High Performance dueries on Multiple Tables for
Compressed Form of Relational Database

By
Mohammad Masumuzzaman Bhuiyan
Roll No. 040405004 F

A thesis submitted to the Départment of Computer Science and Engineering in
partial fulfillment of the requirements for the degree of MASTER OF
SCIENCE IN COMPUTER SCIENCE AND ENGINEERING

| o -
RN

Y

Department of Computer Science and Engineering
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY, DHAKA
September 2007 '

The thesis “High Performance Queries on Multiple Tables for Compressed
Form of Relational Database”, submitted by Mohammad Masumuzzaman
Bhuiyan, Roll No. 040405004 F, Session: April 2004, to the Department of
Computer Science and Engineering, Bangladesh University of Engineering and
Technology, Dhaka, has been accepted as satisfactory for the partial fulfillment of
the requirements for the degree of Master of Science in Engineering (Computer
Science and Engineering) and approved as to its style and contents for the
“examination held on 15™ September, 2007.

Board of Examiners

(%V’W . Chairman

1. Dr. Abu Sayed Md. Latiful Hoque (Supervisor)
Associate Professor, Department of CSE"
BUET, Dhaka-1000

. /L\ Mng | A‘C‘: | ‘ Member

2. Dr. Muhammad Masroor Ali (Ex-officio)
Professor and Head, Department of CSE SR
BUET, Dhaka-1000

@l ' | | Member
3. Dr. Mohammad Mahfuzul Islam ‘ '

Assistant Professor, Department of CSE
BUET, Dhaka-1000

WeR\V ' | Member
4. Dr. Reaz Ahmed ' - :
Assistant Professor, Department of CSE

BUET, Dhaka-1000

: W _ Member
5. Dr. Mohammad Shorif Uddin (External)
Professor, Department of CSE ‘

Jahangirnagar University, Dhaka

»

¢ /7

Declaration

It is hereby declared that the work presented in this thesis or any part of this thesis
has not been submitted elsewhere for the award of any degree or diploma, does not

contain any unlawful statements and does not infringe any existing copyright.

Signature

M-2-Blisgann

- (Mohammad Masumuzzaman Bhuiyan)

e

ii

Table of Contents

DIECIATALION +vvereeurererseeesersessansesessesesseanes saese s ebsasean s e R e s o p e am e AR eR LSS bt i
Table OF CONLENES vvveeeiveeirerrercereteriesns s is s esb e r s s st e ereeesrenseeneesegpennns 1
LLISE OF FLBUTES 1o vvoraveveraeeeeaeionesseses st e s st iv.
I T)) R BRI AL S v
ACKNOWIEAZEIMENT .. cveretieiite ettt eiei e b bbb e vi
ADSITACE e eteeseee e eeesesastsasssesseaesseesassseseaseaesomn et s s e R s e e e e s e AE LSRR SRS s vii
Chapter I TNEEOAUCION ovuriunresrierscieire s s s 1
1.1 BACKEIOUNG . ovoveeeeieriitcei st eerreereenee s 2
1.2 Probieim DEfINItION «ovveeeeeeeeeeeeiteieeneeeeseeseesersessssre s ibeasbra e e ke es s s a s e s e s st st ves 2
1.3 OB ECHIVE covereveraeesesersnseees s eeseas st LS 2
1.4 Organization of the THESIS ... it 3
Chapter 2 LItErature SUIVEY ..o v rrireresoesscsriisriis bt st s st 4 -
2.1 Compression TECANIGUES ..ottt s 4
2.1.1 Loss-Less Compression Methods ..o 5
2.1.2 Lossy Compression Methods. ..o 6
2.1.3 Lightweight Compression Methods.cocvoimiiimiinii e 6
2.1.4 Heavyweight Compression Methods ... 6
2.2 Compression on Database PrOCESSINGoviimiimisies b s e 7
2.2.1 Compression of Relational SWUCTUIES ..o 7
2.2.2 HIBASE ATchiteCtUIe ..ovvevemeeeiisiiiniiennniees e et rarrretee et aa s 9
2.2.3 Three Layer MOdel ..c..o i e s 12
72 4 Columnar Multi Block Vector Structure (CMBVS) e 13
2.2.5 Compression in OFACLE ..o 13
2.3 QUETY PrOCESSINE coovciieriueiirnrrr st iereeernnes e 14
2.3.1 Uncompressed Query ProCessing ..ot 14
2.3.2 Compressed QUETY PTOCESSING ..v.cvrrirrsrmerrmemninisi st s 16
2.4 SUITINIATY ¢ eeveesteeeeseermeeceas aessss e es oL 17
Chapter 3 DHIBASE Architecture and Compressed Query Processing......orimnennes 18
3.1 DHIBASE: Disk Based HIBASE Model. ..o 18
3.2 DHIBASE: Storage COmPIEXitY ..ot 19
3.3 DHIBASE: IISEITIOMN . c...iivtieeiietersereriieeterssareere st ses et bbb e st s s st e 20
3.4 DHIBASE: DEIEtiON «veeeiiiitiieeresresestercreesseesb e ens e tn s bbb s 20
3.5 DHIBASE: UPQALE 1.ouvrieeerciiieiieasse s st sb st oo 210
3.6 Sorting of compressed relation according to codce VAIUCS 1eoereieieireeeereseccsaresire e s 21
3.7 Sorting of compressed relation according to SITNE VAIUCS et 23
3.8 Joining 0f compressed relations. . .im it 24
3.9 SQL queries on compressed data . i 25
3.9.1 Queries on single compressed relation ... 25
3.9.1.1 Projection........ SOOI OO U VSO POTOPR PP TRISOERT RSSO 26
3.9.1.2 Selection with single Predicale .t 26
3.9.1.3 Selection with multipie pl@dlCd[@b 27
3.9.1.4 Selection with range PrediCate 27

i

3.9.2 Queries on multiple compressed relations ... 28
3.9.2.1 PLOJECLION corvvrvrsevemseresscaereeseseiessies e sasssans st sssnssnsnns s 28
3.9.2.2 Selection with single prediCate ... 28
3.9.2.3 Selection with multiple predicates .o 28
3024 SELUNION 1 ovveeeeeeieeeeeeat oot eee e e teeae e s e seeebasesaenabe e s e et e s e et st b e s 28
3.0.2.5 St INLETSECHOM 1eveereeirrierieesiasieeebeesasressbeenreamssatsiesiaaarase et e et e sa s e s bbb soenas 29
3.9.2.6 St DIITEIEIICE 1oeee ittt e eeae s e et eressere b e s e re e b et b e an st 30

3.9:3 Aggregation on compressed Felation ... 31
30,31 COURL . curreeeeeeeerereereesssaesieseessesasseans esanncashr e s s e eaa s £ ear s e s e n e s s a s b nn e e b s d et s e 31
3.9.3.2 Max/ ML ..coooiviiieeiieeern e ses et ens s s sbs e vrerrrresaree e et an s 32
3.0.3.3 QUMY AV vivirenierieisireiieeee ettt e e e e b s s 32

310 SUIMMTIATY 1ove et eeteeeeerecemcastareses b s eb bbb em LA E b e e Rt eh b 33
Chapter 4 Results and DISCUSSION......c.euiumimmre it 34
4.1 Experimental ENVIFONIMENT . .ooviitiuieiciierirsie ettt 34
4.2 Storage REQUITCMENT ..c.c.oveiiiimiieeierer ettt s JOSvos— 36
4.3 Query Performance.......cooceveveinnenn e eeeretereee eeieteeereiaseeaneeaeesrere st s e a s re et e r e e e s 37

4.3.1 Single Column ProjeCtion......coivreemeiesicrenimerereaisns i st 37

4.3.2 Single Predicate SElection ... s 38

4.3.3 Double Predicate SeleCtion o ittt st 38

4.3.4 Range Predicate SeIECtion ...t 239

4.3.5 Sorting of REIAON ..c.c.ciriiiiiiissseei s 40

4.3.6 Aggregation: COUNL ..ottt 41

4.3.7 Aggregation: Max/ Min/ Sum/ AV 41

4.3.8 NATUIAL JOIIN .ot eeieeeereeeieis e et esteareeeesreent et e tane e s s saa e s s s s bt san st s e b s ehn s b st san s 42

4.3.9 Set Unioncoceevvvrceiineninens OO PO PSSO O PURPVO PO P SIPPIPTOSO PSPPSR 43

4.3.10 Set Union/ Set Difference......oovveiencnn ettt eateebeeaeeebeseteaer st e e bbia 44

4.3.11 Bulk Update....ccooveinienncen U USSP OO PRSPPSO YR 45

B4 SUITHIMATY ©..vovvueerseeeeeeseaiass et ssras s ae bt sb s EEhe ot s LR SRR h e oL E LRSS bbb e 46
Chapter 5 Conclusion and Future RESEarch ... 47
5.1 Fundamental Contributions of the Thesis ..o 47
5.2 FUIUTE TRESCATCH cneeeeeereeeeeeeie e ette s e s eest e s e e e bt e s ae e s ba et ean s e e e e ns b e s e s b s e b e s e n et 48

BIDIOZIAPNY - -veververeerreermseermas it 49

v

List of Figures

Fig. 4.10
Fig. 4.11
Fig. 4.12

Title Page No.
Compression of CUSTOMER relation , 10
Column-wise storage of a relation 11
The Three Layer Model 12
Querying a database in compressed form 16
DHIBASE Architecture 18
Storage compariéon between DHIBASE and SQL Server 36
Single column projection ' 37
Single predicate selection 38
Double predicate selection 39
Range predicate selection 40
Sorting of Sales selection 490
Aggregation: Count | 41
Aggregation: Max/ Min/ Sum/ Avg 42
Natural join A2
Set union : 43
Set intersection/ Set difference o 44
Bulk update 45

List of Tables

Table No. Title Page No.
Table 2.1 CUSTOMER: a simple relation : 9
Table 4.1 Item relation 34
Table 4.2 Employee relation 34
Table 4.3 Store relation 35
‘Table4.4 Customer relation ' 35
Table 4.5 Sales relation : 35

vi

Acknowledgement

[want to express my cordial gratitude to my' supervisor, Dr. Abu Sayed Md.
Latiful Hoque, Department of Computer Science and Engineering, Banglade;h
* “University of Engineering and Technology, Dhaka for making this research as a
way of exploring new ideas in the field of database compression. He grows inside
me the curiosity and also provides me the proper guidelines that make it possible
to complete the research. His profound knowledge and expertise in this field help

me to earn relevant knowledge in the field of database compression.

Finally, I would like to acknowledge all of my family members for their heartiest

wishes for completing the research.,

vii

Abstract

Loss-less data compression is potentially atiractive in database application for storage
reduction and performance improvement. The existing compression architectures work
well for small memory resident database. Some other techniques use disk-based
compression and therefore, can support large database. But all these systems can execute
a limited number of queries. Moreover, they cannot perform queries based on multiple
tables. We have developed a disk based compression architecture that uses dictionary
based compression. Each column is stored scparately in compressed form. String data are
compressed and numeric data may or may not be compressed based on the discretion of
the database designer. We have compared our system with widely used Microsoft SQL
- -Server. The experimental result shows that the proposed system requires 10 to 20 times
less space. As the system is column oriented, schema evolution is easy. We have also
defined a number of query operators on compressed database. We have implemented
natural join, selection with range predicate, sct opcrations and all aggregation functions.
These complex queries have not been explored in existing compression based systems.
Other than selection queries our system outperforms Microsoft SQL Server with respect
to query time. The performance of selection queries could be improved by introducing
indices. Also the system is appropriate for parallel computation by distributing the

compressed columns to separate processors.

