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Abstract

Genes, some long molecules of DNA, store the control codes for all the activities of life; and

scientists are giving huge efforts to tind out the genetic codes in the cells of different living

beings, especially of humans. Because of the huge volume of the databases containing the

genomes of various species, computational gene recognition tools have become essential for

discovery and analysis of the genes. The genes constitute only little portions of the genomic

DNA sequences, and are interleaved by long non-coding intergenic regions. There are

interlcaving of coding and non-coding regions within the genes too. The problem of gene

recognition is to identify gene in the huge volume of DNA sequence, and also to identify the

coding and non-coding regions inside the gene. This thesis describes a new and simple

Hidden Markov Model based system, namely HMMSplice for recognition of donor and

acceptor splice sites in a genomic DNA sequence. Since identification of splice sites extracts

the coding exons and non-coding introns in a gene and thus, completely reveal the structure

of a gene, this system provides substantial aid for recognizing genes in un-annotated DNA

sequences. Hidden Markov Models provide a precise probabilistic method for modeling

sequence of discrete data, and therefore seem to be a natural solution for analyzing various

sites in DNA sequences. Separate HMMs ii)r donor and acceptor splice sites have been

designed for HMMSplice. They are trained and tested with real data and the results of the

experiments have been discussed. Since complete understanding of the biological process that

recognizes and utilizes genes to synthesize proteins, is essential to develop as well as

lhlderstand a gene recognition system, a comprehensive discussion on protein synthesis is

provided Tbe features of spilce sites that arc considered in development of the models, are

discussed in detaiL

Ilidden ,'\;fol'kIWl\4odelsji)r COll/pulatilma! (;em' N('(:'J,\;nifiotl



1
Introduction

Genes, S0l11e long molecules of DNA, are the controllers of all activities in living beings.

They encode all these control programs hy various permutations of four nucleotides. Because

of this, scientists are giving huge efforts to find out the genetic codes in the cells of different

living beings, especially of humans. Various chemical techniques like Polemerase. Chain

Reaction (PCR) have been discovered to replicate the code from living cells synthetically and

store it into computer memory; and consequently, a huge volume of genomic data is being

piled up in the computer databases all over the world.

Because of this huge volume of data, computational techniques to decipher them have

heeome an essential thing, and hence, rohust computational techniques for recognizing and

analyzing genes are a valuable resource for li)r the molecular biology community.

A gene may be defined as a single, contiguous region of genomic DNA that encodes one

protein [1][9]. Four nucleotides, Adenine (Al, Cytosine (C), Guanine (G), Thyamine (T)

make up a sequence of DNA. The genes of most eukaryotic organisms are separated by long

stretches of intergenic DNA and their codingsequcnce (exons) is interrupted by non-coding

introns. In the biological process of protein manufacturing, to obtain a continuous protein-

coding sequence, genes are transcribed into long pre-messenger RNA molecules that

subsequently undergo complex processing to remove intronic sequences and assemble the

exons to form a messenger RNA [8][9].

The biological process uses some signals in the DNA sequence to identify the genes and

Chons and i"trons within genes. If this process was understood completely all genes and

exon-itrons could be predicted Ii-om given DNA sequences detenninistically. Since the

biological process is still obscured, diffcrent I'allern rccogl1ltion techniques, including neural

networks, decision trees, probabilistic reasoning etc. are used for this prediction. There have

been proposed a number of systems for finding genes. For example GeneMark, Genie,

GenScan, I-IMMGene, VEIL, Morgan, GenciD etc 13][4][5]18].

--------------------------------------------
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Hidden Markov Models [7] provide a precise probabilistic method for modeling sequence of

discrete data, and therefore seem to be a natural solution for tinding and analyzing genes in

DNA sequences. Several gene finding programs have used different forms of Hidden Markov

Models for gene recognition. The Genie system [5] by Kulp et.al. uses 'Generalized HMM'.

Kiyoshi, et al. have. used HMMs combined with. language I1Jles. All these systems are

partially successful. HMMs for gene recognition can be designed in an wide variety of ways

that are yet to be explored We have designed a new simple Hidden Markov Model for genes

in DNA sequences and experimentally demonstrate its gene prediction capability. Our

system, j-jMMSplice as we named it, actually attempts to predict all the splice sites in a DNA

sequence correctly. Recognition of splice sites greatly helps in the process of gene finding

since it helps to decipher the structure of a gene.

The thesis document is organized in the following manner. Chapter 2 gIves a brief

introduction to the concepts of molecular biology. Basically, the discussion is around the

central dogma of molecular biology, the 2 step (transcription, translation) process of protein

synthesis from a sequence of DNA. The basic elements and machinery in the cell that are

involved in the process are detined before discussion of the protein synthesis mechanism.

Chapter 3 defines computational gene recognition problem, which we have attempted to

solve. Various ditliculties on the way to solve the problem are discussed. Different

computational approaches followed by the gene finder programs are considered.

Chapter 4 handles splice site recognition, a sub-problem of gene recognition, on which we

have concentrated in our system. This chapter discusses various features of donor and

acceptor splice sites that may be utilized for modeling their recognizer.

Chapter 5 provides the mathematical preliminaries on Hidden Markov Model. Since this is

. the core mathematical model used in our system, a discussion of the theory behind this is in

order. The three classical problems with Hidden Markov Models are discussed along with

computational procedures to solve them.

Chapter 6 discusses HMMSplice, the system we have developed for splice site recognition.

Experimental results are represented graphically along with discussion on the algorithm.

lii,dden Ivlarkov klodelsjhr Computational Gene HeGogllil;IJtI 3



2
An Introduction to Molecular Biology

The central dogma of Biology today is the mechanism of synthesizing Protein, the building

block of all the living beings, from the DNA molecules where the templates for those proteins

are preserved from generation to gerieration. Proteins make up much of our bodies. Some

form the structural parts of our cells, while others catalyze biochemical reactions. Protein

synthesis is basically a two step process where DNA molecules serve for the proteins in the

following way -

DNA -(transcription) --+ RNA-- (translation) -. Protein

In this chapter we will.take a brief look into the elements involved in the process.

2.1 Nucleotides and Nucleic Acids
Both DNA (DeoxyriboNucleic Acid) and RNA (RiboNucleic Acid) belong to a family of

molecules referred to as nucleic acids, which are linear polymers of nucleotides. Nucleotides

consist of three parts:

I. A five-carbon sugar (hence a pentose) Two kinds are found

• Deoxyribose, which has a hydrogen alom attached to its #2 carbon atom (designated

2')

• Ribo;e, which has a hydroxyl group atom there

0-
. 1 5' to base (purine

0-- P - 0 - C"z . 0 or pyrimidine)

II 1/ ""'-+ .
o Ci' Cl'

1\" "/1
" ~3'__ ~2' "

I I
0" ,'11'\I ,I',_/~(iiH'

in deOXyribonUCleotides/ I,~_)

in ribonUCleotides!

Figure 2,1: Five carbon sugar (deoxiriboselribose) with phosphate group
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Deoxyribose-containing nucleotides, the deoxyribonncleotides, are the monomers of DNA.

Ribose-containing nucleotides, the ribonncleotides, are the monomers of RNA.

2. A nitrogen-containing ring structure called a base. The base is attached to the I' carbon

atom ofthe pentose.

In DNA, fourdifferent bases are found:

1. two purines, called adenine (A) and guanine (G)

2. two pyrimidines, called thymine (T) and cytosine (C)

RNA contains

1. The same purines, adenine (A) and guanine (G).

2. RNA also uses the pyrimidine cytosine (C), but instead of thymine, it uses the

pyrimidine uracil (1I).

