
\ 0

Parallel Algorithm for Generalized Vertex-Colorings
of Partial k-Trees

by

Mohammed Eunus Ali

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology

October 2002

L- __ 0_-

Submitted to
Bangladesh University of Engineering and Technology

:(:

in partial fulfillment of the requirements for
M.Sco Engineering (Computer Science and Engineering)

PARALLEL ALGORITHM FOR GENERALIZED VERTEX-
COLORINGS OF PARTIAL K-TREES

A Thesis submitted by

MOHAMMED EUNUS ALI
Student No. 040005033P

for the partial fulfillment of the degree of
M. Sc. Engineering (Computer Science and Engineering).

Examination held on October 08, 2002.

Approved as to style and contents by:

Dr. Md. Abul Kashem Mia
Associate Professor & Head
Department of Computer Science and Engineering

~~,"h

Dr. M. Kaykobad
Professor
Department of Computer Science and Engineering
RU.E.T., Dhaka - 1000, Bangladesh.

Dr. Chowdhury Mofizur Rahman
Professor
Department of Computer Science and Engineering
RU.E.T., Dhaka - 1000, Bangladesh.

Dr. Md. Kamrul Hasan
Associate Professor
Department of Electrical and Electronics Engineering
RD .E.T., Dhaka - 1000, Bangladesh.

Chairman,
Supervisor and
Ex-officio

Member

Member

Member
(External)

Certificate

This is to certify that the work presented in this thesis paper is the outcome of the

investigation carried out by the candidate under the supervision of Dr. Md. Abul

Kashem Mia in the Department of Computer Science and Engineering, Bangladesh

University of Engineering and Technology, Dhaka. It is also declared that neither this

thesis nor any part of it has been submitted or is being concurrently submitted

anywhere else for the award of any degree or diploma.

\

Signature of the Supervisor' Signature of the Author

Parallel Algorithm for Generalized Vertex-Colorings
of Partial k-Trees

by

Mohammed Eunus Ali

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology

October, 2002

f

1

Acknowledgement. iii

Abs tract. ..•..... ~ 1

1 Introduction ; 2

1.1 BACKGROUND : :2

1.1.1 Vertex-coloring Problem ,: 3

1.2 GENERALIZED VERTEX-COLORING 4

1.2.1 I-vertex-coloring 4

1.3 SUMMARy 5

2 Prelimin aries 7

2.1 BASIC TERMINOLOGy 7

2.1.1 Graphs and Multigraphs 7

2.1.2 Subgraphs : 8

2 .1.3 Weighted Graphs , 8

2.1.4 Paths and Distances 9

TREES 9

PRAM MODELS II

PARTIAL K-TREES ,' 12

EQUIVALENT BINARY TREE OF A TREE 14

Parallel Algorithm for 1-Vertex-Coloring of Partial k- Trees 16

PRELIMINARIES 17

EQUIVALENCE CLASSES 19

AN EFFICIENT PARALLEL ALGORITHM 22

CONCLUSION 31

4 Conelusion 32

5 References: 33

6 Index 35

11

List of Figures
Figure 1.1:.A graph with 7 vertices and 9 edges , 2.

Figure 1.2: An optimal vertex-coloring of a graph G ,•............ 3

Figure 1.3: A 3-vertex-coloring of a graph using 2 colors 4

Figure 2.1: Subgraphs of G in Fig. 1.1: (a) vertex-induced subgraph, and (b) edge

induced subgraph 8

Figure 2.2: A weighted graph with five vertices and six edges 9

Figure 2.3: A tree with 9 vertices 10

Figure 2.4: The PRAM modeL 11

Figure 2.5: A Partial 3-tree 13

Figure 2.6: (a) A Partial3-tree and (b) A tree decompostion ofthe graph in (a) 13

Figure 2.7: (a) A tree-decomposition of the k-tree G and (b) A binary tree

decompostion of the tree in (a) 15

Figure 2.8: Graph Gx .••.••.•••.••.•••.••.•••.••.••••••.••.•••.•••••••••••..••........••..•••.•••••••.••••.••.•••••••.••.••••• 15

Figure 3.1: 4-vertex-coloring of a partial3-tree using4 colors 17

Figure 3.2: A partial 4-vertex-coloring of a subgraph associated with a leaf node x of

T 21

Figure 3.3: Merging of 7JIGyand IflIGz to form q.>IGx•••.••.••.••.•••••••.••••.••.•••••••.••.•••••••.••.••••. 23

Figure 3.4: Graphs Gx, Gy, and Gz 28

List of Tables
Table 1.1: Known result for l-vertex-coloring of partial k-trees 6

111

Acknowledgement

First and foremost, I would like to acknowledge my gratitude to Dr. Md. Abul

Kashem Mia, Associate Professor and Head, Department of Computer Science and

Engineering, Bangladesh University of Engineering and Technology. His constant

supervision, scholarly guidance, valuable advice and encouragement have been a

great impetus to this thesis work. His vast experience and in-depth knowledge in

graph theory and parallel algorithms have helped significantly to achieve a smooth

completion of this thesis work.

I would like to thank the members of the graduate committee, Dr. M. Kaykobad, and

Dr. Chowdhury Mofizur Rahman, Professors, Department of Computer Science and

Engineering, BUET, and Dr. Md. Kamrul Hasan, Associate Professor, Department of

Electrical and Electronic Engineering, BUET, for their valuable suggestions.

I would like to acknowledge the all-out co-operation and services rendered by the

faculty members and staffs of the CSE Department. Finally, I express my ever

gratefulness to all who contributed to this thesis work.

1

Abstract

In this thesis we present an efficient parallel algorithm for solving the generalized

vertex-coloring (l-vertex-coloring) problem on partial k-trees. Let l be a positive

integer, and let G be a graph with nonnegative integer weights on edges. Theil the

optimal l-vertex-coloring problem on G is an assignment of colors to the vertices of G

in such a way that any two vertices u and v in G get different colors if the distance

between u and v is at most l and the number of colors used is as small as possible. The

l-vertex-coloring problem has applications in various scheduling problems. In this

paper we give a parallel algorithm to find an l-vertex-coloring of a partial k-tree G

with the minimum number of colors. Our algorithm takes O(logz n) parallel time

using O(a x (t + 2)6a('+1) X n + n') operations on the common CRCW PRAM model,

where n is the number of vertices in G and a is the number of colors in the color-set.

The previously known best algorithm takes O(log2n) parallel time using

O(n(a + 1)""Hx"" + n') operations on the common CRCW PRAM.

-Chapter 1

2

Introduction
In this chapter we provide the necessary background and motivation for the study on

the coloring of graphs. In Section 1.1, we give a historical background of the

development of coloring of graphs. In Section 1.2, we give a generalization of

ordinary vertex-coloring problem and provide the necessary motivation for

generalization. Finally Section 1.3 summarizes our results together with the known

ones.

