
Sequential and Parallel Algorithms for
Generalized Coloring of Trees

by

Tarique Mesbaul Islam

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology

April 2002

._-- "-- --- .. ---~

. 111111111I!!JlbIJ!~IUlII I

Submitted to
Bangladesh University of Engineering and Technology

in partial fulfillment of the requirements for
M.Sc. Engineering (Computer Science and Engineering)

.. \,

SEQUENTIAL AND PARALLEL ALGORITHMS FOR
GENERALIZED COLORING OF TREES

A Thesis submitted by

TARIQUE MESBAUL ISLAM
Student No. 04000502lP

for the partial fulfillment of the degree of
M. Sc. Engineering (Computer Science and Engineering).

Examination held on April 6, 2002.

Approved as to style and contents by:

~
DR. MD. ABULKASHEMMIA
Associate Professor & Head
Department of Computer Science and Engineering
B.U.E.T., Dhaka - 1000, Bangladesh.

Dr. Muhammad Masroor Ali
Associate Professor
Department of Computer Science and Engineering
B.U.E. T., Dhaka - 1000, Bangladesh.

+h Q L , ~~t-<-?-
Dr. Abul L. Haque
Associate Professor & Chairman
Dept. of Computer Science
North South University, Dhaka

Chairman,
Supervisor and
Ex-officio

Member

Member

Member
(External)

Certificate

This is to certify that the work presented in this thesis paper is the outcome of the

investigation carried out by the candidate under the supervision of Dr. Md. Abul

Kashem Mia in the Department of Computer Science and Engineering, Bangladesh

University of Engineering and Technology, Dhaka. It is also declared that neither of

this thesis nor any part thereof has been submitted or is being concurrently submitted

anywhere else for the award of any degree or diploma.

Signature of the Supervisor Signature of the Author

1.1 BACKGROUND .

1.1.1 Vertex -coloring Problem ..

1.1.2 Edge-coloring Problem

1.2 GENERALIZED VERTEX-COLORING ..

I

Ac1mowledgement... v

Abstract vi

1 Introductio n . 1

. . 1

. 2

. 3

. .4

1.2.1 [-vertex-coloring 5

1.3 GENERALIZED EOOE-COLORING 6

1.3.1 [-edge-coloring .. .6

1.4 SUMMARY.. . 7

2 Preli minaries 9

2.1 BASIC TERMINOLOGy............... . 9

2.1.1 Graphs and Multigraphs.. . ..9

2.1.2 Degree of a vertex . 10

2.1.3 Subgraphs................. . . 10

2.1.4 Weighted Graphs.... ..11

2.1.5 Paths and Distances.. . 11

2.2 TREES 11

2.3 PRAM MODELS. . 13

2.4 TREE CONTRACTION ALGORITIlM 14

2.5 EQUIVALENT BINARY TREE OF A TREE 16

3 Sequential Algorithm for l-Vertex-Coloring of Trees 18

3.1 PRELIMINARIES .

3.2 AN EFFICIENT ALOORITIlM .

3.3 CONCLUSION ..

. 19

.............. . 24

.31

4 Parallel Algorithm for l-Vertex-Coloring of Trees .•.•...•.•...•••..•••.•••..•.••...•••...32

4.1 PRELIMINARIES..32

4.2 AN EFFICIENT PARALLEL ALOORITIlM.. . 35

4.3 CONCLUSION . 39

5 Optimall-Edge-Coloring of Trees 40

5.1 TRANSFORMING L-EDGE-COLORING PROBLEM INTO L-VERTEX-COLORING PROBLEM .40

5.2 A SEQUENTIALALGORITHM FOR OPTIMALL-EDGE-COLORlNG OF 1REES. . .43

5.3 A PARALLEL ALOORlTHM FOR OPTlMALL-EDGE-COLORING OF 1REES . .46

.,

5.4 FINDING THE COLOR ASSIGNMENT ..

5.5 CONCLUSION.

11

. .49

...49

6 ConcIusion....•... 50

7 RefereDces: 52

.8 In dex 54

,
•

111

List of Figures
Figure 1.1: A graph with 8 vertices and 11 edges 1

Figure 1.2: An optimal vertex-coloring of a graph G 2

Figure 1.3 Edge-coloring of a graph G 4

Figure 1.4: A 3-vertex-coloring of a graph using 2 colors : 5

Figure 1.5: 2-edge-coloring with 4 colors 6

Figure 2.1: Subgraphs of G in Fig. 1.1: (a) vertex-induced subgraph, and (b) edge

induced subgraph 10

Figure 2.2: A tree with 9 vertices 12

Figure 2.3: The PRAM model. 13

Figure 2.4: Shunt operation: (a) before (b) after. 15

Figure 2.5: (a) A tree llu) rooted at u. (b) Equivalent binary decomposition tree of

T(u) 17

Fig 3.1: A partiaI4-vertex-coloring of a tree with 3 colors 20

Figure 3.2: Original Tree T. 25

Figure 3.3: Binary decomposition tree Tb for the tree Tin Fig-3.2 25

Figure 5.]: A partially colored tree 41

List of Tables
Table 1.1: Known results for [-vertex-coloring 7

Table] .2: Our new results for [-vertex-coloring and [-edge-coloring 7

IV

List of Algorithms
Algorithm 2.1 Tree Contraction 16

Algorithm 3.1/-vertex-coloring(v,.m) 26

Algorithm 3.2 nodeJunction(v, m) _ 26

Algorithm 3.3 edgeJunction(v, m) 27

Algorithm 3.4 optimal_l_ vertex _coloring(Y). 27

Algorithm 3.5 get_digit(number, pos) 29

Algorithm 3.6 set_ digit(number, digit, pos) 29

Algorithm 3.7 compute _CMO 29

Algorithm 3.8 compute _AMO 30

Algorithm 4.1 node Junctionyarallel(v, m) 33

Algorithm 4.2 edge Junction yarallel(v, m) 34

Algorithm 4.3 '-vertex _coloringyarallel(T, m) 36

Algorithm 4.4 optimal_I_vertex _coloringyarallel(T) 36

Algorithm 5.1 compute CM eO 42

Algorithm 5.2 compute _AMJO 42

Algorithm 5.3 I_edgeJoloring(v, m) 44

Algorithm 5.4 node Junction_edge _coloring(v, m) 44

Algorithm 5.5 edgeJunction_edge Joloring(v, m) 45

Algorithm 5.6 optimal I edge coloring(T) 45-- -

Algorithm 5.7 nodeJunctionJdge_color yarallel(v, m) 47

Algorithm 5.8 edgeJunction _edge_color yarallel(v, m) 47

Algorithm 5.9/_ edge_coloringyarallel(T, m) 48

Algorithm 5.10 optimal_I_edge _coloringyarallel(J) 48

VI

Abstract

In this thesis we present efficient sequential and parallel algorithms for solving

generalized vertex-coloring (/-vertex-coloring) problem and generalized edge-

coloring (/-edge-coloring) problem on trees. For any positive integer I, an I-vertex-

coloring of G is an assignment of colors to the vertices of G in such a way that any

two vertices u and v in G get different colors if dist(u,v) ~ I, where dist(u,v) is the

length of the shortest path between u and v in G. An I-vertex-coloring is optimal if it

uses minimum number of colors. The I-vertex-coloring problem has applications in

various scheduling problems. We present an O(log a x (I + 2ya x n) time sequential

/)j+J -I
algorithm to solve the I-vertex-coloring problem on trees T, where a = ---, n is

~-I

the number of nodes in the tree T and ~ is the maximum vertex-degree in T. Ifboth ~

and 1 are bounded integers, then our algorithm runs in linear time. This is the first

sequential algorithm that guarantees an optimal solution for the problem. We then

present a parallel algorithm that solves the I-vertex-coloring problem on trees in

O(iOg2n) time using O(a x « + 2ya x n) processors on the EREW PRAM model. The

I-edge-coloring problem Pll trees can be defined analogous to I-vertex-coloring

problem on trees. We then present a simple strategy to transform I-edge-coloring

problem to I~vertex-coloring problem and develop a sequential as well as a parallel

algorithm to solve the I-edge-coloring problem on trees. The sequential I-edge-

coloring algorithm takes O(log a x (I + 2ya x n) time while the parallel I-edge-

coloring algorithm takes O(iOg2n) time using O(a x (I + 2)2a X n) processors on the

EREW PRAM model. All our algorithms, except the sequential algorithm for 1-

vertex-coloring problem, are first known algorithms to solve the corresponding

problems.

v

Acknowledgement

First and foremost, I would like to acknowledge my gratitude to Dr. Md. Abul

Kashem Mia, Associate Professor and Head, Department of Computer Science and

Engineering, Bangladesh University of Engineering and Technology. His constant

supervision, scholarly guidance, valuable advice and encouragement have been a

great impetus to this thesis work. His long experience and in-depth knowledge in

graph theory and parallel algorithms have helped significantly to achieve a smooth

completiqn Ilft!Jis thesis wor~.

I would like to thank the members of the graduate committee, Dr. Chowdhury

Mofizur Rahman, Professor Department of Computer Science and Engineering,

BUET, Dr. Muhammad Masroor Ali, Associate Professor, Department of Computer

Science and Engineering, BUET and Dr. Abul L. Hag, Associate Professor and

Chairman, Department of Computer Science, North South University, for their

valuable suggestions.

Iwould like to acknowledge the all-out co-operation and services rendered by the

faculty members and staff of the CSE Department. Finally, I express my ever

gratefulness to all who contributed to this thesis work.

Chapter 1: Introduction

Chapter 1

Introduction

1

In this chapter we provide the necessary background and motivation for the study on the

coloring of graphs. In Section 1.1, we give a historical background of the development of

coloring of graphs. In Section 1.2, we give a generalization of ordinary vertex-coloring

problem and provide the necessary motivation for generalization. In Section 1.3 we

define a generalization of ordinary edge coloring problem. Finally Section 1.4

summarizes our results together with the known ones.

1.1 Background

Recent research efforts in algorithm theory have concentrated on designing efficient

algorithms for solving combinatorial problems, particularly graph problems. A graph

G = (V, E) with n vertices and m edges consists ofa vertex set V = {VI' v2, ••• , vn} and an

edge set E = {el, e2, ••• , en}, where an edge in E joins two vertices in V.Figure 1.1 depicts

a graph of 8 vertices and 11 edges, where vertices are drawn by circles, edges by lines,

VI
e]

e2
e]

V2 Vs e6

e4

V] e7

Figure 1.1: A graph with 8 vertices and 11 edges.

vertex names next to the vertices and edge names next to the edges. Efficient algorithms

have been obtained for various graph problems, such as coloring problems, planarity

testing problem and maximum flow problem.

Chapter 1: Introduction 2

1.1.1 Vertex-coloring Problem

The vertex-coloring problem is one of the most fundamental problems on graphs. A

vertex-coloring of a graph G is an assignment of colors to the vertices of G in such a way

that any two adjacent vertices get different colors [Wes99]. The vertex-coloring problem

is to find a vertex-coloring that requires the minimum number of colors. The minimum

number of colors needed to vertex-color a graph is called the chromatic number of the

graph G and is denoted by z(G). Figure 1.2 depicts an optimal vertex-coloring of a graph

G using 3 colors, where the colors are written next to the vertices.