The combination of a base and a pentose is called a nncleoside.

n
II
/t,

lHi t-

I "Thymine
u=t fli (T)
'1'/

••to l' carbon of
deoxyribose

I
e
#' /'fI
r 1'1 ~t!i

Ut~ " /", H /' Adenine
" (A)

••to l' carbon of
e-ithor pe-ntose-

l)
'11
/c, !1

'n e / ~
I " ni

p, /!~, / C" / liuilnine
",;M " . + (Ii)

to l' carbon 01'
.~il:h"rp""tos"

Figure 2.2 (a) The Purine bases

Hidden AJarkov A10delsfhr Computational Gene Recogllilio/1

NH ~lI ..
pC,
fI" u,
I " Cytosine

\!=,. UI (C)
'fi/

••to l' carbo" of
,.,ither pe"tose

I)
II
/',
Id tll

I " Urilcil
:=C UI W)
'fi/

"to l' carbon
of ribose

Figure 2.2 (b) The Pyrimidine Bases
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Deoxy-CTP
(deoxycytidine
tr.iphosphate)

3. One (as shown in the first figure), two, or three phosphate groups. These are attached to

the 5' carbon atom ofthe pentose.

Both DNA and RNA are assembled from nncleoside triphosphates.

For DNA, these are dATP (Deoxyadenosine triphosphate), dCTP, dGTP, and dTTP.

For RNA, these are ATP, CTP, GTP, and lJTP

In both cases, as each nucleotide is attached, the second and third phosphates are removed.
Deoxy,ATP
(deoxyadenosine Ade'nine
tdphosphate) "H,

Phosphate groups
,--.--':"_-_.I'--~----'-----'.

Deoxy,GTP
(deoxyguanosine
triphosphate)

. Cytosine
NHi:"
1

". -N-::'i'''-'-'':':;

o"t, J;;,
o 0 0 ' 'W
. II II I

¥'O ..~-PI¥'--Q -~ P _ .. 0 .-~.-p -_. 0 _ .. ~Hl,/'0 '....... ii
! ,..- ",

0' 0' 0' r1-?''''' .H H
I

HO ;ll

Figure 2.3 DeoxyRibo Nucleotide Tri-Phosphates (ATP, GTP, CTP)

2.2 The DNAMolecule
One strand of DNA is a polymer of four kinds of nucleotides characterized by the four bases

_ Adenine (A). Guanine (G), Thymine ('1') and Cytosine(C). The polymer looks like the

following figure. The phosphate group bonded to the 5' carbon atom of the deoxyribose of

Hidden }\1ol'!lov /\;Jodelsfhr Cornpwationa/ Gene Recognitiun 6



one nucleotide is covalently bonded to the 3' carbon of the deoxyribose of the next

nucleotide. Each strand of DNA contains millions or even ofnucleotides.

Figure 2.4 A segment of a DNA strand

The nucleotide bases are arranged in a specific order according to our genetic ancestry. The

order of these base units makes up the code for specific characteristics in the body, such as

eye color or nose-hair length. Just as we use 26 letters in various sequences to code for the

words you are now reading, our body's DNA uses 4 letters (the 4 nucleotide bases) to code

for millions of different characteristics.

Each molecule of DNA is actually made up of2 strands of DNA cross-linked together. Each

nucleotide base in the DNA strand will cross-link (via hydrogen bonds) with a nucleotide

base in a second strand of DNA forming a structure that resembles a ladder. These bases

Hidden ,Hark()v ;\IodelsJor Computational Gene Recognition 7



cross-link in a very specific order A will only link with T (and vice-versa), and C will only

link with G (and vice'-versa). Thus our picture of DNA now looks like this:

Figure 2.5: Double stranded DNA with hydrogen bonds between base pairs

In 1953, James Watson, Francis Crick and Rosalind Franklin discovered that the structure of

DNA is actual1y a double helix. In other words, the DNA ladder described above coils around

itself somewhat like the cord of a telephone, as illustrated in Figure 2.6.

Figure 2.6: Double helix structure of DNA molecule

The two strands are '~antiparallel"; that is, olle strand runs 5' to 3' while the other runs 3' to 5'.

The purine or pyrimidine attached to each deoxyribose projects in toward the axis of the

. \ - '~

Hidden Markov klode/sInr Compllfafiona! Gene Recognition



helix. The specific base-pairing of DNA aids in reproduction of the double helix when more I
'genetic material is needed (such as during reproduction, to pass on characteristics from parent !\
to offspring) When DNA reproduces, the 2 strands llllzip from each other and enzymes add

new bases to each, thus forming two new strands. Within this coil of DNA lies all the

information needed to produce everything in the human body. A strand of DNA may be

millions, or billions, of base-pairs long. Different segments of the DNA molecule code for

different characteristics in the body. A Gelle is a relatively small segment of DNA that codes

for the synthesis of a specific protein. This protein then will playa structural or functional

role in the body. A chromosome is a larger collection of DNA that contains many genes and

the support proteins needed to control these genes.

2.3 The RNA Molecule
RNA has the same primary structure as DNA. It consists of a sugar-phosphate backbone, with

bases attached to the l' carbon of the sugar. The differences between DNA and RNA are that:

1. RNA has a hydroxyl group on the 2' carbon of the sugar (thus, the difference between

deoxyribonucleic acid and ribonucleic acid.

Figure 2.7: RNA uses Uracil in place of Thymine

2. Instead of using the base (T)hymine, RNA uses another nucleotide called (U)racil:

_)[_1-
fine lines re.pre.SE'.nt b8.Se p8irS

Figure 2.8 Hairpin loops in RNA

Hidden AI/arlin\! J\;fodels/hr COIll/)//!llliol1al Gene Ncco,!.!.nifiol'l 9
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3. Because of the extra hydroxyl group 011 the sugar, j{Ni\ is 100 bulky to form a stable

double helix RNA exists as a single-stranded molecule. However, regions of double

helix can form where there is some base pair complementation (U and A , G and C),

resulting in hairpin loops. The RNA nHllecule with its hairpin loops is said to have a

secondary structnre.

4. In addition, because the RNA molecule is not restricted to a rigid double helix, it can

form many different tertiary strndlll'CS. Each RNA molecule, depending on the

sequc;lce of its bases, can fold into a stahle thrce-dimensiomll structure.

There are several different kinds of RNA made by the cell.

mRNA - messenger RNA

is a eopy of a gene. It acts as a photocpoy of a gene by having a sequence complementary

to one strand of the DNA and identical to the other strand. The mRNA acts as a busboy to

carry tbe information stored in the DNA in the nucleus to the cytoplasm wbere the

ribosomes can make it into protein.

tRNA - transfer RNA

is a small RNA that has a very speciiie secondary and tertiary structure such that it can

bind an amino acid at one end, and mRNA at the other end. It acts as an adaptor to carry

the amino acid elements ofa protein to the appropriate place as coded for by the mRNA.

rRNA - ribosomal RNA

is one of the structural components of the ribosome. It has sequence complementarity to

regions of the mRNA so that the ribosome knows where to bind to an mRNA it needs to

make protein from.

snRNA - small nuclear RNA

is involved in the machinery that processes RNA's as they tr"'lel between the nucleus and

the cytoplasm. We will discuss these later in the context of cukaryotic gene structure

2.4 Mechanism of Protein Synthesis

The basic reaction of protein synthesis is the controlled forlllati"n of a peptide bond between

two amino acids. This reaction is repeated man\, timcs,as each amino acid in turn is added to

the growing polypeptide. Protein synthesis is a 2-step process . tirsL a working copy of the

-----------------------------_._---------------

I',,

(
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code stored in a DNA strand is made into a strand of messenger RNA (transcription), and

then this m-RNA guides the formation of the polypeptide chain by t"RNA and ribosome.