1.1 Background

Recent research efforts in algorithm theory have concentrated on designing efficient

- algorithms for solving combinatorial problems, particularly graph problems. A graph

G = (V, E) with n vertices and m edges consists of a vertex set V = {v" v, , ... ,v,} and

an edge set E = {e" e" ... , em}' where an edge in E joins two vertices in V. Figure 1.1

depicts a graph of 7 vertices and 9 edges, where vertices are drawn by circles, edges

by lines,

Figure 1.1: A graph with 7 vertices and 9 edges.

with vertex names next to the vertices and edge names next to the edges. Efficient-

algorithms have been obtained for various graph problems, such as coloring problems,

planarity testing problem and maximum flow problem.

1.1.1 Vertex-coloring Problem

The vertex-coloring problem is one of the most fundamental problems on graphs. A

vertex-coloring of a graph G is an assignment of colors to the vertices of G in such a

way that any two adjacent vertices get different colors [Wes99]. The vertex-coloring

problem is to find a vertex -coloring that requires the minimum number of colors. The

minimum number of colors needed to vertex -color a graph is called the chromatic

number of the graph G and is denoted by x(G). Figure 1.2 depicts an optimal vertex-

coloring of a graph G using 3 colors, where the colors are written next to the vertices.

2

I

1

2

Figure 1.2: An optimal vertex-coloring of a graph G.

Vertex coloring arises in a variety of scheduling and clustering applications. Compiler

optimization is the canonical application for coloring, where we seek to schedule the

use of a finite number of registers. ill a program fragment to be optimized, each

variable has a range of times during which its value must be kept intact, in particular,

after it is initialized and before its final use. Any two variables whose life spans

intersect cannot be placed in the same register. A graph can be constructed where

. there is a variable associated with each vertex and an edge between any two vertices

indicates that the variable life spans intersect. A coloring of the vertices of this graph

assigns the variables to classes such that two variables with the same color do not

clash and so can be assigned to the same register. The most important application of

vertex-coloring is in scheduling of any kind. If the vertices of a graph G represent a

set of university courses, with edges between courses with common students, then the

chromatic number is the minimum number of periods needed to schedule

examinations without conflicts. One of the most famous problems in graph theory

also involves coloring. It is known as 4-color problem. A map is a partition of. the

4 .

plane into connected regions. It requires determining whether the regions of every

map can be colored using at most four colors so that no two neighboring regions have.

the same color.

1.2 Generalized Vertex-Coloring

There are many generalizations of ordinary vertex-coloring. In this section we

describe a generalized vertex-coloring, called an l-vertex-coloring [ZKNOO].

1.2.1 l-vertex-coloring

A natural generalization of the ordinary vertex coloring is the l-vertex-coloring. Let I

be a positive integer and G be a graph with positive integer weights on all its edges.

Then an l-vertex-coloring of G is an assignment of colors to the vertices of G in such

a way that any two vertices u and v in G get different colors if dist(u,v) ::;I, where

dist(u,v) is the length of the shortest path between u and v in G. Clearly an ordinary

vertex-coloring is an l-vertex-coloring. Figure 1.3 shows a 3-vertex-coloring of a

graph G using 2 colors, where colors are drawn next to the vertices and edge-weights

are given next to the edges.

2

1

2

Figure 1.3: A 3-vertex-coloring of a graph using 2 colors.

The minimum number of colors needed for an l-vertex-coloring of a graph G is called

the I-chromatic number of G and is denoted by X/(G). An l-vertex-coloring of G

using X/(G) colors is called an optimall-vertex-coloring of G. The l-vertex-coloring

problem is to find an optimall-vertex-coloring of a given graph G.

Since the ordinary vertex-coloring problem is NP-hard [GJ79], the l-vertex-coloring

problem is NP-hard in general [ZKNOO]. So it is very unlikely that there exists an

5

polynomial time algorithm to solve the I-vertex-coloring problem for general graphs

[GJ79]. However, Zhou et al. presented a polynomial-time algorithm to solve the 1-

vertex-coloring problem for partial k-trees, that is, graphs oftree7width bounded bya

fixed integer k [ZKNOO]. Their sequential algorithm takesO(n(a + 1)"''''X1
'')'' + n3)

time. They claimed that the same problem can be solved in O(logzn) parallel time

usingO(n(a+l)2"h"'''' +n3
) operations on the common CRCW PRAM. In this paper,

we show that the I-vertex-coloring problem for a partial k-tree can be solved in

O(logz n) parallel time using O(a x (I + 2)'"(k+l) X n + n3) operations on the common

CRCW PRAM model, where n is the number of vertices in G and a is the number of .

colors in the color-set. The I-vertex-coloring problem on a weighted graph G = (V, E)

can be easily reduced to the ordinary vertex-coloring problem on a new non-weighted

graph G{= (V, ED such that (u, v) E E, for any two vertices u and v in V if and only if

dist(u, v) ,.:;1 in G. Therefore, one may expect that the I-vertex-coloring problem for a

partial k-tree G can be efficiently solved by applying a linear-time algorithm [BPT92]

to solve an ordinary vertex-coloring problem for partial k-tree. However, it is not the

case, because G{is not always a partial k-tree.

The applications of the I-vertex-coloring are all the applications of vertex-coloring.

The examination-scheduling problem in Section 1.1.1 can be generalized now so that

there is a gap of 1 periods between any two examinations of courses having common

students.

1.3 Summary

This thesis gives a parallel algorithm for solving I-vertex-coloring problem on partial

k-trees. In this section, we summarize our main results. The known results along with

our new results are given in Table 1.1.

6

Classes
PRAM

of Algorithm Time Operations Ref.
model

Graphs

Zhou et ai.
Partial k- 22(*+1)(1+2)+1 3

Sequential «n(a+l) +n) -- -- (IEICE
trees

2000)

Zhou et al.
Partial k-

O(log2 n)parallel O(n(a + I)"'"'''''' +nJ) CRCW (IEICE
trees

2000)

Partial k-
O(log2 n) O(na(t + 2)'",,+1) + nJ)parallel CRCW Ours

trees

Table 1.1: Known results forsolving I-vertex-coloring problem along with our new results.

The symbol a in the table 1.1 stands for the number of colors used in the [-vertex-

coloring.

The thesis is organized as follows. Chapter 2 gives preliminary definitions. We give

an efficient parallel algorithm for [-vertex-coloring problem on k-trees in Chapter 3.

Finally Chapter 4 concludes with the results and future works.

7

Chapter 2

Preliminaries
In this chapter we present some basic terms and easy observations. Definitions that

are not included in this chapter will be introduced, as they are needed. In SeCtion 2.1,

we start with some definitions of the standard graph-theoretical terms used throughout

the thesis. In Section 2.2 we discuss about properties of trees. In Section 2.3 we define

parallel computer models most widely used in parallel algorithm development and

analysis. In Section 2.4 we discuss about partial k-tree and decomposition of k-tree.

Finally in Section 2.5 we show a way to transform a rooted tree into an equivalent

binary tree so that we can apply bottom-up algorithm on the equivalent binary tree.