2 1

2

Figure 1.2: An optimal vertex-coloring of a graph G.

A graph G is k-colorable (or k-vertex-colorable, more precisely) if there is a valid vertex-

coloring of G with k colors. If z(G) = k, then G is k-chromatic. All vertices having the

same color are in the same color class and form an independent set. Therefore, G is k-

colorable if and only if G is k-partite. Let OJ(G) is the number of vertices in the largest

complete subgraph of G. Since vertices of a complete subgraph require distinct colors,

z(G) 2: OJ(G). Suppose, a(G) is the maximum size of an independent set of vertices in G

and G contains n vertices. Since each color class is an independent set, x(G) 2:n/ a(G).
Let I\(G) be the maximum degree of any vertex in G. Then X(G)::; I\(G) + 1. The details

of these observations can be found in [Wes99].

Vertex coloring arises in a variety of scheduling and clustering applications. Compiler

optimization is the canonical application for coloring, where we seek to schedule the use

of a finite number of registers. In a program fragment to be optimized, each variable has a

Chapter I: Introduction 3

range of times during which its value must be kept intact, in particular, after it is

initialized and before its final use. Any two variables whose life spans intersect cannot be

placed in the same register. A graph can be constructed where there is a variable

associated with each vertex and an edge between any two vertices indicates that the

variable life spans intersect. A coloring of the vertices of this graph assigns the variables

to classes such that two variables with the same color do not clash and so can be assigned

to the same register. The most important application of vertex-coloring is in scheduling of

any kind. If the vertices of a graph G represent a set of university courses, with edges

between courses with common students, then the chromatic number is the minimum

number of periods needed to schedule examinations without conflicts. One of the most

famous problems in graph theory also involves coloring. It is known as 4-color problem.

A map is a partition of the plane into connected regions. It requires determining whether

the regions of every map can be colored using at most four colors so that no two

neighbouring regions have the same color.

1.1.2 Edge-coloring Problem

In graph theory, many problems about vertices have natural analogues for edges. Edge-

coloring problem is one such example. An edge-coloring of a graph G is a labeling of the

edges in G in such a way that any two adjacent edges get different colors [Wes99]. A

graph G is k-edge-colorable if G has a valid edge-coloring with k colors. The edge-

chromatic number X'(G) ofa loopless graph G is the minimum k such that G is k-edge-

colorable. X' (G) is also called chromatic index in some literature. The edge-coloring

problem is to find an edge-coloring that requires minimum number of colors. Figure 1.3

shows an edge-coloring of a graph G using 3 colors where the colors are written next to

the edges. It may be noted that a graph consisting of an even-length cycle can be edge-

colored with 2 colors, while odd-length cycles have an edge-ehromatic number of 3.

As it was with vertex-coloring, various theorems exist that indicate bounds for X(G).

Since edges sharing a common vertex need different colors, X(G) 2 t1(G).Vizing [Viz64]

and Gupta [Gup66] independently proved that t1(G) + I colors suffice when G is simple.

Chapter I: Introduction 4

They also proved that every simple graph with maximum degree .1. has a valid (.1. + 1)-

edge-coloring. For graphs with multiple edges, Vizing and Gupta proved that

X' (G) s .1.(G) + IJ(G), where !J(G) is the maximum edge multiplicity.

Figure 1.3 Edge-coloring of a graph G.

The edge coloring of graphs arises in a variety of scheduling applications, typically

associated with minimizing the number of non-interfering rounds needed to complete a

given set of tasks. For example, consider a situation where we need to schedule a given

set of two-person interviews, where each interview takes one hour. All meetings could be

scheduled to occur at distinct times to avoid conflicts, but it is less wasteful to schedule

non-conflicting events simultaneously. We can construct a graph whose vertices are the

people and whose edges represent the pairs of people who want to meet. An edge

coloring of this graph defines the schedule. The color classes represent the different time

periods in the schedule, with all meetings of the same color happening simultaneously.

Scheduling games in a football league is another example where edge-coloring can be

applied.

1.2 Generalized Vertex-Coloring

There are many generalizations of ordinary vertex-coloring. In this section we describe a

generalized vertex-coloring called an l-vertex-coloring [ZKNOO].

r,.

Chapter I: Introduction

1.2.1 [-vertex-coloring

5

A natural generalization of the ordinary vertex coloring is the I-vertex-coloring. Let 1be a

positive integer and G be a graph with positive integer weights on all its edges. Then an 1-

vertex-coloring of G is an assignment of colors to the vertices of G in such a way that any

two vertices u and v in G get different colors if dist(u,v) :S: I, where dist(u,v) is the length

of the shortest path between u and v in G. Clearly an ordinary vertex-coloring is a 1-

vertex-coloring. Figure 1.4 shows a 3-vertex-coloring of a graph G using 2 colors where

colors are drawn next to the vertices and edge-weights are given next to the edges.

2

3

1

2

Figure 1.4: A 3-vertex-coloring ofa graph using 2 colors.

The minimum number of colors needed for an I-vertex-coloring of a graph G is called the

I-chromatic number of G and is denoted by X,(G). An I-vertex-coloring of G using

X,(G) colors is called an optimal/-vertex-coloring of G. The I-vertex-coloring problem

is to find an optimal/-vertex-coloring of a given graph G.

The applications of the I-vertex-coloring are all the applications of vertex-coloring. The

examination scheduling problem in Section 1.1.1 can be generalized now so that there is

a gap of 1 periods between any two examinations of courses having common students.

Chapter 1: Introduction

1.3 Generalized Edge-Coloring

6

Like the generalization of vertex-coloring, there are different generalizations for edge-

coloring problem. In this section we describe a generalized edge-coloring called an l-

edge-coloring.

1.3.1 l-edge-coloring

A generalized edge-coloring or l-edge-coloring of a graph G is an assignment of colors to

the edges of G in such a way that any two edges ej and ez in G get different colors if

dist(eI, ez) S; I, where dist(eI, ez) is the length of the shortest path between the nearest

endpoints of ej and ez in G. The minimum number of colors with which we can obtain an

l-edge-coloring of a graph G is called the l-edge-chromatic number of G. The l-edge-

coloring problem is to find an optimal l-edge-coloring of a given graph G. Figure 1.5

shows a 2-edge-coloring of a graph with 4 colors.

Figure 1.5: 2-edge-coloring with 4 colors.

l-edge-coloring can be applied to all applications where edge-coloring can be applied.

However, l-edge-coloring can incorporate more constraints than the ordinary edge-

coloring. For example, the problem scheduling of football matches can be extended so

that rematches are scheduled with a reasonable time gap between them.

Chapter 1: Introduction

1.4 Summary

7

This thesis gives sequential and parallel algorithms for solving l-vertex-coloring problem

and l-edge-coloring problem on trees. In this section, we summarize our main results. The

known results are given in Table 1.1. Our new results are given in Table 1.2.

Classes of Graphs Time Complexity Reference

Partial k-tree J(n3 (t''')I'''''') Zhou et al. (IEICE 2000)On +nx a+1

Tree(k= 1) O{n3 + n x a2"") Zhou et al. (IEICE 2000)

Tree O(nxa) Kashem et al. (ICCIT 2000)

Table 1.1: Known results for [-vertex-coloring.

Classes of
Problem Algorithm Complexity

Graphs

Trees l-vertex-coloring Sequential O{loga x (I + 2)2a X n) time

Trees l-edge-coloring Sequential O(logax(I+2ya xn) time

Trees l-vertex-coloring Parallel
O(iOg2 n) time using O(a x (I + 2ya x n)
processors on the EREW PRAM model

Trees l-edge-coloring Parallel
O(log2 n) time using O{a x (I+ 2)2a X n)
processors on the EREW PRAM model

Table 1.2: Our new results for [-vertex-coloring and [-edge-coloring.

The symbol a in table 1.1 stands for the number of colors used in the coloring. First.

algorithm has been developed actually for solving l-vertex-coloring problem on partial k-

trees and second algorithm is a restriction of first algorithm with k = I. Third algorithm is

the first known direct approach to solve the l-vertex-coloring problem on trees. This

algorithm uses a gteedy strategy to assign colors to the nodes in a post order fashion.

Chapter 1: Introduction 8

Though third algorithm runs in linear time it does not guarantee an optimal solution. No

parallel algorithm exists for l-vertex-coloring problem. Moreover, no attempt has been

made to date to solve the l-edge-coloring problem.

In this thesis, we present sequential and parallel algorithms to solve the l-vertex-coloring

and l-edge-coloring problems on trees. For bounded I and a, our sequential algorithm for

l-vertex-coloring algorithm can find a valid coloring of a given tree with a colors in

linear time. Moreover, it can find the optimal number of colors as well as the optimal 1-

vertex-coloring in time O(log a x (I + 2ya x n), where a = f)!+! -1 , is the upper bound of
A-I

the number of colors. Our remaining algorithms are the first known algorithms of their

kind.

The thesis is organized as follows. Chapter 2 gives preliminary definitions. We give an

efficient sequential algorithm for l-vertex-coloring problem on trees in Chapter 3.

Chapter 4 gives an efficient parallel algorithm for the same problem. In Chapter 5, we

present a sequential and a parallel algorithm to solve the l-edge-coloring problem. Finally

Chapter 6 concludes with the results and future works.

Chapter 2: Preliminaries

Chapter 2

Preliminaries

9

In this chapter we present some basic terms and easy observations. Definitions that are

not .included in this chapter will be introduced, as they are needed. In Section 2.1, we start

with some defin.itions of the standard graph-theoretical terms used throughout the thesis.

In Sect.ion 2.2 we d.iscuss about properties of trees. In Section 2.3 we define parallel

computer models most widely used in parallel algorithm development and analysis.

Section 2.4 describes tree contraction algorithm that is used in Bottom-up Algebraic Tree

Computation problems. And finally .inSection 2.5 we show a way to convert a rooted tree

into equivalent binary tree so that we can apply tree contraction algorithm on the

eqrnvalent binary tree.

2.1 Basic Terminology

2.1.1 Graphs and Multigraphs

A graph .is a structure (V, E) which consists of a finite set of vertices V and a fin.ite set of

edges E; each edge is an unordered pair of ilistinct vertices. We call V(G) the vertex-set

of graph G and E(G) the edge-set of G. Throughout this thesis, the number of vertices of

G is denoted by n, that is n = IVI and the number of edges of G is denoted by m, that

ism = lEI. If e = (v, w) is an edge, then e is said to join the vertices v and w and these

vertices are said to be adjacent. In this case we also say that w is a neighbour of v and

that e is incident to v and w. If the graph G has no "multiple edges" or "loops" then G is

said to be a simple graph. Multiple edges join the same pair of vertices while a loop joins

a vertex to .itself The graph in which loops and multiple edges are allowed is called a

multigraph. Sometimes a simple graph is simply called graph, if doing so creates no

confusion.