2.4.1 Transcription

A messenger RNA (mRNA) which en'codes the protein to be synthesised is generated by the

DNA in nucleus in a process called DNA transcription. Transcription generates not only the

mRNAs that carry the information for protein synthesis butlransfer, ribosomal and other

RNA molecules that have structural and catalytic functions. All these RNA molecules are

synthesised by RNA polymemse enzymes which bind very tightly when they collide with a

specific DNA sequence: the pl"Omoter. The promoter sequence is the one, which defines

which DNA strand is to be transcribed by defining the direction of RNA polymerase

movement.

5> .•• A T Ii Ii C C T Ii Ii ACT TCA ..• :'I" S,:IWestmndnfONA
3> ... T ACe Ii Ii Ace T Ii A A Ii T. .. 5> Am iSimsestrnnd of ONA

~ Tr.m,{dlldon of antkens(: strand

5' ... AUG Ii C C U Ii Ii A C U U CA... 3' mPH"

Figure 2.9: Transcription of a DNA strand

All the above is based upon the fact that the DNA strand servmg as template must be

traversed from its 3' end to its 5' end. As it does so, it assembles ribonucleotides (supplied as

triphosphates, eg, ATP) into a strand of RNA. Each ribonucleotide is inserted into the

growing RNA strand following the rules of base pairing. Thus lor each C encountered on the

DNA strand, a G is inserted in the RNA; for each G, a C; and for each T, an A. However,

each A on the DNA guides the insertion of the pyrimidine Uracil (U, from uridine

triphosphate, UTP). There is no T in RNA. Synthesis of the RNA proceeds in the 5' e 3'

direction. As each nucleoside triphosphate is brought in to add to the 3' end of the growing

strand, the two termi.nal phosphates are removed. When the RNA polymerase encounters a

termination signal (a specific sequence of nucleotides); it and its transcript afe released from

the DNA. A variety of different termination signals are used by the genome.

. 2.4.2 pre-mRNA Processing

All the primary transcripts produced in the nucleus must undergo processing steps to produce'

functional RNA molecules for export to the cytosol. We shall confine ourselves to a view of

the steps as they occur in the processing ofpre-mRNA to mRNA.
,

Hidden !Ilar/wl' Pvfodels.fhr Computational Gene Recognition II



Transcription

DNA (The Gene)

5' oJF': n on 3' pre-mRNA

Capping (fill)
GI~X{ln::l] Intion A gXP,n::g'ntionB 1@:g!<on~I):i)i:M

Excision of introns andt splicing of exons

LI;g,pyl::!BigJ~:21 :::Jfl(!i:nii}:u:':yl
• Polyadenylation

5' [lJiX!il!!I:!E;PII:gITJE!o.ll::! r::jffigly(A)J 3' mRNA

To cytosol for translation ~ by ribosomes

Figure 2.10 Steps in the pre-mRNA processing

The steps in this processing phase are -

• Synthesis of the cap. This is a modified guanine (G) which is attached to the 5' end of

the pre-lnRNA as it emerges ti'om RNA polymerasell (IZNAP II). The cap protects

the RNA ti'om being degraded by enzymes that degrade RNA from the 5' end.

• Step-by-step removal of il1trol1s present in the pre-mRNA and splicing of the

remaining exol1s. This step is required because most eukaryotic genes are split. It

takes place as the pre-mRNA continues to emerge j,'om RNAP II.

• Synthesis of the poly(A) taiL This is a stretch or adenine (A) nucleotides. When

transcription is complete, the transcript is cut at a site (which may be hundreds of

nucleotides before its end), and the poly(A) tail is attached to the exposed 3' end. This

completes the mRNA molecule, which is now ready fix export to the cytosol. (The

remainder of the original transcript is degraded and the RNA polymerase leaves the

DNA)

Split Gem's
Most eukaryotic genes are split into segments. In decoding the open reading frame of a gene

for a known protein, one usually encounters periodic stretches of DNA calling for amino

acids that do not occur in the actual protein product of that gene. Such stretches of DNA,

which get transcribed into RNA but not translated into protein, are called il1trol1s. Those

,'"
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stretches of DNA that do code for amino acids in the protein are called exons. Even the genes

for rRNA and tRNA are split.

In general, introns tend to be much longer than exons. An average eukaryotic exon is only

140 nts long, but one human intron stretches for 480,000 nucleotidesl The cutting and

splicing of mRNA must be done with great precision. If even one nucleotide is left over from

an intron or one is removed from an exon, the reading jj-ame from that point on will be

shifted, producing new codons specifying a totally different sequence of amino acids from

that point to the end of the molecule (which often ends prematurely anyway when the shifted

reading frame generates a STOP codon) The removal of introns and splicing of exons is

done with the splicosomes. This is a complex of several snnNA molecules and more than 70

proteins

The introns in most pre-mRNAs begin with a GU and end with an AG. Presumably these

short sequences assist in guiding the spliceosome.

Alternative Splicing

The processing of pre-mRNA for many proteins proceeds along vanous paths in different

cells or under different conditions. For example, early in the differentiation of a B cell (a

lymphocyte that synthesizes an antibody) the cell first uses an exon that encodes a

transmembrane domain that causes the molecule to be retained at the cell surface. Later, the

B cell switches to using a different exon whose domain enables the protein to be secreted

from the cell as a circulating antibody molecule. Alternative splicing provides a mechanism

for producing a wide variety of proteins !'i'om a small number of genes. One of the most

dramatic examples is the DSCAM gene in Drosophila This single gene contains some 108

exons of which 17 are retained in the final mRNA. Some exons are always included; others

are selected from an array Theoretically this system is able to produce 38,016 different

proteins And, in fact, of 50 DNAs synthesized at random from mRNAs, 49 of them turned

out to be unique.

These DSC/\M proteins are involved in guiding neurons to their proper destination. Perhaps

the incredible diversity of synaptic junctions in the mammalian c.n.s (_1014) is mediated by

alternative splicing of a limited number of gene transcripts .
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So, whether a particular segment of RNA will be retained as an exon or excised as an intron

can vary under different circumstances. Clearly the switching to an alternate splicing pathway

must be closely regulated.

Source of split genes

Perhaps during evolution, eukaryotic genes bave been assemblcd from smaller, primitive

genes - today's exol1S. Some proteins, Iikc the :Intihodies mentioncd in the previous section,

are organized in a set of separate sections.or domains each with a special function to perform

in the complete molecule. Each domain is encoded by a separate exon. Having the different

functional parts of the antibody molecule cncoded by separate exoliS makes it possible to use

these units in different combinations. Thus a set of exons in the genome may be the genetic

equivalent of the various modular pieces in a box of "Lego" lor children to assemble in

whatever forms they wish.

But the boundaries of other exons do not seem to correspond to domain boundaries of the

protein. Furthermore, rRNA and tRNA genes are also split, and these do not encode proteins

So perhaps some introns are simply "junk" DNA that was inserted into the gene at some point

in evolution without causing any harm.

2.4.3 Translation

After processing, the information in the mRNA can be used to be "translated" into a protein

of specific sequence. The machinery used for this translation process are ribosomes and

transfer RNAs (tRNA).