2.1 Basic Terminology

2.1.1 Graphs and Multigraphs

A graph is a structure (V, E) which consists of a finite set of vertices V and a finite set

of edges E; each edge is an unordered pair of distinct vertices. We call V(G) the

vertex-set of graph G and E(G) the edge-set of G. Throughout this thesis, the number

of vertices of G is denoted by n, that is n= IVI. If e = (v, w) is an edge, then e is said

to join the vertices v and w and these vertices are said to be adjacent. In this case we

also say that w is a neighbour of v and that e is incident to v and w. If the graph G has

no "multiple edges" or "loops" then G is said to be a simple graph. Multiple edges

join the same pair of vertices while a loop joins a vertex to itself. The graph in which

loops and multiple edges are allowed is called a multigraph. Sometimes a simple

graph is simply called graph, if doing so creates no confusion.

2.1.2 Subgraphs

A subgraph of a graph G = (V, E) is graph G' = (V', E') such that V' £; V and E' £; E;

we write this as G' £; G. If G' contains all the edges of G that join two vertices in V'

8

then G' is said to be the subgraph induced by V' and is denoted by GW], If V'

consists of exactly the vertices on which edges in E' are incident then G' is said to be

the subgraph induced by E' and is denoted by G[E'].

(a) (b)

Figure 2.1: Subgraphs ofG in Fig. 1.1: (a) vertex-induced subgraph, and (b) edge induced subgraph ..

We often construct new graphs from old ones by deleting some vertices or edges. If v

is a vertex of a given graph G = (V, E) then G - v is a subgraph of G obtained by

deleting the vertex v and all the edges incident to v. More generally, if V' is a subset of

V then G - V' is subgraph of G obtained by deleting the vertices in V' and the edges

incident to them. Then G - V' is a subgraph of G induced by V - V'. Similarly if e is

an edge of G then G - e is the subgraph of G obtained by deleting the edge e. More

generally, if E ,;;;E' then G - E' is a subgraph of G obtained by deleting the edges in

E'.

2.1.3 Weighted Graphs

A graph where each of the edges has a positive weight associated with it is called a

weighted graph. Now if N is the set of all positive integers then we can define the

weight function for the edges as w: E ~ N. Fig. 2.2 shows a weighted graph with five

vertices and six edges.

9

VI

Vs

Figure 2.2: A weighted graph with five vertices and six edges.

2.1.4 Paths and Distances

A VO-VI walk in G is an alternating sequence of vertices and edges of G,

Vo' el' vl' ... ,VI_I'e" v" beginning and ending with a vertex, in which each edge is

incident to two vertices immediately preceding and following it. If the vertices Yo,

VI, ... ,VI are distinct (except possibly Yo, VI), then the walk is called a path and is

usually denoted by Vo VI •• 'VI. The length of a path in an unweighted graph is I, one less

than the number of vertices on the path. A path or walk is closed if Vo = VI' A closed

path of length at least one is called a cycle where Vo = VI is the only vertex repetition.

In a weighted graph, the length of a path is determined by weights of the edges

constituting the path. So the length w(P) of a path P is defined as

w(p) = '" w(e). The distance between any two vertices in a graph is the length of
L..JeEP

the shortest path in the graph between the two vertices. We denote the distance from a

vertex u to another vertex V by dist(u,v). Now if the shortest path in G from u to V is P,

then dist(u,v) =w(P).

2.2 Trees

A (free) tree is a connected graph without any cycles. We often omit the word "free"

when we say that a graph is a tree. Fig 2.2 is an example of a tree. A rooted tree is a

free tree in which one of the nodes is distinguished from others. This distinguished

node is called the root of the tree. The root ofthe tree is generally drawn at the top. In

Fig. 2.3, the root is node I.

10

Figure 2.3: A tree with 9 vertices.

Every vertex U other than the root is connected by an edge to some other vertex p

called the parent of u. We also call U a child ofp. We draw the parent of a node above

that node. For example, in Fig. 2.3, node 1 is the parent of node 2 and node 3.

Alternately, nodes 6 and 7 are children of node 2. A leaf is a node of a tree that has no

child. Thus every node of a tree is either a leaf or an internal node, but not both. In

Fig. 2.3, the leaves are 4,6,7,8 and 9 and nodes 1,2,3 and 5 are internal nodes.

The parent-child relationship can be extended naturally to ancestors and descendants.

Suppose, Uj, Uz, ... , U{ is a sequence of nodes in a tree such that Uj is the parent ofuz,

which is the parent of U] and so on. The node Uj is called an ancestor of U{ and node U{

is called a descendant of Uj. The root is the ancestor of every node in a tree and every

node is a descendant of the root. In Fig. 2.3, all nodes other than node 1 are

descendants of node 1 and node 1 is an ancestor of all other nodes.

In a tree T, a node U together with all of its descendants, if any, is called a subtree of

T. Node U is the root of this subtree. Referring again to Fig. 2.3, node 6 by itself is a

subtree, since node 6 has no descendant. Again, nodes 2, 6 and 7 form a subtree with

root 2. Finally the entire tree of Fig. 2.3 is a subtree of itself with root 1. The height of

a node U in a tree is the length of the longest path from U to a leaf under u. The height

of a tree is the height of a root. The depth of a node U in the tree is the length of a path

from the root to u. In Fig 2.3, for example, node 3 is of height 2 and depth 1. The tree

has height 3.

11

2.3 PRAMModels

The RAM model has been used successfully to predict the performance of sequential

algorithms. The PRAM. model is a natural extension of the basic sequ.ential model

[Jos 92]. The PRAM model consists of a number of processors, each of which has its

own local memory and can execute its own local program. The processors

communicate by exchanging data through a shared memory unit. Each processor is

uniquely identified by an index, called a processor id. All the processors operate

synchronously under the control of a common clock. Fig. 2.4 shows a general view of

a PRAM model with p processors. These processors are indexed 1, 2, ... , p. Shared

memory is also referred to as global memory.

Shared Memory

•••
PI .. P2 Pp

Figure 2.4: The PRAM model.

There are two basic modes of operation of a shared-memory model. In asynchronous

mode, each processor operates under a separate clock and it is the programmer's

responsibility to set appropriate synchronization points whenever necessary. In

synchronous mode, all the processors operate synchronously under the control of a

common clock. A standard name for the synchronous shared-memory model is the

o

12

parallel random-access machine (PRAM) model. Since each processor cart execute

its own local program, the shared memory model is a multiple instruction multiple

data (MIMD) type. That is, each processor may execute an instruction and operate on

data different from those executed or operated on by any other processor during any

given time unit.

There are several variations of the PRAM model based on the assumption regarding

the handling of the simultaneous access of several processors to the same location of

the shared-memory. The exclusive read exclusive write (EREW) PRAM does not

allow any simultaneous access to a single memory location. The concurrent read

exclusive write (CREW) PRAM allows simultaneous access for a read instruction

only. The concurrent read concurrent write (CRCW) allows simultaneous access for a

read or a write instruction. The three principal varieties of CRCW PRAMs are

differentiated by how concurrent writes are handled. The common CRCW PRAM

allows concurrent writes only when all processors are attempting to write the same

value. The arbitrary CRCW PRAM allows an arbitrary processor to succeed. The

priority CRCW PRAM assumes that the indices of the processors are linearly ordered

and allows the one with minimum index (or the maximum index) to succeed.

2.4 Partial k-Trees

A k-tree can be recursively defined as follows [Bod90J:

1) A complete graph with k+ 1 vertices is a k-tree.

