
DESIGN OF A RELATIONAL DATABASE
FOR LOAN LEDGER ACCOUNTING SYSTEM
OF A FINANCIAL ORGANIZATION

A Project
by

MD. NESAR UDDIN BHUIYAN

Submitted to the Department of Computer Science and Engineering
of Bangladesh University of Engineering and Technology, Dhaka in
partial fulfilment of the requirements for the degree

POST-GRADUATE DIPLOMA IN COMPUTER
SCIENCE AND ENGINEERING

under

AIT - BUET PROGRAMME.

DESIGN OF A RELATIONAL
LOAN LEDGER ACCOUNTING
FINANCIAL ORGANIZATION

A Project
by

DATABASE FOR
SYSTEM OF A

MD. NESAR UDDIN BHUIYAN

. Accepted as satisfactory as to style
fulfilment of the requirements for the degree
in Computer Science and Engineering under
07-01-91.

~\~\~\~q\---- D.~~-:_4~~----------
DR. SYED MAHBUBUR RAHMAN
Associate Professor and Head,
Computer Science and Engineering Dept.,
Bangladesh University of Engineering and
Technology, Dhaka, Bangladesh.

--~~~-~-~--------
DR. MD. SHAMSUL ALAM
Associate Professor,
Computer Science and Engineering Dept.,
Bangladesh University of Engineering and
Technology, Dhaka, Bangladesh.

DR. JAMILUR REZA CHOUDHURY
Director, Co~uter Centre, d
Professor of Civil Engineering Dept.,
Bangladesh University of Engineering and
Technology, Dhaka, Bangladesh.

and contents for partial
of Post-Graduate Diploma
AIT - BUET Programme on

Chairman
and

Supervisor

Member

Member

ABSTR.ACT

This project presents the design procedures of a relational
database. The LOAN LEDGER ACCOUNTING SYSTEM of Bangladesh House
Building Finance Corporation, a leading financial Organization in
Bangladesh is selected for the present case study.

A database design methodology is defined for the design of large
relational database. The methodology produces logical database
designs as well as physical database. It reduces the number of
data dependencies that must be analyzed, using the entity - Rela-
tionalship model conceptualization, and maintains data integrity
through normalization. This approach can be implemented manually
or in a simple software packages as long as a "good" solution is
acceptable and absolute optimality is not required.

Desing methodologies for Relational Database are used the overall
logical view on the conceptual schema is developed. The schema
has all the meanings or semantics of the data. The details of,
descriptions such as properties of entity sets, attribute sets,
attribute domains, tuple relations etc. are illustrated in course
of model development. So modified database modeling techniques
are implemented in the development of conceptual models, logical
and physical models.

The program of the Accounting System is developed by INFORMIX-4GL
under UNIX-V operating system environment and implemented in NCR
TOWER-700 mini-computer. The program processes the queries by the
embedded SQL commands which is convenient for large databases.
Reduction of paper works to a considerable degree, expedite the
overall works, reduction of the number of staff and thus minimiz-
ing the expenditure to a large extent is also a major attraction
of the system.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to his adviser
Dr. Syed Mahbubur Rahman for patiently guiding and fully supporti-
ng him through all stages of work.

He also likes to express his heartfelt thanks to the fol-
lowing who have helped him during the production and writing of
this work.

To Dr. Jamilur Reza Choudhury and Dr. Md. Shamsul Alam
for be~ng the members of the board of examiners and for their
valuable suggestions and recommendations.

To Mostafa Fazle Rabbi, Computer Cell of Bangladesh House
Building Finance Corporation (BHBFC), Samarjit Roy of BHBFC, and
Md. Faizur Rahman of BHBFC for their help and cooperation.

To all his friends at AlT, BUET and BHBFC for their
encouragement and well wish.

To the UNDP for providing him with the financial support
without which his studies would not be possible.

i

CONTENTS

CHAPTER 1
INTRODUCTION

1.1 Evaluation of.RDBMS

1.2 Different types of data models

1.3 Comparison between data models

1.4 Advantages of Relational Data Models
1.5 Present state and future prospect
1.6 Objective of study

1.7 Methodology

CHAPTER 2
LOGICAL DATA BASE DESIGN AND
FORMAL QUERY LANGUAGES

2.1 Entity - Relationship Model

.2.1.1 Entities, Entity Sets, and Attributes

2.1.2 Different types of Keys

2.1.3 Entity - Relationship Diagram

2.1.4 Functipnality of Relationships

2.2 Logical rules for determination
of number of tables in database

2.3 Design Anomalies in Database

2.4 Normal Form

2.4.1 Example of Normalization

Page no.

01

02

04

12

13

15

15

18

19

20

21

22

23

24

25

27

2.5 Formal Query Languages 33

2.5.1 The Relational Algebra 33

2.5.2 Fundamental Operation 37

2.5.3 Structured Qurey Languages (SQL) 41

2.5.4 Query Optimization 41

CHAPTER 3
LOGICAL APPROACH TO DESIGN OF LOAN
LEDGER ACCOUNTING SYSTEM

3.1 Informal strategy of loan ledger problem 43

3.2 Description of Datail loan ledger problem 44

3.2.1 General Loan 44

3.2.2 Multi Storied Loan 45

3.2.3 Method of loan Application 46

3.2.4 Issue of Disbursement Instalment 46

3.2.5 Method of loan Repayment 47

3.2.6 Calculation of instalment 47

3.2.7 Some formulas used in ladger 52

3.2.8 Coding of Loan types, Category,and
purpose code 53

3.2.9 Design/Modification of House 53

3.2.10 Transfer of mortgaged property 54

3.3

3.4

Data Flow Diagram

Entity Relationship Diagram

54

57

3.4.1 Drawing of ERDs

3.4.2 Identification of Attributes

CHAPTER 4
PHYSICAL APPROACH TO DESIGN OF
LOAN LEDGER ACCOUNTING SYSTEM

57

57

4.1

4.2

4.3

4.4

4.5

4.6

Data Structure and Organization

Hardware configuration

Language Implementation

Collection of data

Input/Output Design

Program Listing

65

69

69

70

70

84

CHAPTER 5
CONCLUSIONS

5.1

5.2

Result, Discussion, and conclusion

Recommendations for Future Works

85

87

APPEND IX-A
Data Collection Forms

APPENDIX-B
Program Listing

REFERENCES

88

93

133

LIST OF FIGURES

Two Relations Rand S 36

Some Relation and Relational
Results 40

Localized ERDs for the entities of
loan and borrower 59

27

32

32

17

Title

Block Diagram of Methodology

Second Normal form

First Normal form

Results of some relational
Algebra operations 36

Data Flow Diagram of Loan Ledger
Accounting System 56

Localized ERDs for the entities of
borrower and disbusment amount 60

Third Normal form

Localized ERDs for the entities of
people and loan 58

Localized ERDs for the entities of
borrower and voucher adjustment amount 62

Sub-menu for change database
module for selection of the table 74

Opening Menu of Loan Ledger
Accounting System 73

Localized ERDs for the entities of
borrower and termination 63

Combined ERDs for Loan Ledger
Accounting System 64

Localized ERDs for the entities of
borrower and repayment amount 61

Figure No.

1

2.1

2.2

2.3

2.4

2.5

2.6

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

Figure No. Title Page

4.3 Menu for different options of
changing the new borrower table 74

4.4 Menu for different options of
changing the disbussement table 74

4.5 Menu for different options of
changing the repay table 74

4.6 Menu for different options of
changing the voucher table 75

4.7 Menu for month selection 75

4.8 The data entry screen form
for new borrower table 75

4.9 The data entry screen form
for disbursement table 76

4.10 The data entry screen form
for repay table '76

4.11 The data entry screen form
for Voucher table 77

4.12 The data edit/delete screen
form for new borrower table 78

4.13 The data edit/delete screen
form for disbusse table 78

4.14 The data edit/delete screen
form for repay table 79

4.15 The data edit/delete screen
form for voucher table 79

4.16 Menu to select conditions
for validation Listing 80

4.17 The input format disign
for ledger printing menu 81

4.18 Printing media menu of loan
Ledger 82

4.19 The input format design of
account member query 82

Figure No.

4.20

4.21

4.22

4.23

Title

The input format design of
starting year query

The input format design for
print continuation quary

The input query format design
for number of account to be
printed is required

The input query format design
for file name onto which ledger
printout to be stored.

82

83

83

83

LIST

TABLE NO.

OF TABLES

TITLE

1 Data Model Comparisons 4

2 Data Structure of new borrower table 65

3 Data Structure of old borrower table 66

4 Data Structure of disburse table 66

5 Data Structure of repay table 67

6 Data Structure of voucher table 67

7 Data Structure of ledger out table 67

8 Data Structure of Penal rate table 68

9 Data Structure of incomplete case 68

10 Menu Chart of Loan Ledger Accounting
System 72

CHAPTER-1

INTRODUCTION

1.1 EVALUATION OF RDBMS

From a historical perspective, the relational data model is
relatively new. The first database systems were based on either
the hierarchi~al model or the network model. These two older
models are tied more closely to the underlying implementation of
the database than is the relational model.

The relational model, although not the data model used in the
first database management systems, has grown slowly in importance
since its exposition by E. Codd in 1970, to the point where it is
generally the model of choice for the implementation of new
databases[l]. Perhaps the most important reason for the model's
popularity is the way it supports powerful, yet simple and
declarative languages with which operations on data are expressed.
We may trace these capabilities to the fact that,unlike competing
models, the relational model is value oriented. That fact, in
turn,leads to our ability to define operations on relations whose
results are themselves relations. These operations can be combin-
ed and cascaded easily, using an algebraic notation called "rela-
tional algebra".

The behavioural analysis of data concerns itself with life
history of entities[2]. When these entities exist, they change in
a discrete or continuous manner until such time that their
existence is lost. Things in the real world change over the time
and therefbre, a database system must change accordingly. It is
the need to keep track of the dynamic nature of an entity which
is often the prime motivation for including it in a data process-
ing system.

1

The entity-relationship, ER, has the purpose of representing the
real world in a pure and natural way so that it is independent of
storage and efficiency considerations. The key idea of RDBMS is
to concentrate on the design of the conceptual schema, which is
an intermediate stage in the logical design of a Relational Data-
base.

1.2 DIFFERENT TYPES OF DATA MODELS

A data model is a mathematical formalism with two parts

- A notation for describing data, and
- A set of operations used to manipulate that data.

There are mainly three types data model, such as

- Hierarchical
- Network
- Relational

The major salient features of different data models
are as follows :

Hierarchical Data Model

* Use tree structure
* Fi.rst level has only root node
* Other level always have parents
* Each node has one parent

2

Network Data Model

* Use plex structure
* Each node may have several parents
* Relationship is expressed as a set type

Relational Data Model

* A new approach in DBMS based on mathematical theory
* Provide ease of use for search, retrieve, insert, and update
* Data is represented as two - dimensional tables
* Each entity has a corresponding relation which consists of a
set of attributes

* Each occurrence of the entity is a column in the relation
* Each relation has a key

3

1.3 COMPARISON BETWEEN DATA MODELS

TABLE - 1. Data Model Comparisons[3].

HIERARCHICAL NETWORK RELATIONAL

Representative DL/I (IBM) IDMS SQL - the DML
system (Cullinet) for IBM's DB2

Data building Field Data item Attribute
blocks Segment Record (column)

Physical data Set Tuple(row)
base Relation(table)

Representation
of logical
structures
- Trees Directly Decomposition Decomposition

into sets into tables
- Simple Unidirectional Decomposition Decomposition
networks logical into sets into tables

(table)
- Complex Bidirectional Decomposition Decomposition
networks logical into sets using into tables

relationship intersection using intersec-
data tion data

Data
independence
- Path No No Yes
- Sequence No No Yes

Means of
Data base Through hiera- Through sets Through the
navigation rchical path value of the

\ attributes

Navigator Experienced, Experienced, End user
trained pro- trained pro-
grammer grammer

DML commands
- Retrieval GU,GHU,GN,GHN FIND,GET SELECT

GNP,GHNP
- Data

alteration REPL MODIFY UPDATE
- Data

addition ISRT STORE INSERT

4

•

TABLE - 1 (Contd.)

HIERARCHICAL NETWORK RELATIONAL

- Data
deletion DLET ERASE DELETE

- Miscellan-
eous READY,FINISH,

CONNECT,
DISCONNECT

Performance High - with High - with High - with
well-defined well-defined unstructured
access paths access paths access paths

Low - with Low - with Low (in compa-
unstructured unstructured rison to hie-
access paths access paths rarchical and

network data
models)- with
well-defined
access paths

Additional
pointers avai-
lable to impr- Yes-but SQL
ove performan- may choose not
ce Yes-retrieval Yes-retrieval to use them

Security Defined in Defined in Defined in sub-
subschema subschema schema but may

be modified at
any time inclu-
ding during on-
line execution

Security DBA or DBA or DBA or equival-
officer equivalent equivalent ent-may be

delegated
.

Modification Redefined str- Redefined str- Restructure at
of the data ucture, reload ucture,reload any time,inclu-
structure new structure new structure ding operation

in an on-line
environment ,

5

A brief comparative study between the different data models is
shown in Table - 1 according to different features. A short desc-
ription of different features are explained in the following
paragraphs.

Representative System: The most widely used implementation of
the hierarchical data model is DL/I, marketed by IBM. IDMS, mark-
eted by Cullinet, is based on the 1971 DBTG report and represents
the network data model. SQL, the data manipulation language for
DATABASE 2 (DB2), marketed by IBM, is representative of the rela-
tional data model.

Data Building Blocks : The smallest unit of data defined in DL/I
is a field, which is comparable to a data item in the DBTG model
and a column in the relational data model. The unit of data tran-
sferred to an application program is a segment in DL/I and a
record in the DBTG model. The relational model offers two differ-
ent units of data transfer: (1) Application programs, written in
third generation programming languages, currently offer no means
for a unit of data transfer of multiple records; therefore, SQL
operates ,in piped mode,which permits the transfer of one row of
data at a time through a cursor. (2) When data is operated upon
through an on-line terminal in SQL, the unit of data transfer is
a table.The next larger data building block contains data about a
subject and is called a physical data base in DL/I, a set in the
network model, and a relation or table in the relational data
model.

Representation of Logical Data Structures : DL/I represents tree
structure directly. Tree structure cannot be represented directly
in the network model; instead, they are decomposed into two-level
structures called sets. The relational model also cannot represe-
nt tree structures directly; instead, each segment type in a tree
structure is represented as a table. The tables which represent

dependent segments include the key of the parent segment. The
reproduced keys permit the unique identification of each row and
contain values which permit the relationship between two differe-
nt tables to be established.

Simple networks are not permitted in DL/I. Data is represented as
if it were duplicated. However, a unidirectional logical relatio-
nship implemented through logical pointers eliminates redundant
data. The application program views the simple network as a tree
structure. In the network model, simple networks are represented
in the same manner as tree structures. Each parent-child relation-
ship is represented as a set. In the relational model,each record
type is represented in a table. The key of each parent record
type is duplicated in the table that represents the child record
type.

The network model cannot represent complex networks directly.
Instead, a record type is created which contains intersection
data for the records involved in the many-to-many relationship.
The intersection record is a member in each of two sets in which
the related records are owners. The relational model represents
complex networks in much the same manner as the network model. A
table is created which contains intersection data, including the
primary key of each of the record types in the many-to-many rela-
tionship. Each of the records in the complex network is stored in
its own table, and the values of the reproduced keys in the table
containing intersection data relate them.

Data Independence : DL/I makes parameters available in the DBD to
allow the logical sequenceing of segments and permit multiple
secondary indexes to be created for additional sequencing. While
this provides great flexibility to the application program, it
does cause sequence dependencies, since the correct path must be
traversed to obtain the desired segments.

7

IDMS, like DL/I,provides parameters for the logical sequencing of
records and requires a knowledge of the paths to be traversed to
obtain the desired record. It is therefore subject to the same
sequence and path dependencies.

SQL maintains relationships between tables through the values of
the stored data; pointers are not used. Therefore, SQL is free of
path dependence. SQL is also free of any sequence dependencies,
since one of the basic rules of the relational data model is that
columns and rows may be presented in any sequence.

DML Commands : DL/I has six different commands, each with a diff-
erent function to make data available to the application program:
GU,GN,GNP,GHU,GHN, and GHNP. The network model has one command,
GET, to make data available to the application. program, but it
must be preceded by a FIND command which locates the data. IDMS
reduces the number of interactions between the application
program and itself by offering an OBTAIN command, which combines
the functions of lthe FIND and GET commands. SQL has only the
SELECT command for data retrieval.

Each of the sample data base management system has one command to
modify existing data in the data base: REPL in DL/I, MODIFY in
IDMS, and UPDATE in SQL. One command is available in each system
to add new data to the data base:ISRT in DL/I, STORE in IDMS, and
INSERT in SQL.

Each system also has only one DML command to remove exiting data
from a data base: DLET in DL/I,ERASE in IDMS, and DELETE in SQL.
IDMS has four additional DML commands. The CONNECT command causes
a record existing in the data base to become a member of a set
when insertion is manual.CONNECT connot be used when insertion is
automatic. The DISCONNECT command causes a recoed to be removed
from an occurrence of a set without removing it from the data

8

base. DISCONNECT can be used when retention is optional, but can
not be used with any other retention status. The program notifies
IDMS that it will access a data base through the READY command,
and that no further accesses will occur through a FINISH commnad.

Means of Navigation: Navigation of hierarchical structure is
through the traversal of the tree structure. The navigator must
know the current location in the data base and the direction of
the desired segment and may have to traverse many unwanted segme-
nts to obtain the desired segment.

Navigation in the network model in through the traversal of sets.
Travel in a complex network structure is especially descriptive
of the navigation process for the navigator must follow the path
from the owner to a member record containing intersection data in
one set type, then to the owner of the same menber record in
another set type.

Since paths through the tables do not exist"in the relational
model. navigation as such is not performed. Desired records are
obtained based on the value of the attributes within relations.
It is not necessary to direct the relational data base management
system in how to find the data, but only in what data is desried.

Navigator : Since data is obtained through predefined paths in
the hierarchical model and the navigator must konw both the curr-
ent location and the final destination the navigator is an appli-
cation programmer who has had a high degree of training and expe-
rience to hone navigational skills.

IDMS also uses predefined paths through occurrences of record
types to obtain the desired data. Once again, the navigator requ-
ires a high degree of education and training.

9

Since navigation is not performed in the relational model, there
is no need for highly trained programmer. Commands like those of
SQL specify what is to be accomplished, not how to do it, and so
end users (with a little training) perform data manipulation
themselves.

Performance With a well designed data base, a well-defined
access path, and a proficient navigator,DL/I can be tuned to
provide rapid response. The specific paths through the data base
defined by the pointers permit rapid retrieval of the desired
data.IDMS,because of direct access paths of the data can also be
tuned to provide a very responsive system when used with specific
access paths. However, neither IDMS nor DL/I is well-suited to an
unstructured environment where data relationships can be changed
while the user is accessing the data base.

The relational medol, as illustrated by SQL, has greater memory
requirements and requires more resources than either DL/I or
IDMS. But SQL is not as responsive as either DL/I or IDMS and may
require more. secondary storage space to store data, unless DL/I
or IDMS use many pointers to store the data. SQL is powerful. It
performs operation on many records in singal ~uery, whereas DL/I
and IDMS operate on one record or segment at a time and may requ-
ire many commands to perform the work accomplished by one SQL
command.

Additional Pointer Available to Improve Performance : Both DL/I
and IDMS have default pointers; Both also have optional pointers
to improve performance. While these optional pointers do improve
performance in data retrieval operations, performance is often
reduced by them during operations which add or delete records or
update fields on which the additional pointers exist, because of
the pointer maintenance required.

10

.,

SQL permits the creation of indexes by the user to improve
retrieval performance. Performance is reduced during the creation
of the index and during the maintenance of a table on which inde-
xes have been created.

Security-: In all three systems, security is defined through the
subschema. With DL/I and IDMS, the subschema definition is trans-
lated before the execution of the application program and stored
for use during execution. SQL differs from the other two in that
the subschema definition may be modified at any time, even during
on-line execution.

Security Officer: All three systems provide the highest degree
of security when controlled by the data base administrator or by
the security officer of the enterprise. However, it is sometimes
difficult to determine which user have a legitimate need to acce-
ss data.SQL offers an additional option to the security officer:
to delegate access to the data base. SQL may permit the user to
in turn grant access to other users. This enables a responsible
user to grant access to the individuals who have a legitimate
need to access and update the data base.

Responsibility for Adding Data to the Data Base : The DL/I and
SQL data base models have the responsibility to add data to the
data base, based on schema and subschema definitions, when reque-
sted to do so by the programmer or the end user.

IDBMS has the same responsibility. However, when a record is
added, it mayor may not become a member of a set. This responsi-
bility is defined in the schema. When the same record type parti-
cipates in more than one set type, IDMS may be responsible for
connecting it in one set type and the application program respon-
sible for connecting it in another set type.

11

Modification of the Data Structure : Since both DL/I and IDMS
have fixed paths to segments and and records, modification of the
data structure requires a working copy of the data base(s) to be
made, the new data structure to be defined, and the data base to
be recreated in the new structure from the working copy. While
the restructuring is occurring, programs may not access or modify
the existing data and retain data integrity.

Since SQL does not have path dependencies, the data structure may
be modified at any time. New columns may be added or new tables
created while the system is executing. There is no need for the
user to perform the copying of data as is done in DL/I and IDMS;
database definitions take effect immediately. This is advantageous
when new systems are developed, for it permits a prototype of the,
new system to be developed and modified during development. Beca-
use of this flexibility, design errors are easily corrected and
the impact of design changes is reduced.