A ribosome is a complex of four ribosomal RNAs (rRNA) and 70 different proteins. In

eukaryotes, ribosomes bind at the 5' end of the mRNA and scan down the mRNA until they

encounter a suitable start codon. In its inactive slate, it exists as two subunits; a large subunit

and a small subunit. When the small subunit encounters an mRNA, the process of

translation of the mRNA to protein begins. There are two sites in the large subunit, for

subsequent amino acid to bind to and thus be close enough to each other for the form.ation of

Hidden A4ar1lovA1ode/sjhr Compf/tationol Gene Hec(I,I.!.n;i;otl 14



a peptide bond. The A site accepts a new tRNA bearing an amino acid, and the P site bears

the tRNA attached to the growing chain.

Transfer RNA (tRNA) carries amino acids to the ribosomes, to enable the ribosomes to put

this amino acid on the protein that is being synthesized as an elongating chain of amino acid

residues, using the information on the mRNA to "know" which amino acid should be put on

next. Each of the tRNA molecule binds with specific one of the 20 amino acids found in all

living cells and each can identify a specific triplet of nucleotides in the mRNA, called a

codon.

/.:-.I:3.nine

~~p
I

..

,':

Figure 2. I I: the structure of alanine tRNA lrom yeast

At least one kind oftRNA is present for each of the 20 amino acids used in protein synthesis.

(Some amino acids employ the services of two or three different IRNAs, so most cells contain

as many as 32 different kinds oftRNA) The amino acid is attached to the appropriate tRNA

by an activating enzyme (one of 20 amino:lcyl-tRNA synthetases) specific for that amino

acid as well as for the tRNA assigned to it. The Figure shows the structure of alanine tRNA

from yeast. It consists of a single strand of 77 ribonucleotides. The chain is folded on itself,

and many of the bases pair with each other l(lIlning four helical regions. Loops are formed in

the unpaired regions of the chain.
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Each kind of tRNA has a sequence of 3 unpaired nucleotides - the anticodon - which can

bind, following the rules of base pairing, to the complementary triplet of nucleotides - the

cadon - in a messenger RNA (mRNA) molecule. Just as DNA replication and transcription

involve base pairing of nucleotides running in opposite direction, so the reading of codons in

mRNA (5' -> 3') requires that the anticodons bind in the opposite direction.

Anticodon: 3' eGA 5'
Codon: 5' GCU 3'

The Genetic Code

The following table summarizes the mapping of codons in mRNA to each of the 20 amino

acids. This mapping is also called the genctic codc, as deciphered by Marshal Nirenberg and

his colleagues in early 1960s.

SECOND POSITION

zo-E--Vl
~
E-
Vlc:::-w..

u C A G
phenyl-

tylosine cysteine. U
. alollin.

U senne e
leucine ~"".';p stop A

st~:p t!'jptQphan G

histidine U
e

C leucine proline 81gmme A
glutamifl.e

G

serine
U

isoleucine
8,sp81aguLe e

A thre.orone A

:t= methionine
lysi.Il.e arglfll.\.le.

G

aspartic U
'Cl.ud. e

G valine alanine glycine
glutamic A
'OI. .:id G

-3::c:-;A:l
o
~
Vl--3-oz

Figure 2.12 Genetic Code - The mapping between codons and amino acids

Following things are noticeable in the table
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• Most of the ammo acids are encoded by synonymous codons that differ in the third

position of the, codon, In some cases, a single tRNA can recognize two or more of these

synonymous codons, The violation of the usual rules of base pairing at the third

nucleotide of a codon is called "wobble"

• The codon AIJG serves two related functions J) It begins every message; that is, it

signals the start of translation placing the amino acid methionine at the amino terminal

of the polypeptide to be synthesized, 2) When it occurs within a message, it guides the

incorporation of methionine,

• Three codons, UAA, UAG, and UGA, act as signals to terminate translation, They are

called STOP codons,

The Steps of Translation

The whole translation mechanism proceeds according to the following steps,

1. Initiation

• The small subunit of the ribosome binds to a site "upstream" (on the 5' side) of the

start of the message,

• It proceeds downstream (5' -> 3') until it encounters the start codon AUG,

• Here it is joined by the large subunit and a special initiator tRNA,

• The initiator t,RNA binds to the P site (shown in pink) on the ribosome,

• In eukaryotes, initiator tRNA carries methionine (Met),

2. Elongation

• An aminoacyl-tRNA (a tRNA covalently bound to its amino acid) able to ,base pair

with the next codon on the mRNA arrives at the A site (green) associated with

• an elongation factor (called EF-Tu in bacteria)

• GTP (the source of the needed energy)

• The preceding amino acid (Met at the start of translation) is covalently linked to the

incoming amino acid with a peptide bond (shown in red),

• The initiator tRNA is released from the P site,

• The ribosome moves one codon downstream,

• This shifts the more recently-arrived tRNA, with its attached peptide, to the P site and

opens the A site for the arrival of a new aminoacyl-tRNA.

• 1
I
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• This last step is promoted by another protein elongation factor (named EF-G) and

Figure 2.13: The machinery of translation

Note: the initiator tRNA is the only member of the tRNA family that can bind directly to the

P site. The P siie is so-named because, with the exception of initiator tRNA, it binds only to a

peptidyl-tRNA molecule; that is, a tRNA with the growing peptide attached.

The A site is so-named because it binds only 10 the incoming aminoacyl-tRNA; that is the

tRNA bringing the next amino acid. So, for example, the tRNA that brings Met into the
I

interior of the polYIJeptide can bind only to the A site.

3. Termination

• The end of the message IS marked by one or more STOP codons (UAA, UAG,

UGG)

• No tRNA molecules have anticodons for STOP codons .
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• However, a protein ,'e1ease factor recognizes these codons when they arrive at the A

site.

• Binding of this protein releases the polypeptide from the ribosome.

• The ribosome splits into its subunits, which can later be reassembled for another

round of protein synthesis.

2.5 Summary

The whole process of protein synthesis follows the sequence Transcription -> pre-mRNA

processing .> Translation. In this process a working copy (mRNA) ofa section of a DNA

strand is made and this copy guides the synthesis ofthe polypeptide chain with the help of

ribosome and tRNA All the elements and machinery involved in the process of protein

synthesis are discussed in detailed in this chapter. In later chapters, knowledge about this

biological process will help us to develop computational methods that will partially imitate

this process and try to identify various sites in the strand of a DNA that are recognized by

biological machinery.
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3
The Gene Recognition Problem

Currently, in genome centers around the world, millions of bases of genomic DNA from

different organism are sequenced everyday. Since the analysis of this huge volume of data is

a laborious task, various computational methods becomes essential to analyze these data and

annotate different parts of the sequenced DNA strands.

3.1 Structure of a Gene
For our purpose, we may define Gene as a sequence of nucleotides in the chromosomal DNA

that is transcribed an(1translated into a single polypeptide chain or protein. The genes of most

eukaryotic organisms are neither continuous nor contiguous. They are separated by long

stretches of intergenic DNA and their coding sequences are interrupted by non-coding

introns. Coding sequences occupy just a small fraction (e.g., 3% for human) of a typical

higher eukaryotic genome. To obtain a continuous coding sequence which will be translated

into a protein sequence, genes are transcribed into long pre-mRNA molecules that

subsequently undergo complex processing to remove intronic sequences and assemble exons

to form mRNA However, assembly of the gene exons in the mature mRNA is not always the

same; a large proportion of genes are alternatively spliced - having more than one exon

assembly. The arrangements of genes in genomes are also prone to exceptions. Although

usually separated by an intergenic region, there are examples of genes nested within each

other; that is one gene is located in an intron of another gene or ovelapping genes on the same

or opposite DNA strands. The presence of pseudogenes (nonfunctional sequences resembling

real genes) which are distributed in numerous copies throughout the genome further

complicates the identification of true protein coding genes.

