
STUDY AND ADOPTION OF NETWORK
STANDARDS FOR BANGLADESH

by

Khandaker Omar Farooq

A THESIS SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND ENGINEERING, BUET, IN PARTIAL .FULLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF! MASTER OF SCIENCE IN
ENGINEERING

Thesis Supervisor

Thesis Co-Supervisor

Md. Abdus Sattar

Dr. K. M. Waliuzzaman

III 111111I!mJ!I'" 1111III

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY,

DHAKA, BANGLADESH.

OCTOBER, 1999.

STUDY AND ADOPTION OF NETWORK STANDARDS FOR
BANGLADESH

A Thesis
By

Khandaker Omar Farooq
Roll No. 901805P (1988-89)

Accepted as satisfactory as to style and contents for partial fulfilment of the
requirements for the degree of M. Sc. Engineering in Computer Science and

Engineering on October 7, 1999.

Md. Abdus Sattar
Assistant Professor
Department of Computer Science & Engineering
B.U.E.T., Dhaka, Bangladesh.

Dr. K.M. Waliuzzaman
Professor & Head
Department of Computer and Information Technology
Islamic Institute of Technology, Gazipur, Bangladesh .

...~
Dr. M'.JKaykobad
Professor & Head
Department of Computer Science & Engineering
B.U.E.T., Dhaka, Bangladesh.

G£? () .
................~7' ..7'..~.."'..,--. _
Dr. Chowdhury Mofizur Rahman
Associate Professor
Department of Computer Science & Engineering
B.U.E.T., Dhaka, Bangladesh.

Prof. Dr. M. Abdus Sobhan
Executive Director
Bangladesh Computer Council, Dhaka, Bangladesh.

Chairman
and
Supervisor

Co-Supervisor

Head of the Department
Ex-Officio Member

Member

Member
(External)

ACKNOWLEDGEMENT

The work presented in this thesis is the result of the investigation carried out by the
author under the supervision of Md. Abdus Sattar, Assistant Professor, Department of
Computer Science and Engineering, BUET, Dhaka, and Dr. K.M. Waliuzzaman,
Professor and Head, Department of Computer and Information Technology, lIT,
Gazipur, Bangladesh.

The author would like to give his heartiest gratitude and thanks to his supervisors Dr.
K.M. Waliuzzaman and Md. Abdus Sattar for their sincere guidance and co-operation,
which lead this research work successful.

The author would like to thank Mr. M. A. Matin, IT Manager, British American
Tobacco Bangladesh, and Mr. Mihir Kanti Majumder, Deputy Scientific Adviser,
Ministry of Science & Technology for their active co-operation and invaluable
contributions to this research work.

The author also likes to give his special thanks to his wife for her continuous support
and co-operation during this research work.

Khandaker Omar Farooq

ABSTRACT

All the developed countries have their own standards in the field of Information
Technology (IT), which guided them to achieve the significant growth in the IT
industry. And these IT achievements worked as an initiator for them to acquire the top
positions of the world. They have successfully changed their socio-economic status,
and now controlling the whole world both economically and technologically with the
help of IT. Unfortunately, we do not have any IT standards for our country, which
could worked as an expediter to change our socio-economic structure.

In this circumstance, few standards have been developed to face the challenges of 21 st
Century. The standards have been developed based on the Directory Services - which
is being considered as the technology for the next millennium. Traditional Domain
Name System (DNS) and the Novell Directory Services (NDS) worked as a key
enabler to develop these standards. The developed standards are Country top level
domain structure i.e .. bd Domain model, NDS enabled DNS & Country NDS Tree
structure, NDS objects naming conventions, NDS replication & DNS Zone transfer
model, and IP address allocation standards.

Standards were developed considering the present technology and the trend of the
technology for the future. Developed standards support existing technology and it will
support upcoming future technology as well. These standards will work as a bridge
between existing and the future technology .

•

Table of Contents

Chapter 1 6
Introduction 6
1.1 Genera11ntroduction to Network Standards in Bangladesh 6
1:2 Literature Review 7
1.3 Recent Works on Directory Services Technologies 10
1.4 Scope of the Present Research 12

Chapter 2 14
TCP lIP Architecture 14
2.1 Architectural Model 14
2.1.1 Internetworking 14
2.1.2 Bridges, Routers and Gateways 14

2.2 Internet Protocol (IP) 15
2.2.1 IP Datagram 15
2.2.1.1 IP Datagram Format... 16
2.2.1.2 IP Datagram Fragmentation 21
2.2.1.3 IP Datagram Routing Options 22
2.2.1.4 Internet Timestamp 24

2.3 Internet Control Message Protocol (ICMP) : 25
2.4 Ping , 27
2.5 Traceroute 28
2.6 Address Resolution Protocol (ARP) 28
2.6.1 ARP Detailed Concept 29
2.6.1.1 ARP Packet Generation 29
2.6. I .2 ARP Packet Reception 30

2.6.2 ARP and Subnets 31
2.6.3 Proxy-ARP or Transparent Subnetting 32
2.6.3.1 Proxy-ARP Concept. 32

2.7 Reverse Address Resolution Protocol (RARP) 33
2.7.1 RARP Concept 33

2.8 Ports and Sockets 34
2.8.1 Ports 34
2.8.2 Sockets 34
2.8.3 Basic Socket Calls 35
2.8.4 Socket Interfaces 37

2.9 User Datagram Protocol (UDP) 37
2.9.1 Ports 38
2.9.2 UDP Datagram Format 39
2.9.3 tJDP Application Programming Interface .40

2.10 Transmission Control Protocol (TCP) 40
2.10.1 Sockets 41
2.10.2 TCP Concept 42
2.10.2.1 Stream Data Transfer 42
2.10.2.2 Reliability 42
2.10.2.3 Flow Control 42
2.10.2.4 Multiplexing 43
2.10.2.5 Logical Connections 43

1

Chapter 3 44
Structure of the Domain Name Space 44
3.1 Introduction 44
3.2 Elements of the DNS i 45
3.3 Domain Name Space and Resource Records 46
3.3.1 Name space specifications and terminology 46
3.3.2 Preferred name syntax 47
3.3.3 Resource Records 48
3.3 A Textual expression of RRs .49
3.3.5 Aliases and canonical names 50
3.3.6 Queries 51

3 A Name Servers 52
304.1 Introduction 52
304.2 How the database is divided into zones 52
304.3 Technical considerations for Name Server 53
3 0404 Name server internals 54

30404.1 Queries and responses 54
304.5 Zone maintenance and transfers 56

3.5 Resolvers 57
3.5.1 Introduction 57
3.5 .2 Client-resolver interface 58
3.5.2.1 Typical functions 58

3.5.3 Aliases 59
3.5 A Resolver internals 59
3.5.5 Stub resolvers 59
3.5.6 Resources 60

Chapter 4 62
Novell Directory Services 62
4.1 Introduction 62
4.2 How Objects Form the Directory Tree 63
4.3 Network-Wide Login 64
404 Analysis ofNDS Schema and Obj ects 64

404.1 Schema Components 65
404.2 Schema Structure 65
4 04.3 abject Class Definiti ons 66
40404 Object Class Structure Rules 67
404.5 Object Class Naming Structure Attributes 67
4.4.5.1 Naming Attribute Rules 67
404.5.2 Multi -valued Naming Attributes 68
4 04.5.3 Shareable Naming Attributes 68
404.5 A Inheritance of Naming Attributes 68

404.6 Containment Classes 69
404.6.1 Containment Class Rules 69
404.6.2 Containment Classes in the Base Schema 70
404.6.3 Containment of Leaf Objects 71
404.604 Containment Classes and Inheritance 74

404.7 Super Classes 74
404.7.1 Root Schema Object 74
404.7.2 Super Class Rules 75
404.7.3 Class Hierarchy 75

2 r

4.4.7.4 Object Class Inheritance Rules 76
4.4.8 Object Class Attributes 77
4.4.9 Object Class Flags : 77
4.4.9.1 Container Flag 77
4.4.9.2 Effective Flag 78
4.4.9 .3 Non-removable Flag 78
4.4.9.4 Ambiguous Naming Flag 79
4.4.9.5 Ambiguous Container Flag 79

4.4.10 Default ACL Templates 79
4.4.11 Construction Rules for Object Classes 80
4.4.12 Attribute Type Definitions 80
4.4.13 Attribute Syntaxes 81
4.4.14 Attribute Constraints 81
4.4.15 Attribute Syntax Definitions 82

4.5 NDS Partitioning 84
4.5.1 Partition Operations 84

4.6 NDS Replication 85
4.6.1 Replica Types 86
4.6.1.1 Master, Read-Write, and Read-Only Replicas 86

4.6.2 Subordinate References 87
4.6.3~i~Lim ~

4.7 NDS Synchronization 90
4.7.1 Loose Consistency 91
4.7.2 Replica Synchronization Process 91

4.8 Distributed Relationship Management 92
4.8.1 External References 92
4.8.1.1 Creating External References 93
4.8.1.2 Deleting External References 93
4.8.1.3 Synchronizing External References 94

4.8.2 Back Links 94
4.8.2.1 Creating a Back Link 94
4.8.2.2 Deleting a Back Link , 95

4.8.3 Obituaries 95
4.8.3.1 Primary and Secondary Obituaries 96

4.9 Network Time Synchronization 97
4.9.1 Secondary Time Server 97
4.9.2 Primary Time Server 97
4.9.3 Reference Time Server 98
4.9.4 Single Reference Time Server 98

Chapter 5 99
Directory Services Enabled .bd Domain 99

5.1 Introduction 99
5.2 Definition of Component Terms 99
5.3 Traditional Architectural Model of .bd Domain 100
5.4 Directory Services Enabled DNS 10 1
5.4.1 New NDS Objects for DNS 102
5.4.1.1 DNS Zone Object... 102
5.4.1.2 DNS Resource Record Set Object 102
5.4.1.3 DNS Resource Records 102
5.4.1.4 DNS Server Object 103

3

5.4.2 New NDS objects for DHCP 103
5.5 NDS Enabled DNS Model of .bd Domain 104
5.6 Domain and Objects Naming Standards 107
5.6.1 Obj ectives 108
5.6.2 Use of Characters in Domain Object Naming : 108
5.6.2.1 Acceptable characters 108
5.6.2.2 Use of underscore, space and hyphen 108
5.6.2.3 Country NDS Tree 109
5.6.2.4 Local NDS Tree 109

5.6.3 Second Level Domain Objects 110
5.6.4 The Third Level Domain Objects/Organisational Unit (OU) Objects IIO
5.6.5 User Accounts of Domains or Leaf Objects 111
5.6.6 Handling of Duplicate Names 111

5.7 IP Address Space Allocation Standard 112
5.8 Benefits ofNDS enabled DNS Services 115

Chapter 6 116
Conclusion 116
6.1 Conclusion 116
6.2 Limitations 116
6.3 Future Development 117
6.3.1 Country legislation on information sharing 117
6.3.2 Contents of the Directory 118
6.3.3 Security Standards of the Network 118
6.3.4 Data Integrity 119
6.3.5 Country-wide Distributed National Database 119

References 120
Appendix A - ISO 3166 Country Codes 124

4

•

Table of Figures

Figure 2.1: Internet Protocol (IP) 15
Figure 2.2: Base IP Datagram 16
Figure 2.3: IP Datagram Format 16
Figure 2.4: Loose Source Routing Option 22
Figure 2.5: Strict Source Routing Option 24
Figure 2.6: Record Route Option 24
Figure 2.7: Internet Timestamp Option 25
Figure 2.8: Internet Control Message Protocol (lCMP) 26
Figure 2.9: Packet InterNet Groper (PING) 27
Figure 2.10: Traceroute 28
Figure 2.11: ARP RequestlReply packet 29
Figure 2.12: ARP Packet Reception Algorithm 31
Figure 2.13: Hosts Interconnected by a Router 32
Figure 2.14: Reverse Address Resolution Protocol (RARP) 33
Figure 2.15: User Datagram Protocol (UDP) 37
Figure 2.16: UDP, A Demultiplexer Based on Ports 38
Figure 2.17: UDP Datagram Format 39
Figure 2.18 Transmission Control Protocol (TCP) 40
Figure 2.19: TCP Connection. 41
Figure 3.1: Domain Name Space Tree 44
Figure 4.1: Directory Tree 63
Figure 4.2: Relationships between the Schema and the Directory Components. 66
Figure 4.3: Containment Structure. 71
Figure 4.4: Container Inheritance for Leaf Objects. 73
Figure 4.5: Super Class Inheritance. 76
Figure 4.6: A partitioned tree. 84
Figure 4.7: Partitioning and Replication. 86
Figure 4.8: Replica placement in a partitioned tree. 88
Figure 4.9: Replica placement and subordinate references. 89
Figure 4.10: Backlinks. 95
Figure 4.11: Obituaries. 96
Figure 5.1: The .bd Domain Name Space Tree. 100
Figure 5.2: NDS Enabled DNS Model 101
Figure 5.3: NDS based .bd model 104
Figure 5.4: NDS Partition/Zone Model of .bd Domain 106
Figure 5.5: NDS Replication/Zone Transfer Model of .bd Domain 107

5 0...

Chapter 1

Introduction

1.1 General Introduction to Network Standards in
Bangladesh.

Historically there has been no standardisation of the IT infrastructure in Bangladesh,
which supports the deployment of information systems throughout the country to
achieve a world-class standard. This is a major limitation to the expansion of IT
infrastructure in Bangladesh. It is therefore required that a new network standard
should be specified for the country to face the challenges of21 51 century.

Over the past few years, Internet Technologie~ has played a vital role for the overall
technological and economical changes of the world. Countries/Nations who had
adopted the Internet Technologies have placed themselves at the top of the list of
successful Countries/Nations. They have changed their fate by adopting this
technology in every corner of their life. Now, the whole world is controlled by
Internet Technologies, and at the same time it is also required to change the traditional
architecture of Internet to adopt the fast growing demand of secure access to all
network resources from anywhere in the world. To adopt these demands into Internet,
a new concept has developed i.e. Directory Services Enabled Internet.

Directory Services Enabled Internet is basically an integration of traditional Domain
Name System (DNS) and the X.SOO Directory Services standard. Novell Directory
Services (NDS) is the implementation of X.SOO standard, and NDS has got the
industry acceptance as the Directory Services standard. So, integration of DNS with
NDS is being considered as one of the potential solutions for Directory Services
Enabled Internet.

The Domain Name System (DNS) is a distributed database system that provides
hostname to IP resource mapping (usually the IP address) and other information for
computers on an inter-network. Computer connected on the Internet use a DNS server
to locate other host/computer on the Internet.

DNS is made up of two distinct components, the hierarchy and the name service. The
DNS hierarchy specifies the structure, naming conventions, and delegation of
authority in the DNS service. The DNS name service provides the actual name-to-
address mapping mechanism.

DNS uses a hierarchy to manage its distributed database system. The DNS hierarchy,
also called the domain name space, is an inverted tree structure, much like NDS.

6
• j

----\

The DNS tree has a single domain at the top of the structure called the root domain. A
period or dot (.) is the designation for the root domain. Below the root domain is the
top-level domains that divide the DNS hierarchy into segments.

Novell Directory Services (NDS) is an implementation of a global networking
directory. It stores network resources and services in a way that is accessible to all
network users based on their access rights. NDS can be conveniently used to offer a
service in a global network.

One major advantage of using Directory Services is to reduce network traffic. Before
Directory Services was implemented, the service provider had to broadcast its service
using SAP (Service Advertising Protocol). The client could then locate the service by
querying for the nearest node that offered the service. This method generates much
network traffic, primarily SAP advertising data. With Novell Directory Services, the
service providers' object created in Directory Services is globally available for the
client process to locate the service. Other advantages of using NDS as a service
location mechanism, which provides fault tolerance, data store, global access, and
security check.

Integrating DNS with NDS greatly simplifies the task of network administration by
enabling all configuration information into one distributed database. Furthermore, 'the
DNS configuration information is replicated just like any other data in NDS.

Integrating DNS with NDS also enables an update interaction between DNS and
Dynamic Host Configuration Protocol (DHCP) through the Dynamic DNS (DONS)
feature. When a host is assigned an IP address by DHCP, the DNS information can be
automatically updated to associate the hostname with the new address when using
DDNS.

1.2 Literature Review

The Internet is growing at a phenomenal rate, with no deceleration in sight. Every
month thousands of new users is added. New networks are added literally almost
every day. In fact, it is entirely conceivable that in the future every human with access
to a computer will be able to interact with every other over the Internet and her sister
networks. However, the ability to interact with everyone is only useful if one can
locate the people with whom they need to work. Thus, as the Internet grows, one of
the limitations imposed on the effective use of the network will be determined by the
quality and coverage of Directory Services available [I].

The existing Internet domain name space, however, has some self-imposed structure
to it. Especially in the upper level domains, the domain names follow certain
traditions (not rules, really, since they can and have been broken). This helps domain
names from appearing totally chaotic. Understanding these tradition is an enormous
asset if you're trying to decipher a domain name [2].

The original view of the Internet universe was a two-level hierarchy: the top level the
Internet as a whole, and the level below it individual networks, each with its own

7

<)o

network number. The Internet does not have a hierarchical topology; rather the
interpretation of addresses is hierarchical. In this two-level model, each host sees its
network as a single entity; that is, the network may be treated as a "black box" to
which a set of hosts is connected. [3]

While this view has proved simple and powerful, a number of organisations have
found it inadequate, and have added a third level to the interpretation of Internet
addresses. In this view, a given Internet network is divided into a collection of
subnets [3].

The Domain Name Service, or DNS, contains information about the mapping of host
and domain names, such as, "home.ans.net", to IP addresses. This is done so that
human can use easily remembered names for machines rather than strings of numbers.
It is maintained in a distributed fashion, with each DNS server providing nameservice
for a limited number of domains. Also, secondary nameservers can be identified for
each domain, so that one unreachable network will not necessarily cut off
nameservice. However, even though the DNS is superlative at providing these
services, there are some problems when we attempt to provide other Directory
Services in the DNS. First, the DNS has very limited search capabilities. Second, the
DNS supports only a small number of data types. Adding new data types, such as
photographs, would involve very extensive implementation changes [I].

In order to make global communication over computer networks work efficiently, a
global electronic White Pages service is indispensable. Such a directory service could
also contain telephone and fax numbers, postal addresses as well as platform type to
facilitate in translation of documents between users on different systems. An
electronic White Pages may prove to be useful for specific local purposes; replacing
paper directories or improving quality of personnel administration for example. An
electronic directory is much easier to produce and more timely than paper directories
which are often out of date as soon as they are printed [4].

The Internet White Pages Project provides many companies in the US with an
opportunity to pilot X.500 in their organisations. Operating as a globally distributed
directory service, this project allows organisations in a wide variety of industry type
to make themselves known on the Internet and to provide access to their staff as
desired [4].

NOS is a true directory service because it lists and provides access to every resource
on your network. NOS provides administrators with a single, logical, and concise
view of all network resources and services [5].

NOS adds value to applications because it simplifies access and management of
information for network administrators and end-user customers. For example, the
NOS name service maps network names to addresses using a hierarchical name space
rather than a flat name space. This hierarchy allows the database to be mapped as a
tree that can be partitioned by its subtrees. Because object names contain the
hierarchy information, users can access network resources globally, and
administrators can administer the entire tree and its objects from a single point [6].

8

NDS provides maximum flexibility and control in building and deploying
applications. Simply, applications you build that are directory-enabled means they are
aware of the network. Enabled applications can query and log in to network services,
discover new services, and register application-specific information that can then be
administered, managed and secured across the network, rather than on individual
client or server machines [6].

Beyond global directory lookups, NDS not only provides the better-known benefits of
a single sign-on and a single point of administration; NDS gives a powerful network
database and the potential for new levels of automation and interactivity for
application [7].

For example, with the extensibility of NDS, user can modifY the directory schema to
add application-specific attributes or information that automates how applications and
users interact. Just as users and resources are managed across the network from the
directory, application can also be benefited from the anytime, anywhere access
control, management and security attributes of a global directory. So instead of
requiring application's to perform its own login and password security access, it can
leverage NDS for this information [7].

NDS provides the ability to automate how an application can log into the network and
gain access to services, lowering application's cost of ownership by providing a single
point of administration, management and distribution. It can serve as the universal
link between disparate (and distant) workstations, servers, hubs, routers, databases,
operating systems, network environments, individual users, workgroups,
organisations, and applications [8].

With the evolution of multiple interface standards, NDS enables to develop a common
interface and share its directory information across multiple name spaces. Among the
interfaces, more and more organisations are already developing to LDAP
(Lightweight Directory Access Protocol), and Novell is providing a scalable, secure,
manageable LDAP directory via NDS. LDAP Services for NDS enables new uses of
NDS in network environments, enabling developers, and administrators to access any
NDS or NDS-compatible directory through any LDAP-compatible application [9].

NDS offers technology that acts as a repository of information for the network, and it
makes it possible to keep tabs on network resources while enhancing the availability
and security of business-critical resources. NDS is also distributed, fully replicated
and fault-tolerant. Because of replication, users can log in once and access services
and the most current information from any server on the network. In addition, in the
event of a server failure, NDS automatically re-routes user requests to the closest
replicated server without users taking any action [8].

Aside from the obvious benefits of single sign-on and single point of administration
(and the enhanced security inherent in those features), NDS is the source for
additional security, scalability, and user/administrator productivity. For example,
Novell developer teams exploited the power and flexibility ofNDS in ManageWise to
enable administrators to monitor and manage mixed IntranetWare and Windows NT
environments to reduce network failures more than ever before. Also through NDS,

9

Manage Wise can provide an application inventory across the network to tell
administrators which application versions are located on each workstation [8].

NDS also provides other kinds of directory information to all the clients in a network
environment. LDAP Services for NDS supports most NDS security features and adds
an LDAP access control layer that provides additional security features, which allow
some types of directory information available to the public, few types available to
specific organisation, and certain types available only to those groups or individuals
that have a need to know. Working together, LDAP and NDS make the
Internetlintranet environment directory-enabled [9].

Internet connections will also be an integrated part of the serVice, effectively
eliminating the distinction between "the net" and local networks by seamlessly
allowing users to access data and functionality resident anywhere in the networked
world. For example, NDS will map frequently accessed sites on the World Wide Web,
so that Internet Web sites can become indistinguishable from other network resources
managed and accessed through NDS. NetWare Connect Services (NCS) will
ultimately include worldwide dial-up and mobile access for individual users,
completing the vision of a true global LAN accessible from any place, at anytime
[10].

The bottom line is that NDS simplifies, automates and protects information and
information technology [II].

1.3 Recent Works on Directory Services
Technologies

X.SOO is filling Directory Services needs in a large number of countries. As a
directory to locate people, it is provided in the U.S. as the White Pages Pilot Project
run by Performance Systems International (PSI), and in Europe under the PARADISE
Project as a series of nation-wide pilots. It is also being used by the FOX Project in
the United States to provide WHOIS services for people and networks, and to provide
directories of objects as disparate as NIC (Network Information Center) Profiles and a
pilot K-12 Educators directory. It is also being investigated for its ability to provide
resource location facilities and to provide source location for WAIS servers. In fact, in
almost every area where one could imagine needing a directory service (particularly
for distributed directory services), X.SOO is either providing those services or being
expanded to provide those services [12].

X.SOO is being used today to provide the backbone of a global White Pages service.
There is almost 3 years of operational experience with X.SOO, and it is being used
widely in Europe and Australia in' addition to North America. In addition, the various
X.SOO implementations add some other features, such as photographs in G3-FAX
format, and colour photos in JPEG format. However, as X.SOO is standards based,
there are very few incompatibilities between the various versions of X.SOO, and as the
namespace is consistent, the information in the Directory can be accessed by any

10

implementation. Also, work is being done in providing Yellow Pages services and
other information resource location tasks in the Directory. [I]

NDS is the implementation of X.SOO standard and it is valuable for developers
because of its support of emerging Internet standards, its stability, and its ever-
increasing interoperability with platforms from a wide array of vendors. NDS is
technology with a long track record that includes nearly a decade in development and
more than four years on the market. NDS is a stable, mature, widely used directory
service that lets you choose the development environment that's right for you (Java,
ActiveX controls, Java Beans, Scripting, C/C++, etc.) [8].

NDS supports several open standards and emerging Internet protocols and languages.
For example, LDAP (Lightweight Directory Access Protocol), JNDI (Java Naming
and Directory Interface), CORBA (Common Object Request Broker) and RADIUS
(Remote Authentication Dial-In User Service) let you approach any directory-
enabling project with confidence and a wide range of choices. NDS have already been
integrated into UNIX systems, Windows NT Server, Sun-Solaries, and is also being
integrated into other operating systems [8].

No definition of NDS would be complete without mentioning its platform-
independent capabilities [II]. NDS is the only directory service that supports the
leading UNIX implementations, Windows NT Server, and Novell's own widely
deployed networking software products, including IntranetWare, GroupWise, and
Manage Wise.

Major Novell OEM partners such as IBM, Hewlett-Packard, Sun, and SCO support
NDS, and many third-party applications leverage NDS, including products from
Cheyenne Software, Motorola, Call Ware Technologies, and Oracle Corporation [8].

NDS has been licensed to Hewlett-Packard to be bundled in its HP-UX servers and is
also bundled with SCO UnixWare and on Sun Solaris, and will soon run on IBM
RS/6000 and S/390 systems; and Novell has already ported it to Windows NT Server,
with more operating systems coming soon thereafter [II].

