M. Sc. Engineering Thesis

Parallel Algorithms for Rankings of
Series-Parallel Graphs

A L
Y, ﬁ-/m:?.é:z...ré‘\’g
T 225298 )

S

Submitted to

Department of Computer Science and Engineering
in partial fulfillment of the requirements for the degree of
M. Sc. Engineering (Computer Science and Engineering)

Department of Computer Science and Eﬁgineering
Bangladesh University of Engineering and Technology

May 07, 2001

U

J——



Parallel Algorithms for Rankings of

Series-Parallel Graphs
A Thesis submitted by

MASUD HASAN
Student No. 9605036p

For the partial fulfillment of the degree of |
M.Sc. Engineering (Computer Science and Engineering)
Examination held on May 7, 2001

Approved as to style and contents by:

V=5

DR. MD. ABUL KASHEM MIA

Assistant Professor

Department of Computer Science and Engineering
B.U.E.T., Dhaka-1000, Bangladesh

Coubld s,

DR. CHOWDHURY MOFIZGRRAHMAN,,

Associate Professor and Head
Department of Computer Science and Engineering

B.U.E,T., Dhaka-1000, Bangladesh

DRr. M. KAYKOBAD

Professor

Department of Computer Science and Engineering
B.U.E.T., Dhaka-1000, Bangladesh

DR. MD. SAIDUR RAHMAN
Assistant Professor

Department of Computer Science and Engineering
B.UE.T, Dhaka-1000, Bangladesh

2)&@”@-9’1"’0'

DR. A.HM. ZAHIRUL ALAM

Professor

Department of Electrical & Electronics Engineering
B.U.E.T., Dhaka-1000, Bangladesh

Chairman
and
Supervisor

Member

(Ex-officio)

Member

Member

Member
(External)

R

A




Contents

Contents

List of Figures
List of Tables
Acknowledgements
Ahbstract

1 Introduction

1.1 Background . ... ..
1.2 Coloring Problems . .

1.3 Ranking Problems . .

O T T T S R T T Y R |

......................

1.3.1 Vertex-Ranking Problems . . .. ............

1.3.2 Edge-Ranking Problems . . ... ............

1.4 Parallel Processing . .

1.4.1 Parallel Models

......................

iv

vi



Contents
1.5 Application and Known Results . . . .. .. .. .. e
1.6 SHMMATY . .« o v v oo o ot e e e e e e

2 Preliminaries

9.1 Introduction . . . . . . .« . i e e
2.2 Basic Terminology . . . . . . .o oo
2.2.1 Graphs and Multigraphs . . . . .. .. oL
222 DegreeofaVertex . ... ................
223 Subgraphs . . .. ... ...
2.24 Pathsand Cycles . . . .. ... .. ... I
2.3 Some Special Graphs . . . .. ... .. oo
231 Partial &-Trees . . . .. .. .. ...
2.3.2 Series-Parallel Graphs . . . .. ... ... 0oL
2.4 Visible Vertices and Visible Edges . . . . . . .. ... ... ..
25 Conclusion. . ... . .. ..

3 Vertex Rankings of Series-Parallel Graphs

3.1 Introduction . . . . . . ... e
3.2 The Upper Bound for c-Vertex-Ranking Number . . . . . . ..
3.3 Fquivalence Class . . . . . ... ... Cee e e
3.4 Dominance Class . . ... . ... .. e e e e
3.5 Tree Contraction Algorithm . . . . . e

3.5.1 Modified Shunt Operation . . . . .. ... . ... ...
3.6 Parallel Algorithm . . . . . ... ... o
3.7 Conclusion . . . . . . L L e

4 Edge Rankings of Series-Parallel Graphs

4.1 lIntroduction . . . . . . L e e e e

ii

11

14

15
15
15
15
16
16
17
18
18
18
20

22

23
23
24
24
27
28
31
31

36



Index

Contents - | iii
42 The Upper Bound for c-Edge-Ranking Number. . . . .. ... 37

4.3 Equivalence Class and Dominance Class . . v« v v v oo e s 37

4.4 Parallel Algotithm . . .. ..o 38

45 Conclusion . . . . .« . o v o v v ot e s e e 39

5 Conclusion | 40

- Bibliography 42

45



List of Figures

1.1

1.2

1.3

1.4

1.6

2.1

2.2

2.3

2.4

2.5

3.1

A graph with five vertices and eight edges. . . .. ... . ... 4

(a) An optimal vertex-ranking of a graph G, (b) an optimal

edge-ranking of the graph G. . . . . .. ... ... ..o 3]
Optimal 2-vertex-rankingof agraph G. . . . . .. ... . ... 6
QOptimal f-vertex-ranking of a graph G.. . . . e 7
The shared memory model . . . . . .. ... oL 9
(a) An optimal 2—edge-ra.nking, (b) its corresponding separator

LFBE. o o e e e e e e e e e e e e e e e e e e e e 13
(a) A subgraph induced by vertices, (b) a subgraph induced

byedges. . . . . . . . .. e 17
A partial 3-tree. . . . ... Lo o 18
(a) A series connection, (b) a parallel connection. . . . .. .. 19

(a) A seties-parallel graph, (b) its binary decomposition tree Tp. 20

A rankingofatree. . .. . ... .. ... 21

Shunt operation. . . . . . . . . .. ..o 29

v



List of Tables

1.1 Known results and our results for c-vertex-ranking. . ... .. 12

1.2 Known results and our results for c-edge-ranking.” . . . . . .. 13




Acknowledgements

First of all, T would like to thank my supervisor Dr. Md. Abul Kashem
Mia for introducing me to this interesting and fascinating field of rankings
of graphs, and for teaching me how to carry on a research work. His all out
help was the impetus of this work. His profound knowledge in this filed,
his keen interest and patience and the scholarly guidance and suggestions
at all stages of the work have made it possible to complete this thesis. His
careful reading of the manuscript led to improvements in both wording and
the technical aspects of the text. I again express my heart-felt and most
sincere gratitude to him for his constant supervision, valuable advice and
continuous encouragement. Without his patience, concern %Lnd efforts this
project would have not been possible.

I would like to thank the other members of my graduate committee, Prof.
Dr. A.H.M. Zahirul Alam, Prof. Dr. M. Kaykobad, Associate Prof. Dr.
" Chowdhury Mofizur Rahman and Assista.nt‘ Prof Dr. Md. Saidur Rabman,
for their valuable suggestions.

1 would like to give my special thanks to my colleagues who always gave
me inspiration. 1 would like to express my utmost gratitude to my parents
for their support, affection and inspiration. |

Finally, I would like to express my special thanks to my wife for her

endless mental support and iﬁspira.tion to carry on my work smoothly.

vi



CEELIN

-.2.‘,43-.’3?, pt

g,"; ‘\ 5’&2:2) 3
geor N
\q’ irqﬁahﬁgrﬂ g

'--....-

Abstract

This thesis presents parallel algorithms for generalized vertex-ranking and
edge-ranking of series-parallel graphs. A generalized vertex-ranking of a
graph G is defined as follows: for a positive integer ¢, a c-vertex-ranking
of a graﬁh G is a labeling of the vertices of G with integers such that, for
any label 7, deletion of all the vertices with labels > i leaves connected com-
ponents, each having af. most ¢ vertices with label 4. Similarly a generalized
edge-ranking of a graph G is defined. A c-vertex(edge)-ranking is optimal
if the number of labels used is as small as possible. The problem of finding
an optimal c-vertex-ranking of G plays an itnportant role for the parallel
Cholesky factorization of matrices. The c-edge ranking problem has appli-
cations in scheduling the manufacture of complex multi-part products; it
is equivalent to finding a c-edge separator trze of G having the minimum
height. In this thesis we present a parallel algorithm for c-vertex-ranking
of series-parallel graph G that runs in O(log, n) time using O(c*n" logl}; n)
operations, where n is the number of vertices in ;. We also give an algorithm
that runs in O(log, nlog, log, n) time using O(c?n®log?, ; n) operations. For
the e-edge-ranking of series-parallel graph & our algorithm runs in O(log, n}
time using O(c*n®2+'log!, . n) operations, where A is the maximum vertex-
“degree of G. We also give an algorithm for c-edge-ranking of series-parallel

graphs that runs in O(log, nlog, log, n) time using O(c*n14+!

h
log,.,, n) op-
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erations. The parallel computation model we use is priority CRCW PRAM.
Our algorithms assume that a binary decomposition tree of a series-parallel

graph is given.