Regulatory regions playa crucial role in gene expression, and their identification is needed to

fully comprehend a gene's function, activity and role in cellular processes. The location of

r~guiatory r('gions relative to their target gene is not uniquely determined; the basic
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regulatory element, such as the TATA and CAT boxes, are usually found in the upstream

proximity of the transcription start site, while the other elements such as enhancers and

silencers, can be located in distant upstream and downstream regions of a gene and

sometimes within the introns of a gene.

This brief overview of genome organization and gene architecture highlights the complexity

of gene identification in the sequences of uncharacterized DNA

3.2 Computational methods for Gene recognition

There are several methods for experimental discovery of genes, but they are time consuming

and costly. Accordingly, for the last few years, researchers have been developing

computational methods for gene finding that can automate or facilitate the identification of

gene. Two basic approaches have been established for computational gene finding: the

sequence similarity search or lookup method and the integrated composition ahd signal

search or template method. The latter method is also commonly referred to as ah initio gene

finding.

Sequence similarity search is a well-established computational method for gene discovery,

which has been used extensively with considerable success. It is based on sequence

conservation due to the functional constraints and is used to search for regions of similarity

between an uncharacterized sequence of interest and already characterized sequences in a

public sequence database. Significant similarity between two sequences suggests that they are

homologous, that is, they have common evolutionary origin. A query sequence may be

compared with DNA, protein, or expressed sequence tag (EST) sequences it can be searched

for known sequence motifs If a query sequence is found to be significantly similar to an

already annotated sequence (DNA or protein), we can use the information from the annotated

sequence to possible infer gene structure or function of the query sequence. Comparison with

an EST database can provide information if the sequence of interest is transcribed, that is,

contains and expressed gene, but will only give incomplete clues about the structure of the

whole gene or its function.

Although sequence similarity search has been proven useful in many cases, it has been shown

that only a fraction of newly discovered sequences have .identifiable homologues in the
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current databases. furthermore, it is suggested that the currently known proteins may already

include representatives of most ancient conserved regions (ACRs, regions of protein

sequences showing highly significant similarity across phyla) and that new sequences not

similar to any database sequence are unlikely to contain ACRsThe proportion of vertebrate

genes with no detectable similarity in other phyla is estimated to be almost 50%. These

results suggest that only half of all new vertebrate genes may be discovered by sequence

similarity across phyla.

The second computational approach for the prediction of gene structures in the genomIc

DNA sequences, termed the template approach, integrate coding statistics and signal

detection into one framework. Coding statistics behave differently in coding and non-coding

regions and they are measures indicative of protein coding functions.

Signal sensors attempt to mimic closely the processes occurring within the ceiL They are

intended to identify sequence signals, usually just several nucleotides long subsequences,

which are recognized by the cell machinery and are initiators of certain processes. The

signals that are usually modeled by gene finding programs are promoter elements, start and

stop codons, splice sites, poly-A sites, etc. Many different pattern recognition techniques

have been used as signal detectors.

DNA sequence signals .have low information content; they are usually degenerate and highly

unspecific because it is almost impossible to distinguish the signals truly processed by the

cell from those that are apparently nonfunctional. Therefore, signal sensors are not sufficient

tu elucidate gene structures, and it is necessary to combine them with coding statistics

methods in order to achieve satisfactory predictive power.
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4
Splice Site Recognition

Identification of protein coding genes in genomic DNA de novo requires that a program finds

the location of the start codons, all the exons and introns and the stop codon for each gene.

Splicesites are the sites on DNA or pre-mRNA strand where boundaries ofintrons and exons

occur. A number of computational methods have been developed to identify these splice

sites, including both stand-alone splice site finders and gene finders and gene finders, which

identify splice sites as a subroutine. The performance of most gene finding systems is greatly

influenced by their accuracy at determining splice site. In theory, a program that could

correctly identify all splice sites would do a nearly perfect job of ah initio gene finding, since

it would identify all protein coding regions correctly (with the chance of a small error in the

identification of the correct start site). Any reduction in the number of potential sites being

considered by a gene finder will significantly reduce the number of alternative ways of

parsing a DNA sequence into exons and introns, and therefor makes overall gene prediction

easier.

4.1 Structure of the splice sites

To understand the structure of a splice site we have to concentrate on the pre-mRNA to

mRNA processing. Splicing of the pre-mRNA occurs after the capping at the 5' end and plo-

adenylization at the 3' end.
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Figure 4.1: Splicing of pre-IllRNA into Il1RNA

If we take a closer look at the boundaries of the exons and introns where splicing occurs, we

can reveal some characteristic features of the splice sites. The 5' boundary or donor site of

introns in most eukaryotes usually contains the dinucleotide GT (GU in pre-mRNA), while'

the 3' boundary or acceptor site contains the dinucleotide AG.

Splice
donOl"site

G U Pu A G U

Branch Splice
::ite acceptor site

._..__ ~.L.. L
c uPu p, F'y~Y~I~~.I~?!':~JI

20 - 50 bases >

Intron

Figure 4.2 The consensus nucleotidesin 5'(donor) and 3'(acceptor) splice sites

In addition to theses dimer signals, which are in consesus with almost all the genes, other

signals are also found which are less accurately detectable. A pyrimidine-rich (C or U) region

usually precedes the AG at the acceptor site A short consensus sequence (Pu A G U)

follwows the GU at the donor site. There also another site, around 20-50 nucleotide upstream
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(to the 5' direction) of the accptor site, which is believed to play an important role in splicing,

called branch site. The weak consensus sequence found in the branch site is shown in the

figure (C U Pu A Py). In more than half of the cases,exons end with a sequence AlC A G

before the donor site and starts with a G after the acceptor site.

All These consensus sequences are recognized by a large complex of snRNAs and. proteins,

known collectively as the splicosome, which splices out the introns from pre-mRNA and

produce the mature mRNA transcript.

Intron
3'

Spliceosome
3'

Figure 4.3: Schematic drawing for the formation of the spliceosome during RNA splicing.

UI, U2,U4, US and U6 denote snRNAs and their associated proteins.
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5
Introduction to Hidden Markov Model

In this chapter we introduce the well-known and widely used statistical method of

characterizing spectral properties of the frames of a pattern, namely Hidden Markov Model

(HMM) [6] approach. Hidden Markov Models provide a precise probabilistic method for

modeling sequence of discrete data, and there10re seem to be a natural choice for modeling

genes in DNA sequences.

5.1 Elementsof HMM

A Hidden Markov Model models a stochastic process that generates a sequence of discrete

symbols as output. The model consists of a set of states that are hidden from the observer,

and each of the states can generate one symbol at a discrete point of time from a set of

symbols. A HMM for discrete symbol observation is characterized by the following

elements-

I. N, the number of states in the model. Although the states are hidden, for many practical

applications there is often some physical significance attached to states or to sets of staets

of the model. Generally the states are interconnected in such a way that any state can be

reached from any other state (ergodic model) However, other possible interconnections

of states are often of interest and may better suit specific application. We label the

individual states as {1,2, ... , N), and denote the state at time I as qt.

2. M, the number of distinct observation symbols per state - i.e. the discrete alphabet size.

The observation symbols correspond to the physical output of the system being modeled.