In addition, NDS already provides standard IP support that's accessible through a
standard Web browser, LightWeight Directory Access Protocol (LDAP) or HTTP.
And, it will soon provide access and management for Netscape SuiteSpot services
[http://www.novonyx.com].

With the evolution of the NOS and the globalization of network computing,
directories have risen in stature and importance. NDS is also bringing directory
capabilities to the physical network layer like leading hardware vendors (Ascend, U.S.
Robotics, Cisco, Bay Networks, 3Com, etc.) implementing directory services
functionality with their dial-in products [8].

At the Internet/intranet level, NDS is the "carrier-grade" directory service. Novell is
extending NDS's reach globally via telecommunications companies, which include
AT&T, Deutsche Telekom and Nippon Telephone and Telegraph. AT&T WorldNet

II
"\

Intranet Connect Services, for example, is an NDS-enabled network that brings the
secure authentication and access ofNDS to AT&T's customers and partners [8].

NDS offers single sign-on access through a secure login and organises network
resources (users, printers, workgroups, applications, volumes, file servers, database
servers, routers, objects, etc.) hierarchically in a directory tree. It also provides
security by keeping the criminals and the curious from logging on [13].

The University of Michigan is using X.500 for electronic mail routing. Any mail
. coming to the university domain, umich.edu; gets expanded out to a local address that
is stored in the rfc822Mailbox attribute. The University also operates a standard
X.500 name server which provides name lookup service of over 200,000 names. They
use the Lightweight Directory Access Protocol (LDAP) [14].

An implementation of the X.500 Standard directory service has been incorporated
into the Open Software Foundation (OSF) Distributed Computing Environment
(DCE). This component, known as the Global Directory Service (GDS), provides an
area where distributed application clients can find their application servers. The GDS,
in response to requests made by other clients, provides the unique network address for
a particular DCE resource. Because it is based on an international standard, GDS can
offer access to resources among users and organizations worldwide. This scalable
service can be performed in DCE environments that range in size from the very small
to the very large [4].

Lookup services can be implemented into a variety of applications. Cambridge
University in Great Britain implemented the X.500 directory service into an employee
locator application. Based on badge sensors at strategic locations, this application can
determine the whereabouts of an employee on the campus. As the individual moves
about, the sensors register their location in an X.500 Directory [4].

Digital Signature Service (DSS) and Privacy Enhanced Mail (PEM) work on the
principal of a directory key server which generates and provide users with "public"
codes that match previously registered "private" codes. Only the recipient can
decipher messages sent in this fashion. The X.509 [15] standard for key certificates
easily fits within the structure of the X.500 Directory Service.

1.4 Scope of the Present Research

Integration of DNS with NDS is one of the major milestones in the IT industry, and
this integration is being considered as the future internet architecture for 21 sl Century.
In Bangladesh we do not have any network standards, which could guide us to face
the IT challenges of the next millennium.

The objective of the research was to develop the network standards for the
Bangladesh by analyzing the Domain Name Space, Novell Directory Services,

12
•

Microsoft Windows NT, SCO UNIXWare and Novell NetWare. And test the
developed standards into different platforms like NetWare, Windows NT and SCO
UNIXWare. ,
In this research, a few standards have been developed for the IT infrastructure of the
country. First of all a traditional domain structure was developed for the Bangladesh,
which could work as a model for the .bd domain of the Bangladesh. After developing
the traditional domain structure, a Country NDS Tree was developed where traditional
domain structure was suited to achieve the NDS enabled DNS model for the country.
Other standards like DNS Zone Transfer, NDS Replication, NDS Object Naming
Convention, and IP address allocation was also developed for the country network
standards. These standards have been tested in NetWare, Windows NT and SCO
UNIX environment.

13

Chapter 2

TCP/IP Architecture

2.1 Architectural Model

The TCP/IP protocol suite is named for two of its most important protocols:
Transmission Control Protocol (TCP) and Internet Protocol (IP). Another name for it
is the Internet Protocol Suite, and this is the phrase used in official Internet standards
documents.

2.1.1 Internetworking

The first design goal of TCP/IP was to build an interconnection of networks that
provided universal communication services: an internetwork, or internet. Each
physical network has its own technology-dependent communication interface, in the
form of a programming interface that provides basic communication functions
(primitives). Communication services are provided by software that runs between the
physical network and the user applications and that provides a common interface for
these applications, independent of the underlying physical network. The architecture
of the physical networks is hidden from the user.

The second aim is to interconnect different physical networks to form what appears to
the user to be one large network. Such a set of interconnected networks is called an
internetwork.or an internet.

2.1.2 Bridges, Routers and Gateways

Forming an internetwork by interconnecting multiple networks is done by bridges,
routers and gateways.

Bridge Interconnects LAN segments at the Data Link Interface layer level and
forwards frames between them. A bridge performs the function of a
MAC relay, and is independent of any higher layer protocol (including
the Logical Link protocol). It provides MAC layer protocol
conversion, if required. A bridge can be said to be transparent to IP.
That is, when a host sends an IP datagram to another host on a network
connected by a bridge, it sends the datagram directly to the host and
the datagram "crosses" the bridge without the sending host being
aware of it.

14

.."-:.:

Router Interconnects networks at the Network layer level and routes packets
between them. The router must understand the addressing structure
associated with the networking protocols it supports and take decisions
on whether, or how, to forward packets. Routers are able to select the
best transmission paths and optimal packet sizes. The basic routing
function is implemented in the IP layer of the TCP/IP protocol stack.

Gateway Interconnects networks at higher levels than bridges or routers. A
gateway usually supports address mapping from one network to
another, and may also provide transformation of the data between the
environments to support end-to-end application connectivity.

2.2 Internet Protocol (IP)

IP is a standard protocol with STD number 5 which also includes ICMP (Internet
Control Message Protocol (ICMP) and IGMP (Internet Group Management Protocol).
Figure 2.1 shows the position ofIP layer in TCP/IP protocol suite. IP is the protocol
that hides the underlying physical network by creating a virtual network view. It is an
unreliable, best-effort connectionless packet delivery protocol [16].

Figure 2.1: Internet Protocol (IP)

MIME

Gopher Kerb I Xwin I Rcxcc SMTP Telnet I HP I DNS I TFTP I RPC I NCS I SNMP
Pi I Trace ITCP UDP n Route
g

,
~diI. *_ . . p

,

<tw• * . 'I ICMP RAR
--t< _w *,.~~~.~'1lIIf"\!I. _y","~..~€~~: .. ARP

'iii' , ,' ,,4' ~ .k '" r. • , P,

Ethernet, Token-Ring, FDDI, X.25, ATM, SNA ...

It adds no reliability, flow control or error recovery to the underlying network
interface protocol. Packets (datagrams) sent by IP may be lost, out of order, or even
duplicated, and IP will not handle these situations. It is up to higher layers to provide
these facilities.

IP also assumes little from the underlying network mechanisms, only that the
datagrams will "probably" (best-effort) be transported to the addressed host.

2.2.1 IP Datagram

The Internet datagram (IP datagram) is the base transfer packet in the Internet
protocol suite. It has a header containing information for IP, and data that is relevant
only to the higher level protocols. Figure 2.2 shows the base IP datagram mechanism.

15

Figure 2.2: Base IP Datagram

I Header I Data

Base IP Datagram .

I Physical network header I IP datagram as data

encapsulated within the physical network's frame

Figure 2.2 indicates that the IP datagram is encapsulated in the underlying network's
frame, which usually has a maximum length or frame limitation, depending on the
hardware used. For Ethernet, this will typically be 1500 bytes. Instead of limiting the
IP datagram length to some maximum size, IP can deal with fragmentation and re-
assembly of its datagrams. In particular, the IP standard does not impose a maximum
size, but states that all subnetworks should be able to handle datagrams of at least 576
bytes.

Fragments of a datagram all have a header, basically copied from the original
datagram, and data following it. They are treated as normal IP datagrams while being
transported to their destination. However, if one of the fragments gets lost, the
complete datagram is considered lost since IP does not provide any acknowledgement
mechanism, so the remaining fragments will simply be discarded by the destination
host.

2.2.1.1 IP Datagram Format

Figure 2.3 shows the detailed structure of the IP datagram format.

Figure 2.3: IP Datagram Format

a 4 8 16 19 31

VERS I LEN I Type of Service Total Length

Identification Flags T Fragment Offset

TTL I Protocol Header Checksum

Source IP address

Destination IP address

Options
.

padding

data
.......

..

16

The IP datagram header is a minimum of 20 bytes long:

Where:

VERS: 4 bits
The version of the IP protocol. The current version is 4. 5 is experimental and 6 is
"IP: The Next Generation (IPng)"

LEN: 4 bits
The length of the IP header counted in 32-bit quantities. This does not include the data
field.

Type of Service: 8 bits

The type of service is an indication of the quality of service requested for this IP
datagram. .

o I 2

I precedence
3 4

I TOS
5 6 7

I MBZ I

Where:
Precedence is a measure of the nature and priority of this

datagram:

000 Routine
00 I Priority
010 Immediate
011 Flash
100 Flash override
101 Critical
110 Internetwork control
. III Network control

TOS Specifies the type of service value:

1000 Minimize delay
0100 Maximize throughput
00 I0 Maximize reliability
000 I Minimize monetary cost
0000 Norrnal service

MBZ Reserved for future use ("must be zero" unless participating III an
Internet protocol experiment which makes use of this bit).

Total Length: 16 bits

The total length of the datagram, header and data, specified in bytes.

Identification: 16 bits

17

A unique number assigned by the sender to aid in reassembling a fragmented
datagram. Fragments of a datagram will have the same identification number.

Flags: 3 bits

Various control flags:
o I 2

~
~

Where

o Reserved, must be zero
DF Don't Fragment: 0 means allow fragmentation, I means do not

allow fragmentation. •
MF More Fragments: 0 means that this is the last fragment of this

datagram, I means that this is not the last fragment [16].

Fragment Offset: 13 bits
Used with fragmented datagrams, to aid in reassembly of the full datagram.

Time to Live: 8 bits
Specifies the time (in seconds) this datagram is allowed to travel. Each
router where this datagram passes is supposed to subtract from this field it's
processing time for this datagram. Actually a router is able to process a
datagram in less than I second; thus it will subtract one from this field, and
the TTL becomes a hop-count metric rather than a time metric. When the
value reaches zero, it is assumed that this datagram has been travelling in a
closed loop and it is discarded. The initial value should be set by the higher-
level protocol which creates the datagram [16].

Protocol : 8 bits
Indicates the higher-level protocol to which IP should deliver the data m this
datagram.

Some important values are:
o Reserved
I Internet Control Message Protocol (lCMP)
2 Internet Group Management Protocol (lGMP)
3 Gateway-to-Gateway Protocol (GGP)
4 IP (IP encapsulation)
5 Stream
6 Transmission Control Protocol (TCP)
8 Exterior Gateway Protocol (EGP)
9 Private Interior Routing Protocol
17 User Datagram (UDP)
89 Open Shortest Path First

The full list can be found in STD 2 - Assigned Numbers [17].

18

Header Checksum: 16 bits
A checksum on the header only. It does not include the data. Since some header fields
change (e.g.,' time to live), this is recomputed and verified at each point that the
internet header is processed.

The checksum algorithm is:
The checksum field is the 16 bit one's complement of the one's complement sum of
all 16 bit words in the header. For purpose of computing the checksum, the value of
the checksum field is zero.

If the header checksum does not match the contents, the datagram is discarded
because at least one bit in the header is corrupt, and the datagram may even have
arrived at the wrong destination.

Source IP Address: 32 bits

The 32-bit IP address of the host sending this datagram.

Destination IP Address: 32 bits

The 32-bit IP address of the destination host for this datagram.

Options: Variable
An IP implementation is not required to be capable of generating options in the
datagrams it creates, but all IP implementations are required to be able to process
datagrams containing options. The Options field is variable in length. There may be
zero or more options. There are two option formats. The format for each is dependent
on the value of the option number found in the first byte.
• A type byte alone.

I type
I byte

• A type byte, a length byte and one or more option data bytes.

I type Ilength I Option data

• The type byte has the same structure in both cases:

01234567

~ class I option number

19

Where:.

fc

class

The copied flag indicates that this option is copied into all fragments
on fragmentation.

O=not copied
I=copied

The option class is a 2-bit unsigned integer:<
0= control
I =reserved
2 =debugging and measurement
3= reserved

option number
The option number is a 5-bit unsigned integer.

The following internet options are defined:

CLASS NUMBER LENGTH DESCRIPTION

o

o

o

o

o

o

o

2

o

I

2

3

9

7

8

4

End of Option list. This option occupies only I octet;
it has no length octet.
No Operation. This option occupies only I
octet; it has no length octet.

II Security. Used to carry Security,
Compartmentation, User Group (TCC), and
Handling Restriction Codes compatible with DOD
requirements. .

var. Loose Source Routing. Used to route the
internet datagram based on information
supplied by the source.

var. Strict Source Routing. Used to route the
internet datagram based on information
supplied by the source.

var. Record Route. Used to trace the route an
internet datagram takes.

4 Stream ID. Used to carry the stream
identifier.

var. Internet Timestamp.

length
counts the length (in bytes) of the option, including the type and length fields.

option data
contains data relevant to the option.

padding
If an option is used, the datagram is padded with all-zero bytes up to the next
32-bit boundary.

20

data
The data contained in the datagram is passed to a higher-level protocol, as
specified in the protocol field.

2.2.1.2 IP Datagram Fragmentation

When an IP datagram travels from one host to another, it can cross different physical
networks. Physical networks have a maximum frame size; called the Maximum
Transmission Unit (MTU), which limits the length of a datagram that can be placed in
one physical frame. Therefore, a scheme has been put in place to fragment long IP
datagrams into smaller ones, and to reassemble them at the destination host. IP
requires that each link has an MTU of at least 68 bytes, so if any network provides a
lower value than this, fragmentation and re-assembly must be implemented in the
network interface layer in a way that is transparent to IP. 68 is the sum of the
maximum IP header length of 60 bytes and the minimum possible length of data in a
non-final fragment (8 bytes). IP implementations are not required to handle
unfragmented datagrams larger than 576 bytes, but most implementations will handle
larger values, typically slightly more than 8192 bytes or higher, and rarely less than
1500.

An unfragmented datagram has all-zero fragmentation information. That is, the more
fragments flag bit is zero and the fragment offset is zero. When fragmentation is to be
done, the following steps are performed:

• The DF flag bit is checked to see if fragmentation is allowed. If the bit is set, the
datagram will be discarded and an error will be returned to the originator using
ICMP.

• Based on the MTU value, the data field is split into two or more parts. Al I newly
created data portions must have a length which is a multiple of 8 bytes, with the
exception of the last data portion.

• All data portions are placed in IP datagrams. The header of these datagrams are
copies of the original one, with some modifications:

The more fragments flag bit is set in all fragments except the last.

The fragment-offset field in each is set to the location this data portion
occupied in the original datagram, relative to the beginning of the original
unfragmented datagram. The offset is measured in 8-byte units.

- If options were included in the' original datagram, the high order bit of the
option type byte determines whether or not they will be copied to all fragment
datagrams or just to the first one. For instance, source route options have to be
copied in all fragments and therefore they have this bit set.

The header length field of the new datagram is set.

The total length field of the new datagram is set.

21

The header checksum field is re-calculated.

• Each of these fragmented data grams is now forwarded as a normal IP datagram.
IP handles each fragment independently, that is, the fragments may traverse
different routers to the intended destination, and they may be subject to further
fragmentation if they pass through networks that have smaller MTUs.

At the destination host, the data has to be reassembled into one datagram. The
identification field of the datagram was set by the sending host to a unique number
(for the source host, within the limits imposed by the use of a 16-bit number). As
fragmentation doesn't alter this field, incoming fragments at the receiving side can be
identified, if this ID field is used together with the Source and Destination IP
addresses in the datagram. The Protocol field is also be checked for this identification.

In order to reassemble the fragments, the receiving host allocates a buffer in storage
as soon as the first fragment arrives. A timer routine is then started. When the timer
timeouts and not all of the fragments have been received, the datagram is discarded.
The initial value of this timer is called the IP datagram time-to-live (TTL) value.

When subsequent fragments of the datagram arrive, before the timer expires, the data
is simply copied into the buffer storage, at the location indicated by the fragment-
offset field. As soon as all fragments have arrived, the complete original
unfragmented datagram is restored, and processing continues, just as for
unfragmented datagrams.

IP does not provide the reassembly timer. It will treat each and every datagram,
fragmented or not, the same way, that is, as individual messages. It is up to the higher
layer to implement a timeout and to look after any missing fragments. The higher
layer could be TCP for a connection-oriented transport network or the application for
connectionless transport networks based upon UDP and IP.

2.2.1.3 IP Datagram Routing Options

The IP datagram Options field allows two methods for the ongmator of an IP
datagram to explicitly provide routing information and one for an IP datagram to
determine the route that it travels.

Loose Source Routing: Figure 2.4 shows the Loose Source Routing Option. The
Loose Source Routing option, also called the Loose Source and Record Route (LSRR)
option, provides a means for the source of an IP datagram to supply explicit routing
information to be used by the routers in forwarding the datagram to the destination,
and to record the route followed.

Figure 2.4: Loose Source Routing Option

110000011 I length I pointer I ro_u_te_d_at_a _

22 f

1000011
routing.
length

pointer

route data

(decimal 131) is the value of the option type byte for loose source

contains the length of this option field, including the type and length
fields.
points to the option data at the next IP address to be processed. It is
counted relative to the beginning of the option, so its minimum value is
four. If the pointer is greater than the length of the option, the end of
the source route is reached and further routing is to be based on the
destination IP address.

is a series of 32-bit IP addresses.

Whenever a datagram arrives at its destination and the source route is not empty
(pointer < length) the receiving host will:

• Take the next IP address in the route data field (the one indicated by the pointer
field) and put it in the Destination IP address field of the datagram.

• Put the local IP address in the source list at the location pointed to by the pointer
field. The IP address for this is the local IP address corresponding to the network
on which the datagram will be forwarded (routers are attached to multiple physical
networks and thus have multiple IP addresses).

• Increment pointer by 4.

• Transmit the datagram to the new destination IP address.

This procedure ensures that the return route is recorded in the route data (in reverse
order) so that the final recipient uses this data to construct a loose source route in the
reverse direction. This is a loose source route because the forwarding router is
allowed to use any route and any number of intermediate routers to reach the next
address in the route.

The originating host puts the IP address of the first intermediate router in the
destination address field and the IP addresses of the remaining routers in the path,
including the target destination are placed in the source route option. The recorded
route in the datagram when it arrives at the target contains the IP addresses of each of
the routers that forwarded the datagram. Each router has moved one place in the
source route, and normally a different IP address will be used, since the routers record
the IP address of the outbound interface but the source route originally contained the
IP address of the inbound interface.

Strict Source Routing: Figure 2.5 shows the Strict Source Routing Option. The Strict
Source Routing option, also called the Strict Source and Record Route (SSRR) option,
uses the same principle as loose source routing except that the intermediate router
must send the datagram to the next IP address in the source route via a directly
connected network and not via an intermediate router. If it cannot do so it reports an
error with an ICMP Destination Unreachable message.

23

Figure 2.5: Strict Source Routing Option

110001001 I length I pointer route data

10001001
routing

length

pointer

route data

(decimal 137) is the value of the option type byte for strict source

has the same meaning as for loose source routing

has the same meaning as for loose source routing

is a series of 32-bit IP addresses

Record Route: Figure 2.6 shows the Record Route Option. This option provides a
means to record the route of an IP datagram. It functions similarly to the source
routing discussed above, but this time the source host has provided an empty routing
data field, which will be filled in as the datagram t~averses routers. Note that
sufficient space for this routing information must be provided by the source host: if
the data field is filled before the datagram reaches its destination, the datagram is
forwarded with no further recording of the route.

Figure 2.6: Record Route Option

I 00000 III I length I_p_o_in_t_e_r~I r_o_u_te_d_a_t_a _

0000011 1
length
pointer
route data

2.2.1.4

(decimal 7) is the value of the option type byte for record route
has the same meaning as for loose source routing
has the same meaning as for loose source routing
is a multiple of four bytes in length chosen by the originator of the
datagram

Internet Timestamp

A timestamp is an option forcing some (or all) of the routers on the route to the
destination to put a timestamp in the option data. The timestamps are measured in
seconds and can be used for debugging purposes. Figure 2.7 shows the value and
option field of the Internet Timestamp. They cannot be used for performance
measurement for two reasons:

• They are insufficiently precise because most IP datagrams will be forwarded in
less than one second.

• They are insufficiently accurate because IP routers are not required to have
synchronized clocks.

24

Figure 2.7: Internet Timestamp Option

Where

o
01000100

IP address

timestamp

8

length

16

pointer

24 28 31

flag

01000100

length

pointer

(Decimal 68) is the value of the option type for the internet time stamp
option.
Contains the total length of this option, including the type and length-
fields.
Points to the next timestamp to be processed (first free timestamp).

ojlw (overflow) Is a 4 bit unsigned integer of the number of IP modules that cannot
register timestamps due to a lack of space in the data field.

flag Is a 4-bit value which indicates how timestamps are to be registered.
Values are:

o Timestamps only, stored in consecutive 32-bit words.

1 Each timestamp is preceded by the IP address of the registering
module.

2 The IP address fields are pre-specified, and an IP module only
registers when it finds its own address in the list.

timestamp
(GMT).

A 32-bit timestamp recorded in milliseconds since midnight UT

The originating host must compose this option with a large enough data area to hold
all the timestamps. If the timestamp area becomes full, no further timestamps are
added.

2.3 Internet Control Message Protocol (ICMP)

ICMP is a standard protocol with STD number 5 which also includes IP. Its status is
required. It is described in RFC 792 with updates in RFC 950 [19, 9]. ICMP position
in TCP/IP suite is shown in Figure 2.8.

25

".

Figure 2.8: Internet Control Message Protocol (lCMP)

MIME

Gopher Kerb Xwin Rexec SMTP Tclnet FTP DNS TFTP RPC NCS SNMP

IP
Ethernet, Token-Ring, FDDI, X.25, ATM, SNA ...

TCP UDP

RAR
p

ICMP Router Discovery is a proposed standqrd protocol with a status of elective. It is
described in RFC 1256.

When a router or a destination host must inform the source host about errors in
datagram processing, it uses the Internet Control Message Protocol (ICMP). ICMP
can be characterized as follows:

• ICMP uses IP as if ICMP were a higher-level protocol (that is, ICMP messages
. are encapsulated in IP datagrams). However, ICMP is an integral part of IP and
must be implemented by every IP module.

• ICMP is used to report some errors, not to make IP reliable. Datagrams may still
be undelivered without any report on their loss. Reliability must be implemented
by the higher-level protocols that use IP.

• ICMP can report errors on any IP datagram with the exception ofICMP messages,
to avoid infinite repetitions.

• For fragmented IP datagrams, ICMP messages are only sent about errors on
fragment zero. That is, ICMP messages never refer to an IP datagram with a non-
zero fragment offset field. '

• ICMP messages are never sent in response to datagrams with a destination IP
address that is a broadcast or a multicast address.

• ICMP messages are never sent in response to a datagram which does not have a
source IP address which represents a unique host. That is, the source address
cannot be zero, a loop back address, a broadcast address or a multicast address.

• ICMP messages are never sent in response to ICMP error messages. They may be
sent in response to ICMP query messages (ICMP types 0, 8, 9, 10 and 13 through
18).

• RFC 792 states that ICMP messages "may" be generated to report IP datagram
processing errors, not "must." In practice, routers will almost always generate
ICMP messages for errors, but for destination hosts, the number of ICMP
messages generated is implementation dependent [18] ...

26

2.4 Ping

Ping is the simplest of all TCPIIP applications. It sends one or more IP datagrams to a
specified destination host requesting a reply and measures the round trip time. The
word ping, the abbreviation for Packet InterNet Groper. Figure 2.8 shows PING as an
TCP/IP utility application.

Figure 2.9: Packet InterNet Groper (PING)

RAR
P

UDP

IP
Ethernet, Token-Ring, FDDI, X.25, ATM, SNA ...

MIME

Gopher Kerb Xwin Rexec SMTP Telnet FTP DNS TFTP RPC NCS SNMP

TCP

Traditionally, if you could ping a host other applications like Telnet or FTP could
reach that host. Ping uses the ICMP Echo and Echo Reply messages. Since ICMP is
required in every TCP/IP implementation, hosts do not require a separate server to
respond to pings.

Ping is useful for verifying a TCP/IP installation. Consider the following four forms
of the command; each requires the operation of an additional part of the TCPIIP
installation.

ping loopback Verifies the operation of the base TCP/IP software.

ping my-IP-address Verifies whether the physical network device can be
addressed.

ping a-remote-IP-address Verifies whether the network can be accessed.

ping a-remote-host-name Verifies the operation of the name server (or the flat
namespace resolver, depending on the installation).

27

2.5 Traceroute

The Traceroute program can be useful when used for debugging purposes. Traceroute
enables us to determine the route that IP datagrams follow from host to host. Figure
2.10 shows TraceRoute as a utility application of TCP/IP proto~ol suite.

Figure 2.10: Traceroute

IP
Ethernet, Token-Ring, FDDI, X.25, ATM, SNA ...

