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Abstract

This t.hesis presents parallel algorithms for generalized vertex-ranking and

edge-ran.king of series-parallel graphs. A generalized vertex-ranking of a

graph G is defined a.~ follows: for a positive integer c, a c-vertex-ranking

of a graph G is a labeling of the vertices of G with integers such that., for

any ];thel i, deletion of all t.he vertices wit.h labels> i leaves connec!.ed com-

ponents, each having at most r. vertices with label i. Similarly a. generalized

edge-ranking of a graph G is defined. A r.-vertex(edge)-ranking is optimal

if the number of labels used is as small as possible. The problem of finding

an optimal c-vertex-ranking of G plays an ilnportant role for the parallel

Cholesky factorization of matrices. The c-edge ranking problem has appli-

cations in scheduling the manufacture of complex multi-part products; it

is equivalent to finding a c-edge separator tr'Oleof G 'having the minimum

height. In this thesis we present a parallel algorithm for c-vertex-ranking

of series-parallel graph G that runs in o (JOg2n) time using 0(c3n7Iog~~] n)

.,

operations, where n is t.he numher of vertices in G. We also give an algorithm-,'.-_

that runs in 0(log2 n log2log2 n) time using 0(c2n5Iog~+1 n) operations. For

t.he fH,dge-ranking of series-par~llel graph G OtH ~.Igorit.hm rllns in 0(lo1!,2n)

time lIsing 0(c3n6lHl1og~+1 n) operations, where lJ. is the maximllm vertex-

. degree of G. We also give an algorithm for c-edge-ranking of series-parallel

grephs t.hat mns in 0(log2 nlog,log2 n) time using 0(c2n4"'+1 IOg~,.,n) op-
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erations. The parallel computation model we use is priority CR.CW PR.AM.

Our algorithms assume that a binary decomposition tree of a series-parallel

graph is given.

•



Chapter 1

Introd uction

In this chapter we provide the necessary background and motivation for this

study on the rankings of graphs. Starting with background in Section 1.1,

we go to the coloring problems in Section 1.2, ranking problems and its

variation in Section 1.3, parallel processing in Section 1.4, application and

known results in Section 1.5. Finally Section 1.6 summarizes the chapt.er.

1.1 Background

A graph is a common structure encountered in nature numerous times. A

graph G = (V, E) with 11. vertices and m edges consists of a vertex set

V = {"" "2, ... ,"n} and an edge set E.= {e"e2, ... ,em}, where an edge in

E joins two vertices in V. Fig. 1.1 depicts a graph of five vertices and eight.

edges. For mathematical formulation of map, distance calculation among

cities, layou I. and circuit. design graphs are used extensively. Having huge

computing power, recent research efforts in algorithms have encountered on

designing efficient. algorithms for solving combinatorial problems, particu-

larly graph problems. Efficient. algorit.hms have been obt.ained for various

graph problems, such as coloring problems, planarity testing problem and

maximum now problem.

3



Introduction

Figure 1.1: A graph with five vertices and eight edges.

1.2 Coloring Problems

4

The vertex-coloring problem and the edge-coloring problem are two of the

fundamental problems on graphs. The vertex-coloring problem is to color

the vertkes of a given graph with t.he minimum number of colors so that.

no two adjacent. vertices are assigned the same color. Fig. 1.2(a) depicts a

vert.ex-coloring of a graph using five colors. The edge-coloring problem is to

color the edges of a given graph with the minimum number of colors so that

no two 'ldj'lcent, edges are a.~signed t.he same color. Fig. 1.2(b) depicts an

edge-coloring of a graph using seven colors, where colors are shown next. to

the edges,

1.3 Ranking Problems

The vertex-ranking problem and t.he edge-ranking problem are restrictions

of the vertex-coloring problem and edge-coloring problem, respectively.

1.3.1 Vertex-Ranking Problems

An ordinary vertex-ranking of a graph G is a labeling (ranking) of t.he vertices

of G with positive int.egers such that. every p~,th between any two vertices

•
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Figure 1.2: (a) An optimal vert.ex-ranking of a graph G, (b) an optimal
edge-ranking of the graph G.

with the same label i contains a vertex with label j > i [IRV88]. Clearly a

vertex-labeling is a I-vertex-ranking if and only if, for any label i, deletion

of Itll vertices with lltbel > i leltves connected components, each having at

most one vertex wit.h Iltbel i. The integer lltbel of a vertex is called the rank

of t.he vertex. The minimum number of ranks needed for It vertex-ranking

of G is called the vertex-mnking number of G. A vertex-ranking of G with

minimum number of ranks is called an optimal vertex-ranking of G. The

vert.ex-nlJlking problem, also called the ordered coloring problem [KMS95],

is to find an optimal vertex-ranking of a given graph. The constraints for

the vertex-ranking problem imply that two adjacent vertices cannot have the

same rank. Thus t.he vert.ex ranking problem is t.he rest.riction of the vertex-

coloring problem. Fig. 1.2(a) shows an optimal vertex-ranking of a graph G

using five ranks, where ranks Itre shown next t.o t.he vert.ices.

Generalized Vertex R.ankings

Two generali7.ations of t.he ordinary vert.ex-ranking have been int.roduced

[ZNN%]. In this section we deline t.he "r.-vert.ex-rauking" of a graph, and

genera.li7.e t.he applicat.ion of ordinary vert.ex-ranking problem.
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c-Vertex-Ranking

6

A nat.ural generali7.at.ion ofvert.ex-ranking is t.he "c-vertex-ranking" [ZNN95].

For a posit.ive int.eger c, a c-venex-mnking of a graph G is a labeling of the

vertices of G with int.egers such that, for any label i, deletion of all the

vertices with label> i leaves c.onnected c.omponents, each having at most

c vert.kes with label i. Clea.r1y an ordinary vertex-ranking is a I-vertex-

ranking. The minimum number of ranks needed for a c-vertex-ranking of G

is called the c-vertex-ranking number, and is denoted by re(G). A c-vertex-

ranking of G \Ising re(G) ranks is called the optimal c-vene.x-ranking of G.

A c-venex-ranking problem is to find an optimal c-vertex-ranking of a given

graph. Fig. 1.3 depicts an optimal 2-vertex-ranking of a graph G using four

ranks, where ranks are drawn next to the vertices.

3 2

I::Y1

I L

4

Figure 1.3: Opt.imal 2-vertex-ranking of a graph G.

f-Vertex-Ranking

We may replace t.he positive integer c by a function f : {I, 2, ... , n} -t N to

define a more generali7.ed vertex-ranking of a graph as follows: an f-venex-

ranking of a graph G is a labeling of the vertices of G with integers such that,

for any label i, deletion of all the vertices with labels> i leaves connected
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components, each having at most j(i) vertices wit.h label i [ZNN95]. Clearly

a c-vert.ex-ranking is a spedal cnse of j-vertex-ranking where j(i) = c for

every rank i. The minimum number of ranks needed for an j-vertex-nmking

of G is called the j-vertex-ranking number, and is denoted by r J (G). An j-

vNtex-ranking of G using rf(G) ranks is called the optimal j-vertex-ranking

of G. The j-vertex-ranking problem is to find an optimal j-vertex-ranking

of a given graph. The problem is NP-hard in general, since the c-vertex-

ranking problem is NP-hard. Fig. 1.4 depicts an optima! j -vertex-ranking of

a graph G using four ranks, where ranks are drawn next to the vertices and

the fllncl.ion is given in the right side of the figure.