" .
"

,~
I

I
,

Chapter 2: Preliminaries

2.1.2 Degree of a vertex

10

The degree of a vertex v in a graph G is the number of edges incident to v and is denoted

by dG(v) or simply by dey). The maximum degree of G is denoted by Ll(G) or simply by

L1. A vertex of degree 0 is called an isolated vertex.

2.1.3 Subgraphs

A subgraph of a graph G = (V, E) is graph G' = (V', E') such that V' ~ V and E' ~ E; we

write this as G' ~ G. If G' contains all the edges of G that join two vertices in V' then G'

is said to be the subgraph induced by V' and is denoted by G[V'j. If V' consists of exactly

the vertices on which edges.in E' are incident then G' is said to be the subgraph induced

by E' and is denoted by G[E').

(a) (b)
Figure 2.1: Subgraphs ofG in Fig. 1.1: (a) vertex-induced subgraph, and (b) edge induced subgraph.

We often construct new graphs from old ones by deleting some vertices or edges. If v is a

vertex of a given graph G = (V, E) then G - v is a subgraph of G obtained by deleting the

vertex v and all the edges incident to v. More generally, if V' is a subset of V then G - V'

is subgraph of G obtained by deleting the vertices in V' and the edges incident to them.

Then G - V' is a subgraph of G induced by V - V'. Similarly if e is an edge of G then G -

e is th subgraph of G obtained by deleting the edge e. More generally, if E ~ E' then G-

E' is a subgraph of G obtained by deleting the edges in E'.

Chapter 2: Preliminaries

2.1.4 Weighted Graphs

11

A graph where each of the edges has a positive weight associated with it is called a

weighted graph. Now if 1+is the set of all positive integers then we can define the weight

function for the edges as w: E ~ t.

2.1.5 Paths and Distances

A VO-Vt walk in G is an alternating sequence of vertices and edges of G,

vo,el,vl , ... ,VI_I ,el, VI' beginning and ending with a vertex, in which each edge is incident

to two vertices immediately preceding and following it. If the vertices Vo, Vl, ... ,Vt are

distinct (except possibly Vo, VI), then the walk is called a path and is usually denoted by Vo

VI ... VI. The length of a path in an unweighted graph is I, one less than the number of

vertices on the path. A path or walk is closed if Vo = VI. A closed path of length at least

one is called a cycle where Vo = VI is the only vertex repetition.

In a weighted graph, the length of a path is determined by weights of the edges

constituting the path. So the length w(P) of a path P is defined as w(p) = L~pw(e). The
distance between any two vertices in a graph is the length of the shortest path in the graph

between the two vertices. We denote the distance from a vertex u to another vertex V by

dist(u,v). Now if the shortest path in G from u to V is P, then dist(u,v) =w(P).

2.2 Trees

A (free) tree is a connected graph without any cycles. We often omit the word "free"

when we say that a graph is a tree. Fig 2.2 is an example of a tree. A rooted tree is a free

tree in which one of the nodes is distinguished from others. This distinguished node is

called the root of the tree. The root of the tree is generally drawn at the top. In Fig. 2.2,

the root is node 1.

Chapter 2: Preliminaries

Figure 2.2: A tree with 9 vertices.

12

Every vertex u other than the root is connected by an edge to some other vertex p called

the parent of u. We also call u a child of p. We draw the parent of a node above that

node. For example, in Fig. 2.2, node 1 is the parent of node 2 and node 3. Alternately,

nodes 6 and 7 are children of node 2. A leaf is a node of a tree that has no child. Thus

every node of a tree is either a leaf or an internal node, but not both. In Fig. 2.2, the

leaves are 4, 6, 7, 8 and 9 and nodes 1, 2, 3 and 5 are internal nodes.

The parent-child relationship can be extended naturally to ancestors and descendants.

Suppose, U], Uz, ... , Ut is a sequence of nodes in a tree such that Uj is the parent of Uz,

which is the parent of U3 and so on. The node Uj is called an ancestor of Ut and node Ut is

called a descendant of Uj. The root is the ancestor of every node in a tree and every node

is a descendant of the root. In Fig. 2.2, all nodes other than node I are descendants of

node 1 and node I is an ancestor of all other nodes.

In a tree T, a node U together with all of its descendants, if any, is called a subtree of T.

Node U is the root ofthis subtree. Referring again to Fig. 2.2, node 6 by itself is a subtree,

since node 6 has no descendant. Again, nodes 2, 6 and 7 form a subtree with root 2.

Finally the entire tree of Fig. 2.2 is a subtree of itself with root 1. The height of a node U

in a tree is the length of the longest path from u to a leaf. The height of a tree is the height

of a root. The depth of a node U in the tree is the length of a path from the root to u. In Fig

2.2, for example, node 3 is of height 2 and depth I. The tree has height 3.

Chapter 2: Preliminaries

2.3 PRAM Models

13

1

The RAM model has been used successfully to predict the performance of sequential

algorithms. The PRAM model is natural extension of the basic sequential model. The

PRAM model consists of a number of processors, each of which has its own local

memory and can execute its own local program. The processors communicate by

exchanging data through a shared memory unit. Each processor is uniquely identified by

an index, called a processor id. All the processors operate synchronously under the

control of a common clock. Fig. 2.3 shows a general view of a PRAM model with p

processors. These processors are indexed 1,2, ... ,p. Shared memory is also referred to as

global memory.

SharedMemory

~

Ir

Pj Pz Pp
•••

Figure 2.3: The PRAM model.

There are two basic modes of operation of a shared-memory model. In asynchronous

mode, each processor operates under a separate clock and it is the programmer's

responsibility to set appropriate synchronization points whenever necessary. In

synchronous mode, all the processors operate synchronously under the control of a

common clock. A standard name for the synchronous shared-memory model is the

parallel random-access machine (PRAM) model. Since each processor can execute its

own local program, the shared memory model is a multiple instruction multiple data

(MlMD) type. That is, each processor may execute an instruction and operate on data

Chapter 2: Preliminaries 14

1

different from those executed or operated on by any other processor during any given

time unit.

There are several variations of the PRAM model based on the assumption regarding the

handling of the simultaneous access of several processors to the same location of the

shared-memory. The exclusive read exclusive write (EREW) PRAM does not allow any

simultaneous access to a single memory location. The concurrent read exclusive write

(CREW) PRAM allows simultaneous access for a read instruction only. The concurrent

read concurrent write (CRCW) allows simultaneous access for a read or a write

instruction. The three principal varieties of CRCW PRAMs are differentiated by how

concurrent writes are handled. The common CRCW PRAM allows concurrent writes only

when all processors are attempting to write the same value. The arbitrary CRCW PRAM

allows an arbitrary processor to succeed. The priority CRCW PRAM assumes that the

indices of the processors are linearly ordered and allows the one with minimum index (or

the maximum index) to succeed.

2.4 Tree Contraction Algorithm

Bottom-up Algebraic Tree Computation (B-ATC) technique is widely used to. develop

parallel algorithms to solve various problems. B-ATC technique uses tree contraction

algorithm. Tree contraction is a systematic way of shrinking a tree into a single node by

successively applying the operation of merging a leaf with its parent or merging a degree-

2 vertex with its parent. Miller and Reif [MR86] originally introduced the tree contraction

algorithm with O(IOg2n) running time and O(n) processors. Several authors have

improved their algorithm to run in O(IOg2n) time with O(n/log2 n) processors [GMT88,

ADK89]. Now we briefly describe the version developed in [ADK89].

A structure is a triple (S, NF, EF) consisting of a set S, a vertex function set

NFc{jlf:SxS~S} and an edge function set EFc{jII:S~S}. A bottom-up

algebraic computation tree on (S, NF, EF) is a binary tree T such that each leaf vertex v

Chapter 2: Preliminaries 15

of T is labeled by a value L(v) E S; each internal vertex u of T is labeled by a function

f(u) E NF; and each edge e of T is labeled by a function f(e) E EF. The bottom-up

algebraic tree computation (B-ATC) problem on T is as follows.

Let u be a vertex of T whose left child VI and right child V2 are leaf vertices. Let

e1 =(v1,u) and e2 =(v2,u). Compute a value L(U)ES definedby

L(u)= F(ulF(eJL(vl),F(e2)L(vJ],

and delete v], V2, el and e2 from 1'. Thus u becomes a new leaf vertex. Repeat this

operation until all vertices of T receive a value in S.

In order to solve B-ATC problem in parallel, Abrahamson et. at. jntroduced the shunt
operation [ADK89]. Let u be a vertex of T with left child v], right child V2 and parent w.

Let e1 =(v1,u), e2 =(v2,u) and eo =(u, w). Suppose, VI is a leaf vertex (Figure 2.4). A

shunt operation on VI is described as follows: delete VI and from T and make V2 the left

child ofw. Let e'= (v2, w) be the new edge. For the B-ATC problem, assign e' a function

F(e') defined by-

F(e'Xx)= F(eoXF(ulF(el XL(v,)),F(e2Xx)J)

If the right child V2 of u is a leaf vertex, a shunt operation performed on V2 is defined

similarly. Clearly a shunt operation does not affect the subsequent evaluation on 1'. The

following algorithm solves the BATC problems [JOS92].

(b)

Figure 2.4: Shunt operation: (a) before (b) after

Chapter 2: Preliminaries 16

Algorithm 2.1 Tree Contraction

Input: A rooted binary tree T such that each vertex has exactly two children

Output: T is connected to a three node binary tree

hegin

1. Number the leaf vertices of T by 1,2, ... from the left to the right excluding the

leftmost and rightmost leaves and store the labeled leaves in an array A of size n.

2. for IIog2 (n + I)1iterations do

3. Apply shunt operation concurrently to all elements of Aodd that are left

children

4. Apply shunt operation to remaining elements in Aodd

5. SetA :=Aodd

end.

The following theorem was proved in [JOS92]. Details of implementation and analysis of

algorithm 2.1 can be found in [JOS92].

Theorem 2.1 Algorithm 2.1 correctly contracts the input binary tree into a three node

binary tree. This algoritlun can be implemented on the EREW PRAM in O(log2 n) time,

using a linear number of operations, where n is number of vertices in the input tree. 0

2.5 Equivalent Binary Tree of a Tree

B-ATC problem requires a regular binary tree to apply tree contraction algorithm. To

solve the l-vertex-coloring and l-edge-coloring problem on trees using B-ATC, we have

to convert an arbitrary rooted tree into a regular binary tree. We now show how an

arbitrary rooted tree rooted at s can be reduced to a regular binary tree Tb, which is the

canonical binary tree representation of T. Any arbitrary node in T can be chosen as root.

Every internal node u having dchildren, sayYJ,Y2, ... , Yd, is replaced with d+1 new nodes

u1, u2, ... , ud+l, such that Ui, 1:;:;i:;:;d is the father ofui+l and the i'th childYi ofu. In Tb,

d+1, 1:;:;i :;:;d, is the right child of d and ud+1 is a leaf of the tree representing node u in T.