RAR
P

UDPTCP

MIME

Gopher Kerb Xwin Rexec SMTP Te[net FIP DNS TFTP RPC NCS SNMP

Traceroute is based upon ICMP. It sends an IP datagram with a TTL of I to the
destination host. The first router to see the datagram will decrement the TTL to 0 and
return an ICMP Time Exceeded message as well as discarding the datagram. In this
way, the first router in the path is identified. This process can be repeated with
successively larger TTL values in order to identify the series of routers in the path to
the destination host. Traceroute actually sends UDP datagrams to the destination host
which reference a port number that is outside the normally used range

2.6 Address Resolution Protocol (ARP)

The ARP protocol is a network -specific standard protocol. Its status is elective, and
the position of ARP in TCP/IP protocol suite is shown in Figure 2.10.

On a single physical network, individual hosts are known on the network by their
physical hardware address. Higher-level protocols address destination hosts in the
form of a symbolic address (IP address in this case). When such a protocol wants to
send a datagram to destination IP address W.X,y.z, the device driver does not
understand this address.

Therefore, a module (ARP) is provided that will translate the IP address to the
physical address of the destination host. It uses a lookup table (sometimes referred to
as the ARP cache) to perform this translation.

When the address is not found in the ARP cache, a broadcast is sent out on the
network, with a special format called the ARP request. If one of the machines on the
network recognizes its own IP address in the request, it will send an ARP reply back
to the requesting host. The reply will contain the physical hardware address of the
host and source route information (if the packet has crossed bridges on its path). Both

Q

28

this address and the source route information are stored in the ARP cache of the
requesting host. All subsequent datagrams to this destination IP address can now be
translated to a physical address, which is used by the device driver to send out the
datagram on the network.

ARP was designed to be used on networks that support hardware broadcast. This
means, for example, that ARP will not work on an X.25 network.

2.6.1 ARP Detailed Concept

ARP is used on IEEE 802 networks as well as on the older DIX Ethernet networks to
map IP addresses to physical hardware addresses. To do this, it is closely related to
the device driver for that network. In fact, the ARP specifications only describe its
functionality, not its implementation [19]. The implementation depends to a large
extent on the device driver for a network type and they are usually coded together in
the adapter microcode.

2.6.1.1 ARP Packet Generation

If an application wishes to send data to a certain IP destination address, the IP routing
mechanism first determines the IP address of the "next hop" of the packet (it can be
the destination host itself, or a router) and the hardware device on which it should be
sent. If it is an IEEE 802.3/4/5 network, the ARP module must be consulted to map
the <protocol type, target protocol address> to a physical address. Figure 2.11 shows
the ARP request/reply packet structure.

Figure 2.11: ARP Request/Reply packet

physical layer header

hardware address space

protocol address space

hardware address protocol address
byte length (n) byte length (m)

operation code

hardware address of sender

protocol address of sender

hardware address of target

protocol address of target

x bytes

2 bytes

2 bytes

2 bytes

2 bytes

n bytes

m bytes

n bytes

m bytes

29 ,

The ARP module tries to find the address in this ARP cache. If it finds the matching
pair, it gives the corresponding 48-bit physical address back to the caller (the device
driver) which then t~ansmits the packet. If it doesn't find the pair in its table, it
discards the packet (assumption is that a higher-level protocol will retransmit) and
generates a network broadcast of an ARP request.

Where:

hardware address space

protocol address space

hardware. address length

Protocol address length

Operation code

Specifies the type of hardware; examples are
Ethernet

Specifies the type of protocol, same as
EtherType field in the IEEE 802 header (IP or
ARP).

Specifies the length (in bytes) of the hardware
addresses in this packet. For IEEE 802.3 and
IEEE 802.5 this will be 6.

Specifies the length (in bytes) of the protocol
addresses in this packet. For IP this will be 4.

Specifies whether this is an ARP request (I) or
reply (2).

Source/target hardware address Contains
addresses.
addresses.

the physical network hardware
For IEEE 802.3 these are 48-bit

Source/target protocol address Contains the protocol addresses. For TCP/IP
these are the 32-bit IP addresses.

For the ARP request packet, the target hardware address is the only undefined field in
the packet.

2.6.1.2 ARP Packet Reception

When a host receives an ARP packet (either a broadcast request or a point-to-point
reply), the receiving device driver passes the packet to the ARP module which treats it
as shown in Figure 2.12 algorithm.

30

Figure 2.12: ARP Packet Reception Algorithm

?Do I have the specified hardware type?

Yes: (almost definitely)
[optionally check the hardware length ar$hln]
? Do I speak the specified protocol?
Yes:
[optionally check the protocol length]
Merge_flag := false
If the pair <protocol type, sender protocol address> is
already in my translation table, update the sender
hardware address field of the entry with the new
information in the packet and set Merge_flag to true.

? Am I the target protocol address?
Yes:
If Merge_flag is false, add the triplet <protocol type,

sender protocol address, sender hardware address> to
the translation table.

? Is the opcode a REQUEST? (NOW look at the opcode!!)
Yes:

Swap source and target addresses in the ARP Packet_
Put my local addresses in the source address fields _
Send back ARP packet as an ARP
Reply to the requesting host

END

The requesting host will receive this ARP reply, and will follow the same algorithm to
treat it. As a result of this, the triplet <protocol type, protocol address, hardware
address> for the desired host will be added to its lookup table (ARP cache). The next
time a higher-level protocol wants to send a packet to that host, the ARP module will
find the target hardware address and the packet will be sent to that host.

Note that because the original ARP request was a broadcast on the network, all hosts
on that network will have updated the sender's hardware address in their table [RFC
826]

2.6.2 ARP and Subnets

The ARP protocol remains unchanged in the presence of subnets. Remember that
each IP datagram first goes through the IP routing algorithm. This algorithm selects
the hardware device driver which should send out the packet. Only then, the ARP
module associated with that device driver is consulted. [19]

31

2.6.3 Proxy-ARP or Transparent Subnetting

Proxy-ARP is described in RFC 1027 - Using ARP to Implement Transparent
Subnet Gateways, which is in fact a subset of the method proposed in RFC 925 -
Multi-LAN Address Resolution [20]. It is another method to construct local subnets,
without the need for a modification to the IP routing algorithm, but with modifications
to the routers, which interconnect the subnets.

2.6.3.1 Proxy-ARP Concept

Consider one IP network, which is divided into subnets, interconnected by routers.
We use the "old" IP routing algorithm, which means that no host knows about the
existence of multiple physical networks. Consider in Figure 2.13, hosts A and B
which are on different physical networks within the same IP network, and a router R
between the two subnetworks:

Figure 2.13: Hosts Interconnected by a Router

When host A wants to send an IP datagram to host B, it first has to determine the
physical network address of host B through the use of the ARP protocol. As host A
cannot differentiate between the physical networks, his IP routing algorithm thinks
that host B is on the local physical network and sends out a broadcast ARP request.
Host B does not receive this broadcast, but router R does. Router R understands
subnets, that is, it runs the "subnet" version of the IP routing algorithm and it will be
able to see that the destination of the ARP request (from the target protocol address
field) is on another physical network If router R's routing tables specify that the next
hop to that other network is through a different physical device, it will reply to the
ARP as if it were host B, saying that the network address of host B is that of the router
R itself.

Host A receives this ARP reply, puts it in his cache and will send future IP packets for
host B to the router R. The router will forward such packets to the correct sub-net.

32

2.7 Reverse Address Resolution Protocol (RARP)

The RARP protocol is a network-specific standard protocol. Its status is elective.
Some network hosts, such as diskless workstations, do not know their own IP address
when they are booted. To determine their own IP address, they use a mechanism
similar to ARP (Address Resolution Protocol), but now the hardware address of the
host is the known parameter, and the IP address the queried parameter. It differs more
fundamentally from ARP in the fact that a "RARP server" must exist on the network
which maintains a database of mappings from hardware address to protocol address.
Figure 2.14 shows the RARP in TCP/IP suite.

Figure 2.14: Reverse Address Resolution Protocol (RARP)

IP
Ethernet, Token-Ring, FDDI, X.25, ATM, SNA ...

UDPTCP

MIM~

Gopher Kerb Xwin Rexec SMTP Telnet FTP DNS TFTP RPC NCS SNMP

2.7.1 RARP Concept

The reverse address resolution is performed the same way as the ARP addresses
resolution. The same packet format (see Figure 2.11) is used as for ARP.

An exception is the "operation code" field which now takes the following values:

3 for the RARP request
4 for the RARP reply

And of course, the "physical" header of the frame will now indicate RARP as the
higher-level protocol (8035 hex) instead of ARP (0806 hex) or IP (0800 hex) in the
EtherType field. Some differences arise from the concept of RARP itself:

• ARP only assumes that every host knows the mapping between its own hardware
address and protocol address. RARP requires one or more server hosts on the
network to maintain a database of mappings between hardware addresses and
protocol addresses so that they will be able to reply to requests from client hosts.

• Due to the size this database can take, part of the server function is usually
implemented outside the adapter's microcode, with optionally a small cache in the
microcode. The microcode part is then only responsible for reception and
transmission of the RARP frames, the RARP mapping itself being taken care of
by server software running as a normal process in the host machine.

33

• The nature of this database also requires some software to create and update the
database manually.

• In case there are multiple RARP servers on the network, the RARP requester only
uses the first RARP reply received on its broadcast RARP request, and discards
the others.

2.8 Ports and Sockets

In this section we will introduce the concepts of port and socket.

2.8.1 Ports

Each process that wants to communicate with another process identifies itself to the
TCP/IP protocol suite by one or more ports. A port is a 16-bit number, used by the
host-to-host protocol to identify to which higher-level protocol or application program
(process) it must deliver incoming messages.

As some higher-level programs are themselves protocols, standardized in the TCP/IP
protocol suite, such as TELNET and FTP, they use the same port number in all
TCP/IP implementations. Those "assigned" port numbers are called well-known
ports and the standard applications well-known services.

The "well-known" ports are controlled and assigned by the Internet Assigned
Numbers Authority (lANA) and on most systems can only be used by system
processes or by programs executed by privileged users. The assigned "well-known"
ports occupy port numbers in the range 0 to 1023. The ports with numbers in the
range 1024-65535 are not controlled by the lANA and on most systems can be used
by ordinary user-developed programs.

Confusion due to two different applications trying to use the same port numbers on
one host is avoided by writing those applications to request an available port from
TCP/IP. Because this port number is dynamically assigned, it may differ from one
invocation of an application io the next.

2.8.2 Sockets

Let us first consider the following terminologies:

• A socket is a special type of file handle which is used by a process to request
network services from the operating system.

• A socket address is the triple:
{ protocol, local-address, local-process}
In the TCP/IP suite, for example:
{ tcp, 193.44.234.3, 12345}

34 ~.

• A conversation is the communication link between two processes.

• An association is the 5-tuple that completely specifies the two processes that
comprise a connection:

{ protocol, local-address, local-process, foreign-address, foreign-
process}
In the TCP/IP suite, for example:

{tcp, 193.44.234.3, 1500, 193.44.234.5, 21}
could be a valid association.

• A half-association is either:
{ protocol, local-address, local-process}

or
{ protocol, foreign-address, foreign-process}

which specify each half of a connection.

• The half-association is also called a socket or a transport address. That is, a socket
is an end point for communication that can be named and addressed in a network.

The socket interface is one of several application programming interfaces (APIs) to
the communication protocols. Designed to be a generic communication programming
interface, it was first introduced by the 4.2BSD UNIX system. Although it has not
been standardized, it has become a de facto industry standard.

2.8.3 Basic Socket Calls

The following lists some basic socket interface calls.

• Initialize a socket

FORMAT: int sockfd = socket (int family, int type, int protocol)
where:
- family stands for addressing family. It can take on values such as
AF_UNIX, AF_INET, AF_NS and AF_IUCV. Its purpose is to specify the
method of addressing used by the socket.
- type stands for the type of socket interface to be used. It can take on
values such as SOCK_STREAM, SOCK_DGRAM, SOCK_RAW, and
SOCK SEQPACKET.
- protocol can be UDP, TCP, IP or ICMP.
- sockfd is an integer (similar to a file descriptor) returned by the socket
call.

• Bind (Register) a socket to a port address

FORMAT: int bind (int sockfd, struct sockaddr *localaddr, int addrlen)
where:
- sockfd is the same integer returned by the socket call.
- localaddr is the local address returned by the bind call.

35

Note that after the bind call, we now have values for the first three
parameters inside our 5-tuple association:
{ protocol, local-address, local-process, foreign-address,
foreign-process}

• Indicate readiness to receive connections

FORMAT: int Iisten(int sockfd, int queue-size)
where:
- sockfd is the same integer returned by the socket call.

- queue-size indicates the number of connection requests which can be
queued by the system while the local process has not yet issued the
accept call.

• Accept a connection

FORMAT: int accept(int sockfd, struct sockaddr 'foreign-address, int addrlen)
where:
- sockfd is the same integer returned by the socket call.
- foreign-address is the address of the foreign (client) process returned by
the accept call.
Note that this accept call is issued by a server process rather than a client
process. If there is a connection request waiting on the queue for this socket
connection, accept takes the first request on the queue and creates another
socket with the same properties as sockfd; otherwise, accept will block the
Callers process until a connection request arrives.

• Request connection to the server

FORMAT: int connect (int sockfd, struct sockaddr 'foreign'address, int addrlen)
where:
- sockfd is the same integer returned by the socket call.
- foreign-address is the address of the foreign (server) process returned by
the connect call.
Note that this call is issued by a client process rather than a server process.

• Send and/or receive data

The readO, readv(sockfd, char 'buffer, int addrlen), recvO, readfromO,
send(sockfd, msg, len, flags), writeO calls can be used to receive and send
data in an established socket association (or connection).
Note that these calls are similar to the standard read and write file I/O
System calls.

• Close a socket

FORMAT: int close (int sockfd)
where:

sockfd is the same integer returned by the socket call.

36

\

2.8.4 Socket Interfaces

The socket interface is differentiated by the different services that are provided.
Stream, datagram, and raw sockets each define a different service available to
applications.

• Stream socket interface (SOCK_STREAM): It defines a reliable connection-
oriented service (over TCP for example). Data is sent without errors or duplication
and is received in the same order as it is sent. Flow control is built-in to avoid data
overruns. No boundaries are imposed on the exchanged data, which is considered
to be a stream of bytes. An example of an application that uses stream sockets is
the File Transfer Program (FTP).

• Datagram socket interface (SOCK_DGRAM): It defines a connectionless
service (over UDP for example). Datagrams are sent as independent packets. The
service provides no guarantees; data can be lost or duplicated, and datagrams can
arrive out of order. No disassembly and reassembly of packets is performed. An
example of an application that uses datagram sockets is the Network File System
(NFS).

• Raw socket interface (SOCK _RAW): It allows direct access. to lower-layer
protocols such as IP and ICMP. This interface is often used for testing new
protocol implementations. An example of an application that uses raw sockets is
the Ping command.

2.9 User Datagram Protocol (UDP)

UDP is a standard protocol with STD number 6 is shown in Figure 2.15. UDP is
described by RFC 768 - User Datagram Protocol [21]. Its status is recommended,
but in practice every TCP/IP implementation which is not used exclusively for routing
will include UDP.

Figure 2.15: User Datagram Protocol (UDP)

MIME

Gopher Kerb Xwin Rexec SMTP Telnet FTP

TCP

IP
Ethernet, Token-Ring, FDOI, X.25, ATM, SNA ...

37

Pi Trace
n Route
g

ICMP
ARP RARP

UDP is basically an application interface to IP. It adds no reliability, flow-control or
error recovery to IP. It simply serves as a "multiplexer/demultiplexer" for sending and
receiving datagrams, using ports to direct the datagrams as shown in Figure 2.16.

Figure 2.16: UDP, A Demultiplexer Based on Ports

process I

port x port y

process 2 process n

port z

UDP : port demultiplexing

IP

UDP provides a mechanism for one application to send a datagram to another. The
UDP layer can be regarded as being extremely thin and consequently has low
overheads, but it requires the application to take responsibility for error recovery and
so on.

2.9.1 Ports

The port concept was discussed earlier in 2.8, "Ports and Sockets". Applications
sending datagrams to a host need to identify a target which is more specific than the
IP address, since datagrams are normally directed to certain processes and not to the
system as a whole. UDP provides this by using ports. A port is a I6-bit number,
which identifies, which process on a host is associated with a datagram. There are two
types of port:

well-known Well-known ports belong to standard servers; for example TELNET
uses port 23. Well-known port numbers range between I and 1023
(prior to 1992, the range between 256 and 1023 was used for UNIX-
specific servers). Well-known port numbers are typically odd, because
early systems using the port concept required an odd/even pair of
ports for duplex operations. Most servers require only a single port.
An exception is the BOOTP server, which uses two: 67 and 68. The
reason for well-known ports is to allow clients to be able to find
servers without configuration information. The well-known port
numbers are defined in STD 2 - Assigned Numbers [17].

38

ephemeral Clients do not need well-known port numbers because they initiate
communication with servers and the port number they are using is
contained in the UDP datagrams sent to the server. Each client process
is allocated a port number as long as it needs it by the host it is running
on. Ephemeral port numbers have values greater than 1023, normally
in the range 1024 to 5000. A client can use any number allocated to it,
as long as the combination of <transport protocol, IP address, port
number> is unique.

TCP also uses port numbers with the same values. These ports are quite independent.
Normally, a server will use either TCP or UDP, but there are exceptions. For example,
Domain Name Servers use both UDP port 53 and TCP port 53.

2.9.2 UDP Datagram Format

Each UDP datagram is sent within a single IP datagram. Although, the IP datagram
may be fragmented during transmission, the receiving IP implementation will re-
assemble it before presenting it to the UDP layer. All IP implementations are required
to accept datagrams of 576 bytes, which, allowing for maximum-size IP header of 60
bytes means that a UDP datagram of 516 bytes is acceptable to all implementations.
Many implementations will accept larger datagrams, but this is not guaranteed. The
UDP datagram has a l6-byte header which is described in Figure 2.17.

Figure 2.17: UDP Datagram Format

o
source port

length

\

Where:

16

data .

•

destination port

checksum

31

source Port

destination Port
host.

length
header.

checksum

Indicates the port of the sending process. It is the port to which
replies should be addressed.
Specifies the port of the destination process on the destination

Is the length (in bytes) of this user datagram including the

Is an optional 16-bit one' s complement of the one' s
complement sum of a pseudo-IP header, the UDP header and
the UDP data. The pseudo-IP header contains the source and
destination IP addresses, the protocol and the UDP length:

39

2.9.3 UDP Application Programming Interface

The application interface offered by UDP is described in RFC 768. It provides for:

• The creation of new receive ports.

• Receive operation that returns the data bytes and an indication of source
port and source IP address.

• Send operation that has as parameters the data, source and destination
ports and addresses.

Be aware that UDP and IP do not provide guaranteed delivery, flow-control or
error recovery, so these must be provided by the application.

Standard applications using UDP include:

• Trivial File Transfer Protocol (TFTP).

• Domain Name System (DNS) name server

• Remote Procedure Call (RPC), used by the Network File System (NFS)

• Network Computing System (NCS)

• Simple Network Management Protocol (SNMP)

2.10 Transmission Control Protocol (TCP)

TCP is a standard protocol with STD number 7 [22]. TCP is described by RFC 793 -
Transmission Control Protocol and as shown in Figure 2.18. Its status is
recommended, but in practice every TCP lIP implementation which is not used
exclusively for routing will include TCP.

Figure 2.18 Transmission Control Protocol (TCP)

MIME

IP
Ethernet, Token-Ring, FDDl, X.25, ATM, SNA ...

40

TFTP RPC NCS SNMP

UDP
Pi Trace
n Route
g

lCMP
ARP RARP

TCP provides considerably more facilities for applications than UDP, notably error
recovery, flow control and reliability. TCP is a connection-oriented protocol unlike
UDP which is connection less. Most of the user application protocols, such as
TELNET and FTP, use TCP.

2.10.1 Sockets

•The socket concept was discussed earlier in 2.8, "Ports and Sockets". Two processes
communicate via TCP sockets. The socket model provides a process with a full-
duplex byte stream connection to another process. The application need not concern
itself with the management ofthis stream; these facilities are provided by TCP.

TCP uses the same port principle as UDP (see 2.9.1, "Ports") to provide multiplexing.
Like UDP, TCP uses well-known and ephemeral ports. Each side of a TCP
connection has a socket, which can be identified by the triple <TCP, IP address, port
number>. This is also called a half-association. If two processes are communicating
over TCP, they have a logical connection that is uniquely identifiable by the two
sockets involved, that is by the combination <TCP, local IP address, local port,
remote IP address, remote port>. See Figure 2.19. Server processes are able to
manage multiple conversations through a single port.

Figure 2.19: TCP Connection.

I procts Y I

PortM

Reliable TCP connection TCP

IP

umeliable

IP datagrams

HOST A HOSTB

Processes X and Y communicate over a TCP connection carried by IP datagrams.

41

2.10.2 TCP Concept

As noted above, the primary purpose of TCP is to provide reliable logical circuit or
connection service between pairs of processes. It does not assume reliability from the
lower-level protocols such as IP (see Figure 2.18). Therefore, TCP must guarantee
this itself. TCP can be characterized by the following facilities it provides for the
applications using it:

• Stream Data Transfer
• Reliability
• Flow Control
• Multiplexing
• Logical Connections

2.10.2.1 Stream Data Transfer

From the application's viewpoint, TCP transfers a contiguous stream of bytes through
the internet. The application does not have to bother with chopping the data into basic
blocks or datagrams. TCP does this by grouping the bytes in TCP segments, which are
passed to IP for transmission to the destination. Also, TCP itself decides how to
segment the data and it may forward the data at its own convenience. Sometimes, an
application needs to be sure that all the data passed to TCP has actually been
transmitted to the destination. For that reason, a push function is defined. It will push
all remaining TCP segments still in storage to the destination host. The normal close
connection function also pushes the data to the destination.

2.10.2.2 Reliability

TCP assigns a sequence number to each byte transmitted, and expect a posItive
acknowledgment (ACK) from the receiving TCP. If the ACK is not received within a
timeout interval, the data is retransmitted. As the data is transmitted in blocks (TCP
segments) only the sequence number of the first data byte in the segment is sent to the
destination host. The receiving TCP uses the sequence numbers to rearrange the
segments when they arrive out of order, and to eliminate duplicate segments.

2.10.2.3 Flow Control

The receiving TCP, when sending an ACK back to the sender, also indicates to the
sender the number of bytes it can receive beyond the last received TCP segment,
without causing overrun and overflow in its internal buffers. This is sent in the ACK
in the form of the highest sequence number it can receive without problems. This
mechanism is also referred to as a window-mechanism.

42

2.10.2.4 Multiplexing

To allow for many processes within a single Host to use TCP communication
facilities simultaneously, the TCP provides a set of addresses or ports within each
host. Concatenated with the network and host addresses from the internet
communication layer, this forms a socket. A pair of sockets uniquely identifies each
connection. That is, a socket may be simultaneously used in multiple connections
[22].

The binding of ports to processes is handled independently by each Host. However, it
proves useful to attach frequently used processes (e.g., a "logger" or timesharing
service) to fixed sockets which are made known to the public. These services can
then be accessed through the known addresses. Establishing and learning the port
addresses of other processes may involve more dynamic mechanisms.

2.10.2.5 Logical Connections

The reliability and flow control mechanisms described above reqUIre that TCP
initializes and maintains certain status information for each "data stream." The
combination of this status, including sockets, sequence numbers and window sizes, is
called a logical connection. Each connection is uniquely identified by the pair of
sockets used by the sending and receiving processes.

43

Chapter 3

Structure of the Domain Name Space

3.1 Introduction

The domain system is a tree-structured global name space that has a few top-level
domains. The top-level domains are subdivided into second level domains. The
second level domains may be subdivided into third level domains, and so on.

The administration of a domain requires controlling the assignment of mimes within
that domain and providing access to the names and name related information (such as
addresses) to users both inside and outside the domain.

Technically the Domain Name System (DNS) is a distributed database. This allows
local control of the segments of the overall database, yet data in each segment are
available across the entire network through a client-server scheme. Robustness and
adequate performance are achieved through replication and caching [23].

Programs called Name Servers constitute the server half of DNS's client-server
mechanism. Name servers contain information about some segment of the database
and make it available to clients, called Resolvers. Resolvers are often just library
routines that create queries and send them across a network to a Name Server [24].

Figure 3.1: Domain Name Space Tree

" "

net edu com org int gov mil ae

angla G
microsoft novell

~ I domain: sales. microsoft. com. I
support sales~------------

Domain:
bangla.net.

us bd<~~u
~ ~ /

buet

The structure of the DNS database, shown in Figure 3.1, is very similar to the
structure of the UNIX file system. The whole database is pictured as an inverted tree,

44
.

with the root at the top. In DNS, the root's name is the null label ("), but is written as
a single dot (" .") in text.

Each node in the tree represents a partition of the overall database~a domain in the
Domain Name System. Each domain can be further divided into partitions, called sub-
domains in DNS. A domain also has a domain name, which identifies its position in
the database. In DNS, the full domain name is the sequence of labels from the domain
to the root, with"." separating the labels.

3.2 Elements of the DNS

The DNS has three major components [25]:

- The DOMAIN NAME SPACE and RESOURCE RECORDS, which are
specifications for a tree structured name space and data associated with the names.
Conceptually, each node and leaf of the domain name space tree names a set of
information, and query operations are attempts to extract specific types of information
from a particular set. A query names the domain name of interest and describes the
type of resource information that is desired. For example, the Internet uses some of
its domain names to identify hosts; queries for address resources return Internet host
addresses.