Chapter 1

Introduction

In this chapter we provide the necessary background and motivation for this
study on the rankings of graphs. Starting with background in Section 1.1,
we go to the coloring problems in Section 1.2, ranking problems and its
variation in Section 1.3, parallel processing in Section 1.4, application and

known results in Section 1.5. Finally Section 1.6 summarizes the chapter.

1.1 Background

A graph is a common structure encountered in nature numerous times. A -
graph G = (V, F) with n vertices and m edges consists of a vertex set
V = {w,v2,...,0,} and an edge set F.= {e;, ez, ...,e,}, where an edge in
E joins two vertices in V. Fig. 1.1 depicts a graph of five vertices and eight
edges. For mathematical formulation of map, distance calculation among
cities, layont and circuit design graphs are used extensively. Having huge
computing power, recent research efforts in algorithms have encountered on
designing efficient algorithms for solving combinatorial probiems, particu-
larly graph problems. Efficient algorithms have been obtained for various
graph probleins, such as coloring problems, planarity testing problem and

maximum flow problem.



Introduction _ 4
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Figure 1.1: A graph with five vertices and eight edges.
1.2 Coloring Problems

The vertex-coloring problem and the edge-coloring problem are two of the
fundamental problems on graphs. The wverter-coloring problerﬁ is to color
the vertices of a given graph with the minimum number of colors so that
no two adjacent vertices are assigned the same color. Fig. 1.2(a} depicts a
vertex-coloring of a graph using five colors. The edge-coloring problem is to
color the edges of a given graph with the minimum number of colors so that
no two adjacent edges are assigned the same color. Fig. 1.2(b)} depicts an
edge-coloring of a graph using seven colors, where colors are shown next to

the edges.

1.3 Ranking Problems

The vertex-ranking problem and the edge-ranking problem are restrictions

of the vertex-coloring problem and edge-coloring problem, respectively.

1.3.1 Vertex-Ranking Problems

An ordinary vertex-ranking of a graph G is a labeling (ranking) of the vertices

of ¢ with positive integers such that every path between any two vertices
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(b)

Figure 1.2: (a) An optimal vertex-ranking of a graph G, (b) an optimal
edge-ranking of the graph G.

with the same label 7 contains a vertex with label j > i [IRV88]. Clearly a
vertex-labeling is a 1-vertex-ranking if and onllyll if, for any label i, deletion
of all vertices with label > i leaves connected components, each having at
most one vertex with label i. The integer label of a vertex is called the rank
of the vertex. The minimum number of ranks needed for a vertex-ranking
of (@ is called the vertez-ranking number of G. A vertex-ranking of (¢ with
minimum number of ranks is called an optimal verter-ranking of G. The
vertex-ranking problem, also called the ordered coloring problem [KMS95],
is to find an optimal vertex-ranking of a given graph. The constraints for
the vertex-ranking problem imply that two adjacent vertices cannot have the
same rank. Thus the vertex ranking problem is the restriction of the vertex-
coloring problem. Fig. 1.2(a) shows an optimal vertex-ranking of a graph G

using five ranks, where ranks are shown next to the vertices.
Generalized Vertex Rankings

Two generalizations of the ordinary vertex-ranking have been introduced
|ZNN95]. In this section we define the " e.vertex-ranking” of a graph, and

generalize the application of ordinary vertex-ranking problem.



Introduction 6

c-Vertex-Ranking

A natural generalization of vertex-ranking is the ” c-vertex-ranking” [ZNNI5].
For a posilive integer ¢, a c-vertez-ranking of a graph G is a labeling of the
vertices of G with integers such that, for any label 4, deletion of all the
vertices with label > i leaves connected components, each having at most
¢ vertices with label i. Clearly an ordinary vertex-ranking is a l-vertex-
ranking. The minimum number of ranks needed for a c-vertex-ranking of G
is called the c-verter-ranking number, and is denoted by r.(G). A c-vertex-
ranking of G using 7.(G) ranks is called the optimal c-vertez-ranking of G.
A c-verter-ranking problem is to find an optimal c—vertex—r.anking of a given
graph. Fig. 1.3 depicts an optimal 2-vertex-ranking of a graph G using four

ranks, where ranks are drawn next to the vertices.

Figure 1.3: Optimal 2-vertex-ranking of a graph G.

f-Vertex-Ranking

We may replace the positive integer ¢ by a function f : {1,2,...,n} = N to
define a more generalized vertex-ranking of a graph as follows: an f-vertes-
ranking of a graph G is a labeling of the vertices of G with integers such that,

for anv label i, deletion of all the vertices with labels > i leaves connected
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components, each having at most, f (1) vertices with label ¢ [ZNN95]. Clearly
a c-vertex-ranking is a special case of f-vertex-ranking where f (i) = ¢ for
every rank 4. The minimum number of ranks needed for an f-vertex-ranking
of G is called the f-vertez-ranking number, and is denoted by r§{G). An f-
vertex-ranking of G using 7;{(G) ranks is called the aptimal f-vertez-ranking
of G. The f-vertez-ranking problem is to find an optimal f-vertex-ranking
of a given graph. The problem is NP-hard in general, since the c-vertex-
ranking problem is NP-hard. Fig. 1.4 depicts an optimal f-vertex-ranking of
a graph G using four ranks, where ranks are drawn next to the vertices and

the function is given in the right side of the fgure.

Ranks ¢ fi)
4

1
1 3
2 i
1 2

Figure 1.4: Optimal f-vertex-ranking of a graph G.

1.3.2 Edge-Ranking Problems

The edge-ranking problem is defined analogous to the vertex-ranking prob-
lern. An ordinary edge-ranking of a graph.G is a labeling (ranking) of the
edges of G with positive integers such that every path between any two edges
with the same label i contains an edge with label j > 4 [TRVO1]. Clearly an
edge-labeling is a 1-edge-ranking if and only' if, for any label ¢, deletion of

all edges with labels > i leaves connected components, each having at most
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one edge with label i. The inieger label of an edge is called the rank of the
edge. The minimum number of ranks needed for an edge-ranking of G is
called the edge-ranking number of G. An edge-ranking of G with minimum
number of ranks is called an optimal ed.ge-mnkz'ng of G. The edge-ranking
problem is to find an optimal edge-ranking of a given graph. The constraints
for the edge-ranking problem imply that two adjacent vertices cannot have
the same rank. Thus the edge ranking problem is the restriction of the edge-
colaring problem. Fig. 1.2(b) shows an optimal edge—ré.nking of a graph G

in Fig. 1.2(a) using seven ranks, where ranks are shown next to the edges.
Generalized Edge-Ranking

The generalization of ordinary edge-ranking can be introduced analogous to

the generalized vertex-ranking.