20 10
Ranks i f(i)

b 2 4 I4

-' 3
2 I
I 2

Figure 1.4: Optimal [-vertex-ranking of a graph G.

1.3.2 Edge-Ranking Problems

The edge-ranking problem is defined analogous.to the vertex-ranking prob-

lem. An ordinary edge-ranking of a graph G is a labeling (ranking) of the,

edges of G with positive integers such that, every path between any two edges

with the same lahel i contains an edge with lahel j > i [TRV91J. Clearly an

edge-labeling is a l-edge-ranking if and only if, for any label i, deletion of

all edges with labels> i leaves connected components, each having at most
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one edge with label i. The integer lahel of an edge is called the rank of the

edge. The minimum number of ranks needed for an edge-ranking of G is

called the p.dge-ranking number of G. An edge-ranking of G with minimum

number of ranks is called an optimal edge-ranking of G. The edge-ranking

problem is to find an opt.imal edge-ranking of a given graph. The constraints

for the edge-ranking problem imply that two adjacent vertices cannot have

the same ran k. Thus the edge ranking problem is the restriction of the edge-

coloring problem. Fig. 1.2(b) shows an optimal edge-ranking of a graph G

in Fig. 1.2(30)using seven ranks, where ranks are shown next to the edges.

Generalized Edge-Ranking

The genera!i7,ation of ordinary edge-ranking can be introduced analogous to

the generali7,ed vertex-ranking.

1.4 Parallel Processing

The main purpose of parallel processing is to perform computations faster

than can he done with a single processor by using a number of processors con-

cmrenl,]y. A parallel computer is simply a collection of processors, typically

of the same type, interconnected in a certain fashion to allow the coordinate

of their adivit;ies and the exchange of dat.a. The proCI'BSOrSare assumed to

be located wit.hin a small distance of one another, and are primarily used to

solve a given prohlem jointly. A n important goal of parallel processing is to

present. algorithms that are suitable for implementation on parallel comput-

ers.
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1.4.1 Parallel Models

9

A formal comput.at.ionalmodel suit.able for sequent.ial proeessing of any proh-

lem is t.he random acces" machine (RAM), whieh assumes t.he presenee of a

certain proeessing unit, wit.h a random-acces:; memory attached t.o it., and

some way t.o handle t.he input. aud t.he output. ojlerations. Modeling parallel

comput.at.ion is considerably more challenging ~ven t.he new dimension in-

trorlueerl hy t.he presence of many int.erconnected processors. All tbe models

int.roduces so far are based on direct.ed acyclic graphs, shared memory, and

net.works. Among these t.he 8hared memory model.. where a number of pro-

cessors eommunicate through a common global memory, offers an attractive

framework for the development of algorithmic techniques for parallel com-

pu tations. The shared memory model serves our vehicle for designing and

analY7.ing our parallel algorithms in this thesis.

Shared memory

p
p

Figure 1.5: The shared memory model

Shared memory Model

In t.his model many proeessors Imve aeeess to a single shared memory unit"

More precisely, the shared-memory model consists of a number of processors,

each of which has its own local memory and ean execute its own local pro-

gram, and all of which c.ommunicate by exchanging data through a sha.red
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memory unit. Each processor is uniquely identified by an index, e:alled proce8-

sor number or proce,qsor id. Fig. 1.5 shows ageneral view of a shared-memory

model with p processors. The processors are indexed 1,2, ... ,p. There are two

basic modes of operation of a shared-memory model. In the first mode, called

synchronous. all the processors operate synchronously under the control of a

common clock. A standard name for the synchronous shared-memory model

is the pamlld mndom-acces,q machine (PRAM) model. Tn the second mode,

called asynchronous, each processor operates under a separate clock. Since

each processor can execute its own local program, the shared-memory model

is a multiple instruction multiple data (MIMD) type. That is, each pro-

cessor may execute an instrndion or operate on data different from those

P.xecutP.dor operatP.d on by any other proCP.ssorduring any givP.n tim I' unit.

There are several variations of the PRAM model based on the assumptions

regarding the handling of the simultaneous access of several processors to

the same location of the global memory. The exclusive read exclusive write

(RRRW) PRAM dol'S not allow any simultaneous access to a single memory

location. The concurrent read exclusive write (CREW) PRAM allows simul-

taneous access for a read instruction only. Access to a location for a read or a

write instr1lction is allowed in the concurrent read concurrent write (CRCW)

PRAM. The three principal variet.ies of CRCW PRAMs are differentiated

hy how mncurrP.nt writP.s are handlP.d. The common CRCW PRAM allows

concurrent writes only when aJI processors are attempting to write the same

value. The arbitrary CRCW PRAM allows an arbitrary processor to succeed.

ThP. priority CReW PRAM assumes that the indices of the processors are

linearly ordered, and allows the one with the minimum index to succeed.

Other variations of thP. CReW PRAM modP.I exist. It. t,irns out that thesP.
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three models (EREW, CREW, CRCW) do not differ substantially in their

computational powers, although CREW is more powerful than the EREW,

and the CRCW is the most powerful.

1.5 Application and Known Results

The pamllel algorithms for vertex-mnking problem and edge-ranking prob-

lem have received much a!.t.ention these days because of their growing number

of applicat,ions. The parallel algorit.hms for ranking problem plays an impor-

tant role in the parallel Cholesky factorization of matrices [DRB3, Lui90J.

Let M he a sparse symm"tric mat.rix, and 1,,1, M' hI' a matrix obtain"d from

111. by replaein!!; each nonzero element with 1. Let G be a graph with ad-

jac"ncy mat.rix M'. Then an optimal c-vertex-mnking of G corresponds to

a generali7,ed Cholesky factori7,ation of 111. having the minimum recursive

depth. It. also has applicat.ions in VLSI layout [SDG92J and in schedul-

in!!; the parallel assembly of a complex mult.i-part product from it.s compn-

nents [lIW88]. [RKOl] proposed an aJgorithm of O(JOg2n) time using O(n)

operat.ions on the common CReW rRA!vI model for t.he r.-vertexcranking

of trees. Whereas [KZNOO]proposed an algorithm of O(log2 n) t.ime us-

ing O(1l6(k+l)(n+I)+1.log~(k+l)(3k+2l+1n) operat.ions on the common CRCW

PRAM model for the c-vert.ex-mnking of partial k-trees, where a s: 5. The

problem of finding an optimal c-edge-ranking of a graph also has the appli-

cat.ion in scheduling t.he pamllel a.ssembly of a complex multi-part product

from it.s component.s, where t.he v"rt.ices correspond to the components and

1.111' "d!i"S COlT(~SI)("Hlsto ass"lnbly ()l)(~rat.i()n.Let us consider a rohot with

c + I hands which can connect. at most. c + J connected components at. a

t.ime. If we have as many rohot.s as we need, then the problem of minimi7,ing

("~
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~;Iasses
Time Operations PRAM Refof Graphs

Trees o (10.Q2n) 0(11.) EREW [RK01J
0(n6(k+I)(4+1j+l.
1 3(k+ I)(3k+2)+ 1 )

Partial 0.Q2 11. Common
k-Trees 0(10.Q2n) where, a < 5 CRCW [KZNOO]

Senes-Parallel
0(nl09Iog~3 11.)