- NAME SERVERS are server programs, which hold information about the domain
tree's structure and set information. A name server may cache structure or set
information about any part of the domain tree, but in general a particular name server
has complete information about a subset of the domain space, and pointers to other
name servers that can be used to lead to information from any part of the domain tree.
Name servers know the parts of the domain tree for which they have complete
information; a name server is said to be an AUTHORITY for these parts of the name
space. Authoritative information is organized into units called ZONEs, and these
zones can be automatically distributed to the name servers, which provide redundant
service for. the data in a zone.

- RESOLVERS are programs that extract information from name servers in
response to client requests. Resolvers must be able to access at least one name server
and use that name server's information to answer a query directly, or pursue the query
using referrals to other name servers. A resolver will typically be a system routine
that is directly accessible to user programs; hence no protocol is necessary between
the resolver and the user program.

45
'"
''-~..~"

~='i~

3.3

3.3.1

Domain Name Space and Resource Records

Name space specifications and terminology

The domain name space is a tree structure. Each node and leaf on the tree
corresponds to a resource set (which may be empty). The domain system makes no
distinctions between the uses of the interior nodes and leaves, and this research uses
the term "node" to refer to both.

Each node has a label, which is zero to 63 octets in length. Brother nodes may not
have the same label, although the same label can be used for nodes which are not
brothers. One label is reserved, and that is the null (i.e., zero length) label used for the
root.

The domain name of a node is the list of the labels on the path from the node to the
root of the tree. By convention, the labels that compose a domain name are printed or
read left to right, from the most specific (lowest, farthest from the root) to the least
specific (highest, closest to the root).

Internally, programs that manipulate domain names should represent them as
sequences of labels, where each label is a length octet followed by an octet string.
Because all domain names end at the root, which has a null string for a label, these
internal representations can use a length byte of zero to terminate a domain name.

By convention, domain names can be stored with arbitrary case, but domain name
comparisons for all present domain functions are done in a case-insensitive manner,
assuming an ASCII character set, and a high order zero bit. This means that you are
free to create a node with label "A" or a node with label "a", but not both as brothers;
you could refer to either using "a" or "A". When you receive a domain name or label,
you should preserve its case. The rationale for this choice is that we may someday
need to add full binary domain nam~s for new services; existing services would not be
changed.

When a user needs to type a domain name, the length of each label is omitted and the
labels are separated by dots (". "). Since a complete domain name ends with the root
label, this leads to a printed form which ends in a dot. We use this property to
distinguish between:

• a character string which represents a complete domain name (often called
"absolute"). For example, "buet.edu.bd."

• a character string that represents the starting labels of a domain name which is
incomplete, and should be completed by local software using knowledge of the
local domain (often called "relative"). For example, "buet" used in the edu.bd.
domain.

Relative names are either taken relative to a well known origin, or to a list of domains
used as a search list. Relative names appear mostly at the user interface, where their

46
. .

interpretation varies from implementation to implementation, and in master files,
where they are relative to a single origin domain name. The most common
interpretation uses the root"." as either the single origin or as one of the members of
the search list, so a multi-label relative name is often one where the trailing dot has
been omitted to save typing.

To simplify implementations, the total number of octets that represent a domain name
(i.e., the sum of all label octets and label lengths) is limited to 255 [24].

3.3.2 Preferred name syntax

The DNS specifications attempt to be as general as possible in the rules for
constructing domain names. The idea is that the name of any existing object can be
expressed as a domain name with minimal changes. However, when assigning a
domain name for an object, the prudent user will select a name, which satisfies both
the rules of the domain system and any existing rules for the object, whether these
rules are published or implied by existing programs.

For example, when naming a mail domain, the user should satisfy both the rules of
this thesis and those in RFC-822. When creating a new host name, the old rules for
HOSTS.TXT should be followed. This avoids problems when old software is
converted to use domain names.

The following syntax will result in fewer problems with many applications that use
domain names (e.g., mail, TELNET).

<domain> ::= <subdomain> I " "

<subdomain> ::= <label> I <subdomain> "." <label>

<label> ::= <letter> [[<ldh-str>] <let-dig>]

<ldh-str> ::= <let-dig-hyp> I <let-dig-hyp> <ldh-str>

<let-dig-hyp> ::= <let-dig> I "-"

<let-dig> ::= <letter> I <digit>

<letter> ::= anyone of the 52 alphabetic characters "A" through "Z" in
upper case and "a" through "z" in lower case

<digit> ::= anyone of the ten digits 0 through 9

Note that while upper and lower case letters are allowed in domain names, no
significance is attached to the case. That is, two names with the same spelling but
different case are to be treated as if identical.

47

The labels must follow the rules for ARPANET host names. They must start with a
letter, end with a letter or digit, and have as interior characters only letters, digits, and
hyphen. There are also some restrictions on the length. Labels must be 63 characters
or less.

3.3.3 Resource Records

A domain name identifies a node. Each node has a set of resource information, which
may be empty. The set of resource information associated with a particular name is
composed of separate resource records (RRs). The order of RRs in a set is not
significant, and need not be preserved by name servers, resolvers, or other parts of the
DNS [38).

When we talk about a specific RR, we assume it has the following:

owner

type

which is the domain name where the RR is found.

which is an encoded 16 bit value that specifies the type of the resource
in this resource record. Types refer to abstract resources.

This research uses the following types:

A a host address

CNAME identifies the canonical name of an alias

HINFO identifies the CPU and OS used by a host

MX identifies a mail exchange for the domain.
See [RFC-974 for details).

NS the authoritative name server for the domain

PTR a pointer to another part of the domain name space

SOA identifies the start of a zone of authority

class which is an encoded 16 bit value which identifies a protocol family or
instance of a protocol.

This research uses the following classes:

IN the Internet system

CH. the Chaos system

TTL which is the time to live of the RR. This field is a 32 bit integer in
units of seconds, and is primarily used by resolvers when they cache
RRs. The TTL describes how long a RR can be cached before it
should be discarded.

48

..•

RDATA

A

which is the type and sometimes class dependent data which describes
the resource:

For the IN class, a 32 bit IP address

For the CH class, a domain name followed by a 16 bit octal Chaos
address.

CNAME a domain name.

MX a 16 bit preference value (lower is better) followed by a host name
willing to act as a mail exchange for the owner domain.

NS a host name.

PTR a domain name.

SOA several fields.

The owner name is often implicit, rather than forming an integral part of the RR. For
example, many name servers internally form tree or hash structures for the name
space, and chain RRs off nodes. The remaining RR parts are the fixed header (type,
class, TTL) which is consistent for all RRs, and a variable part (RDAT A) that fits the
needs of the resource being described.

The meaning of the TTL field is a time limit on how long an RR can be kept in a
cache. This limit does not apply to authoritative data in zones; it is also timed out, but
by the refreshing policies for the zone. The TTL is assigned by the administrator for
the zone where the data originates. While short TTLs can be used to minimize
caching, and a zero TTL prohibits caching, the realities of Internet performance
suggest that these times should be on the order of days for the typical host. If a
change can be anticipated, the TTL can be reduced prior to the change to minimize
inconsistency during the change, and then increased back to its former value
following the change.

The data in the RDA TA section of RRs is carried as a combination of binary strings
and domain names. The domain names are frequently used as "pointers" to other data
in the DNS.

3.3.4 Textual expression of RRs

RRs are represented in binary form in the packets of the DNS protocol, and are
usually represented in highly encoded form when stored in a name server or resolver.
In this research, we adopt a style similar to that used in master files in order to show
the contents of RRs. In this format, most RRs are shown on a single line, although
continuation lines are possible using parenthesis [25].

49

r
' .
.I.

I,
I\ .

",.o'-

The start of the line gives the owner of the RR. If a line begins with a blank, then the
owner is assumed to be the same as that of the previous RR. Blank lines are often
included for readability.

Following the owner, we list the TTL, type, and class .of the RR. Class and type use
the mnemonics defined above, and TTL is an integer before the type field. In order to
avoid ambiguity in parsing, type and class mnemonics are disjoint, TTLs are integers,
and the type mnemonic is always last. The IN class and TTL values are often omitted
from examples in the interests of clarity.

The resource data or RDAT A section of the RR is given using knowledge of the
typical representation for the data.

For example, we might show the RRs carried in a message as:

EDU.BD.

BUET.EDU.BD.

IIT.EDU.BD.

MX 10 BUET.EDU.BD.
MX 10 IIT.EDU.BD.
A w.x.y.z1
A w.x.y.z2
A w.x.y.z3
A w.x.y.z4

The MX RRs have an RDA TA section which consists of a 16 bit number followed by
a domain name. The address RRs use a standard IP address format to contain a 32 bit
internet addresses.

This example shows six RRs, with two RRs at each of three domain names.

3.3.5 Aliases and canonical names

In existing systems, hosts and other resources often have several names that identify
the same resource. For example, the names C.ISLEDU and USC-ISIC.ARPA both
identify the same host. Similarly, in the case of mailboxes, many organizations
provide many names that actually go to the same mailbox; for example
ofarooq@C.ISLEDU.BD, wzaman@B.ISLEDU.BD, and PVM@ISLEDU.BD all go
to the same mailbox (although the mechanism behind this is somewhat complicated).

Most of these systems have a notion that one of the equivalent sets of names is the
canonical or primary name and all others are aliases.

The domain system provides such a feature using the canonical name (CNAME) RR.
A CNAME RR identifies its owner name as an alias, and specifies the corresponding
canonical name in the RDA TA section of the RR. If a CNAME RR is present at a
node, no other data should be present; this ensures that the data for a canonical name
and its aliases cannot be different. This rule also insures that a cached CNAME can
be used without checking with an authoritative server for other RR types [26].

CNAME RRs causes special action in DNS software. When a name server fails to
find a desired RR in the resource set associated with the domain name, it checks to

50

see if the resource set consists of a CNAME record with a matching class. If so, the
name server includes the CNAME record in the response and restarts the query at the
domain name specified in the data field of the CNAME record. The one exception to
this rule is that queries which match the CNAME type are not restarted.

For example, suppose a name server was processing a query with for USC-
ISIC.ARP A, asking for type A information, and had the following resource records:

USC-ISIC.ARPA IN CNAME C.ISI.EDU

C.ISI.EDU IN A 10.0.0.52

Both of these RRs would be returned in the response to the type A query, while a type
CNAME or • query should return just the CNAME.

Domain names in RRs which point at another name should always point at the
primary name and not the alias. This avoids extra instructions in accessing
information. For example, the address to name RR for the above host should be:

52.0.0.10.IN-ADDR.ARPA IN PTR C.ISI.EDU

rather than pointing at USC-ISIC.ARPA. Of course, by the robustness principle,
domain software should not fail when presented with CNAME chains or loops;
CNAME chains should be followed and CNAME loops signalled as an error.

3.3.6 Queries

Queries are messages, which may be sent to a name server to provoke a response. In
the Internet, queries are carried in UDP datagrams or over TCP connections. The
response by the name server either answers the question posed in the query, refers the
requester to another set of name servers, or signals some error condition.

In general, the user does not generate queries directly, but instead makes a request to a
resolver which in tum sends one or more queries to name servers and deals with the
error conditions and referrals that may result. Of course, the possible questions which
can be asked in a query does shape the kind of service a resolver could provide.

DNS queries and responses are carried in a standard message format. The message
format has a header containing a number of fixed fields which are always present, and
four sections which carry query parameters and RRs.

The most important field in the header is a four bit field called an opcode which
separates different queries. Of the possible 16 values, one (standard query) is part of
the official protocol, two (inverse query and status query) are options, one
(completion) is obsolete, and the rest are unassigned.

The four sections are:

Question Carries the query name and other query parameters.

51
"

Answer

Authority

Additional

Carries RRs which directly answer the query.

Carries RRs which describe other authoritative servers. May'
optionally carry the SOA RR for the authoritative data in the
answer section.

Carries RRs which may be helpful in using the RRs in the other
sections.

Note that the content, but not the format, of these sections varies with
header opcode.

3.4

3.4.1

Name Servers

Introduction

Name servers are the repositories of information that make up the domain database.
The database is divided up into sections called zones, which are distributed among the
name servers. While name servers can have several optional functions and sources of
data, the essential task of a name server is to answer queries using data in its zones.
By design, name servers can answer queries in a simple manner; the response can
always be generated using only local data, and either contains the answer to the
question or a referral to other name servers "closer" to the desired information [27].

A given zone will be available from several name servers to insure its availability in
spite of host or communication link failure. By administrative fiat, we require every
zone to be available on at least two servers, and many zones have more redundancy
than that.

A given name server will typically support one or more zones, but this gives it
authoritative information about only a small section of the domain tree. It may also
have some cached non-authoritative data about other parts of the tree. The name
server marks its responses to queries so that the requester can tell whether the
response comes from authoritative data or not.

3.4.2 How the database is divided into zones

The domain database is partitioned in two ways: by class, and by "cuts" made in the
name space between nodes.

The class partition is simple. The database for any class is organized, delegated, and
maintained separately from all other classes. Since, by convention, the name spaces
are the same for all classes, the separate classes can be thought of as an array of
parallel namespace trees. Note that the data attached to nodes will be different for

52 ;'

these different parallel classes. The most common reasons for' creating a new class
are the necessity for a new data format for existing types or a desire for a separately
managed version of the existing name space [28].

Within a class, "cuts" in the name space can be made between any two adjacent
nodes. After all cuts are made, each group of connected name space is a separate
zone. The zone is said to be authoritative for all names in the connected region. Note
that the "cuts" in the name space may be in different places for different classes, the
name servers may be different, etc.

These rules mean that every zone has at least one node, and hence domain name, for
which it is authoritative, and all of the nodes in a particular zone are connected.
Given, the tree structure, every zone has a highest node which is closer to the root
than any other node in the zone. The name of this node is often used to identifY the
zone.

It would be possible, though not particularly useful, to partition the name space so that
each domain name was in a separate zone or so that all nodes were in a single zone.
Instead, the database is partitioned at points where a particular organization wants to
take over control of a subtree. Once an organization controls its own zone it can
unilaterally change the data in the zone, grow new tree sections connected to the zone,
delete existing nodes, or delegate new subzones under its zone.

3.4.3 Technical considerations for Name Server

The data that describes a zone has four major parts:

- Authoritative data for all nodes within the zone.

- Data that defines the top node of the zone (can be thought of
as part of the authoritative data).

- Data that describes delegated subzones, i.e., cuts around the
bottom of the zone.

- Data that allows access to name servers for subzones
(sometimes called "glue" data).

All of this data is expressed in the form of RRs, so a zone can be completely
described in terms of a set of RRs. Whole zones can be transferred between name
servers by transferring the RRs, either carried in a series of messages or by FTPing a
master file which is a textual representation.

The authoritative data for a zone is simply all of the RRs attached to all of the nodes
from the top node of the zone down to leaf nodes or nodes above cuts around the
bottom edge of the zone.

53

Though logically part of the authoritative data, the RRs that describe the top node of
the zone are especially important to the zone's management. These RRs are of two
types: name server RRs that list, one per RR, all of the servers for the zone, and a
single SOA RR that describes zone management parameters.

The RRs that describe cuts around the bottom of the zone are NS RRs that name the
servers for the subzones. Since the cuts are between nodes, these RRs are NOT part
of the authoritative data of the zone, and should be exactly the same as the
corresponding RRs in the top node of the subzone. Since name servers are always
associated with zone boundaries, NS RRs are only found at nodes which are the top
node of some zone. In the data that makes up a zone, NS RRs are found at the top
node of the zone (and are authoritative) and at cuts around the bottom of the zone
(where they are not authoritative), but never in between.

One of the goals of the zone structure is that any zones have all the data required to
set up communications with the name servers for any subzones. That is, parent zones
have all the information needed to access servers for their children zones. The NS
RRs that name the servers for subzones are often not enough for this task since they
name the servers, but do not give their addresses. In particular, if the name of the
name server is itself in the subzone, we could be faced with the situation where the
NS RRs tell us that in order to learn a name server's address, we should contact the
server using the address we wish to learn. To fix this problem, a zone contains "glue"
RRs which are not part of the authoritative data, and are address RRs for the servers.
These RRs are only necessary if the name server's name is "below" the cut, and are
only used as part of a referral response.

3.4.4

3.4.4.1

Name server internals

Queries and responses

The principal activity of name servers is to answer standard queries. Both the query
and its response are carried in a standard message format, which is described in [RFC-
1035]. The query contains a QTYPE, QCLASS, and QNAME, which describe the
types and classes of desired information and the name of interest.

The way that the name server answers the query depends upon whether it is operating
in recursive mode or not:

• The simplest mode for the server is non-recursive, since it can answer queries
using only local information: the response contains an error, the answer, or a
referral to some other server "closer" to the answer. All name servers must
implement non-recursive queries.

• The simplest mode for the client is recursive, since in this mode the name server
acts in the role of a resolver and returns either an error or the answer, but never
referrals. This service is optional in a name server, and the name server may also
choose to restrict the clients, which can use recursive mode.

54

Recursive service is helpful in several situations:

• a relatively simple requester that lacks the ability to use anything other than a
direct answer to the question.

• a request that needs to cross protocol or other boundaries and can be sent to a
server which can act as intermediary.

• a network where we want to concentrate the cache rather than having a separate
cache for each client.

Non-recursive service is appropriate if the requester is capable of pursuing referrals
and interested in information which will aid future requests.

The use of recursive mode is limited to cases where both the client and the name
server agree to its use. The agreement is negotiated through the use of two bits in
query and response messages:

• The recursion available, or RA bit, is set or cleared by a name server in all
responses. The bit is true if the name server is willing to provide recursive service
for the client, regardless of whether the client requested recursive service. That is,
RA signals availability rather than use.

• Queries contain a bit called recursion desired or RD. This bit specifies whether the
requester wants recursive service for this query. Clients may request recursive
service from any name server, though they should depend upon receiving it only
from servers which have previously sent an RA, or servers which have agreed to
provide service through private agreement or some other means outside of the
DNS protocol.

The recursive mode occurs when a query with RD set arrives at a server which is
willing to provide recursive service; the client can verify that recursive mode was
used by checking that both RA and RD are set in the reply. Note that the name server
should never perform recursive service unless asked via RD, since this interferes with
trouble shooting of name servers and their databases.

If recursive service is requested and available, the recursive response to a query will
be one of the following:

• The answer to the query possibly prefaces by one or more CNAME RRs that
specify aliases encountered on the way to an answer.

• A name error indicating that the name does not exist. This may include CNAME
RRs that indicates that the original query name was an alias for a name which
does not exist.

• A temporary error indication.

55

If recursive service is not requested or is not available, the non-recursive response will
be one of the following:

• An authoritative name error indicating that the name does not exist.

• A temporary error indication.

• Some combination of:

RRs that answer the question, together with an indication whether the data comes
from a zone or is cached.

A referral to name servers which have zones which are closer ancestors to the
name than the server sending the reply.

RRs that the name server thinks will prove useful to the requester.

3.4.5 Zone maintenance and transfers

The general model of automatic zone transfer or refreshing is that one of the name
servers is the master or primary for the zone. Changes are co-ordinated at the
primary, typically by editing a master file for the zone. After editing, the
administrator signals the master server to load the new zone. The other non-master or
secondary servers for the zone periodically check for changes (at a selectable interval)
and obtain new zone copies when changes have been made [28].

To detect changes, secondaries just check the SERIAL field of the SOA for the zone.
In addition to whatever other changes are made, the SERIAL field in the SOA of the
zone is always advanced whenever any change is made to the zone. The advancing
can be a simple increment, or could be based on the write date and time of the master
file, etc. The purpose is to make it possible to determine which of two copies of a
zone is more recent by comparing serial numbers. Serial number advances and
comparisons use sequence space arithmetic, so there is a theoretic limit on how fast a
zone can be updated, basically that old copies must die out before the serial number
covers half of its 32 bit range. In practice, the only concern is that the compare
operation deals properly with comparisons around the boundary between the most
positive and most negative 32 bit numbers [29].

The periodic polling of the secondary servers is controlled by parameters in the SOA
RR for the zone, which set the minimum acceptable polling intervals. The parameters
are called REFRESH, RETRY, and EXPIRE. Whenever a new zone is loaded in a
secondary, the secondary waits REFRESH seconds before checking with the primary
for a new serial. If this check cannot be completed, new checks are started every
RETRY seconds. The check is a simple query to the primary for the SOA RR of the
zone. If the serial field in the secondary's zone copy is equal to the serial returned by
the primary, then no changes have occurred, and the REFRESH interval wait is

56

restarted. If the secondary finds it impossible to perform a serial check for the
EXPIRE interval, it must assume that its copy of the zone is obsolete and discard it.

When the poll shows that the zone has changed, then the secondary server must
request a zone transfer via an AXFR request for the zone. The AXFR may cause an
error, such as refused, but normally is answered by a sequence of response messages.
The first and last messages must contain the data for the top authoritative node of the
zone. Intermediate messages carry all of the other RRs from the zone, including both
authoritative and non-authoritative RRs. The stream of messages allows the
secondary to construct a copy of the zone. Because accuracy is essential, TCP or
some other reliable protocol must be used for AXFR requests.

Each secondary server is required to perform the following operations against the
master, but may also optionally perform these operations against other secondary
servers. This strategy can improve the transfer process when the primary is
unavailable due to host downtime or network problems, or when a secondary server
has better network access to an "intermediate" secondary than to the primary.

•

3.5

3.5.1

Resolvers

Introduction

Resolvers are programs that interface user programs to domain name servers. In the
simplest case, a resolver receives a request from a user program (e.g., mail programs,
TELNET, FTP) in the form of a subroutine call, system call etc., and returns the
desired information in a form compatible with the local host's data formats.

The resolver is located on the same machine as the program that requests the
resolver's services, but it may need to consult name servers on other hosts. Because a
resolver may need to consult several name servers, or may have the requested
information in a local cache, the amount of time that a resolver will take to complete
can vary quite a bit, from milliseconds to several seconds.

A very important goal of the resolver is to eliminate network delay and name server
load from most requests by answering them from its cache of prior results. It follows
that caches which are shared by multiple processes, users, machines, etc., are more
efficient than non-shared caches.

57

,
\!
{{~

','

3.5.2

3.5.2.1

Client-resolver interface

Typical functions

The client interface to the resolver is influenced by the local host's conventions, but
the typical resolver-client interface has three functions:

Host name to host address translation.
This function is often defined to mImIC a previous
HOSTS.TXT based function. Given a character string, the
caller wants one or more 32 bit IP addresses. Under the DNS,
it translates into a request for type A RRs. Since the DNS does
not preserve the order of RRs, this function may choose to sort
the returned addresses or select the "best" address if the service
returns only one choice to the client. Note that a multiple
address return is recommended, but a single address may be the
only way to emulate prior HOSTS.TXT services [39].

Host address to host name translation
This function will often follow the form of previous functions.
Given a 32 bit IP address, the caller wants a character string.
The octets of the IP address are reversed, used as name
components, and suffixed with "IN-ADDR.ARPA". A type
PTR query is used to get the RR with the primary name of the
host. For example, a request for the host name corresponding
to IP address 1.2.3.4 looks for PTR RRs for domain name
"4.3.2.I.IN-ADDR.ARP A" [39].

General lookup function
This function retrieves arbitrary information from the DNS, and
has no counterpart in previous systems. The caller supplies a
QNAME, QTYPE, and QCLASS, and wants all of the
matching RRs. This function will often use the DNS format for
all RR data instead of the local host's, and returns all RR
content (e.g., TTL) instead of a processed form with local
quoting conventions.

When the resolver performs the indicated function, it usually has one of the following
results to pass back to the client: "

One or more RRs giving the requested data.

In this case the resolver returns the answer in the appropriate format.

A name error (NE).

58

.,
/~. :•. '
;i:'" '\
i~,~~,~.'

This happens when the referenced name does not exist. For example, a user
may have mistyped a host name.

A data not found errOL

This happens when the referenced name exists, but data of the appropriate type
does not. For example, a host address function applied to a mailbox name
would return this error since the name exists, but no address RR is present.

It is important to note that the functions for translating between host names and
addresses may combine the "name error" and "data not found" error conditions into a
single type of error return, but the general function should not. One reason for this is
that applications may ask first for one type of information about a name followed by a
second request to the same name for some other type of information; if the two errors
are combined, then useless queries may slow the application.

3.5.3 Aliases

While attempting to resolve a particular request, the resolver may find that the name
in question is an alias. For example, the resolver might find that the name given for
host name to address translation is an alias when it finds the CNAME RR. If possible,
the alias condition should be signalled back from the resolver to the client.

In most cases a resolver simply restarts the query at the new name when it encounters
a CNAME. However, when performing the general function, the resolver should not
pursue aliases when the CNAME RR matches the query type. This allows queries
which ask whether an alias is present. For example, if the query type is CNAME, the
user is interested in the CNAME RR itself, and not the RRs at the name it points to.

Several special conditions can occur with aliases. Multiple levels of aliases should be
avoided due to their lack of efficiency, but should not be signalled as an error. Alias
loops and aliases which point to non-existent names should be caught and an error
condition passed back to the client.

3.5.4 Resolver internals

Every resolver implementation uses slightly different algorithms, and typically spends
much more logic dealing with errors of various sorts than typical occurrences. This
section outlines a recommended basic strategy for resolver operation, but leaves
details to [29].

3.5.5 Stub resolvers

One option for implementing a resolver is to move the resolution function out of the
local machine and into a name server which supports recursive queries. This can
provide an easy method of providing domain service in a PC, which lacks the

59

.~•

resources to perform the resolver function, or can centralize the cache for a whole
local network or organization.