1.4 Parallel Processing

The main purpose of parallel processing is to perform computations faster
than can be done with a single processor by using a number of processors con-
currently. A parallel computer is simply a collection of processors, typically
of the same type, interconnected in a certain fashion to allow the coordinate
of their activities and the exchange of data. The processors are assumed to
be localed within a small distance of one another, and are primarily used to
solve a given problem jointly. An important goal (-)f parallel processing is to
present, algorithms that are suitable for implementation on parallel comput-

ers.
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1.4.1 Parallel Models

A formal computational model suitable for sequential processing of any prob-
lem is the random access machine (RAM), which assumes the presence of a
certain processing unit. with a random-access memory attached to ii, and
some way to handle the input and the output operations. Modeling parallel
computation is considerably more challenging given the new dimension in-
troduced by the presence of many interconnected processors. All the models
introduces so far are based on directed acyclic graphs, shared memory, and
networks. Among these the shared memory moldel, where a number of pro-
cessors communicate through a common global memory, offers an attractive
framework for the development. of algorithmic techniques for parallel com-
putations. The shared memory model serves our vehicle for designing and

analyzing our parallel algorithms in this thesis.

Shared memory

i |
[~
oA

Figure 1.5: The shared memory model

Shared memory Model

In this model many processors have access to a single shared memory unit.
More precisely, the shared-memory model consists of a number of processors,
each of which has its own local memory and can execute its own local pro-

gram, and all of which communicate by exchanging data through a shared
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memory unit. Bach processor is uniquely identified by an index, called proces-
sor number or processor id. Fig. 1.5 shows a general view of a shared-memory
model with p processors. The processors are indexed 1,2, ..., p. There are two
basic modes of operation of a shared-memory model. In the first mode, called
synchronous, all the processors operate synchron;)usly under the control of a
common clock. A standard hame for the synchronous shared-memory modei
is the parallel random-access machine (PRAM) model. In the second mode,
called asynchronous, each processor operates under a separate clock. Since
each processor can execule its own local prngra.m., the shared-memory model
is a multiple instruction multiple data (MIMD) type. That is, each pro-
cessor may execute an instruction or operate on data different from those
executed or operated on by any other processor during any given time unit.
There are several variations of the PRAM model based on the assumptions
regarding the handling ol the simultaneous access of several processors fo
the same location of the global memory. The exclusive read exclusive write
(EREW) PRAM does not allow any simultaneous access to a single memory
location. The concurrent read exclusive write (CREW) PRAM allows simul-
taneous access for a read instruction only. Access to a location for aread or a
write instruction is allowed in the concurrent read concurrent write (CRCW)
PRAM. The three principal varieties of CRCW PRAMSs are differentiated
hy how concurrent writes are handled. The common CRCW PRAM allows
conciurrent writes only when all processors are attempting to write the same
value. The arbitrary CRCW PRAM allows an arbitrary processor to succeed.
The priority CRCW PRAM assumes that the indices of the processors are
linearly ordered, and allows the one with the minimum index to succeed.

Other variations of the CRCW PRAM model exist. It tirns out that these
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three models (EREW, CREW, CRCW) do not differ substantially in their
computational powers, although CREW is more powerful than the EREW,

and the CRCW is the most powerlul.

1.5 Application and Known Results

The parallel algorithms for vertex-ranking problem and edge-ranking prob-

lemn have received much attention these days because of their growing number
of applications. The parallel algorithms for ranking problem plays an impor-
tant role in the parallel Cholesky factorization of matrices [DR83, Lui90}.
Let M he a sparse symmetric matrix, and let M’ be a matrix obtained from
M by replacing each nonzero element, with 1. Let & be a graph with ad-
jacency matrix M'. Then an optimal c-vertex-ranking of (i corresponds to
a gencralized Cholesky factorization of M having the minimum recursive
depth. It also has applications in VLSI layout [SDG92] and in schedul-
ing the parallel assembly of a complex multi-part product from its compo-
nents [IRV88]. [RK01] proposed an algorithm of O(log, n) time using O(n)
operatinns on the common CRCW PRAM model for the c-vertex-ranking
of trees. Whereas [KZN00] proposed an algorithm of O(logyn} time us-
ing O(nSEHNa+D+1 1o BEFDEREDH operati‘ons on the common CRCW
PRAM model for the c-vertex-ranking of partial k-trees, where a < 5. The
problem of finding an optimal c-edge-ranking of a graph also has the appli-
cation in scheduling the parallel assembly of a complex multi-part product
from its components, where the vertices correspond to the components and
the edges corresponds 1o assembly operation. Let us consider a robotl with
¢4 1 hands which can connect. at most ¢ + 1 connected components at a

time. I we have as many robots as we need, then the problem of minimizing
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Classes .
of Graphs Time Operations PRAM Ref |
Trees O(logan) O(n) EREW | [RKO01]
O (nSEFaFITHT,
3(k+1)(3k+2)+1
Partial log, n) Common
k-Trees O(logyn) where, a < 5 CRCW | [KZN0O]
Series-Parallel ; Common
Graphs O(logan) O(n'® logs’ n) CRCW | [KZN0O]
I Our Results |
Series-1’arallel Priority
Graphs O(logynlog, logan) | O(c*n®logl, n) | CRCW
Series-Parallel Priority
Graphs O(logyn) O(c’n’ log,,, 3n) | CRCW

Table 1.1: Known results and our results for c-vertex-ranking.

the number of steps required for the parallel assembly of a product using

the robots is equivalent to finding an optimal c-edge-ranking of the graph G.

Fig. 1.6(h}, which shows the separator tree of Fig. 1.6(a), shows that one can

assemble in parallel a product of Fig. 1.6(a)} using two robots of three hands.

Note that, among the three connected components in step 1, there are two

connected components which are not isolated vertex. In each step a robot can

simultaneously connect at most three connected components of the previous

step. For the edge ranking similar results are found. {RK01j proposed an al-

gorithm of O{A log, n} time using O{An) operations on the common CRCW

PRAM model for the r-edge-ranking of trees. Whereas [KZN00} proposed an

algorithm of O(log, n)} time using O{n

6(k+1)(b+1)4+1 logg(k+1)(3k+2)+l n)

opera-

tions on the common CRCW PRAM model for the c-edge-ranking of partial

k-trees, where b < 3A. Table 1.1 and 1.2 summarizes the known results for

c-vertex-rankings and c-edge-rankings for different grapbs. The tables also

show onr results for c-vertex-rankings and c-edge-rankings for series-parallel

graphs.
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Step 4

Step 3

Deleic 3

Delete 2
sat & © &)

Figure 1.6: (a) An optimal 2-edge-ranking, (b) its corresponding separator
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tree.
Classes
of Graphs Time Operations PRAM Ref
Trees O(Alogan) O(An) EREW | [RKO01]
O (n P+ I T
Partial EO.‘JS(HU(%“)H 7} | Common
k-Trees O(logan) where, b < 3A CRCW | [KZNO0O]
Series-Parallel Common
Graphs Oflogsn) O(n®41%]ogl*n) | CRCW | [KZNOO]
| Our Results
Series-Parallel Priority
Graphs Ologan log, logn) | O(*n*®*Vlogl,  n) | CRCW
Series-Parallel Priority
iraphs O(logan) O(c*n***'logl,,n} | CRCW

Table 1.2: Known results and our results for c-edge-ranking.
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1.6 Summary

In this thesis we present parallel algorithms which give the c-vertex-ranking
and c-edge-ranking of a series-parallel graph. Our algorithm for c-vertex-
ranking runs in O(log,n) time using O(c*n” log,3, n) operations. We also
give an algorithm that runs in O(log, n log; log, 1) time using O(c*n® logd, 1 m)
operations. The parallel computation model we use is priority CRCW PRAM.
Our algorithm for ¢c-edge-ranking runs in O(log, n) time using O+ log’ ., n)
operations. We also give an algorithm that runs in O(log, nlog, log,n) time
using O(c?n***'log.,, n) operations. Here also the parallel computation
model we use is priority CRCW PRAM.