Common
Graphs 0(IO.Q2n) I CRCW [KZNOO]

Our Results
Series-Parallel Pnonty

Graphs O(lO.Q2n log2Io.Q2n) 0(c2n5Iog~+1 11.) CRCW
Series- Parallel pnonty

Graphs 0(10.1211.) 0(c3n? log~_q311.) CRCW

Table 1.1: Known results and our results for c-vertex-ranking.

t.11P number or st.eps required ror t.he parallel assembly or a produc:t using

the robot.s is equivalent to finding au optimal c-edge-ranking of the graph G.

Fig. 1.G(b), which shows t.he separator tree of Fig. l.G(a), shows that one can

assemble in parallel a product of Fig. 1.6(a) using two robots of three hands.

Note that., among the t.hree connected components in step 1, there are two

connected component.s which are not isolated vertex. In each st.ep a robot can

simult.aneously connect. at most. t.hree connected components of the previous

step. For the edge ranking similar results are found. [R.K01] proposed an al-

gorithm or 0(610g2 11.)time using 0(611.) operations on the common CRCW

PRA M mocld for t.he ,,-edge-ranking of trees. Whereas [KZNOO]proposed an

algorithm of 0(log2 11.)time using 0(n6(k+l)(b+l)+l.log~(k+l)(3k+2)+1 11.)operar

tions on the common CRCW PRAM model for t.he c-edge-ranking of partial

k-trees, where b ~ 36. Table 1.1 and 1.2 summarizP"s the known results for

,,-vertex-ran kings ami c-edge-rankings for different grapbs. Tbe tables also

show our results for c-vertex-rankings ancl c-edge-rankings for series-parallel

graphs.

t
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Figure 1.6: (a) An optimal 2-edge-ranking, (b) its corresponding separator
tree.

Classes
PRAM Refof Graphs Time Operations

Trees 0(6.lo.92n) O(6.n) EREW [RKOl]
O(n"tk+J)(Hl)+I.

Partial
1 3(k+1)(3k+2)+1 )

Common0.'12 n
k-Trees o (lo.Q2n) where, b S; 36. CReW [KZNOO]

Series-Para.! lei
o (n54tH19 log;4 n)

Common
[KZNOO]Graphs 0(10.'12n) CReW

oIIr Resul ts
Series- Parallel PrIOrity

Graphs 0(10.'1211Illg2IO!/211) O((h,Y"+l log~+1n) CReW
Series-Parallel t'f1oflty

Graphs o(lO.IJ2n) O(c3n6Mllog~+1 n) CReW

Table 1.2: Known resll\t;s and our results for c-edge-ranking.

",
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1.6 Summary

14

In this thesis we present parallel algorithms which give the c-vertex-ranking

and c-edge-ranking of a series-parallel graph. Our algorithm for c-vertex-

ranking runs in O(log2 n) time using O(c3n71og~~1n) operations. We also

give an algorithm that runs in O(log2 n log2log2 n) time using O(c2n5Iog~+1 n)

operations. The parallel computation model we use is priority CReW PRAM.

Our algorithm for c-edge-ranking runs in O(log2 n) time using O(c3n6A+llog~+1 n)

operations. We also give an algorithm that runs in O(log2 11. log2log2 11.) time

using O(c2n4A+llog~+1 n) operations. Here also the parallel computation

model we use is priority CRCW PRAM.

Rest of the thesis is organi7,ed as follows. Chapter 2 gives preliminaries.

Chapter 3 and 4 give t.he parallel algorithms for c-vert.ex-ranking and c-edge-

ranking for series-parallel graphs, respedively. Finally Chapter 5 concludes

with a discussion of the results and future works.



Chapter 2

Preliminaries

2.1 Introduction

In this chapter we give some basic definitions a.nd element,a.ry characteristics

of series-parallel graphs. Dp,finit,ions t.hat am not inc1udp,d in this chapter

will be introduced, as they are np,edp,d. We staJ't, in Section 2.2, by giving

somp,dp,finitions of t.he standard gra.ph-thP.Oretic~1terms used throughout the

remainder of the thesis. In Section 2.3 we give definitions of some special

graphs used in the thesis and introduce the binary decomposition tree of a

series-parallel graph.

2.2 Basic Terminology

2.2.1 Graphs and Multigraphs

A graph G is a structure (V, E) wh ich consists of a finite set of vertices V

and a finite set of edges E, where each edge is an unordered pair of vertices.

We call V(G) the vertex-set of the graph G, and E(G) the edge-set of G.

Throughout this thesis the number of vertices of G is denoted by n, that is,

n = 1V I. If e = (v, 1IJ) is an edge, then e is said to join the vertices v and

1lI, and these vertices are then said to be adjacent. In this case we also say

that wand 1J are neighbors of each other, and that e is incident to v and

15
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iJJ. If a graph a has no "multiple edge" or "loop", then a is said to be a

simple graph. Multiple edges join the same pair of vertices, while a loop joins

a vertex to itself. The graph in which loops and multiple edges are allowed

are called mnltigmph. Sometimes a simple graph is simply called by a graph

only if there is no confusion.

2.2.2 Degree of a Vertex

The degree of a vertex v in a graph a is said to be the number of edges

incident to 11, and is denoted by dc(lI) or simply by d(v). The maximum

degree of G is denoted by L\(G) or simply by L\.

Fig. 1.] depicts a graph of five vertices (each of degree 3 except V5 which

has degree 4) and eight edges, where vertices drawn by circles, edges by lines,

vertex names next, to the circles and edge names next to the lines.

2.2.3 Subgraphs

A MLhgraphof a graph G = (V, E) is a graph G' = (V', E') such that V' ~ V

and E' c::; E; we write this as G' c::; a. If a' contains all the edges of G that

join two vertices in V', then G' is said to be the snhgmph induced by V', and

is denoted by a[V'J. If V' consists of exactly the vertices on which edges

in E' are incident, then G' is said to be the suhgmph induced hy E', and is

denoted by G[V'J. Fig. 2.1(a) depicts a subgraph of G in Fig. 1.1 induced

by {VI, 112, 114, 115} and Fig. 2.1(b) depicts a subgraph induced by {eJ, e2, e4}'

We often construct new graphs from old ones by deleting vertices or edges.

If 11 is a vertex of a given graph a = (V, E), then a - v is the subgraph of

G obtained by deleting the vertex 11 and all the edges incident to v. More

generally, if V'is a subset of V, then a - V'is the subgraph of G obtained by

deleting the vertices in V' and all the edges incident to them. Then G - V'
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is a suhgraph of G induced hy V - V'. Similarly, if e is an edge of G, then

G - v is the subgraph of G obtained by deleting the edge e. More generally,

ir E' <;; E, then G - E' is the suhgraph of G obtained by deleting the edges

in E'.

"2 (a) (h)

"5

Figure 2.1: (a) A subgraph induced by vert,ices, (b) a subgraph induced by
edges.

2.2.4 Paths and Cycles

A 110 - 11, walk in G is an alternating sequence of vertices and edges of G,

110, el, ... ,111-1, PI, 111 beginning and ending with a vertex, in which each edge

is incident to two vertices immediately preceding and following it. If the

vertices "0, "1, ... , "I are distinct. (except, possihly, 110, v,), then the walk is

called a path and is usually denoted hy 110111... 111. The length of a path is I,

one less that the numher or V(~rticeson the path. A path or a walk is ,qimple if

it does not include the same edge twice. A path or a walk is c/o.qed if v, = vo.