All that the remaining stub needs is a list of name server addresses that will perform
the recursive requests. This type of resolver presumably needs the information in a
configuration file, since it probably lacks the sophistication to locate it in the domain
database. The user also needs to verify that the listed servers will perform the
recursive service; a name server is free to refuse to perform recursive services for any
or all clients. The user should consult the local system administrator to find name
servers willing to perform the service.

This type of service suffers from some drawbacks. Since the recursive requests may
take an arbitrary amount of time to perform, the stub may have difficulty optimizing
retransmission intervals to deal with both lost UDP packets and dead servers; the
name server can be easily overloaded by too zealous a stub if it interprets
retransmissions as new requests. Use of TCP may be an answer, but TCP may well
place burdens on the host's capabilities which are similar to those of a real resolver.

3.5.6 Resources

In addition to its own resources, the resolver may also have shared access to zones
maintained by a local name server. This gives the resolver the advantage of more
rapid access, but the resolver must be careful to never let cached information override
zone data. In this research the term "local information" is meant to mean the union of
the cache and such shared zones, with the understanding that authoritative data is
always used in preference to cached data when both are present.

The following data structures represent the state of a request when all are functions
converted to a general lookup function in the resolver:

SNAME

STYPE

SCLASS

SLIST

the domain name we are searching for.

the QTYPE of the search request.

the QCLASS of the search request.

a structure which describes the name servers and the zone which the
resolver is currently trying to query. This structure keeps track of the
resolver's current best guess about which name servers hold the desired
information; it is updated when arriving-information changes the
guess. This structure includes the equivalent of a zone name, the
known name servers for the zone, the known addresses for the name
servers, and history information which can be used to suggest which
server is likely to be the best one to try next. The zone name
equivalent is a match count of the number oflabels from the root down
which SNAME has in common with the zone being queried; this is
used as a measure of how "close" the resolver is to SNAME.

60

SBELT

CACHE

a "safety belt" structure of the same form as SLIST, which is
initialized from a configuration file, and lists servers which should be
used when the resolver doesn't have any local information to guide
name server selection. The match count will be -I to indicate that no
labels are known to match.

A structure which stores the results from previous responses. Since
resolvers are responsible for discarding old RRs whose TTL has
expired, most implementations convert the interval specified in
arriving RRs to some sort of absolute time when the RR is stored in the
cache. Instead of counting the TTLs down individually, the resolver
just ignores or discards old RRs when it runs across them in the course
of a search, or discards them during periodic sweeps to reclaim the
memory consumed by old RRs.

61

Chapter 4

Novell Directory Services

4.1 Introduction

Novell Directory Services (NDS) is a global, distributed, and replicated network
database; it also provides an easily managed and more secure network environment.
NDS is based on the CCITT X.SOO standard. NDS maintains information about all
network resources (users, groups, servers, file-systems, printers, and so on) in a
hierarchical tree structure. Network resources can be organized in the tree
independent of their physical location. Thus network users can access any network
resource they have rights to, without having to know the exact location of that
resource. The NDS Directory is different from the file system directory and its
structure. With NDS, it is now possible to integrate a diverse network of resources
into a single, easy-to-use environment [30].

Rather than supporting a single server, NDS supports an entire network of servers.
Distributing the network database allows all servers to easily access all network
information. It also allows the database to be replicated, thus minimizing the risk of a
single point offailure.

Traditional DNSIDHCP solutions have some drawbacks, which could be solved using
NDS enabled DNS/DHCP services [31]. Following are the few drawbacks of
traditional DNS/DHCP solutions:

>- Tracking IP address usage is difficult

>- Configuration of TCP/IP Nodes is laborious

>- Name and Address Services are not Integrated

>- Fault-Tolerance system is not transparent

To solve the above problems of traditional DNS/DHCP services and to get the NDS
enabled DNS/DHCP services for the Country Network, this chapter introduces the
basic concepts behind NDS, discussing NDS Schema, Objects and properties and
telling how Root, Container, and Leaf objects form the Directory tree. It also explains
about NDS partitions and replicas, and time synchronization [30].

62

4.2 How Objects Form the Directory Tree

NDS operates in a logical organization called the Directory tree. This is so named
because objects are stored in a hierarchical tree structure with the [Root] object at the
top of the tree and branching downward [53].

The Directory tree is made up of three types of objects:

• The [Root] object
• Container objects
• Leaf objects

[Root] Object

The [Root] object is placed at the top of the NDS tree. Branches of the Directory tree
consist of container objects and all of the objects they hold. These container objects
can also contain other container objects. Leaf objects are at the ends of the branches
and do not contain any other objects. Figure 4.1: lllustrates how objects can be laid
out to form the Directory tree.

Figure 4.1: Directory Tree

1I1~
I I

CN=Useri

CN=Printer!

j

---f CN=serveri

CN=Printer I

CN=Uscrl

--f CN=Servcrl

Country (C=) object.

The Country object provides another layer of identification for Country based NDS
Tree and is needed for participation in a global NDS network [32]. The Country

63

object is directly below the [Root] object in the NDS tree, and is needed as entry point
for a Country to merge with the Global NDS Tree.

The [Root] object of a Directory tree should not be confused with the root directory in
the file system. In the file system, the root directory is the first directory and it bears
no relation to the [Root] object of a Directory tree.

4.3 Network-Wide Login

With NDS, users no longer need to login or attach to specific servers. Instead, they
can login to the network. Once logged in to the network, users can access any service
or resource they have rights to, without having to explicitly login or attach to other
servers. The users will be transparently attached to the server on which the specified
service resides. NDS handles all of the address resolution issues in the background, so
users are shielded from the complexity of having to understand the network topology,
protocols, media, and communication links [33].

Because the NDS database is replicated, multiple copies of users' required login
information are spread throughout the network. This replication allows users to login
to the network whether or not their home server is on-line. As long as the servers
which provide the necessary data or services are operational, the user can access
them. In this sense, when a user is logged in to the network, servers become
transparent to the process of actually using the network.

4.4 Analysis of NDS Schema and Objects
The NDS schema consists of the set of rules governing the structure of the Directory
tree. It defines the objects that can exist in the tree, including how entries may be
constructed, which attribute values are permitted, how Distinguished Names may be
built, and other characteristics of use to the Directory itself. These object and attribute
rules are specified through a data dictionary that provides a standard set of data types
from which objects can be created [34], [35].

Every object in the Directory belongs to an object class that specifies the attributes
that can be associated with the object. All attributes are based on a set of standard
attribute types, which in turn are based on standard attribute syntaxes.

The Directory schema controls the structure of individual objects and the relationship
among objects in the tree. In controlling this relationship the schema specifies
subordination among object classes.

The schema is extensible & dynamic, and the administrators can define new objects
classes and attributes of objects in addition to those provided by the base schema.
Extending the schema is accomplished through modifYing or creating new object
definitions (attribute or object class) and then adding these new definitions to the base
schema.

64

Because the schema has been moved into the regular hierarchical object space in the
Directory Information Tree (DIT), schema objects generally are named and behave as
normal NDS objects in instantiation, synchronization, and modification. Additionally,
the normal NDS functions in the DSAPIs (Directory Services Application Program
Interface) can be used to manipulate schema definitions (create, browse, modify, etc.).

4.4.1 Schema Components

The NDS schema consists of three basic components:

• Object Classes
• Attribute Types
• Attribute Syntaxes

The set of rules those controls the creation of a particular object is called an object
class. Each object class is defined in terms of attributes. An attribute is a specific
piece of information that can exist for an object.

For example, NDS contains an object class for users, called User object. This User
object class defines many attributes (over 80), including attributes for such items as
the user's name, telephone number, address, and group memberships.

Attributes are defined in terms of a base set of data types called attribute syntaxes, and
the attribute syntaxes define the primary data types for values stored in the NDS
database.

For example, some attributes such as Password Minimum Length or Minimum
Account Balance take integer values while other attributes such as a user's Full Name
or Given Name take string values.

NDS has a set of built-in classes and attribute types that accommodate general
categories of network objects such as organizations, users, and devices. This set is
called the base schema. NDS developers can build on the base schema to create new
classes and new attributes for objects. However, these new classes and attributes must
be defined in terms of the existing syntaxes. Defining new syntaxes is not allowed.

4.4.2 Schema Structure

The schema defines the set of rules that govern the types of objects that can exist in an
NDS tree. Each object belongs to an object class that specifies what attributes can be
associated with the object. All attributes are based on a set of attribute types that are,
in tum, based on a standard set of attribute syntaxes.

The NDS schema not only controls the structure of individual objects, but it also
controls the relationship among objects in the NDS tree. The schema rules allow some
objects to contain other subordinate objects. Thus the schema gives structure to the
NDS tree.

Figure 4.2 shows how the schema components and the Directory components are
interrelated. The vertical arrows indicate the structure dependencies from the basic
building blocks up to the schema and the Directory, respectively. The horizontal
arrows denote the schema rules that apply to the respective Directory components.

65

The attribute syntaxes define the primary data types for values stored in the NDS tree.
Attribute types are defined from the attribute syntaxes and define the possible
attributes an object can have. Object classes are defined using a subset of the possible
attributes and determine the types of objects that can be in the tree. The tree structure
rules define how the object classes can be organized and nested in the tree, and
therefore determine the tree's structure [34].

Figure 4.2: Relationships between the Schema and the Directory Components.

Schema Components Directory
Components

Ii -Tr~e Structw-e Rules I
.. _-

I Directory Tree

I' _ ___ _ I lI --
•

-. --- - . . -
Object Classes - Objects

.

-- .- - --
Attributes Types Attributes

~ ,
. . --

Attribute Syntaxes Values
, --

Objects that can contain other objects are called container objects. Container objects
are the building blocks of the hierarchical structure of the Directory tree. Objects that
cannot contain other objects are known as non-container or leaf objects. Leaf objects
comprise the actual network resources such as a user, a server, or a printer.

4.4.3 Object Class Definitions

Object classes define the types of objects that can exist in the NDS database. Database
entries are created by selecting an object class and then supplying the required
attribute information for the entry. For example, to create an entry for a user, you
must select the User object class and then supply a name for the user.

In the base schema, all object classes are nonremovable; that" is, they cannot be
deleted or in any other way removed from the schema. Object classes that extended
the schema are removable [36].

An object class is defined by its characteristics, which consists of the following kinds

66

of information:

• Structure rules for naming and containment
• Super classes
• Object class attributes
• ACL templates
• Object class flags

An object class does not have to specify definitions for all characteristics because it
can inherit characteristics from super classes. See "Object Class Inheritance Rules"
for more information.

4.4.4 Object Class Structure Rules

All object classes possess two types of structure rules:

• Naming attributes which determine how objects of the class are named
• Containment classes which determine where in the NOS tree hierarchy objects

can be placed

The structure rules for an object class define the possible structural relationships of
objects in the NOS tree. The structure rules are either explicitly defined by the class or
inherited from a super class. If the class defines them, the class definitions take
precedence over inherited definitions.

4.4.5 Object Class Naming Structure Attributes

Objects are identified by their own name and the name of their parent objects. An
object's name is called its partial name or relative distinguished name (RON). An
object's RON is determined by its naming attribute.

The object's full name (with all its parent names included) is called the complete
name or distinguished name (ON). An object's ON is determined by all the objects it
is subordinate to. Hence, containment rules, which control subordination in the tree,
effectively control the formation of distinguished names ..

The sections below describe the following characteristics of naming attributes:

• Naming attribute rules
• Multi-valued naming attributes
• Shareable naming attributes
• Inheritance of naming attributes
•

4.4.5.1 Naming Attribute Rules

Each class has one or more attributes designated as naming attributes. These attributes
can be either mandatory or optional attributes, but at least one must be given a value

67

when creating an object of that class. If the only naming attribute is declared as
optional, it is, in effect, mandatory.

Naming attributes specify the rules for the partial name of the object. For example,
Organization objects are named by the 0 (Organization Name) attribute. This attribute
is the only attribute value that can appear in an organizational entry's partial name.

4.4.5.2 Multi-valued Naming Attributes

Naming attributes can be multi-valued; in other words, more than one name (value)
can be added to the naming attribute. For example, an organization can have both
"Testing" and "Engineering" as values for the 0 (Organization Name) attribute.
However, only one value will be flagged as the naming value, and that value is used
in search operations.

Some object class definitions specify multiple naming attributes. For example, the
Locality object class is named by the L (Locality Name) and S (State or Province
Name) attributes. Thus, an RDN for locality can include just an L (Locality Name)
attribute, just an S (State or Province Name) attribute, or both attributes.

For example, the name for the Provo, Utah locality could be

L=Provo
S=Utah
L=Provo + S=Utah

The last example uses both attributes with a plus sign (+) to indicate where the second
attribute's value begins. When the type specifiers (in this case Land S) are used as
shown, the name is referred to as a typed name. A typeless name has the following
format: "Provo+Utah".

4.4.5.3 Shareable Naming Attributes

A naming attribute does not necessarily reflect the class an object belongs to. Many
classes, such as Computer, User, and Server, are named by their CN (Common Name)
naming attribute. In fact, CN is the recommended naming attribute for leaf objects. In
such cases, the naming attribute itself does not indicate which class the object belongs
to, but the value of the naming attribute may suggest the nature of the object.

However, some naming attributes are closely tied to specific classes. For example, the
C (Country Name) naming attribute is used to name only Country objects in the base
schema.

4.4.5.4 Inheritance of Naming Attributes

Naming attributes for effective classes must follow the inheritance rules. Effective
classes can inherit naming attributes only if the naming attributes of the super classes

68

are identical and do not conflict. If they are different and therefore ambiguous, the
effective class must define its own naming attributes. Non-effective classes may have
ambiguous naming attributes, but often define the naming attributes so subordinate
objects can inherited them. For example, the Server class defines naming attributes
that are inherited by the AFP Server, NCP Server, CommExec, Messaging Server, and
Print Server classes.

4.4.6 Containment Classes

Objects that can contain other objects are called container objects or parent objects.
Container objects are the branches of the NDS tree and provide a structure that is
similar to a directory in a file system. Objects that cannot contain other objects are
called non-container or leaf objects. Leaf objects represent the actual network
resources that perform some function in the NDS tree, such as users, printers,
modems, servers, or volumes.

The sections below describe the following characteristics of containment classes:

• Containment class rules
• Containment classes in the base schema
• Containment of leaf objects
• Containment classes and inheritance

4.4.6.1 Containment Class Rules

For each object class, a list of containment classes specifies where an object of that
class may appear in the hierarchical structure of the NDS tree. An object can be
immediately subordinate to only those objects whose classes appear in the
containment list of the object's expanded class definition. An expanded class
definition includes all the characteristics defined for the class plus all the
characteristics that the class can inherit from super classes.

Effective classes can inherit containment classes from super classes only if the
inheritance does not make containment ambiguous. If the inherited containment is
ambiguous, the class must define containment. Class-defined containment overrides
containment defined for super classes.

Effective classes are those object classes that can be used to create entries in the NDS
database. Non-effective classes cannot be used to create entries and are used by the
schema so that multiple object classes can inherit a common set of schema
characteristics. Non-effective classes can have ambiguous containment.

Containment classes limit the possible location of an object in the Directory tree, thus
restricting the order and types of partial names that appear in the object's complete
name. Containment helps to ensure that the NDS tree expands in a consistent and
logical fashion. For example, an Organization object can be the topmost object of the
NDS tree or subordinate to the Tree Root object. A User object can be subordinate to
an Organization object but not to a Tree Root object. Before users can be added to an
NDS tree, the tree must contain either an Organization object or an Organizational

69

Unit object, which are the containment classes for the User object.

While helping to control the structure of the Directory, containment classes must also
be flexible enough to accommodate a variety of organizational situations. An example
is the relationship between the Organization and Locality classes. Each class specifies
the other as a containment class. This allows an administrator to decide which
hierarchical order best represents the company's organization.

4.4.6.2 Containment Classes in the Base Schema

The table below lists the' classes in the base schema that can contain other objects and
the object types that they can contain.

Table 4.1: List of Object Class and Contained Class

Object Class

Tree Root

Country

Locality

Organization

Organizational Unit

Contained Classes

Country
Organization

Locality
Organization

Locality
Organization
Organizational Unit

Locality
Organizational Unit
Leaf Objects

Locality
Organizational Unit
Leaf Objects

Figure 4.3 presents a graphical view of the NDS containment structure. This view
shows the containment classes and the object classes that they can contain and that
can be contained by them. Object classes that cannot contain other objects (the leaf
objects) are collectively shown as non-container classes. The object class Top is not
shown in this graphical view because Top is used for schema hierarchy and
inheritance but not for the NDS tree hierarchy.

70

{i0
~,

Figure 4.3: Containment Structure.

All Effective
Non-Container Classes

~-<-/
I

~ ' Organizational Unit
, l~_ .
'-~ ------

t:coun(~~ee_ROO~~rg~i~tion :::1
I _.-.-"_--- // I
I .-.-' --- / I-« .---:.----- /,. - _._ __ /' I

/' _.-" _-- /' I
. I - - -.-:-_--- // I
~ . Locality - / I

, ~ // I.... / I
-, ,// I

, , ,/ I
, // I

// I
I
I
I
I
I
I

Tree Root, Organization, and Country are shown on the same level because they all
can be the topmost objects in the tree. Tree Root has arrows pointing to both Country
and Organization because Country and Organization can be, but are not required to
be, subordinate to Tree Root.

The base schema defines all effective leaf objects as subordinate to either
Organizational Unit or Organization. Applications which extend the schema can
define leaf objects that are subordinate to any container in the tree. They can also
define new container objects. Such applications cannot, however, define new
container objects for the root of the tree.

4.4.6.3 Containment of Leaf Objects

The following table lists the leal objects (effective and non-effective), the object
classes they can be there parent container, and the object that defined the containment.

Table 4.2: List of Leaf Object Class.

Object Class Contained By Class Defined For

AFP Server Organization
Organizational Unit

Alias Special case-inherits containment Alias
from the referenced object

Bindery Object Organization Bindery Object
Organizational Unit

71

Bindery Queue Organization Queue
Organizational Unit

CommExec Organization Server
Organizational Unit

€omputer Organization Device
Organizational Unit

Device Organization Device
Organizational Unit

Directory Map Organization Resource
Organizational Unit

External Entity Organization External Entity
Organizational Unit

Group Organization Group
Organizational Unit

List Organization List
Organizational Unit

Message Rou,ing Group Organization Group
Organizational Unit

Messaging Server Organization Server
Organizational Unit

NCP Server Organization Server
Organizational Unit,

Organizational Person Organization Organizational Person
Organizational Unit

Organizational Role Organization Organizational Role
Organizational Unit

Partition Special case Partition

Person None Top

Print Server Organization Server
Organizational Unit

Printer Organization Device
Organizational Unit

72

Profile

Queue

Resource

Server

Unknown

User

Organization
Organizational Unit

Organization
Organizational Unit

Organization
Organizational Unit

Organization
Organizational Unit

Special case

Organization
Organizational Unit

Profile

Resource

Resource

Server

Any

Organizational Person

Non-effective classes cannot be used to create object in the NDS tree, but they are
often used to define containment classes for other object classes to inherit.

Figure 4.4 presents a graphical view of how the leaf objects inherited their
containment classes. The arrows pointing up to container objects indicate which
object class declared the containment classes. Arrows pointing down to a leaf object
indicate the objects that inherit the containment classes. Effective classes use shapes
with solid lines and non-effective classes use shapes with dotted lines.

Figure 4.4: Container Inheritance for Leaf Objects.

Organizaiion and Organizational Unit

(----- -----,
: Device :
,----- ---_ .•.'

... ---- --------,, ,
: Server I

,----- ------_..'

.------- ------ ..,
: Resource :
,---.,--------,,--1, ', "

Computer
Printer

AFP Server
NCP Server
Print Server
Message Server

Directory Map
Volume

Queue.

Alias

Partition

c~;~~i;~~~~E~;;::::J
Message Routing
Group

73

Bindery Queue

Bindery Object
External Entity

. List
Organizational Role
Profile

•

A couple of effective object classes are unique: Alias and Partition. They are shown at
the bottom of Figure 4. Alias inherits its containment classes from the object that it
references. Since all leaf objects have Organizations and Organizational Units as their
containment classes, an Alias will usually inherit these containment classes. However,
an Alias can reference a container and when it does, the Alias inherits the container's
containment classes.

Partition inherits its containment class from its root container object. Since a partition
can be defined for any container object in the tree, a partition can have the
containment rules of Tree Root, Country, Organization, Locality, and Organizational
Unit in the base schema.

The Person class is not shown because it is a non-effective class, defines no
containment classes, and inherits no containment class from its super class, Top.
Thus, Person is like Top in that they both do not affect containment classes of any
c;bjects in the NDS tree [36].

4.4.6.4 Containment Classes and Inheritance

Containment classes create the hierarchy of the NDS tree and determine where an
instance of an object can be created in the NDS tree. A special flag, [Nothing], allows
the three objects, Tree Root, Country, and Organization, to have no superior object.

Once an instance of an object (or an entry) is created in the NDS tree, the entry
inherits rights from its container objects and the container objects are part of the
entry's distinguished name. However, the object classes in the schema do not inherit
anything from their containment classes.

Object classes can inherit containment definitions, but such inheritances come from
the schema's super class structure.

4.4.7 Super Classes

Super classes create the hierarchy of the schema and determine the characteristics that
an object class can inherit from another object class. Inheritance simplifies the rules of
the schema because it allows some characteristics to be defined once, while multiple
objects classes can use and enforce these common characteristics.

The sections below describe the following characteristics of super classes:

• Root schema object
• Super class rules
• Class hierarchy
• Object class inheritance rules

4.4.7.1 Root Schema Object

The Top object class is the root of the schema. Since all other object classes inherit

74
(• , !'

"\. ('".

" '

characteristics from the Top class, the Top class specifies information that pertains to
all other classes. For example, the Top class defines the following optional attributes:

• ACL
• Back Link
• Last Referenced Time
• Obituary
• Used By

NDS uses these attributes to maintain information. Since these attributes are defined
for Top, all object classes inherit these attributes. Entries in the NDS tree have them
available whenever NDS needs to assign a value to one.

4.4.7.2 Super Class Rules

Each object class must define an object class as its super class. Super classes cannot
be recursive; therefore an object class cannot list itself as a super class. The complete
definition of each object class is derived from the characteristics of the object class
itself plus the characteristics of all classes in its super class lineage. Hierarchies of
classes develop through class inheritance in this manner. The classes at the top of the
hierarchy provide general characteristics, while those at the bottom becom~ more and
more specialized. The complete set of rules for an object class is called the expanded
class definition.

The object class from which an entry is created is called the entry's base class. The
expanded class definition for an object class includes the base class and the sum of the
information specified by all its super classes. For the purpose of searching the NDS
tree, an entry is considered a member of all of its super classes. For example, the base
class for creating a user is the User class. The User class inherits from the following
super classes: Organizational Person, Person, and Top [43].

Although the schema is stored with the rest of the NDS database, schema data is
logically separated from the NDS tree and must be accessed through different
functions. Also, the schema's class hierarchy does not necessarily form a simple tree
graph because a class can list more than one class as a super class. Listing multiple
classes as super classes is called multiple inheritance (None of the objects in the NDS
base schema uses multiple inheritance).

4.4.7.3 Class Hierarchy

Figure 4.5 provides a single graphic view of the base schema, showing the object
classes in the structure of the class hierarchy. This provides a visual view of the object
classes, super classes, and inheritance. In this view, the arrows show the direction of
flow for inheritance. An object class inherits the rules and attributes defined by all its
super classes, but does not inherit from its subordinates.

Effective object classes are represented as shapes with solid lines, and non-effective

75 , ,

object classes are represented as shapes with broken lines.

Figure 4.5: Super Class Inheritance.

Group

r------------,
'Partition :, ,>------ 1

r--- ------.
: Person :, ,

:------\-: Message Routmg

.\ Group

~ ,--- ----------------,
: Organizational Person :, ,
:_---------~.-_:

~

r?
Alias
Bindery Object
Country
External Entity
Locality
List
Organil..ation
Organizational Role
Organizational Unit
Profile
Unknown

Queue

r---------.
: Device,

Computer
Printer

Directory Map
Volume

,---- --/~=:~~i

Bindery Queue

AFP Scrvcr
Messaging Server
NCP Scrver
Print Server

D~----~;:'I ,..----- ---I
: Resource :, ,. --------~

The class Top is an effective class, but it is a special super class because it cannot be
used to define an instance of an object.

Figure 4.5 illustrates the effective use of non-effective classes. For example, the
Server class (non-effective) defines those characteristics shared by all servers; the
effective classes (AFP server, NCP Server, Print Server, etc.) define only those
characteristics that are particular to that type of server.

4.4.7.4 Object Class Inheritance Rules

While a class automatically inherits some characteristics in the schema, a class can
select to inherit or block the inheritance of other characteristics. The schema follows
the followin'g inheritance rules.

• A class must declare another class as its super class. The class then automatically
inherits any super classes of its defined super class. (Top is the only class that has
no super class.)

• A class may, but is not required to, define mandatory or optional attributes. The
class, however, always inherits all the attributes, both mandatory and optional, of
its super classes.

• A class may, but is not required to, define a default ACL template. The class

76

always inherits all the default ACL templates of its super classes. Classes that
extend the schema carmot define new default ACL templates.

• A class can inherit containment classes and naming attributes, but if the class
defines them, any definitions made in super classes are not applied to the class.

4.4.8 Object Class Attributes

An attribute is a single piece of information that is stored in the database about an
object. The attributes assigned to an object class can be mandatory or optional:

• If an attribute is mandatory, a value must be assigned to the attribute before an
instance of the object can be created.