Chapter 2: Preliminaries 17

If vertex y is the i-th child of u in T, then yl is the left child of u' in h Fig. 2.5 illustrates

an example.

(a) (b)

Figure 2.5: (a) A tree T(u) rooted at u. (b) Equivalent binary decomposition tree of .T(u).

In binary tree Tb, the nodes with superscript d + I represent a node of tree T while the

other nodes are dummy nodes and do not correspond to any node of tree T.

Chapter 3: Sequential Algorithm for I-Verter-Coloring of Trees

Chapter 3

18

Sequential Algorithm for 1-Vertex-Coloring

of Trees
This chapter deals with sequential generalized vertex coloring problem on trees. Since

ordinary vertex coloring problem is NP-hard [GJ79], the l-vertex-coloring problem is also

NP-hard in general. So it is very unlikely that there exists an efficient algorithm to solve

the l-vertex-coloring problem for general graphs. But polynomial time algorithms have

been developed for special subset of graphs - partial k-trees in particular. Zhou et al.

[ZKNOO] presented a polynomial time algorithm that determines whether any l-vertex-

coloring exists for partial k-trees in time 0(n3 +n x (a + I?'("'X'.'~'),where a is the

number of colors. It may be noted that partial k-trees are graphs of treewidth bounded by

a fixed constant k [ZKNOO]. Ordinary trees are partial I-trees. So if we P)lt k = 1 in their

algorithm, the time complexity comes out to be 0(n3 + n x (ay""). Recently Kashem et

al. have presented anO(x, (r)x n) time sequential algorithm for the l-vertex-coloring

problem on ordinary trees [KYOO], but their algorithm does not guarantee an optimal

solution.

In this chapter, we present an 0((1 + 2?a x n) time sequential algorithm to determine

whether any l-vertex-coloring with a colors exists for the given tree. If both I and the

maximum vertex degree of the tree are bounded by constant integers, then X/(r)

becomes a constant number [KYOO],and our algorithm solves the problem in linear time.

Given a particular number of colors and a tree, we have applied post order traversal

technique to determine all valid l-vertex-coloring for th.e tree (jf there exists any). We

then used this algorithm together with binary search techniql!e over a bounded range of

positive integers to determine the optimal number of colors.

Chapter 3: Sequential Algorithm for I-Vertex-Coloring of Trees 19

The I-vertex-coloring problem on a weighted graph G = (V, E) can be easily reduced to

the ordinary vertex coloring problem on a new non-weighted graph G' ~ (V, E') such that

(u, v) E E' for any two vertices u and v in V if and only if dist(u, v) ~ 1 in G (Jag96,

ZKNOO).Therefore, one may expect that the I-vertex-coloring problem for a tree T can be

solved by applying a linear-time algorithm to solve an ordinary vertex-coloring problem

for trees (BPT92). However, it is not the case, because G' obtained for a tree is not

always a tree.

The remainder of this chapter is organized as follows. Section 3.1 gives some preliminary

definitions and easy observations. Section 3.2 gives a sequential algorithm for I-vertex-

coloring of trees. Finally, Section 3.3 concludes with our sequential I-vertex-coloring

algorithm.

3.1 Preliminaries

In this section we define some terms and easy observations. Let T= (V, E) be a tree with

vertex set V and edge set E. The number of vertices in T is denoted by n. T is a "free

tree", but we regard T as a rooted tree. For the sake of convenience an arbitrary vertex of

tree T .is designated as the root of T. We Will use notions as: root, internal vertex, child

and leaf in their usual meaning. The maximum vertex degree of T is denoted by L't.. An

edge joining vertices u and v is denoted by (u, v). Each of the edges has a positive weight

associated with it. If, N is the set of all positive integers then we can define the weight

function for the edges as w: E ~ N. The distance from a vertex u to another vertex v,

denoted by dist(u, v), is the length of the path P from u to v in T. Therefore,

dist(u, v)= w(p) = L'EP w(e).

Definition 3.1 Let 1 be a positive integer and C be a set of colors. Then a function

tp: V ~ C is an I-vertex-coloring of T if tp(u);" tp(v) for any two vertices u and v such

that dist(u, v) ~ I.

f.,

Chapter 3: Sequential Algorithm for I-Vertex-Coloring of Trees 20

Definition 3.2 The minimum number of colors needed to perform an I-vertex-coloring of

T is called I-chromatic number of T and is denoted by XI(T).

Let, the number of colors used by a vertex coloring If! of tree T is denote by #If!. Clearly

XI (T)s #If! for an I-vertex-coloring of tree T. One may assume without loss of generality

that If! uses the consecutive integers I, 2, ... , #If! as the colors. Then C is the color set

/11+1 -I
having colors I, 2, ... , #If!. Ifthe maximum vertex degree of T is /1 then XI(T)s---

/1-1

[KYOO]. Ifboth I and /1 are bounded integers then X,(T)= 0(1).

Definition 3.3 Let, If! be an I-vertex-coloring of T with m colors. The distance vector of a

vertex U E V, denoted as D(If!, u) or simply D(u), is defined as an m-tuple

(d, Iisism,d, E{O, ... ,I,oo}). Each d, =mi~{dist(u,v)}, Isism, where v, v E Vis a

descendent of u in T and If!Cv) = i. All di > I are represented by 00. Moreover, if no vertex

in T has been assigned the color i, d,= 00.

Example: Let us consider 4-vertex-coloring of the following tree with 3 colors. Consider

the partial coloring where some of the nodes have already been assigned colors while

nodes G, band c are yet to be colored. Edge weights are written next to the edges.

1

Fig 3.1: A partial 4-vertex-coloring of a tree with 3 colors

Chapter 3: Sequential Algorithm for l-Vertex-Coloring of Trees 21

The distance vector for node b is D(b) = <3, 1,00>. Similarly, distance vector for node d

is D(d) = <2,0,00>.

Lemma 3.1 In an l-vertex-coloring rp of a tree T with m colors, there can be at most

(I + 2)m different distance vectors.

Proof: Immediate. D

These (I + 2t distance vectors can be enumerated in numerous ways. If we consider the

distance vectors in the domain of (I + 2) -base number system, we get one such

enumeration. Here, {O,... ,l,oo}correspond to (t + 2) different digits (00 is represented by

1+ 1) and the distance vectors are numbered from 0 to (I + 2)m -1 , based on their values

in the number system.

Example: The distance vectors in 4-vertex-coloring shown in Fig 3.1 can be considered

in the domain of6 (= 4 + 2)-base number system. In that case, D(b) can be represented by

decimal value 119 (= 3 x 62 + I X 6' + 5 x 6°). Similarly, D(d) can be represented by

decimal value?? (= 2x62 +Ox6' +5x6°).

Definition 3.4 In an l-vertex-coloring rpwith m colors, combine operation of two distance

vectors X = (Xi 11::;i::; m,xi E {O,... ,l,oo}) and Y = (Y, [1::; i:O:m'Yi E {O,... ,l,oo}) where

(Xi + Yi > I, 1::; i::; m), generates a third distance vector

R = (ri 11::;i::; m,ri E {O,... ,l,oo}, and r, = min{xi'Yi}). If the condition Xi + Yi > I, for

any i, 1::; i ::;m , is not satisfied, X and Y cannot be combined.

Example: In a 4-vertex-coloring with 3 colors, the distance vectors X = <2, 00,4> and Y

~ <3, 1,00> can be combined to generated a new distance vector R = <2, 1,4>. But the

Chapter 3: Sequential Algorithm for I-Vertex-Coloring of Trees 22

distance vectors X = <2, 00, 4> and Y = <I, I, 00> cannot be combined because

(Xl + y,)::;4.

If we consider the distance vectors in the domain of (I + 2) -base number system, X, Yand

R will be represented by decimal values 106(= 2x62 +5x6' +4x6°),

II9(=3x62 +lx6' +5x6°) and 82(=2x62 +lx6' +4x6°) respectively. Therefore,

combination of distance vectors X=106 and Y=II9 produces the distance vector R=82.

We can pre-compute these combination results and store them in a (I + 2)m x (I + 2)m two-

dimensional matrix eM Any invalid combination result can be represented by some

special value not in the range (0... ((I + 2t -I)) (-I for example). We then have the

following lemma.

Lemma 3.2 Combination of two distance vectors can be done in O(I)time.

Proof: Immediate. o

Definition 3.5 In an l-vertex-coJoring cpwith m colors, addition of a weight w to a

distance vector X=(xi II::;i::;m,x, E{O, ... ,l,oo}) produces a new distance vector

R = (ri I I::; i S m,ri E {O, ... ,l,oo}) as follows

{

Xi + w ,if (Xi +w)::; I; and
r=
, 00, otherwise.

Example: In a 4-vertex-coJoringwith 3 colors, if we add weight 2 to the distance vector

X = <2,00,4>, we get a new distance vector R = <4,00,00>.

As before, if we consider the distance vectors in the domain of (I + 2) -base number

system, X and R will be represented by decimal values I06(= 2 x 62 +5 X 6' +4 x 60) and

179(= 4 x62 +5 X 6' +5x 6°) respectively. Therefore, addition of weight 2 to distance

Chapter 3: Sequential Algorithm for I-Vertex-Coloring of Trees 23

vector X=I06 produces the distance vector R=179. We can pre-compute these addition

results and store them in a (I + 2)"' x (I + 1)two-dimensional matrix AM For all w > 1the

resultant distance vector (d, 11 ~ i~m,d, = 00) is directly computed without consulting

the matrix AM We then have the following lemma.

Lemma 3.3 Addition of a weight to a distance vector can be done in 0(1)time.

Proof: Immediate. D

Our algorithm tries to assign each possible color to a particular node. So, each node will

be associated with multiple distance vectors. In the worst case, at most (I + 2)"' distance

vectors will be generated for any particular node. Using the enumeration explained

above, we can represent the distance vectors usin~ a one-dimensional bitmap of length

(I + 2)" . Each bit in the bitmap corresponds to a particular distance vector. If the bit is I

the distance vector has been generated for the node. Otherwise, the distance vector is not

included in the Jist.

Using the bitmap representation and Lemma 3.2 we get the following lemma.

Lemma 3.4 Two lists of distance vectors obtained from the left child and right child of a

node U E T can be combined at U in 0((1 + 2y") time.

Proof: Each of the two lists cart contain at most (I + 2)" distance vectors. Each distance

vector' of one list has to be checked against each distance vector of another list.

Therefore, at most (I +2)" x (I +2t pair of distance vectors have to be combined. D

By Lemma 3.3 we get the following lemma.

Lemma 3.5 The list of distance vectors of any particular node can be updated with an

edge weight in 0((1 + 2)"') time.

Proof: Immediate. D

Chapter 3: Sequential Algorithm for I-Vertex-Coloring of Trees

3.2 An Efficient Algorithm

The main result of this section is the following theorem.