1.4 ADVANTAGES OF RELATIONAL DATA MODEL

The relational data model is a new approach in DBMS based on
mathematical theory and data is represented as two - dimensional
tables. It Provides ease of use for search, retrieve, insert, and
update. The relational model offers t~o different units of data
transfer: (1) Application programs, written in third generation
programming languages, currently offer no means for a unit of
data transfer of multiple records; therefore, SQL operates in
piped mode, which permits the transfer of one row of data at a
time through a cursor. (2) When data is operated upon through an
on-line terminal in SQL, the unit of data transfer is a table.

SQL maintains relationships between tables through the values of
the stored data; pointers are not used. Therefore, SQL is free of

12

,
path dependence. SQL is also free of any sequence dependencies,
since one of the basic rules of the relational data model is that
columns and rows may be presented in any sequence.

The relational model, as illustrated by SQL, has greater memory
requirements and requires more resources than either DL/I or
IDMS. But SQL is not as responsive as either DL/I or IDMS and may
require more secondary storage space to store data, unless DL/I
or IDMS use many pointers to store the data. SQL is powerful. It
performs operation on many records in singal query. SQL permits
the creation of indexes by the user to improve retri.eval perform-
ance.

SQL offers an additional option to the security officer: to dele-
gate access to the data base. SQL may permit the user to in turn
grant access to other users. This enables a responsible user to
grant access to the individuals who have a legitimate need to
access and update the data base. Since SQL does not have path
dependencies, the data structure may be modified at any time. New
columns may be added or new tables created while the system is
executing.

1.5 PRESENT STATE AND FUTURE PROSPECT

The Relational Database Model is favourite to the academic commu-
nity, due to its operational simplicity and power which permit
users with little training to execute DML (Data Manipulation
Language) commands. However, the power of the relational model
initially presented problems in data access performance, causing
the model to be largely confined to the research envi~onment
through most of the 1970s, relational data base management syste-
ms are being used in large scale data processing applications(4).

13

The relational model is founded on mathematical principles, and
much of the early terminology associated with the model was math-
ematical. The DML for the model uses mathematics as its basis,and
relational calculus and relational algebra data manipulation lan-
guages have been developed. Thus, a problem exists, for outside
of academia, only a small percentage of users have an adequate
background to understand the mathematics of the DML.

Fortunately, an understanding of the mathematics involved is not
necessary in order to use the model.lnstead,the data manipulation
operations can be viewed as a series cutting and pasting
operations on the data within a table. Unlike the models
previously presented, a user can obtain specific data from the
relational model via a nonprocedural language which allows the
.user to describe the data required, rather than the navigation
required. The data base management system then selects the data,
based on the description provided by the user rather than by a
navigational path thruogh the data base.

The Relational Data Model represents data relationships as
tables. The relational model is couched in complex mathematical
notation, and this terminology is unfamiliar to the average data
base management system student.

The traditional data manipulation language of the relational
model was relational algebra and relational calculus. However,
the current trend is to provide entries in a table using English-
like statements and to eliminate mathematical procedures for
manipulation. SQL, the data manipulation language reflects this
trend. Because of its power and ease of use, the relational datab-
ase management system is likely to be the database management
system of the future.

14

1.6 Objective of study

In Bangladesh, many large databases such as Management
Information System (MIS), Accounting System, Inventory Control
etc. are becoming computerized. Most of the databases are using
either hierarchical model or network model due to the lack of
knowledge of design procedure of relational database model.

Loan Ledger Accounting System is a large database which is used
manually in different financial organizations in Bangladesh. So,
for getting frequent informations, a well-structured database and
query formulation is required for this database.

Bangladesh House Building Finance Corporation is one of the well
-known financial organization which is engaged to lend Loan for
building public houses. It has more than 80,000 borrowers now.
BHBFC has been taken as a case study in this project. Loan Ledger
Accounting System is a most important system in this Organization.

In this project, an attempt is made to develop a relational data-
base models for the construction of Loan Ledger Accounting System
database.

1.7 Methodology

Different steps required for implementation of the Loan Ledger
Accounting System database are :

Step 1: First, all the information required for database is to be
collected from the Accounting Section of the Organization
for the Information Requirement Analysis (IRA) and then
the informal strategy of the problem for the database is
to be defined. Proper Information will-be collected thro-
ugh exchange of views of the concern authority. This
procedure is called Information Requirement Analysis .

15

Step 2: Identify a.ll the Entities which are objects or concepts
that exist and are distinguishable from each other, and
relationships between them from the informal strategy of
the problem.

Step 3: The entity - relationship (ER) diagram is most successful
as a tool for communication between the designer and the
end user during the Information Requirements Analysis and
conceptual design phases because of its ease of understa-
nding and its convenience in representation. The data
requirements are analyzed and modeled using ER diagram
that includes semantics for relationships between entiti-
es. Processing requirements are assumed to be specified
using natural language expressions, along with the frequ-
ency of occurrence. Logical views from multiple sources
are integrated into a common global view of the entire
database.

Step 4: Determine the tables required for the database from ER
Diagram by applying some logical rules.

Step 5: Normalization of Relations. Functional dependencies (FDs)
are derived from ER diagram to represent the dependencies
among data elements that are keys of entities. Additional
FDs and multivalued dependencies (MVDs), which represent
the dependencies among key and nonkey attributes within
entities,are derived from the requirements specification.
Redundancies that occur in normalized relations are then
analyzed further for possible elimination, with the cons-
traint that data integrity must be preserved.

Step 6: Implementation. Lastly, the logical design of the system
is to be implemented in consistency with the Hardware and
Software available resources.

16

The Block Diagram of the overall methodology is shown in figure 1:

INFORMATION
REQUIREMENT
ANALYSIS

IDENTIFY ALL
ENTITIES &
RELATIONSHIP

PREPARATION
OF ENTITY -
RELATIONSHIP
DIAGRAM(ERD)

TRANSFORM TO
TABLE

NORMALIZATION
OF RELATIONS

IMPLEMENTATION
THROUGH SOFTW-
ARE & HARDWARE

FIGURE - 1. Block Diagram of Methodology.

17

CHAPTER-2

LOGICAL DATA
FORMAL QUERY

BASE DESIGN
LANGUAGES

AND

A Logical Database design methodology is defined for the design
of large relational databases. First, the data requirements are
conceptualised using an Entity - Relationship (ER) model. The
methodology produces logical database designs that are not accur-
ate representations of reality,but flexible enough to ~ccommodate
future processing requirements[5]. It reduces the number of data
dependencies that must be analysed and maintains data integrity
through normalization. During logical design of a database, know-
ledge on formal query language is required that optimizes the
queries.

2.1 ENTITY - RELATIONSHIP MODEL

The purpose of the entity - relationship model is to allow the
description of the conceptual schema of an enterprise to be
written down without the attention to efficiency or physical
database design that is expected in most other models. It is nor-
mally assumed that the "entity - relationship diagram" thus
constructed will be turned later into a conceptual scheme in one
of the other models, e.g., the relational model, upon which real
database systems are built.

The entity - relationship (ER) model has been most successful as
a tool for communication between the designer and the end user
during the Requirements Analysis and conceptual design phases
because of its ease of understanding and its convenience in repr-
esentation[6]. One of the reasons for its effectiveness is that
it is a top-down approach using the concept of abstraction. The
number of entities (i.e.,the objects that collect information

18

about) in a database is typically an order of magnitude less than
the number of data elements.

Therefore, using entities as an abstraction for data elements and
focusing on the interentity relationships greatly reduces the nu-
mber of objects under consideration and simplifies the analysis.
Although it is still necessary to represent data elements by att-
ributes of entities at the conceptual level, their dependencies
are normally confined to the other attributes within the entity
or, in some cases, to those attributes associated with other ent-
ities that have a direct relationship to their entity.

To obtain the conceptual scheme that offers the most efficiency
can be quite difficult and requires an understanding of design
issues, such as entities, entity sets, attributes, relationship,
different types of keys and entity-relationship diagram in the
target model.

2.1.1 Entities, Entity Sets, and Attributes

The entity - relationship, ER, has the purpose of representing
the real world in a pure and natural way. The key idea of ER
model is to concentrate on the design of the conceptual schema,
which is an intermediate stage in the logical design of a
database. The ER model is constructed based on the idea that the
perception of the real world is usually expressed in terms of
entities, entity-set, attributes, and relationship.

Entities: An entity is an object that exists and is distinguish-
able from other objects, that is, one entity from another. For
example, each person is an entity, and each automobile is an
entity. The notion of distinguishability of entities is very
close to object identity.

19

Entity-Sets : A group consisting of all "similar" entities forms
an entity sets. Examples of entity sets are :
- All persons
- All red - haired persons
- All automobiles

Attributes Entity sets have properties, called attributes,

which associate with each entity in the set a value from a domain
of values for that attribute. Usually, the domain for an attribu-
te will be a set of integers, real numbers, or character strings,
but we donot rule out other types of values. For example, the
entity set of persons may be declared to have attributes such as
name (a character string), height (a real number), and so on.

Relationship and Relationship Sets : A Relationship is an associ-
ation among several entities. A particular entity sets may appear
more than once on the list. This list of entity sets is the sche-
me - level notion of a relationship. If there is a relationship R
among entity sets El,E2, ...Ek, then the current instance of R is
a set of k-tuples, such a set is called a relationship set. So, a
relationship set is a set of relationships of the same type. Each
k-tuple (el,e2, ...,ek) in relationship set R implies that entiti-
es el,e2, ...,ek where el is in set El, e2 is in E2, and so on,
stand in relationship R to each other as a group.

2.1.2 Different types of Keys

An attribute or set of attributes whose values uniquely identify
each entity is an entity set is called a key for that entity set.

The super key is a set of one or more attributes,
collectively, allow to identify uniquely an entity in
set. For example, the social_security_no attribute of

20

which taken
the entity
the entity

set customer is sufficient to distinguish one customer entity
from another. Thus, social_security_no is a super key.

Similarly,the combination of customer_name and social_security_no

is a superkey for the entity set customer. The customer_name

attribute of customer is not a super key, as several people might
have the same name.

A super key may contain extraneous attributes. Smallest possible
super keys is preferable. That is, in super keys for which no
proper subset is a super key. Such minimal super keys are Candid-

ate keys. The term Primary key to denote a candidate key that is
chosen by the database designer as the principal means of identi-
fying entities within an entity set.

A foreign key is a column (or group of columns) in a table which
is a key in some other table.

2.1.3 Entity - Relationship Diagram

The overall logical structure of a database can be expressed
graphically by Entity - Relationship Diagram which consists of
the following components

* Rectangles, which represent entity sets.
* Ellipses, which represent attributes.
* Diamonds, which represent relationship sets.
* Lines, which link attributes to entity sets and entity sets to

relationship sets.

21

2.1.4 Functionality of Relationships

To model the real world adequately, it is often necessary to
classify relationships according to how many entities from one
enti ty set can be associated with how many entities of another
entity set.

For a binary relationship set R between entity sets A and B, the
mapping cardinality must be one of the following:

* One - to - one

* One - to - many

* Many - to - one

* Many - to - many

The simplest and rarest form of relations-
hip on two sets is one - to - one, meaning
that for each entity in either in either
set there is at most one associated member
of the other set. An entity in A is assoc-
iated with at most one entity in B, and an
entity in B is associated with at most one
entity in A.

An entity in A is associated with any num-
ber of entities in B. An entity in B,
however,can be associated with at most one
entity in A.

An entity in A is associated with at most
one entity in B. An entity in B, however,
can be associated with any number of enti-
ties in A.

An entity in A is associated with any num-
ber of entities in B and an entity in B is
associated with any number of entities in
A.

22

2.2 Logical rules for determination
of number of tables in database

For One - to - one relation

Rule no.

1

2

Condition

Both side obligatory

One side obligatory

No. of Table

1

2

Remark

Key attributes
from non oblig-
atory side are
included in the
obligatory side.

3 Both side Non-obligatory 3

For One - to - many or Many - to - one relation

4

5

M - side obligatory

M - side non-obligatory

2

3

For Many - to - many relation

6 M - side obligatory
or non-obligatory

23

3 Obligatory side
will not be co-
nsidered.

2.3 DESIGN ANOMALIES IN DATABASE

Some database schemes might present some anomalies and problems.
To make a good database scheme, these anomalies should be removed
from the database scheme. The following example is to combine the
relations SUPPLIERS and SUPPLIES into one relation SUP_INFO, with
scheme:

SUP_INFO (SNAME,SADDR,ITEM,PRICE)

that included all the information about suppliers. Several
problems and anomalies of the scheme are as follows :

1. Redundancy. The address of the supplier is repeated once for
each item supplied.

2. Potential inconsistency (update anomalies). As a consequence
of the redundancy, updating the address for a supplier in one
tuple is to be done, while leaving it fixed in another. Thus,
a unique address would not be produced.

3. Insertion anomalies. An address can not be recorded for a
supplier if that supplier does not currently supply at least
one item. Null values might put in the ITEM and PRICE compon-
ents of a tuple for that supplier. ITEM and SNAME together
form a key for the relation, and it might be impossible to
look up tuples through a primary index, if there were null
values in the key field ITEM.

4. Deletion anomalies. The inverse to problem (3) is that all of
the items supplied by one supplier will be deleted, that
results the track of the supplier's address will be lost uni-
.ntentionally.

24

As entities are mapped to records in the logical data base
design, the designer must ensure that the design will satisfy
the test of time. The records developed must support not only
systems currently under development, but also systems to be
developed in the future whose requirements are not completely
known at the time of the logical data base design •

2.4 NORMAL FORM

Four anomalies which occur using the relational model are
identified. Anomalies are unexpected results during data base
maintenance. Deletion anomalies are experienced when a value for
one attribute about which keep is unexpectedly removed when a
value for another attribute is deleted Insertion anomalies are
experienced when store a value for one attribute but cannot beca-
use the value of another attribute is unknown.

These anomalies do not occur as a result of problems with the
relational model but corne about due to the ever-changing nature
of a data base. Data bases are designed to contain attributes for
specific applications as applications are developed. New attribu-
tes are added as a result of adding new systems which require new
data relationships. The anomalies are not restricted to relation-
al data bases; they can occur with any data model. If the anomal-
ies are understood, today's data bases can be designed such that
redesign to add future systems will be minimized or eliminated.
Thus, the process of normalization provides stability of data
structures over time.

Anomalies of data relationships are identified in three normal
forms. Actually, other normal forms exist, but Codd's three forms
are the ones most likely to be encountered.

25

A table is said to be in first normal form if and only if no row
has. multiple entries in any column. Some authors do not even
consider a table to be relational unless the first normal form
criterion is satisfied. A table is said to be in second normal

form if it is in first normal form and every nonprime attribute
is .fully dependent on every key for the table.

An attribute A (column) of a table is said to be transitively

dependent upon a subset X of the columns of the table if there
exists a subset Y of the columns of the table , such that :

All of the columns in the subset Yare functionally dependent
on the subset X.
Not all of the columns in the subset X are functionally depe-
ndent on the set of columns in Y.
A is functionally dependent on the set of columns in Y.
A is not in either of the subsets X or Y.

A table is said to be in third normal form if
It is in first normal form
No nonprime attribute is transitively dependent upon a key of
the table •

A table is said to be in Boyce-Codd normal form if it meets the
following criteria:

It is in first normal form
No attribute of the table is transitively dependent on a key
of the table.

Notice that the only difference between Boyce - Codd normal form
and third normal form is that the attribute which is transitively
dependent in the second above can be prime. It is easy to see
that, if a table is in Boyce-Codd normal form ,then it is in
third normal form.

26

Data is placed in a higher normal form by placing certain restri-
ctions on the way in which attributes are grouped within records.

Thus, data stored in the second normal form is a subset of data
stored in the first normal form, and data stored in the third
normal form is a subset of the data stored in the second normal
form .

. 2.4.1 Example of Normalization

The normal form in which the data is stored identifies certain
anomalies which may occur. The following Example illustrates
anomalies of the first normal form.

JOB EMPNAME EMP-ADDRESS EMPNO DEPTNO DEPTNAME DEPTHEAD

MANAGER KARIM 123, NURBEG 786 001 MECHANICAL WASIM
CLERK FARID 23,DANMONDI 123 001 MECHANICAL WASIM
FOREMAN AKBAR 10,BASHABOO 666 002 ELECTRICAL MINHAZ
MECHANIC KAMAL 40,BANANI 777 100 PRODUCTION ZABIR
HELPER NAHID 88,MIRPUR 999 007 ACCOUNTING MALEK
CLERK NADIR 45,BASHABOO 133 001 MECHANICAL WASIM
CLERK TARIK 101,GINGIRA 780 001 MECHANICAL WASIM
MECHANIC FARID 23,DANMONDI 123 001 MECHANICAL WASIM

Figure 2.1 First normal form.

The figure 2.1 depicts the employee relation for a company. The
relation maintains information about each employee and the depar-
tment in which the employee works. The primary key of this relat-
ion is employee number, department number, and job worked. It has

27

no repeating attributes and no duplicate tuples, each attribute
is named, and the primary key field is not null. Because this re-
lation adheres to the rules for storing data in relations, it is
said to be in the first normal form.

Let's examine the insertion and deletion anomalies which occur
with relations in the first normal form. Using the relation in
figure 2.1 as an example, if an employee is hired, data cannot be
stored for the employee until he has worked his first job, since
the value of DEPTNO, which is one of the attributes of the
composite primary key, is unknown. If a new job is created, data
about the job cannot be entered until someone works in that
position, since EMPNO, which is also one of the attributes of the
composite primary key, is unknown. These are all insertion
anomalies.

Data stored in the first normal form also had deletion anomalies.
If the last employee in a department is deleted, information about
the department is also removed . If a department is affected by
seasonal variations in employment ,information about the departm-
ent is lost. In Figure 2.1, if the employee Nahid is deleted, not
only is the data for the employee removed, but the data for the
Accounting Department is also lost. These anomalies occur because
data is stored in the first normal form.

In Figure 2.1,if the value of EMPNO is known,the value of EMPNAME
can be determined. When the value of EMPNO is 123, the value of
EMPNAME is Farid. Thus, EMPNAME is functionally dependent on
EMPNO,that is,the value of EMPNO determines the value of EMPNAME.
Likewise , EMP-ADDRESS is functionally dependent upon EMPNO: When
the value of EMPNO is known, the value of EMP-ADDRESS can be
determined. DEPTNAME is functionally dependent on DEPTNO: When
the value of DEPTNO is known, the value of DEPTNAME can be deter-
mined.

28

The last definitions needed to understand the anomalies of the
first normal form are those of prime and non-prime attributes.
Simply stated, a prime attribute is an attribute which is part of
the primary key of a relation. A non-prime attribute is an attri-
bute that is not a part of the primary key of a relation.

The anomalies of the first normal form occur because functional
dependencies exist that are not based on the full key of the
relation. For example, the attributes EMPNAME and EMP-ADDRESS in
Figure 2.1 depend on only part of the key EMPNO. The attributes
DEPTNAME andDEPTHEAD depend upon only part of the DEPTNO. These
anomalies can be corrected by altering the way in which attribut-
es are stored in a relation. This is accomplished. by storing the
data in the second normal form All relations in the second
normal form are also in the first normal form, but all nonprime
attributes in the second normal form are fully functionally depe-
ndent,that is, all non-prime attributes depend on all of the key,
not just a part of the key.

The data in the relation presented in Figure 2.1 is regrouped in
the following Figure 2.2 to satisfy the rule of the second normal
form. In Figure 2.2, three relations have been created to store
the department-employee data. They are No data or data relation-
ships are lost in this transformation. The original relation can
be obtained by a join in the relational model, by following owne-
r-member paths in the network model, and by following parent-
child paths in the hierarchical model.

Data stored in the second normal form removes the anomalies exis-
ting in the first normal form. All non-prime attributes are fully
functionally dependent on all of the primary key. For example,in
Figur 3, all non-prime attributes depend upon all of the primary
key. EMPNAME and EMP-ADDREESS depend upon EMPNO. DEPTNAME and

29

DEPTHEAD depend upon DEPTNO. The JOBS-WORKED relation has no non-
prime attributes; all of the attributes are part of the key.

Example in figure 2.2 shows anomalies which occur with data stor-
ed in the second normal form.

In Figure 2.2, all non-prime attributes of the DEPARTMENT relati-
on are fully functionally dependent upon all of the primary key.
The DEPARTMENT relation contains a dependency that does not invo-
lve the key. DEPTNO determines the value of DEPTNAME and DEPTNAME,
determines the value of DEPTHEAD, but DEPTHEAD does not determine
the value of DEPTNO. Therefore, DEPTNO indirectly determines the
value of DEPTHEAD-a dependency exists which does not involve the
key field. Dependencies not involving the key field are called
Transitive.dependencies.

Relations in the second normal form experience insertion and
deletion anomalies. For example, if a department is phased out of
operation and deleted from the relation, not only is the DEPTNO
and DEPTNAME removed from the relation, but the name of the
DEPTHEAD is also removed. Thus more information is removed from
the relation than is desired. Or, if an individual is named the
head of a new department, information about the DEPTHEAD cannot
be recorded until the DEPTNO is determined and added to the
relation.

Anomalies of the second normal form can be eliminated by placing
the relation in the third normal form. All relations in the third
normal form are also in the second normal form, but the third
normal form does not contain any transitive dependencies. Figure
2.2 shows the division of the DEPARTMENT relation into two relat-
ions in the third normal form, DEPARTMENT and MANAGER. Every

30

attribute in each relation is fully functionally dependent on the
entire key, and all transitive dependencies have been eliminated.

The purpose of normalization is to design data structures in such
a manner as to eliminate the need to redesign them when new
applications are added. By storing data in the third normal form,
structures designed today can be integrated with new applications
in the future with little, if any, redesign effort.