Chapter 1

Introduction

Storage requirement for database system is a problem for many years. Storage capacity is
being increased continually, but the enterprisc and service provider data need double
storage every six to twelve months [1]. 1t is a challenge to store and retrieve this
increased data in an effictent way. Reduction of the data size without losing any
information is known as loss-less data compression. This is potentially‘attractive in
database systems for two reasons:

e Storage cost reduction

e Performance improvement

The reduction of storage cost is obvious. The performance improvement arises as the
smaller volume of compressed data may be accommodated in faster memory than its
uncompressed counterpart. Only a smaller amount of compressed data needs to be

transferred and/or processed to effect any particular operation.

Most of the large databases arc often in tabular form. The operational databases are‘ of
medium size whereas the typical size of fact tables in a data warehouse is generally huge
[2]. These data are write once-read many type for further analysis. Problem arises for
high-speed access and high-speed data transfer, The conventional database technology
cannot provide such performance. Wé need lo use new algorithms and techniques to get
attractive performance and to reduce the storage cost. High performance compression
algorithm, necessary retrieval and data transfer technique can be a candidate solution for
large database management system. It is difficult to combine a good compression

technique that reduces the storage cost while improving performance.

1.1 Background

A number of research works [3, 4, 5, 6] arc found on compression based Database
Management Systems (DBMS). Commercial DBMS uses compression to a limited extent
to improve performance [7]. Compression can be applied to databases at the relation
level, pﬁge level and the tuple or attribute level. In page level compression methods the
compressed representation of the database is a set of compressed tuples. An. individual
tuple can be compressed and deco‘mprcssed within a page. An approach to page level
compression of relations and indices is given in {8]. Thc Oracle Corporation recently
introduces disk-block based compression technique [9] to manage large database.
Complex SQL (Structured Query Language) queries cannot be carried out on these

databases in compressed form.

SQL:2003 [10] supports many different types of operations. Compression based systems
like High Compression Database System (HIBASE) [11], Three Layer Model [12] and
Columnar Multi Block Vector Structure (CMBVS) [2] have limited number of query

statements compared to SQL.

1.2 Problem Definition

Many different techniques are now available for database compression [3, 4, 5, 6]. But
these systems primarily focus on compression and have limited focus on efficient quéry
processing. These systems support insertion, deletion, update, projection and selection
operation on single table. Most of the database applications require supporting queries on
multiple tables. But these systems do not support querics on multiple tables, sorting of
compressed relations, join operations, aggregations and other complex queries. So size
reduction should not be the sole objective of a compressed database system. Efficient
query processing must be maintained and at the same time, all query operations must be

implemented.

1.3 Objective

The objective of this research is to design a compression-based architecture that can be
used for efficient querying of compressed relational database. This objective will be

achieved in three steps:

o Defining of a number of operators for querying compression-based
relational database system, '
o Designing algorithms for these operators,

o Evaluating algorithms in terms of time and space.

The feétures of the proposed architecture are as follows:
* Records are directly addressable in compressed storage into 1ﬁem0ry.or
disk block.
e Reduced disk transfer time due to compression.
¢ Decompression overhead will be minimized as only the final result will be

translated in uncompressed fron.

1.4 Organization of the Thesis

In chapter 2, a survey of the research in compression methods and query processing in
- - database systems is presented. We have developed disk-based system which is an
extension of HIBASE architecture. The dictionary organization and compressed

relational structure of HIBASE are discussed.

Chapter 3 presents the overview of our proposed architecture, Disk Based HIBASE
(DHIBASE). The structure stores database in column wise format so that the unnecessary
columns need not to be accessed during query processing and also restructuring the
database schéma will be easy. Each attribute is associated with a domain dictionary.

\ a 3 . 3 . - .
Attributes of multiple relations with same domain share the same dictionary.

Chapter 4 gives the detailed analysis of query processing of DHIBASE system. SQL-like
query operators in compressed format have been defined and algorithm of each operator

and analysis of the algorithms are also provided.

Chapter 5 describes the experimental work that has been carried out. Resuits obtained are

thoroughly discussed.

Chapter 6 presents conclusions and suggestions for future work.

Chapter 2

Literature Survey

The amount of information does not strictly depend on the volume of data. Insight
depends on information; the volume of data depends on its own representation. For cost
and performance reason the data should be made as concise as possible. Over the last
decade computer memory cost has been significantly reduced. But at the same time,
storage size of data and information has also been increased. Therefore, storage cost for

large-scale databases is still a great problem [5].

Combining compression with data processing provides performance improvement.
Database systems need to provide efficient addressability for data, and generally must
provide dynamic update. It is difficult to incorporate these features with good
compression techniques [14]. Many research works [4, 6] have been done in database
systems to exploit the benefit of compression in storage reduction and performance

improvement.

2.1 Compression Techniques

Based on the ability of the compressed data to be decompressed into the original data,
data compression techniques can be classified as either loss-less or lossy. A loss-less

technique means that the compressed data can be decompressed into the original without |
any loss of information. On the other side, a compression method that cannot reconstruct
the original data from the compressed form is called lossy compression. This type of

compression is appropriate for compressing image, voice or video data.

Based on how the input data is treated during compression, we can categorize the
compression techniques as lightweight or heavyweight scheme. Lightweight scheme
compresses a sequence of values. Heavyweight scheme compresses a sequence of bytes.
This scheme is based on patterns found in the data, ignoring the boundaries between

values, and treating the input data as an array of bytes.

2.1.1 Loss-Less Compression Mcthods

The loss-less property is essential for many types of application e.g., word-processing
and database applications. The loss-less compression methods can be further classified as
follows:

e Statistical Encoding

» Dictionary Based Methods

Statistical Encoding

Statistical encoding uses the probabilities of occurrence of each character and each group
of characters, assigns short codes to frequently occurring characters or groups of
characters while assigns longer codes to less frequently encountered characters or groups
of characters [15]. The widely used statistical compression methods are Huffman [16]
and Shannon-Fano [17,18] encoding. These methods are static and require a prior
knowledge of the probability of occurrence of each character in the input string.
Performance degrades if the frequency of occurrences changes. Static methods require at
least two passes: one pass to determine the probability of occurrences of the input
alphabet and the other pass to encode the string. To maintain the efficiency of the
resulting code obtained by compressing data, adaptive or dynamic compression schemes

have been developed by many researchers [19, 20].

Dictionary Bascd Methods

In dictionary based compression methods. the encoder operates on-line, inferring its
dictionary of available phrases from previous parts of the message and adjusting its
dictionary after the transmission of each phrase. This allows the dictionary to be
transmitted implicitly, since the decoder simultancously makes similar adjusfment to its
dictionary after receiving each phrase. The Lempel-Ziv families of compression methods
[21, 22, 23] are of this type and are used in many file storage and archiving systems.
These methods perform better than the character-based methods in terms of speed and
space. The main drawback of these methods for database applications is the locality of
reference. The encoded data using the initial part of the dictionary is not the same as the

encoded data using the later part of the dictionary. Therefore the compressed data is not

g

directly addressable in these methods [11]. These techniques require decompfession all,

or a large amount of the data even if only a small part of that data is required.

Alternatively, a complete dictionary is created in advance using the full message. The
dictionary is included explicitly as part of the.compressed message. This scheme is highly

efficient for decompression, and the compressed data can be searched directly [24].

2.1.2 Lossy Compression Methods o

All real world measurement of audio-visual data inherently contains a certain.amount of
noise. If the compression method includes a small amount of additional noise, no harm is
done. Compression techniques that result in this sort of degradation are called lossy. This
phenomenon is important because lossy | compression techniques can give greater
~ compression ration over the loss-less methods. The higher the compression ratio, the
more noise added to the data. Lossy compression is advantageoﬁs for image, voice and .
video data because the additional noise has little effect on the user’s perception. JPEG
(Joint Photographic Expert Group) and MPEG (Moving Picture Expert Group) are
standards for compression of image, voice and video data using lossy compression

methods.

2.1.3 Lightweight Compression Methods

Lightweight compression techniques work on the basis of some relationship between
values, such as when a particular value occurs often, or if we encounter long runs of .
repeated values. Run length encoding [25], delta encoding and dictionary encoding [5, 6,
26] are some examples of lightweight compression techniques. In a light-weight
compression techniégue, the compression algorithm is simple and fast. The compression

and decompression time is more important than the amount of compression. .

2.1.4 Heavyweight Compression Methods

LZO (Lempel Ziv Oberhummer) [27] is a modification of the original Lempél Ziv [21]
dictionary coding algorithm. [21] works by replacing byte patterns with tokens. Each

time the algorithm recognizes a new pattern, it outputs the pattern and then it adds it to a

dictionary. The next time it encounters that pattern, it outputs this token from the table.
The first 256 tokens are assigned to possible values of a single byte. Subsequent tokens

are assigned to larger patterns.

Details on the particular algorithm mod‘iﬂcations added by LZO are undocumented,
although the LZO code is highly optimized and hard to decipher. LZO is heavily
optimized for decompression speed. It provides the following features:
- e Decompression is simple and very fast.
» Requires no memory for decompression.
e Compression is fast.
e The algorithm is thread safe.

o The algorithm is loss-less.

2.2 Compression on Database Processing

Compression has now become an essential part of many large information systems where
large amount of data is processed, stored or transferred. This data may be of any type
e.g., voice, video, text, tables etc. No single compression technique is suitable for all
types of data. Lossy compression is appropriate for voice or video data where as loss-less
compression is suitable for other data types. Compression methods e.g., Huffman [16],
Lempel-Ziv [21, 22], LZW [23] etc cannot be used where efficient searching in the
compressed data space is required. Cormack [3] has used a modified Huffman code [16]
for the 1BM IMS database system. Westmann et al. (4] has developed a lightweight
compression method based on LZW [23] for relational databases. Moffat et al. [28] use
the Run Length Encoding [25] method for a parameterized compression technique for

sparse bitmaps of a digital library.

2.2.1 Compression of Relational Structures

We shall certainly get some benefits if we compress relational databases. We can
improve the index structures such as B-trees by reducing the number of leaf pages. We
can reduce the storage requirements for information. We have reduction in transaction

turnaround time and user response time as a result of faster transfer between disk and

main memory in [/O bound systems. In addition, since this will also reduce [/O channel
loading, the CPU can process many more /O requests and thus increase channel
utilization. We may have better cfficicney of backup since copies of the databasc could
be kept in compressed form. This reduces the number of tapes required to store the data
and reduces the time of reading from, and writing to, these tapes. The whole or the major
portion of processing data in compressed form may be memory resident. Main memory
access time is several orders of magnitude faster than the secondary sltorage access time.