24

Theorem 3.6 For any positive integer I, an optimal I-vertex-coloring of a tree having n

vertices can be found in timeO(loga x(1 + 2ya x n), where a = d+
1

-1 .
A-I

If both I and maximum vertex degree A of the tree T are bounded integers, then by

theorem 3.6 we have the following corollary.

Corollary 3.7 An optimal I-vertex-coloring of a tree T with bounded degrees can be

found in linear time for any bounded integer I.

Remainder of this section gives an algorithm to solve the I-vertex-coloring problem on

trees in time O(log a x (I + 2)2a X n), where a = d+
l

-1 . Given m number of colors, the
A-I

algorithm assigns colors to nodes in post order fashion to find an I-vertex-coloring of T

with m colors. At first, the input tree T is transformed into an equivalent binary tree Tb as

explained in Section 2.5. Since we are dealing with weighted trees, we need to consider

assignment of weights to the edges of the binary tree Tb in such a way that dis/(U, v) for

all u, VET is equal to dist(x, y) for all x, y E Tb, where x and y in Tb represents u and v

in T respectively. This can be achieved by the following weight function Wb.

Let x and y be two nodes In Tb obtained from nodes U and v in T respectively. If

(x, y) E Er• then

ifu'" v
if u = v

Example:

Chapter 3: Sequential Algorithm for 1-Vertex-Coloring of Trees 25

Figure 3.2: Original Tree T. Figure 3.3: Binary decomposition tree Tb for the tree Tin Fig-3.2.

Therefore, we have the following lemma [BH95].

Lemma 3.8 The binary equivalent tree Tb of any arbitrary weighted tree T can be

obtained in linear time. D

First, we will present an algorithm I_vertex_color that finds an I-vertex-coloring of Tb

with a given set of colors [I, ... , m]. Later we will give another algorithm

optimal I vertex color that uses I vertex color and binary search technique to determine-- - --

the optimal number of colors for Th.

The algorithm l_vertexJoloring applies algorithm nodeJunction to each node in Th in

post order fashion. At each leaf node, Cvertex Joloring initializes the list of distance

vectors of that leaf while at each internal node it combines the lists obtained from its left

subtree and right subtree usign nodeJunction. The algorithm also applies edge Junction

to each edge during backtracking along the edge. The algorithm terminates when all the

nodes have been completely visited. If the list of distance vectors at root node contains no

distance vector then it is not possible to obtain an I-vertex-coloring of Th with m colors.

Otherwise, each existing distance vector at root represents a different I-vertex-coloring of

the given tree using m colors. We now present the algorithms I_vertex _coloring,

nodeJunction and edgeJunction.

Chapter 3: Sequential Algorithm for l-Vertex-Coloring of Trees

Algorithm 3.I/-vertex-eoloring(v, m)

Input: A node v in the binary decomposition tree Tb, a color set [1, ... , m)

Output: All possible I-vertex-coloring of subtree rooted at v with m colors

(ifthere exists any)

26

begin

1. if v is not a leaf node then

2. I_vertex _eoloring(left(v),m);

3. l_vertexJoloring(right(v),m);

4. nodeJunetion(v,m);

5. else

6. Create a new list of distance vectors Dv containing no vector, for this leaf node

7. for all integers i,0 ~ i~m-l do

8.

9.

10.

setjigit(p, 0, i);

Dv[P) = 1;

II (d, II~i~m,d, = OCJ)

II algorithm 3.6

11. end if

12. edgeJunetion(v, m);

end.

Algorithm 3.2 node Junet ion(v, m)

Input: A node v in the binary decomposition tree Tb, a color set [I, ... , m)

Output: Updated bitmap of Jist of distance vectors of node v

begin

I. Dleft ~ bitmap(left(v));

2. Dr'ght ~ bitmap(right(v));

3. Create two new lists Dv and Dfcontaining no distance vector for this node;

4. for all integers i,0 ~ i ~(I+ 2t -1 do

5. for all integersj, 0 ~j ~ (I + 2)m -1 do

6. if DleftU) and Dright[/) are 1 and CM(i,j) is not invalidctben

7. Dv[CM(i,j]] = 1;

Chapter 3: Sequential Algorithm/or I-Vertex-Coloring 0/ Trees

8. end if

end.

Algorithm 3.3 edgeJunction(v, m)

Input: A node v in the binary decomposition tree Tb, a color set [I, ... , mJ
Output: Updated bitmap oflist of distance vectors of node v

begin

1. d = weight«v, parent(v»);

2. Create a new list of distance vectors Dje containing no vectors;

3. for all integers j, 0 ::;j::; (I + 2)"' - I do

4. if D.tUJ is I then

5. Dje[AM[j, dJJ = I;

6. end if

end.

27

We now present the optimal I vertex coloring algorithm (Algorithm 3.4) that uses~~ ~

I~vertex Joloring to solve the optimal I-vertex-coloring on trees. Algorithm 3.4 first

transforms tree T into equivalent binary tree h It then determines the upper bound of the

number of colors (a.) and computes matrices CM and AM The algorithm then performs a

binary search in the bounded domain of colors to determine the optimal number of colors.

Algorithm 3.4 optimal ~I~vertex Joloring(T)

Input: An arbitrary tree T

Output: An optimal/-vertex-coloring of T

begin

I. Construct Binary Decomposition Tree Tb from T

2. Determine the upper bound for number of colors needed (a)

3. Compute the matrices CM, AM

4. I = I I/Iower bound

5. u= a II upper bound

6. loop until the optimum solution is found

Chapter 3: Sequential Algorithm for I-Vertex-Coloring of Trees 28

7. i= (I + u)/2

8. l_vertex_coloring(root(Tb),i)

9. adjust the color range depending on the outcome of previous step

10. perform next iteration in the updated range

II. if), I :s;) :s;a -I is an integer such that a coloring with) +I colors exists but there is

no coloring with) colors then

12.) is the optimal number of colors

13. else

14. a is the optimal number of colors

end.

By Lemma 3.5 edge Junction takes 0((1 + 2t)time, where m is the number of colors.

Line 4 to 8 of node Junction combines the two distance vectors obtained from left and

right child and this takes 0((1 + 2)2m) time (Lemma 3.4). So, overall complexity of

nodeJunction is 0((1 + 2ym) where m is the number of colors. Algorithm

I_vertex _coloring simply performs a post order traversal of the input tree and calls

node Junction and edgeJunction for each internal node. However, if the node being

processed is a leaf node, I_vertex_coloring constructs the initial list of distance vectors

.instead of calling nodeJunction. Line 4 (for internal node) of algorithm 3.1 can be done

in time 0((1+ 2r) (Lemma 3.4) while Lines 6 to 10 takes time O(m). Therefore, each

single node can be processed in time 0((1 + 2ym). The edge function can be computed in

time 0((1 + 2t) (Lemma 3.5). So, the algorithm I_vertex _coloring runs in

0(((1 + 2r +(1 +2t)x n)= 0((1 + 2ym x n) time.

The only part yet to be specified is how to compute the matrices eM, AM Following

algorithms describe the mechanism of computing these matrices. Algorithms 3.5 and 3.6

are supporting functions for subsequent matrix computing algorithms. These supporting

functions consider the .input number as a value in (l +2)-base number system.

Chapter 3: Sequential Algorithm for 1-Vertex-Coloring of Trees

Algorithm 3.5 get_digit(number, pas)

Input: A number and the position of the digit to be extracted

Output: The digit in (I + 2) base number system, at specified position

begin

1 d = number. II integer division. (I + 2)POS-1 '

2. r=MOD(d,I+2); Ilmodulusoperation

3. return r;
end

Algorithm 3.6 set digit(number, digit, pas)

Input: A number, a digit and the position of the digit

Output: Updated number with input digit placed at specified position

begin

1. d= get_digit(number,pos);

2. number = number - d x (I + 2YO'-I; II clear old digit at specified position

3. val = digit x (I + 2)pO'-1 ;

29

4. number = number + val;

end

II set new digit

Algoritbm 3.7 compute CMO

Input: None

Output: Initialized matrix CM

begin

1. for all integers r, 0 5,r 5, (I +2Y -I do I/loop 1

2. for all integers c, 0 5, c 5, (I + 2)" -I do II loop 2

3. CM(r, c) = -I; II mark as invalid combination

4. target_vector = 0;

5. for all integers p, I 5,P 5,a do II loop 3

6. dl =getjigit(r,p);

Chapter 3: Sequential Algorithm for l-Vertex-Coloring of Trees

7. dl = getjigit(c,p);

8. if dl +dl ~I then

9. target_vector = -1

10. exit loop 3 and start next iteration ofloop 2;

11. else

12. set_digit(target_vector, min{dl, dl},p);

13. end loop 3

14. CM(r, c) = target_vector;

15. end loop 2

16. end loop 1

end

Algorithm 3.8 compute _AMO

Input: None

Output: Initialized matrix AM

begin

I. for aU integers r, 0 ~ r ~ (I + 2)a -1 do Illoop 1

2. for all integers c, 0 ~ c ~ I do II loop 2

3. AM(r, c) = -1; IImark as invalid combination

4. target_vector = 0;

5. for aU integers p, 1 ~P ~ a do II loop 3

6. d= get_digit(r,p);

7. if d + c ~ I then

8. set_digit(target_vector, d + c,p);

9. else

10. set_digit(target_vector, 1+ l,p);

11. end loop 3

12. AM(r, c) = target_vector;

13. end loop 2

14. end loop 1

end

30

Chapter 3: Sequential Algorithm for l-Vertex-Coloring of Trees 31

Having specified all relevant steps, we can now determine the complexity of algorithm

optimal_I_vertex _coloring (algorithm 3.4). Line 1 of algorithm 3.4 can be done in linear

time (Lemma 3.8). Line 3 can be done in 0((1 + 2ya x a). Line 2, 4 and 5 take 0(1) time.

The loop from line 6 to line 10 iterates at most logz a times. At each iteration, line 8

takes 0((1 + 2Y' x n) '" 0((1 + 2r x n) time. So, the overall time complexity of

optimal_l_vertex_coloring is 0(logax(/+2yaxn), where a=A'~~~I. This proves

Theorem 3.6.

3.3 Conclusion

o

In this chapter, we have grven a sequential algorithm to solve the I-vertex-coloring

problem on trees. Our algorithm runs in timeO(loga x (I + 2ya x n), where a = A'+!-I .
L\-1

If both L\ and I are bounded integers, then our algorithm runs in linear time. Note that

ordinary vertex coloring problem is a special case of I-vertex-coloring problem with I = 1.

Our algorithm can solve the ordinary vertex-coloring problem in linear time. This is the

first known direct solution to I-vertex-coloring problem on ordinary trees that guarantees

an optimal solution.