A closed path containing at least one edge is caned a cycle. One example of

a walk in G depicted in Fig. 1.1 is '11, el, 112, e8, 113, e7, 111, which is not closed.,
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2.3
2.3.1

Some Special Graphs

Partial k-Trees

A natural generalization of ordinary trees is the so-called k-trees. The class

of k-trees is defined recursively as follows [Sch89J.

1. A complete graph with k-vertices is a k-tree.

2. If G = (V, E) is a k-tree and any k vertices VI, V2, •.. , Vk induce a com-

plete subgraph of G, then G' = (V U {w}, E U {(Vi> w) 11 ~ i ~k}) is a

k-tree, where 1/} is a new vertex not contained in G.

3. All k-trees can be formed with rules (a) and (b).

Figure 2.2: A partial 3-tree.

A graph is called a partial k-tree if it is a subgraph of a k-tree. Thus

a partial k-(.ree G = W,E) is a simple graph without multiple edges or

self-loops, and lEI ~ kn. Fig. 2.2 depie:t.s a partial 3-tree.

2.3.2 . Series-Parallel Graphs

A (two-terminal) 8erie.9-paralld graph is defined recursively as follows (See

Fig. 2.3).
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1. A graph G of a single edge is a series-parallel graph. The ends v, and

", of the erlge are callerl the terminals of G anrl are denoted by v,(G)

and ",(C), respedively.

2. Let G, be a serie~parallel graph with terminals v,(G1) and v,(Gd, and

let. G2 be a series-para.llel with terminals v,(G2) and Vt(G2). Then,

(a) (b)

Figure 2.3: (a) A series connect.ion, (b) a parallel connect.ion.

(a) A graph G obtained from C, and G2 by identifying vertex Vt(G1)

with v,(G2) is a series-parallel graph whose terminals are v, (G) =

v,(G1) and Vt(G) = Vt(C2). Such a connect.ion is called a series

connection, and G is denoted by G = G 1 • G2•

(h) A graph G obtained from G} and G2 hy identifying vertex v,(G1)

wit.h ",(G2) and 1It(GJl with 1It(G2) is a series-parallel graph whose

terminals are v,,(G) = v,(Gd = V5(G2) and Vt(G) = Vt(G1) =

1I,(G2). Such a e.onnect.ion is e.alled a parallel c.onnedion, and G

is denoted by G = G1 II G2.

The Terminals lI,(G) and lIt(G) of G are often denoted shortly by v.

and ",.

A serie~parallel graph e.an be represented by a "binary dec.omposition tree"

[TNS82J. Fig. 2.4 illustrates a serie~parallel grapb graph C and its binary



Preliminaries 20

I'
S

(a)

p

/ ""
c1\o 6 S "" p

(,:, , 11) (vI' 't) (v .• ' 'i) / ""

c1''b c1''b
(v2' 13) (v3' 1;)(v2' '4) (v4' '})

(b)

Figure 2.4: (a) A series-parallel graph, (b) its binary decomposition tree n.

decomposition tree n. Labels sand p attached to internal nodes in n
indicates series and parallel connections, respectively, and nodes labeled sand

pare r.alled s- and p-nodes, respectively. A node 1L of tree Tb corresponds to a

subgraph of G, which is denoted by Gu• A leaf of n, in particular, represents

a subgraph of G induced by two vertices, that is, an edge. Let T(x) denote

tbe subtree of T rooted at node .7:. Let Sx = {vx, Vt} be the set of terminals

of Gx. We associat.e a subgraph Gx = (Vx, Ex) of G with each node x of T,

where

Vx = U{SyIY = x or y is a descendant of x in T},

Ex = U{eyly is a leaf node in T(x)}.

The graph associated with the root of T is the given graph G itself.

2.4 Visible Vertices and Visible Edges

Let <p be a vertex-labeling of a series-parallel graph G = (V, E) with positive

int.egers. The label (rank) of a vertex v E V is denot.ed by <p(v). The number

of ranks used hy a vertex-labeling <p is denoted hy #<P. Without loss of

generalit.y it. call be assumed t.hat. <p uses consecut.ive int.egers 1,2,3 ... , #<P as

(;

I/,

" ~.
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the ranks. The rank of a vertex u E V is said to be visible from a vertex

11 E V under rp in G if G h&s a path P from 1L to 11 every vertex of which

ha.s a rank:::: rp(u). Thus the smallest rank visible from v under rp is equal

to rp(v). The list of all visible ranks from 11 is called vi.~ible set of 11 and is

denoted by 1,(rp, v). Fig. 2.5 depids the visible list for a fa.nking of a tree

where the number and t,he number set next to the node represent the rank

and the visible list for the node respectively. In this figure, for example, the

nodes a, b, c, h are visible from node a, so the visible list for node a is the set

of mnks of a, b, c, h, that is, {2,2,2,1}. If rp is a c-vertex-ranking of G, then

we nol.l~that a distinct. rank i C1l.nappear:::: c times in L(rp,lI).

Iii (II {II III

Figure 2.5: A ranking of a tree.

For a suhgraph Gx = (Vx, Ex) of G, we denote by rplGx a restrictian of rp

to Gx: let rp' = rplG" then rp'(V)= rp(v) for v inVx. The following lemma. is

cited from [KR99J.

IJemma 2.1 Let T be a binary decampasitian tree af a series-parallel graph

G, and ld x be a nade in T. Then a verl.ex-labeling rp o.f Gx iB a c-vertex-

rankinq o.fGx if and anly if,

1. 0.1. ma.5t c ver.tices af the same rank are visible from any vertex 11 E

ST U Sy nruler rp in CiT; and

,.,
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2. if x is an internal node in T and ha,9 two children y and z, then eplGy

and <pIG. are c-vertex-rankin,qs of Gy and G., respectively. 0

Similarly let ep be an edge-labeling of a series-parallel graph G = (V, E)

with positive int,egers. The label (rank) of an edge e E E is denoted by

ep(e). The number of ranks used hy an edge-labeling <pis denoted by #ep.

Without loss of generality it can be assumed that ep uses consecutive integers

1,2,3 ... , #<P a.~ the ranks. The rank of an edge 1L E E is said to be visible

from an edge e E E under ep in G if G has a path P from 1L to e every edge

of which has a rank :s: ep(lL) Thus the smallest rank visible from e under ep

is equal to ep(e), TIle list of all visible ranks from e is called visible set of e

and is denoted by L(ep, e). If <P is a c-edge-ranking of G, then we note that

a distinct rank i can appear :s: c times in L('P, e).

For a subgraph Gx = (V" Ex) of G, we denote hy eplGx a restriction of ep

to Gx: let <p'= eplG., then ep'(e) = <pre) for e in Ex, Then the Lemma 2.1

also holds for c-edge-ranking.

2.5 Conclusion

In this chapter we have introduced the hasic definitions relating to graphs

and mult.igraphs, degree of a vertex, subgraph~, paths and cycles etc, Also we

have introduced some special graphs like parti3.l.k-trees and series-parallel

graphs. At the end of thesis chapter we have introduced the definitions

and some properties of visible vertices and visible edges. The definitions

introduced in this chapter will help understanding the remaining of the thesis.