Rest, of the thesis is organized as [ollows. Chapter 2 gives preliminaries.
Chapter 3 and 4 give the parallel algorithms for ¢-vertex-ranking and c-edge-
ranking for series-parallel graphs, respectively. Finally Chapter 5 concludes

with a discussion of the results and future works.



Chapter 2

Preliminaries

2.1 Introduction

In this chapter we give some basic definitions and elementary characteristics
of serics-parallel graphs. Definitions that are not included in this chapter
will be introduced, as they are needed. We start, in Section 2.2, by giving
some definitions of the standard graph-theoretical terms used throughout the
remainder of the thesis. In Section 2.3 we give definitions of some special
graphs used in the thesis and introduce the binary decomposition tree of a

series-parallel graph.

2.2 Basic Terminology

2.2.1 Graphs and Multigraphs

A graph G is a structure (V, ) which consists of a finite set of vertices V
and a finile set of edges F, where each edge is an unordered pair of vertices.
We call V(G) the vertez-set of the graph G, and E(G) the edge-set of G.
Throughout this thesis the number of vertices of G is denoted by n, that is,
n = |V|. If e = (v,w) is an edge, then e is.said to join the vertices v and
w, and these vertices are then said to be adjacent. In this case we also say

thal w and v are neighbors of each other, and that e is incident to v and
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w. Il a graph G has no "multiple edge” or "loop”, then G is said to be a
simple graph. Multiple edges join the same pair of vertices, while a loop joins
a verlex to itself. The graph in which loops and multiple edges are allowed
are called multigraph. Sometimes a simple graph is simply called by a graph

only if there is no confusion.

2.2.2 Degree of a Vertex

The degree of a vertex » in a graph G is said to be the number of edges

incident to v, and is denoted by dg(v) or simply by d(v). The mazimum
degree of G is denoted by A(G) or simply by A.

Fig. 1.1 depicts a graph of five vertices (each of degree 3 except vs which
has degree 1) and eight edges, where vertices drawn by circles, edges by lines,

vertex names next to the circles and edge names next to the lines.

2.2.3 Subgraphs

A subgraph of a graph G = (V, E) is a graph G’ : (V,E") such that V' C V
and F' C E; we write this as G' C G. If G' contains all the edges of G that
join two vertices in V', then G’ is said to be the subgraph induced by V', and
is denoted by G[V'}. If V' consists of exactly the vertices on which edges
in E' are incident, then G’ is said to be the subgraph induced by E’, and is
denoted by G[V']. Fig. 2.1(a) depicts a subgraph of G in Fig. 1.1 induced
by {v;,vq,v4,v5} and Fig. 2.1(b) depicts a subgraﬁh induced by {ei,ea,e4}.
We often construct new graphs from old ones by deleting vertices or edges.
If v is a vertex of a given graph G = (V, E), then G — v is the subgraph of
G obtained by deleting the vertex v and all the edges incident to v. More
generally, if V' is a subset of V, then G — V' is the subgraph of G obtained by

deleting the vertices in V' and all the edges incident, to them. Then G — V'
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is a subgraph of G induced by V — V. Similarly, if e is an edge of G, then
G — v is the subgraph of G obtained by deleting the edge e. More generally,

if ' C E, then G — E' is the subgraph of G obtained by deleting the edges

in &'.
p] v ‘
)
(’l Ve
¢
€4
17 " V?"
2 () (b)

Figure 2.1: (a) A subgraph induced by vertices, (b) a subgraph induced by
edges.

2.2.4 Paths and Cycles

A vy — v, walk in G is an alternaling sequence of vertices and edges of G,
o, €1, ..., U1, e, beginning and ending with a vertex, in which each edge
is incident to two vertices immediately preceding and following it. 1f the
vertices g, Uy, ..., are distinct (except, possibly, vg,w;}, then the walk is
called a path and is usually denoted by wovs...ty. The length of a path is [,
one less thal the number of vertices on the path. A path or a walk is simple if
it does not include the same edge twice. A path or ;1 walk is closed if vy = vy.
A closed path containing at least one edge is called a cycle. One example of
a walk in (7 depicted in Fig. 1.1 is 7)],8],7}2,63,"?)3, eq, 14, which is not closed.

One example of a cycle is 11003050
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2.3 Some Special Graphs
2.3.1 Partial k-Trees

A patural generalization of ordinary trees is the so-called k-trees. The class

of k-trees is defined recursively as follows [Sch89j.

1. A complete graph with k-vertices is a k-tree.

2. If G = (V, E) is a k-tree and any k vertices vy, vz, ..., induce a com-
plete subgraph of G, then G’ = (VU {w}, EU {(vi,w)|1 <i < k}) isa

k-tree, where w is a new vertex not contained in G.

3. All k-trees can be formed with rules (a) and (b).

Figure 2.2: A partial 3-tree.

A graph is called a partial k-tree if it is a subgraph of a k-tree. Thus
a partial k-tree ¢ = (V, E) is a simple graph without multiple edges or

sell-loops, and {F| < kn. Fig. 2.2 depicts a partial 3-tree.
2.3.2 . Series-Parallel Graphs

A (two-terminal) series-parallel graph is defined recursively as follows (See

Fig. 2.3).
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1. A graph G of a single edge is a series-parallel graph. The ends v, and
1, of the edge are called the terminals of G and are denoted by v,(G)

and 1, (G), respectively.

2. Let G, be a series-parallel graph with terminals v,(G,) and v,(G,), and

let G be a series-parallel with terminals 1,(G>) and v,(G3). Then,

(a) - (D)

Figure 2.3: (a) A series connection, (b) a parailel connection.

(a) A graph G obtained from G, and G; by identifying vertex v,(G;)
with v,(G,) is a series-parallel graph whose terminals are 7,(G) =
v,(G1) and v(G) = v(G3). Such a connection is called a series
connection, and G is denoted by G = G ¢ G,.

(b) A graph G obtained from Gy and G, by identifying vertex v,(G)
with 2,(G2) and v,(G;) with v,;(G) is a series-parallel graph whose
terminals are v,(G) = v,(G1) = v5(G2) and v(G) = w(G;) =
1(G2). Such a connection is called a parallel connection, and G

is denoted by G = G, || G,.

The Terminals v,(G) and v,(G) of G are often denoted shortly by v,

and ;.

A series-parallel graph can be represented by a "binary decomposition tree”

[TNS82]. Fig. 2.4 illustrates a series-parallel graph graph G and its binary
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/N
O &N,

(Ve W) (vy, V) (Ve ) / \
. s

(v ) (V3. % )(vy, 1) (vg, v,)

(a) (b)
Figure 2.4: (a) A series-parallel graph, (b} its binary decomposition tree T;.

decomposition tree T,. Labels s and p attached to internal nodes in Ty
indicates series and parallel connections, respectively, and nodes labeled s and
p are called s- and p-nodes, respectively. A node u of tree T}, corresponds to a
subgraph of G, which is denoted by G,. A leaf of T}, in particular, represents
a subgraph of G induced by two vertices, that is, an edge. Let T'(z) denote
the subtree of T .rooted at node z. Let S, = {u,, v;} be the set of terminals
of G.. We associate a subgraph G,_-: (Ve, Fr) of G with each node z of T,
where

Ve =J{Syly =z or y is a descendant of z in T},
E. = | J{eyly is a leaf node in T(z)}.

The graph associated with the root of T is the given graph G itself.