We denote the individual symbols as V =: v I. V2 .•.. , VM).
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3. The state transition probability distribution A = (ail) where

au= P[qlll =)1 qt = i], ISi,)sN

4. The observation symbol probability distribution, B = V)j(k)} in which

5. The initial state distribution tr = {tri} in which

ISiSN

It can be seen from the above discussion that a complete specification of an HMM requires

specification of two model parameters, Nand M, specification of observation symbols, and

the specification of the three sets of probability measures A, B, and tr. For convenience, we

use the compact notation

1= (A,B,tr)

to indicate the complete parameter set of the model This parameter set, of course, defines a

probability measure for a given observation sequence 0, i.e. prO 1 1]

5.2 The Three Basic Problems for HMMs

Given the form of HMM of the previous section, three basic problems of interest must be

solved for the model to be useful in real-world applications These problems are the

fullowing -

Problem 1

Given the observation sequence 0 = (0" 0, ;,°1) and a model 1 = (A,B, tr), how do

we efficiently compute 1'[011]' the probability of the observation sequence, given

the model?
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Problem 2

Given the observation sequence 0 = (0"0,,.,0)') and a model Il=(A,B,n), how do

we choose a corresponding state sequence q = (q"'j,, ... ,q.,.) that is optimal in some

sense, I.e. best explains the observations?

Problem 3

How do we adjust the model parameters Il = (A, E, n) so that prO I III is maximized?

Problem I is the el'oluolio/l prohlem; namely, given a model and a sequence of observations,

how do we compute the probability that the observation sequence was produced by the

model? We can also view the problem as one of scoring how well a given model matches a

given observation sequence. The latter viewpoint is extremely useful in pattern recognition.

For example, if we consider the case in which we are trying to choose among several

competing models, the solution to problem I allows us to choose the model that best matches

the observation sequence.

Problem 2 is the one in which we attempt to uncover the hidden part of the model- thatis, to

find the correct state sequence. Actually, t'lr all but the case of degenerate models, there is no

"correct" state sequence 10 be found. Hence for practical situations, we usually use a

optimality criterion to solve the problem as best as possible. Several reasonable optimality

criteria can be imposed, and hence the choice of criterion is a strong function of the intended

use for uncovered state sequence. Typical uses might be to learn about the structure of the

model, to get average statistics of individual states, etc ..

Problem 3 is one in which we attempt to optimize the model parameters to best describe how

a given observation sequence comes about The observation sequence used to adjust the

model parameters is called the training sequence because it is used to train the HMM. The

training problem is crucial one for most applications of HMMs, because it allows us to

optimally adapt model parameters to observed training data - ie, to create best models for

real phenomena.
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5.2.1 SOlution to Problem 1- Probability evaluation

We wish to calculate the probability of the observation sequence, 0 = (01'02' ..,01')' given

the model A, i.e. P(O 11). The most straightforward way of doing this is through

enumerating every possible state sequence of length r (number of observations). There are NT
such state sequences. Consider one such fixed state sequence

q = ('/,.if.".,ljr)
where '11 is the initial state. The probability of observation sequence 0, gIven the state

sequencers
r

P(0Iq,1)= np(o, Iq,,),)
1==\

where we have assumed the statistical independence of the observations. Thus we get

p( 0 1 q, 1)'= h,],(°1 )h,,, (or)." h,,, (or)

The probability of such a state sequence q can bewritten as

p(q 11)= ff a a ... a
(/J (/i(/2 1/~{I,1 fJ1'_ICJT

SInce, ff, is the probability of starting from state i, and aii denotes the probability of going

from state i to to statej. The joint probability of 0 and q is simply the product of the above

two terms, i.e.

p(O,q 11)= P(O 1q./l)p(q 11)

Now P(O 11) is obtained by summing this joint probability over all possible state sequence

q, giving

p( 0 I /l)= L:p( 0 I q,1)l'( q 11)
ol/ll

The calculation of 1'(01 /l) using this straightforward method involves on the order of 2TNT

calculations. Clearly a more efficient procedure is required for the solution of problem 1.

Such a procedure, called forward procedure is described below

5.2.1.1 The Forward Procedure

Consider the forward variable a, (i) defined as

a,(i) = P(OI,02, .. ,O"q, = ill)
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that is, the probability of partial observation sequence, (0,,02, ...,0,) until time t and state i at

time t, given the model 'A.Wecan solve for a, (i) inductively as follows:

1. Initialization

lsisN

2. 1nduction

lstsT-1
lSjsN

3. Termination
N

p(O I A,) = :~:::aT(i)
i=!

t+ 1

a,O)

Figure 5.1: Sequence of operations required for computation of the forward variable a'+l(j)

Step I initializes the forward probabilities as the joint probability of state i and initial

observation 01. The induction step, which is the heart of the forward calculation, is illustrated

in Figure 5.1. This figure shows how state j can be reached from the N possible states, i,

1sis N, at time t. Since a,(i) is the probability of the joint event that (0,,02, ...,0,) are

observed, and the state at time t is i, the product a, (i)ai] is then the probability of the joint

event that (01)0,, ...,0,) are observed and statel is reached at time 1+ 1 via state i at time t.

Summing this product over N possible states, i, lsi s N at time t results in the probability of

state j ate time t+I with all accompanying previous partial observations. Once this is done

andj is known, it easy to see that at+, (j) is obtained by accounting for observation 0,+1 in.
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state}, ie, by multiplying the summed quantity by the probability hJ(o,+J). The computation

is performed for all states}, IS:} s: N, for a given I. The computation is then iterated for t =

1,2, ... , 7~1. Finally step 3 gives the desired calculation of P(O I /I.) as the sum of terminal

forward probabilities aT (i). This is the case since, by definition,

aT (i) = p(o"o,,"',or,q, = i I /l)

and hence P(O I /l) is just the sum of aT (i) 's. The computation involved here is on the order

of N2T:

5.2,2 Solution to Problem 2 - Optimal State 5equence

Unlike problem 1, for which an exact solution can be given, there are several possible ways

of solving problem 2- namely, finding the optimal state sequence associated with the given

observation sequence. The difficulty lies with the detinitioll of optimal state sequence - that

is, there are several possible optimality criteria. The most widely used criterion .in to find the

single best state sequence - that is to maximize p(q I 0, /l), which is equivalent to

maximizing p(q, 0 I /l). A formal technique for finding this single best state sequence exists,

based on dynamic programming methods, and is called the Viterbi algorithm

5.2.2.1 The Viterbi Algorithm

To find the s;ngle best state sequence, q = (q" q, "qT)' for the given observation sequence

0= (0"0,, ..,or), we need to define the quantity

oJi)= max p[q"q" .. ,cf,_"q, =i,olol"'o, l/l]
'1I.1J2",.,QI_l

that is, 0, (i) is the best score (highest probability) along a single path, at time t, which

accounts for the first t observations and ends at state i. By induction we have

01+' (j) = [max 0, (i)Ctij !'j(o'+I),

To actually retrieve the state sequence, we need to keep track of the argument that maximized

0, (j) for each t and}. We do this via the array W, (j). The complete procedure for finding the

best state sequence can now be stated as follows _

I. Initialization

°1(i) = ffJ>, (oJ),
W,(i)= 0
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5.2.3

2. Recursion

0, (j) = maxloH (i)aJ) (0, ), 2s,Is,T
l$i$N 'J J

ls,js,N

If, (j) = arg maxlo'_l (i}?u j
\:sisN

3. Termination

p' = max [0, (i)]
1'5.;$N

• = argmax[oT(i)]qT
\SiSN

4. Path (state sequence) backtracking

q,' = VII+' (q,+,'), 1s,Is,T-I

Solution to Problem 3 - Parameter Estimation

The third, and by far the most difficult, problem of HMMs is to determine a method to adjust

the model parameters (A, B, tr) to satisfy a certain optimization criterion. There is no known

way to analytically solve for the model parameter set that maximizes the probability of the

observation sequence in a closed form. We can, however, choose /1 = (A,B,tr) such that its

likelihood, 1'(0 I /1), is locally maximized using and iterative procedure such as the Baum-

Welch method (also known as EM (Expectation-maximization) method), or using gradient

techniques. Here we discuss one iterative procedure, based primarily on the classic work of

Baum and his colleagues, for choosing the maximum likelihood (ML) model parameters [7].