Chapter 3

Vertex Rankings of
Series-Parallel Graphs

3.1 Introduction

This (:ha.pter df'als with thr~pa.ralld algorithm for gf'nf'rali7.f'd vf'rtf'x-ranking

problmn on smif's-pa.ralle1 graphs. Sincf' a series-parallel graph is a part.ial

2-t.ree, one can oht.ain a parallel algorit.hm for generali7.ed vert.ex-ranking of

series-parallel graphs from the parallel algorit.hm of part.ial k-trees [KZNOO].

However that would cost O(nl091og~3 71.) operations in worst case. In this

chapter we present. a pa.rallel algorithm that gives the c-vertex-ranking of a

series-parallel graph G in O(log2 n) t.ime using O(c3n710g:.~.171.) operations

if a hinary rlf'composition t.rf'f' 1'b or (; is given. WI' also givf' an algorithm

that runs in O(log, n log, log, 11.) time using O(c2n510g~+1 11.) operat.ions. The

1):U'all•.1cntlll'ul.at.ion mod •.l w•. us•. is priority CHCW(ConcuTT •.nl. rr~adCOll-

cllrn~lli. Wril.,,) PI1AM(Parall(:1 \l.",ndOlllAccess M~('.hine).

The r•.sl. or t.hf~chapter is organi7.ed a.sfollows. Section 3.2 <:il.esthe upp •.r

hOllnd for c-vertex-ranking numhr:r. Sections 3.3 anrl 3.4 show the equations

t.o caJelilate the e'lllivalence e1ass and dominance class, respectively. Sect.ion

3.fi rlisclIssf'S t.he t.radit.iolJaJ trf'f' contraction algorithm and the modified

shunt operation used in Olir algorithm. Sect.ion 3.6 finally giV('s our parallel
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algorithms.
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3.2 The Upper Bound for c-Vertex-Ranking
Number

In this section we cite the result on the c-vertex~ranking number rc(G) of a

series-parallel gra.ph G from [K01]. We first cite the following lemma from

[ZNN95].

Lemma 3.1 Every tree T of n vertices has a vertex whose removal leaves

subtrees each having at most nl2 vertices.

Using Lemma 3.1 [1<01J proved the following lemma.

o

Lemma 3.2 For any positive integer a, every tree T of n vertices has at

most 0 vertice.9 whose removallP.ave.9 subtrees each having at mO.9tlnl (0+ l) J

vertices. o

Using the above two lemmas [KOl, KR99] proved the following lemma.

Lemma 3.3 Let c be any positive integer which i.9not always bounded, and

let G be a series-parallel graph of n vertices. Then

rc(G) :s; 1 + 210gc+1 n. 0

3.3 Equivalence Class

Many algorithms on series-parallel graphs use equivalence class. On each

node of the tree decomposition, a table of all possible partial solutions of the

problem is computed, where each entry in the table represents an equivalent
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class. The num bel' of operations for parallel algorithm depends on the size of

the t.able. Therefore a suit.able equivalence class is always found out. Kashem .

ct. al defined a suit.ahle equivalence class for series-pa.rallel graphs [KR99J.

Let. 7b be a binary decomposit.ion tree of a series-parallel graph G. Let

R =0 1.2..... Tn be t.he set of ranks. Let. x be a node in n. and let rp : Vx 4 R. , . .

he a vert.ex laheling of t,he subgraph ex =0 (Vx, Ex). lyeI' ct. al. introduced

t.he idea of a "critical list." to solve t.he ordinary vertex-ranking problem

[IRV88]. A similar idea of vi.~iblc list-set L(rp, v) is as follows [KZNOO]:

D(rp,v) =0 {rp(u) I u E Vx is visihle from v under rp in Gx}.

Let. I, be mult.i-set. of int.egers. Then by munt(£, i) we denote the number

of i's contained in £.

For a vertex-labeling rp of ex, minimum obstacle in the path from v. to

v, A", A" E RU{O} is defined as follows:

A'P =0 minfAlex has a path P from v., to v, such that 'p(u) ::; A for each

internal vertex u E P}.

Let, A'P =0 0 if (v•. v,) E Ex. If vertex 11. E Vx is visible from v, and

rp(u) :c: rnllX{rp(v.,), A,,} then 11 is also visible from v5•

I,,{,t.I be a posit.ivp int.e[!;er,.ran[!;ing;from 1 t.o A". A peer-list £p(rp, v, I) and

II. lWC1'-Ii.~I.-"ct [,,(rp) for a s0l'i,'s-p".rail<'1graph ex RrP. defined liS follows:

I",('p, v." l) =0 ',('p,115) U [l ::; L(rp, v,) < A'PJ;

Lp('I', v" I) =0 L(rp, 11,) U [I::; L(rp, v5) < A'PJ; Rnd

Actnally, peer-list from vertex ".' incorporal.c,s portion of visible-list at, v" liS

if 'then, exist. anol.ber path from v, 1.0 v, having; I as t.he rnittimum obst.acle.
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This extra component in peer-list is called by look-ahead-component. A pair

'Rp(rp), called peer-vector, is defined as follows:

A 'Rp( rp) is called a feasible vector if the vertex-labeling rp is a c-vertex-ranking

of G. and cmmt(Lp(rp, v, I), i) ~ c for all v E S. and i E R. We then cite the

following lemma from [KR99J.

J.•emml1 3.4 T,et 'P and 1) be tll/Oc-vcrtex-rankings ofG., "llch that 'Rp(rp) =

'Rp (77). Then rp is p.xtensible if and only if 1) is p.xtensible. o

If either Gx = Gy • Gx or Gx = Gy II Gx then a vertex labeling of Gx can

he ohta.ineo from the I;-vertex-rankings of Gy a.no Gx hy using the following

two important lemmas [KR99J:

Lemma 3.5 Let Gx = Gy • G,. Let Vs and v be the terminal nodes of

Gy and let v and Vt be the terminal nodes of Gx• Let 1) and 1/! be the 1;-

vertex-rankings of Gy and G" respectively. Let lq = max{l, 1/!(Vt),A",}, 1", =

ma.r.{r, 1)(v.•), Aq}, 1)(v) = 1/)(v) and rp be the vertp.x-Iabeling of G p.xtended

from 1) and 1/!. Then
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Lemma 3.6 Let Gx = G"IIG •. LB! 11., and v, be the terminal nodes of G"

and let 11., and v, be the terminal nodes of G,. Let 7} and ~!be the c-verlex-

mnkinq ofG" and G., respectively. fA 7)(vs) = l/!(Vs) and 7J(11,)= 7/!(11t).Let

<pbe the vertex-labeling of Gx extended from 7) and 7/J. Then

£,.('{',11"I) ~ £,,(7J,1'"I) U L"(7/),11,,I). 0

3.4 Dominance Class

H RAx) is tlw set. of fe,!sible vedors for Gx then applyin('; the followin(';

elimin",Uon rule on R,,(:I:), Knshem ct. 0.1. have obtain(,1 th(~ dominanc,~

class RA.T) [KIl99J. If <p and <p' an~ any two lahellin(';s of Gx, w(~say that

<p domiontes <p' if any of Ow following conditions is tr1Jl~:

The sl't of f"Hsihl(, v"d.ors ohl.Hined from R,,(x) .applying the eliminat.ion

filiI' is <,,,,II,,ddmninonce doss R.,,(x). Then we have the following Jemmi!

from [KR99]:

Lemma 3.7 r,ct R.'d(:I:), RAY) o.nrlR.d(z) be the dominance c1asse.qobtainerl

from R,,(x), R,,(y) and R,,(z), respect.ively. Let R.d(x) be the dominance class , .
o
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By Lemma 3.4 and Lemma, 3.7 a dominance class 'Rd(x) can be seen as

a set, of ext.ensible c-vertex-rankings of Gz. Since IRI = m, 1 ~ Alp ~ m, and

o ~ wnnt( cp, 11, I) ~ c for a c-vertex-mnking cp and a rank i E R, the number

of peer-list,s L.(cp,v,l) is at. most. m(c+1)m for each vertex v E Sz = {V.,Vt}.