31

EMPLOYEE

EMPNAME EMP-ADDRESS EMPNO

KARIM 123, NURBEG 123
FARID 23,DANMONDI 786
AKBAR 10,BASHABOO 666
KAMAL 40,BANANI 777
NAHID 88,MIRPUR 999
NADIR 45,BASHABOO 133
TARIK 101,GINGIRA 780

DEPARTMENT

DEPTNO DEPTNAME DEPTHEAD

001 MECHANICAL WASIM
002 ELECTRICAL MINHAZ
100 PRODUCTION ZABIR
007 ACCOUNTING MALEK
001 MECHANICAL WASIM

JOB WORKED

DEPTNO EMPNO JOB

001 786 MANAGER
001 123 CLERK
002 666 FOREMAN
100 777 MECHANIC
007 999 HELPER
001 123 MECHANIC
001 786 CLERK

EMPLOYEE(EMPNAME,EMP-ADDRESS,
EMPNO)

JOB-WORKED(DEPTNO,EMPNO, JOB)

DEPT(DEPTNO,DEPTNAME,DEPTHEAD)

Figure 2.2 Second Normal form

EMPLOYEE

EMPNAME EMP-ADDRESS EMPNO

KARIM 123, NURBEG 123
FARID 23,DANMONDI 786
AKBAR 10,BASHABOO 666
KAMAL 40,BANANI 777
NAHID 88,MIRPUR 999
NADIR 45,BASHABOO 133
TARIK 101,GINGIRA 780

DEPARTMENT

DEPTNO DEPTNAME

001 MECHANICAL
002 ELECTRICAL
100 PRODUCTION
007 ACCOUNTING

JOB WORKED

DEPTNO EMPNO JOB

001 786 MANAGER
001 123 CLERK
002 666 FOREMAN
100 777 MECHANIC
007 999 HELPER
001 123 MECHANIC
001 786 CLERK

MANAGER

DEPTNO DEPTHEAD

001 WASIM
002 MINHAZ
100 ZABIR
007 MALEK

FIGURE 2.3 Third Normal Form

32

..

2.5 FORMAL QUERY LANGUAGES

A query language is a language in which a user requests
information from the database. These languages are typically
higher-level languages than standard programming languages [7] .
Query languages can be categorized as being either procedural or
nonprocedural. In a procedural language, the user instructs the
system to perform a sequence of operations on the database to
compute the desired result. In a nonprocedural language, the user
describes the information desired without giving a specific proc-
edure for obtaining that information. Most commercial relational
database systems offer a query language that includes elements of
both the procedural and the nonprocedural approaches. The
relational algebra is a procedural query language.

2.5.1 THE RELATIONAL ALGEBRA

A relation is a set of k-tuples for some k, called the arity of
the relation. In general, attributes to the components of tuples,
although some of the operations mentioned below, such as union,
difference, product, and intersection, do not depend on the
attributes of the components.

The operands of relational algebra are either constant relations
or variables denoting relations of a fixed arity. The arity asso-
ciated with a variable will be mentioned only when it is
important. There are five basic operations that serve to define
relational algebra.

a. Union. The union of relations Rand S, denoted R U S, is the
set of tuples that are in R or S or both. Applying the union
operator to relations of the same arity, all tuples in the
result have the same number of components. An example of Uni-

on is shown in figure 2.5a.

33

b. Set difference. The difference of relations Rand S, denoted
R - S, is the set of tuples in R but not in S. Rand S of the
same arity is required. An example of Difference is shown in
figure 2.5b.

c. Cartesian product. Let Rand S be relations of arity k1 and
k2, respectively. Then R X S,the Cartesian product of Rand S,
is the set of all possible (k1 + k2) - tuples whose first k1
components form a tuple in R and whose last k2 components
form a tuple in S. An example of Cartesian product is shown
in figure 2.5c.

d. Projection. The idea behind this operation is that a relation
R is taken, remove some of the components(attributes) and lor

rearrange
of arity
distinct

some of the remaining components.If R is a relation
k 1 t 1'1.. . (R) h th",we e 11 J 12' ... , 1m were e 1. j S are

integers in the range 1 to k, denote the projection
of R onto components i1,i2, ...,im, that is, the set of m -
tuples ala2 ...am such that there is some k-tuple b1b2 ...bk in
R for whichaj = bij for j = 1,2, .•.,m. For example, 1'I3,1(R)
is computed by taking each tuple)' in R and forming a 2-tuple
from the third and first components of p, in that order. If R
has attributes labeling its columns, then we may substitute
attribute names for component numbers,and we may use the same
attribute names in the projected relation. Thus, if relation
R is R(A,B,C,D), then l'IC,A(R)is the same as "3,1(R), and the
resulting relation has attribute C naming its first column
and attribute A naming its second column. An example of
Projection is shown in figure 2.5d.

5. Selection. Let F be a formula involving
i) Operands that are constants or component numbers; compo-

nent i is represented by $i,

34

ii) The arithmetic comparison
<>, and

operators <, - , >, ~, 2., and

iii) The logical operators and, or , and not.

Then (1F(R)
in formula

is the set of tuples p for any occurrences of Ii
F, the formula F becomes true. For example,

rI2>13(R) denotes the set of tuples p in R such that the
second component of)J. exceeds its third component, while
1Tll='Smith' or 11='Jones,(R) is the set of tuples in R whose
first components have the value 'Smith' or 'Jones' . As with
projection, if a relation has named columns, then the formula
in a selection can refer to columns by name instead of by
number. An example of Selection is shown in figure 6e.

35

A B C D E F

a b c b g a
d a f d a f
c b d

(a) Relation R (b) Relation S
,

FIGURE - 2.4 Two relations Rand S

a b c a b c
d a f c b d
c b d
b g a

(b) R - S
(a) R U S

A B C D E F

a b c b g a
a b c d a f
d a f b g a
d a f d a f
c b d b g a
c b d d a f

(c) R X S

A C A

I
B

I
C

a c a b c
d f c b d
c d

(d) Tt (R) (e) cr (R)
A,C B=b

FIGURE - 2.5 Results of some relational algebra operations.

36

The relational algebra is a procedural query language. There are
five fundumental operations in the relational algebra which are
mentioned above. These operations are select, project, cartesian-

product, union,and set-difference.AII of these operations produce
a new relation as their result.

In addition to the five fundamental operations, several other
operations, namely, set intersection, theta join, natural join,

and division can be introduced. These operations will be defined
in terms of the fundamental operations.

2.5.2 FUNDAMENTAL OPERATION

The select and project operations are called unary operations,
since they operate on one relation. The other three relartions
operate on pairs of relations and are, therefor called binary
operations.

The select operation selects tuples that satisfy a given
predicate. Lowercase Greek letter sigma (~) is used to denote
selection. The predicate appears as a subscript to ~.The argument
relation is given in parentheses following the ~. Thus to select
those tuples of the borrow relation where the branch is " Perryr-
idge", can be written as

~branch-name = "Perryridge" (borrow)

For a borrow relation as shown in figure 7a,
results from equ.(2.1) is shown in figure 7b.

All tuples in which the amount borrowed is more
than $1200 by writing

~mount > 1200(borrow)

37

(2 .1)

a relation that

(2 • 2)

In general, comparisons =,<>, <, ~ ,>,2. in the selection
predicate are used. Furthermore, several predicates may be
combined into a larger predicate using the connectives and (')

and or (v). Thus, to find those tuples pertaining to loans of
more than $1200 made by the Perryridge branch, can be written as

t1'ranch-name = "Perryridge" • amount>1200 (borrow) (2.3)

The selection predicate may include comparisons between two attr-
ibutes as illustrated in the relation scheme shown in equ.(2.4).

Client-scheme = (customer-name ,employee-name) (2 • 4)

The equ.(2.4) indicates that the employee is the "personal
banker" of the customer. The relation client (Client scheme) is
shown in Figure 7c. All those customers who have the same name as
their personal banker may be found by writing

(jcustomer-name = employee-name(client) (2.5)

If the client relation is as given in Figure 7c, the answer is
the relation shown in Figure 7d.

In the above example, a relation (Figure 7d) on (Customer-name,

employee-name) in which t{customer-name] = t{emplyee-name] for
all tuples tis obtained. It seems redundant to list the
person's name twice.

One attribute relation on (customer-name) which lists all those
who have the same name as their personal banker is preferred. The
project operation allows to produce this relation. The project
operation is a unary operation that copies its argument relation,
with certain columns left out. Projection is denoted by the

38

\

Greek pi (ft). Those attributes that appeared in the result as a
subscript to ft. The argument relation follows ft in parentheses.
Some examples for project are given belows :

i) For a relation showing customers and the branches from which
they borrow, independent of the amount of the loan or the
loan number, the query may be expressed as in equ.(2.6).

Wbranch-name, customer-name (borrow) --- (2.6)

ii) For the query "Find those customers who have the same name as
their personal banker", the equation is shown in (2.7).

Wcustomer-name (o;ustomer-name = employee-name (client))
--- (2.7)

It may be noted that the operations discussed so far allow to
extract information from only one relation at a time. One operat-
ion that allows to combine information, is known as the cartesian

product operation, .denoted by a cross (x). This operation is a
binary operation. The cartesian product of relations rl and r2
can be written as rl X r2.

39

",

branch-name loan-number customer-name amount

Downtown
Redwood

Perryridge
Downtown
Mianus

Round Hill
Perryridge

17
23
15
14
93
11
25

Jones
Smith
Hayes
Jackson
Curry
Turner
Glenn

1000
2000
1500
1500
500
900

2500

(a) The borrow relation.

branch-name loan-number customer-name amount

Perryridge 15 Hayes 1500
Perryridge 25 Glenn 2500

(b) Result of query for equ. (2.1)

customer-name employee-name

Turner Johnson
Hayes Jones
Johnson Johnson

(c) Client relation table.

customer-name I employee-name

Johnson I Johnson

(d) Result of query for equ. (2.5)

Figure 1.6 Some relations and relational results.

40

•

2.5.3 STRUCTURED QUERY LANGUAGE (SQL)

SQL (Structured Query Language) for relational database manageme-
nt systems is becoming very popular DBMS. The major strength of
SQL is that it deals with sets of data. In fact, SQL is defined
by relational mathematics - the very base of relational database.
It therefore needs no new constructs to solve any database manag-
ement problem. Also, SQL offers a standard (as defined by ANSI
and IBM) method to query very large databases and exchange data
with mainframes.

SQL provides four Data Manipulation Language (DML) statements
- SELECT, UPDATE, DELETE, INSERT.

and some Data Definition Language (DDLl commands, such as, creat-
ing tables, views, indexes and adding columns to existing tables.

2.5.4 QUERY OPTIMIZATION

There are a large number of possible strategies for processing a
query, especially if the query is complex. Strategy selection can
be done using information available in main memory, with little
or no disk accesses. The actual execution of the query will
involve many accesses to disk. Since the transfer of data from
disk is slow relative to the speed of main memory and the central
processor of the computer system, it is advantageous to spend a
considerable amount of processing to save disk accesses.

Given a query, there are generally a variety of methods for
computing the answer. It is the responsibility of the system to
transform the query as entered by the user into an equivalent
query which can be computed more efficiently. The "optimizing",
or, more accurately, improving of the strategy for processing a
query is called query optimization.

41

The first action the system must take on a query is to translate
the query into its internal form which (for relational database
systems) is usually based on the relational algebra.

Each relational algebra expression represents a particular
sequence of operations. The first step in selecting a query-
processing strategy is to find a relational algebra expression
that is equivalent to the given expression and is efficient to
execute. There are a number of different rules for transforming
relational algebra queries, including:

* Perform selection operations as early as possible.
* Perform projection early.

The strategy choose for a query depends upon the size of each
relation and the distribution of values within columns. In order
to be able to choose a strategy based on reliable information,
database systems may store statistics for each relation. These
statistics include :

* The number of tuples in the relation .
* The size of a record (tuple) of relation in bytes (for fixed

length records).
* The number of distinct values that appear in the relation for

a particular.

The first two statistics allow us to estimate how many tuples
satisfy a simple selection predicate.

Statistical information about relations is particular useful when
several indices are available to assist in the processing of a
query. The presence of these structures has a significant
influence on the choice of a query-processing strategy.

42

CHAPTER-3

LOGICAL APPROACH TO DESIGN OF
LOAN LEDGER ACCOUNTING SYSTEM

3.1 INFORMAL STRATEGY OF LOAN LEDGER PROBLEM

Major features of Bangladesh Hou'se Building Finance Corporation
is to provide loan to public for building their houses. The Auth-
ority of the corporation considers their loan application after
threadbare examination of all related papers and documents and
sanctions loans according to ceiling, category, type of the appl-
icant. Then the person getting the loan becomes a bonafide borro-
wer of the corporation.

After sanctioning the loan, the amount is divided into some equal
instalments for disbursement to the borrower. The instalments are
then paid to the borrowers through investigation of the progress
of works. The borrower is liable to complete the construction of
the as per estimate submitted to the corporation. After completi-
on of the house the borrower is required to pay back the loan
amount instalments as fixed by the corporation. Every repayment
is posted in the loan ledger in the borrower account. After full
repayment of the borrowed amount with interest, all papers and
documents of the borrower is released[8].

43

3.2 DESCRIPTION OF DETAIL LOAN LEDGER PROBLEM

There are two types of loan, such as

1. General loan
2. Multi Storied loan

3.2.1 General Loan

Highest Loan Amount: For one unit house in the city/town viz.
DHAKA, CHITTAGONG, SHILET, highest ceiling is limited to TK.
600,000.00. For all other districts of the country, this ceiling
is limited to TK.400,000.00. For some particular Sadar Upazillas
area this ceiling is liml.ted to TK. 200,000.00 for 1000 sq.ft
house (without stair). This loan is not be applicable in the name
of Co-operative society.

Interest Rate The rate of interest for amount of first Tk.
400,000.00 is fixed at 2.5 % above Bank Rate but not less than 13
% (simple). For the rest TK. 200,000.00 the rate of interest will
be 16 %(simple). In special case during the repayment period of
loan if the bank rate increases then the rate of interest of loan
is increased and the borrower will reimburse the loan at increas-
ed monthly instalment. Other than divisional/district headquater
the loans are distributed at a rate of 5 % interest (simple) for
Upazillas and others rural areas.

Period of Reimbursement Decided monthly instalment including
principal, interest, and insurance is reimbursable as under:

1. Upazilla loan at a 5 % interest

44

30 yrs

'./•.....
I '

2. Loan for House(Pacca House)

3. Loan for Semi - house(Semi Pacca)

25 yrs

20 yrs

Primary Investment : Initially minimum 10 % of loan ceiling and
entitlement will be required to be invested by the borrower.

3.2.2 Multi Storied Loan

Highest Loan Amount: For the city I town of Dhaka, Narayangonj,
Khulna and Chittagong for 1000 sq. ft. four storied house (except
stair and balcony, including boundary wall, garage, car spaces
etc), the highest ceiling is TK. 800,000.00 and for other distri-
cts fulfiling some conditions for three storied house the loans
are sanctioned as ~equired This ceiling is not applicable in
the name of Co-operative society. In this case the amount is san-
ctioned considering site, importance of the house and the reimbu-
rsement capacity of the borrower etc.

Interest Rate : Rate of interest will be at prevailing bank rate
but not less than 10.5 % (simple) subject to the condition that
if the bank rate increases, the borrower will reimburse the incr-
eased monthly instalment.

Reimbursement Period : Decided monthly instalment is reimbursable
in 30 yrs. including principal, interest, and insurance.

Primary Investment: Of the total loan entitlement
hundreds sq.ft. house the borrower will invest minimum
the estimate and for above that is for 1000 sq.ft.
borrower will invest minimum 10 % of his entitlement.

45

for eight
2.5 % (of

house the

3.2.3 Method of Loan Application

Only one member of every family of Bangladesh can apply for loan
of HOUSE BUILDING FINANCE CORPORATION. Unless the loan once taken
in the name of one member of a family is not completely reimburs-
ed, any other member of the family (family member means
husband,wife, or dependent children) will not be eligible to
apply for such loan. Every applicant will have to apply for loan
in the specified application form and as per specified rules of
the H.B.F.C .

3.2.4 Issue of Disbursement Instalment

After sanctioning of loan, the sanctioned amount is disbursed in
some instalments keeping in consistency of the construction works
and subject to proper submission of all papers and documents. The
difference between construction expenditure as per estimate)
and sanctioned amount of loan is required to be invested by the
applicant as initial investment before receiving of the first
instalment of loan. The cheque of the first instalment loan sanc-
tioned is issued to the applicant subject to submission of regis-
tered mortgage deeds. The cheque for every next instalment is
required to receive by the borrower within next three months of
the first previous cheque received subject to considering the
construction works.

After sanctioning of loan all cheques are issued from related zo-
nal office subject to considering required investment. Interest
will be charged from the date of the rest of that month in which
the cheque is received.

A case is considered "incomplete" until the repayment date starts.

46

Repayment period counting will be considered from repayment date.

Lump interest will be decided by calculation of interest of every
month and adding the same to the interest balance of previous
month as usual upto fifth month of the last cheque received (How-
ever, advanced interest will not be posted into the ledger. The
actual interest which will come at the end of month will be post-
ed in the ledger). Lump interest is divided into 12 equal instal-
ment and it is realizable 12 equal monthly instalment from the
7th month of the last cheque received.

In case of link case with category no. 08, the last cheque of
category no. 08 will be treated as last cheque.

3.2.5 Method of Loan Repayment

Unless refixation or special indication in normal cases, the
repayment date will be started from the first day of the 7th
month of the last cheque received and monthly instalment will be
repayable. Rate of monthly instalment of loan repayment is menti-
oned in the sanctioned letter. Except if every borrower is notic-
ed to repay loan along with deposit book after receiving the last
cheque by him. If any borrower does not receive the notice in
time, then he may enquiry in the related office of the corporati-
on.

3.2.6 Calculation of instalment

a. Formula for Principal Instalment

SA

----------- + SA X 0.0001
RY X 12

47

b. Formula for Interest Instalment

SA X RI X {(RY X 12) + I}

RY X 28800

Where
SA = Sanctioned Amount
RY = Repayment Year
RI = Rate of Interest

If any borrower doesnot repay instalment of a month in time, then
the decided higher rate of interest on principal amount of the
defaulted instalment is charged. This additional rate of interest
is limited to maximum 17.5 % at present. In this case the decided
rate of interest will be applicable to be charged on the balance
of principal amount on the basis of days of the month.

The case in which penal interest will be charged that will requi-
re to be done in accordance with the particular penal code and
that is to be kept in a separate head. The penal interest is cha-
rgable from the date of repayment.

Formula for Penal Interest (IDIP)

IP D
BOD X --------- X ---------

100 365

Where
BOD = Balance Outstanding on Defaulting instalment of

principal

48

IP = Penal rate of interest for no. of Principal instalment
default

D = No. of days in a month

Formula for charged normal interest

IN D
BOP X ----- X -----

100 365

Where
BOP = Balance Outstanding on Principal
IN = Normal rate of interest
D = No. of days in a month

If the amount of instalment is deposited within the 7th day of a
month that deposit will be treated as a deposited in the first
day of that month and accordingly as per rule interest and
principal are adjusted in the account and monthly interest and
penal interest are required to be calculated. If an amount of
instalment is deposited after 7th day of a month, in that case
normal interest at a decided .rate of interest will be calculated
and deposited amount will be adjusted including interest
/principal as per rule and for the rest of the time, the rest of
the balance of the principal will be taken to charge interest for
posting.

If the amount of instalment deposited by a borrower in a particu-
lar month towards repayment of instalment exceeds repayment of
defaulting lump amount then from the rest of the amount the defa-
ulting interest and repayment of instalment for that period will

49

be adjusted. If the amount of deposit is
principal instalment default, principal
balance will be adjusted accordingly.

not consumed still then
instalment, and total

Repayment period will be counted from repayment date.

Time expired cases will be marked taking into account the repaym-
ent date of the case and that requires to be marked in the
ledger.

As per information supplied the words "ABANDONED" and "SECOND MO-
RTGAGED" are required to be marked in the ledger.

If a deposit is given before starting repayment date that will be
credited to principal account.

In cases of cases other than Time expired/incomplete cases if an
amount is deposited then the same will be adjusted as under

1. Lump interest or upto date instalment of lump
interest.

2. Balance of complete penal instalment.

3. Upto date interest instalment.

4. Instalment of principal account.

In case of time expired cases the deposited amount will be adjus-
ted as under:

1. whole balance of interest amount.
2. whole balance of principal amount.

50

After posting of deposited amount, if it shows credit balance in
any category of any account then it requires to be shown in the
interest side is nill or insufficient then the rest of the amount
or the whole credit balance requires to be transferred to other
category account of that account number.

If the category mentioned in the payment statement/voucher state-
ment are absent in the ledger account then the amount may be
posted to any category of the account number.

If any category of account number are not mentioned in a ledger
then the amount along with information, memo /"voucher/ disburs-
ement will be shown in the suspense list as debit / credit.

After posting/adjustment of the deposited amount the date of lump
interest repayment and covering date and principal,interest inst-
alment requires to be mentioned in the ledger.

The defaulting instalment of principal/interest are to be decided
on the basis of covering date and that will be mentioned in the
ledger; overdue amount will be prepared taking defaulting lump
interest and whole balance of penal interest and defaulting inst-
alment of interest/principal.

Amount of voucher statement will be posted in the mentioned head
and as per requirement covering date will be changed .

There will be a provision for correction the borrower/borrowers
name, address, interest rate of" account, repayment period, penal
interest rate etc through correction slip.

Every year in the month of february, yearly insurance premium
charge and list will be supplied to the insurance company on the
basis of sanctioned amount.

51

If an amount of deposit is posted in a month after the month of
actual deposit in that case on the amount which will be posted in
the principal head interest benefit will be calculated at a deci-
ded interest rate upto previous day of posting for onward credit
to interest account.

If a borrower fails to repay the regular monthly instalment then
on the defaulted instalment of principal amount interest are
charged of a decided higher rate. This additional higher rate of
interest is maximum 17.5 % at present.