This improves performance.

Compression can be applied to databases at the relation level, page level and the tuple or
attribute level. In page level compression the database is represented as a set of
compressed tuples. An individual tuple can be compressed and decompresse& within a
page. When a particular tuple is required, the corresponding page is transferred to the
memory and decompression is necessary only if the decompressed tuple is required. An
approach to page level compression of relations and indexes is given in [8]. The
important aspects of the technique are that each compressed data page is independent of
the other pages and each tuple can be decompressed based on the information found on
that specific page. A compressed tuple can be referred by a page-no and an offset. The
degree of compression greatly depends on the range of values in each field for the set of

tuples stored on a page. .

Wee et al. [29] has proposed a tuple level compression scheme using Augmented Vector
Quantization. Vector quantization is a lossy data compression technique used in image
and speech coding [30]. However Wee et al. {29] has developed a loss-less method for

database compression to improve performance of [/0 intensive operations.

A similar compression scheme has been given in {4] with a different approach. The work
presented a set of very simple and light-weight compression .techniqucs and shows how a
. database system can be extended to exploit these compression techniques. Numeric
compression is done by suppressing zeros; string compression is done by classical
Huffman [16] or LZW [23]. Dictionary-based compression methods, however, are used

for any field containing a small number of different values.

2.2.2 HIBASE Architecture

The HIBASE architecture by Cockshot, McGregor and Wilson [11, 311 is a more radical

approach to model the data representation.

In the relational approach, the database is a set of relations [13]. A relation represents a
set of tubles. In a table structure, the rows represent tuples and the columns contain
values drawn from domains. Queries are answered by the application of the operations of
the relational algebra, usually as embodied in a relational calculus-based language such
. as SQL.
Table 2.1: CUSTOMER: a simple relation

Customer Name Street City Status
Beauty South | Gazipur Married
Kalam South Dhaka Single
Johan North | Gazipur | Married
Anika West | Gazipur | Married
Zoinal South Dhaka Married

Belal South | Gazipur | Married
Shamim West Dhaka Married
Johan West | Gazipur Single

The-objective of the compression architecture is to trade off cost and performance
between that of conventional DBMS and main memory DBMS. Costs should be less than
the second, and processes faster than the first [11]. The architecture’_s compact
representation can be derived from a traditional record structure in the following steps:

Creating dictionarics: A dictionary for cach domain is created which stores string
values and provides integer identifiers for them. This achieves a lower range of
identifiers, and hence a more compact representation than could be achieved if only a

single dictionary was generated for the entire database.

Replacing ficld values by integer identifiers: The range of the identifiers need only be
sufficient to unambiguously distinguish which string of the domain dictionary is
indicated. In Fig. 2.1, since there are only 7 distinct customer names, only seven

. identifiers are required. This range can be represented by only a 3-bit binary number.

10

Therefore in the compressed table each tuple requires only (3 bits: Customer name, 2
bits: Street, 2 bits: City, 2 bits: Status) a total of 9 bits instead of the 25 bytes (6 bytes:
Customer name, 5 bytes: Street, 7 bytes: City, 7 bytes: Status) for the uncompressed
relation. This achieves a compression of the table by a factor of over 22. The actual
compression ratio is somewhat lower due to the space requirements of domain
dictionaries. Generally some domains are present in several relations and this reduces the
dictionary overhead by sharing them among different attributes. In a domain a specific
identifier always refers to the same tield value and this fact enables some dperations to be
carried out directly on compressed table data without examining dictionary entries until
string values are essential (e.g. for output). It may be noted that dictionary entries start

with 1 not 0, this is because a 0 in a field will indicate a null or missing value.

CustName | Strect City Status
Beauty South | Gazipur | Married
Kalam South | Dhaka Single
Johan North | Gazipur | Married
Anika West | Gazipur | Married
Zoinal South | Dhaka | Married
Belal South | Gazipur | Married
Shamim West | Dhaka | Married
Johan West | Gazipur | Single
001 | 01 (01 |0l
Qlo {01 {10 {10
_ oL 10 (o1 101
Compression | | 100111 |01 |OI
Engine | 101] 01 0t 01
110 |01 {01 Ol
1114 11 01 01
011 | &1 [0 |10
Id | CustName | Street City Status
1 Beauty South | Gazipur | Married
2 Kalam North | Dhaka Single
3 Johan West
4 Anika
5 Zoinal
6 Beial
7 Shamim -)

Fig. 2.1: Compression of CUSTOMER relation

Dictionary structure: All distinct attribute values (lexemes) are stored in an end-to-end
format in a string heap. A hashing mechanism is used to achieve a contiguous integer
identifier for the lexemes. This reduces the size of the compressed table. It has three

important characteristics:

11

1. It maps the attribute values to their encoded répresentation during the

compression operation: encode(lexeme) — token

2. It performs the reverse mapping from codes to literal values when parts of the

relation are decompressed: decode(token) — lexeme. »

3. The mapping is cyclic such that lexeme = decode(encode(lexeme)) and also

token = encode(decode(token)).
The structure is attractive for low cardinality data. For high cardinality and primary key
data, the size of the string heap grows considerably and contributes very little or no
" compression. |
Column-wise storage of relations: The architecture stores a fable as a set of columns
(Fig. 2.2), not as a set of rows. This makes some operations on the compressed database
considerably more efficient. A column-wise organization is much more efficient for
dynamic update of the compressed representation. A general database system must
support dynamic incremental update, while maintaining efficiency of access. The
processing speed of a query is enhanced because queries specify operations only on a
subset of domains. In a column-wise databasc only the specified values need to be
transferred, stored and processed. This requires only a fraction of the data that réquired

during processing by rows.

CustName
Street
Beauty
Kalam South
Johan North
Anika West
Zoinal
Belal
Shamim
Dic Pointer / Dic Pointer 7 .
Field 0 | Next > Field 1 [Next > Next Field
Vector Pointery Vector Pointer y
001 01
010 01
0l _ 10
100 11
101 0l
110 01
111 11
011 i

Fig. 2.2: Column-wise storage of a rclation

12

2.2.3 Three Layer Model

The Three Layer Model was developed by Hoque et al. [12]. This database architecture
was designed for storage and querying of structured relational databases, sparsely
populated e-commerce data and semi-structured XML. They have proved the systerfl in
practice with a variety of data. They have achieved significant improvement over the
basic Hibase model [11] for relational data. Their system performs better than the
Térnary model [32] for the sparsely populated data. They compared their results with
UNIX utility compress. The system performs a factor of two to six more in reduction of

data than compress, maintaining the direct addressability of the compressed form of data.

The architecture has three layers:

Layer 1: The lowest layer is the vector structures to store the compressed form of data.r ‘
As queries are processed on the compressed form of data, indexing is allowed on the
structure such that we can access any element in the compressed form without
decompression. The size of the element can vary during database update. The vector can
adapt dynamically as data is-added incrementally to the database. This dynamic vector

structure is the basic building block of the architecture.

Layer 2: The second layer is the explicit representation of the off-line dictionary in
compact form. They have presented a phrase selection algorithm for off-line dictionary

method in linear time and space [33].

Layer 3: The third layer consists of the data models to represent structured relational

data, sparsely populated data and semi-structured XML.

(A pplication program ilﬂﬂfal’-'e) [User quaries interface)

Felations, XML database,
Masive table T Sparse e-conumnerce T

Layer3 Extended Hl]:-ez Unary Model v

Layer 2{ Tokenizad data Dictionary Indices

Layerl Dymanu: Vector

Fig. 2.3: The Three Layer Model

13

2.2.4 Columnar Multi Block Vector Structure (CMBVS)

The proposed compression based data management system architecture {2] 6an be used to
handle terabyte level of relational data. The existing compression schemes e.g. Hibase
[11] or Three Layer Database Compression Architecture [12] work well for memory
resident data and provide good performance. These are low cost solution for high-
performance data management system but arc not scalable to manage terabyte level of
data. CMBVS is a disk based columnar multi-block vector structure that can be used to
store relational data in a compressed representation with direct addressability. Parallel
data access can be achieved by distributing .the vector structure into multiple servers to
improve the scalability. The structure is capable of carrying out query directly on the
compressed data. This reduces query time drastically. The system has been compared
with the conventional relational DBMS. The architecture is significantly efﬁcienf in

storage reduction and also faster than conventional systems in retrieval time performance.

2.2.5 Compression in Oracle

The Oracle RDBMS recently has introduced a compression technique [9] for reducing the
size of relational tables. This compression algorithm is specifically designed for
relational data. Using this compression technique, Oracle is able to compress data much
more effectively than standard compression techniques. More significantly, Oracle
incurs virtually no performance penalty for SQL queries accessing compressed tables. In
fact, Oracle's compression may provide performance gains for queries accessing large
amounts of data, as well as for certain data management operations like backup and

Tecovery.

The compression algorithm- used in Oracle compresses data by eliminating duplicate
values in a databaﬁe block. The algorithm is a loss-less dictionary-based compression
technique. One dictionary (symbol table) is created for each database block. Therefore,
compressed data stored in a database block is self-contained. That is, all the information
is available within the block to recreate the uncompressed data in that block. This
compression technique has been chosen to achieve local optimality of compression ratio.
The algorithm is greedy, meaning that it tries to load as many rows as possible into each

block. It does not attempt to achieve any form of global compression ratio optimality.

14

The problem of global compression ratio optimality is highly computationally intensive.
If global compression ratio optimality is desired, the entire set of rows to be compressed
needs to be buffered before blocks can be populated. For large data warchouses this is
not feasible because it would potentially require to buffer terabytes of data, which is not

practical.

2.3 Query Processing

 Query processihg refers to the range of activities involved in extracting data from a
database. The basic steps involved in query processing are

1. Parsing and translation

2. Oplimization

3. Evaluation
The first action the system must take in query procesSing is to translate a given query into
its internal form. Given a query, there arc generally a variety of methods for computing
the answer. In SQL, a query could be expressed in several different ways. Eﬁch SQL
query can itself be translated into one relational-algebra expression in one of several
ways. We can execute each relational-algebra operation by many different algorithms. To
specify fully how to evaluate a query, we need not only to provide the relational-algebra
expression, but also to annotate it with instructions specifying how to evaluate each
operation. Annotation may state the algorithm to be used for a specific operation, or the
particular index or indices to use. Different query-evaluation plans for a given query have
different costs. Based on these cost estimates, a particular plan is accepted. The given

query is evaluated with that plan and the result of the query is output.

2.3.1 Uncompressed Query Processing

Parsing of query languages differs little from parsing of t(raditional programming
languages. Main parsing techniques were covered in [34], but here optimization is
presented from a programming language point of view. A excellent description of
external sorting algorithms, including an optimization that create initial runs that are (on

the average) twice the size of the memory, is described in [35].

15

Query optimization: Much work has been done in query optimization. Access-path
selection in the System R optimizer is described in [36], which was one of earliest
relational query optimizers. Volcano, an equivalence-rule based query optimizer, is
described in [37]. Query processing in Starburst is described in [38]. Query optimization

in Oracle is briefly outlined in [39].