For elleh peer-list. [,.(CP, v., I), t.here can be at most m peer-list.s Lp(cp, VI,l)

for different. l. The number of dist.inct peer-list-sets £.(cp) can be at most

2m.2(c+ 1)m. Again elld of cp(vs) linn cp(Vt) can IIssume any value from 1 to

m. Since by Lemma 3.3 we have m ~ 1 + 2logc+l n = O(lo~+l n), the total

number of different feasible vectors on x is 0(cn210g:+J n) ..

I,emma 3.8 For a node x the dominance da.qB'Rd(X) from the peer llector

'Rp(x) can be computed on the priority CRCW model either in 0(1) time

where 0' is the cardinality of R.d(x) and m is the length of a liBt in'Rd(x).

Proof: For each list L.( cp, VS! I), there are at most a number of lists

L.(cp, "to I). Computing minimum of such a lists can be done on the priority

CRCW either in 0(1) time using 0(a2m) operations, or in 0(log1 IOg2a) time

using O(am) operat.ious [.JA92J.Since t.here are M,most. a lists T,p(cp,V., I), t.he
dominance c1l1sscan be comput.ed on the priority CRCW either in 0(1) time

usiug O(n~m) operations or iu (log21og2 n) time using 0(0'2m) operat,ions.D

3.5 Tree Contraction Algorithm

The tree contraction algorithm was originally introduced by Miller and Reif

[MR.85]. It takes 0(log2 n) time using O(n) processors, where n is the number

of nodes ill the tree. Several aut,hors [ADK+89, GMT88, Heg1, HY88, KD88]

have improven the algorithm as follows so that it takes 0(log2 n) time using
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O(n/log2 n) processors. A strur.ture is a triple (A, Fnode> Fedge) consisting

of a set A, a node lunc/.ion set F;,mk ~ {f I I : A x A --t A}. and an

edge lundio71 set Fed.qe ~ U I I : A --t A}. A bottom-up algebraic tree

computation tree on (A, Fnode, F~dge) is a binary tree Ii, such that: each leaf

node v of Tb is labeled by a function I" E F"nde; and each edge e of Ii, is

labeled by a funct.ion Ie E f'"dge' A label n( u) E A of each internal node u

of Tb is recursi vely defined as

" '.

Figure 3.1: Shunt, operation.

(112, u) (see Fig. in). The bottom-up algebraic tree comp'ttation (BATe)

problem on Ti, is t.o comput.e n(u) for t.he root. n of To. In order t.o solve

t.he BATe problem in parallel, He and Yesha int.roclllced the following shunt

opera/.ion [HY88]. Let. n be a node of 1;, with left. child Vl, right child V2, and

node of lIJ(Fig. 3.1). A shunt, operation on "1 is defined as follows: delete"1

and'll. from 'II,; make '112 I.h" ll.'i't. child of 'w with It new edge e = (112, tV); and
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assign p a funct.ion Ie defined by

30

For variable n E A, if the right child V2 of u is a leaf node, then a shunt

operat.ion performed on v? is defined similarly. Clearly a shunt operation

does not. affect. suhsequent. evaluation on n. The following elegant. t.ree-

contract.ion al~orithm solves t.he BATe problem [ADK+89, GMT88, He91,

HY88, K088, MR85J:

TRRR CONTRA CTTON A l,GORlTllM

begin

for each leaf v in parallel do

index(v) t--- index from left. to right wit.h increasing number;

repeat lIog nl - 1 t.imes

for each left. leaf 11 wit.h odd index in parallel do

if t.he v's parent, is not. t.he root of n then shunt v;

for each right leaf v with odd index in parallel do

if the v's parent is not t.he root of Tb then shunt v;

for each leaf v in parallel do

index( v) t--- index( v) /2
compute the label of the root. in n;

end

The following theorem was proved in [ADK+89, GMT88, He91, HY88,

KD88),

Theorem 3.1 The tree contraction algnrithm correctly solves the BATe prob-

lem. Morenver, if the evaluatinn of nnde and edge funcNnns and the shunt
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operation can be done by p processors in 0(1) time, this algorithm can be

implemented in O(logn) time tt.~ingO(pn/logn) processors, where n is the

number of node.~ in Tb• 0

3.5.1 Modified Shunt Operation

A temporary label R' (11.) of a node lL is a label of u which can be changed.

During t.he modified shunt operation of a node u we delete node VI and

u, but. do not. t.ransfer the label of non-leaf child V2 in place of u. Rather we

calculat.e t.he temporary label R'(u) based on the temporary label of V2, that

is R'(V2), and store it in node V2 as new R'(V2)' We update R'(u) with the

successive change in R'(V2). In this way we get the actual value of u, that is

R(u), when (,he actual value of V2, that. is R,(V2), is obtained.

The proof for the following theorem is immediate.

Theorem 3.2 If the edge or node function of the modified 8hunt operation

can he done by p processors in 0(1) time then Theorem 3.1 also holds for

Ollr modified algorithm to .>DIvethe BATC problem. 0

3.6 Parallel Algorithm

The main result of t.his chapter can be stated by the follOWIngtheorem.

Theorem 3.3 For an1l po.~itive integeT' c, an optimal c-verte-x-ranking of a

.~eries-paralld graph G with n vertices can be found on priority CRCW either

in

1. time 0 (lOg2n) u.~ing0 (c3n 7 log~~1 n) operations; or

2. time 0(log2 n log21og2n) using 0(c2n5 IOg~+ln) operations.
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Proof: Let. n be a binary decomposition-tree of G. we first give a

parallel algorithm to decide whether, for a given positive integer m, G has a

c-vertex-ranking rpwith #rp ~ m. We use tree contraction algorithm on the

binary decomposition tree n as follows: for each node x of n from leaves to

root, we construct dominance class of c-vertex-rankings of Gx from those of

two subgraphs Gv and G. associated with the children y and z of x. If the

dominance class at the root of n is non-empty, then the series-parallel graph

G corresponding to the root ofnhas a c-vertex-ranking rpsuch that #rp ~ m.

Then by using a binary search over the range of m, 1 ~ m ~ 1+ 210gC+1 n,

we determine the minimum value of m such that G has a c-vertex-ranking rp

wit.h m == #rp and find an optimal c-vert.ex-ranking of G.