2.4 Visible Vertices and Visible Edges

Let ¢ be a vertex-labeling of a series-parallel graph G = (V, E) with positive -

integers. The label (rank) of a vertex v € V is denoted by ¢(v). The number
of ranks used by a vertex-labeling ¢ is denoted by #¢. Without loss of

generalily it can be assumed that ¢ uses consecutive integers I, 2,3..., ¢ as
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the ranks. The rank of a vertex u € V is said to be wisible from a vertex
4 € V under ¢ in G if G has a path P from « to v every vertex of which
has a rank < {u). Thus the smallest rank visible from v under ¢ is equal
to ¢(v). The list of all visible ranks from v is called wvisible set of v and is
denoted hy L(p,v). Fig. 2.5 depicts the visible list for a ranking of a tree
where the number and the number set next to the node represent the rank
and the visible list for the node respectively. In this figure, for example, the -
nodes a, b, ¢, h are visible from node a, so the visible list for node a is the set
of ranks of a, b, ¢, h, that is, {2,2,2,1}. 1f ¢ is a c-vertex-ranking of GG, then

we note that a distinet rank ¢ can appear < ¢ times in L{p, ).

{

Figure 2.5: A ranking of a tree.

4

For a subgraph G, = (V,, E;) of GG, we denote by ¢|G;. a restriction of ¢
to G, let @' = ¢|G,, then ¢'(v) = p(v) for v in'V,. The following lemma. is

cited from [KR99].

Lemma 2.1 Let T be a binary decomposition tree of a series-parallel graph
G, and let 2 be a node in 1. Then a vertez-labeling ¢ of G, 13 a c-verlez-

ranking of G, if and only if,

1. at most c vertices of the same rank are vistble from any verter v €

Se U Sy under ¢ in G,; and
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2. if = is an internal node in T and has two children y and z, then |G,

and ©|G, are c-verter-rankings of Gy and G, respectively. O

Similarly let @ be an edge-labeling of a series-parallel graph G = (V, E)
with positive integers. The label (rank) of an edge e € E is denoted by
¢(e). The number of ranks used by an edge-labeling ¢ is denoted by #o.
Without loss of generality it can be assumed that ¢ uses consecutive integers
1,2,3..., #¢p as the ranks. The rank of an edge u € B is said to be wisible
from an edge e € E under ¢ in G if G has a path P from u to e every edge
of which has a rank < @(u) Thus the smallest rank visible from e under 73
is equal to p(e). The list of all visible ranks from e is called visible set of e
and is denoted by L{p,e). If ¢ is a c-edge-ranking of G, then we note that
a distinct rank ¢ can appear < ¢ times in L(¢p, e).

For a subgraph G, = (Va, E;) of G, we denote by ©lG, a restriction of
to G,: let ¢ = @|Gq, then ¢'(e) = p(e) for e in E;. Then the Lemma 2.1

also holds for c-edge-ranking.

2.5 Conclusion

In this chapter we have introduced the basic definitions relating to graphs
and multigraphs, degree of a vertex, subgraphs, paths and cycles etc. Also we
have introduced some special graphs like partial k-trees and series-parallel
graphs. At the end of thesis chapter we have introduced the definitions
and some properties of visible vertices and visible edges. The definitions

introduced in this chapter will help understanding the remaining of the thesis.



Chapter 3

Vertex Rankings of |
Series-Parallel Graphs

3.1 Introduction

This chapter deals with the parallel algorithm for generalized vertex-ranking
problem on series-parallel graphs. Since a series-parallel graph is a partial
2-tree, one can obtain a parallel algorithm for generalized vertex-ranking of
series-paraliel graphs from the parallel algorithm of partial k-trees [KZNOQ)].
However that would cost O(n'® logl® n) operations in worst case. In this
chapter we present a parallel algorithm that gives the c-verfex-ranking ol a
series-parallel graph G in O(log,n) time using O(c*n" log}, n) operations
if a binary decomposition tree Ty of G is given. We also give an algorithm
that runs in O(log, n log, log, n) time using O{c?n® logl,, n) operations. The
paratlel computation model we use is priority CRCW(Concurrent. read Con-
curvent. Write) PRAM(Parallel Random Access Machine).

The rest. of the chapter is organized as follows. Section 3.2 cites the upper
Lound for e-vertex-ranking number. Sections 3.3 and 3.4 show the equations
to calculate the equivalence class and dominance class, respectively. Section
3.5 discusses the traditional tree contraction algorithm and the modified

shunt. operation used in our algorithm. Section 3.6 finally gives our parallel

23
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algorithms.

3.2 The Upper Bound for ¢-Vertex-Ranking
Number

In this section we cite the result on the c-vertex-ranking number r(G) of a
series-parallel graph G from [KO01]. We first cite the following lemma from

[ZNN95].

Lemma 3.1 Every tree T of n vertices has a verter whose removal leaves

subtrees each having at most n/2 vertices. O
Using Lemma 3.1 [KD1] proved the following lemma.

Lemma 3.2 For any positive integer o, every tree T of n vertices has at
mast ov vertices whose remaval leanes subfrees each having at most |n/(a+1)}

vertices. 0
Using the above two lemmas [K01, KR99] proved the following lemma.

Lemma 3.3 Let ¢ he any positive integer which is notl always bounded, and

let G be a series-parallel graph of n vertices. Then

re(G) €14+ 2log, n. O

3.3 Equivalence Class

Many algorithms on series-parallel graphs use equivalence class. On each
node of the tree decomposition, a table of all possible partial solutions of the

problem is computed, where each entry in the table represents an equivalent
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class. The number of operations for paralle] algorithm depends on the size of
the table. Therefore a suitable equivalence class is always found out. Kashem -
el. al defined a suitable equivalence class for series-parallel graphs [KR99].
Let T, be a binary decomposition tree of a series-parallel graph G. Let
R =1,2,..,mbe the sel of ranks. Lei = be a node in T}, and let o: V, =2 K
be a vertex labeling of the subgraph G, = (V;, £;). Iyer et. al. introduced
the idea of a "critical list” to solve the ordinary vertex-ranking problem

[IRV88]. A similar idea of visible list-set L(p,v) is as follows [KZNOO]:

L(p,v) = {¢(u) | u € V, is visible from v under ¢ in G.}.

Let . be multi-set of integers. 'Then by count(L, i) we denote the number
of #'s contained in L.

For a vertex-labeling ¢ of G, minimum ob.sltacie in the path from v, to
v Ag, Ap € RU{0} is defined as follows:

Ay = min{A|G, has a path P from v; to v, such that p(u) < X for each
internal vertex u € P}. |

Let A, = 0 if (vy,v,) € F,. 1 vertex u e V. is visible from v, and
w{u) > max{p(n,), A } then u is also visible from w,.
Let [ be a bﬂﬁii.iV(% integer, ranging from 1 to A,. A peer-list Ly(p,v,1) and

a peer-list-set £,(p) for a sevies-parallel graph G, are defined as follows:

L,,(fp,'ﬂs,l) = L(‘P;'“s) U “ S L((pa"f.) < Aw])
Lo(e, v, 1y = Lip,w) | I < L{p,v,) < A,); and
L‘P((p) = (’"p(tpt Us; l)' Lp((p: %, l))

Actually, peer-list. from vertex », incorporates portion of visible-list. at. v, as

il there exist another path from w, Lo v, having { as the minimam obstacle.
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This extra component in peer-list is called by look-ahead-component. A pair

R, (), called peer-vector, is defined as follows:

A R, (i) is called a feasible vector if the vertex-labeling y is a c-vertex-ranking

of G and nofifw,t(Lp(go,i;, D,i) <cforallw € S; and i € R. We then cite the

following lemma from [KR99].