The SQL language poses several challenges for query optimization, including - the
presence of duplicates and nulls, and the semantics of nested sub-queries. Extension of
relational algebra to duplicates is described in [40]. Optimization of nested sub-queries is

discussed in [41].

Multi-query optimization, which is the problem of optimizing the execution of several
queries as group, is described in [42]. If an entire group of queries is considered, it is

possible to discover common sub-expressions that can be evaluated once for the entire

group. Optimization of a group of queries and the use of common sub-expressions are

considered in [43]. Optimization issues in pipelining with limited buffer space combined

with sharing of common sub-expression are discussed in [44].

Joinr operation: In the mid 1970s, database systems used only nested-loop join and
merge join. These systems, which were related to the development of System R,
determined that either the nested-loop join or merge join nearly always provided the
optimal join method [45]; hence, these two were the only join algorithms implemented in
System R. The System R study did not include an analysis of hash join algorithms. Today

hash join algorithms are considered to be highly efficient.

Hash join algorithms were initially developed for parallel database systems. Hash join
techniques are described in [46], and extensions including hybrid hash join are described
in [47]. Hash join techniques that can adapt to the available memory is important in
systems where multiple querics may be running at the same time. This issue is described
in [48). The use of hash joins and hash teams, which allow pipelining of hash joins by
using the same partitioning for all hash joins in a pipeline sequence in the Microsoft SQL

Server is presented in [49].

!

16

Aggregation: An carly work on rclational algebra expressions with aggregate functions
is found in [50]. More recent work in this area includes [51]. Optimization of queries

containing outer joins is described in [52].

Views: A survey of materialized view maintenance is presented in [53]. Optimization of
materialized view maintenance plans is described in [54]. Query optimization in the

presence of materialized views is addressed in [55].

2.3.2 Compressed Query Processing

Very few systems execute queries directly on compressed data without any
_ decompression. Hibase Architecture [11], Three Layer Model [12], Columnar Multi
| Block Vector Structure (CMBVS) [2] are the systems that execute queries directly on

compressed data (Fig. 2.4). The query is translated to compressed form and then

processed directly against the compressed relational data. Less data needs to be
manipulated and this is more efficient than the conventional alternative of processing an

uncompressed query against uncompressed data.

QIERY Crecarnpressed
Result

Drecompression

Engine ~

, Compression e DE
Engine

-scm ;

Coarrer s e
Tuble

Dictionarios

Fig. 2.4: Querying a database in compressed form

The final answer will be converted to a normal uncompressed form. However, the
computational cost of this decompression is low because the amount of data to be
_ decompressed is only a small fraction of the processed data. All these systems are
capable of executing queries on single compressed relation. Queries on multiple

compressed relations have not been designed so far.

17

Compression technique used in Oracle is different than that used in Hibase Architecture
[11], Three Layer Model [12] and CMBVS [2]. As separate symbol table is created for
each database block, the compressed data is not directly addressable in compressed form.
| Therefore, it is hard to implement queries directly on multiple compressed relations. In
fact, Oracle's compression algorithm is particularly well suited for data warechouses
environment, which contains large volumes of historical data with heavy query
workloads. The system is targeted mostly for rcad-only applicaiions where simple

queries are involved.

2.4 Summary

This chapter described different types of existing compression techniques, compression
of relational database, development in query processing both in uncompressed and
compressed form. We have thoroughly discussed the HIBASE architecture because we
taken this model as the basis of our architecture {which we call DHIBASE). But there are
fundamental differences between HIBASE and DHIBASE. Differences are observable in

storage structure of compressed data, number and types of query processing.

18

Chapter 3
DHIBASE Architecture and

Compressed Query Processing

This chapter describes the details of the proposed DHIBASE architecture for storage of
compressed relational data. The chapter also describes the details of the query prodessing
techniques of the proposed system. We develop the system for single processor system.

Query is evaluated directly on compressed data.

3.1 DHIBASE: Disk Based HIBASE Model

The basic HIBASE architecture is memory based. We have developed a more general
architecture (Fig. 3.1) that supports both memory and disk based operations. We l}ave
made two assumptions:

a. The architecture stores relational database only

b. Single processor system architecture

CHIBASE

(I [4 Dumry Compressor E '
' Exacution Unit (CEW) [
| Carpresnan :
M Cho
| anager (CA) E g . y
I e L s |
.E;_ , Cracompression Unit ‘f; !
e : (D ikl
b1 8!
—]
a RSk L k b ¥
-3 I SO [—‘”—_ﬁ | b
% Cabuman Storage l i Drtonary Storege o 2] E
=z =
~ ; I . I . i — Output
kN -) - i |

S

Fig. 3.1: DHIBASE Architecturce

Although the architecture is designed for single processor system, it can easily be
expanded for other architectures. The Input Manager (IM) takes input from different .
sources and passes to Compression Manager (CM). CM compresses the input, make
nece.ssary update to appropriate dictionaries and stores the compressed data into

respective column storage.

19

Query Manager (QM) takes user query and passes to Query Compression & Execution
Unit (QCEU). QCEU translates the query into compressed form and then applies it
against compressed data. Then it passes the compressed result to Decompression Unit

(DU) that converts the result into uncompressed form.

Each compressed column is stored across multiple disk blocks. Each disk block has fixed
size. Compressed data are stored in end-to-end position in disk block. No data is split
over two disk blocks. The total database is kept into the main memory when the database
is small enough to be placed into the memory. For large databases, recently active parts
are placed into the main memory. The last disk block of cach column and each dictionary
is always kept into main memory. All insertions are committed in this n1erﬁ0ry block.
The Insert or Update operation in disk based HIBASE model requires “string’ look up in
the dictionary. Efficient decoding [9] from code to ‘string’ may be achieved by two ‘table
look-up’ operations. So we do not need to search the entire dictionary in the worst case. If
the “string’ is present in the dictionary the operation does not need a reorganization of the
vector structure. If the ’string’ is not present in the dictionary it is inserted into the
dictionary. This insertion might result an increase of the element width. In this case the
operation requires a reorganization of the vector structure. Deletion is performed by
replacing the desired record with the last record and then reducing number of records by

one. Dictionary entries are not delcted.

3.2 DHIBASE: Storage Complexity

SCi =n * Ci bits .
Where S¢; = space needed to store column i in compressed form

n = no of records in the relation

Ci = no of bits needed to represent i" attribute in compressed form

= [Ig(m) 1 m is no of cntries in the corresponding domain dictionary

p
Total space to store all compressed columns, S ce = Z S i bytes; no of column is p
i=1 :

If we assume that domain dictionarics will occupy an additional 25% of S, then

Total space to store the compressed relation, S¢r = 1.25 S¢c

20

. p
Total space to store the uncompressed relation, S UR = z AXX; X 8 bits; X;1s the size
i=1 '

(in bytes} of i*" attribute in uncompressed form.

Sye _ px(nxxx8) xx8

Compression factor, CF = . assuming that all attributes have

Sep 1.25xpx nxe 1.25¢

equal width in both compressed and uncompressed form.

3.3 DHIBASE: Insertion

Insertion of a value into a field of a record needs the search for compressed code of the
given lexeme in the dictionary. If the lexeme is not in the dictionary then we have to add
that lexeme to the dictionary which may require widening of the compressed column.
Using hash structure, the search requires 2 secks and 2 blocks transfers. As the last block
of the dictionary is in memory, the insertion of the lexeme in the dictionary requires no

seeks or block transfers. The complexities of widening operation are given bellow.

Let, Bl and B2 memory blocks are allocated to initial compressed column and widened

nlgm_l and b2 =

compressed column respectively. Total block transfers are bl = l_

|'n (lgm+1)"|

Y respectively; n is the no of tuples in given rclation, m is total no of initial
h

entries in corresponding dictionary, b is disk block size (in bytes) and we increase width

. . . . bl b2
of the field by 1 bit whenever widening is necessary. Total no of seeks 1s —él—+—§5 .

3.4 DHIBASE: Deletion

Deletion is performed by replacing the desired record with the last record and then
reducing no of records by one. Dictionary entries are not deleted. Deletion from last
memory block needs no seeks or no block transfers. Replacing the desired record by last

one requires 2 seeks and 2 blocks transfer for each field.

21

3.5 DHIBASE: Update

If the new lexeme is not in the dictionary then we have to insert the new lexeme in the
dictionary, which requires all operations of insertion as described in section 3.3.

Updating of the desired field of the desired record requires 2 seeks and 2 blocks transfer.

3.6 Sorting of compressed relation according to code

values

Sorting of table according to code values is required for some queries like natural join. As
table is stored in column-wise format, an Auxiliary Column (AC) will be used to help the
sorting process. AC has so many rows as the number of records in the table. Imtially each
row of AC will contain its own position in the column. That is, the i row of AC contains
i. We first sort the column that contains the sorting attribute. Let us consider the

following table which will be sorted by CustName.

Table 3.1 A rclation to be sorted

CustName Street City Status
Johan North | Gazipur | Married
Kalam South | Dhaka Single
Anika West | Gazipur | Married
Beauty South | Gazipur | Married

The actual storage (based on dictionaries of Fig. 2.1) is given in Fig. 3.2.

CustName Street City Status AC
3 2 1 ! 1
2 i 2 2 2
4 3 i 1 3
! |] | 4

Fig. 3.2: Initial content of Auxiliary Column (AC)

During sorting of CustNume column AC will be reordered so that after CustName column
is sorted, i row of AC will contain the initial position of i" row of CustName column

(Fig. 3.3).

CustName AC
] 4
2 2
3 1
4 3

Fig. 3.3: Content of AC after sorting of CustName

22

‘This AC will be used to sort other columns of the table. We make a copy of the desired
data column. Now we scan the AC. From currcnt row i of AC we find row no j of
duplicated column that should be stored in row i of desired data column. Now we copy
row j of duplicated column to row i of data column. When we finish scanning AC, the
data column is sorted. Now duplicated column is deleted. In this way we sort other
columns. When all other columns are sorted, AC will be deleted. The above sorting

method is given in Algorithm L.

Algorithm 1: Sorting according to code values
Sub SortByCode(byte t, byte ¢) /fsorts " table by its " column
n = no of records in table t
Read all disk blocks of column ¢ of table t into Dataf)
For each record no i of table t, set AC(i) =i
call SheliSortCode(Data, AC, n)
Write all blocks in Data() to disk
For each column ct other than ¢, call SortC olfDm‘la. AC ¢l, 1)
Delete Dataf), AC() |
End Sub
Sub SoriCol(Data(), AC(, ¢ n)
Read al! disk blocks of column ¢ in Data()
For each entry t in AC(), Write the " compressed record stored in Data(j to " location of D(}
Write ail blocks of D() to disk
End Sub
Sub SheliSortCode(Data(), AC(), n}
sorts all of n compressed records stored in Data(), whenever i and K* compressed reco;‘ds are
interchangéd, the same record no’s of AC() are also interchanged.

End Sub

Let, the column containing the sorting attribute has B disk blocks and M memory blocks
are available for sorting disk data. Using external merge sort total no of block transfers to

sort the column is B * (2 rlogM-,(B/M)] + 1) and total no seeks is 2 * [BM1 +[B/M] (2

% logm.1(B/M)- 1). No of disk blocks to store the Auxiliary Column (AC) is [n;i" Ln=

no of records and b = block size in bytes.