We first compute thp, dominance class for ea,ch leaf in parallel. We then

show how we use the the t.ree contract.ion aJgorithm on Tb• InitiaJly temporary

table of dominance class for each internal node is empty. We first number all

the leaves, except the first one, from left to right in increasing order starting

from 1. Then we contract each odd numbered lp,af and its parent, if it is not

the root, hy using modified shunt operation in parallel. Let 1Jl and its parent

u is to hp, contracted and V2 be the othp,r child. "Also let w is the parent of

1L (sP'p'Fig. 3.1). Then V2 may bp, a Ip,aJor not. WP,calculate "/?!(u) by the

node function f(u) over "R(vd and temporary label "R/(V2) as follows :

Here the node function is the cross product of the tables of dominance classes

of v, and V2 (which are "R(v,) and "R'(V2), respectively) and the application

of the elimination rule according to t.he definition of dominance class and

Lemma 3.8. If "R'( V2) is empty we consider all possihle vaJues of "R/( V2). Our

f'dge fundion is the se1edion function. The existing "/?'(11) may be empty or
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not hefore the node funet.ion. Then we have two cases. Case 1: if the existing

1<'(11) is empty then we stOf" (.he newly calculate!1 7(.'(11) in node 112as 1<.'(112)

and innex it hy, if them any, the the pointers hy which corresponding 7(.'(112)

is indexed or by corresponding 7(.'(112). Case 2: if the existing 7(.'(u) is not

empty then we use the newly ca.1culated 7(.'(11.) to select entries from the

existing 7(.'(u). The select.ed entries are stores iIi node V2 as 7(.'(V2) and we

innex it hy, if there any, the pointers hy which the corresponding 7(.'(V2) is

inde-xed or hy corresponding 7(.'(7!2). It is clear that if V2 is a leaf child then

before th •• nod •• function 1<.(112) = 1<.'(112) and 7(.'(V2) is not pointed by any

one. The ahove algorithm is dted in the following fignre.

Procednr •• c- VRRTRX-RA NKTNG

/ /11 has a leaf child VJ, a non-leaf child 112and parent w. We contract v] and u.

begin

if 1)2 is a leaf then

compute 7(.'(11) as follows:

take tlw cross product. of 1(.(11,) and 1(.'(112)

apply the elimination rule

if the existing 1(.'(11.) is not. empty then

select the values from existing 7(.'(u)

whose pointer mal.ehes with newly calculated 7(.'(u)

store this 1(.'(11) as 1(.'(112) at node 112

else

compute 1(.'(11.) as follows

if 1(.' (112) is empty then

consider all possihle va.lu(~sof 112 as 1<.'(112)
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take the cross product of R(Vl) and ~'(V2)

apply the elimination rule

if t.he existing R'(n) is not empty then

select the values from existing R'(u) whose pointer

matches with newly cakulated 'R.!(n)

st.ore this R'(u) as R'(V2) at node V2and update

pointers accordingly

end

34

We now discuss the correct.ness and the complexity of our algorithm. First

we discuss the correct.ness of our algorithm. Actually the modified shunt op-

eration works hy gradually select.ing the correct values of R'(u) from all

possi hie values of R' (u). So the corrected R' (u) is a.\ways subset of existing

R'(u), if the exist.ing R'(u) is not empty. In this way the final value of R'(u)

achieved when the V2 is a leaf. So the algorithm works correctly. We now

discuss the complexity. We first show how to compute dominance class on

a leaf x of n. Since IRI = m, and lS'xl = 2, the numher of vertex-labellings

'P : Vx --t R is at most m2• For each vertex-labeling 'P, AI"( = 0) can be com-'

putI'd in 0(1) time. Since AI" = 0, the only possihle value of I is O. The peer

lists Lp(<p,v, I), v E S'x, can be computed in parallel in time 0(1) using 0(1)

operations. Then checking whether a vertex-labeling 'P is a c-vertex-ranking

of Gx can be done in time 0(1) using 0(1) operations and computing R('P)

can be done in time 0(1) with 0(1) operation. Therefore the peer class on

a leaf can he found in time 0(1) using 0(m2) = O(lo~+J n) operations. We

next show how to compute dominance class on an internal node x ofn from

those on t.wochildren 1/ and z of x. The dominance class on an internal node
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x can be obt.aineo from t.he cross proouct of t.he oominance classes of the two

children 11 and z. Since t.he cardina.lit.y of t.he dominance dass on each node is

O(ctl210!\~"lI), the ca.rdinalit.y of t.he cross product is O(c2n410g~+, 11.). Since

the length of a list is O(logcll 11.), hy Lemma 3.8 the dominance daBs on x can

be computed either in 0(1) time using 0(c3n4 10g~+111.) operations if the con-

stant time algorithm is used, or iu O{lOg2log2 11.) time using 0(2n410g~+1 n)

operations if t.he doubly logarit.hmie algorit.hm is used. The node function

(i.e. the selection function takes 0(1) time using operations no more than the

maximum cardinalit.y of a node. Finally the tree contraction takes 0(log2 n)

time and 0(11,) operations. So total complexity of the algorithm is either

O(log2 n) time using O(C31/ log~:~1 n) operations or 0(log2 n log21og2n) time

using 0{t2n" log;I' n) operations. The PRAM model used by the algorithm

is priorit.y CllCW.

3.7 Conclusion

o

In this chapter we Illwe int.roduced onr mam result for c-vertex-ranking.

Before that we have discussed the necessary defihitions and lemmas from the

previous works on c-vertex-ranking of series-parallel graphs specially from

[KR99J. The contents of this chapter are extensively used in the following

chapter of c-edge-ranking.



Chapter 4

Edge Rankings of
Series-Parallel Graphs

4.1 Introduction

ThiH rhapt.er nealH wit.h t.he parallel algorit.hm for generalized edge-ranking

problem on serie&-parallel graphs. Since a series-parallel graph is a part.ial,

2-t.ree, one can obt.ain a parallel algorit.hm for generalized edge-ranking of

serie&-parallel graphs from t.he parallel algorithm of partial k-trees [KZN98].

However t.hat would cost 0(n36'H1910g~3 n) operations in worst case. In this

rhapter we preHent a parallel algorithm that gives the c-edge-ranking of a

series-parallel graph G in 0(log2 n) time using 0(c3n66+110~+1 n) operations

if a hinary deromposit.ion t.ree 7b of G is given. We also give an algorithm

that runs in 0(log2 n log210g2n) time using 0(c2n4lHl 10g~+1n) operations.

The pamllel mmpntation monel we nse is priority CRCW(Concurrent relld

Concurrent Write) PRAM(Parallel Random Access Machine).

The rest of the chapter is organized as follows. Section 4.2 cites the

upper bounn for c-edge-ranking number. Sections 4.3 show the equations

to rakulate the equivalence class and dominance class for c-edge-ranking.

Sedion 4.4 finally gives our parallel algorithms.

36
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4.2 The Upper Bound for c-Edge-Ranking Num-
ber

In this sedion WI~ show thaI. the r-edge-ranking number «G) of a series-

parallel graph Gis {)(t> log,+! n).

Using Lemma 3.3, we have the following lemma.

Lemma 4.1 Let r be any po"itiv" integer whir.h i" not alway., bounded, and

let G be a "er-ie"-parallel graph of n-vertir.es. Then

4.3 Equivalence Class and Dominance Class

A vi.,ih/e li"t-.,(,t R.(rp, v) for c-edge-ranking is defined as follows:

R.(rp,1])= {rp(e)le E Ex is visible from v under 'I' in Gx}.