• If an attribute is optional, a value does not need to be assigned to create an
instance of the object. The only exception is an optional naming attribute. If the
optional naming attribute is the only attribute used for naming the object, this
optional attribute becomes a mandatory attribute.

Both mandatory and optional attributes are always inherited from super classes. There
is no way to block the inheritance. Also, mandatory definitions take precedence over
optional designations. For example, a subordinate class can define an attribute as
mandatory that is optional in a super class. For that class it is now mandatory.
However, if a subordinate class tries to define an attribute as optional that a super
class defines as mandatory, the attribute is still mandatory for the subordinate class.

A client cannot associate an attribute with an object unless the attribute is listed
among the mandatory or optional attributes of the object's expanded class definition.
If a client must associate an attribute with a particular object and the attribute is not
specified by the object class, the client must extend the schema by:

• Adding the new attribute to the class or a super class as an attribute
• Defining a new class that inherits from the original class and adds the new

attribute as an attribute

If the attribute is added to a non-removable class, the attribute becomes non-
removable. Attributes are only removable when they are not assigned to any class.

4.4.9 Object Class Flags

There are five object class flags that can be "set" (turned On) or "not set" (turned
Off). Applications extending the schema can set two: Container and Effective. NDS
sets three: Non-removable, Ambiguous Naming, and Ambiguous Container.

4.4.9.1 Container Flag'

The Container flag indicates whether the object can contain other objects. The flag is
turned On for those object classes that are designated as container classes. The flag is
turned Off for all leaf object classes.

77

4.4.9.2 Effective Flag

The Effective flag indicates whether an object class is effective or non-effective. The
Effective flag is turned On for those classes which can be used both to provide
definition and to create objects. The Effective flag is turned Off for those classes
which provide definition but cannot be used to create objects.

Only effective classes are:

• Used to create entries in the NDS database
• Assigned as base classes to the entries they create in the NDS database

Most of the object classes in the base schema are effective classes. Since effective
classes are the active building blocks from which an NDS tree is created, their
structure rules must be complete. This means that the naming attributes and
containment classes cannot be ambiguous.

For example, if naming attributes or containment classes are not specified for a new
effective class, they are inherited from the new class's super classes. If the new
effective class inherits from multiple super classes, the naming attribute and
containment classes must be identical. If they aren't identical, the structure rules
conflict and are ambiguous. In this case, an effective class must define its naming
attributes and containment classes.

If the structure rules are incomplete or ambiguous, NDS automatically flags the class
as non-effective. The effective or non-effective flag is assigned to a class when it is
originally defined. The value cannot be modified after the class is created.

The non-effective classes are not active and thus cannot be used to create objects in an
NDS tree. They are typically used as super classes to define class information that is
shared by multiple effective classes. The effective classes can then inherit the class
information from the non-effective super class rather than repetitively defining it.

The base schema defines the following non-effective classes:

• Device
• Organizational Person
• Partition
• Person
• Resource
• Server

Top is the one special case for the Effective flag. Although Top is flagged as an
effective class, no object can be created from the Top class.

4.4.9.3 Non-removable Flag

The Non-removable flag indicates whether the object class can be removed from the
schema. The flag is turned On for objects that cannot be removed. The flag is turned
Offfor object classes that can be removed. All base schema object classes are flagged
non-removable. Object classes added to extend the schema are the only classes that
may have the non-removable flag turned off.

78

....."

4.4.9.4 Ambiguous Naming Flag

The Ambiguous Naming flag indicates whether the object class has clearly defined
naming attributes. As a general rule, non-effective classes can be created with
ambiguous naming, but effective classes must have non-ambiguous naming attributes.
Only in special cases can effective classes be created with ambiguous naming. The
Alias class object is one of these special cases since it needs to inherit the naming
attributes of its reference object class.

For most object classes in the base schema, the Ambiguous Naming flag is turned Off.
The only object classes where this flag is turned On are Top, Alias, Person, and
Partition.

4.4.9.5 Ambiguous Container Flag

The Ambiguous Container flag indicates whether the object class has clearly defined
containment classes. As a general rule, non-effective classes can be created with
ambiguous containment, but effective classes must have non-ambiguous containment.
Only in special cases can effective classes be created with ambiguous containment.
The Alias class object is one of these special cases since it needs to inherit the
containment classes of its reference object class.

For most object classes in the base schema, the Ambiguous Container flag is turned
Off. It is turned On for object classes Top, Alias, Person, and Partition.

4.4.10 Default ACL Templates

Every object in the NDS tree has an Access Control List (ACL) attribute. This
attribute holds information about which trustees have access to the object itself (entry
rights), and which trustees have access to the attributes for the object. This
information is stored in sets of information containing:

• The trustee name
• The affected attribute-[Entry Rights], [All Attributes Rights], or a specific

attribute
• The privileges

Default ACL templates are defined for specific classes in the base schema and
provide a minimum amount of access security for newly created objects. Only base
schema objects can have default ACL templates. Developers extending the schema
cannot create default ACL templates for new objects.

Since the Top object class defines a default ACL template, all object classes inherit a
default ACL template. The ACL defined for Top allows the object that creates another
object the right to supervise the created object. This ACL ensures that every object
added to an NDS tree has a supervisor.

An object inherits the default ACL templates that are defined for any of the object's
super classes. For example, the NCP Server object inherits default ACL templates
from Top and Server, and then defines one for itself.

Developers extending the schema cannot create templates that overwrite or add to the

79

".

templates in the base schema. However, when an object is created in an NDS tree, the
creation process can set the object's ACLs to any value, including one that changes a
value that comes from a default ACL template.

4.4.11 Construction Rules for Object Classes

The following rules regulate the construction of new object classes. Developers that
need to define the new object classes should pay close attention to these rules.

• Object class definitions cannot be recursive. That is to say, an object cannot
have itself as a super class.

• Only classes with complete structure rules can be flagged as effective, and
thus used to create objects. This means the super classes, containment, and
naming attributes must be complete.

• An effective class can be constructed in three ways:
o The class defines its own structure rules
o The class inherits structure rules from its super classes
o The class defines part of the structure rules (such as naming) and

inherits the other part of the structure rules (such as containment) from
a super class

• Structure rules that might be inherited from its super classes are ignored for a
class that defines its own structure rules.

• If structure rules of an effective class' are inherited, they must be non-
ambiguous.

4.4.12 Attribute Type Definitions

All attributes found in an NDS tree consist of an attribute type and an attribute value,
which can be multi-valued. The attribute type identifies the nature of information the
attribute stores, and the value is th~ stored information.

The attribute type definition:

• Identifies the attribute syntax used for the value
• Specifies the constraints that are imposed on the syntax

These constraints are also known as attribute flags. Attributes are assigned to objects
according to the object's class definition.

An example of an attribute type is CN (Common Name) which uses the "Case Ignore
String" syntax. CN (Common Name) constrains this syntax to a range from 1 to 64
Unicode characters. This attribute is used by many object classes, including Server,
Person, Group, and Bindery Object.

Attribute types can be added to the NDS schema. However, once an attribute type has

80
(
.•.

been created, it can not be modified.

Attribute types can be removed from the NOS schema, but only if the attribute is not
part of the base schema and only if the attribute type isn't assigned to a class. All
attribute types in the base schema are always flagged non-removable.

4.4.13 Attribute Syntaxes

The attribute syntax controls the type of information that can be stored in the value
(for example, integer, string, or stream data). The syntax must be selected from the set
of predefined attribute syntaxes. The syntax also controls the type of compare
operations that can be performed on the value. See "4.4.15 Attribute Syntax
Definitions" for more information.

4.4.14 Attribute Constraints

The attribute constraints restrict the information that can be stored in the data type and
constrain the operations of NOS and NOS clients. The constraints specify whether the
attribute:

• Allows only a single value or multiple values
• Has a range or size limit to the value
• Is synchronized immediately, at the next scheduled interval, or never
• Is hidden or viewable
• Is write-able or read-only

The table below lists all of the attribute constraints.

Table 4.3: List of Attribute Constraints.

Constraint Description

Indicates that the attribute has a single value, with no
OS SINGLE VALUED ATTR order implied.- - -

Indicates that the attribute has an upper and lower
OS SIZED ATTR boundary. This can be the length for strings or. the-

value for integers. The first number indicates the lo\ver
boundary and the second, the upper boundary.

OS NONREMOV ABLE ATTR Prevents the attribute from being removed from an
- -

object class definition. The client cannot set or modify
this constraint flag and thus cannot modify the
attribute. All base schema attribute type definitions
have the non-removable flag set.

DS READ ONLY ATTR Prevents clients from modifying the attribute. The NOS,

81

server creates and maintains the attribute.

DS HIDDEN ATTR Marks the attribute as usable only by the NDS server.
- -

The client cannot set or modify this flag and thus
cannot see or modify the attribute.

DS STRING ATTR Labels the attribute as a string type. You can use
- -

attributes of this type as naming attributes
DS OPERATIONAL Indicates that NDS uses the attribute internally and

requires the attribute to function correctly.
DS PUBLIC READ Indicates that anyone can read the attribute without

- -
read privileges being assigned. You cannot use
inheritance masks to prevent an object from reading
attributes with this constraint.

DS PER REPLICA Marks the attribute so that the information in the- -
attribute is not synchronized with other replicas. The
client cannot set or modify this constraint flag and thus
cannot modify the attribute

DS SCHEDULE SYNC NEVER Allows the attribute's value to change without such a
- -

change triggering synchronization. The attribute can
wait to propagate the change until the next regularly
scheduled synchronization cycle or some other event
triggers synchronization.

,

DS WRITE MANAGED Forces users to have managed rights on the object that- -
contains this attribute before they can change the
attribute's value.

DS SERVER READ Indicates that Server class objects can read the attribute
- -

even though the privilege to read has not been inherited
or explicitly granted. You cannot use inheritance masks
to restrict servers from reading attributes with this
constraint.

DS SYNC IMMEDIATE Forces immediate synchronization with other replicas
-

when the value of the attribute changes. Attributes
without this constraint are synchronized at the next
synchronization interval.

4.4.15 Attribute Syntax Definitions

An attribute syntax defines a standard data type which an attribute uses to store its
values in the NDS tree. The syntax definitions are static definitions represented in
basic C-code format. For example, the schema includes the following attribute
syntaxes:

82

\'

• SYN CI STRlNG- The Case Ignore String syntax is used by attributes
whose values are strings and the case (upper or lower) is not significant.

• SYN_INTEGER-The Integer syntax is used by attributes whose values are
signed integers.

An attribute syntax consists of a single data type for which syntax matching rules and
qualifiers have been specified. Matching rules indicate the characteristics that are
significant when comparing two values of the same syntax. There are three primary
matching rules:

• Equality-To match for equality, two values must be identical, use the same
attribute syntax, and conform to the data type of the attribute syntax. Most
syntaxes specify a match for equality. NDS checks that the values being
matched conform to the data type of the syntax. NDS will not attempt to
match two values if the syntax does not specify a match for equality.

• Ordering-To match for ordering, a syntax must be open to comparisons of
"less than," "equal to," and "greater than." For example, 50 are less than
100, and N is greater than B.

• Substrings-To match substrings, a syntax must be open to search and
comparison patterns that include the asterisk (*) wildcard. For example in
a syntax using substring matching, "n*v*I" would match "naval," "navel,"
and "novel."

An approximate comparison rule can be used in searches and compansons on
syntaxes with lists of strings and syntaxes with distinguished names:

• Strings -The approximate rule determines whether a string is present in a
syntax with a string list.

• Distinguished Names-The approximate rule determines whether a
distinguished name matches the distinguished name in a corresponding
field while ignoring the other fields in the syntax. To increase
performance, NDS replaces distinguished names with IDs in the
comparison and search operations.

A syntax can specify one or more of these matching rules. For example, the Case
Ignore String syntax specifies matching rules of equality and substrings.

A syntax can also specify qualifiers for comparison which ignore characters such as
dashes, leading spaces, trailing spaces, and multiple consecutive internal spaces. All
string syntaxes use comparison operations that ignore extra spaces. Other qualifiers
allow only digits or only printable characters.

Attribute type definitions are built on attribute syntaxes. Developers extending the
schema can create new attribute types using these syntaxes, but they cannot create any
new syntax definitions.

83

4.5 NDS Partitioning
NOS divides the Directory tree into logical sub-trees called partitions. Although any
part of the Directory can be considered a sub-tree, a partition forms a distinct unit of
data for storing and replicating Directory information. Partition boundaries cannot
overlap, so each entry in the Directory appears in only one partition.

A partition subordinate to another partition is called a child partition, while its
immediate superior is called a parent partition. Partitions must obey the following
rules:

• They must contain a connected sub-tree.

• They must contain only one container object as the root of the sub-tree.

• They cannot overlap with any other partition.

• They take their name from the root-most container object (the container at
the root of the sub-tree), which is called the partition root.

Figure 4.6 shows a partitioned tree with Engineering.ABC as the parent and
CSE.Engineering.ABC as a child partition. ABC is the Directory tree's root partition.

Figure 4.6: A partitioned tree.

,,,,,,,,,,

,----------- ..,
/ "'~ I, ,, ,, ,, ,, ,, ,
I "_____ Le- __ ..::-d _

,,,,,,,,,, . ,
••...•_~:..:_---~_~ I

,-------,,,,,,,
t ") I
••• _.-4 I------------'"

4.5.1 Partition Operations

NOS allows administrators to create and manage partitions and their replicas. These
operations, called partition operations, allow great flexibility in maintaining and
modifying the Directory tree. Partition operations include the following:

• Adding a replica of a partition. This operation involves placing a replica of
a given partition on a specific server.

• Changing a replica's type. This operation changes a replica's type,

84

including creating a new master replica. For example, an administrator
may want to change a read-write replica to a read-only replica to restrict
changes to that partition's data.

• Removing a replica from a set of replicas. This operation removes one or
more replicas of a given partition.

• Splitting a partition. This operation' creates a new partition from a
container in an existing partition.

• Joining two partitions. This operation joins a parent and child partition,
making one partition from the two.

• Moving a partition. This allows administrators to move an entire partition
and its contents to another part of the Directory tree without affecting
connectivity or access control privileges.

All these operations involve two major stages: the initial operation involving the
client and the master replica, and a second stage during which the partition changes
are sent to each replica of the partition.

4.6 NDS Replication
A single instance of a partition is called a replica. Partitions can have multiple

, replicas, but only one replica of a particular partition can exist on each server.
(Servers can hold more than one replica, as long as each replica is of a different
partition.) One of the replicas (usually the first created) of a given partition must be
designated the master replica. Each partition can have only one master replica; the
other replicas are designated as either read-write or read-only replicas. (You can use
the read-only replica only to read the information in the partition replica. You cannot
write to a read-only replica.)

Replication adds fault tolerance to the NDS because the database has more than one
copy of its information.

85
r'v'

4.6.1 Replica Types

Replicas must be designated as one of four types:

• Master

• Read-write

• Read-only

• Subordinate reference

One (and only one) replica of a partition must be designated as the master replica; the
other replicas must be designated as either a read-write or read-only replica, or a
subordinate reference. The replicas are invisible to the end user; that is, the user does
not know which replica contains the entries being accessed.

4.6.1.1 Master, Read-Write, and Read-Only Replicas

Clients can create, modify, and delete entries on either master or read-write replicas.
However, clients can perform operations that deal with partitions only on the master
replica. Clients cannot make any changes to read-only replicas.

Figure 4.7 shows three partitions (A, B, and C) replicated across three name servers
(NSl, NS2, and NS3).

Figure 4.7: Partitioning and Replication.

Master Master Rend-Only

Replica of Replica of Replica of

Partition A Partition B Partition C

••
.~:~..• " Master',"':~"t," - , Read~Write Read-Write~N" Replica of Replica of Replica of.';t-
(.~. : Partition A Partition B Partition C
'~'-'" -. 'I'~.'. ~

r
.•. ~" <•.~ :it" Read-Write Read.Write
"'NS~t(.-,'! .:> .! Replica of Replica of
,~~~J!..;iW !;~. Partition A Partition CI".,ifi.-'; '} .'.'r0

"

86

• NS I stores the master replicas of partitions A and B and a read-only
replica of partition C.

• NS2 stores the master replica of partition C and read-write replicas of
Partition A and B.

• NS3 stores Read-Write replicas of Partition A and C.

Given this arrangement, any of the servers could handle a request to add an entry to
partition A. Only NS I and NS2 could handle a similar request for partition B, and
only NS2 and NS3 could handle such a request for partition C.

Only NS I can create a new partition that is subordinate to partition A or B, and only
NS2 can create a new partition that is subordinate to partition C.

4.6.2 Subordinate References

Subordinate references, which are not visible to users, provide tree connectivity. Each
subordinate reference is a complete copy of a given partition's root object but is not a
copy of the whole partition. As a general rule, subordinate references are placed on
servers that contain a replica of a parent partition but not the relevant child partitions.
In other words, a subordinate reference points to an absent subordinate partition. In
this case, the server contains a subordinate reference for each child partition it does
not store.

Subordinate references provide tree connectivity by referring to replicas the server
may need to find. Because the subordinate reference is a copy of a partition root
object, it holds the Replica attribute, which lists all the servers on which replicas of
the child partition can be found. NDS can then use this list to locate replicas of the
subordinate partition.

Figure 4.8 shows a partitioned tree and its subsequent replica placement on the servers
that are holding the tree.

87

Figure 4.8: Replica placement in a partitioned tree.

._------- ...,,,,,,,,,
I l .]:, ,,----------_ .•.

---------,,,,,,,,

" ---- ..,, ,, ,, ,, ,, ,, ,, ,, ,
: :, ,

•••• 0#

iiiill'", '~:~,,,,,,,,,,,
-----------,,,,,,,,

,---------~,,,,,,,,,,
\ *'"""•••• 0#

[Root]- R/W
ENG - R-O
MCE- Master

NONE

ENG- R/W
EEE- R/W
MCE-R/W

RES- R/W
MCE- R/W

Some of the servers in Figure 4.8 hold replicas of parent but not replicas of the
corresponding child. These servers must also hold subordinate references to the child
partitions they do not hold, as shown in Figure 4.9. For example, because server NS4
holds a replica of the ENG partition but not of EEE, it must hold a subordinate
reference to EEE.

88

Figure 4.9: Replica placement and subordinate references.

._------- ..,,,,,,,,,
.', I\ k. ,

,------------"

-------- ...,,,,,,,,

.. ---- ..,, ,, ,, ,, ,, ,, ,, ,, ,
I L _J I

" ',-----------_/

"'-----------,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,
: '-----------,,,,,,,,

;---------~,,
: f----- ..-=-----
, ", ", ", ", ", ,I I

',-------_.:..,..;--_/ :
I \, ",j, ,, ,,----------_ .•.

[Root]- Master
ENG-Master
MCE- R/W
EEE - SubRef
RES - SubRef

[Root)- RlW
ENG-SubRef
EEE - Master
RES - Master
MCE - Sub Ref

ENG- R/W
EEE- R/W
MCE-R/W

[Root)- R/W
ENG- R-O
EEE-SubRef
RES - SubRef
MCE~Master

RES- R/W
MCE- RlW

On server NSI in Figure 4.9, the subordinate reference of RES.ABC is a complete
copy of the root object, RES.ABC, but not of its subordinate objects; the subordinate
reference of EEE.ENG.ABC is a complete copy of the entire partition, since
EEE.ENG.ABC is the only object in the partition. Users cannot change a subordinate
reference's replica type.

Besides providing tree connectivity, subordinate references also help determine rights.
Because a subordinate reference holds a copy of the partition root object, it holds that

89

•

object's Inherited ACL attribute, which summarizes the Access Control Lists up to
that point in the tree.

4.6.3 Replica List

Each replica contains a list of servers that support the partition it represents. The
replica list is stored in each replica as a Replica attribute of the partition's root-most
container entry. This list provides information needed for navigating the NDS tree and
synchronizing the replicas. The replica list contains the following elements for each
replica:

• Server Name. The name of the server where the replica is located.
,

• Replica Type. The type of the replica stored on the server designated in the
Server Name field. (The type is either Master, R W, RO, or SR.)

• Replica State. The status of the replica. (The statuses include On, New,
Replica dying, among others.)

• Replica Number. The number that the master assigned to this replica at the
time the replica was created.

• Network Address. The server's address.

• Remote ID. The Entry ID of the replica's partition root entry.

4.7 NDS Synchronization
Synchronization is the process of ensuring that all changes to a particular partition are
made to every replica of that partition. The X.SOO standard defines two
synchronization mechanisms: master slave synchronization and peer-to-peer
synchronization.

The master-slave mechanism requires that all changes be made on the master replica.
That replica is then responsible to update all the other replicas (slave replicas).

In a peer-to-peer synchronization system, updates can be made to any read-write or
master replica. At a predetermined interval, all servers holding copies of the same.
partition communicate with each other to determine who holds the latest information
for each object. The servers update their replicas with the latest information for each
replica. In NetWare, the synchronization time interval ranges from between 10
seconds to 30 minutes depending upon the type of information updated.

NDS uses both the master-slave and peer-to-peer synchronization processes,
depending upon the type of change being made. The master-slave mechanism
synchronizes operations such as partition operations that require a single point of
control. The peer-to-peer mechanism synchronizes all other system changes. Most
operations use peer-to-peer synchronization.

90

4.7.1 Loose Consistency

Because the NDS database must synchronize replicas, not all replicas hold the latest
changes at any given time. This concept is referred to as loose consistency (called
transient consistency in the X.SOO standard), which simply means that the partition
replicas are not instantaneously updated. In other words, as long. as the database is
being updated, the network Directory is not guaranteed to be completely synchronized
at any instance in time. However, during periods in which the database is not updated,
it will completely synchronize [48].

Loose consistency has the advantage of allowing Directory servers to be connected to
the network with different types of media. For example, you could. connect one
portion of your company's network to another by using a satellite link. Data travelling
over a satellite link experiences transmission delays, so any update to the database on
one side of the satellite link is delayed in reaching the database on the other side of
the satellite link. However, because the database is loosely consistent, these
transmission delays do not interfere with the normal operation of the network. The
new information arrives over the satellite link and is propagated through the network
at the next synchronization interval.

Another advantage to loose consistency is that if part of the network is down, the
changes will synchronize to available servers. When the problem is resolved, the
replicas on the affected servers will receive updates.

4.7.2 Replica Synchronization Process

Because an NDS partition can be replicated and distributed across a network, any
changes made to one replica must be sent to, or synchronized with, the other replicas.
The synchronization process keeps data consistent across the network. Time Stamps
and Partition Information components of NDS playa vital role in the synchronization
process.

Time Stamps: One critical component in synchronization is the time stamp, which
records information about when and where a given value .in a given attribute was
modified. When NDS updates a replica, it sends a modification time stamp with the
data to be updated. The replica compares time stamps and replaces the old
information with the new. A replica is considered synchronized when it has received
the latest updates from all other replicas of its partition.

Partition Information: For normal operations, including synchronization, to be
successful, the partition root object on each server must store several important
attributes and their values:

• Replica Pointer(s)

• Partition Control attribute

• SynchronizedUpTo vector

• Synchronization cache

91

• Object Control attribute

In the source code synchronization is known as Skulking. The purpose of the
synchronization operation is to check the synchronization status of every server that
has a replica of a given partition. Factors that determine whether synchronization is
necessary include the replica's convergence attribute, its replica type, and the time
that has elapsed since the replica was last synchronized or updated. The system scans
the partition records locally to decide which partitions need to be synchronized.

NOS provides a trigger, or heartbeat, every thirty minutes to schedule
synchronization. The network administrator can adjust the trigger's time interval with
the use of the DSTrace console SET command.

The synchronization process involves updating all replicas with all the changes made
to a partition since the last synchronization cycle. The synchronization process takes
the replica list and synchronizes the replicas one at a time to the replica that has
changed. .

Since NOS is a loosely synchronized database, an update made at one replica
propagates to other replicas of the partition over time. Any modification to the NOS
database activates the replica synchronization process. When a change is made locally
to an NOS entry on one server, the synchronization process wakes up to propagate the
change to other replicas of the partition. There is a ten, second hold-down time to
allow several updates to be propagated in one update session. Replica synchronization
proceeds one replica at a time throughout the replica ring of a partition.

'.

After a server successfully sends all pending updates to one replica, it goes on to the
next replica until all replicas have been updated. If the operation fails for one or more
replicas and they are not updated in one round of the synchronization process, it
reschedules them for a later synchronization cycle.

4.8 Distributed Relationship Management

Distributed relationship management cOnsists of three components that help keep
NOS trees connected:

• External references

• Back links

• Obituaries

4.8.1 External References

A server usually stores replicas of only some of an NOS Directory's partltlons.
Sometimes a server must hold information about entries in partitions that the server
does not store. Often, the server requires information about an entry in a parent
partition. Having this information helps the local server maintain connectivity with
the upper part of the tree. At other times, the server requires information about entries

92

in partitions that are not parents or children of partitions it stores; for example, the file
system may need to refer to these entries, or an entry stored on the local server may
need to refer to them.

NDS stores these types of information in external references, which are placeholders
containing information about entries that the server does not hold. External references
are not "real" entries because they do not contain complete entry information.

Besides providing connectivity, external references improve system performance by
caching frequently accessed information. Currently, NDS caches only an entry's
public key. The ModifY Entry routine is used to store the public key as an attribute on
the external reference [48].