Chapter 4: Parallel Algorithm for I-Vertex-Coloring of Trees

Chapter 4

32

Parallel Algorithm for 1-Vertex-Coloring of

Trees
This chapter deals with parallel generalized vertex coloring problem on trees. Basically

this is the parallel version of our sequential algorithm presented in Chapter 3. In this'

chapter, we present an O(log2 n) time parallel algorithm for solving the l-vertex-coloring

problem on trees. Given a particular number of colors and a tree, we will apply Bottom-

up Algebraic Tree Computation technique (B-ATC) to determine a valid l-vertex-

coloring for the tree (if there exists any). As specified in Section 3.1, we can determine

the upper bound of the number of colors and we have to search for the optimal number of

color .in this bounded range. If the upper bound is k for some integer k> 0, we will use k

disjoint sets of processors and assign color i, 1 :<:; i :<:; k to set i, I :<:; i :<:; k. Each set of

processors then tries to find all l-vertex-colorings with the number of colors assigned to

that set. The optimal number of colors will be c, 1 :<:; C :<:; k-l where set c has found a valid

l-vertex-coIoring but set c-] has not. Ifthere is no such c then k is the optimal number of

colors.

The remainder of this chapter is organized as follows. Section 4.1 gives some preliminary

definitions and easy observations. Section 4.2 gives a parallel algorithm for l-vertex-

coloring of trees. Finally, Section 4.3 concludes with our parallel l-vertex-coloring

algorithm.

4.1 Preliminaries

We assume that the tree being colored is a binary decomposition tree. Any arbitrary tree

with n vertices can be transformed into equivalent binary decomposition tree in

O(log2 n) time using O(n) operations on the EREW PRAM model [BH95]. The same

Chapter 4: Parallel Algorithmfor I-Vertex-Coloring of Trees 33

weight assignment technique explained in Section 3.2 will be applied here. However the

operations will be done in parallel. We will use the same representation of distance

vectors as explained in Section 3.1. Therefore the algorithms for computing node

functions and edge functions basically remain the same. However, these algorithms will

be executed in parallel. So the algorithms presented in Section 3.2 need to be modified.

Besides, we also need to carefully assign the operations to different processors so that

they can be done in parallel. The modified algorithms are presented below.

Algorithm 4.1 node Junctionyarallel(v, m)

Input: A node v in the binary decomposition tree Th, a color set [1, ... , m]

Output: Updated bitmap oflist of distance vectors of node v

begin

1. Dtejt ~ bitmap(left(v));

2. D,;ght ~ bitmap(right(v));

3. Create two new lists Dv and Dj containing no vector for this node;

4. for all integers i,0 sis (I + 2t -1 in parallel do

5. for all integersj, 0 Sj s (I + 2)m -1 in parallel do

6. if Dlejt[i] and D,;ght[;] are I and CM[i,j] is not invalid

7. Dv[CM[i,j]] = 1;

8. end if

end.

Line 4-8 of algorithm 4.1 combines two lists of distance vectors obtained from its

children in parallel. Each combination is assigned to a different processor, so the number

of required processors and number of operations will be 0((1+ 2)2m). The combination

operation at each processor can be done in 0(1) time (Lemma 3.2). Each processor will

read a unique element of CM matrix but multiple processors may write to the same

location in resultant distance vector list.

(

. ,ir

Chapter 4: Parallel Algorithm for 1-Vertex-Coloring of Trees

Algorithm 4.2 edgeJunctionyarallel(v, m)

Input: A node v in the binary decomposition tree Tb, a color set [1, ... , mJ

Output: Updated bitmap of list of distance vectors of node v

hegin

1. d ~ weight«v, parent(v»);

2. Create a new list of distance vector Dje that contains no vector;

3. for all integers j, 0 ~ j ~ (I + 2)m - 1 in parallel do

4. if Dv[/J is 1 then

5. Dje[AM[j, dJJ = 1;

6. end if

end.

34

Therefore, we should use common ERCW PRAM model. However, since the number of

processors that can write to a particular location is bounded (for bounded 1 and m), we

can use EREW PRAM model. The edge function given in algorithm 4.2 deals with

(I + 2)"' distance vectors and each addition operation can be done in 0(1) time (Lemma

. 3.3). So this function can be implemented using 0((1 + 2)'") processors in EREW PRAM

model. The number of operations in this stage is 0((1 + 2)m).

Therefore, we have the following lemmas.

Lemma 4.1 The node function node Junctionyarallel can be computed in 0(1) time and

0((1 + 2)21m) operations using 0((1 + 2)2m) processors on the EREW PRAM model, where

m is the number of colors. D

Lemma 4.2 The edge function edgeJunctionyarallel can be computed in 0(1) time and

0((1 + 2)'") operations using 0((1 + 2)'") processors on the EREW PRAM model, where

m is the number of colors. D

Chapter 4: Parallel Algorithm for I-Vertex-Coloring of Trees

4.2 An Efficient Parallel Algorithm

35

We now give an efficient parallel algorithm to solve the I-vertex-coloring problem.

Algorithms 4.1 and 4.2 are applied for each internal node and each edge respectively.

However, unlike our sequential algorithm presented in Chapter 3, multiple nodes and

edges will be processed in parallel. As mentioned before, we will apply B-ATC to solve

the problem. Given a particular number of colors, algorithm 4.3 determines whether there

exists a valid I-vertex-coloring of the given tree with that many colors. We can use

algorithm 4.3 to determine the optimal/-vertex-coloring in two different ways. Let, a is

the upper bound for the number of colors. We can use binary search technique in the

range [1,... , aJ and apply algorithm 4.3 at each stage. This strategy requires

0(log2 a x logz n) time and 0((1 + 2ya x n) processors. Alternately, we can use a

disjoint sets of processors_ We use one different set of processors for applying algorithm

4.3 with each color in the range [1,... , aJ. In this case, the I-vertex-coloringproblem can

be solved in O(logz n) time using O(a x (j + 2ya x n) processors. Algorithms 4.3 and 4.4

implement the second strategy.

The main result of this section is the following theorem.

Theorem 4.3 An optimal I-vertex-coloring of a tree T can be found in o(Iogz n) time

using- O(ax (I + 2)Za x n) processors on the EREW PRAM model, where n is the number

of verticesoin T and a is the upper bound of the number of colors.

Chapter 4: Parallel Algorithm for I-Vertex-Coloring of Trees

Algorithm 4.31_vertexJoloringyarallel(T, m)

Input: A binary decomposition tree T and a color set [1, ... , mJ

Output: All l-vertex-coloring of T with m colors (if there exists any)

begin

36

I. For all integers i, I :s;i:S;m, initialize the list of distance vectors of each leaf so

that the list contains all distance vectors of the form-

(dj,dz, ... di-\,O,d'+l, ... ,dm I dj = 00 where I:s; j:S; m and j oF i);
2. Initialize the list of distance vectors of each internal vertex to be an empty list;

3. Number the leaf vertices of Tby 1, 2, ... from the left to the right excluding

the leftmost and rightmost leaves;

4. for Ilogz (n + 1)1iterations do

5. Apply shurit operation concurrently to all odd numbered leaves that are

left children;

6. Apply shunt operation to remaining odd numbered leaves;

7. Remove odd numbered nodes from consideration and sequentially

renumber all even numbered leaves;

end

Algorithm 4.4 optimal_I_vertex _coloringyarallel(T)

Input: A tree T to be colored

Output: Optimall-vertex-coloring of T

begin

1. Construct the binary decomposition tree Tb of T;

2. k +- upperbound(Tb);

3. Compute the matrices eM, AM;

4. for all integers j, 1 :s;j:S; k in parallel do

5. I_vertex Jolor yarallel(Tb,j);

6. for all integers j, 1 :s;j:S; k in parallel do

7. if a coloring withj + I colors exists but there is no coloring withj colors then

8. j is the optimal number of colors;

end

Chapter 4: Parallel Algorithm for I-Vertex-Coloring of Trees 37

As mentioned in Section 2.4, B-ATC is defined on a triple (8, NF, EF) consisting of a set

8, a vertex function set NF c{jI I: 8 x 8 -+ 8} and an edge lunction set

EF ~ {jI I: 8 -+ 8}. For our [-vertex-coloring problem, the set 8 consists of lists of

distance vectors. Initially the list in each leaf node contains all distance vectors

representing a single color assignment. Each internal vertex contains an empty list of

distance vectors. As the B-ATC algorithm proceeds, these lists are gradually filled up.

For this problem, both NF and EF have a single element - the node function and the edge

function described in algorithms 4.1 and 4.2 respectively. For convenience of description,

we will use the notations Fnode(v) and Fedge(e) for the node function and edge function

respectively. The shunt operation has been introduced in Section 2.4. Let u be a vertex of

T with left child v], right child V2 and parent w. Let e, =(v"u), e2 =(v2,u) and

eo = (u, w) and VI is a leaf vertex. The shunt operation defined in Section 2.4 modifies the

edge function corresponding to the edge eo. We will use a modified version of the shunt

operation where we modif'y the parameters of the node function associated with node V2

while keeping the edge function associated with eo as it is. The new node function for V2

will be-

J<:ooe (D'eft' x') = Fnode(Fedge(e,XD(v,)), Fedge(e2Xx))
Here, D(vI) is the list of distance vector of node VI. The first parameter Dteji can be

computed in 0(1) time (Lemma 4.2). Ifv2 is a leaf node, then x will be the list of distance

vectors of node V2 and the second parameter x' can also be compute in 0(1) time.

Therefore, Fnode(D,eft,x') can be readily evaluated to produce the list of distance vector of

node u and this step also takes 0(1) time (Lemma 4.1). However, ifv2 is not a leaf node,

evaluation of the second parameter x' and hence the node function itself has to be

postponed until the value of x' is available. In this case, the shunt operation simply

updates the parameters previously associated with V2 and this operation takes 0(1) time.

So, the shunt operation can be carried out in 0(1) time.

Now we are ready to prove theorem 4.3. Since the tree has n vertices, lines 1-3 in

algorithm 4.3 can be done in 0(1) time using O(n) operations on the EREW PRAM

l

Chapter 4: Parallel Algorithm for I-Vertex-Coloring of Trees 38

model. Lines 4-7 iterate rlog2(n + l)l times. At each iteration, at most 0(n/2) shunt

operations are performed in parallel in lines 5 and 6. These steps take 0(1) time and

0(((1+ 2ym +(1+ 2t xm)x n,) operations on EREW PRAM model (Lemma 4.1 and 4.2)

where n, is the number of shunt operations performed in i'th iteration. The number of

processors needed at this stage is 0((1 + 2?rn x nJ Line 7 can be carried out in 0(1) time

and O(n) operations using O(n) processors on EREW PRAM model. So lines 4-7 takes

0(log2n) time and 0((1 + 2)2rnX LlS'5Io"nn,)= 0((1+2?rn xn) operations on EREW

PRAM model. The last step follows from the observation that each node function is

visited at most twice - first to change the parameter and then to evaluate it finally. The

number of processors needed is 0((1 + 2?rn x n). So, we have the following lemma.