B

23

- 3.7 Sorting of compressed relation according to string

values

The procedure for sorting a table according to string values is similar to that of sorting
according to code values. The only difference is in the method of comparison of two
values. Sorting by codes requires comparing only code values stored in the table and
needs not checking the corresponding dictionary entries. But sorting by string sorts the
table according to dictionary entries of the corresponding code values. This forces to look
up strings in the dictionary and then compare those strings. If the strings are very long,
the comparison time will be considerably long. To reduce the comparison time we create
a dictionary (we call this SortDic, shown in Fig. 3.4) for each string domain that stores

the sorting position of each code value of the dictionary.

o

CustName Sort Pos
Beauty
Kalam
Johan
Anika
Zoinal
Belal

Shamim

~ L AW b —
O U) — LA B

Fig, 3.4: Dic and SortDic of CustNume

Let us consider the entries 101 (Zoinal) and 111 (Shamim) in CustName column,
According to the SortDic(CustName), SortDic(101) = 7 and SortDic(l11) = 6. Therefore,
‘111(shamim)’ < *101(Zoinal)’. So with SortDic we can avoid long string comparison
and thus have faster sorting process. Of course, we have additional space -to store
SortDic. SortDic only contains integer values. So they themselves may be stored in
compressed form. Hence a particular SortDic consumes a small amount of space and it
may be completely kept into main memory to avoid disk access. Also SortDic may be
created offline to reduce processing time. Algorithm Il describes the technique of sorting

by string.

Algorithm LI; Sorting according to string values
Sub SortBySiring(byte 1, byte ¢) Hsorts " tuble by its ¢" column
n = no of records in table t

Read all disk blocks of column ¢ of tuble 1 into Datur)

24

For each record no i of table t, set AC(i} = |
call ShellSortString(Data, AC, n)
Write all blocks in Dataf) to disk
For each column ¢l other than ¢, call SortCol(Data, AC, ci, n)
Delete Data(), AC(}
End Sub
Sub ShellSoriString(Dataf), ACQ, n)

same as ShellSortCode(); but instead of comparing i and k" compressed records in Dataf), u” and v"

. i . N
entries of corresponding SortDic are compared. Here u and v are integer values of i and k” entries in

Data()
End Sub

The SortDic is also stored in compressed form. If the domain dictionary has m entries

, . T mlgm "l o
then the no of disk blocks to store SortDic, N = —g ; b = block size in bytes. If we

assume that we have N memory blocks to store the entire SortDic then all estimates are

same as in Algorithm L.

3.8 Joining of compressed relations

In DHIBASE architecture, columns of same domain share the same single dictionary.
Therefore, the same data has same compressed code in all positions in all tables. So we
can join two tables based on compressed codes without checking the exact ‘string’

values. Algorithm III describes the natural join of two tables.

Algorithm 11: Natural join of T1 and T2 based on attribute A
Sub Naturalloin(T1, Cl, T2, C2) // T2 has total records less than that
Hof T1. T has column Cl and T2 has column C2 for attribute A
Sort T1 accurdfng to code values of colwnn Cl
Sort T2 according to code values of column C2
Read all disk blocks of colunmn CI of Tl into D)
Read all dis;"c blocks of column C2 of T2 into D2()
Set I 1o both-m and §
For each record no k of table Tl |
While k" entry of DI() =" entry of D2() And j <= No(OfRecords(T32) ;’
Set k" entry of DI{) to m™ position of Df)

25

Set k to m™ position of AC1()
Set j to m™" position of AC2()
Increment m and f
Write all blocks of D) to disk
For each column k of T1 other than Cl, Call Adjust(T1, k. ACI, D))
For each column k of T2 other than C2,, Call Adjust(T2, k, AC2, D2())
Delete D(), DI¢), D2(), AC1(), AC2()
End Sub '
Sub Adjust(T, C, AC(), Data())
Read all disk blocks of cofumn C of T into Data()
For each k" entry t of AC(),set (" entry of Data() to K" position of Df)
Write all blocks of D() to disk
End Sub

We assume that relations T1 and T2 are already sorted. T1 has B ; disk blocks and ha;s n;
tuplés and the no’s for T2 are B and n; respectively. M; and M, are the no of memory
blocks allocated to store disk blocks of T1 and T2 respectively. Total no of disk block
transfers is B, + Bj. If, on average. p; tuples of T1 are matched to p; tuples of T2 then
total disk seeks is 2 * max([ny 7 (M; * pi)1,[n2 7/ (M3 * p2) 1) . No of disk blocks to store
mlgn

—I respectively where b is block
g8b -

ACI1() and AC2() are r%—l and F

size in bytes.

3.9 SQL queries on compressed data

This section describes query processing on compressed data. Section 3.9.1 describes
query processing on single compressed relation, section 3.9.2 describes query processing
on multiple compressed relations and section 3.9.3 describes aggregation functions on

compressed table.[¥

3.9.1 Queries on single compressed relation

Queries on single relation are generally projection, selection and aggregation operations.
Following two sub-sections describe projection and selection in details. Aggregation is

described in section 3.9.3.

26

3.9.1.1 Projection

Select C From T. The algorithm is given below:

Algorithm 1V: Projection of single column
Read all disk blocks of Dic(C) into D)
For each disk block b of column ¢ {
For eachrecordr in b {
Print i entry of D()
Delete D)

nlgm‘l

no of seek = 1. no of disk block read = l_ Sh

here n = no of records and m = no of entries in the domain dictiopary.

3.9.1.2 Sclection with single predicate

Select C From T Where C; = 'xx'. The algorithm is given below:

Algo.rithm V: Single pfedicate selection
FPart-1:
v = code for ‘xx' in domain Dic(Cy
Seti=1{
For each disk block b of column C, |
For ea&h recordr =v in block b {

Set r 10 " position of AC()

Increment §
Part-2; o
Read all disk blocks of Dic(C) into D()
For each each entry t in AC(), Print 1" entry of Df)

Using hash structure to search domain dictionary we can find the code for a given ‘string’

in 2 disk seeks-and 2 disk-block reads. To sclect tuples of selection column we need 1

[nlgm
b

disk seek and —l blocks transfer. The same no is needed for each projected

. s [ren]
column. No of disk blocks to store AC() s ——8——b-—-- ..

27

3.9.1.3 Selection with multiple predicates.

Select C From T Where C; = xx" And Ci = 'yy’. The algorithm is given below:

Aigorithm VI: Multiple-predicate selection
Part-1 of Algorithm V
u = code for ‘yy' in domain Dic(Cy)
For each entry 1 of AC(), If " record of colunn Cy is not u, remove t from AC()
Part-2 of Algorithm V

Selection with q predicates: to search code in domain dictionaries we need q * 2 disk

nlgm
3b —|

seeks and q * 2 blocks read. To create AC() another q * 1 seeks and q * |—

: nlgn .
blocks read are needed. AC(.) needs ’—% —l blocks for storage.

3.9.1.4 Sclection with range predicate

Select C From T Where C >= xx’ And C <= 'yy'. The algorithm is given below:

Algorithm VII: Range-predicate selection
k = code for xx' in Dic(C)
J = code for yy’ in Dic(C)
t! = K" entry of SortDic(C)
t2 = j" entry of SortDic(C)
Now execute the query:

Select C From T Whére SortDic(C)==t] And SortDic(C)<=12

o

SortDic(C) is stored in compressed from. We assume that the total SortDic(C) is in

_ mlgm o
memory which consumes | -—=-— | memory blocks where m is the no of entries in

Dic(C). In worst case when the edge values of the given range are not in Dic(C), we have

to search the entire dictionary which requires | seek and D blocks transfer { Dic(C) has D

28

nlegm
S —|blocks

blocks). The modified query further needs 1 seek and a total of r

transfer where n is the total no of records in table 7.

3.9.2 Quecries on multiple compressed relations

Queries on multiple relations arc set operations and queries based on the join of two or
more relations. Natural join has alrcady been described in section 3.8. The following

subsections describe different queries on multiple relations.

3.9.2.1 Projection

Select TI.C From T1, T2. The algorithm is given below:
T = NatyralJoin(T!, T2)
Select C' From T

3.9.2.2 Selection with single predicate

Select T1.C From T1, T2 Where T1.C; = 'xx . The algorithm is given below:

T = Naturaldoin(T!, T2)
Select C* From T Where C', = xx’

3.9.2.3 Selection with multiple predicatés.

Select TI.C From T1, T2 Where T1.C, = xx' And T2.Cy = 'yy'. The algorithm is
- given below: - - '

T = NaturalJoin(T!, T2)
Select C* From T Where C; = " And C W=yt

3.9.2.4 Set Union

The SQL operation union operates on relations and corresponds to relational-algebra
operation w. The relations participating the union operation must be compatible, that is,
they must have the same set of attributes, The union operation automatically eliminates

duplicates.

(Select C1 From T1) Union (Select C2 From T2). The algorithm is given below:

~

29

Algorithm V1II: Set union

Read all disk blocks of C1 of T .into DI}, Read il disk blocks of C2 of T2 inte D2()
Qutpur will be stored into Df)
While both DI () and D2() have more elements {

r = next va!ueﬁém Dig

© while DI() has more values und = next value of DI |
move to next vatue of DI()
While D2() has more values and (= next value of D2() {
move to next value of D2()

insert t into D{)
I DI() is finished then |

Insert distinct values remaining in D2() into Df)
Else _

Insert distinet values rema.ining in DI{) into Dy)

Write all blocks of D() to disk

Let, Bl, B2 and B memory blocks are allocated to Cl, C2 and output column

respectively. Totaliblock transfers are bl = r%g —I, b2 =_|— nzglim —l and b = r,”;gb'” —l

respectively. ny, ny and n are the no of tuples in T1, T2 and output respectively, and m is

S . . . h2 b
total no of entries in corresponding dictionary. Total no of seeks is %+_§2§ +E.

“ 3,9.2.5 Set Intersection

The intersect operation, like union operation. also operates on relations. The operation
corresponds to relational-algebra operation M. The relations participating the intersect
operation must the same ‘sct of attributes. The intersect operation automatically

eliminates duplicates.

(Select C1 From T1)} Intersection (Select C2 From T2). The algorithm is given

below:

30

7 Algorithm IX: Set intersection
Read all disk blocks of CI of T into DI(), Read all disk blocks of C2 of T2 into D2()
: Output will be stored into D()
While both DI} and D2() have more elentents |
t = next value from DI{)
while DI() has more values and t = next value of D1f) |
move to next value of D !O
counter =
While D2() has more values and t = next value of D2() |
move (o next vatue of D2() and increment counter

If counter =0 then insert t into D(}

Write all blocks of D(} to disk

Complexities are same that shown in section 3.9.2.4 (Set Union).

3.9.2.6 Set Difference

The except operation, like union and interseet operations, also operates on relations. The
operation corresponds to set difference operation —. The relations participating the except

operation must the same set of attributes. The except operation automatically discards

duplicates.