3.2.7 Some Formulas used in Ledger

0.90 X SA
1. I = -------------

1000

Where, I = Insurance Premium
SA = Sanctioned Amount

2. Principal Credit = Principal instalment X given instalment
no. in that year.

3. Interest default total = IDIP X Interest Instalment of the
month + Previous total interest default.

4. Interest side total Balance = IDIP + Normal Interest charged
+ Previous Total Balance.

5. Total Principal Balance = Previous Principal + New charged
amount.

6. Expiry Date = Repayment date + Period of loan.

52

3.2.8 Coding of Type, Category, and Purpose code of Loan

Type of loan

General 1

Multi Storied 2

Category of Account

Original = 00 Additional = 01 2nd Additional = 02

3rdAdditionai = 03 Special = 04 Defferential = 05

Old multi = 06 Old multi defferential = 07

16 % General = 08

Purpose code

Memo no. = M Insurance = I Low charge = L

Advertisement cost = A Voucher adjustment = V

Lump Interest = LI Refund by cheque = R

Cheque = CV IDIP = PI

3,2,9 Design I Modification of a House

Without the recommendation of the proper authority a design can
not be changed and without prior permission of the corporation, a

53

house constructed by loan from corporation can not be changed in
any way.

3.2.10 Transfer of mortgaged property

Besides Corporation, any kind of transfer (sale, mortgage, heba
etc.) is illegal. After fulfilment of required conditions a house
can be transferred through deed. In such cases all expenditures
incurred are to be brone by the saler. Even a portion of a mortg-
aged property is not released before receipt of full payment of
the loan.

3.3 DATA FLOW DIAGRAM

The Data flow diagram (DFD) is used as a graphical tool to depict
information flow. The representation of information flow is one
element of the requirements analysis activity that call informat-
ion domain analysis[9]. DFD represents the Software Requirements

Specification. The Data Flow Diagram of Loan Ledger Accounting
System is shown in figure - 8 and sequence of information flow is
presented according to the serial number mentioned in the figure.
The informations and their sequence number shown in figure - 3.1
are as follows :

Sequence no.

1

2

3

Information

Application for loan to the Sanctioning Authority.

Inform the applicant about application after details
examination.

After sanctioning loan, give information to concern
authority.

54

,f\

4

5

6

7

8

9

10

11

12

13

14

Give information to Disbursement Section.

After sanctioning loan, submits the documents and
performs mortgage deeds.

After threadbare examination of documents, applicant
is enlisted as a borrower.

Give permission for disbursement.

In consistency with the construction, disburse the amount.

After total disbursement, reimburse the repayment amount.

Issue yearly loan ledger statement.

After total repayment, give information.

Release all documents and give full ownership to
the borrower.

Inform about incomplete expiry cases.

Reimburse the total amount by selling the house
through auction and release all documents and give
ownership to the new owner.

55

1 5
APPLICANT

.
CONCERN AUTHORITY

t-

SANCTIONING

AUTHORm 2

I
4 3

+
7

6 12
D I SBURSEIIENT 14 INEI~ OWNER
SECTION

I
BORROIIER

8

I.
')

REPAYIIENT I'

SECTION 10

11

13

Figure - 3.1
Data Flow Diagram of Loan Ledger Accounting
System.

56

3;4 ENTITY - RELATIONSHIP DIAGRAM

The overall logical structure of a database can be expressed
graphically by an E-R diagram. The entity - relationship diagram
is based on a perception of a real world which consists of a set
of basic objects called entities and relationships among these
objects[lO] .

3.4.1 Drawing of ERDs
"

By analyzing the DFDs, a list of entities and relationship is
determined. Figure - 3.2 to 3.7 show the localized ERDs as a
result of the identification of entity & relationship types and
functionality of relationships.

The logical ERDs are grouped together to form the normali~ed
ERDs. Figure - 3.8 is such a grouped ERD obtained from the loca-
lized ERDs of figure - 3.2 to figure - 3.7.

3.4.2 Identification of Attributes

Attributes are the properties of an Entity. These attributes when
chosen by itself can serve as a prime indicator and establish
relationship with Entities. Thus the attributes can also identify
each entity and relationship. The key were shown in figure - 3.2
to figure - 3.7 in the form of underlined attributes.

57

APPLICANT

1

1

LOAN

application no. name, address,
region, code, category

Functionality of Relationship
1 : 1

Obligatory side

No. of table

code, category. interest_rate,
loan_period.

Loan

2

Figure - 3.2
Localized ERDs for the entities of people and loan.

58

LOAH

1

1

code. category. interest_rate,
loan_period

Functionality of Relationship
1 : 1

Obligatory side
Borrower

No. of table 2

BORROWER
code. acc no. category. sanction_
amount, repay_start_date, first_
portion_name, 2nd_portion_name,
address_linel, address_line2, address
line3, ledger_no,region

-Figure - 3.3
Localized ERDs for the entities of loan and borrower.

59

BORROWER

1

code, ace no, category, memo_no,
pay_date, principal_balance, principal
_instalment, principal_instalment_
default, penal_interest_on_principal_
default, interest_instalment, interest
_instalment_default, lump_interest_
instalment, lump_int_default, normal
interest_balance

II

Functionality of Relationship

Obligatory side
Disbursement Amount

No. of table

l' M

2

DISBURSEMENT AMO-UNT (INSTALMENT>
code. ace no, category, region,
issue_date, cheque_no, amount,
instal_no, delivery_date,scroll_date,
purpose_code

Figure - 3.4
Localized ERDs for the entities of borrower and
disbursement amount instalment.

60

BORROWER

1

code, ace no, category, memo_no,
pay_date, principal_balance, principal
_instalment, principal_instalment_
default, penal_interest_on_principal_
default, interest_instalment, interest
_instalment_default, lump_interest_
instalment, lump_int_default, normal
interest_balance

Functionality of Relationship
1 : M

M

REPAYMENT AMOUNT

Obligatory side
Repayment Amount

No. of table

code. ace no, category, memo_no,
bank, pay_date, amount, purpose_
code, scroll_date, operator_no

2

Figure - 3.5
Localized ERDs for the entities of borrower and
repayment amount.

61

BORROWER

1

code. ace no, category, memo_no,
pay_date, principal_balance, principal
_instalment, principal_instalment_
default, penal_interest_on_principal_
default, interest_instalment, interest
_instalment_default, lump_interest_
instalment, lump_int_default, normal
interest balance

Functionality of Relationship
1 : M

M

VOUCHER ADJUSTM-ENT AMOUNT

Obligatory side
Voucher adjustment amount

No. of table

code. acc no, category, region,
purpose_code, voucher_pay_date,
amount

2

Figure - 3.6
Localized ERDs for the entities of borrower and
voucher adjustment amount.

62

BORROWER

1

code, ace no, category, memo_no,
pay_date, principal_balance, principal
_instalment, principal_instalment_
default, penal_interest_on_principal_
default, interest_instalment, interest
_instalment_default, lump_interest_
instalment, lump_int_default, normal
interest_balance

1

TERMINATION

Figure - 3.7
Localized ERDs for
and termination.

Functionality of Relationship

Obligatory side
Termination

No. of table

code. acc no. category. repay_
start_date, sanction_amount

the entities of borrower

63

1

2

1

1

1

APPLICANT

1

1

LOAN

BORROWER

1

1

II M tl 1

DISBURSEtlENT REPAytlENT VOUCHER ADJU- TERtlINAT-AtlOUNT AtlOUNT STtlENT AMOUNT ION

Figure - 3.8
Combined ERDs for Loan Ledger Accounting
System.

64

CHAPTER.-4

PHYSICAL APPROACH TO DESIGN OF
LOAN LEDGER ACCOUNTING SYSTEM

4.1 DATA STRUCTURE AND ORGANIZATION

From the analysis of DFDs, the data stores were identified. These
data have several attributes which are obtained may be kept in a
database as per the allocated maximum length described in the
Table - 2 to Table - 9. The tables also show the type of data to
be kept in that space.

TABLE - 2. Data Structure of new borrower table.
ATTRIBUTE TYPE WIDTH DESCRIPTION
code character 1 Loan type code
region character 3 Loan region code
acc-no integer 4 Account no. of borrower
category character 2 Category of loan
sanc-amount decimal 6 Sanctioned amount
repay_ date date 4 Starting date of repay
interest -rate decimal 3 Rate of interest
name1 character 30 First portion of name
name2 character 30 Second' portion of name
address1 character 30 First portion of address
address2 character 30 Second portion of address
address3 character 25 Third portion of address
loan_period smallint 2 Period of .Loan
ledger_no smallint 2' Ledger No. of borrower

Total (Maximum length) 172

65

TABLE - 3. Data Structure of old borrower table.

ATTRIBUTE TYPE WIDTH DESCRIPTION
category character 2 Category of loan
acc-no integer 4 Account no. of borrower
code character 1 Loan type code
memo - no character 6 Memo no.
p_date date 4 Repayment date
tot-bal decimal 6 Total balance
pri_ins decimal 6 Principal Instalment
in-ins decimal 6 Interest Instalment
pr_ ins - def .decimal 6 Principal Instalment

default
id- amt decimal 6 Instalment default of

penal interest
in-ins - def decimal 6 Interest instalment, default
Ip_in_amt decimal 5 Lump interest amount
Ip_in_def decimal 4 Lump interest defaultn_in decimal 6 Normal interest amount

Total (Maximum length) 68
.

TABLE - 4. Data Structure of disburse table.

ATTRIBUTE TYPE WIDTH DESCRIPTION
.

category character 2 Category of loan
region character 3 Loan region code
acc- no integer 4 Account no. of borrowerissue - date date 4 Cheque issue date
amount decimal 6 Disbursement instalment

amount
cheque_no character 6 Cheque number
install-no character 2 Installment number
delivery_date date 4 Cheque delivery date
sl- date date 4 Scroll date
purpose character 1 Purpose of payment
code character 1 Loan type code

Total (Maximum length) 37

66

TABLE - 5. Data Structure of repay table.

ATTRIBUTE TYPE WIDTH DESCRIPTION
memo -no character 6 Memo number
code character 1 Loan type code
bank smallint 2 Bank number
p_date date 4 Repayment date
amount. decimal 6 Amount of repayment
purpose character 1 Purpose of repayment
acc- no integer 4 Account no. of borrower
category character 2 Category of loan
sl-date date 4 Scroll date
opno character 1 Operator number

Total (Maximum length) 31

TABLE - 6. Data Structure of voucher table.

ATTRIBUTE TYPE WIDTH DESCRIPTION
code character 1 Loan type code
region character 3 Region number
acc- no integer 4 Account no. of borrower
category character 2 Category of loan
purpose character 3 purpose of voucher
v_date date 4 Date of voucher

adjustment
amount decimal 6 Amount of voucher

Total (Maximum length) 23

TABLE - 7. Data Structure of ledger out table.

ATTRIBUTE TYPE WIDTH DESCRIPTION
code character 1 Loan type code
category character 2 Category of loan
acc- no integer 4 Account no. of borrower
prin_c decimal 6 Principal credit
prin_d decimal 6 Principal debit
inst-c decimal 6 Interest credit
inst-d decimal 6 Interest debit

67

Table -7 (Contd.)

ATTRIBUTE TYPE WIDTH DESCRIPTION
intcg decimal 6 Charged interest
n_pay decimal 6 Normal Interest payment
lum_c decimal 6 Lump credit
idip_c decimal 6 IDIP credit
lum-d decimal 6 Lump debit
idip_d decimal 6 IDIP debit
prin_pay decimal 6 •Total principal payment
in_ to_prin decimal 6 Deducted amount from

from principal instead
of interest

Total (Maximum length) 79

TABLE - 8. Data Structure of Penal rate table.

ATTRIBUTE TYPE WIDTH DESCRIPTION
in-rate decimal 3 Interest rate
pr_def decimal 4 Principal default
p_rate decimal 3 Penal rate

Total (Maximum length) 10

TABLE - 9. Data Structure of Incom table.

ATTRIBUTE TYPE WIDTH DESCRIPTION
~

code character 1 Loan type code
acc-no integer 4 Account no. of borrower
category character 2 Category of loan
linstl character 2 Last instalment no.
instl-date date 4 Date of instalment

Total (Maximum length) 13

68 •

4.2 HARDWARE CONFIGURATION

The Loan Ledger Accounting System is designed specially for mini-
computers, IBM Micro-computers and clones (IBM PC or PC AT Compa-
tible) that run under the UNIX, XENIX, and MS-DOS. The Total
Number of bytes required for database is 433. Now,the Loan Ledger
Accounting System is implemented for 25,000 borrowers. The syslem
ideally needs a multi-user system for huge data entry. The, system
requires the following devices :

CPU with at least 2 MB RAM for mini-computer or
CPU (80286 or 80386 or equivalent) with at least 1MB RAM
for micro-computer

40 MB harddisk

4 - data entry terminals

132 or more character high speed line printer

4.3 LANGUAGE IMPLEMENTATION

The system is implemented in INFORMIX - 4GL (embedded SQL) under
UNIX - V operating system environment but suitable for micro-
computer base system (e.g. Oracle, Informix - 4GL) under UNIX or
XENIX or PC based Operating System, was not available at that
time.

Informix - 4GL has three major components an interactive SQL
capabili ty, an application development tool, and a report
writer[11]. The interactive portion of the package to enter SQL
query, store it, retrieve a previously stored query, and execute
a query.

69

Resul ts are displayed on the screen, and then scrol-l forward
through them. Options to change databases, create tables, execute
queries, and so forth are displayed at the top of the screen. The
application developer with a fully -functional development tool
that can access databases using SQL. Developers can retrieve,
update, and insert sets of rows with SQL. You can also use SQL to
provide sophisticated, yet concise, editing logic. Informix-4GL
contains a full complement of statistical functions, string mani-
pulation commands, and array handling capabilities. It also cont-
ains basic assignment and looping constructs. Informix - 4GL is
portable to a wide variety of platforms, including many UNIX
machines and DEC'S VMS operating system.

4.4 COLLECTION OF DATA

Data are collected from borrowers through disbursement memo,
repayment memo, voucher memo, and new borrower list. During data
entry, a lot of possible on-line data validation are provided. At
that level, data may cause error. To correct the error,
validation listing will be generated and supplied to the concern
authority. After proper validation, data are updated by the embe-
dded update program. Some of the data collection forms'and data
entry forms used are attached as Appendix - A .

4.5 INPUT/OUTPUT DESIGN

There are some dialogue designs menus, question & answer, and
form filling are used in designing the screen layout. The menus
enable the user to select the function to be performed by the
system. The Menu chart is shown in Table - 10. The program of the
system is composed of four modules or sub-systems shown in figure
- 4.1. Each module in turn consists of several sub-modules. This
software is designed in a top - down technique. The different
modules are briefly explained as follows :

70

Change the Database

This option is chosen to deal in database modification related to
Loan Ledger Accounting System, such as Data Entry, Edit, Delete
etc. The explicitly described submenus will help to choose the
required option. This module invokes a menu which has five options
shown in figure - 4.2 to select tables in which change will be
occured.

After selection of any table, a menu will be displayed similar to
any of the figure shown in figure 4.3 to figure 4.6 for the corr-
esponding table. The following functions are comprised in the
menus shown in figure - 5.3 to figure - 5.6.

Data Entry

By selecting this function for new borrower table, the informati-
ons of newly enlisted borrowers to the corporation is to be
entered through a screen form shown in figure 4.8. When loan is
sanctioned for a borrower, this amount is disbursed through some
instalments. This information is entered through a screen form
shown in figure 4.9. The borrower is liable to reimburse the bor-
rowed amount. The repayment information is to be entered through
a screen form shown in figure. 4.10.Some amount is to be paid for
voucher adjustment required due to some mistakes or for some dis-
crepencies which may be occured from the borrower side or from
the authority of the organization. This amount and its related
information is to be entered through a screen form shown in
figure 4.11.

After selection of any of these functions shown in figure 4.3 to
figure 4.6, a menu will be displayed. for choosing the month for
which data is to be entered.

71

Table - 10. Menu Chart of Loan Ledger Accounting System

LOAN LEDGER ACCOUNTING SYSTEM
MENU CHART

Main Menu Detailed Functions

1. Change Database 1. New borrower table

1. Data Entry
2. Data Edit
3. Data Delete
4. Exit

2 . Disbursement table
. 1. Data Entry

2. Data Edit
3. Data Delete

• 4. Exit

3. Repayment table
.

1. Data Entry
2. Data Edit
3. Data Delete
4 • Exit

4. Voucher table

1. Data Entry
2. Data Edit
3. Data Delete
4. Exit

5. Return to Main Menu

2. Validation Listing
1. New borrower table

1. Select starting and end position
2. Select particular month
3. Select particular bank
4 . Exit

2 • Disbursement table

1. Select starting and end position
2 . Select particular month
3. Select particular bank
4. Exit

72

Table - 10 . (Contd.l

3. Repayment table

1. Select starting and end position
2. Select particular month
3. Select particular bank
4. Exit

4 . Voucher table

1. Select starting and end position
2. Select particular month
3. Select particular bank
4 . Exit

5. Return to Main Menu

3. Loan Ledger Statement 1. Selected number of account

1. Print on paper
2. Print on console
3. Save to a file

2. With starting account no.
,

1. Enter the number of account
to be output

1. Print on paper
2. Print on console
3. Save to a file

3. Return to Main Menu

4. Quit the Session

MAIN_MENU :Change_database Validation_list Loan_ledger Quit
Changing the database ...

FIGURE - 4.1
Opening Menu of Loan Ledger Accounting System.

73

CHANGE_DATABASE : New_borrower Disburse Repay Voucher Exit
New Borrower Table ...

FIGURE - 4.2
Sub-menu for change_database module for selection of
the table of Loan Ledger Accounting System Database.

NEW_BORROWER_TABLE: Entry
Data Entry Module ...

Delete/Edit Return

FIGURE - 4.3
Menu for different options of changing the new
borrower table of Loan Ledger Accounting System Database.

DISBURSE_TABLE
Data Entry Module

Entry Delete/Edit Return

FIGURE - 4.4
Menu for different options of changing the disbursement
table of the Loan Ledger Accounting System Database.

REPAY_TABLE Entry
Data Entry Module ...

Delete/Edit Return

FIGURE - 4.5
Menu for different options of changing the repay table
of the Loan Ledger Accounting System Database.

74

VOUCHER_TABLE: Entry
Data Entry Module

Delete/Edit Return

FIGURE - 4.6
Menu for different options of changing the voucher table
of the Loan Ledger Accounting System Database.

MONTH_SELECTION :lJan 2Feb 3March 4April 5May 6June 7July ...
January ...

FIGURE - 4.7
Menu for month selection.

Bangladesh House Building Finance Corporation
Computer Cell, Dhaka.

Type : Region : Account No. :

Category : Sanction Amount :

Rate of interest :

First Name : Second Name :

Address :
Line 1 :

Line 2 :

Line 3 :

Period of loan : Ledger No. < :

 for INTERRUPT

FIGURE - 4.8
The data entry screen form for new borrower table.

75

Bangladesh House Building Finance Corporation
Computer Cell, Dhaka.
Disbursement Form

Category : Region :

Account No. : Cheque No. :

Disburse Amount :

Installment No. : Date of Delivery :

Scroll Date : Date of issue :

Purpose code : Type code :

Press <DEL) to abort

FIGURE - 4.9
The data entry screen form for disbursement table.

Bangladesh House Building Finance Corporation
Computer Cell, Dhaka.

Press CONTROL - W to get bank code and type code
.

Memo No. : Type Code :

Bank Code : Date :

Amount :

Purpose Code : M

Loan Account No. : Category :

Scroll Date : Operator No. :

Press <DEL) to abort

FIGURE - 4.10
The data entry screen form for repay table.

76

Bangladesh House Building Finance Corporation
Computer Cell, Dhaka.
Voucher Form

Type Code : Region :

Category : Account No. :

Purpose Code : Scroll No. :

Voucher Date : Principal Debit :

Principal Credit : Interest Debit :

Interest Credit :

Press to abort

FIGURE - 4.11
The data entry screen form for voucher table.

Data Edit
By selection of this function, the data can be edited in any of
the tables. Some mistakes may be occured during data entry, so
correction or modification in this case can be done through the
forms shown in figure from fig. 4.12 to fig. 4 .15 for respective
tables. All the existing information will be displayed on these
screen forms and necessary changes may be done.

Data Delete
Information may be duplicated due to mistake or unnecessary data
may be entered. These data are. required to delete from the
database. After selection of this function and month, a screen
form similar to figure shown in figure 4.12 to figure 4.15. Exis-
ting information will be displayed on the screen form and necess-
ary deletion may be done.

77

Type Region Account No. Category Rate First Name
Second Name Address(Line 1)

Address(Line 2) Address(Line 3)

FIGURE - 4.12
The data edit/delete screen form for new borrower table.

Bangladesh House Building Finance Corporation
Disbursement Update

Category : Region :

Account No. : Cheque No. :

Disburse Amount :

Installment No. : Date of Delivery :

Scroll Date : Date of issue :

Purpose code : Type code :

Total = I F2 = Next I F3 = Previous I Del = Exit
Esc = Go

FIGURE - 4.13
The data edit/delete screen form for disburse table.

78

Enter type code and bank code to edit :

HIGH LIGHT YOUR CHOICE & PRESS ESC

MEMO CODE BANK DATE AMOUNT CAT. SL-DATE OP

FIGURE - 4.14
The data edit/delete screen form for repay table.

Bangladesh House Building Finance Corporation
Computer Cell, Dhaka.
Voucher Update Form

Type Code : Region :

Category : Account No. :

Purpose Code : Scroll No. :

Voucher Date : Principal Debit :

Principal Credit : Interest Debit :

Interest Credit :

Press to abort

/

FIGURE - 4.15
The data edit/delete screen form for voucher table.

79

Validation Listing

After completion of data entry, choose this option to validate
data for Ledger printing. The validation process is completely
done manually. The incorrect data are corrected through the edit
options of the Changing Database option.