2) If G = (V, E) is a k-tree and k vertices Vj,V2, ... ,Vk induce a complete subgraph of

G, then G' = (V u {w}, E {(Vi,w): I.$"i.$"k} is a k-tree where w is a new vertex

not contained in G.

A graph is called a partial k-tree if it is a subgraph of a k-tree. Thus a partial k-tree G

= (V, E) is a simple graph, and lEI < kn. The treewidth of a graph G is the minimum

integer k such that G is a partial k-tree.

13

2 3 5

Figure 2.5: A partia13-tree.

A tree-decomposition of a graph G = (V, E) is a pair (T, S), where T= (VT, ET) is a tree

and s = {Xx I x E VT} is a collection of vertex-set of V satisfying the following three

conditions [RS86]:

• for every edge e = (v, w) E E, there exists a node x E VT with v,w E X x; and

• for all x, y, Z E VT, if node y lies on the path from node x to Z in T, then

Xx nx, ~XY'

6

3
(a)

5

Xs={3, 4, 5, 8}

(b)

X6={l, 5, 9}

Figure 2.6 (a) A partia13-tree, and (b) a tree-decomposition of the graph in (a).

Figure 2.6(b) depicts a tree-decomposition of a graph in Fig. 2.6(a). The width of a

tree-decomposition (T, S) is maxx,v, IXx 1-1. The tree-width of a graph G is the

minimum width of a tree-decomposition of G, taken over all possible tree-

decomposition of G. A graph G with tree-width"; k is called a partial k-tree. Every

14

partial k-tree G has a tree-decomposition (T, S) with width ~ k and nT ~ n, where nT is

the number of nodes in T [Bod96]. We then cite the following theorem from [BH95,

BK96, Ree92].

Theorem 2.1 It can be checked whether the tree width of a graph G is k and find a

corresponding tree-decomposition in O(log; n) parallel time using O(n) operations

on the EREW PRAM

2.5 Equivalent Binary Tree of a Tree

To solve the l-vertex-coloring for k-trees, we have to transform an arbitrary rooted

tree into a regular binary tree. We now show how an arbitrary rooted tree can be

reduced to a regular binary tree T,which is the canonical binary tree representation of

T.

Let (T, S) be a tree-decomposition of G with width ~ k and nT ~ n. We can transform it

to a binary tree-decomposition as follows [Bod90]: regard T as rooted tree by

choosing an arbitrary node as the root, and replace each internal node x having d

children, say YI, Yz, ... , Yd with d+ I new nodes xl, xz, ... , Xd+1 such

thatXx =Xx =Xx ="'=Xx ,where x" l~i~d,isthefatherofxi+1 andtheithchild
1 2 d~

Yi of x, and Xd+1 is a leaf of the tree. This transformation can be done in O(logzn)

parallel time using O(n) operations on the EREW PRAM. The resulting tree-

decomposition (T, S) of G = (V, E) has the following characteristics:

• the width of(T, S) is ~ k, and the number nTofnodes in Tis O(n);

• each internal node x of T has exactly two children, say Y and z, and either Xx= Xy

or Xx= x;,; and
• for each edge e = (v, w) EE, there is at least one leaf x in Tsuch that v, w Ex;,.

We then cite the following theorem from [BH95].

",.

15

Theorem 2.2 A binary tree-decomposition T of partial k-tree with height D(log2n)

and width at most 3k+2, can be constructed from a given tree-decomposition in

D(log2n) parallel time using D(n) operations on the EREW PRAM.

X4={3,4,7~

X,={3, 4, 5, 8} X6={l, 5, 9}

XlO={l, 3, 4, 5}
(a)

Figure 2.7 (a) a tree-decomposition of the graph and (b)

binary-tree representation of the tree in (a).

(b)

XlI={3, 4,5, 8}

Let (T, S) be a binary tree-decomposition of partial k-tree G = (V, E). We associate a

subgraph Gx= (Vx, Ex) ofG with each node x of T, where

Vx =U{X y Iy = x or y is a descendant of x in T}; and

Ex= {(u, V)E E I u, V E VJ.

Figure 2.8 Graph Gx

Fig 3.8 depicts graph Gx, where Xx is indicated by an oval drawn in thick line. Thus G

is associated with the root of T..

(r
\. :

16

Chapter 3

Parallel Algorithm for 1-Vertex-Coloring of.
Partial k-Trees

This chapter deals with parallel algorithm for solving the generalized vertex coloring

problem on partial k-trees. Since ordinary vertex coloring problem is NP-hard [GJ79],

the l-vertex-coloring problem is also NP-hard in general. So it is very unlikely that

there exists an efficient algorithm to solve the l-vertex-coloring problem for general

graphs. But polynomial time algorithms have been developed for special subset of

graphs - partial k-trees in particular. Zhou et al. [ZKNOO] presented a polynomial

sequential time algorithm that determines whether any l-vertex-coloring exists for

partial k-trees in time O(n3 + n x (a + 1),'i"'IV"J"), where a is the number of colors.

They claimed that it is possible to solve the same problem in O(log2n) parallel time

using O(n(a + I)'''''''':'' + n3
) operations on the common CRCW PRAM. It may be noted

that partial k-trees are graphs of treewidth bounded by a fixed constant k [RS86].

In this chapter we present an parallel algorithm that takes O(logz n) time using

O(a x (t + 2ya(k+l) x n) operations on the common CRCW PRAM model to determine

l-vertex-coloring of partial k-trees. We then used this algorithm together with parallel

search technique over a bounded range of positive integers to determine the optimal

number of colors.

The l-vertex-coloring problem on a weighted graph G = (V, E) can be easily reduced

to the ordinary vertex-coloring problem on a new non-weighted graph G, = (V, £,)

such that (u, v) EEl for any two vertices u and v in V ifand only if dist(u, v) ,.:;I in G.

Therefore, one may expect that the l-vertex-coloring problem for a partial k-tree G can

be efficiently solved by applying a linear-time algorithm [BPT92] to solve an ordinary

17

vertex-coloring problem for partial k-tree. However, it is not the case, because G, is

not always a partial k-tree.

The remainder of this chapter is organized as follows. Section 3.1 gIves some

preliminary definitions and easy observations. In Section 3.2 we define an

equivalence class to solve the I-vertex coloring of a partial k-tree. Section 3.3 gives a

parallel algorithm for I-vertex-coloring of partial k-trees. Finally, Section 3.4

concludes with our parallel/-vertex-coloring problem of partial k-trees.

3.1 Preliminaries

In this section we define some terms and easy observations. Let G = (V, E) denote a

graph with vertex set V and edge set E. We often denote by V(G) and E(G) the vertex

set and the edge set of G, respectively. We denote by n the number of vertices in G.