For an edge-Iaheling 'I' of GT( minimum obs/.ade in the path from 1], to

v, -\" A", E RU{O} is defined as follows: A",= min{.\IGx has a path P from

v., t.o I', slIch that 'I'(e) <:: A for each internal edge e E Pl.
All other definitions are saJJle as in Secl.ions 3.3 and 3.4. Wc thcn have

the following two lemmas for r-cdgc-ranking.

Lemma 4.2 Let Gx = Gu.Gz. Let Vs and v be the terminal nodes ofGy and

let v and v, be the terminal node" of G,. Let 'T/ and '1/; be the c-edge-ranking"

of GlI and G" r'C.,pedively. Let I,)= maxi I, A,p}, l,p= max {r, A~}, and 'I' be
the cdlJc-lo.l",li.nqof G r.J:lendedf7'Om 'T/ and '1/). Then
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L,,(<p, v.•. l) = Lp(T}, v.•. I,,) U [Lp(1,b, Vt. A,,) ~ lj, ifA" ~ I; and

Lp(<p,v"r) = Lp(1IJ, v"I",) U [Lp(T},v,r) ~ A",J, if A", < r; or

Lp(<p, v"r) = Lp(1/),v"I",) U [Lp(T},vs,A,;) ~ r], if A,; ~ r.D

38

Lemma 4.3 Let Gx = GylIGz' Let v, and v, be the terminal node.~ of Gy

(lnd let v, and v, be the terminal nodes of Gz. Let T} and 1/J be the c-edge-

mnking of Gy and G" respectively. Let cp be the edge-labeling of Gx extended

from T} and 1/). Then

By Lemma 3.4 and Lemma ,).7 a dominance cla.'l.~Rd(x) can be seen a.~

a set. of extensible c-edge-rankings of Gx. Since IRI = m, 1 ~ A", ~ m and

o ~ mnnt(cp, v, I) ~ r; for a r;-edge-ranking cp and a rank i E R, the number

of peer-lists Lp(<p, v, I) is at most. m(c+ l)m for each vertex v E 57 = {V., v,}.

For each pr;er-list. Lp(<p,v."l), t.her" can h" at. most m peer-list.s Lp(<p,v"l)

for different. I. The number of distinct peer-list-set.s £p(<p) can be at most

2m2(c+ 1)m. Since by Lemma 4.1 we have m ~ 1+2Lllogr.+l n = O(lOgr.+ln),

the total number of different feasible vectors on x.is O(cn26 IOg~+ln).

It. is also clear that t.he Lemma.<; 3.7 and 3.8 also hold for c-edge-ranking.

4.4 Parallel Algorithm

The main result of this chapter can be st.at.ed by the following theorem.
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Theorem 4.1 For any positive. inte.ge.r c, an opUmal c-e.dge.-ranking of a

se.rie.s-paralld flT'll/,hG with n vm.tices can be found on p"iority CRew either

1. time. 0(log2 n) using O(c:lnr.t>+llog~+l n) operations; or

2. time 0(log2 nlog21og2 n) with 0(c2n""+1Iog~+1 n) operation.s.

Proof: For the c-edge-ranking our algorithm works as in Procedure c-

VERTEX-RANKING except, t.he range of m is i~m. ~ 1+ 2t.. loge_I1n.

The correct.ness of the algorit.hm for the c-edge-ranking is analogous to the

c-vert.ex-ranking. Also t.he calculation for the complexit.y is almost similar.

Since for c-edge-ranking the cardinalit.y of the dominance dass on each node

is O(cnY:llog~,'1 n), t.he cardinality of the cross product. is O(c2n4L\ 10g~+Jn).

Since t.he lengt.h of a list. is O(logc II n), by Lemma 3.8 the dominance dass

on x can be computed either in 0(1) t.ime using 0(c3n6l\ 10g~+1n) open •.

tions if t.he consta.nt time algorit.hm is used, or in 0(log2log2 n) time using

0(c2n"" 10g~+1n) operat.ions if t.hedoubly logarithmic algorithm is used. Fi-

nally t.he jree cont.raet.ion t.akes D(log, n) t.ime and D( n) operat.ions. So total

complexit.y ofthe algorithm is either 0(log2 n) time using 0(C3n6l\+1 10g~+1n)

opera! ions or 0(log2 n log21og2n) t.ime using O( c2n4L>+1 log~+J n) operations.

The PIlAM model used hy the algorit.hm is priorit.y CRCW.

4.5 Conclusion

In t.his cha.pter we ha.ve introduced our main result, for c-edge-ranking. Before

t.hat. we have int.roduced !.he necessary nefinit.jons a.nd lemma.s in new fashion

suit.ahle for c-enge-ranking from t.hose for c-vert.ex-ranking in Cha.pter 4.

With t.his chapter t.he ma.in result. of (Jllr t.hesis is completed.



Chapter 5

Conclusion

This thesis deals wit.h t.he parallel algorithms for generalized vertex-ranking

and edge-ranking for series-parallel graphs. Since series-parallel graphs are of

great. pradical significance, we are p;lad to present such parallel algorithms.

In Chapt.er 1 we have int.rorluced t.he ranking problems and it.s signifi-

cance. In Cha.pt.er 2 we have cha.ract.erized t.he c-vertex-ranking and c-edge-

ranking of series-parallel graphs by t.he number of visible vert.ices. In Chapter

.3 we have given t.he parallel algorit.hm for c-vert.ex-ranking of series-parallel

graphs. In Chapt.er 4 we have given similar parallel algorithm for c-edge-

ranking of series-parallel graphs.

In c-vNt.ex(edge)-ranking when the positive integer c is replaced by a

function J : {I, 2, ... , n} --t N such t.hat, for any label i, deletion of all the

vert.ices(edges) wit.h labels> i leaves connected component.s, ea(;h having

at. most. J(i) vert.ices(edges) wit.h label i t.hen it. is called J-vert.ex(edge)-

ranking. Our parallel algorit.hms can be ext.ended for J-vertex-ranking and

J-edgl'-ranking of series-parallel graphs with slight modification. The com-

plexity for t.he f-vertex(edge)-ranking would be similar to the c-vertex(edge)-

ranking for series-parallel graphs. It. is possible to give a parallel algo-

rithm for f-vert.ex-ranking of series-parallel graphs t.hat runs in O(log2 n)

10
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time using O(n10 log~3n) operations, where n is the number of vertices in

G. Also an algorithm can be given for J-vertex-ranking of series-parallel

graphs that runs in O(log2 n log2 log2 n) time using O(n7 log~n) operations.

For the f -edge-ranking of series-parallel graphs an algorithm can be given

that runs in O(log? n) time using O(n66+4 log~n) operations, where t::. is the

maximnlll vertex-degree of G. Also an algorithm can be given for f-edge-

ranking of sl)1'ies-parallel gmphs that runs in O(log2 n log21og2n) time using

O( 46+3] 5) j'n og2n opera ,lons.

Finally, some open problems (,an be pointed ont from our work as follows:

(1) To find the optimal paralll'l algorithm for r:_vertex((~dge)-ranking of

series-parallel graphs.

(2) What is the complexity ofpara.l\el algorithms for c_vertex(edge)-ranking

of other classes of graphs

(3) What is t.he complexity of parallel algorit.hms for c-vertex( edge)-ranking .

of perfect graphs specially permutation graphs and chordal graphs.
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