This module invokes a menu which has four options shown in figure
- 4.2. This menu is for selection of table for which validation
1isting is required. After
displayed which is shown in

selection of table, a menu will be
figure - 4.16. This menu is for sele-

ction of some condition for which validation listing is required.

SELECT_PRINTING_CONDITION: Start_&_endParticular_monthParticular_bankExit
Select Startingand End Position...

FIGURE .:.4.16
Menu to Select Conditions for Validation Listing
of Loan Ledger Accounting System.

Loan Ledger Statement

This option has the facilities for printing Loan Ledger Statement
for a selected account or a number of accounts. The submenus
under this option opens up a wide variety of choice in which the
ledger statement reportsis to be generated.

80

"
-\ This module invokes a menu which has three options shown in figu-

re - 4.17. If first option is selected, a print media menu shown
~n figure - 4.18 is displayed. Each option invokes two queries
shown in figure - 4.19 and figure - 4.20 consecutively. After
completion of this jobs, a query shown in figure - 4.21 is
displayed.

If second option is selected from Ledger Printing Menu shown in
fig.4.17, after selection of any options in figure 4.18, a query
shown in fig.4.19 is displayed. After selection the starting acc-
ount no., a query in figure 4.22 is displayed.

If third option is selected from print media menu shown in fig.
4.18, a query shown in fig. 4.23 is displayed for entering file
name.

LOAN LEDGER PRINTING MENU
=========================

1. Selected number of account

2. With starting number

3. Exit

Enter your choice

Figure - 4.17
The input format design for Ledger printing menu
of Loan Ledger Accounting System.

81

PRINT MEDIA MENU================
1. Print on paper

2. Print on console

3. Save to a file

Enter your choice

Figure - 4.18
Printing media menu of Loan Ledger.

LOAN LEDGER PRINTING

Enter an account number

Figure - 4.19
The input format design of account number query.

LOAN LEDGER PRINTING

Enter the starting year of ledger

Figure - 4.20
The input format design of starting year query.

82

\

LOAN LEDGER PRINTING

Do you want to continue (YIN) ?

Figure - 4.21
The input format design for print continuation query.

LOAN LEDGER PRINTING

Enter the number of account to be printed

Figure - 4.22
The input query format design for number of account
to be printed is required.

LOAN LEDGER PRINTING

Enter your file name

Figure - 4.23
The input query format design for file name onto which
ledger print out to be stored.

83

"

I i

4.6 PROGRAM LISTING

Program listing has a great role to play during maintenance of
the system in due course of time or whenever required. Without
the listing of program codes the future development of the system
is extremely difficult.

The list of the program is given in Appendix - B.

84

CHAPTER.-5

CONCLUSIONS

5.1 RESULT, DISCUSSION, AND CONCLUSION

A practical step-by-step methodology for relational database
design can be derived using a variety of extensions to the ER
conceptual model. This relational database design approach uses
both the ER model and the relational model in successive stages.
It benefits from the simplicity and ease of use of the entity-
relationship model and the structure (and associated formalism)
of the relational model. In order to achieve this approach, it is
necessary to build a framework for transforming the variety of ER
constructs into relations that can be easily normalized.

In the Loan Ledger Problem, reporting is done in On-line
process. To make the processing faster, a number of temporary
tables are created during processing and will be deleted after
execution. A no. of auxiliary tables are created permanently for
keeping information for Management Information System and for
some report generation. For data entry into voucher table, to
avoid insertion anomalies define a single attribut for different
items by one recognisiable character which causes saving of memo-
ry.

The data stored in the database needs to be protected from unaut-
horized access,malicious destruction or alteration, and accidental
introduction of inconsistency. To protect the database from mali-
cious abuse and against accidental loss of data consistency,
every operator and user is assigned to a particular user number
to access to the database. Since a lot of queries are involved in
this database, the strategies of Query Optimization are used to
make faster processing.

85

,,,

In developing the program, the task is defined some set of units
which then put together in a defined way, and realised the
overall object. The criteria of Active Decomposition and Modular-

ity are applied to decompose the whole program to some possible
functions and then followed some stepwise Refinement which is an
early top-down design strategy.

The design process is also of interest since it offers a guide to
the design of the databases and their modifications induced from
external events. It introduces in a simple w~y the notion of
event that is commonly used in the literature but seldom clearly
defined. Analysis of the event ensures the completeness and
integrity of the database under various applications of the ente-
rprise.The methodology has been illustrated with a database desi-
gn problem, showing each design step in detail.

As a result, the facts of the real world which are of interest to
the enterprise are considered from both static and dynamic points
of view. The perception of data of the user is reflected in a
natural way in the design of the Loan Ledger System and aI-so in
the design of the programs.

The implementation plan is carefully considered so that the
system can be run and modified in any machine. Thus, the language
needs to be highly portable and easily modified and mai~tained by
other programmers.

The system is highly interactive and users friendly in nature so
that the design of input and output should give ease of use to
the. operator.

86

5.2 RECOMMENDATIONS FOR FUTURE WORKS

Additional functions can be added, i.e. Bank reconciliation, Bal-
ance of Account, Loan Ledger Summary, Yearly Insurance Statement
Summary, Statement of Expired Account, Statement of incomplete
cases, Interest wise disbursement and income statement etc. as
the present Loan Ledger System has included only limited
operations of the Organization. Thus, it is desirable to add
other operations so that the users can benefit more this
information system.

The overall performance of the Loan Ledger Accounting System can
be evaluated in the future in order to determine the efficiency
of the system in terms of storage and memory allocations and res-
ponse time of each function. A review and evaluation can help the
person in charge of maintenance to improve the Loan Ledger Accou-
nting System.

Knowledge-based database system such as LDL, NAIL etc. is the
recent development of Relational database system. A knowledge -
based system is a programming system that has the following
characteristics[12]
1. a declarative language, that is, logic in one of its many

possible forms,serving as both a host language and as a query
language, and

2. supports the principal capabil ities of a database system,
that is, efficient access to massive amounts of data, sharing
of data,concurrent access to data, and resiliency in the face
of failures.

Application areas of knowledge base systems deal with massive am-
ounts of data and need a query facility more powerful that that
of typical query languages such as SQL. So, to make the Loan Led-
ger database system through DBMS efficient and to make faster
on-line processing, Knowledge based Database Management System is
recommended for future work.

87

,.

•••

APPENDIX-A

DATA COLLECTION FORMS

REGION} I I I
TYPE --I I

NEW ACCOUNT OPBNING STATBMEN I

Col C-2 C-3

No,

Account

9(4)-1-~''!2U
-I

x (22)9

CD
Address II

CD Pd IAddress III Rate

TV
Address IV Tv

of I. of
(3 fields) r£pay I mterest

Nama
Address I
(2 fields)

Sanctioned
Amount

(In lakas)
CAT I CD

I Tv
--9(6,-,9(1)[-9--1

1,

I_______________--..1----- ------------- --- ---_

I
___L _ --- -- --- ------ --- -- _

i '
I I- -- - -- 1------ ----- ----------------- ------- ----------------------------1--'----1-----.---------------

1-:1-- ._...._ _ _
1

,- -- - i --------,,--- .------------- ---, ----".------ ---, ----,---,-----
i

--I I
I

I
i

I
---1---- ------.------ -------,,----- ----- --- --,,------_,,- _

I -

---1--- --- ------------- ------ --------- .--------------------------
I

.. - ",'

DISBURSEMENT STATEMENT

.~.

REGION
TYPE

SCROLL DATE I
,__ ---L_---L __ -l-_-L I

CAT Accounl No. I Dale Cheque No. Amount
Inslall I Deliverv date I Initial
No.

.

. --- ._--- ---_._---

-- -
..__ . ._------

-- --- -------

.- .- -*-.-- .._--

. -"_.------

.

- - --_._----

._----- .._-_._---

-~. -------

-- . --
_.

.

.-

---- - -- ... -_._-----

----- -_._- -- ---------

.

- -- .-

--- .

. .

. -=j - ----"

. -

Region: black CATEGORY

TVpe Gena,al=l
Multi=2

O'iginal= blank
Addl= 1

2nd addl =2
3,d addl =3
Old Multi =6

Spl = 4
Diff = 5
Old Multi Diff = 7

Inslall No. 99 =Fina\

PAYMENT STATEMENT
,BANK CODE I I~

TYPE ~

SCROLL DATE I~I~I
/

'..

Deposit! I A M 0 U N T I Purpose InitialCal. Account No, Voucher Memo No.
I CodeDate Cr, Dr.

,

,

-

'._--'-- -~---

,

- -~-

._- ----- -~-----

._---
,.

-- 1------

;

, I ...
I.

-

,

. '

REGION : BLANK

TYPE GENERAL=1
MULTI =2

CATEGORY

ORIGINAL- BLANK
'1st Addl.-Ol. Diffl.-05. Multi-OO
2nd Addl.-02 Old Multi - 06. Difl.-07
3rd Addi.-03. Spl. -- -04. 16%-08

Contd.-P{

.- ':, -

VOUCHER STATEMENT REGION

TYPE

CAT

Month ~ _

Account Purpose Voucher
No. code - Date

- ,
) .;. ,

Amount to be deposited I

Principal side I Interest side 'I
I' 'Debiq I Credit I

Debjt ,) Credit)-Nlilnllal I •.yAWj-~oTmal I

...-.,-_ ..-... ""\

'.. ," ----_.,' ..._~------...._- --~
.__ ._-,-- ""._"--, ---- ..~_.,--, _~.~.-,._- -_._._._._---_ -., .._,--""-" _ ..__ ._-- "-'-"""-.

.1

i.-..- '-, .•..

-_.,-_. _.__ .._---- ---_. _.- -_ .._--~- , "

i

-----.------ ,- ---,----- ,,------------ ------,---_: __ .,..---1,-----__---_.'_ ..-- .__ ._._.--:- -------_ ...

... -_ _ .._-_.-._ ..- _ .._-_.- - '.----"-' _., - ...•... -._ ..•_-_ .._ ..---_._-,.- ---_ _,,--- .._-',

. !-., •.•.-'"~. ,._, ..-.,-_-~..__ ._,. ~---_.._---_._ ..•_-- ... ---~----.'

;...._ ...__ •..

-_ _ _.~-_._- ._--_ ...,._- _-_. __ ..•.. ,.. --- - ..._-,-_.- -,. ..,~ ---_ .. _._--, ..
..._------ ..._ .._- ._--_. ~...'--•.__ ..._--_. _ .•._--- -_ ..- -------- --- •..._-- ._-_ .._-

I
---_ .. _._---- - --- --_._., _-_. _.--.._..•~ .._,,_._.,_,.!. _'__."'_'_.. _,... __.. " ~ -,_.__.-0._.- ._.

• _~_ •••• _' •• __ •• _. __ .~ __ ._ •• •• _. , ~ ~.~ __ • ~_. __ ••• __ ._ •• M •••• _ ••••• _, __ •••• ~" •• ~ ,

"'__0_--'-'-' "'....._ .._.._. __ . , ~_ 0_.._---"- __ '_'_,_,
[:.

~ ••• __ '., ••• _~_ "~_"_' •• "~~, •• •• __ ._,_._._ , __ ," __ w " •• ~ ,_, • - -------. --- •• ~-- --_ •• --- ~ •• , _.'-' --~-.-

'.': ~..._. .,..- --.....' '._--. ---_. ,_ .._--___ . -,_ .. , •...._.~._-' .._-" •....•.,-_."---' .-._--~.~.-_ ..__ .. -.~."-"'--'~" --- ,-,.-_•._.~-...-.... "'-"'--.-' ~,'

,
._ • __ • __ '. __ '_ ,~ ••• ._-, ••• ' ~ __ •• _ ••• _ •• __ , •• '. ._._. __ ••• __ • __ .• ••••• __ • __ ••• _ • _h • •• H •••••• _ •• ~

....~_ .. _ ... _.. .,. __ ._ ._H._.,...-_. , .. , __ ,_ ... _ .. __ .__ .. _._~_._ h... _._.,, __ .. _ .

... -,.,"~,~-_.,-,.....- ...~._._.._ ..,- ._-,~_._-_._.,- •.._._.,.....-~~._---_ .•..•.-_.
. !

---:----- --------'''--,. ---- "-:_, .. _ : -:; I
!
I,

Total
, I
, ,
:

. j
. 'J
i

!

PURPOSE CODE

C ' Cheque
R =Refund
Li =Lump interest,

C.B_=Closing Balance
V =Adjustment

M =Memo
I -Insurance
L 7Law charge
A =Advertisment
11F.=Brought forward

CATEGORY

, =0 I Old Multi .;=()6
02 Old Multi

=03 Dill'. =07
=04
=05 16% =08

Addl.
2nd add!.
3rd add!.
'Spl. ••
Ditf.

II,,,

PAGE NO -3
BANGLADESH HOU~E BUILDING FINANCE CORPORATION===
LOANLEDGERNO = 013,FORTHEVEAR1989-1990

ACCOUNTNO = 6908 REGION= 000TVPE= 2 CATEGORV= 90PENALCODE= 04
IItO.SAHAbAl HOSSAIH AMOUNt OF LOAR MoRIALv INSTALMENt LUMp INIERESI IK. 64::58.:1::

SANCTIONEDTK.704000.00 ======================== L. INSTDEFAULT .000
KALLANPUR,Rb.,Nu.-5,Au PERIOD OF PRINCIPAL tK. .d52.5.96 L.IRSILMENI IK. .00
USE-S,DHAKA. REPAVMENT- 30VEARS INTERESTTK. 3088.56 EXPIRVDATE: e1l99/2020

liJICI::ca:1 "-611" _ HL!"i0 PA IOIAL IK. 51l4.5l
REPAVMENTSTARTEO-01/09/1990

--- ---------------------------BF 273006 15/06/89 213000.00213000.00 0.000 0.00 0.00 0.00 3165.82 0.000 0.00 0.00 0.00
C Z13~3009/07/8904 11000.00284000.00 0.000 0.00 0.00 0.00 ji65.S.::0.000 0.00 0.00 0.00

JUL IN ,- 284000.00 0.0B0 0.00 0.00 2369.26 5535.08 0.000 0,,00 ".0e 0.00
C '::1359939/0s/e905 10000.00354000.00 0.000 0.00 0.00 0.00 55J5.08 0.000 0.00 0.00 0.00
C 27382428/08/89 06 70000.0042400".00 0.000 ".00 0.00 0.00 5535.08 0.000 0.00 0.08 0.09

AUG IN 424000.00 0.00' 0.00 0.00 J096.49 $6JI.57 0.000 0.00 0.00 0.00
C 273991 13/89/89 87 70009.00494000.00 9.890 0."0 0.00 0.08 8631.57 0.000 0.00 9.80 O.08

SEp IN 494000.00 0.000 0.00 9.00 4021.64 I~65J.21 0.000 0.00 0.00 0.00
C 27417104/10/8908 70009.005640"0.80 ".000 O.80 0.0" 0.08 12653.21 8.88e 0.80 0.80 0.80

UCI IN 564009.00 0.000 0.00 0.09 4969.~J 1,6~~.440.000 0.00 0.00 0.00
C 27436001/11/89 09 700"0.00634000,,00 0.000 0.00 0.00 0.00 17622.44 0.000 0.00 0.00 0.00

NOV IN 6::4000.00 0.000 0.00 0.00 6411.51 2.~99j.95 0.000 0.00 0.00 0.00
DEC IN 634000.08 0.000 e.00 0.00 5653.89 28747.84 0.000 ".00 0.0e 0.80

M 26 12195014/01/90 -6~4.006~3366.00 0.000 0.00 -0.00 -0.00 '::8/41.84 0.000 9.00 0.00 0.00
JAN IN 633366.00 8.000 0.00 0.00 5650.61 34398.45 0.000 0.00 8.00 8.00

M 90211315616102/90 -210.e0 63j155.20 0.000 0.00 -0.00 -0.00 34J98.45 0.000 0.00 0.00 0.00
C 274921 20/02/90 99 70800.00703155,,20 0.000 0.00 0.00 0.00 34398.45 0.000 6.00 0.00 0.80

FEB IN 10j155_20 0.000 0.00 0.00 5dS~.02 J9680.47 0.000 0.00 0.00 0.00
MAR IN 703155.29 0.000 0.00 O.00 6270.60 45951.07 0.000 0.00 0.00 8.00
APR IN 70~155_.::00.000 0.00 0.00. 6068.33 5~0I9.40 0.000 0.00 0.D0 0.09
MAY IN 703155.20 0.006 0.0t 0.00 6270.60 58290.00 0.800 0.00 ".00 0.00
.iliN IN "bI55.d> 0.000 0.00 0.00 6068'JJ 64J5b'JJ 0_000 0.00 0.016 0.00

<)

APPENDIX-B

PROGRAM LISTING

"

"

"

#--
PROGRAM MAIN.4GL
AUTHOR MD. NESAR UDDIN BHUIYAN
PURPOSE Display the Main-menu and Calling the related sub-
modules.#--
MAIN
MENU "MAIN_MENU"
COMMAND "Change_database" "To Changing the database ..."
RUN "change"
COMMAND "Validation_list" "To Validation Listing of data"
RUN "valid"
COMMAND "Loan_ledger" "To Loan ledger statement of borrower"
RUN "loan"
COMMAND "Quit" "To Quit the session "
CLEAR SCREEN
EXIT MENU

END MENU
END MAIN#--
PROGRAM CHANGE.4GL
PURPOSE : Display menu of change database module and calling
related sub-modules.#--
MAIN

MENU "CHANGE_DATABASE"
COMMAND "New_borrower" "New borrower Table
RUN "client"
COMMAND "Disburse" "Disburse Table
RUN "disburse"
COMMAND "Repay" "Repay Table
RUN "repay"
COMMAND "VOUCHER" "Voucher Table ..."
RUN "voucher"
COMMAND "EXIT" "Return to main menu "
CLEAR SCREEN
EXIT MENU

END MENU
END MAIN#--
PROGRAM : BORROWER.4GL
PURPOSE : Different functions for new borrower table#--
MAIN
MENU "NEW_BORROWER_TABLE"
COMMAND "ENTRY_DATA" "Entry New borrower data ..."
RUN "cadd"
COMMAND "_EDIT/DELETE_DATA" "Edit/Delete New borrower data ..."
RUN "cedit"
COMMAND "RETURN" "Return to the previous menu ...n
CLEAR SCREEN
EXIT MENU

93

END MENU
END MAIN

#---~------
PROGRAM : DISBURSE.4GL
PURPOSE : Different functions for disbursement#--
MAIN
MENU "DISBURSE_TABLE"
COMMAND "ENTRY_DATA" "Entry New borrower data ..."
RUN "cadd"
COMMAND "_EDIT/DELETE_DATA" "Edit/Delete New borrower data ..."
RUN "cedit"
COMMAND "RETURN" "Return to the previous menu ..."
CLEAR SCREEN
EXIT MENU

END MENU
END MAIN#--
PROGRAM : REPAY.4GL
PURPOSE : Different functions for repay table#--
MAIN
MENU "REPAY_TABLE"
COMMAND "ENTRY_DATA" "Entry Repayment data ..."
RUN "padd"
COMMAND "_EDIT/DELETE_DATA" "Edit/Delete Repayment data ..."
RUN "pedit"
COMMAND "RETURN" "Return to the previous menu ..."
CLEAR SCREEN
EXIT MENU

END MENU
END MAIN

#--
PROGRAM : VOUCHER,4GL
PURPOSE : Different functions for voucher table#--
MAIN
MENU "VOUCHER_TABLE"
COMMAND "ENTRY_DATA" "Entry New voucher data ..."
RUN "vadd"
COMMAND "_EDIT/DELETE_DATA" "Edit/Delete New borrower data ..."
RUN "vedit"
COMMAND "RETURN" "Return to the previous menu ..."
CLEAR SCREEN
EXIT MENU
END MENU
END MAIN

94

•

PROGRAM : CADD.4gl
PURPOSE : Entry of new borrower information to database#--
DATABASE hbfc
MAIN

DEFINE p_file record like client.*
DEFINE accpt CHAR(I),bcode CHAR(3),
btype char(I),
bcate char(2) ,
brdate date,
birate decimal(5,2)

OPTIONS
PROMPT LINE 21,
MESSAGE LINE 22

DEFER INTERRUPT
open window wI at 2,2 with 22 rows,78 columns attribute (border)
OPEN FORM vscrl FROM "cscr"
DISPLAY FORM vscrl
DISPLAY "(DEL) for INTERROPT" at 20,30
while true
INITIALIZE p_file.* to NULL
let p_file.region = beode
let p_file.code = btype
let p_file.category = bcate
let p_file.repay_date = brdate
let p_file.interest_rate = birate
label aaa:
input by name p_file.* without defaults
LET beode = p_file.region
let btype = p_file.code
let bcate = p_file.category
let brdate = p_file.repay_date
let birate = p_file.interest_rate
if int_flag != 0 then

let int_flag = 0
clear screen
close form vscrl
close window wI
exit while

end if
prompt "ACCEPT (Y/y for add,N/n for edit,Q/q for quit) ?"