Lemma 3.4 lLet ¢ and 7 be two c-vertez-rankings of G, such that Ry(yp) =

Ry(n). Then ¢ is extensible if and only if 1) is extensible. |

If either G, = G, ¢ G, or G, = G, || G, then a vertex labeling of G can
be obtained from the c-vertex-rankings of G, and G, by using the following

two important lemmas [KR99]:

Lemma 3.5 Let G, = Gy, e G,. lLel v, and v be the terminal nodes of
Gy and let v and v, be the terminal nodes of G,. Let n and 9 be the c-
verter-rankings of G, and G, respectively. Let I, = maz{l,¥(v,), Ay}, Iy =
maz{r,n{u,), A}, n(v) = (v} and ¢ be the vertex-labeling of G eztended
from n and . Then

LP(W! 'USJ) = Lp(fh Us, tn) U [Lp('l/)a Uil) 2 Af}]: ]fAYJ < lv or

Lo, 00, 1) = Lp(m, uny 1) U {Lp(9h, 00, A9) > 1], i\, > I; and
Lp(o, v, 1) = Lp{h, vy, L) U [Lp{my0,7) 2 Ay, ifAy <15 o1

LP((Pa Utjr) = LP(llb:vh ZVJ) U [LP(UJ USIA‘{’J) 2 T]J if)“q'l _.>_ 7.0
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Lemma 3.6 lLet G, = Gui|G,. Let v, and v, be the terminal nodes of G,

and let v, and v, be the terminal nodes of G,. Lel n and ¢ be the c-vertez-
mnking of G, and G, respectively. Let n(v,) = (v,) and n(v) = (). Let

@ be the verlez-labeling of G, extended from n and . Then
Lo, v, D) = lp(m, v, 1) U 1p(4h, w5, 1); and

Lo(evn, 1y = Ly(n,v, D) ) Ly(a, o, 1), O

3.4 Dominance Class

Il Ry(x) is the set of feasible vectors for G, then applying the following
elimination rule on R,(x), Kashem el al have obtained the dominance
class Ry(z) [KR99]. If ¢ and ¢ are any (wo labellings of G, we say ihat

¢ domiantes @' il any of the following conditions is true:

l' f’p(fﬂvws: ” = Lp(({)’,'l?s, ’): ]’P((ro: 'Ui',l ’) j l‘p({p'r 'Ug,, ’)!
for Ay = Ay, wlng) = ¢ (n5), and @(m) = ¢'(m);

2. Ly(p,ve 1) = Ly(9', v, 1), Lo, v, 1) = Lp(e, e, 1),
for Ay = Aur, () = ¢/ (n), and () = ¢/ ().

The set of feasible vectors oblained from R,(x) applying the elimination
rile is called dominance dlass Ry(r). Then we have the following lemma

from [KR99]:

Lemma 3.7 Tet Ry(x), Ra(y) and Ra(2) be the dominance classes obtained
Jrom Ry (x), Ry(y) and Ry(z2), respectively. Let Ry(x) be the dominance class

extended fram Ry(y) and Ry(z). Then R 4(z) = Ry(x). J
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By Lemma 3.4 and Lemma 3.7 a dominance class Rq{(x) can be seen as
a set of extensible c-vertex-rankings ol G;. Since |[R| =m, 1 < A, <m, and
0 < count(p,n,1) < ¢ for a c-vertex-ranking ¢ and a rank 7 € R, the number
of peer-lists L,(¢, v,!) is at most m(c+1)™ for each vert‘ex v € Sy = {v,, 0t}
For each peer-list Ly(p,v,,1), there can be at most m peer-lists Ly(p, vy, 1)
for different {. The number of distinct peer-list-sets £,(¢) can be at most
2m2(c+1)™. Again each of ¢(v;) and () can assume any value from 1 to
m. Since by Lemma 3.3 we have m < 1+2log,,, n = O{log.4, n}, the total

number of different feasible vectors on z is O(cn? logs,, n). .

Lemma 3.8 For a node x the dominance class Rq(x) from the peer wector

R,y(x) can be computed on the priority CRCW model either in O(1) time

using O(am) operations, or in O(log, log, @) time nsing O(a*m) operations,

where o is the cardinality of Ra(z) and m i3 the length of a list in Ry(x).

Proof: For each list L,(p,v;,1), there are at most o number of lists
Ly(p, 1, 1). Computing minimum of such « lists can be done on the priority
CRCW either in O(1) time using O{a?m) operations, or in O(log, log, «) time
using Q(am) operations [J492]. Since there are at most ov lists Lp(p, vy, 1), the
dominance class can be computed on the priority CRCW either in O(1) time

using O{n*m) operations or in (log, log, «v) time using O(a*m) operations.0

3.5 Tree Contraction Algorithm

The tree contraction algorithm was originally introduced by Miller and Reif
[MRS85]. It takes O{log, n) time using O(n) processors, where n is the number
of nodes in the tree. Several authors [ADK+-89, GMT88, Hed1, HY88, KD88]

have improved the algorithm as follows so that it, takes O(log, n) time using
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O(n/log,n) processors. A sfructure is a triple (A, Frode, Fedge) cODsisting
of a sel. A, a node function sel Fo C{f | [ AXA — A}, and an
edge fun?:!.ion set Fogoe C {f |/ : A — A} A boltom-up algebraic Iree
computation tree on (A, Frode, Fege) is a binary tree Ty such that: each leal
node v of Ty is laheled by a function [, € Fhed.; and each edge e of T}, is
labeled by a function f, € Fege.- A label R(u) € A of each internal node u

of Ty is recursivelv defined as

R’(u) = fu(fr:; (R'(’U‘ ))r fC:a (R(1’2))))

] [ — V) €

" i
"'/‘I v,
2

Figure 3.1: Shunt operation.

where v, and v, are the left and right, child of w in Ty, ey = (1, %), and e; =
(12,%) (see Fig. 3.1). The bottom-up algebraic iree compﬁtation (BATC)
problem on T} is 1o compute R(u) for the root « of T;. In order to solve
the BATC problem in parallel, He and Yesha introduced the following shunt
operaiion [HY88]. Let u be a node of T}, with left child vy, right child v,, and

parent 1. Let ey = (uy,u), ez = (vy, 1), and eg = (u,10). Suppose u is the left

node of w(Fig. 3.1). A shunt operation on # is defined as follows: delete v,

and w from Ty, make vy the lelt child of w with a new cdge € = (vg, w); and

C

Y-
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assign e a function f, defined by

fr(??) = fcn(fu(fm (R(Ul))) fcz(’}?)))

For variable R € A, if the right child v, of u is a leaf node, then a shunt
operation performed on v, is defined similarly. Clearly a shunt operation
does not affect subsequent evaluation on Tp. The following elegant tree-
contraction algorithm solves the BATC problem [ADK+89, GMT88, He91,
HY88, KD88, MR85): |

TREE CONTRACTION ALGORITHM
begin
for each leaf v in parallel do
index(v) « index from left to right with increasing number;
repeat [logn] — 1 times
for each left leaf v with odd index in parallel do
if the v’s parent is not the root of Ty then shunt v;
for each right leaf v with odd index in parallel do
if the v’s parent is not the root of T} then shunt v;
for each leaf v in parallel do
index(v) « index(v)/2
compute the label of the root in T};

end

The following theorem was proved in [ADK+89, GMTS88, He91, HY88,
KD&R.

Theorem 3.1 The tree contraction algorithm correctly solves the BATC prob-

lem. Moreover, if the evaluation of node and edge functions and the shunt
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operation can be done by p processors in O(1) time, this algorithm can be
implemented in O(logn) time using O(pnflogn) pracessors, where n is the

number of nodes in Ty, ' !

