei. Taiwan, 1995. IEEE.

[30] Cuperman, V. and Gersho. A, "Vector quantization: A pattern-matching technique

for speech coding", In IEEE Communication Magazine, Vol. 21, pp 15-21,

Deccmber 1983.

[31] Kotsis. N., Wilson, L Cocks holt, W. P. and McGregor, D.. "Data compression in

database systems", In Proceedings of the IDEAS, pp 1-10, July 1998.

[32] Xu, Y., Agrawal, R. and Somani, A, "Storage and querying of e-commerce data",

In Pr~ceedings of the 27'h VLDB Confercnee, pp 149-158, Roma, Italy, 2001:

[33] Wilson, J., Hoque, A. S. M. L. and McGregor. D. R.. "Database compression using

an oft~line dictionary method", ADVIS, LNCS, Vol-24, pp 11-20, October 2002.

[34] Aho, A Y., Sethi, R. and Ullman, J. D., "Compilers: Principles, Techniques, and

Tools", Addison Wesley, 1986.

[35] Knuth, D. E., 'The art of computer programming". Vol:3, Addison Wesley. Sorting

and Searching, 1973.

[36] Selinger, P.G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A. and Price, T. G.,

"Access path selection in a relational' database- systcm", Proc. of the ACM

SIGMOD Conf. on Managcment of Data. pp 23-34. 1979.

[37] Graefe, G. and McKenna. W.• "The Volcano optimizer generator". Proc. of the

International Conf. on Data Engineering, pp 209-218, 1993.

[38], Haas, 1: M., Freytag, J. C., Lohman. G. M. and Pirahesh, I-l., "Extensible query

processing in Starburst". Proc. of the ACM SIGMOD Conf. on Management of

Data. pp 377-388. 1989.

[39] Oracle 8 concepts manual. Oracle Corporation. Redwood Shores, 1997.

http://www.oberhumer.com/o

52

[40] Dayal, U., Goodman, N. and Katz. R. H.. "An extended relational algebra with

control over duplicate elimination". Proc. oC the ACM Symposium on Principlcs of

Database Systems. 1982.

[41] Seshadri, P., Pirahesh, H. and Lueng, T. Y. c., "Complex query decorre!ation",

Proc. of the International Conf. on Data Engineering, pp 450-458, 1996.

[42] Roy, P., Seshadri, S., Sudarshan. S. and Bhobhe, Soo "Emcient and extensible

algorithms for multi-query optimization". Proc. of the ACM SJGMOD Conf. on

Management of Data, 2000.

[43]. Hall, P. A. V., "Optimization of a single relational expressIon Il1 a relational

database system". IBM Journal oC Research and Development. vol-20, No.3, pp

244-257, 1976.

[44] Dalvi, N. N., Sanghai, S. K.. Roy, P. and Sudarshan, Soo"Pipelining in multi-query

optimization", Proe. of the ACM Symposium on Principles of Database Systems,

2001.

_ [45] Blasgen, M. W. and Eswaran. K. Poo"On the evaluation of queries in a relational

database system", IBM Systems Journal. Vol-16, pp 363-377, 1976.

[46] Kitsuregawa, M., Tanaka, H. and MotoOka. T., "Application of hash to a database

machine and its architecture". New Generation Computing, No.1, pp 62-74, I983.

[47] Shapiro, L. D., ".loin processing in database systems with large main nlemories",

ACM Transactions on Database Systems. Vol~11. NO.3. pp 239-264.1986.

[48] Davison, D. L. and GraeCe. Goo "Memory-contention responsive .hash joins",

Proceedings ofVLDB Conference, 1994.

[49] Graefe, G., Bunker, R. and Cooper, Soo"J-Iash joins and hash teams in Microsoft

SQL Server", Proceedings of VLD13 ConCerence, pp 86-97, 1998.

[50] Klug, A., "Equivalence of relational algebra and Te!ational calculus query languages

having aggregate functions". ACM Press. Vol-29, NO.3. pp 699-717,1982.
,

[51] Chaudhuri, S. and Shim, K., "Including group-by in query optimization", In

Proceedings ofVLDB Conference, 1994.

[52] Galindo-Legaria, C., ','Outeljoins as disjunctions". Proc. of the ACM. SlGMOD

. Conf. on Management of Data. 1994.

[53] Gupta, A. and Mumick, L. S., "Maintenance of materialized VICWS: problems,

techniques and applications". IEEE Data Engineering Bulletin, Vol-18, NO.2, 1995.

53

[54] Mistry, H., Roy, P., Sudarshan. S. and Ramamritham, K .. "Materialized vIew

selection and maintenance using multi-query optimization", Proc. of the ACM

SIGMOD Conf. on Management of Data. 2001.

[55] Dar, S., Jagadish, H. Y., Levy, A. and Srivastava, 0., "Answering queries with

aggregation using views". Proceedings of YLDB Conference, 1996.

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062