FOR CHAR accptif accpt = Ifyllor accpt = Ily'I then
INSERT INTO client VALUES (p file.*)
end ifif accpt = "N'I or acript = 'In'I-then
goto aaa
end if
continue while

lose window wI

95

end while
end main.---
• PROGRAM : CEDIT.4gl
• PURPOSE : Edit/deletion of new borrower information.--
DATABASE hbfc
GLOBALS
DEFINE sl_client ARRAY[200] OF
RECORD code LIKE client.code,

region LIKE client.region,
acc_no LIKE client. acc_no ,
category LIKE client.category,
sanc_amount LIKE client.sanc_amount,
interest_rate like client. interest_rate,
namel LIKE client.namel,
name2 LIKE client.name2,
addressl LIKE client.addressl,
address2 LIKE ~lient.address2,
address3 LIKE client.address3,
loan_period LIKE client.loan_period

END RECORD
DEFINE sl_clientnum ARRAY[200] OF INTEGER

DEFINE accptO SMALLINT,
answer,ask CHAR(l),
mo CHAR(2) ,
no_rec INTEGER,
i,j,p_i,rec,ssum SMALLINT,
total DECIMAL(10,2),
ac.c SMALLINT,
sc_curr SMALLINT,
type,k,kp,ny,while_c CHAR(l),
select_2,select_l,qrl CHAR(245),
quary~l CHAR(20)

END GLOBALS
MAIN
OPTIONS

PROMPT line 20,
NEXT KEY CONTROL-N,
PREVIOUS KEY CONTROL-P

DEFER-INTERRUPT
LET while_c = "0"
LET no_rec = 0

CALL upsam ()
LET p_i = 0
END MAIN

FUNCTION upsam()
CLEAR SCREEN

OPEN WINDOW cw AT 2,2
WITH 22 ROWS,78 COLUMNS

96

ATTRIBUTE (BORDER, COMMENT LINE FIRST,PROMPT LINE LAST)
OPEN FORM cl1_scr FROM "cscrr"
DISPLAY FORM cl1 scr

LABEL bbb:
LET k="O"
DISPLAY "Enter type code to edit :" at 1,12 ATTRIBUTE(REVERSE)

DISPLAY "Press <BREAK> to abort " AT 1,22
LET j = 1
CONSTRUCT BY NAME quary_1 ON code
LET select_2 = "SELECT code,region,acc_no,category,sanc_amount,

interest_rate,name1,name2,address1,address2,address3,
loan_period FROM client WHERE ",quary_1 clipped

PREPARE sq2 FROM select_2
DISPLAY "Please wait ...•.. " AT 1,22 ATTRIBUTE (BLINK,REVERSE)

DECLARE c1_cur SCROLL CURSOR FOR sq2
OPEN c1_cur
display" " at 1,22 ATTRIBUTE(REVERSE)
CALL get_not)

DISPLAY "Record: ",ssum AT 1,64
WHILE TRUE
CALL intall ()
LET i = 1
IF k = "1" THEN
LET kp = "1"
EXIT WHILE
END IF
LABEL xxx:
IF k = "0" THEN
FETCH c1_cur INTO sl_client[i].code, sl_client[i].region,

sl_client[i].acc_no, sl_client[i].category,
sl_client[i].sanc_amount, sl_client[i].interest_rate,
sl_client[i].name1,sl_client[i].name2, sl_client[i].address1,
sl_client[i].address2, sl_client[i].address3,
sl_client[i].loan_period

IF status = not found THEN
LET p_i = i -1

LET k ="1"
GOTO 111

END IF
LET sl_clientnum[i]=i
LET i= i+1
IF i<201 THEN
GOTO xxx
END IF
LABEL Ill:
CALL set_count(i-1)
END IF
IF p_i = a THEN
LET no rec = no_rec + 200
END IF

IF int_flag != a THEN
LET int_flag = a

97

to delete: ESC to update ..." AT 2,1

"Press CONTROLL-N to scroll up:CONTROL-P to scroll down"
AT 1,1

"Press CONTROLL-B

pppGOTO
END IF
DISPLAY

DISPLAY
WHILE TRUE
LET type = sl_c1ient[1].code
LET total = get_input()
LABEL xyz:
IF total > 0 THEN

DISPLAY "TOTAL AMOUNT for code ",sl_client[l].code,":-",total
AT 21,12

DISPLAY "Press CONTROL-W for next 200 : CONTROL-M for previous
200 : CONTROL-Z to quit" at 22,1 ATTRIBUTE (BLINK, REVERSE)

IF p_i <> 0 THEN
DISPLAY" There is no 200 more records. Don't press CONTRL-W "

at 20,9 ATTRIBUTE (BLINK)
END IF
ELSE

DISPLAY "NO RECORD FOUND " AT 18,12 ATTRIBUTE(BLINK)
GOTO ppp

END IF
DISPLAY ARRAY sl_client to s_client.*
ON KEY (ESC)
LET i = arr_curr()
LET j = scr_line()
LET sc_curr = sl_clientnum[i]

DISPLAY" YOU CAN EDIT NOW " AT 1,1
CALL change_row ()

LET total = get_input()
DISPLAY" Press CONTROLL-N to scroll up: CONTROL-P to scroll

down" AT 1,1
DISPLAY "Press CONTROLL-B to delete: ESC to update ..." AT ~,1
DISPLAY" TOTAL AMOUNT for code ",sl_client[l].code,":-",

total AT 21,12
DISPLAY "Press CONTROL - W for next 200 : CONTROL - M for previous

200 : CONTROL - Z to quit" at 22,1 ATTRIBUTE(BLINK,REVERSE)
ON KEY (CONTROL-B)
LET i = arr_curr()
LET j = scr_line()
LET sc_curr = sl_clientnum[i]
CALL dele()

LET total = get_input()
DISPLAY sl_client[sc_curr].* TO s_client[j].*

DISPLAY "TOTAL AMOUNT for code ",sl_client[l].code,":-",total
AT 21,12

ON KEY(CONTROL-W)
LET while_c = "1"
EXIT DISPLAY

ON KEY(CONTROL-Z)
LET while_c = "2"
EXIT DISPLAY

98

s client[l].*
s_client[2].*
s client [3] .*

••AT 4,60
it again :"
THEN

ON KEY(CONTROL-M)
LET kp = "0"

IF no_rec >= 400 THEN
FETCH RELATIVE -400 c1_cur
LET no rec = no rec - 400

ELSE
FETCH ABSOLUTE 1 c1_cur

END IF
LET while_c = "1"
EXIT DISPLAY

END DISPLAY
IF while_c = "I" THEN

LET while_c = "0"
EXIT WHILE

END IF
IF while_c = "2" THEN

EXIT WHILE
END IF
END WHILE
IF while_c = "2" THEN

LET while_c = "0"
EXIT WHILE

END IF
END WHILE
LABEL ppp:

DISPLAY ••
DISPLAY "Press CONTROL-W for next

CONTROL-Z to quit ••
CALL intal1 ()
DISPLAY sl_client[l].* to
DISPLAY sl_client[2].* to
DISPLAY sl_client[3].* to
IF kp = "1" THEN

CLOSE c1_cur
LET kp = "0"

END IF
DISPLAY "Record:","

PROMPT "Do you want to do
IF ask = fly'! OR ask = fly"
LET p_i = 0
GOTO bbb
END IF

CLOSE FORM cl1 scr
CLEAR SCREEN
CLOSE WINDOW cw

END FUNCTION

FUNCTION dele ()
DEFINE cacc_no INTEGER,

ccate CHAR(2) ,
ccode CHAR(l),
cname1 CHAR(35)

99

•• AT 1,1
200 : CONTROL-M for previous 200:
at 22,1 ATTRIBUTE (BLINK,REVERSE)

FOR ask

/

= ?,region
?,category
WHERE code

LET cacc_no = sl_client[i].acc_no
LET ccate = sl_client[i].category
LET ccode = sl_client[i].code
LET cname1 = sl_client[i].name1
PROMPT " Do you want to delete this (YIN) ? " FOR answer
IF answ.er="Y" OR answer="y" THEN
LET select_1 = "DELETE FROM client WHERE code = ? and acc_no = ?

and category = ? and name1 = ?"
PREPARE sdelete FROM select_1
EXECUTE sdelete USING ccode,cacc_no,ccate,cname1
LET sl_client[sc_curr].acc_no = NULL
LET sl_client[sc_curr].sanc_amount = NULL
LET sl_client[sc_curr].code = NULL
LET sl_client[sc_curr].category = NULL
LET sl_c~ient[sc_curr].region = NULL
LET sl_client[sc_curr].interest_rate= NULL
LET sl_client[sc curr].name1 = NULL
LET sl client[sc curr].name2 = NULL
LET sl_client[sc_curr].address1 = NULL
LET sl client[sc curr].address2 = NULL
LET sl_client[sc curr].address3 = NULL
LET sl_client[sc_curr].loan_period = NULL
LET ssum = ssum - 1

DISPLAY "Record:",ssum AT 1,54
END IF

END FUNCTION

FUNCTION change_row()
DEFINE select_3 CHAR(255)

DEFINE cacc_no INTEGER,
ccate CHAR(2),
ccode CHAR(1) ,
cname1 CHAR(35)

LET cacc_no = sl_client[i].acc_no
LET ccate = sl_client[i].category
LET ccode = sl_client[i].code
LET cname1 = sl client[i].name1
INPUTsl_client[sc_curr].code,sl_client[sc_curr].region,
sl_client[sc_curr].acc_no,sl_client[sc_curr].category,
sl_client[sc_curr].sanc_amount,sl_client[sc_curr].interest_rate,
sl_client[sc_curr].name1,sl_client[sc_curr].name2,
sl_client[sc_curr].addressl,sl_client[sc_curr].address2,
sl_client[sc_curr].address3,sl_client[sc_curr].loan_period

without defaults from s_client[j].*
IF int_flag != a THEN

LET int_flag = a
GOTO cc

END IF
LET select_3 = " UPDATE. client SET address2 = ?,code
ace_no = ?,sanc_amount = ?,interest_rate = ?,namel =
name2 = ?,addressf = ? ,address3 = ?,loan_period = ?

100

•

= ? ,
= ? ,
= ?

and acc_no = ? and category = ? and name1 = ? " CLIPPED
PREPARE supp FROM select_3
EXECUTE supp USING sl_client[sc_curr].address2,
sl_client[sc_curr].code,sl_client[sc_curr].region,
sl_client[sc_curr].acc_no,sl_client[sc_curr].sanc_amount~
sl_client[sc_curr].interest_rate,sl_client[sc_curr].namel,
sl_client[sc_curr].category,sl_client[sc_curr].name2,
sl_client[sc_curr].address1,sl_client[sc_curr].address3,
sl_client[sc_curr].loan_period,ccode,cacc_no,ccate,cnamel

MESSAGE ".................. ROW UPDATED "
MESSAGE ""
LABEL cc:
END FUNCTION

FUNCTION get_input()
DEFINE ttot CHAR(145),sst decimal(12,2)
LET ttot = "SELECT SUM(sanc_amount) FROM client WHERE ",quary_l

clipped
PREPARE snam FROM ttot
DECLARE icur CURSOR FOR snam
OPEN icur
FETCH icur INTO sst
CLOSE icur
RETURN sst
END FUNCTION.

FUNCTION get_no()
DEFINE se 1 CHAR(145)- .LET se_l = "SELECT COUNT(*) FROM client WHERE ",quary_l CLIPPED
PREPARE sew_l FROM se_l
DECLARE icu CURSOR FOR sew_l
OPEN icu
FETCH icu INTO ssum
CLOSE icu
END FUNCTION

FUNCTION intall()
DEFINE t SMALLINT
FOR t = 1 TO 200
LET sl_client[t].acc_no = a
LET sl_client[t].sanc_amount = 0.0
LET sl_client[t].code = NULL
LET sl_client[t].category=NULL
LET sl_client[t].region= NULL
LET sl_client[t].interest_rate= 0.0
LET sl client[t].namel = NULL
LET sl client[t].name2 = NULL
LET sl_client[t].addressl = NULL
LET sl_client[t].address2 = NULL
LET sl_client[t].address3 = NULL
LET sl_client[t].loan_period = a
END FOR
END FUNCTION

101

£il.

#---
PROGRAM: DISBENT.4GL
Purpose : Disbursement data entry program.#---
DATABASE hbfc
GLOBALS

DEFINE f_disb RECORD
category
region
ace_no
cheque_no
amount
install_no
delivery_date
sl_date
issue_date
purpose
code
END RECORD

DEFINE f_varl
dcategory
dreg ion
dacc
dtype_code
dsldate
ddeliver

END GLOBALS
MAIN

OPTIONS

like
like
like
like
like
like
like
like
like
like
like

disburse.category,
disburse. region,
disburse.acc_no,
disburse: cheque_no,
disburse. amount,
disburse. install_no,
disburse.delivery_date,
disburse.sl_date,
disburse. issue_date,
disburse.purpose,
disburse.code

CHAR(1) ,
char(2) ,
char(3) ,
char(6) ,
chart 1) ,
date,
date

PROMPT LINE 23
DEFER INTERRUPT
OPEN FORM fs_1 FROM "dscr"
DISPLAY FORM fs_1
DISPLAY" Press to quit" AT 21,30

WHILE TRUE
INITIALIZE f_disb.* TO NULL
LET f_disb.category = dcategory
LET f_disb.region = dreg ion
LET f_disb.code = dtype_code
LET f_disb.purpose = "c"
let f_disb.sl_date = dslpate
let f_disb.issue_date = dsldate
let f_disb.delivery_date = ddeliver
-------------------- re-edit ----------------------- ~
label aaa:

INPUT f_disb.* WITHOUT DEFAULTS FROM dis_inp.*
AFTER FIELD sl_date
DISPLAY f_disb.sl_date to issue date
NEXT FIELD code

END INPUT
LET dcategory = f_disb.category
LET dreg ion = f_disb.region

102

LET dtype_code = f_disb.code
let dsldate = f_disb.sl_date
let dacc = f disb.acc_no
let ddeliver = f_disb.delivery_date
IF int_flag != 0 THEN

LET int_flag = 0
CLOSE FORM fs 1
CLEAR SCREEN
EXIT WHILE

for re-edit, q for QUIT) ."

AT 23,32

DISPLAY "
SLEEP 1
DISPLAY " "
CLEAR FORM

END IF
LABEL bbb:
PROMPT "Accept Iy/l for add, n/N

FOR CHAR f_varl
IF int_flag != 0 THEN

LET int_flag = 0
CLOSE FORM fs 1
CLEAR SCREEN
EXIT WHILE

END IF
IF f_varl = "y" OR f varl = "y" or f_varl = "1" THEN

INSERT INTO disburse
VALUES I f_disb.category, f_disb.region,

f_disb. acc_no ,f_disb. issue_date,
f_disb.amount,f_disb.cheque_no,
f_disb.install_no, f_disb.delivery_date,
f_disb.sl_date,f_disb.purpose,
f disb.code)

added" AT 23,32

ELSE
IF f_varl = "n" or f_varl = "N" then

GOTO aaa
ELSE

GOTO bbb
END IF

END IF
display "Last entered a/c

END WHILE
END MAIN

" dacc at 24,3

disburse.*RECORD LIKE
CHARI 6) ,
CHARI 1)

p_disb
accptO
answer

GLOBALSEND

PROGRAM : DEDIT.4gl
PURPOSE : Edit/deletion of disbursement information#--~-----------------
DATABASE hbfc
GLOBALS

DEFINE
DEFINE

103

" AT 20,21

INTO p_disb.* FROM disburse
acc_no = accptO AND
cheque_no = accptl

IF status=NOTFOUND THEN
DISPLAY " DATA IS NOT AVAILABLE
SLEEP 3
DISPLAY"" AT 20,21
CONTINUE WHILE

MAIN
DEFER INTERRUPT
OPEN FORM d_scr FROM "dscr"
DISPLAY FORM d_scr
DISPLAY "Press <BREAK> to abort " AT 21,22

WHILE TRUE
INITIALIZE p_disb.* TO NULL
IF int_flag != 0 THEN

LET int_flag = 0
CLOSE FORM d_scr
CLEAR SCREEN
EXIT WHILE

END IF
CALL dis_inp()
IF int_flag != 0 THEN

LET int_flag = 0
CLOSE FORM d_scr
CLEAR SCREEN
EXIT WHILE

END IF
SELECT *
WHERE

END IF
DISPLAY BY NAME p_repay.*
PROMPT "Do you want to add or change any information(yjn) ? "

FOR CHAR answer
IF int_flag != 0 THEN

LET int_flag = 0
CLOSE FORM d scr
CLEAR SCREEN
EXIT WHILE

END IF
IF answer="y" OR answer="y" THEN

CALL change_row()
END IF

IF int_flag != 0 THEN
LET int_flag = 0
CLOSE FORM d scr
CLEAR SCREEN
EXIT WHILE

END IF
IF answer="N" OR answer=lIn" THEN

CLOSE FORM pay_scr
CLEAR SCREEN

CLOSE WINDOW cw
EXIT WHILE

104

. ','

...;~.
. . '~ .

END IF
END WHILE
END MAIN

FUNCTION change rowe)
INPUT BY NAME p_repay.* WITHOUT DEFAULTS
IF int_flag != 0 THEN

LET int_flag = 0
CLOSE FORM pay_scr
CLEAR SCREEN
CLOSE WINDOW cw
goto cc

END IF
UPDATE repaynov
SET repaynov.* = p_repay.*
WHERE memo_no = accptO

MESSAGE ".............................. ROW UPDATED
SLEEP 6
MESSAGE ""
label cc:
END FUNCTION

. -, .'",

"

PROGRAM : PADD.4GL
PURPOSE : Entry of repayment information to database#---------------------------------------~------------------------
DATABASE hbfc
GLOBALS

DEFINE accpt,codever CHAR(l),bankver smallint,categoryver CHAR(2),
ver DATE,perver CHAR(l),pdate DATE ,bee CHAR(l),popno char(l),
oo,no_a char(l),mo char(2),tab1,tablame char(8),scr char(7),
select_2 char(145),ssum smallint

DEFINE p_repay RECORD LIKE repaymay.*
END GLOBALS
MAIN
OPTIONS
PROMPT LINE 22

DEFER INTERRUPT
LET no_a = "0"
PROMPT "Enter your operational code "FOR 00
CLEAR SCREEN
MENU "DATA-ENTRY"

•COMMAND "FIRST_TIME" "First time data entry "
COMMAND "UPDATE_TIME" "Update time data entry "
let upmark = n*t1

END MENU
MENU "DATA_ENTRY"

COMMAND "A" "JANUARY"
LET tablame = "repay jan"

LET p_repay.sl_date = "31/01/90"
CALL fop()
CALL pt()

105

106

LET p_repay.sl_date = "31/12/89"
CALL fop()
CALL pt ()

COMMAND "_EXIT"
EXIT MENU

END MENU

CLEAR SCREEN
END MAIN

FUNCTION fop()
CLEAR SCREEN

OPEN WINDOW cw AT 2,4
WITH FORM "payscrt"
ATTRIBUTE (BORDER, COMMENT LINE FIRST,PROMPT LINE LAST)

OPEN FORM pay_scr FROM "payscrt"
DISPLAY FORM pay_scr
DISPLAY" Press (DEL> to abort" AT 20,21

LET bee = ASCII 7
END FUNCTION

FUNCTION pt()
DEFINE select_1 CHAR(240)

LET p_repay.purpose = "M"
LET categoryver = null
LET pdate = null
LET select_1 = "INSERT INTO ",tablame,"(code,bank,category,
acc_no,memo_no,p_date,sl_date,amount,opno,purpose,upcode)
VALUES (~ 7 7 7 7 7 7 7 7 7 7)". , . , . , . , . , . , . , . , . , . , .
PREPARE sco FROM select_1
DECLARE in_cur CURSOR FOR sco
OPEN in_cur
DISPLAY " Press CONTROL - W to get bank code and type code"

AT 2,2
WHILE TRUE

INITIALIZE p_repay.memo_no TO NULL
INITIALIZE p_repay.acc_no TO NULL

.INITIALIZE p_repay.amount TO NULL
LET p_repay.category=categoryver
LET p_repay.p_date = pdate
LET p_repay.opno = 00
DISPLAY "Press CONTROL - W to get bank code and type code"

AT 2,2
LABEL aaa:

DISPLAY upmark TO cclient.upcode
INPUT BY NAME p_repay.* WITHOUT DEFAULTS

ON KEY (CONTROL-W)
call get_bank()
DISPLAY ~_repay.code TO cclient.code
DISPLAY p_repay.bank TO cclient.bank
NEXT FIELD memo_no

AFTER FIELD amount

107

IF p_repay.amount IS NULL THEN
DISPLAY "Entry must " AT 22,32
DISPLAY bee AT 22,32
DISPLAY" " AT 22,32
NEXT FIELD amount

ENp IF
IF int_flag != 0 THEN

LET int_flag = 0
LET no_a = "2"
EXIT INPUT

END IF
END INPUT
LET pdate = p_repay.p_date
LET categoryver=p_repay.category

WHILE TRUE
IF no_a = "2" THEN
EXIT WHILE
END IF
CALL ans()
IF no_a = "3 II OR no .a = "1" OR no a = II 4" OR no a = "5" THEN
EXIT WHILE
END IF

END WHILE

= "2" THENno aOR

END

IF int_flag != 0 THEN
LET int_flag = 0
CLOSE FORM pay_scr
CLEAR SCREEN
CLOSE WINDOW cw
EXIT WHILE

IF
IF no a = "1" THEN
LET no_a = "0"
GOTO aaa
END IF
IF no_a = "3"
EXIT WHILE
END IF
END WHILE
CLOSE in_cur
END FUNCTION

FUNCTION ans()
label cat:
PROMPT" Press 1 or Y to SAVE, N to edit & Q to abort data ."