3.5.1 Modified Shunt Operation

A temporary label R'(w) of a node w is a label of u which can be changed.

During the modified shunt operation of a node u we delete node v; and
u, but do not transfer the label of non-leaf child v, in place of u. Rather we
calculate the temporary label R'(u) based on the temporary label of v;, that
is R'(v), and store it in node vy as new R'(vp). We update R'(u) with the
successive change in R'(vy). In this way we get the actual value of u, that is
R(x), when the actual value of 1y, that is R(vy), is obtained.

The proof for the following theorem is immediate .

Theorem 3.2 If the edge or node function of the madified shuni operation
can he done by p processors in O(1) time then Theorem 3.1 also holds for

our modified algorithm to solve the BATC problem. a

3.6 Parallel Algorithm

The main result of this chapter can be stated by the following theorem.

Theorem 3.3 For any positive integer ¢, an optimal c-vertez-ranking of a
series-parallel graph G with n vertices can be fouhd on priority CRCW either

in
1. time O(log, n) using O(c*n" logl3, n) operations; or

2. time O(log, n log, log, n) using O(c®n®logs, , n) operations.
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Proof: Let T, be a binary decomposition-tree of G. we first give a
parallel algofithm to decide whether, for a given positive integer m, ( has a
c-vertex-ranking o with #¢ < m. We use tree contraction algorithm on the
binary decomposition tree T} as follows: for each node z of T; from leaves to
root, we construct dominance class of c-vertex-rankings of G, from those of
two subgraphs G, and G, associa.tecj with the children y and z of z. If the
dominance class at the root of T}, is non-empty, then the series-parallel graph -
G corresponding to the root of Ty has a c-vertex-ranking g such that #¢ < m.
Then by using a binary search over the range of m, 1 <m <1+ 2log.;n,
we determine the minimum value of m such that G has a c-vertex-ranking ¢
with m = #¢ and find an opiimal c-vertex-ranking of G.

We first compute the dominance class for each leaf in parallel. We then
show how we use the the tree contraction algorithm on 73, Init.ia.]ly temporary
table of dominance class for each internal node is empty. We first number all
the leaves, except, the first one, from left to right in increasing order starting
from 1. Then we contraci, each odd numbered leal and its parent, if it is not
the root, by using modified shunt operation in parallel. Lét 1y and its parent
u is to be contracted and v, be the other child. (Also let w is the parent of
u (see Fig. 3.1). Then u; may be a leafl or not. We calculate R'(u) by the

node function f(u) over R(1;) and temporary label R/(vp) as follows :

T\’-’(H) = fu(fm(R'(Ul)): fez(R'(ih))) '

Here the node function is the cross product of the' tables of dominance classes
of v; and vy (which are R(v;) and R'(uvy), respectively) and the application
of the elimination rule according to the definition of dominance class and
Lemma 3.8. If R'(w,) is empty we consider all possible values of R'(v;). Our

edge function is the selection function. The existing R'(«) may be empty or
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not, before the node function. Then we have two cases. Case 1: if the existing
R’(u) is emply then we store the newly caleulated R/(w) in node vz as R (v)
and index il by, if there any, the the pointers by which corresponding R'(v,)
is indexed or by corresponding R/(v;). Case 2: if the existing R'(u) is not
empty then we use the newly calenlated R'(1) to select entries from the
existing R'(u). The selected entries are stores in node v, as R'(v2) and we
index it by, if there any, the pointers hy which the corresponding R'(v3) is
indexed or by corresponding R'(v2). It is clear that if v; is a leaf child then
before the node function R.(vy) = R'(v) and R'(v;) is not pointed by any

one. The above algorithm is cited in the following figure.

Procedure c-VERTEX-RANKING
//u has a leaf child v, a non-leaf child v, and parent w. We contract v, and u.
begin
if v, is a leal then
compute R/(x) as follows:
take the cross product of R(m) and R'(v)
apply the elimination rule
if the existing R'(u) is not empty then
select the values from existing R'(u)
whose pointer matches with newly caiculated R (u)
store this R'(1) as R'(1) at node v,
else
compute R'(u) as follows
if R'(v5) is empty then

consider all possible valites of vy as R/ (1)
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take the cross product of R(2) and R'(v)
:ipply {he elimination rule
if the existing R'(u) is not empty thén
select the values from existing R'(x) whose pointer
matches with newly calculated R/ (u)
store this 72’(1:.) as R'(vq) at node v, and update
pointers accordingly

end

We now discuss the correctness and the complexity of our algorithm. First
we discuss the correctness of our algorithm. Actually the modified shunt op-
eration works hy gradually selecting the correct, values of R'(x) from all
possible values of R'(u). So the corrected R'(u) is always subset of existing
R'(u), if the existing R'(w) is not empty. In this way the final vatue of R'(u)
achieved when the v, is a leaf. So the algorithm works correctly. We now
discuss the complexity. We first show how to compute dominance class on
a leaf 2 of Ty. Since |R| = m, and |S,] = 2, the number of vertex-labellings
v : V. — R is at most m%. For each vertex-labeling ¢, A, (= 0) can be com-’
puted in (}(1) time. Since A, == 0, the only possible value of [ is 0. The peer
lists L, (w0, ,1),v € Sg, can be computed in parallel in time O(1) using O(1)
operations. Then checking whether a vertex—labe]iﬁg ¢ is a c-vertex-ranking
of G, can be done in time (3(1) using (3(1) operations and computing R(y)
can be done in time O(1) with O(1) operation. Therefore the peer class on
a leaf can be found in time O(1) using O(m?) = Oflog?,, n) operations. We
next show how to compute dominance class on an internal node z of 7;, from

those on two children y and z of z. The dominance class on an internal node
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z can he obtained from the cross product of the dominance classes of the two
children y and z. Since the cardinality of the dominance class on each node is
O(enlog!, | n), the cardinality of the cross product is O(c*n’ loge, 1), Since.
the length of a list is O(log,, | 7}, by Lemma 3.8 the dominance class on z can
be compuled either in Q(1) time using O(c*n" log?, | n) operations if the con-
stant time algorithm is used, or in O(log, log, n) time using O(c?*n* log?, ; n)
operations if the doubly logarithmic algorithm is used. The node function
(i.e. the selection function takes (3(1) time using operations no more than the
maximum cardinality of a node. Finally the tree contraction takes O(log, 1)
time and Q(n) operations. So total complexity of the algorithm is either
O(log, n) time using O(c*n” log,}; n) operations or O(log, n log, logy n) time
using O(c2n® log?, | ) operations. The PRAM model used by the algorithm

is priority CRCW. 0O
3.7 Conclusion

In this chapter we have introduced our main result for c-vertex-ranking.
Before that we have discussed the necessary definitions and iemmas from the
previous works on c-vertex-ranking of series—p.ﬁrallel graphs specially from
[KR99]. The contents of this chapter are extensively used in the following

chapter of c-edge-ranking.



Chapter 4

Edge Rankings of
Series-Parallel Graphs

4.1 Introduction

This chapter deals with the parallel algorithm for generalized edge-ranking
problem on series-parallel graphs. Since a seri(\as-pa.ra.]lel graph is a partial
2-tree, one can obtain a parallel algorithm for. generalized edge-ranking of
series-parallel graphs from the parallel algorithin of partial k-trees [KZN98].
However that would cost O{n*411 logl? n) Ope'ra.tions in worst case. In this
chapter we present a parallel algorithm that g_ives the c-edge-rapking of a
series-parallel graph G in O (log, ) time using O{c*n®**! log], , ) operations
if a binary decomposition tree 7}, of G is given. We also give an algorithm
that, runs in O(log, nlog, log, n) time using O(c?n*4+! log., 1) operations.
The parallel computation model we use is priority CRCW({Concurrent read
Concurrent Write) PRAM(Parallel Random Access Machine).