To describe the procedure for re-estimation (iterative update and improvement) of HMM

parameters, we first define ~, (i, j), the probabi lity of being in state i at time I, and state j at

time 1+ I ,given the model and observation sequence, i.e

The paths that satisfy the condition required by the equation above are illustrated in Figure

5.2. Earlier we have defined the forward variable a, (i) as

a,(i) = p(o"o",o"q, = i I /1)
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1-1

a,(i)

1+ 1
o
1+2

Figure 5.2: Sequence of operations required for computation of the joint event that the system

is in state i at time t and statej at time t+1.

We may define another backward variable 13, (i) as

and we can calculate 13, (i) iteratively as follows -

I. Initialization

fJT (i) = 1,

2. Induction
N

fJ,(i) = 'LaUhj(ol+JfJ,+,(J),
j=J

Now we can write 1;,(i, j) in the form

!' (i .) = p(q, = i,q,+, = j,O I A)
'" ,J p(OIA)

a, (i)aA (0,+, )13,+, (J)
- P(OIA)

a, (i)aub j (0,+, )13,+, (j)
N

'La, V)
;=1
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We may deline y, (i) as the probability of being in state i at time I, gIven the entire

observation sequence and the model; hence, we can relate y,(i) to !;,(i,j) by summing over

j, giVIng
N

y, (i) = L!;, (i,j)
j=1

If we sum y, (i) over the time index I, we get a quantity that can be interpreted as the

expected number of times that state i is visited, or equivalently, the expected number of

transitions made from state i (if we exclude the time slot 1 = T from the summation).

Similarly, summation of !;,(i,j) over 1 (from 1 = I to 1 = 7~1) can be interpreted as the

expected number of transitions from state i to state}. That is,
7'-1

Ly, (i) = expected number of transitions from state i in 0
1=1

T-I

L!;, (i, j) = expected number of transitions from state i to state j in 0
1=1

Using the above formulas (and the concept of counting event occurrences) we can have a

method for re-estimation of the parameters of an HMM. A set of reasonable re-estimation

formulas for iT, A and Bis

ij = expected number of times in statei at time (I = 1)= Yl Ci)

expected number of transitions from state i to state j
expected number of transitions trom state i

l' --I

L!;,(i,j)
1-01

l' -I

Ly,(i)

expected number of times in state j and observing symbol v k

expected number of times in state j

7'-1

LY,Ci)
1",,1

1=1

If we define the current model as A = (A, B, iT) and use that to compute the right hand sides of

the re-estimation equations, and we define the re-estimated model as J. = (A,B,i), as

determined from the left hand sides of the re-estimation equations, then it has been proven by
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Baum and his colleagues that either (1) the initial model ;1defines a critical point of the

likelihood function, in which case i =;1; or (2) model i is more likely than model ;1in the

sense that P(O Ii) > p(o I;1); that is we have found a new model i from which the

observation sequence is more likely to have been produced.

Based on the above procedure, if we iteratively use }~ in place of ;1 and repeat the re-

estimation calculation, we then can improve the probability of 0 being observed from the

model until some limiting point is reached. The final result of this re-estimation procedure is

an ML estimate of the HMM.

5.3 Topology constraints for HMM

It is sometimes useful to build an HMM with certain state transitions forbidden, rather than

using an ergodic model. These constraints actually fixes a definite topology for the 'HMM. If

we look at the parameter estimation procedure in the previous section, it is easy to see that

values of au remains 0 for the 0 initial values, since ~,(i,j) uses a product term of au'

Therefore it is easy to apply topology constraints to HMM and learn the parameters of a

constrained model.

Hidden A1arkov A;fode!s.!hr Computafional Gene Rec:ognilion 35



6
HMMSplice: Our System

To attack the problem of Gene recognition, we have concentrated on recognizing the splice

sites within a gene, since as discussed in chapter 4, a program that could correctly identify all

splice sites would do a nearly perfect job of ab initio gene finding.

6.1 Development of Algorithm

When performed in the cell, pre-mRNA splicing is not a purely deterministic process. Some

transcripts are spliced into multiple alternative products Experimental evidence indicates that

weak splice sites become active when mutations occur in nearby sites and missplicing occurs

at unknown rate. Nevertheless, the cell is the best machinery we have for splicing, and

therefore an algorithmic approach should first of all try to reproduce the biological

mechanism. Although the intermediates, products and bio-chemical reactions of splicing were

characterized some years ago, pre-mRN A structural features that are important for this

process have only just begun to be investigated, and signals such as exon splicing enhancers

(~hort splicing sequencewithin exons) are still poorly understood. As a consequence, the best

splice site recognition algorithms available today employ a combination of simple biological

modeling and more sophisticated statistical modeling.

To build the biological model, we have relied on the strong consensus signals of GT-AG

dinucleotides that mark the intron and exon boundaries. It is noticeable that not all GT or AG

mark the splice sites, since there are hundreds of GT or AG spread over the open reading

frame. It should also be noticed that splice junctions does not occur in the codon boundary,

i.e. a codon may be split over two exons. For these reasons the GT-AG consensus serves only

partially in a computational method for splice site recognition.
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To accommodate other consensus sequences as well as statistical distribution of nucleotides

we have used Hidden Markov Models. As discussed in chapter 5, Hidden Markov Models

provide a precise probabilistic method for modeling sequence of discrete data, and therefore

seem to be a natural choice for modeling genes in DNA sequences. After this Hidden Markov

Model, we have named our system HMMSplice

6.2 Algorithm Description

In the HMMSplice system we have applied a 2 step method to recognize the splice sites. First

Ee~~~
~J'~~;-J~

Expression
Detector7---~

(--Candida~e I~didat~
~nor Site ~tor Site

__I
I-kcepto~

LHM~~
_l~

~ True False
~:ceptor Site Acceptor Site

Figure 6.1: Flowchart of the HMMSplice system

the whole sample input sequence is passed through a regular expression detector, that isolates

a 9 nucleotide subsequence (-3 to +6 position) around each of the candidate donor sites (GT

sites), and a 15 nucleotide subsequence (-14 to +1 position) around each of the candidate

acceptor sites (AG sites) from the sequence. Then these candidate donor and acceptor sites

are fed to the Hidden Markov Models for donor and acceptor sites respectively, to exclude

the false sites.
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6.2.1 The Hidden Markov Models

The topological constraints of the HMMs for donor and acceptor sites are designed taking the

consensus locations into consideration. The donor splice site HMM is a 9-state model of

where each of the state is responsible for one nucleotide position; and each of them has a

probability distribution over the 4 nucleotides to generate.

G U Pu A G U

Splice
donor site

Branch
site

_______ -.-J
C U F'u A Py

Intra n

Splice
acceptor site

Pyrich' NCA GI..........._ .