FOR CHAR accpt
IF int_flag != 0 THEN

LET int_flag = 0
CLOSE FORM pay_scr
CLEA'R SCREEN
CLOSE WINDOW cw

let no_a = 113"

108

goto aa
END IF

IF accpt = "l"or accpt = "y"or accpt = ascii 100 THEN
PUT in_cur FROM p_repay.code,p_repay.bank,p_repay.category,
p_repay.acc_no,p_repay.memo_no,p_repay.p_date,p_repay.sl_date,
p_repay.amount,p_repay.opno,p_repay.purpose,p_repay.upcode
FLUSH in_cur
DISPLAY" One record added" AT 2,20
SLEEP 1
DISPLAY"" AT 2,20
CLEAR FORM
let no_a = "5"
goto aa

END IF
IF accpt = on"~or accpt = "N" THEN

let no_a = "111

goto aa
END IF

IF accpt = "Q" OR accpt ="q" THEN
let no_a = "411

goto aa
else

goto cat
end if

LABEL aa:
END FUNCTION

FUNCTION get_bank()
PROMPT "Enter bank :" FOR bankver
PROMPT "Enter code :" FOR codever
LET p_repay.bank = bankver
LET p_repay.code = codever
END FUNCTION

#--
PROGRAM: LOAN.4GL
PURPOSE : Program for loan ledger statement#--
DATABASE hbfc
GLOBALS
DEFINE c
RECORD

c1 LIKE client.code,
c2 LIKE client.region,
c3 LIKE client.acc_no,
c4 LIKE client.category,
c5 LIKE client.sanc_amount,
c6 LIKE client. repay_date,
c7 LIKE client. interest_rate,
c8 LIKE client.name1,
c9 LIKE client.name2,
c10 LIKE client.address1,

109

client.address2,
client.address3,
client. loan_period,
client. ledger_no

LIKE
LIKE
LIKE
LIKE

cll
cl2
cl3
cl4

END RECORD
DEFINE c2 RECORD

clc LIKE cllent2.code,
clg LIKE client2.category,
cIa LIKE client2.acc_no,
cll LIKE client2.p_date,
cl2 LIKE client2.memo_no,
cl3 LIKE client2.tot_bal,
cl4 LIKE client2.pri_ins,
cl5 LIKE client2.in_ins,
cl6 LIKE client2.pr_ins_def,
clB LIKE client2.in_ins_def,
cl9 LIKE client2.lp_in_amt,
cIa LIKE client2.lp_in_def,
cln LIKE client2.n_in,
cll LIKE client2.lp_ins,
cli like client2.id_amt,
cIt like client2.lst_trn,
clp like client2.purpose,
clb like client2.bank,
clci like client2.dins

END RECORD
DEFINE t DECIMAL(9,2), rd DECIMAL(2,0)
DEFINE u RECORD

xx char(l),
xy char(6) ,
xz char(2),
xxI char(3) ,
xx2 smallint,
xx3 chart 6) ,
xx4 date,
xx5 char(2),
xx6 decimal(II,4)

END RECORD
DEFINE

ns char(l),
mc SMALLINT,
v_instd decimal(9,2),
p DECIMAL(6,3),
intI DECIMAL(II,4),
cm CHAR(3) ,
rep DECIMAL(9,2),
pfbptot DECIMAL(II,4),
botot DECIMAL(9,2),
dbotot DECIMAL(9,2),
ct SMALLINT,
monl SMALLINT,
id ins decimal(B,3),

110

man SMALLINT,
rinterest DECIMAL(11,4),
xtt DATE,
idp decima1(6,3),
v_instc decima1(9,2),
v_prine decima1(9,2)

DEFINE z array[100] of record
xl CHAR(3) ,
x2 CHAR(3) ,
x3 CHAR(3) ,
x4 CHAR(6),
x5 DATE,
x6 CHAR(2),
x7 DECIMAL(9,2),
x8 DECIMAL(9,2),
x9 DECIMAL(6,3),
x10 DECIMAL(4,2),
x11 DECIMAL(9,2),
x12 DECIMAL(9,2),
x13 DECIMAL(9,2),
x14 DECIMAL(6,3),
x15 DECIMAL(9,2),
x16 DECIMAL(9,2),
x17 DECIMAL(9,2)

end record
define

tdate DATE,
1 SMALLINT,
nva1 decima1(9,2),
vva1 deeima1(9,2),
d sma11int,
11 sma11int,
xcdate date,
pa char(2) ,
noaec sma11int,
no_ace smallint,
ddd sma11int,
sdd sma11int,
1ttt2 sma11int,
amt_of_1um_d decima1(9,2),
fsave char(1),
loption char(l),
1no char(6) ,
int3 char(1),
d_is ehar(l),
fname char (9),
prine decima1(9,2),
prind decima1(9,2),
instc decima1(9,2),
instd decima1(9,2),
intcg decima1(9,2),
n_pay decima1(9,2),

111

id_pay decimal(9,Z),
lp_pay decimal(9,Z),
lum_d decimal(9,Z),
idip_d decimal(9,Z),
linstl char(Z),
instl_date date,
amt_pr decimal(9,Z),
amt_ins decimal(9,Z),
ask char(l),
icha decimal(9,Z),
in_to_prin decimal(9,Z),
prin_pay decimal(9,Z),
cacc smallint

define xtl smallint,xtZ smallint
END GLOBALS
MAIN
options
prompt line ZO
create temp table xttt

(code char(l),
acc_no integer,
cate chari Z) ,
pur char(3),
bank smallint,
num char (6),
dat date,
ins char(Z),
amt decimal(9,Z))

label pppp:
call win()
if loption = "1" then
call cpchoice()
while true
call snumber()
call masterl()
prompt II Do you want to do it again? I' for ask
if ask <> "~yO or ask <> "~yO then
exit while
end if
end while
go to pppp
end if
if loption = "z" then
call snumber()
prompt "Enter the number of account to be printed: " for noacc
call cpchoice()
call master1()
'display "Ledger have been printed from",lno,"to",(lno+noacc)
goto pppp
end if
clear screen
end main

11Z

function master1()
clear screen
prompt" Enter the starting year of ladger:" for ddd
let sdd = ddd

if fsave = "1" then
START REPORT samar to printer

end if
if fsave = "2" then

START REPORT samar
end if
if fsave = "3" then

start report samar to fname
end if

LET mon = 7
LET mon1 = 1
LET I = 1
INITIALIZE tdate TO NULL
INITIALIZE xtt TO NULL

if loption = "1" then
DECLARE q1_cur SCROLL CURSOR FOR

SELECT client.code,client.region,client.acc_no,client.category,
client.sanc_amount,client.repay_date,client.interest_rate,
client.name1,client.name2,client.addressl,client.address2,
client.address3,client.loan_period,client.ledger_no
FROM client where client.acc_no = lno
ORDER BY client.code,client.region,client.acc_no,
client.category .

end if
if loption = "2" then
DECLARE q2_cur SCROLL CURSOR FOR

SELECT client.code,client.region,client.acc_no,client.category,
client.sanc_amount,client.repay_date,client.interest_rate,
client.name1,client.name2,client.address1,client.address2,
client.address3,client. loan_period, client. ledger_no
FROM client

where client.acc_no > (Ino-1)
ORDER BY client.code,client.region,client.acc_no,
client. category

end if
INITIALIZE c ..•TO NULL

if loption = "1" then
OPEN q1_cur

FETCH FIRST q1_cur INTO c .•
IF status = NOTFOUND THEN
INITIALIZE c .• to NULL
close q1_cur
goto ppp
END IF

end if
if loption = "2" then
OPEN q2_cur

FETCH FIRST q2_cur INTO c .•

113

IF status = NOT FOUND THEN
INITIALIZE c.* to NULL
close q2_cur
goto ppp
END IF

end if
let no_acc = 0

WHILE TRUE
let prin_pay = 0.0
let idp = 0.0
let in_to_prin = 0.0
let v_instc = 0.0
let v_princ = 0.0
let v_instd = 0.0
let xt1 = 0
let xt2 = 0
let lttt2 = 0
INITIALIZE xtt TO NULL
let linstl = null
let instl_date = null
let amt_pr = 0.0
let amt_ins = 0.0
let princ = 0.0
let prind = 0.0
let instc = 0.0
let instd = 0.0
let icha = 0,0
let n_pay = 0.0
let id_pay= 0.0
let lp_pay= 0.0
let rep = 0.0
let rinterest = 0.0
let idip_d = 0.0
let lum_d = 0.0
let xcdate = c.c6

IF c.c4 = "00" AND c.c6 is null THEN
CALL ical ()

END IF
DECLARE x_cur CURSOR FOR
SELECT client2.code, client2.category, client2.acc_no,

client2.p_date, client2.memo_no,client2.tot_bal,
client2.pri_ins, client2.in_ins, client2.pr_ins_def,
client2.in_ins_def, client2.lp_in_amt,client2.lp_in_def,
client2.n_in,client2.lp_ins,client2.id_amt FROM client2
WHERE (client2.code = c.c1 and

client2.category = c.c4 and
client2.acc_no = c.c3)

OPEN x_cur
CALL c2in()
FETCH x_cur INTO c2.*
IF status = NOTFOUND THEN
CALL c2in()

114

"

,
,

close x_cur
END IF
if c2.c14 = 0 or c2.c15 = 0 then
call inscal()
end if
close x cur
display "Account no:",c.c3," Category no:",c.c4,"Type :",c.cl

call pcal ()
CALL xin ()
LET z [l].xl = "
LET z[I].x2 = "BF"
LET z[I].x3 =" "
LET z[I].x4 = c2.c12
LET z[I].x5 = c2.cl1
LET z[I].x6 =" "
LET z[I].x7 = c2.c13
LET z[I].x8 = c2.c13
LET z[I].x9 = c2.c16
LET z[I].x10 = p
LET z[I].x11 = c2.cli
let z[I].x12 = c2.cln
LET z[I].x13 = c2.cln
LET z[I].x14 = c2.c18
LET z[I].x15 = c2.cI4*c2.cI6
LET z[I].x16 = c2.cI8*c2.cI5+c2.cli+(c2.cll*c2.cIO)
LET z[I].x17 = z[I].x15+z[I].x16
let I = I + 1

DECLARE r cur CURSOR FOR
SELECT repay.code, repay.acc_no ,repay. category,

repay.purpose,repay.bank,repay.memo_no,
repay.p_date, repay. amount FROM repay

WHERE repay. code = c.c1 and
repay.acc_no = c.c3 and
repay. category = c.c4 order by repay.p_date

DECLARE d_cur CURSOR FOR SELECT disburse.code,disburse.acc_no,
disburse;category,disburse.purpose ,disburse. cheque_no ,
disburse.delivery_date,disburse.install_no, disburse.amount
FROM disburse WHERE disburse.code = c.c1 and

disburse.acc_no = c.c3 and
disburse. category = c.c4

order by disburse. delivery_date
DECLARE v_cur CURSOR FOR select voucher. code code, voucher.acc_no

acc_no,voucher.category cate,voucher.purpose pur,
voucher.v_date dat,voucher.amount amt FROM voucher

WHERE voucher. code = c.c1 and
voucher.acc_no = c.c3 and
voucher. category = c.c4 and
voucher. region = c.c2 order by voucher.v_date

foreach r_cur into u.xx,u.xy,u.xz,u.xxl,u.xx2,u.xx3,u.xx4,u.xx6
let u.xx5 = null
insert into xttt(code,acc_no,cate,pur,bank,num,dat,ins,amt)
values (u.xx,u.xy,u.xz,u.xx1,u.xx2,u.xx3,u.xx4,u.xx5,u.xx6)

115

end foreach
foreach d_cur into u.xx,u.xy,u.xz,u.xxl,u.xx3,u.xx4,u.xx5,u.xx6
let u.xx2 = 0

insert into xttt(code,acc_no,cate,pur,bank,num,dat,ins,amt)
values (u.xx,u.Xy,u.xz,u.xxl,u.xx2,u.xx3,u.xx4,u.xx5,u.xx6)

end foreach
foreach v_cur into u.xx,u.xy,u.xz,u.xxl,u.xx4,u.xx6
let u.xx3 = null
let u.xx2 = 0
let u.xx5 = null
insert into xttt(code,acc_no,cate,pur,bank,num,dat,ins,amt)
values (u.xx,u.xy,u.xz,u.xxl,u.xx2,u.xx3,u.xx4,u.xx5,u.xx6)

end foreach
IF c.c4 = "00" and tdate IS NOT NULL and c.c6 is null THEN

insert into xttt(code,acc_no,cate,pur,bank,num,dat,ins,amt)
values(c.cl,c.c3,c.c4,"C",null,null,tdate,"99",0.0)

END IF
call pan()

WHILE monl < 13
LET int3 = "1"
let d_is = "0"
call dcount()
let ns = "Oil

LET pfbptot = 0.0
declare u_cur scroll cursor for select code,acc_no,cate,pur,

bank,num,dat,ins,amt
from xttt where month(dat)=mon
order by dat

IF mon = 6 THEN
let prind = prind + c.c5*(.90)/1000

CALL xin()
LET c2.c13 = c2.c13 + c.c5*(.90)/1000

if (year(c.c6)+c.c13)«ddd+1900) or (year(c.c6)+c.c13=(ddd+1900)
and month(c.c6)<mon+l) then
let c2.c16 = c2.cI3/c2.cI4

end if
LET z[l] .xl = " "
LET z[l] .x2 = III"
LET z[l].x3 = " "
LET z[l].x4 = " "
LET z[l].x5 = "01/06/89"
LET z[l].x6 = " "
LET z[l].x7 = .90*c ~c5/l000
LET z[I] .x8 = c2.c13
LET z[l] .x9 = c2.c16
LET z[l] .xlO = p
LET z[l].x11 = 0.0
LET z[l] .x12 = 00.00
LET z[l] .x13 = c2.cln
LET z[l] .x14 = c2.c18
LET z[l].x15 = c2.cI4*c2.cI6
LET z[l] .x16 = c2.cI8*c2.cI5+c2.cli+(c2.cll*c2.cI0)

116

z[I].x15+z[I].x16z[l] .x17 =
I = I + 1
IF

u.xxl="C"
call xin()
let c2.clp = u.xxl
let c2.clb = u.xx2
let c2.c12 = u.xx3
let c2.cll = u.xx4
let c2.clci = u.xx5
let c2.clt = u.xx6
call scont()
let linstl = u.xx5
let instl_date = u.xx4
let amt_pr = c2.c13
let amt_ins = c2.cln
call assval(u.xx6,0.0)

when u.xxl="M"
CALL xin()
let c2.clp = u.xxl
let c2.clb = u.xx2
let c2.c12 = u.xx3
let c2.cll = u.xx4
let c2.clt = u.xx6
let c2.clci = u.xx5
CALL rcont ()
let prin_pay = prin_pay+rep
let id_ins = -idp -
call assval«-rep),(-rinterest))
let idp = 0.0
let rinterest = 0.0
let rep = 0.0

otherwise
CALL xin()
let id_ins = 0.0
CALL ucont ()
call assval(vval,nval)

LET
let
END

CALL uin()
foreach u cur into u.*
if status = not found then
goto j

end if
case

when

end case
call uin()
let id_ins = 0.0
end foreach
label j:

call xin()
call incont()
LET z[l].xl = em
LET z[I].x2 = "IN"

117

and
and

"

= c.c1= c.c3
c.c4

"
"

"

"

c2.c13
c2.c16
p
id_ins
pfbptot
c2.cln
c2.clB
c2.c14*c2.c16
c2.clB*c2.c15+c2.cli+(c2.cll*c2.clO)
z[1].x15+z[1].x16

where code
ace_no
cate =

LET z[l] .x3 = "
LET z[1].x4 = "
LET z[l] .x5 = "
LET z[l].x6 = "
LET z[1] .x7 = "
LET z[1].xB =
LET z[l].x9 =
LET z[l] .x10 =
LET z[l] .x11 =
LET z[l] .x12 =
LET z[l] .x13 =
LET z[l] .x14 =
LET z[l] .x15 =
LET z[l] .x16 =
LET z[l] .x17 =
let 1 = 1 + 1

let instd = instd + pfbptot
let instd = instd + id_ins

CALL xin()
CLOSE u_cur
LET mon1 = mon1 +1
LET mon = mon +1

IF mon > 12 THEN
LET mon = mon - 12
LET ddd = ddd + 1

END IF
END WHILE

delete from xttt

let instc = instc + id_pay
let intcg = instd
let intcg = intcg -v_instd
let icha = 0.0
let n_pay = instc-id_pay-lp_pay+v_instc
INSERT INTO client3(code,category,acc_no,p_date,memo_no,tot_bal,

pri_ins,in_ins,pr_ins_def,in_ins_def,lp_in_amt,lp_in_def,
n_in,lp_ins,id_amt,lst_trn,purpose,bank,dins) VALUES
(c2.clc,c2.clg,c2.cla,c2.cl1,c2.c12,c2.c13,c2.c14,c2.c15,
c2.c16,c2.clB,c2.c19,c2.clO,c2.cln,c2.cll,c2.cli,c2.clt,
c2.clp,c2.clb,c2.clci)

if xcdate is null then
UPDATE client set(client.repay_date)=(c.c6)

WHERE client.code = c.c1 and
client.region = c.c2 and
client.acc_no = c.c3 and
client. category = c.c4

end if
let amt of lum_d = lttt2*c2.cll
insert into ladg_out(code,category,acc_no,prin_c,prin_d,inst_c,

inst_d,intcg,n_pay,idip_c,lum_c,lum_d,idip_d,prin_pay,
in_to_prin) values (c2.clc,c2.clg,c2.cla,princ,prind,instc,

11B

instd,intcg,n_pay,id_pay,lp_pay,amt_of_lum_d,idip_d,prin_pay,
in_to_prin)

if linstl is not null and c.c6>mdy(7,1,ddd+1900) then
insert into incom(code,acc_no,category,linstl,instl_date) values

(c2.clc,c2.cla,c2.clg,linstl,instl_date)
end if

LET mon = 7
LET mon1 = 1
LET ddd = sdd

for 11 = 1 to 1-1
output to report samar()

end for
let intcg = 0.0
let 1 = 1
INITIALIZE c.* TO NULL
let p = 0.0
if loption = "1" then
FETCH NEXT q1_cur INTO c.*
IF status = NOTFOUND THEN
INITIALIZE c.* TO NULL
CLOSE q1_cur
EXIT WHILE
END IF
end if
if loption = "2" then
FETCH NEXT q2_cur INTO c.*
IF status = NOTFOUND THEN
INITIALIZE c.* TO NULL
CLOSE q2_cur
EXIT WHILE
END IF
end if
INITIALIZE tdate TO NULL
let no_acc = no_acc + 1
if no_acc = noacc then
goto ppp
end if
END WHILE

label ppp:
FINISH REPORT samar
end function

REPORT samar ()
define cyear1 char(4), cyear2 char(4)
OUTPUT

LEFT MARGIN 3
TOP MARGIN 0
BOTTOM MARGIN 0
RIGHT MARGIN 163
PAGE LENGTH 66

FORMAT
PAGE HEADER

119

print 11 "

PRINT COLUMN 140, "PAGE NO -",PAGENO USING "«<"
ON EVERY ROW
IF 11.= 1 THEN
let eyear1 = 1900+sdd
let eyear2 = 1901+sdd
PRINT COLUMN 65, "BANGLADESH HOUSE BUILDING FJNANCE CORPORATION"
PRINT COLUMN 65, ,,==="
SKIP 1 LINE
PRINT COLUMN 65, "LOAN LEDGER NO = ",COLUMN 80,e.e14 using "&&&,",

COLUMN 85, "FOR THE YEAR ",eyear1 clipped, "-" elipped,eyear2
SKIP 1 LINE

PRINT "ACCOUNT NO =",COLUMN 14, e.e3 using "######",COLUMN 30,
"REGION = ",COLUMN 37, e.e2 USING "&&&",COLUMN 43, "TYPE = "
COLUMN 50, e.e1 using "&",COLUMN 53,"CATEGORY = ",COLUMN 65,
e.e4 USING "&&",COLUMN 68, "PENAL CODE = ",COLUMN 82, pa
PRINT e.e8,COLUMN 29, "AMOUNT OF LOAN" ,COLUMN 75, "MONTHLY
INSTALMENT",COLUMN 110, "LUMP INTEREST TK.",COLUMN 130, e2.e19

USING "#####.##"
PRINT e.e9,COLUMN 29, "SANCTIONED TK.",COLUMN 45, e.e5 USING

"#######.##",COLUMN 75, "========================",COLUMN 110,
"L. INST DEFAULT ",COLUMN 130, e2.elO using "#######.##"

PRINT e.e10,COLUMN 29, "PERIOD OF ",COLUMN 75, "PRINCIPAL
TK.",COLUMN 92, e2.e14 USING "#######.##",COLUMN 110, "L.INSTLMENT
TK.",COLUMN 130, e2.ell
LET rd = year(e.e6)+e.e13

PRINT e.e11,COLUMN 29, "REPAYMENT - ",COLUMN 45, e.e13 USING "##",
COLUMN 48, "YEARS",COLUMN 75, "INTEREST TK.",COLUMN 92, e2.e15
USING "#######.##" ,COLUMN 110, "EXPIRY DATE: ",COLUMN 130,
mdy(month(e.e6),day(e.e6),rd) using "dd/mm/yyyy"
LET t = e2.e14+e2.e15

PRINT e.e12,COLUMN 29,"INTEREST RATE - ",COLUMN 45,e.e7 USING "##.##",
COLUMN 52, "PA",COLUMN 75,"TOTAL TK.",COLUMN 92,t USING "#######.##"

PRINT COLUMN 75,"REPAYMENT STARTED-",COLUMN 92,e.e6 using "dd/mm/yyyy"
SKIP 1 LINE

PRINT ,,---
__________________________ 1'

PRINT" PERTICULARS",COLUMN 35,
"* PRINCIPAL SIDE ",COLUMN 68,
"* INTEREST SIDE "
COLUMN 96, " * TOTAL DEFAULT"

PRINT ,,---
"--------------------------

PRIN
TOTALDR/CR

INST
INS
TOTAL

DL/RP
NORMAL

MEMO
IDIP

PRINT "DATE PUR
INST PENAL
INTEREST TOTAL"

PRINT " CODE BK NO DATE NO BALANCE
DEFAULT RATE INTEREST BALANCE DEFLT"
PRINT ,,--~-----

------------------------"

120

END IF
if 11 = 35 then
PRINT ,,--

"
skip 2 lines
print" Continue to the next page 11

SKIP TO TOP OF PAGE
SKIP 3 LINE
PRINT ,,--

_______________________ 11

PRINT" PERTICULARS",COLUMN 35,
,,* PRINCIPAL SIDE ",COLUMN 68,
"* INTEREST SIDE "
COLUMN 96, " * TOTAL DEFAULT"

PRINT ,,---
--

"

PRIN
TOTALDR/CR

INST
INS
TOTAL

DL/RP
NORMAL

MEMO
IDIP

PRINT "DATE PUR
INST PENAL
INTEREST TOTAL"

PRINT " CODE BK NO DATE NO BALANCE
DEFAULT RATE INTEREST BALANCE DEFLT"
PRINT ,,--

"------------------------
END IF
PRINT z[11].x1,COLUMN 6,z[11].x2,COLUMN 11,z[11].x3,COLUMN 15,
z[11].x4,COLUMN 23,z[11].x5,COLUMN 33,z[11].x6,COLUMN 37,
z[11].x7,COLUMN 47,z[11].x8,COLUMN 61,z[11].x9,COLUMN 71,
z[11].x10,COLUMN 74,z[11].x11,COLUMN 82,z[11].x12,COLUMN 95,
z[11].x13,COLUMN 109,z[11].x14,COLUMN 116,z[11].x15,COLUMN 126,
z[11].x16,COLUMN 136,z[11].x17
IF 11 = (1-1) THEN

PRINT "---

----------- '1

"PRINCIPALPRINT " .CL.BAL
COLUMN 31,c2.c13,
COLUMN 42," N.INT ",
COLUMN 60,c2.c1n-c2.c1i-c2.c19,
COLUMN 70," IDIP ",
COLUMN 90 ,c2.c1i using """,.,,",
COLUMN 100," LUMP "
COLUMN 110,c2.c19,
COLUMN 120," TOTAL",
COLUMN 130,(c2.c13+c2.c1n),")".