The rest of the chapter is oréanized as follows. Section 4.2 cites the
upper bound for c-edge-ranking number. Sections 4.3 show the equations
to calculate the equivalence class and dominance class for c-edge-ranking.

Section 4.4 finally gives our paralle] algorithms.

36
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4.2 The Upper Bound for c-Edge-Ranking Num-
ber

In this section we show that the c-edge-ranking number r(G}) of a series-
parallel graph G is O(A log,,, n).

Using Lemma 3.3, we have the following lemma.

Lemma 4.1 Let ¢ he any positive integer which is not always bounded, and

let G be a series-parallel graph of n-vertices. Then

r(G) < 14 2A%og  y n.O

4.3 Equivalence Class and Dominance Class
A wisible list-set R(p, v) for c-edge-ranking is defined as follows:
R, ) = {ple)le € E, is visible from v under ¢ in G;}.

For an edge-labeling ¢ of G, minimum obstacle in the path from 2, to
m Ag, Ay € RU{0} is defined as [ollows: A, = min{AlG has a path P from
v, to v, such that ple) < A for cach internal edge e € P}

All other definitions are same as in Sections 3.3 and 3.4. We then have

the following {wo lemmas {or c-edge-ranking.

Lemma 4.2 Let G, = GyeG,. Let v, and v be the terminal nodes of Gy and
let v and v; be the terminal nodes of G,. Let n and ¥ be the c-edge-rankings
of G, and G, respectively. Let I, = max{l, Ay}, Iy = maz{r, A}, and ¢ be

the cdge-labeling of G extended from 1 and o, Then

Lol s, 1) = Lp(m,va, 1) U [Lp(ah, 0, 0) 2 Ay, i, < 1 or

v
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LP(QOJUMI) = Lp(n.- Vs, lu) U [Lp(":b: M, A:l}) > ZL .ifA:; z l- and
[-’P((p! (LR T) = Lp(d’s Ut:lw) U [Lp("?»“:?’) _>_ A1!)]1 IfAPJJ <7r;or

Lo(0, v, 1) = Ly(wh, v, o) U [Lp(my 05, M) 2 7], iy > 7.0

Lemma 4.3 Let G, = G,||G.. Let v, and v, be the terminal nodes of G,
and let v, and v, be the terminal ﬁodes of G,. Let nn and 1 be the c-edge-
ranking of G, and G,, respectively. Let ¢ be the edge-labeling of G, eztended

fromn ond Y. Then
LP(W!":,-'HZ) = L T]:UM U LJ-" "’b U‘H )J and

LP(“P!'Ut! 1) - Lp D Uf.: " U L ‘l\b U, )

By Lemma 3.4 and Lemma 3.7 a dominance class R4(z) can be seen as’
a set of extensible c-edge-rankings of G,. Since |R} = m,1 < X, £ m and
0 < count(p, 1, 1) < ¢ for a c-edge-ranking ¢ and a rank i € R, the number
of peer-lists Ly (w0, v,1) is at most m{c+1)™ for each vertex v € S; = {v,, v, }.
For each peer-list L,(¢p,v,,1), there can he at most m peer-lists Ly(¢, 14, 1)
for different I. The number of distinet peer-list-sets £,(¢) can be at most
2m?(c+1)™. Since by Lemma 4.1 we have m < 14-2Alog,,, n = O(log,.,, n),
the total number of different feasible vectors on zis Q(en?2 l-ogg L),

It is also clear that the Lemmas 3.7 and 3.8 also hold for c-edge-ranking.

4.4 Parallel Algorithm

"The main result of this chapter can be stated by the following theorem.
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Theorem 4.1 For any posilive integer ¢, an optimal c-edge-ranking of a
series-parallel graph G with n vertices can be found on priority CRCW cither
in

1. time O(log, n) using O(*n®+ log!,, n) operations; or

2. time O(log, nlog, log, n) with O(c*n*®+ logl,, n) operalions.

-

Proof: For the c-edge-ranking our algorithm works as in Procedure c-
VERTEX-RANKING except the range of m is 1<m<1+ 2Alog, 1 n.

The correctness of the algorithm for the c-edge-ranking is analogous to the
c-vertex-ranking. Also the calenlation for the complexity is almost similar.
Since for c-edge-ranking the cardinality of the dominance cla.ss on each node
is O(en®® log?, | n), the cardinality of the cross product is O(c*n'® log} , n).
Since the length of a list is O(log,., n), by Lemma 3.8 the dominance class
on x can be computed either in O( 1) time using O(c*n®® log’, ) opera-
tions if the constant time algorithm is used, or in O(log, logyn) time using
O(c*n'® log?, , n) operations if the doubly logarithmic algorithm is used. Fi-
nally the tree contraction takes O(log, n) time and O(n) operations. So total
complexily of the algorithm is either O(log, n) time using O(c*n%4+1log!, | n)
operations or O(log, n log, log, n) time using O(c?n!2 log':f_*_, n) operations.

The PRAM model used by the algorithm is priority CRCW.

4.5 Conclusion

In this chapter we have introduced our main result for c-edge-ranking. Before
that we have introduced the necessary definitions and leminas in new {ashion
suitable for c-edge-ranking from those lor c-vertex-ranking in Chapter 4.

With this chapter the main result of our thesis is completed.



Chapter 5

Conclusion

This thesis deals with the parallel algorithms for generalized vertex-ranking
and edge-ranking for series-parallel graphs. Since series-parallel graphs are of
greal practical significance, we are glad to present such pardl]el algorithms.

In Chapter 1 we have introduced the ranking problems and its signifi-
cance. In Chapter 2 we have characterized the c-vertex-ranking and c-edge-
ranking of series-paralle] graphs by the number of visible vertices. In Chapter
3 we have given the parallel algorithm for c-vertex-ranking of series-parallel
graphs. In Chapter 4 we have given similar p:\arallel algorithm for c-edge-
ranking of series-parallel graphs.

In c-vertex(edge)-ranking when the positive integer ¢ is replaced by a
function [ : {1,2,...,n} — N such that, for any label 1, deletion of all the
vertices(edges) with labels > 4 Ic;a.ves connected components, each having
at most f(i) vertices(edges) with label i then it is called f-vertex(edge)-
ranking. Our parallel algorithms can be extended for f-vertex-ranking and
f-edge-ranking of series-parallel graphs with slight modification. The com-
plexity for the f-vertex{edge)-ranking would be similar to the c-vertex{edge)-
ranking for series-parallel graphs. It is possible to give a parallel algo-

rithm for f-vertex-ranking of serics-parallel grapbs that runs in O(log, n)

10
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time using O(n""logé3 n) operations, where n is the number of vertices in
G. Also an algorithm can be given for f-vertex-ranking of series-parallel -
graphs (hat runs in O(log, nlog, logyn) time using O(n” logy n) operations.
For the f-edge-ranking of series-parallel graphs an algorithm can be given
that runs in O(log, n) time using O(n®+*log) n) operations, where A is the
maximum vertex-degree of G. Also an algorithm can be given for f-edge-
ranking of series—pa-rallel graphs that runs in O(log, nlogy logy n) time using
O(n*213logh n) operations.

Finally, some open problems can be pointed out from our work as follows:

(1) To find the optimal parallel algorithm for c-vertex(edge)-ranking of

series-parallel graphs.

(2) What is the complexity of parallel algorithsms for c-vertex(edge)-ranking

of other classes of graphs

(3) What is the complexity of parallel algorithms for e-vertex(edge)-ranking .

of perfect graphs specially permutation graphs and chordal graphs.
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