An edge joining vertices u and v is denoted by (u, v). Let N be the set of all positive

numbers, and let w: E ~ N be an edge-weight function for G. For a path P in G, we

define the length w(P) of P as w(P) = L'E? wee). For two vertices u and v of G, we

define the distance dist(u, v) between u and v as follows: if there is a path from u to v

in G, then dist(u, v) = min{w(P): P is a path from u to v in G}; otherwise, dist(u, v) =

ceo

2

2

5

Figure 3.1: 4-vertex-coloring of a partial 3-tree using 4 colors

o Color I
• Color 2
• Color 3
• Color 4

3 9

18

Definition 3.1 Let I be a positive integer and C be a set of colors. Then a function

rp:V --+ C is an I-vertex-coloring of a partial k-tree G if rp(u)* rp(v) for any two

vertices u and v such that dist(u, v) ,.;;I.

Definition 3.2 The minimum number of colors needed to perform an I-vertex-coloring

of T is called I-chromatic number of T and is denoted by Xi (T).

Let <pbe a vertex-labeling of a partial k-tree G = (V, E) with positive integers. The

label (color) of a vertex v E V is denoted by rp(v). The number of colors used by a

vertex-labeling rpis denoted by #<p.Clearly Xi (T)~#<p for an l-vertex-coloring ofG.

One may assume without loss of generality that <puses consecutive integers I, 2, ... ,

#rpas the colors. Then C is the color set having colors I, 2, ... , #rp.

Let (T, S) be a binary tree-decomposition of partial k-tree G = (V, E). We associate a

subgraph Gx= (Vx, Ex) ofG with each node x of T, where

Vx =U{X y I y = x or y is a descendant of x in T}; and

Ex= leu, V)E E I u, v E Vx}'

Thus G is associated with the root of T. For a subgraph Gx = (Vx, Ex) of G, x E VT, we

denote by rpl Gx the restriction of rpto Gx : let 1] = rpl Gx' then 1](v) = rp(v) for v E Vx •

We then have the following lemma.

Lemma 3.1: Let (T, S) be a binary tree- decomposition of a partial k-tree G, and let x

be a node in T Then a vertex-labeling rpof Gx is an I-vertex-coloring of Gx if and only

if
(a) any two vertices u and w with rp(u) =rp(w), U, W E Vx, are within a distance from a

vertex v E Xx such that dist(u, v) + dist(v, w) > l.

(b) ifx is an internal node in T and has two children y and z, then rpl Gy and rpl G, are

I-vertex colorings of Gy and G" respectively.

19

Proof:

=> Let IfJ be an I-vertex coloring of Gx. Then any two vertices u, W E Vx with qi"u) =

qi"w) satisfy dist(u, w) > I.

If x is a leaf, then Vx = Xx. Since dist(u, w) >1, then for any vertex v E Xx clearly

dist(u, v) + dist(v, w) > I.

Let x be an internal node. Then there may be two cases.

Case 1:Both u and ware either in Gy or in Gz.

Since dist(u, w) > I, clearly for any vertex v E Xx we have dist(u, v) + dist(v, w) > I.

Case 2: One of u and w is in Gyand the other in Gz.

In this case any path between u and w must contain a vertex v E Xx' Since dist(u, w)

> I, clearly dist(u, v) + dist(v, w) > l.

Since Gy and Gz are sub-graph of Gx>clearly IfJI Gy and IfJI Gz are I-vertex colorings of

Gy and Gz, respectively.

<=: Suppose for a contradiction that a vertex-labeling IfJ satisfies (a) and (b) but IfJ is

not an I-vertex-coloring of Gx• Then there exist two vertices u, w E Vx with qi"u) =

qi"w) such that dist(u, w)::; I. Since (a) and (b) hold, x is an internal node of T. Then

both u and w neither belong to Gy nor Gz; one of u and w is in Gy and the other is in

Gz. Furthermore Gy and Gz have common vertices only in Xx. Then shortest path

between u and w must contain a vertex v E Xx' Then dist(u, v) + dist (v,w) ::;I. This

contradicts (a). 0

3.2 Equivalence Classes

Many algorithms on partial k-trees use dynamic programming. On each node of the

tree-decomposition, a table of all possible partial solutions of the problem is

computed, where each entry in the table represents an equivalence class. The time

complexity of an algorithm mainly depends on the size of this table. Therefore, we

shall find a suitable equivalence class for which the table has a polynomial size. The

20

table of our algorithm has a size O(na{I+2) 6a (k+1)). List-set can be seen as an

equivalence class in our algorithm.

Let (T, S) be a binary tree-decomposition of a partial k-tree G = (V, E). Let C = {I,

2, ... , a} be the set of colors. Let x be a node in T and let rp : Vx --+ C be a vertex"

labeling of the subgraph Gx = (vx, Ex). We now define a color-list L(rp, u) and a list-

set L(rp) as follows:

L(rp, u) = ((i,d;) Icolor i E C has already been assigned to a vertex v in Gx under rp

and di is the minimum value of dist(u, v) with rp(v) = i and u E Xx }; and

Lrp) = {L(rp, u) I u E Xx}.

A list-set L(rp) is called feasible if the vertex-labeling rpis an l-vertex-coloring of G.

An l-vertex-coloring of Gx, x E Vr, is defined to be extensible if it can be extended to

an l-vertex-coloring of G without changing the labeling of vertices in Gx• We then

have the following lemma.

Lemma 3.2: Let rpand Tfbe two l-vertex-colorings of Gx such that L(rp) = L(Tf). Then

rpis extensible if and only if Tfis extensible.

Proof: It is sufficient to prove that if rpis extensible, then Tf is extensible. Suppose rp

is extensible. Then rp can be extended to an l-vertex-coloring rp' of G = (V, E) such

that rptv) = rp(v) for any vertex v E Vx' Let V* = V - Vx and let G* be the sub-graph

of G induced by V* We can extend the l-vertex-coloring Tf of Gx to a vertex labeling

Tf'of G as follows:

{
" Tf(v) if v E Vx; and

Tf'(v) =
rp'(v) if v E V*.

Then it suffices to prove that Tf'is an l-vertex-coloring to G, that is, any two vertices

v, WE V with Tftv) = Tftw) are in a distance such that dist(v, w»l. Now we have two

cases.

Case 1: Both v and w are either in G* or in Gx.

In this case Tf'1Gx = Tf and Tf' IG* = rp'l G* are the l-vertex-colorings of Gx and G*,

respectively. Then v and ware in a distance such that dist(v, w) > I.

21

Case 2: One a/v and w is in Gx and the other is in G*.

In this case Gx and G* have common vertices only in Xx. Then the shortest path

between v and w must contain a vertex u E Xx. Now it is sufficient to prove that dist(v,

u)+dist(u, w»l.

Since L(rp) = L(1]), we have L(rp, u)= L(1], u). Hence rp(u)= 1](u). Therefore, rptu) =

rp(u) = 1](u) = 1]' (u). Furthermore, 1]' I G* = rp'l G*. Let v E V*. Therefore 1]tv) =

rp'(v). Since L(rp, u) = L(1], u), there exists a vertex a E Vx such that rp(a) = 1](w) and

dist(u, a) = dist(u, w). Since rp'is an l-vertex-coloring of G, any two vertices v, a E V

with rp'(a) = rp'(v) are in a distance such that dist(v, a) > l, that is, dist(v, u) + dist(u,

a»l. Since dist(u, a) ,,; dist(u, w), we have dist(v, u) + dist(u, w) > l. Hence clearly

dist(v, w) > l. Therefore 1]'is an l-vertex-coloring ofG. Thus 1]'is extensible. 0

Example: Let us consider 4-vertex-coloring of the following graph with 3 colors.