PRINT ,,---

----------------"
PRINT "PRINCIPAL DEBIT

INTEREST DEBIT
:'l,prind,"
:", instd, II

PRINCIPAL CREDIT :",princ,"
INTEREST CREDIT: ",instc

121

UNLESS DISCREPANCY IS NOTIFIED WITHIN
WILL BE TREATED AS CORRECT * * "* *STATEMENT

OF PAGE

PRINT" "PRINT "INT.CHARGED :",integ," PAYMENTS (PRINCIPAL -",prine+v_prine,"
N.INT. - ",n_pay,"IDIP - ",id_pay," LUMP - ",lp_pay," TOTAL :- "

(prine+inste+v_prine+v_inste) ,")"
PRINT" "
PRINT "
A MONTH, THE
SKIP TO TOP

END IF
END REPORT

FUNCTION seont()
eall peal ()
LET dbotot = e2.e13
let e2.e13 = e2.e13 + u.xx6
let prind = prind + u.xx6
CALL nint()
IF u.xx5 = "99" THEN
CALL rdate()
END IF
END FUNCTION

FUNCTION ueont()
eall peal ()
LET dbotot = e2.e13
CALL vou()
CALL nint()
END FUNCTION

FUNCTION reont()
eall peal ()
LET botot = e2.e13
CALL rep1 ()
let ns= "111

CALL nint()
END FUNCTION

,

= (1900+ddd) THENxt2mon and
lpeal ()
pp

FUNCTION ineont()
CALL mont()
IF pfbptot <> 0.0 THEN

LET e2.eln = e2.eln + pfbptot+id_ins
END IF
IF pfbptot = 0.0 THEN

LET pfbptot = e2.eI3*d*e.e7/36500
LET e2.eln = e2.eln + pfbptot+id_ins

END IF
IF xt1=0 and xt2 = 0 THEN

CALL lptim()
END IF
IF xt1 =

CALL
goto

END IF
IF e2.ell <> 0.0 then
if year(e.e6) = (1900+ddd) and int3 = "1" then

122

if month(c.c6) > mon THEN
goto rrr
end if
CALL int2()
end if
end if
if year(c.c6) < (1900+ddd) and int3 = "1" then
call int2 ()
end if
label rrr:
if c.c6 is not null and c2.cll= 0.0 and year(c.c6)=(1900+ddd) then
LET c2.c19 = c2.cln
END IF

LET botot = 0
LET dbotot = 0

IF (year(c.c6)+c.cI3)«ddd+I900) or (year(c.c6)+c.cI3=(ddd+I900) and
month(c.c6)<mon+I) THEN

LET c2.c16 = c2.c13/c2.c14
LET c2.c18 = c2.cln/c2.c15
END IF
label pp:

call idip()
let c2.cli = c2.cli + id_ins
END FUNCTION

u.xx3
u.xx4
u.xx5
a

c2.c13
c2.c16
p
id_ins
b
c2.cln
c2.c18
c2.c14*c2.c16
c2.c18*c2.c15+c2.cli+(c2.cll*c2.clO)
z[1].xI5+z[1].xI6

FUNCTION assval(a,b)
DEFINE a DECIMAL(9,2),

b DECIMAL(9,2)
LET z[l].xI =" "
LET z[1].x2 = u.xxi
if u.xx2 = 0 then

LET z[1].x3 = null
else

LET z[1].x3 = u.xx2
end if
LET z[l] .x4 =
LET z[l] .x5 =
LET z [1]•x 6 =
LET z[l] .x7 =
LET z[l] .x8 =
LET z[l] .x9 =
LET z[l] .xIO =
LET z [1].x 11 =
LET z[l] .xI2 =
LET z[l] .xI3 =
LET z[l] .xI4 =
LET z[l] .xI5 =
LET z [1] .xI6 =
LETz[1].xI7=
LET 1 = 1 + 1

END FUNCTION

123

FUNCTION ical()
SELECT disburse.delivery_date INTO tdate FROM disburse

where disburse. code = c.cl and
disburse.acc_no = c.c3 and
disburse. category = "08" and
disburse. install_no = "99"

END FUNCTION

+ (u.xx6/c2.cll)= c2.clO
u.xx6
0.0

THEN

then

+ u.xx6= c2.cln
0.0
0.0

FUNCTION yOU (.)

DEFINE vl SMALLINT,
vr CHAR(l)if u.xxl = tlpi" or u.xxl = tlpI'1

let c2.cli = c2.cli + u.xx6
let.id_ins =u.xx6
if u.xx6>0.0 then
let idip_d = idip_d + u.xx6
let v_instd = v_instd + u.xx6

else
let id_pay = id_pay - u.xx6
let v instc = v_instc + u.xx6

end if
let c2.cln
let nval =
let vval =
goto yy
end ifIF u.xxl = Illi'! or u.xxl = I'LII'
LET c2.c19 = c2.c19 + u.xx6
.let c2.cln = c2.cln + u.xx6
if u.xx6<0.0 then
let instc = instc -u.xx6
let v instc = v_instc + u.xx6

else
let instd = instd + u.xx6
let v instd = v_instd + u.xx6

end if
let c2.clO
let nval =
let vval =
goto yy

end if
LET vl = LENGTH(u.xx1)
LET vr = u.xxl[vl,vl]
LET u.xxl = u.xx1[l,(vl-l)]IF vr = IIp'l or vr = "pll THEN
label ipp:
let nval = 0.0
let vval = u.xx6
LET c2.c13 = c2.c13+u.xx6
if u.xx6<0.0 then

let princ = princ - u.xx6
let v_princ = v_princ + u.xx6

124

else
let prind = prind + u.xx6

end if
if u.xxl = "mvll or u.xxl = "MV" then

let e2.e16 = e2.e16 + (u.xx6/e2.e14)
end if
goto yy
END IFIF vr = I'ill or vr = "I'! THEN
if u.xx6 < 0.0 then
if e2.e18 = 0.0 then
let in_to_prin = in_to_prin + u.xx6
goto ipp

end if
end if
let nval = u.xx6
let vval = 0.0
LET e2.eln=e2.eln +u.xx6
if u.xx6<0.0 then
let inste = inste - u.xx6
let v inste = v_inste + u.xx6

else
let instd = instd + u.xx6
let v ihstd = v instd + u.xx6

end ifif u.xxl='lmvll or u.xxl="MV" or u.xxl="cv" or u.xxl="CV11 then
let e2.e18 = e2.e18 + (u.xx6/e2.e15)

end if
END IF
label yy:
END FUNCTION

FUNCTION mont ()
CASE

WHEN man = 1 LET em = "JAN"
WHEN man = 2 LET em = "FEB"
WHEN man = 3 LET em = "MAR"
WHEN man = 4 LET em = "APR"
WHEN man = 5 LET em = "MAY"
WHEN man = 6 LET em = "JUN"
WHEN mon° = 7 LET em = "JUL"
WHEN man = 8 LET em = "AUG"
WHEN man = 9 LET em = "SEP"
WHEN man = 10 LET em = "OCT"
WHEN man = 11 LET em = "NOV"
OTHERWISE

LET em = "DEC"
END CASE

END FUNCTION

125

FUNCTION nint ()
IF pfbptot = 0.0 THEN
if ns="l" then
IF day(u.xx4) > 7.THEN
LETpfbptot = (botot*(day(u.xx4)-I)+(e2.e13*(d - day(u.xx4)+I)))

*e.e7/36500
END IF
if day(u.xx4) < 8 then
LET pfbptot = e2.e13*d*e.e7/36500
END IF
goto aa
END IF
LET pfbptot = (dbotot*(day(u.xx4)-I)+(e2.e13*(d - day(u.xx4)+I)))

*e.e7/36500
goto aa
END IF
IF pfbptot <> 0.0 THEN
if ns="l" then
LET intI = (e2.e13-botot)*(d-day(u.xx4)+I)*e.e7/36500
LET pfbptot = pfbptot + intI
if intI < 0.0 then
let ieha = ieha + intI
end if
goto aa
END IF
LET intI =.(e2.e13-dbotot)*(d-day(u.xx4)+I)*e.e7/36500
LET pfbptot = pfbptot + intI
if intI < 0.0 then
let ieha= ieha + intI
end if
END IF
label aa:
let intI = 0.0
let ns = "0"
let botot = a
let dbotot = a
END FUNCTION

FUNCTION repl()
let rinterest = 0.0
let rep = 0.0
IF e.e6 IS NULL or e.e6 > u.xx4 THEN
LET e2.e13 = e2.e13 - u.xx6
let rep = u.xx6
let prine = prine + rep
GOTO a
END IF
IF e2.e19>0.0 and e2.ell <> 0.0 THEN
if e2.e19 <e2.ell then
LET u.xx6=u.xx6-e2.e19
let rinterest = rinterest + e2.e19
let Ip_pay = Ip_pay + e2.e19

126

LET c2.c19 = 0.0
let c2.clO = 0.0
goto ss

end if
if d_is = "0" then
if (c2.clO+1) > c2.c19/c2.cll then
let lttt2= lttt2 + (c2.c19/c2.cll - c2.c10)
let c2.clO = c2.c19/c2.~11

else
let c2.clO = c2.clO+1
let lttt2= lttt2 + 1

end if
end if

if (c2.clO*c2.cll) > u.xx6 then
LET c2.clO = c2.clO- (u.xx6/c2.cll)
LET c2.c19 = c2.c19-u.xx6
let rep = 0.0
let rinterest = rinterest + u.xx6
let lp_pay = lp_pay + u.xx6
LET u.xx6 = 0.0

ELSE
LET u.xx6=u.xx6-(c2.clO * c2.cll)
LET c2.c19 = c2.c19 - (c2.clO * c2.cll)
let rinterest = rinterest + (c2.clO * c2.cll)
let lp_pay = lp_pay + (c2.clO * c2.cll)
LET c2.clO = 0
let rep = 0.0

end if
END IF
label ss:
if d_is = "0" then
let c2.clB = c2.clB + 1
let c2.c16 = c2.c16 + 1
end if
IF u.xx6 = 0.0 THEN
GOTO a
ELSE
IF u.xx6<c2.cli THEN
LET c2.cli= c2.cli-u.xx6
let id_pay = id_pay + u.xx6
let idp = u.xx6
LET u.xx6 = 0
ELSE
LET u.xx6 = u.xx6 c2.cli
let id_pay = id_pay + c2.cli
let idp = c2.cli
LET c2.cli = 0
END IF
END IF

IF u.xx6=0 THEN
GOTO a

127

ELSE
IF (c2.cl5*c2.cl8»u.xx6 THEN
LET rinterest = rinterest + u.xx6
LET c2.cl8 = c2.cl8 - (u.xx6/c2.cl5)
let c2.cln = c2.cln -rinterest-idp
LET u.xx6 = 0.0
goto a
ELSE
LET rinterest = rinterest + (c2.cl5*c2.cl8)
let c2.cln = c2.cln - rinterest
LET u.xx6 = u.xx6 ~ (c2.cl5*c2.cl8)
LET c2.cl8 = 0.0
END IF
END IF
IF u.xx6=0.0 THEN
GOTO a
ELSE
let c2.cl3 = c2.cl3 - u.xx6
LET rep = u.xx6
let prine = prine + rep
IF (c2.cl4*c2.cl6»u.xx6 THEN
LET c2.cl6 = c2.cl6 - (u.xx6/c2.cl4)
LET u.xx6 = 0.0
ELSE
LET c2.cl6 = c2.cl6-(u.xx6/c2.cl4)

END IF
END IF
LABEL a:
let instc = instc + rinterest
let d_is = "1"
let int3 = "0"
END FUNCTION

function pcal()
DEFINE ct SMALLINT
if c2.c16 < 0 or c2.c16 = 0 then
let ct = 0
let p = 0
goto abu
end if
if c.c7 =16.0 then
if c2.cl6>0 then
let ct = 1
end if
goto nesar
end if
if c.c7= 13.00 then
IF c2.cl6>0 and c2.cl6<1.5 THEN
LET ct = 1
END IF
IF c2.cl6<2.5 and c2.cl6>1.5 THEN
LET ct = 2

128

END IF
IF e2.eI6<3.5 and e2.eI6>2.5 THEN
LET et = 3
END IF
IF e2.eI6>3.5 THEN
LET ct = 4
END IF
goto nesar
end if
IF c2.cI6>0 and c2.cI6<1.5 THEN
LET ct = 1
END IF
IF c2.eI6<2.5 and c2.cI6>1.5 THEN
LET et = 2
END IF
IF e2.cI6<3.5 and e2.cI6>2.5 THEN
LET ct = 3
END IF
IF c2.cI6<4.5 and c2.cI6>3.5 THEN
LET ct = 4
END IF
IF c2.cI6<5.5 and c2.cI6>4.5 THEN
LET ct = 5
END IF
IF c2.cI6>5.5 THEN
LET et = 6
END IF
label nesar:
let p = 0.0
if et <> 0 then
SELECT p_rate INTO p FROM panel WHERE in_rate = c.c7 and pr_def=et
end if
label abu:
end function

FUNCTION idip()
call peal ()
LET id_ins = (c2.eI6*e2.eI4*p*d)/36500
let e2.cln = c2.cln + id_ins
let idip_d = idip_d + id ins
END FUNCTION

FUNCTION rdate()
DEFINE m SMALLINT
if (month(u.xx4) + 7) > 12 then
LET c.e6 = mdy«month(u.xx4)+7-12),1,(year(u.xx4)+1»)
else
LET e.c6 = mdy«month(u.xx4)+7),1,year(u.xx4»
end if
END FUNCTION

129

FUNCTION dcount()
CASE
WHEN mon = 1 LET d =31
WHEN mon = 2 LET d =28
WHEN mon = 3 LET d =31
WHEN mon = 4 LET d =30
WHEN mon = 5 LET d =31
WHEN mon = 6 LET d =30
WHEN mon = 7 LET d =31
WHEN mon = S LET d =31
WHEN mon = 9 LET d =30
WHEN mon = 10 LET d =31
WHEN mon = 11 LET d =30
OTHERWISE LET d =31
END CASE
END FUNCTION

FUNCTION int2 ()
IF c.c6 IS NOT NULL then
if c2.cl9 <> 0.0 THEN
if (c2.clO+1) > c2.cl9/c2.cll then
let lttt2= lttt2 + (c2.cl9/c2.cll - c2.clO)
let c2.clO = c2.cl9/c2.cll
else
let c2.clO = c2.clO+1
let lttt2= lttt2 + 1
end if
let lum_d = lum_d + (c2.clO*c2.cll)
end if
LET c2.clS = c2.clS+1
LET c2.cl6 = c2.cl6 +1
end if
END FUNCTION

FUNCTION uin()
LET u.xx6 = 0.0
INITIALIZE u.xx1 TO NULL
let u.xx2 = 0
INITIALIZE u.xx3 TO NULL
INITIALIZE u.xx4 TO NULL
INITIALIZE u.xx5 TO NULL
END .FUNCTION

FUNCTION c2in()
LET c2.cl3 = 0.0
LET c2.cl4 = 0.0
LET c2.cl5 = 0.0
LET c2.cl6 = 0.0
LET id ins = 0.0-
LET c2.clS = 0.0
LET c2.cl9 = 0.0
LET c2.clO = 0.0
LET c2.cln = 0.0

130

LET c2.cll = 0.0
let c2.cli = 0.0
INITIALIZE c2.cl1
INITIALIZE c2.clc
INITIALIZE c2.clg
INITIALIZE c2.cla
INITIALIZE c2.c12
END FUNCTION

TO NULL
TO NULL
TO NULL
TO NULL.
TO NULL

function lptim()
if month(c.c6) < 3 then
let xt1 = (month(c.c6) + 12 - 2)
let xt2 = year(c.c6)
let xt2 = xt2 -1
else
let xt1 = month(c.c6) - 2
let xt2 = year(c.c6)
end i-f
end function

function lpcal()
let c2.c19 = c2.cln
let c2.cll = c2.c19/12
end function

FUNCTION xin()
INITIALIZE z[l].x1 TO NULL
INITIALIZE z[l].x2 TO NULL
INITIALIZE z[l].x3 TO NULL
INITIALIZE z[l].x4 TO NULL
INITIALIZE z[l].x5 TO NULL
INITIALIZE z[1].x6 TO NULL
LET z[l].x7 = 0.0
LET z[l].x8 = 0.0
LET z[l] .x9 = 0.0
LET z[l] .x10 = 0.0
LET z[l].xll = 0.0
LET z[l] .x12 = 0.0
LET z[l] .x13 = 0.0
LET z[l] .x14 = 0.0
LET z[l] .x15 = 0.0
LET z[l] .x16 = 0.0
LET z[l].x17 = 0.0

END FUNCTION

function inscal()
let c2.c14 = c.c5*«1/(c.c13*12))+.0001)
let c2.c15 = c.c5*c.c7*«c.c13*12)+1)/(c.c13*28800)
end function

131

function pan()
case
when c.c7 = 5.0 let pa= "01"
when c.c7 = 6.0 let pa= "00"
when c.c7 = 6.25 let pa= "00"
when c.c7 = 7.0 let pa= "00"
when c.c7 = 7.25 let pa= "00"
when c.c7 = 7.5 let pa= "02"
when c.c7 = B.O let pa= "00"
when c.c7 = 9.5 let pa= "03"
when c.c7 = 10.5 let pa= "04"
when c.c7 = 11.0 let pa= "00"
when c.c7 = 13.0 let pa= "05"
otherwise

let pa= "06"
end case

end function

function win()
display "===" at 5,2
display" LEDGER PRINTING" AT 6,15
display" MENU " at 7,15
display "1. Selected number of.~ccount " at 9,15
display "2. With starting number " at 11,15
display "3. Exit " at 13,15
display "---" at 16,2
prompt " Enter your choice " for loption
end function

function snumber()
define rl smallint,

cl smallint,
cw char (2) I

xn char(3)
clear screen
display ,,===" at 5,2
display" LEDGER PRINTING" AT 7,15
display "---" at 22,2
prompt" Enter an account number: " for Ino
end function

function cpchoice()
display "===" at 5,2
display" LEDGER PRINTING" AT 6,15
display " MENU " at 7,15
display "1. Print on paper " at 9,15
display "2. Print on consol " at 11,15
display "3. Save to a file " at 13,15
display "---" at 16,2
prompt " Enter your choice " for fsave
if fsave = "3" then
prompt" Enter your file name : " for fname
end if
end function

132

REFERENCES

,,~

[1] CHEN" P, "The entity - relationship model - Toward a unified
view of Data", ACM Trans. Database System 1, 1976.

[2] CHEN,P, "A Preliminary Framework for Entity - Relationship
Models", ER Institute, 1981.

[3] JOSEPH ,A. VASTA, "UNDERSTANDING DATABASE MANAGEMENT SYSTEMS,
Wadsworth Publishing Company, Belmont California, 1989.

[4] DATE,C, "An Introduction to Database Systems",vol.1, 4th ed.
Addison - Wesley, 1985.

[5] TOBY,J, P.FRY, D.YANG, "A Logical Design Methodology for
Relational Databases Using Extended Entity-Relationship Model",
Computing Surveys, Vol.18, Michigan, 1986.

[6] CODD, "A Relational
commun. ACM 13, 6 (June)

Model for large
377 - 387, 1970.'

shared data banks.",

[7] KORTH ,SILBERSCHATZ , "Database System Concept", McGRAW-HILL
INTERNATIONAL EDITIONS, Computer Science Series,Stanford Univers-
ity, 1988.

133

[8] Rules and Regulations, BHBFC, 1973.

[9]
HILL

ROGER,S.PRESSMAN, "SOFTWARE ENGINEERING", 2nd
INTERNATIONAL EDITIONS, Computer Science Series,

ed. ,McGRAW-
1987.

[10] CHEN,P, " English Sentance Structure and Entity-Relationsh-
ip Diagrams". Infor sciences. 29,127-l49.,Elsevier Science Publi-
shing Co., Inc., 52 Vonderbilt Ave., New York, NY 10017,1983.

[11] RICHARD FINKELSTEIN AND FABIAN PASCAL, "SQL DATABASE MANAG-
EMENT SYSTEMS", January 1988, BYTE, 111-118.

[12] JEFFREY D. ULLMAN, 1988, "PRINCIPLES OF DATABASE AND KNOWLE-
DGE BASE SYSTEMS", Vol.I, Computer Science Press.

134

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137
	00000138
	00000139
	00000140
	00000141
	00000142
	00000143
	00000144
	00000145
	00000146
	00000147