4.8.1.1 Creating External References

NDS creates external references when an entry is not stored on the local server:

• Authenticates and attaches to the server.

• Is added as a trustee to a locally stored file system or entry.

• Becomes a member of a locally stored group.

In addition, NDS creates external references when a replica is removed from the
server. NDS calls change all of the entries in the removed replica into external
references and mark them as expired.

Keep in mind the following two rules about creating external references:

• NDS never creates an external reference below a real entry in the tree.

• NDS never creates a subordinate reference below an external reference in
the tree. Any subordinate references below an external reference will be
removed during synchronization.

4.8.1.2 Deleting External References

On each server, NDS deletes expired external references if they have not been used
within a specified time period. The system administrator can use a SET parameter to
set a number of days after which NDS deletes external references that have not used,
are not needed for another entry's context, or do not contain information that the
operating system needs.

To remove expired external references, NDS builds a list of unused external
references by checking the life-span interval of each external reference. This interval
defaults to eight days and thirty minutes.

NDS checks to see if the file system must access any of the external references. This
process then deletes any external references not accessed by the file system within the
life-span interval. The Janitor process then purges the deleted external references.

93

~"~.'"'"-. ,

4.8.1.3 Synchronizing External References

When NDS updates entries and partitions, it also must update external references
created for those entries.

After successfully synchronizing all the replicas of a partition, NDS checks any entry
that has been renamed, moved, or deleted. All of these processes involve the Remove
Entry process, which adds an obituary on the object being removed. If NDS finds any
back link obituaries, it notifies the server that contains the entry's external reference
to update that external reference.

4.8.2 Back Links

When NDS creates a new.external reference, it also attempts to create a pointer to the
server holding the external reference as one of the attributes of the non-local entry.
This pointer is called a back link and is stored as a Back Link attribute. If NDS is
unable to create the back link, it continues trying to create the link 9 times. The
default retry interval is currently 3 minutes. IfNDS cannot create the back link after 9
times, the Back Link process creates the back link [50].

NDS uses back links to update external references in the cases where the real object
has been renamed or deleted.

The Back Link process executes on a time interval set by the network administrator.
Currently, the default interval is 13 hours. The Back Link process has two basic
functions:

• Remove any expired and unneeded external references from the system.

• Create and maintain any back links not created at the same time as the
external reference.

4.8.2.1 Creating a Back Link

When NDS creates a new external reference for an entry not stored on the local
server, NDS attempts to place a back link on the real entry. The back link points to the
server that holds the external reference. For example, in the tree in Figure 4.10,
partition ENG is stored on server NS I. Because partition RES is stored on server
NS2, which does not store a copy of ENG, server NS2 needs an external reference for
partition ENG to connect partition RES with [Root]. When NDS creates the external
reference, NDS places a back link on server NSI's copy of entry ENG. This back link
points to NS2.

In this case, server NS I sends a Create Back Link request to NS2, which places the
back link as an attribute value for the entry ENG. ~

94

4.8.2.2 Deleting a Back Link

When NDS removes an external reference, the back link to that external reference
must be deleted. The server holding the external reference requests that the server
holding the real entry deletes the back link, and the server holding the back link then
deletes the reference.

Figure 4.10: Backlinks.

4.8.3

-----------,,,,,,,,,,,
"

Obituaries

,,----------- .•." ,'.11
Server NSI
[Root] - Master
ENG - Master

Server NS2
RES - Master
[Root] - Ext. Ref.

In a distributed database, each server receives updated information through
synchronization. Because the servers do not receive updates simultaneously, the
servers may not hold the same information at a given time. For this reason, each
server holds on to the old information until all the other servers receive updates. NDS
uses obituaries to keep track of such information. . '

For example, Figure 4.11 shows how obituaries are used when an entry is renamed.
On server I, the entry C is renamed to D. When. server 2, which holds a replica ofC,
receives the update during synchronization, it keeps the copy of C and attaches a New
RDN obituary to it. This obituary ensures that all servers can access C, even if they

95

.~, ..

\.
r

have not been notified of the name change. When server 2 creates entry 0, it attaches
an Old RDN obituary pointing back to the original object. After all replicas have been
synchronized, server 2 can delete its copy of C and remove the obituary from entry
10.

Figure 4.11: Obituaries.

OldRDN
Obituary

--~. .
E- : Before :

Svnchronization :. au .

~tCNJ.
~ I[I~

NewRDN
Obituary

~,

r')eN
~ I

U
New EntryOrginal

Entry

~I
: •••••••••• : I
• • Ui "l
: SeIVer1 : ~
••••••••••••

Obituaries are attribute values that are not visible to clients and are used in server-to-
server exchanges. Because obituaries are attribute values, NOS synchronizes them the
same way it synchronizes other values. NOS synchronizes all obituaries across
partition replicas.

4.8.3.1 Primary and Secondary Obituaries

The Back Link obituary is considered a secondwy obituary. It keeps external
references synchronized with the real entries. All other obituaries are primary
obituaries, which keep track of entry-level modifications, including:

• Renaming an entry

• Deleting an entry

• Moving an entry

• Moving a subtree

Generally, when data is changed, primary obituaries convey the change(s) to servers
holding the affected entry. Secondary obituaries convey the change to servers holding
external references to the changed entry.

96

4.9 Network Time Synchronization

Time synchronization is important to the operation of NDS, as it establishes the order
of Directory events that take place. Whenever an event occurs in the Directory, such
as when an object is renamed or a password changed, NDS requests a time stamp. A
time stamp is a unique code that includes the time an event took place and
identification of the replica that initiated the event. Every NDS event is assigned a
time stamp so that replicas can be updated in the proper order [37].

NDS uses four types of Time-Servers to synchronize the time over the network, which
are:

• Secondary Time Server

• Primary Time Server

• Reference Time Server

• Single Reference Time Server

4.9.1 Secondary Time Server

A Secondary Time Server (STS) obtains the time from a Single Reference, Primary,
or Reference time server and provides the time to clients (such as workstations or
applications). A secondary time server does not vote to determine the correct network
time.
Secondary time servers contact Primary or Reference time servers that are physically
close in order to keep network traffic between the time servers to a minimum.
For optimal time synchronization, require each Secondary time server to contact a
Primary, Reference, or Single Reference time server with as few intervening routers
and slow LAN segments as possible.

4.9.2 Primary Time Server

A Primary Time Server (PTS) synchronizes network time with at least one other
Primary or Reference time server, and provides the time to Secondary time servers
and clients. A PTS polls other Primary or Reference time servers, and then votes with
them to synchronize the time. .

Primary time servers adjust their internal clocks to synchronize with the decided on
common network time. Because all Primary time servers adjust their clocks, network
time may drift slightly during this process.

A PTS is used primarily on larger networks to increase fault tolerance by providing
redundant paths for Secondary time servers. If a Primary time server goes down, the
Secondary time server can get the time from an alternate Primary time server. On a

97
,.

large network, use at least one Primary time server for every 125 to 150 Secondary
time servers.

4.9.3 Reference Time Server

A Reference Time Server (RTS) provides a time to which all other servers and clients
synchronize. Reference time servers should be synchronized with an external time
source, such as from a radio clock that receives time signals from the Naval
Observatory or some other accurate time source.

An RTS polls other Primary or Reference time servers, then votes with them to
synchronize the time. Because the Reference time server does not change its clock,
the Primary time servers must reach consensus with the time provided by the
Reference server.

An RTS is used when it is important to have a central point to control network time.
P-

Reference and Single Reference time servers are two distinctly different types of time
servers. Do not confuse the two.

4.9.4 Single Reference Time Server

,

The Single Reference Time Server (SRTS) provides time to Secondary time servers
and clients. When a Single Reference time server is used, it is the sole source of time
for the entire network. The network supervisor sets the time on the Single Reference
time server.

The SRTS can be used for all networks, regardless of Size, but IS primarily
recommended for small networks.

Important: Because the Single Reference Time Server is the sole source of time on
the network it is installed on, all other servers on the network must be able to contact
it. When the Single Reference Time Server is used, you cannot have any Primary or
Reference time servers on the network.

Single Reference, Reference, and Primary time servers are all time source servers.
Time source servers provide time to the network. Secondary time servers do not
provide time to the network; they only receive the time from a time source server and
pass the received time along to clients.

98

Chapter 5

Directory Services Enabled .bd Domain

5.1 Introduction

This section of the research works discusses about the possible standards for .bd
domain of Bangladesh. In this section, we have introduced Directory Services enabled
Domain Name System for .bd domain. We have also discussed about Naming
Standards, IP address allocation guidelines, NDS partition and Zone Transfer of .bd
domain.

We have also introduced traditional model of DNS for .bd domain, and discussed how
NDS enabled DNS gives us the countrywide fully managed fault-tolerant Domain
Name Space.

5.2 Definition of Component Terms

To develop the standard for the country domain we have classified the information of
this chapter into different classes, which are:

• Mandatory

• Recommended

• Optional

Classifications definition are given below:

Information which must be adhered to as specified.
Mandatory

Information which provide a best practice suggestion which
Recommended should be followed where ever possible. Failure to adopt these

recommendations could cause significant problems, therefore,
organizations who feel they need to use an alternative should
check with the .bd management committee before proceeding.

Information which provides standards, and a range of choices
Optional from which the organization can choose a solution to suit

their local requirements.

99

5.3 Traditional Architectural Model of .bd Domain

Figure 5.1 shows the proposed traditional DNS model of .bd Domain of Bangladesh.
In this model, we have considered present architecture ofInternet as a standard for .bd
Domain. As Directory Services enabled Internet is going to be a 2151 Century
Architecture of Internet, we have also developed directory services enabled .bd
Domain Standard for the Country network standard, which is discussed in section 5.4.

Figure 5.1: The .bd Domain Name Space Tree.

""
bd

I

f + + J ~ + + +
net edu com org mil res ngo ms

We have divided .bd Country Domain into eight second-level domains/Zones, which
are the child of .bd domain. Adherence to this structure and standard is Mandatory

The .bd Domain Name Space (DNS) Tree in Fig. 5.2 shows the following domains:

.bd. - Country Top Level Domain of Bangladesh

nis.bd. - Second Level Domain for all government bodies including ministries, who
are providing services to nation but not involved in business.

ngo.bd. - Second Level Domain for all non-goverrunent organaizations of Bangladesh

res.bd. - Second Level Domain for all research organaization (including goverriment,
non-government, private etc.) of Bangladesh

mil.bd. - Second Level Domain for Dpartment of Defense of Bangladesh.

org.bd. - Second Level Domain for all autonomous and international organizations in
Bangladesh, who are not involved in business.

com.bd. - Second Level Domain for all commercial organization (government, non-
government, private and public) of Bangladesh

edu.bd. - Second Level Domain for all educational institutions (government & private
school, college, institute, and university) of Bangladesh.

net.bd. - Sec\'nd Level Domain for network service providers of Bangladesh.

100

..,
~~

5.4 Directory Services Enabled DNS

NOS enabled ONS greatly simplifies the task of network administration by enabling
all configuration information into one distributed database. Furthermore, the
ONS configuration information is replicated just like any other data in NOS.

NOS enabled ONS has shifted the concept of a primary or secondary zone away from
the server to the zone itself. Once the zone is configured the data is available to any of
the authoritative NOS-ONS servers for the zone. The server assigned to this function
is called the designated server. The NOS-ONS server takes advantage of the peer-to-
peer nature of NOS by replicating the ONS data.

The NOS enabled ONS servers inter-operate with other non-ONS servers. The NOS
ONS server can act as either a master ONS server or a secondary ONS server in
relation to non-NOS ONS servers. The NOS-ONS server can act as the master ONS
server and transfer data to non-NOS secondary servers. Alternatively, one NOS-ONS
server can act as a secondary ONS server and transfer data in from a non-NOS master
server. All NOS-ONS servers can then access the data through NOS replication.

Figure 5.2 illustrates NOS-ONS as the Primary ONS name server with primary and
secondary zones within NOS. In this model there are two primary zones. Any of the
NOS-ONS servers assigned to the zone are able to respond to queries for the zones.
For each zone, one server is designated to act as the designated server. In this model
Server 1 is the designated server for Zone I, Server2 is the designated server for Zone
2, and Server3 is the designated server for the secondary zone called Foreign Zone.
Server 3 will occasionally request zone transfers from the foreign server and place the
modified zone data into NOS where any of the NOS servers can respond to queries
for it.
Figure 5.2: NDS Enabled DNS Model

NDS

NDS DNS Sever 1

r NOS ONS Sever 2

101

.-
--- --- - - --

NOS ONS Sever 3

5.4.1 New NDS Objects for DNS

The following new NDS objects support DNS:

DNS Zone object
DNS Resource Record Set object
DNS Name Server object

5.4.1.1 DNS Zone Object

The DNS Zone object is a container object that contains all the data for a single DNS
zone. A Zone object is the first level of the DNS zone description.

Multiple DNS domains can be represented within NDS by using separate,
independent DNS Zone objects. Multiple DNS domains could be supported on a
single NDS server by creating multiple DNS Zone objects and assigning the server to
serve those zones.

The DNS Zone object contains data that correlates to a DNS Start of Authority (SOA)
Resource Record (RR) - a member list of all NDS-based DNS servers that support
the zone, and designated server information.

The DNS name space hierarchy is not represented within the NDS hierarchy. A zone
and its child zone might appear as peers within the NDS hierarchy, even though they
have a parent-child relationship within the DNS hierarchy.

5.4.1.2 DNS Resource Record Set Object

The DNS Resource Record Set (RRSet) object is an NDS leaf object contained within
a DNS Zone object. An RRSet object represents an individual domain name within a
DNS zone. Its required attributes are a DNS domain name, a DNS address class, and a
Time-to-Live (TTL) record.

Each domain name within a DNS zone object has an RRSet object. Each RRSet
object has one or more resource records beneath it containing additional information
about the domain, including a description of the object and version information.

5.4.1.3 DNS Resource Records

A DNS Resource Record (RR) is an attribute of an RRSet that contains the RR type
and data of a single RR. RRs are configured beneath their respective RRSet objects.
Resource records describe their associated RRset object.

The most common RRs are A records, which map a domain name to an IP address,
and PTR records, which map an IP address to a domain name within an
IN-ADDR.ARPA zone.

102

{

5.4.1.4 DNS Server Object

The DNS Server object (or Service object) is a separate entity from the NDS Server
object. A DNS Server object can be contained in an 0, OU, C, or 1. The DNS Server
object contains DNS server configuration parameters, including the following:

Zone List
DNS Server IP Address
DNS Server Options
Forwarding List
No Forwarding List

5.4.2 New NDS objects forDHCP

The following new NDS objects support DHCP:

• Subnet object
• , Address Range object
• IP Address object
• DHCP Server object
• Subnet Pool object

The Subnet object represents a subnet and is the most fundamental DHCP object. The
Subnet object can be contained by an Organization (0), Organizational Unit (OU), a
Country (C), or a Locality (L), The Subnet object acts as a container object for the IP
Address and Address Range objects. A Subnet object's specific DHCP options and
configuration parameters apply to the entire subnet and override global options.

The Address Range object is used primarily to create a pool of addresses for dynamic
address assignment or to identify a range of addresses to be excluded from address
assignment. Optionally, the Address Range object also stores the start of a host name
that can be assigned to clients when addresses are assigned.

Multiple address range objects could be used under a subnet object. Different range
types such as, a range for dynamic address assignment, a range for BOOTP clients, or
a range to be excluded from the subnet could be specified under a single sub-net
object.

The IP Address object represents a single IP address. The IP Address object includes
an address number and an assignment type. The assignment type is "dynamic" for
address objects created by the server to represent addresses assigned dynamically
from an address range.

For dynamically or automatically assigned client addresses, DHCP creates' an IP
Address object under the subnet where the address is assigned, An IP address can be
assigned to a client based on the client's MAC (Media Access Control) address i.e.
hardware address. These IP Address objects can also receive specific DHCP or

103

BOOTP options. Address objects contain the lease expiration time for both
dynamically and statically assigned addresses.

The DHCP Server Object represents the DHCP server and contains a multi-valued
attribute listing of the subnet ranges this DHCP server is servicing. The DHCP server
also contains all server-specific configuration and policy information.

The Subnet Pool object provides support for multiple subnets through a DHCP or
BOOTP forwarder by identifying a pool of sub nets.

DHCP servers are not required to be on the local sub net to which they assign
addresses. If desired, they can be deployed centrally and service remote subnets.
Initial DHCP/BOOTP DISCOVER requests, however, will not be sent to a DHCP
server unless a DHCP/BOOTP forwarder local to the client has been configured to
forward the addresses.

The Subnet Pool object contains a list of subnet object references (a list of subnet
objects of the same type within the pool) and comments.

5.5 NDS Enabled DNS Model of .bd Domain

Figure 5.3 shows the countrywide single NDS based DNS Tree of .bd domain, which
will enable to manage the entire .bd domain from a single point of the domain. In
future this DNS tree will be merged with the Global Internet NDS Tree, which is
being considered as the backbone of future Internet architecture.

Figure 5.3: NDS based .bd model

From the architectural point of view, we have divided .bd Domain into eight Zones
and each Zone will be managed by it's own dedicated DNS server. All Zones' DNS

104

\

server will be linked with .bd DNS server, which will act as the Master DNS Server
for the country.

Figure 5.3 NDS based .bd model, shows the Zones/Organization objects of .bd NDS
DNS Tree:

. bd - Country Top Level Domain/Country NDS Object of Bangladesh

Zone: nis.bd. - Second Level Domain/Zone for all government bodies including
ministries, who are providing services to nation but not involved in
business.

Zone: ngo.bd. - Second Level Domain/Zone for all non-government organaizations
of Bangladesh

Zone: res.bd. - Second Level Domain/Zone for all research organaization (including
government, non-government, private etc.) of Bangladesh

Zone: mil.bd. - Second Level Domain/Zone for Departments of Defense of
Bangladesh.

Zone: org.bd. - Second Level Domain/Zone for all autonomous and international
organizations in Bangladesh, who are not involved in business.

Zone: com.bd. - Second Level Domain/Zone for all commercial organization
(government, non-government, private and public) of Bangladesh

Zone: edu.bd. - Second Level Domain/Zone for all educational institutions
(government & private school, college, institute, and university) of
Bangladesh.

Zone: net.bd. - Second Level Domain/Zone for network servIce providers of
Bangladesh.

105 •

Figure 5.4 shows the ZonefNDS Partition model of .bd Domain. Country Domain
NOS Tree is partitioned as per the Zones depicted in Figure 5.3 model, and master
partition ofNDS Tree is .bd domain itself. Each Zone and Master Domain server will
hold the replica of other zone as per the replication model depicted in Figure 5.5.

Figure 5.4: NDS Partition/Zone Model of .bd Domain

ZoneslNDS Partitions

bd/[ROOT]
Partition

ZoneslNDS Partitions

r, '1
~ i

! II!
f j
~ ,_,,-"_-d

Figure 5.5 shows the Zone TransferfNDS Replication model of .bd Domain Tree,
which ensure the fully fault-tolerant country domain systems for the Bangladesh.
Replication model ensures the availability of each Zone replica into Master DNS
server and the Master Partition into each Zone Server.

106

Figure 5.5: NDS Replication/Zone Transfer Model of .bd Domain

~neINDS
Partition:

~t.bd

~nelND~
Partition:

~s.bd LJ

~ ZonelNDS ~
Partition:

I\. ngo.bd '
L:::::::::. ~ ~s.bd ~

~onelND~
Partition:

~rg.bd ...~

ZonelNDS ~
Partition:

~i1.bd LJ

In this model if one Zone server goes down other nearest server will handle the
network information of the downed server.

5.6 Domain and Objects Naming Standards

The domain and objects defined in the NDS based .bd domain tree must adhere to
standards to ensure a consistent and predictable method of identifying each domain
and object. As a result, a domain and objects naming standard have been developed.

Adherence to this standard is Mandatory.

o,J
107

\

5.6.1 Objectives

This section defines the standards for the domain and objects in the .bd Tree. The
standards are described in the following terms:

• General naming standards
• Sub-domains/Container objects
• User Accounts/Leaf objects

5.6.2 Use of Characters in Domain Object Naming

This section identifies which characters are acceptable for use in the .bd Domain Tree.

5.6.2.1 Acceptable characters

Mandatory The following characters are the only characters to be used in the NDS
Tree when assigning names to objects:

Table 5. t: Characters that should only by used within the Domain TREE

Acceptable characters

Numeric 1 2 3 4 5 6 7 8 9 0 .

Alpha A B C D E F G H I J K L M

N 0 p Q R S T U V W X Y Z

a b c d e f 9 h i j k 1 ill

n 0 p q r s t u v w x y Z

Non Alpha/Numeric underscore
.

-

- hyphen

[square bracket - open

] square bracket - close

5.6.2.2 Use of underscore, space and hyphen

Mandatory NDS will read a space and an underscore as exactly the same character.
Therefore the following standards must be used:

• A space character should not be used in an object name unless specifically
required. An underscore should be used to represent a space between two
words in an object name.

Example: Khaled_Mahmood

108

• The hyphen is used where multiple words have been abbreviated or as a
delimiter in a composite name such as:

Example: Bangladesh Computer Council, Dhaka could be abbreviated as
BCC-DA, and Bangladesh Telegraph & Telephone Board, Kushtia could be
abbreviated as BTTB-KS.

5.6.2.3 Country NDS Tree

Our objective is to use only one live Country NDS Tree.

The name of the Country NDS Tree is: BD TREE

1ji4ri~~'im
IMPORTAN

~4h •._'

To ensure no confusion arises between description of services
The name "BD_TREE" must not be used by any other:

•
•

5.6.2.4

Tree set up on the .bd country network
Live network device or service

Local NDS Tree

Local NDS Trees may be required as part of the preparation for the solitary Country
NDS Tree (BD TREE).

Mandatory Local NDS trees must be designed and implemented according to the
Novell Directory Services Overview and Novell Directory Services Naming standards
available from the Novell Document set. The NDS trees must have their own unique
name in order to prevent coexistence of multiple trees with identical names, which
will lead to potential corruption of all trees involved in the collision.

Mandatory The following nammg convention must be applied to all Local NDS
Trees.

Table 5.2: Naming convention for production NOS Tree

Local Production Tree BD Delimiter Second Level Delimiter Third Level Delimiter Suffix
prefix Domain Domain

Code Code
Number of characters 2 1 3 I 5 I 4

Alpha A Underscore A Underscore A Underscore A

Naming Convention BD NOS std BD std. NOS std BD std. NOS std BD
std. std.

Example BD -
EDU -

BUET - TREE

109 "

The example in the above table creates the following name for a Local NDS tree
created at BUET: BD EDD BUET TREE- - -

5.6.3 Second Level Domain Objects

This section .detail the standards associated with second level domain objects in the
Tree.

The Second Level Domain objects represent the Organisation (0) objects of the NDS
Tree.

Table 5.3: Characteristics of the Second Level Domain objects /Organisation
objects name

Use of Object Represents the second level domain of the country
Number of characters 3
Alpha A
Classification Mandatory

These objects are unique within the Country Domain Tree.

5.6.4 The Third Level Domain Objects/Organisational
Unit (OU) Objects

Table 5.4: Characteristics of the Third Level Domain Objects/Organisation Unit
(OU) objects '

Use of Object Represents Third Level Domain Objects
Number of characters 5
Alpha or land Numeric A+AN
Classification Recommended

Fourth and Lower Level domain objects should follow Third Level Domain
Objects standard.

110

5.6.5 User Accounts of Domains or Leaf Objects

Recommended User names created within a Domain must be unique.

To ensure uniqueness of user naming, names should be checked against the existing
list of user accounts of the particular Domain.

Table 5.6: Characteristics of a User objectsfUser accounts

Use of Object Represents a user ID
Number of characters 8
Alpha or land Numeric A+AN
Classification Recommended

The user object name or User ID should be constructed with the first eight characters
of a user's last name. Use the entire last name if a user has less than eight characters
in their last name.

Table 5.7: Implementation of a User object

Surname First Name Middle Name User ID

Rahman Khandaker Mirazur Rahman

Islam Mohammad Aminul Islam

Shamsuddin Mohammad Shamsudd

Do not use hyphens or spaces in hyphenated or double barrelled last names like Bart-
Williams, Clare- Whitecker, Rob- Tyre. Treat the two last names as one for the purpose
of naming a user object/User ID.

Table 5.7: Non-use of hyphens within a User Name object

Surname First Name Middle Names User ID

Graham-Hyde Andrew Roger GRAHAMHY

Bart-Williams Clare Lisa BARTWILL

5.6.6 Handling of Duplicate Names

Names should be kept unique within a Domain.

If a user login ID has been created for a user and the same login name is then required
by users with the same last name, there must be a method of distinguishing between
the users. When same Last Name is found use First and Middle Names initial along

III

with the Last Name to create a unique User 10. Table 5.8 shows the method of
creating unique User 10 whose last name is same.

UserID = LastName/+ First & Middle Names Initial.

Table 5.8: Sole identity of each User Name object

Request Surname First Name Middle User ID Action
Names

1st Request Islam Mohammad Rabiul Islam use last name

2nd Request Islam Mohammad Rafiqul IslamM add 1st initial from First Name

3rd Request Islam Mohammad Raqibul IslamMR add 2"d initial from Middle
Name

4th Request Islam Mohammad Reazul IslamMRI add'l' at end of name

5th Request Islam Mohammad Rezaul IslamMR2 use next number in sequence

If IslamMR9 is reached and another IslamMR is required, the middle initial is
dropped and the next available user name in the IslamMR sequence is used. The
IslamMR sequence can go to 99 on qualifiers.