Consider the partial coloring TJof Gx the subgraph of the partial 3-tree of Fig 3.2.

Edge weights are written next to the edges.

Figure 3.2: A partiaI4-vertex-coloring of a subgraph associated with a leaf node x of T

The color list for vertex viis L(TJ,vl) = (3, 0,4,<>::).Similarly, color lists for the

vertices v3, v4, and v5 are L(TJ,v3)= (0,3,1,<>::),L(TJ,v4)= (I, 2,0,<>::),and L(TJ,v5) =

(3,0,2,<>::)respectively.

Lemma 3.3 The number of distinct color-lists for each vertex is at most (l + 2t.

Since IXxl:-:;3(k + I), number of distinct list-sets associated with each child of x of T is

at most (l + 2)3a(k+ 1)

Proof: Immediate. 0

22

3.3 An Efficient Parallel Algorithm

We will now show in Lemma 3.4 that if x is an internal node in Twith two childreny

and z then l-vertex-coloring of Gx can be obtained from l-vertex-colorings of Gy and

G,.

We shall use the notation d;(rp, u) to indicate the distance component of (i, di) in the

color-list L(rp,u), i.e. dierp,u) = di, where (i, di) E L(rp,u). We then have the following

lemma.

Lemma 3.4: Let x be an internal node in T with two children y and z. Let u be any

vertex in Xx- Let 17 and IfIbe the l-vertex-colorings of Gy and G" respectively. Let 17(V)

= IfICv)for all vertices v E Xy n X"~ and let rp be the vertex-labeling of Gx extended

from 17 and If/. Then L(rp, u) = {(i,di)1 i E C} and di = min{di~, dilf} },where di~ =

min,ex ,-,X {di(17, v) + dist(u, v)} and dilf =min ,eX ,-,X {di(1f/, v) + dist(u, v)}).
Y , Y ,

Proof: Let i be any color in the set of color and (i, di) E L(rp, u). Then we have that di

is the minimum of all the distances from u to vertices in Gyand Gz with color i.

To determine the extended color-list, we need to consider the elements in L(17, u) and

L(IfI, u). Furthermore, u may be connected to VE XX through a path. So we also need

to consider the elements in L(17, v) and L(IfI, v). Therefore di = min{di~, dilf} },where

di~ = min ,eX,M, {# 17,v) + dist(u, v)} and dilf = min ,eX,'-'X, {# 1fI,v) + dist(u, v)}).

Let i be any color and (i, di(17, u)) E L(17, u), (i, #17, v)) E L(17, v), (i, d;(lfI, u)) E L(IfI,

u) and (i, # 1fI,v)) E L(1fI,v). Then if di(17, u) is the minimum of all the distances from

u to the vertices of with color i in Gx then (i, di(17, u)) E L(rp, u). Since dist(u, u) = 0,

one can write (di(17, u) + dist(u, u)) E L(rp, u). Otherwise if (di(17, v) + dist(u, v)), v

E Xx and v "" u, is the minimum of all the distances from u to the vertices with color i

in Gx then (i, #17, v) + dist(u, v)) E L(rp, u). Similarly we may find the cases such that

di = d,e 1fI,u) + dist(u, u) or di =# 1fI,v) + dist(u, v) for any v E Xx and v ""u.

Thus L(qJ, u) ;;2{(i, di) I di = min {dill' divA}. (2)

From equations (1) and (2), we haveL(qJ, u) = {(i, dJ I di = min{di~, diVA} 0

23

(a) 17IGy (b) ~Gz

------- .•.

Figure 3.3: Merging of 7JIGyand \fIIG,to form <pIG,

D

24

Example: Let x be an internal node in Twith two children y and z. Let 7]and Ijf be the

l-vertex-colorings of Gy and Gz, respectively. Let 7](v) = \fJ(v) for any vertex VEXy n

Xz ={vl, v3, v4}. Now L(7]) ={vl(3,0,2,4), v2(1,4,2,0), v3(0,3,1,1), v4(l,4,0,2)} and

L(Ijf) ={vl(3,0,4,oc), v3(0,3,1,oc), v4(l,2,0,oc), v5(3,0,2,oc)} are given. We can

calculate L(tp) from L(7]) and L(Ijf) by using Lemma 3.4. Now, L(tp) ={vl(3,0,2,4),

v2(l,4,2,0), v3(0,3,1, 1), v4(1,2,0,2)}.

Lemma 3.5: Let x be a leafnode in Tand let tp is a coloring ofGx- Then L(tp) is a

feasible vector if and only if for all pair of vertices u,v E Vx with tp(u) = tp(v), dist(u, v)

> I.

Proof: Immediate.

We have to check whether there exists a possible l-vertex-coloring of Gx from the

previously obtained l-vertex-colorings of two subgraphs Gy and Gz. We then have the

following Lemma.

Lemma 3.6: Let x be an internal node in T with two children y and z. Let u E Xx, and

let v E XynX;, Let 7] and Ijf be the l-vertex-colorings of Gyand Gz, respectively. Then 7]

and Ijf can be combined to form an l-vertex-coloring tp of Gx if and only if for all

possible pairs (u, v), we have dist(u,v) + d,('/,u) +d,(Iif,V»I, l:O:i:O:a, provided

d,{'/,u) and d,(\fI,v) contain the color distance of two distinct vertices.

Proof: At first we have to check whether d,{'/,u) and d,(Iif,v) contain the color

distance of a common vertex. Since, the common vertices must belong to Xy n x;" so

we have to check whether such a common vertex, WE Xy n x;, exists or not. If such a

w exists then we need not to check any l-vertex-coloring condition, since 7]and Ijf are

the l-vertex-colorings of Gy and Gz, respectively.

If die 7],u) and d;(Ijf, v) do not contain the color distance of a common vertex, then we

know, d,{'l,u)=min {dist(u,w,)I 'lew,)= i) ,.and d,(Iif,v)=min{dist(v,w,) IIif(w,) = i).
~~ w2~Z

Then the distance between two vertices WI E Gy and Wz E Gz having the same color i in

the sub graph Gx is dis/(u,v) + d,{'l,u)+ d,(\fI,v). According to the definition of l-vertex-

coloring the distance between any two vertices having the same color must be greater

25

than I. If dist(u,v) + d;(77,u)+ d;('fI,v»I,l<;;i <;;a for all pairs (u,v), then the labeling

will be an I-vertex-coloring of Gx•

Assume that rpbe an I-vertex-coloring of Gx Then for all pairs of vertices u, VE VX ,we

have dist(u, v) > I with rp(u) = rp(v) So it must be true that for all possible pairs u, y,

UEXx and VEXynX" dist(u,v)+dJ~,u)+dJ'fI,v»I,l';i,;a, provided d; (77, u) and

d; ('II, v) contain the color distance of two distinct vertices. 0

3.3.1 Algorithm

The main result ofthis section is the following theorem.