T (Select C1 From T1) Except (Select C2 From 72). The algorithm is given

below:

. Algorithm X: Sct difference
Reud all disk blocks of CI of T! 'imo D'."(), Read all disk blocks of C2 of T2 into D2()
Cutput will be stored into D(}
While both DI() and D2() have more elements |
.t = next value from D1()
while DI{) has more values and t = next value of D1() |
mave to next value of D1{)
counter = {)
White D2() has more values and t = next value of D2() |
move to next value of D2} und increment counter |
If counter = 0 then insert t into Dy

{f DI is not finished then |

31

insert distinct values remaining in DI Jinto D()

Write all blocks of D() to disk

Complexities are same that shown in section 3.9.2.4 (Set Union).

3.9.3 Aggregation on compressed relation

Aggregate functions are functions that take a collection (a set or multiset) of values as
input and return a single value. SQL provides five different built-in aggregate functions:
count, max, min, sum and avg. The input to sum and avg must be a collection of
numbers, but other operators can operate on collections of non-numeric data types, such

as strings, as well.

For aggregation queries we shall consider the following relation:

account{account_no, branch_name. balance)

3.9.3.1 Count

select branch_name, count(branch_name) from account group by branch_name.

The algorithm is given below:

Algorithm X1I: Count aggregation function
Sort account by branch_nume
Read all disk blocks of branch_name column inte Df)
Part-1;
Serec=1 7
For each record k in D) |
ff recent k is different than previous k then |
Set DI(i) = previous k
Set D2(i) = total no of records having sane value as
previous k

Setc=1
Part-2: |
Write all blocks of DI() and D2() to disk

32

If M blocks are allocated to each of D(), D1(') and D2(') then no of block transfer is

rn;gbm —I for D() and r%llg”ﬂ for each of D1() and D2(). No of seeks is 3 *

I—nlgm

_l. Where n is the average size of each group.
8 Mb

3.9.3.2 Max/ Min

select branch_name, max(balace) from account group by branch_name. The

algorithm is given below:

Algorithm X11: Max/ Min aggregation function

Sort account by branch_name
Read all disk blocks of branch_name column into Df)
Part-1 of algorithm given in section 3.9.3.1
Read all disk ‘b!ock.s' of column balance into Df)
base = 0
For each record i of D2¢) |

max = maximun of (base+!)"' to (base+i)" element of Df)

set D2(i) = max

- Increment base by § ‘

Write all blocks of D1{) und D2{) to disk

Complexities are double that shown in section 3.9.3.1 (Count).

3.9.3.3 Sum/ Avg

select branch_name, sum(balace) from account group by branch_name. The

algorithm is given below:

Algo.rithm XI1: Sum/ Avg aggregation function
Sort account by brunch _name V
Read all disk blocks of column branch_name into Df)
Part-1 of algorithm given in section 3.9.3.1
Read-ali disk blocks of column balance into D()

33

base =0
For each record i of D2() {
max = sum of(base+l)”' to (base+)" element of D()
/ in case of avg make average of these elements
set D2(i) = max
Increment base by i

Write all blocks of DI} and D2() (o disk

Complexities are same that shown in section 3.9.3.2 (Max).

3.10 Summary

In this chapter we have presented an attractive compression-based aréhitecture, called
DHIBASE. Due to disk based compression DHIBASE support very large database with
acceptable storage volume. Insertion, deletion and update mechanisms on the architecture
have been presented and analyzed. The architecture executes query directly- on
compressed data and it is capable of executing all types of SQL queries. Moreover, we
have designed.a sorting algorithm of compressed relation stored in column wise format
which is perhaps new. Algorithms of query operators given in this chapter have been

thoroughly analyzed.

34

Chapter 4

Results and Discussion

The objective of the experimental work is to verify the épplicability and feasibility of the

proposed DHIBASE architecture. The experimental evaluation has been performed with

large synthetic' data. The experimental result is compared with widely used Microsoft

SQL Server 2000. Our target was to handle large relations and justify the storage

requirements and query time in comparison with SQL Server.

4.1 Experimental Environment

DHIBASE has been tested on a machine with 1.73 GHz Pentium IV processor and 256

MB of RAM, running on Microsoft Windows XP. We have created 5 different relations

as given in Table 4.1 to Table 4.5. A random data generator has been used to generate

synthetic data and large no of records have been inserted into each table. Each query has

been executed 5 times and the average execution time has been taken.

Table 4.1; Item relation

Attribute Name Cardinality i]‘r{é&ﬁ;'{r’é"s‘ééé_rié‘ia" - Compressed field
length (byte) length (bit)
(PriI:l:;jﬁey) , 1000 8 | lq
Type 7 6 3
Description wo | 20 7
" Total 34bytes | 20bits (CF=13.6)

Table 4.2: Employee relation

Attribute Name Cardinality | Uncompressed tield | Compressed field
' length (byte) length (bit)
(El;;ﬁszi”éf) 2000 10 11
Name 400 20 9
Department 15 K 4
: Total 38 bytes 24 bits (CF =12.67)

Table 4.3: Store relation

35

Attribute Name Cardinality | Uncompressed field | Compressed field
length (byte) length (bit)
(PI‘?:I?;:)-/_ 1lgey) 100 6 7
Location 10 10 4
Type 0 3
Total 22 bytes 14 bits (CF = 12.57)

Table 4.4: Customer relation

Attribute Name | Cardinality | Uncompressed field | Compressed field
length (byte) | length (bit)
(%ﬁgfye;—e‘j) 10000 10 14
Name 2000 20 11
City 30 12 5.
District 14 12 4
Total 54 bytes 34 bits (CF =12.71)

Table 4.5: Sales relation

Attribute Name Cardiﬁ_z'i_l'i't—ymmﬁﬁﬁémnpressed field { Compressed field
_ length . (byte) length (bit)
Sales _id Upto 1 million 4 32
(Primary key) (Numeric) (Uncompressed)
Employee_id :
(Foreign key) 2000 10 1
Customer id
(Foreign key) '1 0000 10 14’
Item_id .
(Foreign key) 1000 8 10
Store_id
(Foreign key) 100 6 !
. e e e ST
~ Quantity Numeric 2 (Uncompressed)
. . 32
Price. Numeric 4 (Uncompressed)

" Total

44 bytes

122 bits (CF = 2.89)

36

4.2 Stofage Requirement

Our data generator has generated 1000, 2000, 100, 10000 records for ltem, Employee,
Store and Customer relations respectively and these records remained fixed during
experiments. 0.1, 0.4, 0.7 and 1 million records were stored in Sales relation for each
experiment. Compression factor (CF) of each relation is given in table 4.1 to 4.5. Table
4.6 shows overall CF’s for different number of records in Sales relation. CF’s are
calculated with respect to Microsoft SQL Server 2000. We observe that the proposed
system outper.forms SQL Server by a factor of 10 to 20. It was expected that with more
records in Sales relation the CF would increase; but we found opposite result. The reason
is that we have used some uncompressed attribute in the Sales relation (uncompressed 80
bits out of total 122 bits) to speed up query processing and due to these uncompressed
attributes the overall CF decreases with the increase in the no of records in Sules relation.
CF = 10 is still a great achievement. If someone wants higher compression factor then he

has to make performance degradation in query processing,.

Table 4.6: Compression Factor (CF) achieved

No of tuples in Sales | Overall CF
lrelation
0.1 million 20.3
0.4 million 17.7
. 0.7 million 12.4
[.0 militon 10.1

Fig. 4.1 shows a graphical comparison between DHIBASE and SQL Server storage

requirements

160
140
120 -
100 -

SQL Server
' O DHIBASE

Size (M B)
(-]
<

0.1

No of tuples {million)

Fig. 4.1: Storage comparison between DHIBASE and SQL Server

37

4.3 Query Performance

To assess query performance, we carried out queries on both DHIBASE and SQL Server.
The performed queries and obtained results are described in the following sub-sections.
In all cases Sales relation contains 0.1, 0.4, 0.7 and 1 million records. ftem, Employee,
Store and Customer relations contain 1000, 2000, 100, 10000 records respectively. All
queries cxecuted in DHIBASE system are dircctly applied on compressed data. Given

query 15 first converted into compressed form and compressed query is executed.

4.3.1 Single Column Projection

We have executed the following query and the result is shown in figure 4.2.

select Customer_id from Sules

40
35
30
2 25
‘(L}' .
2 20 m SQL Sener
= ODHIBASE .

No of tuples (million)

Fig. 4.2: Single column projeetion

‘ Figure 4.2 shows that DHIBASE is much faster than that of SQL Server .in case of
projection operation. This is obvious because DHIBASE stores data in compressed form
and in column wise format. Therefore, it needs 14 bits data to process one record. But
SQL Server stores data in row wise format and it nceds (44 * 8)-bit data to process one
record. So, in case of 0.1 million records. DHIBASE examirnes 43 disk blocks (block size
= 4K) where SQL Server-has to examine a minimum of 1075 disk blocks. This is the

main reason of speed-gain in DHIBASE system.

38

4.3.2 Single Predicate Selection

We have executed the following query and the resull is shown in figure 4.3.

select Customer_id from Sales where Store_id = "100075”

L5

H QL

)

’ g B SQL Senver
= 1DHIBASE

01 0.4 0.7 1

No of tuples {million)
Fig. 4.3: Single predicate selection

Figure 4.3 shows that DHIBASE is faster than SQL Server in case 0.1 million to 0.4
_ million records but slower in case 0.7 million and 1.0 million records. DHIBASE does
not use any indices. In case of 1 million records, it reads all 214 disk blocks to check the
Store_id column for making a list of desired row no’s. [f 100 records satisty the selection
predicate and each of them resides in different disk block then another 100 disk blocks
read is necessary to project the Customer_id’s. But SQL Server uses index on Store_id
"field. So it reads 1 disk block to find pointers to disk blocks containing each of 100
desired records, and needs another 100 disk blocks to read the desired records. So total no

of disk block read in SQL Server is 101, which was 314 in DHIBASE.

4.3.3 Double Predicate Selection

We have executed the following query and the result is shown in figure 4.4,
select Customer_id from Sales where Store_id = "100073 " and ltem_id =

“10000300"

39

m SQL Sener

[DHIBASE |

1

Time (sec)

' . 0.4

No of tuples (million)

Fig. 4.4: Double predicate selection

Figure 4.4 shows result similar to the result of single predicate selection. DHIBASE does
not use any indices. In case of 1 million records, it rcads all 214 disk blocks to check the
Store_id column for making an intermediate Iist. of desired row no’s. If 100 records
satisfy the first predicate aﬁd cach of them resides in different disk block then another
100 disk blocks read is necessary to check the /rem_id column for 1ﬁaking the final list of
desired row no’s. If 10 records satisfy the sccond predicate and each of them resides in
different disk block then another 10 disk blocks read is necessary to project the
Customer _id’s. But SQL Server uses indices on Store_id and ftem_id fields. So it reads 1
disk block to find pointers to disk blocks containing cach of 100 desired records
containing Store_id, also reads 1 disk block to find pointers to disk blocks containing
each of 10 desired records containing frem_id and needs another 10 disk blocks to read
- the desired records. So total no of disk blocks read in SQ_L Server is 12, which was 324 in
DHIBASE. 12 disk blocks read in SQL Server is theoretically minimum. But the actual
index structure is not known. And SQL Server uses storage optimization Therefore, the

actual no is higher than 12.