In the above example, the last name is less than eight characters. The table below
shows the same principle can be assigned to a user 10, which is based on a name that
is greater than eight characters long. The last characters of the name are replaced as
appropriate.

Table 5.9: Non standard User Objects

Request Surname First Middle User ID Action
Name Names

151 Request Chowdhury Mizanur Rahman Chowdhur use last name

2nd Request Chowdhury Mirazur Rahman ChowdhuM input Isl initial at end

3rd Request Chowdhury Mahmud Hussain ChowdhMH input 2nd at end

4th Request Chowdhury Mobarrak Hussain ChowdMHI input '1' at end

5th Request Chowdhury Momenul Hussain ChowdMH2 use next number in sequence

5.7 IP Address Space Allocation Standard

To bring the Bangladesh under a single IP network, we need a registered Class A
address from InterNIC which could cover all hosts in the Country. To develop the IP
Address Allocation Standard for the .bd Domain, we are assuming that our Class A
address is x.O.O.O and net-mask 255.0.0.0, where x could be any value within the
Class A address range.

112

Adherence to this standard is Recommended.

The Class A address X.D.D.D covers IP addresses range from X.D.D.D to
X.255.255.255, which could be equally divided into eight blocks like:

X.D.O.O.O - X.3I.255.255

X.32.0.0 - X.63.255.255

X.64.0.0 - X.95.255.255

X.96.0.0 - X.127.255.255

X.128.0.0 - X.159.255.255

X. 160.0.0 - X.191.255.255

X.192.0.D - X.223.255.255

X.224.0.0 - X.255.255.255

Each block represents 2,097,152 addresses, which will be managed by each second
level domain/Zone of .bd domain. The allocation of IP' Address Block to each
Zone!Second Level Domain (alphabetically) are given below:

com.bd. X.O.O.O.O- X.31.255.255

edu.bd. X.32.0.0 - X.63.255.255

miI.bd. X.64.0.0 - X.95.255.255

net.bd. X.96.0.0 - X.127.255.255

ngo.bd. X.128.0.0 - X.159.255.255

nis.bd. X. 160.0.0 - X.191.255.255

org.bd. X.ln.O.O - X.223.255.255

res.bd. X.224.0.0 - X.255.255.255

The assigned IP address range for each Zone! Second Level Domain will cover all the
hosts connected under the particular Zone! Second Level Domain. To manage each
Zone! Second Level Domain IP addresses assignment efficiently, each block could be
divided into sub-blocks, where each sub-block will contain 256 addresses with sub-
net mask 255.255.255.0. Each sub-block could be further divided into partial sub-
block containing 128 addresses with sub-net mask 255.255.255.128. Allocation of
sub-block and partial sub-blocks will depend on the requirement of the organizations.

113

There will be a Central Domain Management Committee (CDMC), who will be
responsible for overall country DNS Tree. For each zone there will be a Zone
Management Committee (ZMC), who will be responsible for individual Zone/ Second
Level Domain. Each ZMC will assign the IP addresses to the organizations related
with its' own Zone. The range of IP addresses assignment to an organisation will be
based on their number of LANs, hosts and the future expandability in terms of LAN
and hosts of the organisation. In that case, ZMC should follow the following
guidelines to assign the IP address spaces to the organizations:

Organization's Requirement

I) requires fewer than 256 addresses
2) requires fewer than 512 addresses
3) requires fewer than 1024 addresses
4) requires fewer than 2048 addresses
5) requires fewer than 4096 addresses
6) requires fewer than 8192 addresses
7) requires fewer than 16384 addresses

Assignment

1 sub-block address space
2 contiguous sub-block address space
4 contiguous sub-block address space
8 contiguous sub-block address space
16 contiguous sub-block address space
32 contiguous sub-block address space
64 contiguous sub-block address space

If the subscriber or the organization's network is divided into logically distinct LANs
across which it would be difficult to use the given number of sub-block network
numbers, the above criteria may apply on a per-LAN basis. For example, if a
subscriber has 600 hosts equally divided across ten Ethernets, the allocation to that
subscriber could be ten partial sub-block network numbers; one for each Ethernet.
The subscriber would have to support the request of ramification from the stated
criteria with an engineering plan.

These criteria are not intended to cause a subscriber to subnet the sub-block networks
unnecessarily. Although, if a subscriber has a small number of hosts per subnet, the
subscriber should investigate the feasibility of subnetting the sub-block network
numbers rather than requesting one Sub-block network number for every subnet. In
cases where the lack of Sub-block subnetting would result in an extravagant waste of
address space, the ZMC may request a detailed engineering plan of subnetting from
the organization to evaluate its requirement.

If a subscriber has a requirement for almost 4096 unique IP addresses it could
conceivably receive 16 contiguous sub-blocks. However, there are cases where a
subscriber may request a larger block of Sub-block network numbers. For instance, if
an organization requires fewer than 8192 addresses and requests 32 Sub-block
network addresses, the ZMC may hOl1our this request. The maximal block of Sub-
block network numbers that should be assigned to a subscriber consists of 64
contiguous Sub-block networks. This would correspond to a single IP prefix of 18
bits. Exceptions from the above stated criteria need to be determined on a case-by-
case basis.

•
114

5.8 Benefits of NDS enabled DNS Services

The NDS enabled DNS Services provides the following DNS features:

• All DNS configuration is done in NDS, facilitating enterprise-wide
management.

• A NDS-DNS server can be a secondary name server to another zone (ONS
data loaded into NDS through a zone transfer), or it can be a primary name
server

• DNS data can be read in from a BIND Master file to populate NDS for
convenient upgrades from BIND implementations ofDNS.

• DNS data can also be exported out of NDS into BIND Master file format.
Root server information is stored in NDS and shared by all NDS-based
DNS servers.

• Zone transfers are made to and from NOS through NDS servers and
include interoperability with non-NDS-based DNS.

• A NDS-ONS server can be authoritative for multiple domains.

• NDS-ONS servers maintain a cache of data out of NDS so they can
respond to queries very quickly.

• A NDS-DNS Server can act as a caching or forwarding server instead of
being authoritative server for zones.

• The NDS DNS Services support multi-homing.

• The NOS ONS Services support round-robining of responses to queries
with multiple A records for a domain name.

The NDS DNS Services conforms to RFCs 1035, 1036, and 1183, and is based on
BIND 4.9.5.

115

Chapter 6

Conclusion

6.1 Conclusion

In this thesis, a traditional .bd Domain, and Directory Services Enabled .bd Domain
structures have been proposed. A detailed study have been made on TCP/IP protocol
suite, traditional DNS, X.SOO Directory Services, and Novell Directory Services to
develop the CountryNetwork standards.

TCP/IP protocols have been chosen as the standard backbone protocol for the country
network. TCP/IP is being worked as a standard protocol for the IT industry and the
future Information Technology is being developed based on TCP/IP. Considering the
present trend of IT, TCP/IP address allocation standards have been developed, which
will guide to manage the country IP-Net more effectively.

Domain Name System (DNS) is the core structure of the Internet, and Internet has
worked as a key enabler to develop the Today's IT industry. Present and future
technological development is being attained based on Internet technology. As DNS is
the basic structure of the Internet, a traditional DNS standard has been developed for
.bd Domain to adopt with the present Internet technology with the country network.

X.SOO a standard, a concept, a direction for future Network Computing Architecture
of Information Technology. Global Directory Services is the leading concept in the
IT industry, which is being worked as a key enabler to develop the future global
networking. Based on the strategic direction of Directory Services (OS) in the IT
industry, a OS enabled .bd Domain standards have been developed to face challenges
of next millennium.

6.2 Limitations

Basic standards have been developed and based on these standards other objects
standard like printers, print queue, print server, computer, directory map object,
group, application object, etc. could be developed for the real life implementations of
directory services in the .bd domain.

Security of the information is a vital factor in today's networking, different operating
Systems or platforms use different security techniques/technology for their systems.
Standardisation and adoption of Information Technology security standards for the
country network are not discussed in this thesis.

116

In. this research work, main concentration has been given on Domain Name System
and Directory Services standard, but we have not discussed about physical layer
standards for the country network.

Practical experience on Information Technology industry, and knowledge base on
different Network Operating Systems (NOS) are a pre-requisite for a researcher,
which could be treated as a major limitation for this type of thesis work.

6.3 Future Development

Successful implementation of directory services depends on the country network
standard, and the systematic approach of offerings of the services. The complexity of
implementation could be reduced if the offerings of the services become more
transparent to its users. Several factors must be considered as these services are the
co-operative effort among the technical, administrative, organizational, and legal
disciplines. Standards have been developed but, procedures must be defined and
agreed at the initial phase of implementation of the Directory service.

Following are the issues that should be addressed before implementation of the
Directory Services country-wide, and those could be resolved by further research
work on this thesis:

• Country legislation on information sharing
• Contents of the Directory
• Security Standards of the Network
• Data Integrity
• Country-wide Distributed National Database

Establishing a Directory service within a country/organization will involve a great
deal of co-operative effort. It is essential to get commitment from the integral parties
of a country/organization at the onset. This includes the technical, legal, and data
management components of the country. Executive level commitment will make it
much easier to get the co-operation necessary.

I 6.3.1 Country legislation on information sharing

..

The information provided by the Directory Services will be in electronic format to its
users. The users of the Directory Services may be from inside the country or may be
from outside the country. The information provided by the Directory Services may
considered as Private by one country/organisation and not by another, or there may be
a classification of information access .

Operational procedures must be clearly defined, as the inclusions in globally
distributed services have wide visibility. Adherence to these procedures must be
maintained at all level of information access, as misinformation may result in
unintentiomil legal violations and umeliable access of data can adversely affect on
organisations' reputation.

117

Therefore, it is necessary to be aware of the legalities and restrictions on electronic
information sharing of the countries. Some counties have published a Code of
Conduct with the Internet Engineering Task Force (IETF), explicitly stating the legal
restrictions on directory and list data [4]. A Code of Conduct on information sharing
needs to be developed for the country network, and that needs to be approved by
IETF.

6.3.2 Contents of the Directory

The contents of the Directory Services information are totally dependent on the
requirements of a particular country or organisation. The information provided in the
directory is tightly coupled with the purpose. If the purpose is to provide addressing
information for individuals, then customary information would include: Name,
address, phone, e-mail address, facsimile number, pager, etc. If the use of the
directory is to facilitate electronic mail routing, then the destination mail address
needs to be included for each user. No other iJ,lformation should be presented in the
directory if it is not directly related to the purpose.

If the directory is internal only, it may be desirable to include the registrants' title as
well. Remember that information available on the Internet is generally open to anyone
who wants to access it. Individuals wishing to target a specific market may access
directories to create customer mailing lists.

The structure or schema of the X.500 Directory must be an initial consideration. Will
the hierarchy follow the company structure or is a different approach more practical?
How many entries will there be in the directory; 5 or 500,000? A complex hierarchy
for thousands of users may affect the efficiency of queries. A study could be done on
the contents standard of BD (Bangladesh) Directory Services Tree.

6.3.3 Security Standards of the Network

Securing networked information resources is inherently complex. Attempts must be
made to preserve the security of the data. These may include access control lists
(ACLs), limiting the number or responses allowed to queries, or internal/external
access to the directory.

The subjects included in the directory shall have well defined rights. Company
policy, legal restrictions, and the ultimate use of the directory may mandate these. For
a basic Internet White Pages Service these rights may include:

1. the option of inclusion in the directory
2. the right of access to the information
3. the right to have inaccurate entries corrected

118

The terms and conditions for employees of an organization may affect these rights.
On becoming an employee of any organization, an individual inevitably agrees to
forego certain personal privacies and to accept restrictions.

The decentralized nature of the X.SOO Directory service means that each organization
has complete control over the data. As part of a global service however, it is important
that the operation of the DSA (Directory Services Agent) be monitored and
maintained in a. consistent manner. Authorisation must be given to the local
committee/administrator to manage the local part of the Directory Services more
effectively.

Security needs to be implemented at workstation, server, and network level. When
information passes from one network to another network that needs to be encrypted to
protect sensitive information from hacking. Depending on the confidentiality different
encryption technology needs to be implemented into different network segments. A
detailed study could be done on the security standards of the .bd domain tree.

6.3.4 Data Integrity

Information that needs to be included in the directory may come from various sources.
Demographic information may originate from the human resources department.
Electronic mail addresses may be provided by the computer network department. To
guarantee data integrity, it is advised that the data-need to be identified and
maintained as corporate information.

The required timeliness of the data-need is unique for each DSA (Directory Services
Agent). Updates to the data must be provided on a regular basis, it may be once a day
or once a month. In cases where data is time sensitive, all attribute should be included
to display the most recent maintenance date.

A regular check for data accuracy should be included in the directory administration.
Faulty information may put an organization in breach of any data protection laws and
possibly render the company as unreliable. A detailed study could be done on the data
integrity of Directory Services, and this could be implemented in .bd Domain Tree
services tree.

6.3.5 Country-wide Distributed National Database

NDS can be extremely useful for different services of a country if it operates as
designed. It may serve as the "hub" of the information routing and the basis for
several everyday activities. A NDS based national database could be developed,
which could be used for Social Security ID, Health Care, Insurance, Banking,
National Voting, etc. services. Presently, we do not have a national distributed
database, and if we want to provide the above services to the nation, further research
work needs to be done. For people to make use of these services consistent and
accurate information needs to be provided. Communication infrastructure of the
country is one of the most important factors to provide these services to our people.

119

[1]

[2]

[3]

[4]

[5]

[6]

References

Weider, c.; Reynolds, 1., "Executive Introduction to Directory Services
Using the X.500 Protocol", RFC: 1308, 1992 March, 4p.

Albitz. Paul, Liu. Cricket, "DNS and BIND", Second Edition, p-17, O'Reilly,
January 1997.

Mogul, 1.; Postel, 1., "Internet Standard Subnetting Procedure", RFC: 950,
August 1985.

Jennings, B., ;'Building an X.500 Directory Service in the US", RFC:1943,
May 1996.

Novell Inc., "Novell Delivers Directory Enabled IP Management and Proposes
Standard to DMTF, IETF", Novell@Research, July 1998.

A Novell White Paper, "Global Network Services: Novell's Strategy for
Enabling a Smart Global Network", Novell Research, 1995.

[7] Novell Developer Net, NDS enabled application development
www.developer.novell.com.

[8] Shropshire, ED, "Developing NDS-Enabled Applications", Novell Research,
Developer Alliance Division, 1997 December.

[9] Novell Inc., "NetVision: Using NDS as a Metadirectory to Synchronize
Different Directories", Novell@Research, June 1998 www.netvisn.com.

[10] Laube, Sheldon, "Novell's Smart Global Network and the Future of
Computing", Novell Research, December 1995.

[11] Jennings, B., "Building an X.500 Directory Service in the US", RFC: 1943,
May 1996.

[12) Weider, c.; Reynolds, J.; Heker, S., "Technical Overview of Directory Services
Using the X.500 Protocol", RFC: '1309, March 1992. '

[13) Novell Inc., "Mission Data Systems: Using an NDS "Smart Door" for Physical
Security", Novell@Research, May 1998 www.missiondata.co.uk.

[14) Yeong, W.; Howes, T.; Kille, S., "Lightweight Directory Access Protocol",
RFC: 1777; March 1995.

[15) CCITT Blue Book, Volume VIII - Fascicle VIII - Rec. X.509,
November 1988.

120

http://www.developer.novell.com.
http://www.netvisn.com.
http://www.missiondata.co.uk.

[16] Marina del Rey, "Internet Protocol
Specification", Information Sciences
California, RFC: 791, September 1981.

Darpa Internet Program Protocol
Institute, University of Southern

[17] Postel, J., "Assigned Numbers", Information Sciences Institute, University of
Southern California, RFC: 790, September 1981.

[18] Postel, J., "Internet Control Message Protocol -DARPA Internet Program
Protocol Specification", RFC: 792, September 1981.

[19] Plummer ,David c., "An Ethernet Address Resolution Protocol", RFC: 826,
November 1982.

[20] Postel, 1., "Multi-LAN Address Resolution", USC/Information Sciences
Institute, RFC: 925, October 1984.

[21] Postel, J., "User Datagram Protocol", USC/Information Sciences Institute, RFC:
768, August 1980.

[22] Postel, J., "Transmission Control Protocol", USC/Information Sciences
Institute, RFC: 793, September 1981.

[23] Smoot Carl-Mitchell, and John S. Quarterman" Practical Internetworking with
TCP/IP and UNIX", Addison-Wesley Publishing Company, 1993, pp 51-78,
109-128.

[24] Drew Heywood" Novell's Guide to Integrating NetWare and TCP/IP",Novell
Press,San Jose, CA95131, June 1996, 1st ed., pp 107-120, 173-184.

[25] Mockapetris, P.,"Domain Names - Concepts and Facilities", USC/Information
SciencesInstitute, RFC: 1034, November 1987.

[26] Jeffrey F. Hughes, "Understanding and Using NOS Objects " Novell
Consulting Services, Novell@Research, January 1995.

[27] Lollor, M. K., "Domain Administrators Operations Guide", USC/Information
Sciences Institute, RFC: 1033, November 1987.

[28] Stahl, M. K., "Establishing a Domain - Guidelines for Administrators",
USC/Information Sciences Institute, RFC: 1032, November 1987.

[29] Mockapetris, P., "Domain Names - Implementation and Specification",
USC/Information Sciences Institute, RFC:1035, November 1987.

[30] Steve Winn, "Controlling The Server Clock under Netware 4", Novell@
Research, November/December 1994.

[31] Partridge, C., "Mail routing and the domain system", RFC: 974, CSNET CIC
BBN Labs, January 1986.

121

[32] Kunze, Bernd, "Applying X.500 Naming Conventions to NDS", Novell
Research, January 1996. ,

[33] A Novell White Paper "Global Network Services: Novell's Strategy for
Enabling a Smart Global Network", Novell Research, December 1995.

[34] Wilson, Judy; Williams, John, "NDS Technical Overview", Novell Products
Group, Novell@Research, April 1998.

[35] Crossen, Nancy; Williams, John; Herrin, Selby, "Overview Of NDS Scale",
Novell@ Research, April 1997.

[36] Williams, John; Crossen, Nancy; Herrin, Selby, "NDS Technical Overview:
Novell Layered Services", Novell@Research, August 1997.

[37] Omew, Paul Barthol; Neff, Ken, "Easing TCP/IP Network Management with
Novell's DNSIDHCP Services", Novell Research, Novell Inc., April 1998.

[38] Harrenstien, K.; Stahl,M.; Feinler, E., "DoD Internet Host Table Specification",
RFC: 952, SRI, October 1985.

[39] Mockapetris, P., "Domain System Changes and Observations", RFC: 973,
USC/Information Sciences Institute, January 1986.

[40] Shropshire, Ed, "Developing with NDS Using Industry Standards: Java,
ActiveX, ODBC, Scripting, and C", Novell@Research, December 1997.

[41] Novell Inc., "Novell Announces New Web-to-Host Connectivity Solution for
Mainframe Access via the Internet". Novell@ Research, July 1997.

[42] Davin, J.; Case, J.; Fedor, M.; Schoffstall, M., "A Simple Gateway Monitoring
Protocol", RFC: 1028, November 1987.

[43] Judy Wilson, "NDS Schema Overview", Novell Products Group, Novell@
Research, October 1998.

[44] Rosen, Eric C., "Exterior Gateway Protocol (EGP)", RFC: 827, October 1982.

[45] E. Gerich, Merit, "Guidelines for Management of IP Address Space",
RFC:1466, May 1993.

[46] Quarterman, J., and J. Hoskins, "Notable Computer Networks",
Communications of the ACM, October 1986, volume ,29, number 10.

[47] Butler Group, "Intranet Technologies", Management Guide Strategies and
Technologies, United Kingdom, September 1996, pp 12-23.

[48] Doug Woodward, 'The State of the Infrastructure for Distributed Computing",
Novell Research, January 1993.

122

[49] Postel ,1.; Reynolds, J., "Domain Requirements", RFC: 920 USC/Information
Sciences Institute October 1984.

[50) Burnett, Kevin; Christopher Jenkins, "Extending the NDS Schema: A
Beginner's Approach", Novell@Research, June 1997.

[51] Nancy Crossen; John Williams, Selby Herrin, "Overview of Novell Directory
Services", Novell@Research, March 1997.

123 (
'\j'" PI "

'< .
.~-.

Appendix A - ISO 3166 Country Codes

The following table lists the ISO 3166 country code list used in NDS object naming.

Country Name Code
Afghanistan AF
Albania AL
Algeria DZ
Andorra AD
Angola AO
Anguilla AI
Antarctica AQ
Antigua and Barbuda AO
Argentina AR
Armenia AM
Aruba AW
Australia AU
Austria AT
Azerbaijan AZ
Bahamas BS
Bahrain BH
Bangladesh BD
Barbados BB
Belarus BY
Belgium BE
Belize BZ
Benin BJ
Bermuda BM
Bhutan BT
Bolivia BO
Botswana BW
Bouvet Island BV
Brazil BR
British Indian Ocean Territory 10
Brunei BN
Bulgaria BO
Burkina Faso BF
Burundi BI
Cambodia (Kampuchea) KH
Cameroon CM
Canada CA
Cape Verde CV
Cayman Islands KY
Central African Republic CF
Chad TD

124

Country Name Code
Chile CL
China CN
Christmas Island CX
Cocos (Keeling) Islands CC
Colombia CO
Comoro Islands KM
Congo CG
Cook Islands CK
Costa Rica CR
Croatia HR
Cuba CU
Cyprus CY
Czech Republic CZ
Denmark DK
Djibouti DJ
Dominica DM
Dominican Republic DO
Ecuador EC
Egypt EG
El Salvador SV
Equatorial Guinea GQ
Estonia EE
Ethiopia ET
Falkland Islands (Malvinas) FK
Faroe Islands FO
Fiji FJ
Finland FI
France FR
Gabon GA
Gambia GM
Georgia GE
Germany DE
Ghana GH
Gibraltar GI
Greece GR
Greenland GL
Grenada GD
Guadeloupe GP
Guam GU
Guatemala GT
Guiana- (French) GF
Guinea GN
Guinea Bissau GW
Guyana GY
Haiti HT
Honduras HN

125

Country Name Code
Hong Kong HK
Hungary HU
Iceland IS
India IN
Indonesia ID
Iran IR
Iraq IQ
Ireland IE
Israel IL
Italy IT
Ivory Coast CI
Jamaica JM
Japan Jp
Johnston Island JT
Jordan 10
Kazakhstan KZ
Kenya KE
Kiribati KI
Korea (North) KP
Korea (South) KR
Kuwait KW
Kyrgyzstan KG
Laos LA
Latvia LV
Lebanon LB
Lesotho LS
Liberia LR
Libya LY
Liechtenstein LI
Lithuania LT
Luxembourg LU
Macao MO
Madagascar MG
Malawi MW
Malaysia MY
Maldives MV
Mali ML
Malta MT
Marshall Islands MH
Martinique MQ
Mauritania MR
" Mauritius MU
Mexico MX
Micronesia FM
Midway Islands MI
Moldavia MD

126 ...•..•.

Country Name Code
Monaco MC
Mongolia MN
Montserrat MS
Morocco MA
Mozambique MZ
Myanmar MM
Namibia NA
Nauru . NR
Nepal NP
Netherlands NL
Netherlands Antilles AN
New Caledonia NC
New Zealand NZ
Nicaragua NI
Niger NE
Nigeria NG
Niue NU
Norfolk Island NF
Norway NO
Oman OM
Pacific Islands (US) PC
Pakistan PK
Panama PA
Papua New Guinea PG
Paraguay PY
Peru PE
Philippines PH
Pitcairn Islands PN
Poland PL
Polynesia (French) PF
Portugal PT
Puerto Rico PR
Qatar QA
Reunion RE
Romania RO
Russia RU
Rwanda RW
Sahara (Western) EH
Saint Helena SH
Saint Kitts and Nevis KN
Saint Lucia LC
Saint Pierre and Miquelon PM
Saint Vincent and Grenadines VC
Samoa (American) AS
Samoa (Western) WS
San Marino SM

127

Country Name Code
Sao Tome and Principe ST
Saudi Arabia .SA
Senegal SN
Seychelles SC
Sierra Leone SL
Singapore SO
Slovakia SK
Slovenia SI
Solomon Islands SB
Somalia SO
South Africa ZA
.Spain ES
Sri Lanka LK
Sudan SD
Surinam SR
Swaziland SZ
Sweden SE
Switzerland CH
Syria SY
Tadzhikistan TJ
Taiwan TW
Tanzania TZ
Thailand TH
Timor (East) TP
Togo TO
Tokelau TK
Tonga TO
Trinidad and Tobago IT
Tunisia TN
Turkey TR
Turkmenistan TM
Turks and Caicos Islands TC
Tuvalu TV
Uganda UO
Ukraine UA
United Arab Emirates AE
United Kingdom OB
United States of America US
Uruguay UY
Uzbekistan UZ
Vanuatu VU
Vatican VA
Venezuela VE
Vietnam VN
Virgin Islands (British) VO
Virgin Islands (US) VI

128

.1

~

j
j
1
1,
!
"
'I

,

1,,

Country Name Code
Wake Island WK
Wallis and Futuna Islands WF
Yemen YE
Yugoslavia YU
Zaire ZR
Zambia ZM
Zimbabwe ZW

129 •

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105
	00000106
	00000107
	00000108
	00000109
	00000110
	00000111
	00000112
	00000113
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133