Theorem 3.7 Let G be a partial k-tree of n vertices given by its tree-decomposition

with heightO(log, n) and width at most 3k + 2. Then an optimal I-vertex coloring of

G can be found in O(log, n) parallel time using O(a x (I + 2raCk
+') x n + n3

)

operations on the common CRCW PRAM for any positive integer I and any bounded

integer k.

In the remaining of this section we prove the theorem 3.7.

The following general lemma is well known [BDJ98].

Lemma 3.8 Let A be a given algorithm with O(log, n) parallel computation time. If A

involves a total number of q operations, then A can be implemented using p

processors in O(q / p + log, n) parallel time.

If there is an algorithm A which solves the I-vertex-coloring problem in O(log, n)

parallel time using a total of q = O(a x (I + 2raCk
+') x n) operations, then by adapting

lemma 3.8 with choosing p = q /log, n one can know that A can be implemented

using O(q / log, n) processors in O(log, n) parallel time.

26

Thus by Theorem 3.7 and Lemma 3.8 we have the following corollary.

Corollary 3.9 For any positive integer I and any bounded integer k, the l-vertex-

coloring problem for partial k-trees can be solved in O(log, n) parallel time with a

polynomial number of processors on the common CRCW PRAM.

The following lemma is also a well-known [Jos92].

Lemma 3.10 Given a parallel algorithm that can be implemented to run in time t on a

. p-processor common CRCW PRAM, this algorithm can be implemented on a p-

processor EREW PRAM to run in O(t log, p) time.

Thus by Corollary 3.9 and Lemma 3.10 we have the following corollary.

Corollary 3.11 For any positive integer I and any bounded integer k, the l-vertex-

coloring problem for partial k-trees can be solved in O(log; n) parallel time with a

polynomial number of processors on the EREW PRAM.

In the remaining section we prove the Theorem 3.7. Let (T, S) be a binary tree-

decomposition of a partial k-tree G with width ~ 3k + 2. We first give a parallel

algorithm to decide, for a given positive integer a ~ n, whether G has an l-vertex-

coloring rpwith #rp ~ a. We use parallel dynamic programming and bottom-up tree

computation on the binary tree T: for each node x of T from leaves to the root, we

construct all (equivalence classes of) l-vertex-colorings of Gx from those of two

subgraphs Gy and Gz associated with the children y and z of x. Then, by using a

parallel search over the range of a,we determine the minimum value of a such that G

has an l-vertex-coloring rpwith a = #rp, and find an optimall-vertex-coloring of G.

A feasible vector L(rp) of rp on x can be seen as an equivalence class of extensible 1-

vertex-coloring of Gx- Each color i can be placed in the color-list with the distance d;

= 0, 1,2, ... , lor oc. Therefore the number of distinct color-lists for each vertex is at

most (l + 2t. Since IXxl ~ 3(k + 1), number of distinct list-sets associated with each

27

child of x of T is at most (/+2)3a(k+l). Therefore total number of different feasible

vectors on a leaf node x is at most (l+2)3a(k+l) for any fixed integer k.

We first show how to find the table all feasible vectors L(rp) on a leafx of T. This can

be done as follows:

I. Enumerate all vertex-labeling rp: VX-7 C of Gx•

2. Compute all feasible vectors L(rp)on x from the vertex-labeling rp of Gx .

Since IVxl ~ 3(k + I) and Icl ~ a, the number of vertex labeling rp: Vx-7 C is at most

a3
(k+l). Furthermore the color-lists L(rp, u), u E Xx= Vx can be computed in 0(1) time.

So, L(rp)can also be computed in 0(1) time for a bounded integer k.

To check whether rp is an I-vertex coloring of Gx, we have to check the Lemma 3.5.

Since, IVxl ~ 3(k + I), so the total number of check to be made IS

3(k+l)C, "'3(k+I)(3k+2)/2. It can be computed for a node x can be made in 0(1)

parallel time using O(k ') operations on the EREW PRAM. So, table of all feasible

vectors on a leaf x of T can be computed for a leaf in 0(1) parallel time

usingO(a3(k+l») operations on the EREW PRAM. Since there are O(n) leaves, such

table for all leaves can be computed in in 0(1) parallel time usingO(na3(k+l»)

operations on the EREW PRAM.

We next show how to compute all feasible vectors on an internal node x of T from

those on two children y and z of x. One may assume that Xx = Xy. By the definition of

Gx = (VX>Ex), we have Vx = Vy uV, and Ex = Ey U E,. Let rz and Ij/, respectively, be

the /-vertex-colorings of Gy and Gz, such that rz(v) = ¥J(v) for any vertex VE ~ nXz,

and let rpbe the vertex-labeling of Gx extended from rz and If/. Then rp I Gy = rz and rp I
Gz = Ij/. Fig. 3.4 illustrates Gx>Gyand Gzwhere Xx, Xy and Xz are drawn in ovals.

~"

28

Figure 3.4: Graphs G" Gy, and G,.

First we have to check whether there exists a possible i-vertex-coloring of Gx from the

previously obtained i-vertex-coloring of two subgraphs Gy and Gz.This can be

checked by using Lemma 3.6, in 0(1) parallel time using 0(ak2) operations on the

CREW PRAM.

We next show how to compute L(rp) from L(,.,) and L(If). L(rp) can be obtained using

Lemma 3.4. The obtained L(rp) is a feasible vector and rp is an i-coloring of Gx• It can

also be done in 0(1) parallel time using 0(ak2) operations on the CREW PRAM.

The table of all feasible vectors on an internal node x can be obtained from the pairs

of tables of all feasible vectors on the two children y an z of x, and the number of

these pairs is 0((/ + 2ta(k + Il).To compute the table on x in 0(1) parallel time, we

need common CRCW PRAM model. A concurrent read capability is needed, because

each feasible vector of the table y needs to simultaneously accessed by all the (/ + 2)

3a (k + I) processors corresponding to the table on z and each feasible vector of the table

z needs to simultaneously accessed by all the (/ + 2) 3a (k + I) processors corresponding

to the table on y. A concurrent write up of the same value is required, because

different pairs of feasible vectors on y and z may compute the same feasible vector on

x.

We know the number of distinct list-sets associated with each child of x of T is at

most (/ + 2ia(k+I)Therefore number of distinct pair oflist-set between two

4

5

6

7

8

29

children of x is at most (/ + 2)6a(k + 1). While checking each pair of list-set and

computing the valid list-set on x can also be done in 0(1) parallel time using

O(ak2
) operations on the CREW PRAM. Thus computing a table of all valid list-sets

on x from those on the two children of x takes 0(1) parallel time using O(k'afJ +

2)6a(k+ 1») '" O(a(l + 2)6a(k+ 1») operations on the common CRCW PRAM, where k is a

bounded integer.

We thus have the following parallel algorithm to find an optimall-vertex-coloring of

a partial k-tree G, where h is the height of the tree.