Lemma 4.4 Given m number of colors, algorithm 4.3 can find all/-vertex-coloring of a

tree Tin 0(log2 n) time and O{(I + 2?rn x n) operations using 0((1 + 2?rn x n) processors
in EREW PRAM model. D

Algorithm 4.4 starts with constructing the binary decomposition tree Tb of the given input

tree T Since the tree T has n vertices, line 1 in algorithm 4.4 can be done in 0(10g2n)
time using O(n) operations on the EREW PRAM model [BH95j. Lines 2 and 3 can be

done in 0(1) time using 0((1 + 2?a) processors, where a is the upper bound of the

number of colors. Lines 4 and 5 apply algorithm 4.3 for each color in the range [1,... , a1
in parallel. According to Lemma 4.4, this step can be carried out in 0(10g2n) time and

O(a x (I + 2?a x n) operations using O(a x (I+ 2)2a X n) processors. Each set of processor

can be implemented on the EREW PRAM model. There will be a such sets working in

parallel and processors from different sets may read the same entry from eM or AM

matrix. Therefore, algorithm 4.4 should be implemented on the CREW PRAM model.

However, for if both 1and maximum degree of tree T are bounded, a becomes a constant
number. So, algorithm 4.4 can be implemented on the EREW PRAM model. This proves

theorerrr4.3. D

Chapter 4: Parallel Algorithm for I-Verlex-Coloring of Trees

4.3 Conclusion

39

In this chapter we have presented a parallel algorithm to solve the I-vertex-coloring

problem on trees. We have used B-ATC that uses tree contraction algorithm to solve the

problem. Our algorithm solves the I-vertex-coloring problem on trees in O(log2 n) .time

using O(a x (I + 2)2a X n) operations on the EREW PRAM model, where n is the number

of vertices in T and a is the upper bound of the number of colors. Ours is the first known

parallel algorithm that solves the l-vertex-coloring problem on trees.

t

Chapter 5: Optimal l-Edge-Coloring ojTrees

Chapter 5

Optimall-Edge-Coloring of Trees

40

Like the generalized vertex-coloring problem, generalized edge-coloring problem on

general graphs is NP-hard. However, it is possible to develop polynomial time algorithms

for speciali;-:edgraphs such as trees. In this chapter, we present efficient algorithms, both

sequential and parallel, to solve the l-edge-coloring problem on trees. The sequential

algorithm solves the problem in timeO(loga x (I + 2)'a x n), where n is the number of

nodes in the tree T and a is the upper bound of the number of colors. Our parallel

algorithm solves the problem in O(JOg2n) time using O(a x (I + 2)2a X n) operations on
the EREW PRAM model, where n is the number of vertices in T and a is the upper

bound of the number of colors. We extensively make use of the concepts of Chapter 3

and 4 in this chapter.

The rest of the chapter is organized as follows. Section 5.1 discusses techniques to

transform the l-edge-coloring problem into l-vertex-coloring problem on trees. Section

5.2 gives a sequential algorithm to solve the l-edge-coloring problem. In Section 5.3 we

give a parallel algorithm for the same problem. Section 5.4 describes a technique to

obtain the actual colors assigned to the edges. Finally Section 5.5 draws the conclusion.

5.1 Transforming l-edge-coloring problem into l-vertex-

coloring problem

Each node in a tree has a single parent and therefore is connected by a unique edge to its

parent. This key observation leads to a simple mechanism to transform the l-edge-

coloring problem into l-vertex-coloring problem on a tree. Each edge e = (u, v), where u
is the parent of v, can be uniquely associated with the vertex v. In this case, assigning a

color to edge e is equivalent to assigning a color to vertex v. Therefore, we can apply the

Chapter 5: Optimal Uijige-Coloring of Trees 41

optimal I-vertex-coloring algorithms presented in Chapters 3 and 4 to solve the I-edge-

coloring problems. However, the basic operations like combining two distance vectors

and adding the edge weight to distance vectors need to be modified.

Let us consider the tree in Fig. 5.1. Suppose, nodes VI and Vz have been assigned colors 1

and 2 respectively. In case of I-vertex-coloring, the distance of colors 1 and 2 from node

u were WI and Wz respectively. However, in I-edge-coloring nodes VI, Vz and u represent

edges (u, VI)' (u, vz) and (r,u) respectively and the distance among these three edges is

O.Therefore, colors 1 or 2 cannot be assigned to node u (that is to edge (r, u).

r

Figure 5. J: A partially colored tree.

If r represents the edge between its parent and itself, then r can be assigned color 1 (or 2)

provided WI ;:0: I (or Wz ;:0: l). This suggests that our previous edge function needs to be

modified so that edge weight .isnot added to the i'th element of a distance vector where i

is the color assigned to the vertex corresponding to the edge being considered. Moreover,

in I-vertex-coloring algorithm we could assign same color to vertices VI and Vz if

WI + w2 ;:0: I. In I-edge-coloring algorithm, vertices VI and Vz represent edges (u,vl),

(u, v2) respectively and these two edges are adjacent to each other. So we cannot assign

the same color to vertices VI and Vz .in I-edge-coloring algorithm even if WI +Wz ;:0: I .

Therefore, if two distance vectors from vertices VI and Vz are generated due to same color

assignment to both the nodes, they cannot be combined at vertex u. Now we give the

modified matrix construction algorithms for generalized edge-coloring problem.

Chapter 5: Optimall-Edge-Coloring of Trees

Algorithm 5.1 compute_CM_eO

Input: None

Output: Initialized matrix CM_e

begin

I. for all integers r, 0 ~ r ~ (I+2t -Ido II loop 1

2. for all integers c, 0 ~ c ~ (I + 2)a -I do II loop 2

3. CM e(r, c) = -I; II mark as invalid combination

4. target_vector = 0;

5. for all integers p, 1 ~p ~ a do 1/ loop 3

6. dl = get_digit(r,p);

7. d2 =getjigit(c,p);

8. if d] + dz ~ 1 then

9. target_vector =-1

10. exit loop 3 and start next iteration ofloop 2;

11. else

12. set_digit(target_vector, min(dl, d2),p);

13. end loop 3

14. CM_e(r, c) = target_vector;

15. end loop 2

16. end loop 1

end

Algorithm 5.2 compute_AM_eO

Input: None

Output: Initialized matrix AM e

begin

I. for all integers r, 0 ~ r ~ (I + 2)a - 1do 1/ loop 1

2. for all integers c, 0 ~ c ~ 1 do II loop 2

3. AM e(r, c) = -1 II mark as invalid combination

4. target_vector = 0

42

Chapter 5: Optima"-Edge-Co'oring o/Trees 43

5.

6.

7.

8.

for all integers p, 1 :0;P :0; a do
d= getjigit(r,p)

ifdis a then
set_digit(target _vector, d, p)

I/loop 3

II color p has been assigned to this edge

II don't add the edge weight to this color

II distance

9. else if d + c :0; I then

10. set_digit(target_vector, d + c,p)

11. else

12. set_digit(target _vector, 1+ 1,p)

13. end loop 3

14. AM_e(r, c) = target_vector

15. end loop 2

16. end loop 1

end

Having modified these matrix computation algorithms we are now ready to present our l-

edge-coloring algorithms.

5.2A sequential algorithm for optimall-edge-coloring oftrees

In this section we specifY an efficient sequential algorithm to solve the I-edge-coloring

problem on trees. The node function and the edge function basically remain same as

specified in Chapter 3 (algorithms 3.2 and 3.3 respectively). The only difference is that

these algorithms will now use the pre-computed matrices CM_e and AM_e (Section 5.1)

instead of CM and AM respectively. The I_edge_coloring and the

optimal_I_edge _coloring algorithms are basically similar to I_vertex Joloring (algorithm

3.1) and optimal_l_vertexJoloring (algorithrn 3.4) algorithms respectively. We can re-

specifY the algorithms as follows.

Chapter 5: Optimall-Edge-Coloring of Trees

Algorithm 5.31_edge_coloring(v, m)

Input: A node v in the binary decomposition tree Th, a color set [I, ... , m]

Output: All possible l-edge-coloring of subtree rooted at v with m colors

(if there exists any)

begin

I. if v is an internal node then

44

2. I_edge_coloring(left(v),m)

3. l_edge_coloring(right(v),m)

4. nodeJunction_edge(v,m)

5. else if v represents root(l) then

6. create a list of distance vector Dv containing a single distance vector

(d,,1~i~mandd, =00)
7. else

Create a new list of distance vectors Dv containing no vector, for this leaf node

for all integers i, 0 ~ i ~ m-I do

8.

9.

10.

II.

12.

set_digit(p, 0, i);

Dv[P] = I;

II (d, II~i~m,d, =00)
II algorithm 3.6

13. end if

14. edgeJunction_edge(v,m)

end.

Algorithm 5.4 node Junction edge coloring(v, m)- -

Input: A node v in the binary decomposition tree Th, a color set [I, ... , m]

Output: Updated bitmap of list of distance vectors of node v

begin

1. D1eji ~ bitmap(left(v»;

2. Dright ~ bitmap(right(v»;

3. Create two new lists Dv and Dfcontaining no vector for this node;

4. for all integers i, I ~ i ~ (I + 2)m -I do

Chapter 5: Optimall-Edge-Coloring of Trees

5. for all integers}, O:'!o}:'!o (I+ 2t -1 do

6. if Dteft[i] and Drigh/[j]are 1 and CM_e[i,)] is not invalid

7. Dv[CM eli,}]] = 1;

8. end if

end.

Algorithm 5.5 edge Junction_edge _coloring (v, m)

Input: A node v in the binary decomposition tree Th, a color set [I, ... , m]

Output: Updated bitmap of list of distance vectors of node v

begin

1. d ~ weight«v, parent(v»);

2. Create a new list De containing no vector for this edge;

3. for all integers}, O:'!o}:'!o U+ 2t -] do

4. if Dv[j] is 1 then

5. De[AM_e[j, dj] = 1;

6. end if

end.

Algorithm 5.6 optimal_I_edge _coloring(T)

Input: A binary decomposition tree T

Output: An optimal/-edge-coloring of T

begin

1. Construct Binary Decomposition Tree Tb from T;

2. Determine the upper bound for number of colors needed (a);

3. Compute the matrices CM_e andAM_e;

4. 1= 1; Illowerbound

5. u = a; II upper bound

6. loop until the optimum solution is found

7. i=(l+u)/2;

8. '-edge _coloring(root(Tb), i);

45

Chapter 5: Optimall-Edge-Coloring of Trees 46

9. adjust the color range depending on the outcome of previous step;

10. perform next iteration in the updated range;

II. if), I ~) ~ a -I is an integer such that a coloring with) + I colors exists but

there is no coloring with) colors then

12.) .isthe optimal number of colors

13. else

14. ais the optimal number of colors

end.

The main result of this section is the following theorem whose proof follows directly

from the proof of theorem 3.6.