4.3.4 Range Predicate Selection

We have executed the following query and the result is shown in figure 4.5, _
select Customer_id from Sales where Store_id =>=""100091" and Store_id <=

ST 1001007

40

12

M| SAL Server
1 DHIBASE

Time (sec)

01 04 07 1

No of tuples (million)

Fig. 4.5: Range predicate selection

-~ Figure 4.5 shows that DHIBASE' is much faster than SQL Server. DHIBASE does not
 use any indices. In case of 0.1 million records, it reads all 22 disk blopks to check the
Store_id column for making a list of desired row no’s. Range predicate checking involves
access to SortDic(). As SortDic() is totally in mclniory, access Lo 1t does not require extra
(disk block transfer. The records satisfying the selection predicate may scatter across all
disk blocks of Customer_id column. So another 43 disk blocks read is necessary to
proj'ect the Customer_id’s. But SQL Server, in worst case, may require all 1075 disk

blocks to process the scattered Customer_id's. .

4.3.5 Sorting of Relation

Figure 4.6 shows sorting time needed 1o sort Sufes relation with 0.1, 0.4, 0.7 and 1.0

million records.

0.6
0.5
0.4
0.3
0.2
0.1

o A D D e

0.1 0.4 07 1

Time {min)

5

No of tuples {million)

Fig. 4.6: Sorting of Su/ey selection

41

When we sort a relation -based on dictionary code we do not need to refer to the
dictionary during sorting. But when we sort a refation based on string order we have to
refer to the dictionary. But we avoid this dictionary access by using SortDic(). The
technique is described in section 3.7 in details. As the SortDic() is also compressed and
requires small amount of memory, it can be kept into memory during sorting. So the time
shown in Fig. 4 indicates that the time needed for sorling based ‘on dictionary code and

the time needed for sorting based on string order are same.

4.3.6 Aggregation: Count

We have executed the following query and the result is shown in figure 4.7.
select Store_id, count (Store_id) from Sulvs group by Store_id

mSQL Sener
o DHIBASE

Time (sec)

No of tuples (million)

'Fig. 4.7: Apgregation: Count ‘
DHIBASE does not use any indices. We assume that the relation Sales is alrecady sorted
by Store_id field according to dictionary code. In case of 0.1 million records, DHIBASE
reads all 22 disk blocks of Store id column fo calculate the result. SQL Server uses
indices but still it has to read all 1075 disk blocks to process the entire Sa/es relation.

Therefore, DHIBASE performs better than SQL Server.

4.3.7 Aggregation: Max/ Min/ Suﬁn/ Ave

We have executed the following queries and the resull is shown in figure 4.8.
select Store_id, max (Quantity) from Sules group by Store_id
select Store_id, sum (Price) from Sales group by Store_id

select Store_id, avg (Price) from Sales group by Store_id

-

~

42

H w i

"H SQL Server
‘0 DHIBASE

Time {sec)

! 01 04 07 1 . - S

No of tuples (million) ‘ :

Fig. 4.8: Aggregation: Max/ Min/ Sum/ Avy ;

We assume that the relation Sales is already sorted by Store id field according to
dictionary code. In Sales relation, both Quuntity and Price fields are uncompressed. So
aggregation functions may directly be applicd on them. [n case of 0.1 million records,

DHIBASE reads all 22 disk blocks to exanine Store_id field for making group

“information. Using this group information it rcads 49 djsk blocks (Quantity) or 98 disk

blocks (Price) to compute the result. Therefore, time needed for.max, min, sum or avg is
same. But SQL Server has to read 1075 disk blocks 1o process the entire Sales relation.

Therefore, DHIBASE performs better than SQI. Server.

4.3.8 Natural Join

We have executed the following query and the result s shown 1 figure 4.9.
select Sales _id from Sules, Customer where Sales. Customer_id =

Customer.Customer_id ' , - :

40
35
30
25
20
15
10
5

01 04 07 1

Time (sec}

®mSQL Server;
[JDHIBASE

No of tuples (million)

Fig. 4.9: Natural join

43

DHIBASE performs much better because it is possible (o caleulate the partial join and
project the result. DHIBASE does not use any indices. We assume that the relations Sales
and Customer are already sorted by Customer id lceld according to dictionary code. We
have to scan C'ustomer_id columns of both relations to make AC()’s (section 3.8). In case
of 0.1 million records, DHIBASE rcads 5 disk blocks to check Customer_id field of
Customer relation and 43 disk blocks to check Customer id ticld of Sales relation. If the
result is scattered across all disk blocks then un.othcr_ 08 disk blocks read is necessary to
project Sales_id field of Sules relation.. But SOL Server needs to read 134 disk blocks of .
Customer relation and 1075 disk blocks,of .S’u‘h s relation to compute the join. So SQL
Server reads a total of 1209 disk blocks read \\Ink DHIBASE read only 141 disk blocks.
This is why DHIBASE is much faster.

4.3.9 Sct Union

We have executed the following query and the result is shown in figure 4.10.

(select Customer_id from Customer) union (scleet Customer_id from Sales)

h
N oG W

SQL Senrver
O DHIBASE

Time (sec)
(4]

0.1 04 07 1

No of tuples {million})

Fig. 4.10: Set ﬁnion
: .
DHIBASE pel'i"ofnls better because it is possibie (o calceulate the result only by scanning
Customer_id fields of Customer and Sales relations. DUHIBASE does not use any indices.
We assume that the Customer_id fields of relations Sales ar'nd Customer are already
sorted according to dictionary code. DHIBASE reads 5 disk blocks and 43 disk blocks for
the relations. But SQL Server reads minimum 134 disk blocks and 1075 disk blocks

44

respectively. So SQL Server reads a minimum ol 1209 disk blocks read while DHIBASE
read only 48 disk blocks. This is why DHIBASI! is much laster. |

4.3.10 Set Intersection/ Set Difference

We have executed the following queries on DIHIBASI
(select Customer_id from Customer) inicrsect (select Customer_id from Sales)

(select Customer _id from Customer) excepl (select ('u.s‘lu}nci‘_idﬁ‘()m Sales)

But SQL Server does not support infersect and except operator directly, So we have
executed the following queries on SQL Server. |
select distinct Customer_id from Customer where Customer_id in (select
Customer_id from Sales)
select distinct Customer_id from Custoner where Customer_id not in (select

Customer_id from Sales) .

In the worst case, both DHIBASE and SQL Scrver have to examine the entire
Customer_id columns of relations of Custonier and Safes for both queries, and therefore,

time requirements will be similar. Time requirements are shown in figure 4.11.

2.5

.
n N

mSQL Sener
ODHIBASE

Time (sec)

No of tuples {million}

Fig, 4.11: Set intersection/ Set diflerency

DHIBASE performs much better because it is pussible to calculate the result only by
scanning Customer_id fields of Customer and Sufes relations. DHIBASE does not use
any indices. We assume that the Customer_id helds of relations Sales and Customer are

aiready sorted according to dictionary code. DHIBASE reads S disk blocks and 43 disk

45

blocks for the relations. But SQL Server reads 134 disk blocks and 1075 disk blocks
respectively. So SQL Server reads a total of 1209 disk blocks read while DHIBASE read
only 48 disk blocks. This 1s why DHIBASE is much faster. t is mentionable that the
result size of four different data sets is same. In case ol intersection, DHIBASE reads the
smaller relation first. As soon as, this smaller relation [inished scanning DHIBASE stops

and thus saves time necessary to scan the rest ol the other relation,

4.3.11 Bulk Update

We have created a table with three ficlds. We have inserted data into first and third fields
but retain nulls in the second field. Then we updaled the nulls in the second field with
values. The time needed for this bulk update’ ol the second column is compared for

DHIBASE and SQL Server in figure 4.12. -

250

200
S 150
o .
.E 100 B SQL Server,
= O DHIBASE

50 -

No of tuples {million}

Fig. 4.12: Bulk update

DHIBASE performs exceptionally better than SQL Server. DHIBASE stores data in
column wise format. Therefore, column reorganization does not incur extra overhead. But
SQL Server stores data in row wise format and ells;u it optimizes storage for faster quéry
< processing. SQL Server optimizes the nulls in the sccond column for fast indexing. When
the update commands come into the second column. it has to reorganize all data

-previously stored in first and third columns, which nceds huge time.

46

"~ 4.4 Summary

In this chapter we have presented the. experimental cvaluation of the DHIBASE
architecture. We evaluated the storage performance in comparison with Microsoft SQL
Server 2000, a widely used database system. The storage performance that is achieved in
DHIBASE is 10 to 20 times better than that of SQL Server. The projection query shows a
great speed—gain compared with- SQL Server. ‘The experimental result shows that
DHIBASE is 22 to 30 times faster than SQL Server in single column projection. In case
of selection queries DHIBASE is slightly slower than SQL Server. This is because of the
absence of indices in DHIBASE. But all other qucries' can run significantly faster in
.DHIBASE than in SQL Server. Finally, in casc of bulk update, DHIBASE exceptionally

outperforms SQL. Server.

47

Chaptér 5

Conclusion and Future Research

Database compression is attractive for two rcasons: storage cost reduction .and
performance improvement, Both are essential for management of large databases. Direct
addressability of compressed data is necessary for faster query processing. It is also
important for queries to be processed in compressed 'l’c;rm without any decompression.
Literature survey shows that compression techniques used in memory resident databases
are not suitable for large databases when database cannot fit into memory. We have
improved the basic HIBASE model [9] for disk support. We also improved query-
processing capability of the basic system. We have defined a number of operators for
querying compression-based relational database system, designed algorithms for these

operators and thoroughly analyzed these algorithms. '

5.1 Fundamental Contributions of the Thesis

% The main contribution of this rescarch is 1o develop a disk based HIBASE

(DHIBASE) architecture with increased query processing capability..

% Compressed data are stored using the DHIBASE architecture with disk support.

This overcomes the scalability problems ol the memory resident DBMS.

< Considerable storage reduction is achieved using the DHIBASE architecture. The
experimental results show that DHIBASE architecture is 10 to 20 times space

efficient than that of conventional DBMS like SQL Scrver.

% Each compressed column is kept in separatc disk file. Consequently schema

evolution and/ or bulk updaté is highly efficient.

48

~*» We developed techniques for sorting of compressed rc-lation according to both
code order and string order. We introduced a compreséed auxiliary dictionary
which facilitates sorting according to string order without accessing the relevant
dictionary. Using samec compress'ed' dictionary we have implemented selection

operation with range predicate without accessing the main dictionary.

<+ We have designed algorithms for all rclational algebra opei’ations that support
most of the SQL:2003 standard. Expcrimental results show that the DHIBASE
systerrilhas significantly faster query pérformance for projection on single
refation, multiple relation join, set and aggregation operations compared to SQL
Server. In case of selection operation, DHIBASE is slower. But introducing

indices can easily eliminate this drawback.

- 5.2 Future Rescarch L | .