20 - 50 bases

Figure 6.2 Consensus sequences used to develop the Hidden Markov Models

Development of the Hidden Markov Models for the splice sites relies upon the structure of

the splice site described in chapter 4. If we look at the figure again, we see that there is a

weak consensus of 3 nucleotide positions (AIC A G), to the upstream donor splice site. The

first three states of the model correspond to these three nucleotides which are part of an exon.

State 4 and 5 corresponds to the GT site at the start ofthe intron. The next 4 states correspond

to the +3 to +6 position of the donor site that is part of intron and have a weak consensus of

Pu A G T. Transition between states are constrained so that only state j+ 1 may be reached

from state). The only possible initial state is state 1.

-3 -2 -1 G T +3 +4 +5 +6

(-)-0--.GGC~4C~)-+()
Intron

Donor
Splice Site

Figure 6.3: The Donor (5 ') splice site model

The acceptor site HMM consists of 15 states. This is also a chain like model similar to the

donor site model.
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-14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 A G +1
r;...•(\...•(4!~ ~~ ~~'4!'\-.I~ ~~ ~'!-..~,
'-.-/ ,--,,' .•..•....•••/ ------- ~ ""'--"'" ,,---,,' ----......-. ----.-'" ------ "----" --- '--"" '----'" '----"

Intron

Figure 6.4: The acceptor splice site model

Acceptor.
Splice Site

j:n

The first 12 states correspond to positions -14 to - 3 relative to the acceptor site and are part

of the intron. This location is actually the Pyrimidine rich region at the end of an intron. State

13 and 14 correspond to GT end ofthe intron. The last state is part of exon and most probably

generates G according to the cQnsensus. Here also, transitions between states are restricted so

that onlystatej+l may be reached from state). The only possible initial state is state J.

6.2.2 Training of the models

The models of the splice sites are trained for probability distribution of generating each of the

4 nucleotides from each of the states. A set of annotated genes is used for training. First, the

sub-sequences of appropriate lengths around the splice sites are extracted from the annotated

genes. Then all the sequences are used as training observation sequences, and the model is

trained to adjust the parameters appropriately so that the probability of generating the training

sequences is maximized. The method used for training is the iterative Expectation

Maximization method described in section 5.2.3.

6.2.3 SCoring and classification of the splice sites

The sub-sequences around the candidate splice sites are fed to one of the HMMs as

observation sequence O. Then the probability that the sub-sequence is generated by the

trained donor (acceptor) site model, P(O I /t) is calculated, according to the procedure

described in section 5.2. 1. Another probability, 1'(0 I /t,.) is calculated, where /I)s the set of

model parameters where each of the 4 nucleotides is equally likely to be generated from each
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state of the model, that is the model is adjusted to generate a random sequence ofnucleotides.

Then the score for the sub-sequence is calculated as

Score = Jog P(O I /l)
p(OI/l,)

The score is positive when P(O I /l) is greater than P(O I /l,), i.e., the subsequence is more

likely to be generated by the trained splice site model than the random model. Therefore a

positive score classifies the sub-sequence as one of a true splice site.

6.3 Experimental Results and Discussion

For our experiments we have developed C programs to implement the training and

probability estimation of HMMs. A completely annotated set of DNA sequence is first

divided into two paris, one to be used as training data set and the other as test data set The

paliition is made in a completely random manner.
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Figure 6.5(a) Nucleotide generation probabilities of different states of a trained donor

site model
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Figure 65(b) Nucleotide generation probabilities of different states of a trained donor site

model

Figure 6.5a and Figure 6.5b shows the nucleotide generation probabilities of each state of a

donor site model and that of an acceptor site model after the models are trained. The graph

depicts that the consensus nucleotides are generated with higher probabilities in the trained

models.

If we look at figure 6.5(a), we find that the first three states are trained to generate AlC, A

and G with maximum probabilities State 4 and 5 have hundred percent probability to

generate the di-nucleotide GT. State 6 is trained to generate the nucleotides A and G with

almost equal probabilities, both of which are Purine bases. State 7, 8 and 9 are trained to

generate A, G and T nucleotides respectively, with highest probabilities.

Figure 6.5(b) shows the trained probability distribution in the acceptor site modeL The first

10 states are trained to generate the nucleotides A and C, the Pyrimidines, with almost equal

probabilities. Stale 11 has no specific bias to any of the four nucleotides. In state 12, C is

generated with highest probability. State 13 and J 4 generates the di-nucleotide GT with

hundred percent probability. State 15 has highest probability to generate G.
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The following figures (Figure 6.6a and 66b) shows the probability distribution of scores

found from scoring of the true and false splice sites in the test data set There is a clear bias

towards positive score for the true splice sites and towards negative score for the false splice

sites. Another noticeable thing in both the graph is that there is overlapping between the

regions of scores for true and false splice sites. This overlapping result in the inaccuracy

found in the experi ments.

I • False Donor-Site-m ..True Donor Site I

0.35

0.3 1\
0.25 I~>-.'!: 0.2 f\:c

C'<l -~ r~..c
0 ' II.... \a. J

0.~$1 \
I

!W~
iii

c - ~df_ww.L8

-20 -15 -10 -5 -005 (i) 5 10 15

Score
---- ---

Figure 66(a) Probability distribution of scores with True and False test sites found with the

donor site model
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'Figure 6.6(b) Probability distribution of scores with True and False test sites found with the

Acceptor site model

The accuracy of the results with test data sets may be summarized as in the following table

Accuracy for False Accuracy for False
True sites (%) Ne"atives (%) False sites (%) Positives (%)

Donor Site 93.5065 64935 86.7500 13.25

Acceptor Site 88.3117 11.6883 87.6791 12.3209

Average accuracy

A verage error

6.4 Dataset

= 8906183%

= 1093818%

The data set we used for training and testing our system are randomly chosen subsets of the

HMR 195 data set that was used by S Rogic eta!. for evaluation of several gene finding

programs, and is available at http://www.cs.ubc.cal-rogic/evaluation/datasethtml [7]. Our

training and test data sets were completely disjoint The HMRl95 data set has the following

properties -

• The source organisms were H sapiens, IV!. IlIIlSCU/US, and R. norvegicus.
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• Sequences containing pseudo-genes and alternatively spliced genes were excluded.

• All exons have dinucleotide AG at their acceptor site and GT at their donor site.

• The ratioil of human: mouse:rat sequences is 103:82: 10

• The mean length of the sequence in the set is 7096bp

• Average number of exons pre gene is 4.86

• Mean exon length is 208 bp, mean intron length is 678 bp

• The proportion of coding sequence: intronic sequence: intergenic DNA is 14:46:40
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7
Conclusion
The system we developed, HMMsplice, is a partial solution or an aid for complete gene

finders, because it helps predicting the structure of a gene through splice site recognition.

Accuracy of HMMsplice in splice site recognition is compatible to the leading splice site

recognizers like GeneSplicer [5], NeteGene2 which has 80% to 90% accuracy in predictions.

Justification for developing fIMMsplice is that it uses very simple models for the splice sites

and the models resemble the physical characteristics of the splice sites rather than other

models like neural nets, which are black boxes.

Our future goal is to refine the system for more accuracy in prediction, as well as to develop a

complete gene finding system One direction for improvement of accuracy in detection is to

consider other signals, like branch-point, for splice site recognition.

Although homology search approach can classify a DNA sequence as gene or non-gene very

easily, mathematical or computational models of genes and signal sites of DNA sequence will

always be a useful tool for searching new genes in the huge genome, until all genes

homologous to all undiscovered genes in the genome databases are discovered.

•
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