Theorem 5.1 For any positive integer I, an optimal I-edge-coloring of a tree having n

vertices can be found in time O(log a x (I + 2)2a X n),where a = !:J.'+I -I . 0
!:J.-I

5.3 A parallel algorithm for optimall-edge-coloring of trees

In this section we will give an efficient parallel algorithm to solve the I-edge-coloring

problem. As in Section 5.2, the algorithms will use the pre-computed matrices CM_e and

AMJ (Section 5.1) instead of CM and AM respectively. The I_edge Joloring"'parallel is

exactly equivalent to I_vertex_coloring"'parallel algorithm (Algorithm 4.3) and the

optimal I edge coloring"'parallel algorithm IS basically similar to-- -

optimal_l_vertex_coloring"'parallel (Algorithm 4.4) algorithm. We now specifY the

parallel algorithms for the I-edge-coloring problem on trees.

Chapter 5: Optimall-Edge-ColoringojTrees

Algorithm 5.7 nodeJunction_edge_coloryarallel(v, m)

Input: A node v in the binary decomposition tree Th, a color set [1, ... , m]

Output: Updated bitmap of list of distance vectors of node v

begin

I. Dtejt~ bitmap(left(v));

2. Dright= bitmap(right(v));

3. Create two new lists Dv and Dfcontaining no vector for this node;

4. for all integers i, 0:<; i:<; (I+ 2t -1 in parallel do

5. for all integersj, O:<;j:<; (I + 2t -1 in parallel do

6. if DteJtli]and Drigl,,[j]are] and CM_e[i,j] is not invalid

7. Dv[CM_e[i,j]] = I;

8. end if

end.

Algorithm 5.8 edgeJunction_edge_coloryarallel(v, m)

Input: A node v in the binary decomposition tree Th, a color set [1, ... , m]

Output: Updated bitmap of list of distance vectors of node v

begin

1. d ~ weight«v, parent(v»);

2. Create a new list De containing no vector for this edge;

3. for all integersj, O:<;j:<; (I + 2t -I in parallel do

4. if Dv[j] is I then

5. De[AM_e[j, dJ] = 1

6. end if

end.

47

.. ..•...•.
l<

Chapter 5: Optimall-Edge-ColoringofTrees 48

Algorithm 5.9 IJdge ~coloringyarallel(T, m)

Input: A binary decomposition tree Tand a color set [1, ... , mJ

Output: All I-vertex-coloring of Twith m colors (if there exists any)

begin

1. For all integers i, 1 ::::i ::::m, initialize the list of distance vectors of each leaf

(excluding root(1) so that the list contains all distance vectors of the form -

(d, ,d2, ••• d'_l ,D,di+!'" .,dm I dj = 00 where 1::::) ::::m and} oF i);
root(l} contains a single vector (d"l:::: i:::: m,d, = 00)

2. Initialize the list of distance vectors of each internal vertex to be an empty list;

3. Number the leaf vertices of T by 1, 2, ... from the left to the right excluding the

leftmost and rightmost leaves;

4. for r log2 (n + 1)1 iterations do

5. Apply shunt operation concurrently to all odd numbered leaves that are left

children;

6. Apply shunt operation to remaining odd numbered leaves;

7. Remove odd numbered nodes from consideration and sequentially renumber

all even numbered leaves;

end

Algorithm 5.10 opt imal_l_ edge Joloringyarallel(1)

Input: A tree T to be colored

Output: Optimal/-edge-coloring of T

begin

1. Construct the binary decomposition tree Tb of T

2. a~ upperbound(Tb)

3. Compute the matrices CM_e andAM_e

4. for all integers}, 1 ::::}::::a in parallel do

5. I_edge _color yarallel(Tb,})

6. for all integers}, 1::::}.::::a-I in parallel do

7. if a coloring with/+ 1 colors exists but there is no coloring with} colors then

8. } is the optimal number of colors

Chapter 5: Optimall-Edge-Coloring of Trees

end

49

The main result of this section is the following theorem whose proof follows directly

from the proof of theorem 4.3.

Theorem S.2 An optimal l-edge-coloring of a tree T can be found in 0(log2 n) time

using 0((1 + 2ya x n x a) processors on the EREW PRAM model, where n is the number

of vertices in Tand a is the upper bound of the number of colors. 0

5.4 Finding the Color Assignment

Till now we have not mentioned how we can obtain the actual colors assigned to the

nodes. In this section we tum our focus to that topic. We will store two numbers with

each distance vector dv. These two numbers imply that the distance vector dv is the result

of a combine operation between dt and dr. From this information we can go from root

down to the leaf level and retrieve one color assignment or color vector for each existing

distance vector at root. If we are interested in all color vectors, we have to maintain a list

of 2-tuples < d[, dr > that include all combinations that resulted the distance vector. To

retrieve color information, we need to recursively explore with each tuple, one at a time.

With this representation, the node function still runs in 0(1) time. The color retrieval

operation can be done in O(n) time if we are interested in any valid color assignment. So

the overall complexities of our algorithms remain unaffected.

5.5 Conclusion

In this chapter we have presented a sequential and a parallel algorithm to solve the l-

edge-coloring problem on trees. Our sequential algorithm finds the optimal l-edge-

coloring of a tree in time O(log a x (I 'I- 2)2a X n) while the parallel algorithm finds ,the

optimal l-edge-coloring of a tree in 0(log2 n) time using O(a x (I + 2ya x n) processors
on the EREW PRAM model, where n is the number of vertices in T and a is the upper

bound of the number of colors. Both these algorithms are first known algorithms that

solve the l-edge-coloring problem on trees.

Chapter 6: Conclusion

Chapter 6

Conclusion

50

This thesis deals with a generalized vertex-coloring problem and a generalized edge-

coloring problem on trees. Our parallel algorithms for solving the l-vertex-coloring and l-

edge-coloring problem as well as the sequential algorithm for solving l-edge-coloring

problem are first such algorithms. Besides, our sequential algorithm for solving l-vertex-

coloring problem is the first direct solution to the problem that guarantees an optimal

solution.

In Chapter 2 we have defined some basic terms needed for solving generalized coloring

problems. We also described different PRAM models. Finally we described techniques of

tree contraction and decomposition of an arbitrary tree into equivalent binary tree. These

techniques played key roles in our algorithms.

In Chapter 3 we gave a sequential algorithm to solve the l-vertex-coloring problem on

trees. For any positive integer I, our algorithm finds an optimall-vertex-coloring of a tree

having n vertices in timeO(loga x (I + 2ya x n), where a = IX+
l

-1 .For bounded I and a
~-l

tree with bounded degrees, the algorithm finds an optimall-vertex-coloring of T in linear

time. This is the first sequential algorithm for the l-vertex-coloring problem that

guarantees an optimal solution.

Chapter 4 gives a parallel algorithm for the same problem in Chapter 3. Our algorithm

uses B-ATC with tree contraction technique. Our parallel algorithm finds an optimal 1-

vertex-coloring of a tree Tin 0(10g2 n) time using O(a x (I + 2)2a X n) processors on the

EREW PRAM model, where n is the number of vertices in T and a is the upper bound of

the number of colors. This is the first parallel algorithm to solve l-vertex-coloring

problem.

Chapter 6: Conclusion 51

Chapter 5 is devoted to l-edge-coloring problem. First we have described a technique to

transform the l-edge-coloring problem into l-vertex-coloring problem on trees. Then we

identified the modifications in our previous algorithm that are needed to solve the l-edge-

coloring problem. Finally we described a sequential and a parallel algorithm to solve the

l-edge-coloring problem on trees. The complexities of these algorithms are the same as

their corresponding algorithms for l-vertex-coloring.

In this thesis, we have given sequential and parallel algorithms for a generalized coloring

of trees. However, following problems are still open:

I. Can we find the optimal coloring of a tree without an exhaustive search in the

solution space?

2. Can we determine tight bounds on the number of colors?

References

References:

52

. [ADK89] K. Abrahamson, N. Dadoun, D. G. Kirkpatrick and T. Przytycka, A simple

parallel tree contraction algorithm, J. Algorithms 10, pp. 287-302, 1989.

[BH95] H. L. Bodlaender, T. Hagerup, Parallel algorithms with optimal speedup for

bounded treewidth, Proc 22nd Int. Colloq. on Automata, Languages and

Programming, Lecture Notes in Computer Science 10, Springer, Berlin, .pp.

268-279, 1995.

[BPT92] R. B. Borie, R. G. Parker and C. A. Tovey, Automatic generation of linear time

algorithms from predicate calculus descriptions of problems on recursively

constructed graph families, Algorithmica 7, pp. 555-581, 1992.

[GJ79] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

theory ojNP-completeness, W. H. Freeman & Co., New York, 1979.

[GMT88] H. Gazit, G.L. Miller and S.H. Teng, Optimal tree contraction in an EREW

model, Concurrent Computations: Algorithms, Architecture and Technology,

(S.K. Tewkesbury, B.W. Dickinson and S. C. Schwartz, Eds.)Plenlum, New

York, 1988.

[Gup66] R. P. Gupta, The Chromatic index and the degree of a graph, Not. Amer. Math..

Soc. 13, pp. 719, 1966.

[Jag96] Chris Jagger, Coloring powers of graphs, Manuscript, 1996.

[Jos92] J. Joseph, An Introduction to Parallel Algorithms, Addison-Wesley Inc., 1992.

References 53

[KYOO] Md. Abul Kashem and Ayesha Yasmeen, Optimal l-vertex-coloring of trees,

International Conference on Computer and Information Technology (ICCIT),

pp. 151-153,2000.

[MR86] G.L. Miller and lH. Reif, Parallel tree contraction and its applications, Proc.

of the 26th lEEE Symp. on Foundation ofComp. Sci. 47, pp. 277-298, 1986.

[Viz64] Y.G. Vizing, On an estimate of the chromatic class ofa p-graph, Diskret. Analiz

3, pp 25-30, 1999.

[Wes99] D. B. West, Introduction to Graph Theory, Prantice-Hal1 Inc.,1999.

[ZKNOO]X. Zhou, Y. Kanari and 1.Nishizeki, Generalized vertex-colorings of partial k-

trees.IEICE Trans. on Fundamentals, pp. 555-581, 2000.

Index

Index
ancestors, 12

Bottom-up Algebraic Tree Computation,

14

child, 12

chromatic index, 3

chromatic number, 2

CRCW,14

CREW, 14

cycle, II

degree, 10

descendants, 12

distance vector, 20

edgeJunction, 25

edge-chromatic number, 3

edge-coloring, 3

edge-coloring problem, 3

edge-set, 9

Equivalent Binary Tree, 16

EREW, 14

free tree, 11

height, 12

independent set, 2

internal node, 12

isolated vertex, 10

k-chromatic, 2

k-colorable, 2

k-edge-colorable, 3

k-partite, 2

I-chromatic number, 5

leaf, 12

I-edge-chromatic number, 6

l-edge-coloring, 6

loop, 9

l-vertex-coloring, 5

MlMD,14

Multigraphs, 9

Multiple edges, 9

nodeJunction, 25

NP-hard,18

parent, 12

path, II

PRAM model, 13

root, 11

rooted tree, II

shared-memory model, 13

simple graph, 9

subgraph, 10

subtree, 12

tree, 11

Tree Contraction Algorithm, 14

vertex-coloring, 2

vertex-coloring problem, 2

vertex-set, 9

54

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063