The DHIBASE architecture has been implemented in a single processor system and
achieved significant performance improvement over conventional DBMS. DHIBASE is a
disk based database compression architecture. The future expansion of this research is to

explore the following issues:

% The architecture can be used lor parallel database environment to achieve scalable |

performance for data warehousc application.

% We-have not considered any back-up and recovery mechanism for DHIBASE
architecture. These "features may be included. We did not use any index.

Techniques should be considered for indexing,

% To achieve concurrent access to DHIBASE architecture, a multi-threaded

algorithm can be considered to support multi-user DBMS.

49

‘Bibliography

(3]

(4]

- Tashenberg, C. B., “Data management isn’t what it was™, Data Management Direct

Newsletter, May 24, 2002. _
Rouf, M. A., “Scalable storage in compressed representation for terabyte data
managemént”, M. Sc. Thesis, Department of Computer Science and Engineering,
Banglad.esh University of Engincering and Technology, Dhaka, Bangladesh, 2006.
Cormack, G. V., “Data compression on a dalabasc,system”, Corﬁn‘nunication of the
ACM, Vol-28, No. 12, pp 1336-1342, 1985.

Helmer, S., Westmann, T:, Kessmann, D. and Moéfkolle, G., “The implementation

and performance of compressed databases™ SIGMOD Record, Vol-29, No. 3, pp

© 55-67, 2000.

51

[6]

(8]

Roth, M. A. and Van I‘-Iorn, S. J., “Database compression”, SIGMOD Récord, Vol-
22, No. 3, pp 31-39, 1993. N

Graefe, G and Shapiro, L.. "Data compression and database performance”,
ACM/IEEE-CS Symposium on Applied Computing, pp 22-27, April 1991.

Oracle Corporation, “Table compression in Oracle 9i: a performance analysis, an

. Oracle whitepaper”,

http://otn.oracle.com/products/bi/pdf/o9ir2__con]pre'ssionﬁperformance_twp.pdf.
Ramakrishnan, R., Goldstein. J. and Shafl, U., “Compressing relations and

indexes”, Proceedings of the IEEE Conference on Data Engineering, pp 370-379,

~ Orlando, Florida, USA, February 1998.

(9]

[10]

(11]

“ . et - : : t
Poess, M. and Potapov, D:, “Data compression in Oracle”, Proccedings of the 29 X

- VLDB Conference, pp 937-947. Berlin, Germany. September 2003.

Silberschatz, A., Korth, H. F. and Sudarshan, S.. *Database system concepts”, 5t
Edition, McGraw-Hill, 2006. A

McGregor, D., Cockshott, W. P. and' Wilson, J., “High-performance operations
using a lcompressed architecture™. The Computer Journal, Vol-41, No. 3, pp 283--

296, 1998.

http://otn.oracle.com/products/bi/pdll09i

[12]

[13]

50

Latiful Hoque, A. 8. M., “Compression of -'slruclured and semi-structured
information”, Ph. D. Thesis. Department of Cbmpuler and Information Science,
University of Strathclyde, Glasgow, UK, 2003. .

Codd, E. F., “A relational model of data for large shared data banks™,

. Communication of the ACM, Vol-13, No. 6, pp 377-387, 1970.

[14]

¢ [15]
[16]
[17]
‘[131.

9y
[20]
[21]
[22)

[23]

McGregor, D. R. and Hoque. A. S. M. L.. "‘lmprovcd compressed data
representation for computational intelligence systems™. In UKCI-01, Edinburgh,
UK, September 2001. |

Held, G. and Marshel, T. R. , “Data and Image Compression”, Number 0-471-
95247-8, John Wiley and Sons Ltd. West Sussex, England, 1996.

Huffman, D.A., “A method for the construction of minimum-redundancy code”, In
Proceedihgs of IRE, Vol-40, No. 9, pp 1098-1101,1952. |
Fano, R.M.,-“The transmission of information”, In Research Laboratory for
Electronicls, MIT Techﬁical Report, (65), 1949. .

Shann_on, C.E., “A mathematical theory of communications”, [n Bell system .
Technical Journal, Vol-27, pp 379423 and 623--656, 1948.

Vitter, J.S., “Design and analysis of dynamic Huffman code”, In Journal of the
ACM, Vol-34, No. 4, pp 825-845, October 1987.

Gallager, R.G., “Variations on a theme by Huftfman™, In IEEE Transaction on
Information Theory, Vol-24, No. 6 pp 668 -674, November 1978.

Lampcl,'A. and Ziv, J., “A universal algorithm for sequential data compression™, In
IEEE Transaction on Information Theory, Vol-23, ‘;‘)p 337-343, 1977.

Lampel, A. and Ziv, J., "Compression of individual sequences via variable rate
coding”, In IEEE Transaction on Information Theory, Vol-24, pp 530-536, 1978.

Welch, T. A, *A technique for high-performance data compression™, In IEEE

- Computer, Vol-17, No. 6, pp 8-19, 1984.

- -[24]

[25]

Larson, N. J. and Moffat, A., “Off-line diciionary-based compression”, In
Proceedings of the IEEE Data Compression Conference. Snowbird. Utah, March
2000.)

Golomb, S. W., “Run-length encodings™. In IEEE‘ Transaction on Information

Theory, Vol-12, No. 3, pp 399-401, 1966.

[26]

[27]

[28]

51

Chen, Z:, Gehrke, J. and Korn. F., “Query opl_imizlalion in compressed database _
systems”, In SIGMOD *01: Proccedings of the 2001 ACM SIGMOD International
Conference on Management of Data, pp 271282, ACM Press, 2001,
Oberhummer, M. F. X. J. ., *LZO: A rcal-time data compression library™, 2002,
http://www.oberhumer.com/opensource/lzo/lzodoc.php.)

Moffat, A. and Zobel, J., “Parameteriscd compression for sparse bitmap”, In .

" Proceedings of the 15™ Annual lnterlnalion'al SIGIR 92, pp 274-285, ACM, 1992.

[29]
[30]

[31]
[32]

(331

Wee, K. N. and Ravishankar. C. V.. “Relational database compression using
augmented vectorrquamization", In Proceedings of the 11% International
Conference on Data Engineering, pp 540-550. Taipei, Taiwan, 1995. IEEE.
Cuperman, V. and Gersho. A., “Vector quantization: A pattern-matching technique
for spee;:h coding”, In [IEEE Communication Magazine, Vol. 21, pp 15-21,
December 1983, _

Kotsis, N., Wilson, J.. Cockshott, W. P. and McGregor. D.. *Data compression in
database systems”, In Proceedings of the IDEAS, pﬁ 1-10, July 1998.

Xu, Y., Agrawal, R. and Somani, A., “Storage and querying of e-commerce data”,
In Prc;ceedings of the 2.7[1‘ VLDB Conference, pp 149-158. Roma, ltaly, 2001.
Wilson, J., Hoque, A. S. M. L. and McGregor, D. R.. “Database compresslion using
an off-line dictionary method™. ADVIS, LNCS, Vol-24, pp 11-20, October 2002.

[34] Aho, A. V., Sethi, R. and Ullman, J. D., “Compilers: Principles, Techniques, and

Tools”, Addison Wesley, 1986.

[35] Knuth, D. E., *The art of computer programming™, Vol-3, Addison Wesley. Sorting

(36]

and Searching, 1973. _
Selinger, P. G., Astrahan, M. M., Chamberlin, D. D Lorie, R. A. and Price, T. G.,
“Access path selection in a rclational "database: system™, Proc. of the ACM

SIGMOD Conf. on Management of Data. pp 23-34. 1979,

[37] Graefe, G. and McKenna. W., “The Volcano optimizer generator”. Proc. of the

[38]

[39]

International Conf. on Data Engineering, pp 209-218, 1993.

Haas, .. M., Freytag, J. C., Lohman, G. M. and Pirahesh, H., “Extensible query
processing in Starburst”. Proc. of the ACM SIGMOD Conf. on Management of
Data, pp 377-388, 1989. '

Oracle 8 concepts manual, Oracle Corporation. Redwood Shores, 1997.

http://www.oberhumer.com/o

52

[40] Dayal, U., Goodman, N. and Katz. R. H.. “An extended relational algebra with
control over duplicate ¢limination™. Proc. of the ACM Symposium on Principles of
Database Systeims, 1982. |

[41] Seshadri, P., Pirahesh, H. and Lueng, T. Y. C, “Compiex query decorrelation”,
Proc. of the International Conf. on Data Engineering, pp 450-458, 1996.

[42] Roy, P., Seshadri, S.; Sudarshan. S. and Bhobhé., S.. “Efficient and extensible
algorithms for multi-query optimization™. Proc. of the ACM 'SIGMOD Conf. on

', Management of Data, 2000. |

© [43]. Hall, P. A. V., “Optimization of a single relational expression in a relational
database system”, IBM Journal of Research and Development, vol-20, No. 3, pp
244-257, 1976. .

[44] Dalvi, N. N., Sanghai, S. K.. Roy; P. and Sudarshan, S.. "Pipelining in multi-query
optimization™, Proc. of the ACM Symposium on Principles of Database Systems,
2001. " ‘

[45] Blasgen, M. W. and Eswaran, K. P., “On the e.vaiuation of queries in a relational
database system”, IBM Systems Journal. \'/01-16, pp 363-377, 1976.

[46] Kitsuregawa, M., Tanaka, H. and MotoOka, T., “Application of hash to a database

- machine and its architecture”, New Generation Computing, No. 1, pp 62-74, 1983.

[47] SHapiro, L. D., “Join }f)t'ocessillg in databﬁsc Sy:sfems with large main memories”,
" ACM Transactions on Database Systems. Vol-11, No. 3. pp 239-264. 1986.

[48] Davison, D. L. and Gracte, G., "Mcmory-c‘ontcmion responsive hash joins”,
Proceedings of VLDB Conference, 1994.

[49]) Graefe, (5., Bunker, R. and Cooper, S.. “Hash jdins and hash teams in Microsoft
SQL Server”, Proceedings of VLDB COH!‘C]‘CI-]C-G, pp 86-97, 1998. 7

[50] Klug, A.; “Equivalence of relational algebra and relational caleulus query languages
having aggrégate functions™, ACM Press. Vol-29, No. 3. pp 699-717, 1982.

.[Sll] Chaudhuri, S. and Shim, K., “Including gx'oup;b)f in cfuery 0ptimi’zati0n”, In
Proceedings of VLDB Conference, 1994, | _ ,

[52]- Galindo-Legaria, C., *Oulerjoins as disjunctions™. Proc. of the ACM, SIGMOD
- Conf. on Management of Data. 1994, '

[53] Gupta, A. and Mumick, L. S., “Maintenance of materialized views: problems,

‘techniques and applications”, IEEE Data Engincering Bulletin, Vol-18, No. 2, 1995.

53

[54] Mistry, H., Roy, P., Sudarshan. S. and Ramamritham, K., “Materialized view
selection and maintenance using multi-qt:ery optimization”, Proc. of the ACM
SIGMOD Con.f. on Management of Data. 2001.

[55] Dar, S., Jagadish, H. V.. Levy. A. and Srivastava, D., “Answering queries with

aggregation using views™. Proceedings of VLDB Conference, 1996.

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062