Parallel Algorithm l-vertex-coloring

begin

I Find all pair shortest path for the given partial k-tree G in parallel

2 Obtain a binary tree decomposition Twith height O(log,n) of partial k-tree G.

3 for m: = I to a in parallel do

begin

compute a table of all feasible vectors on each leaf x of T for C = {I, 2, ... , m} in

parallel

for l: = I to h do {h = O(lOg2n)}

for each internal node x in Tat levell in parallel do

compute a table of all feasible vectors from those on the two children of x;

check whether there exist a feasible vector in the table at the root;
end

9 Apply parallel search on the range of color-set Is as n and find the smallest integer m

such that there exists a feasible vector in the table at the root for C = {I, 2, ... , a}, and

output m as Xl (G);
End.

Line I can be computed in 0(1og1n) parallel time using O(nJ
) operations [ZKNOO].

Line 2 can be computed in 0(1og1n) parallel time using O(n) operations on the EREW

PRAM [BH95].

30

Lines 4-8 are executed for all m in parallel in Line 3. We now show that Lines 4-8 can

be done in O(lOg2n) parallel time using O(na.(l + 2)6a(k+ I») operations on the common

CRCWPRAM.

In Line 4 of the algorithm, we compute a table of all feasible list-sets on each leafx of

T. Thus computing a table of all feasible list-sets on each leaf x of T can be computed

for a leaf in 0(1) parallel time usingO(aJ(k+l1) operations on the EREW PRAM as

mentioned before. Since there are O(n) leaves, Line 4 can be computed in 0(1)

parallel time usingO(naJ(k+ll) operations on the EREW PRAM for all leaves.

Line 7 can be done 0(1) parallel time using O(na.(l + 2)6a(k + I») on the common

CRCW PRAM for each node. Since h = 0(log2n), Lines 5 and 6 can be done in

O(lOg2n) parallel time using O(na.(l + 2)6a(k+I») operations on the common CRCW

PRAM. Line 8 can be done in 0(1) parallel time using O(na.(l + 2)6a(k+I») operations

on the common CRCW PRAM. Thus Lines 4-8 can be done in O(lOg2n) parallel time

using 0(na.(l+2)6a(k+l») operations on the common CRCW PRAM.

For optimization we apply parallel search on the range of color-set I":; a":; n in Line 9.

Line 9 can 1;ledone in O(lOg2n) sequential time using 0(log2n) operations on the

EREWPRAM.

Thus an optimal l-vertex-coloring of a partial k-tree G of n vertices can be found in

O(lOg2n) parallel time using O(a.(l + 2)6a(k + I)n + n3) operations on the common

CRCW PRAM for any positive integer 1and any bounded integer k.

31

3.4 Conclusion

In this chapter, we have given a parallel algorithm to find an optimal/-vertex-coloring

of a weighted partial k-tree G. Our algorithm runs in O(log2n) parallel time using

G(n(1 + 2)6af.k + 1) a + n3) operations on the common CRCW PRAM for any positive

integer I and any bounded integer k. This is the parallel algorithm of an I-vertex-

coloring problem of a partial k-trees that guarantees an optimal solution.

32

Chapter 4

Conclusion
This thesis deals with a generalized vertex-coloring problem on partial k"trees.

In Chapter 2 we have defined some basic terms needed for solving generalized coloring

problems. We also described different PRAM models. Finally we described techniques of

tree decomposition of an arbitrary tree into equivalent binary tree. These techniques

played key roles in our algorithms.

Chapier 3 gives a parallel algorithm to solve the l-vertex-coloring problem of partial k-

trees. Our parallel algorithm finds an optimall-vertex-coloring of a k-tree G in O{log2 n)
parallel time using O(a x ([+ 2)'"(k+') x n + n3) operations on the CRCW PRAM model,

where n is the number of vertices in G and a is the number of colors. The previously

known best parallel algorithm takes O(lOg2n) parallel time using

O(n(a + I)'"'''''''' + n') operations on the common CRCW PRAM to solve the same

problem [ZKNOO]. Though, the time and PRAM model are same in both algorithms, the

number of operations is single exponential in our algorithm. In previous algorithm the

number of operations is double exponential. Thus our algorithm is better than the existing

one.

In this thesis, we have given parallel algorithm for a generalized coloring of partial k-

trees. However, following problems are still open:

I. Is there an upper bound on the number of colors needed for an [-vertex-coloring of

partial k-trees?

2. What is the complexity of sequential and parallel algorithms for l-vertex-coloring of

other graph classes?

p,

33 .

References:

[BH95] H. L. Bodlaender, T. Hagerup, Parallel algorithms with optimal speedup for

bounded treewidth, Proc 22nd Int. Colloq. on Automata, Languages and

Programming, Lecture Notes in Computer Science 10, Springer, Berlin, pp.

268-279, 1995.

[BDJ98] H. L. Bodlaender, J.S. Deogum, KJansen, T. Kloks, D. Kratsch, H. Miiller, Zs.

Tuza, Rankings of graphs, SIAM J. Discrete Math., 21 pp.l68-181, 1998.

[BK96] H. L. Bodlaender, T. Kloks, Efficient and constructive algorithms for the

pathwidth and treewidth of graphs, J. Algorithms, 21 pp.358-402, 1996.

[Bod90] H. L. Bodlaender, Polynomial algorithms for graph isomorphism and chromatic

index on partial k-trees. Journal of Algorithms, 11(4), pp.631-643, 1990.

[Bod96] H. L. Bodlaender, A linear time algorithm for finding tree-decompositions of

small treewidth, SlAM J. Comput. 25, pp.1305-1317, 1996.

[BPT92] R. B. Borie, R. G. Parker and C. A. Tovey, Automatic generation of linear time

algorithms from predicate calculus descriptions of problems on recursively

constructed graph families, Algorithmica 7, pp. 555-581, 1992.

[GJ79] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

theory of NP-complete ness, W. H. Freeman & Co., New York, 1979.

[Jos92] J. Joseph, An Introduction to Parallel Algorithms, Addison-Wesley Inc., 1992.

34

[Ree92] B.A. Reed, Finding approximate separators and computing tree-width quickly,

Proc. 24th Ann. ACM Symp. on Theory of Computing, pp 221-228, 1992.

[RS86] N. Robertson, P.D. Seymour, Graph minors. II. Algorithmic aspects of tree- ..

width, J. Algorithms 7, pp 309-322, 1986.

[Wes99] D. B. West, Introduction to Graph Theory, 2nd ed., Prantice-Hal1 Inc., 2002.

[ZKNOO]X. Zhou, Y. Kanari and T. Nishizeki, Generalized vertex-colorings of partial k-
trees. IEICE Trans. on Fundamentals, pp. 555-581, 2000.

. ..

Index

ancestors, 10

child, 11

chromatic number, 3

CRew, 12

CREW, 12

cycle, 9

descendants, 10

Equivalent Binary Tree, 14

EREW, 12

free tree, 9

height, 10

internal node, 12

k-tree,12

I-chromatic number, 4

leaf, 12

loop, 9

l-vertex-coloring,5

MIMD,12

Multigraphs, 7

Multiple edges, 7

NP-hard,4

parent, 10

partial k-trees, 12

path,9

PRAM model, 11

root, 9

rooted tree, 14

shared-memory model, 11

simple graph, 7

subgraph,7

subtree, 10

tree, 9

vertex-coloring, 2

vertex-coloring problem, 2

vertex-set, 7

weighted graph, 8

35

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042

