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Abstract

This thesis proposes and implements a new Theory Revision System. The Theory

Revision problem is defined as the problem of how best to go about revising a

knowledge base on the basis of a collection of examples, some of which expose

inaccuracies in the original knowledge base. This problem entreats a thorough

investigation of the following machine learning field of study: Combining Inductive

and Analytical learning. The problem of theory revision has been studied for quite

some time and various systems have been proposed. On one hand, there are successful

theory revision systems like EITHER and PTR, which combirie Inductive and

Analytical Learning. On the other hand, there are mention-worthy systems like

KBANN, TANGENTPROP,and EBNN that use imperfect domain theories together with

given training set of data. The new system is built by incorporating Version Space-

based Incremental Probabilistic Evidence Combination method and Integrated

AnalyticallEmpirical method. The proposed system is constructed to maXImIze

preservation of already gained meaningful information. To our knowledge, Version

Space-based approach has not been applied for theory revision problem as yet.

Experimental results show that the performance of the new system is comparable with

other fairly successful systems.



Chapter One: Introduction

CHAPTER ONE

INTRODUCTION

We provide a brief summary of the problem of the current thesis work in this chapter.

We present a justification of theory revision systems and illustrate their position in the

spectrum oflearning tasks. We conclude the chapter by describing the objective of the
thesis and thesis organization.

1.1 The Problem of Theory Revision

The construction of the underlying knowledge base is considerted as one of the most

difficult problems in the development of expert systems. Research in machine

learning attempts to solve the knowledge acquisition problem by developing systems

that automatically acquire the requisite knowledge from experience [9, 16].

Normal knowledge acquisition can be divided into two phases: an initial phase in

which a knowledge engineer extracts a rough set of rules from an expert, and

knowledge base revision, in which the initial knowledge base is refined to produce a

high-performance system [3]. The initial knowledge base is acquired as whole rules,

or sets of rules, that are used to represent various concepts in the domain. In contrast,

during knowledge base revision, components of the existing rules are modified, in

.addition to adding and deleting rules, in an effort to improve its ability to reach

correct conclusions in its domain.

One of the main problems in building expert systems is that the initial models

obtained from Human expert tend to be only approximately correct. They generally

make a good first approximation to the real world, but they typically contain

2



Chapter One: Introduction

inaccuracies that are exposed, when a fact is asserted that does not agree with

empirical observation. The theory revision problem is the problem of how best to go

about revising a knowledge base on the basis of a collection of examples, some of

which expose inaccuracies in the original knowledge base. Fom1ally, the theory

revision problem is stated as,

Given:

An imperfect domain theory for a set of categories and a set of classified examples

each described by a set of observable features.

Find:

The best revision of the domain theory that correctly classifies all of the examples.

Different theory revision systems define the best revision in different ways. The best

revision is defined by EITHER [14] as the revision that results in minimum syntactic

change. On the other hand, PTR[7] defines the best revision as the revision that

outputs the most probable theory with respect to initial prior probabilities and the

training set.

1.2 Justifications of Theory Revision System

Theory revision systems are required to revise initial rough models elicited from

human experts. Even if the initial model happens to be a refined one, a theory revision

system helps it to remain updated with the dynamic real-world situation.

3



Chapter One: Introduction

There are two advantages of a theory revision approach to knowledge acquisition as

opposed to a purely empirical learning approach.

• By starting with an approximately correct theory, a revision system should be able

to achieve high performance with significantly fewer training examples. So, the

theory revision approach has a distinct advantage in domains in which training

data is scarce or in which a rough theory is available.

• Theory revision systems result in a structured knowledge base that maintains the

explanatory structure of the original theory. So, it is more suitable for supplying

meaningful explanations for its conclusions, an important aspect of the usefulness

of an expert system.

1.3 A Theory Revision System Viewpoint of the Two

Learning Paradigms

4



Chapter One: Introduction

is consistent with these training examples. Learning Systems, like ID3 [16],

are representative of inductive learning system.

• In analytical learning, the input to the learner includes the same hypothesis

space H and training examples D as for inductive learning. In addition, the

learner is provided an additional input: a domain theory B consisting of

background knowledge that can be used to explain observed training

examples. The desired output of the learner is a hypothesis h from H that is

consistent with both the training examples D and the domain theory B.

Learning Systems, like Prolog-EBG [6], are representative of analytical

learning system.

Hypotheses generated from purely analytical learning method carry a logical

justification. On the other hand, hypotheses generated from purely inductive learning

method carry a statistical justification. Logical justifications are only as compelling as

the assumptions, or prior knowledge, on which they are built. They are suspect or

powerless when prior knowledge is incorrect or unavailable. Statistical justifications

are only as compelling as thc data and statistical assumptions on which they rest.

They are suspect or powerless when assumptions about the underlying distributions

cannot be trusted or when the data is scarce.

In short, the two approaches work well for different types of problems and by

combining them, we can hope to devise a more general learning approach that covers

a more broad range of learning tasks.

5

Inductive Learning

<
Plentifuldata
No prior Knowledge

Analytical Learning

>
Perfectprior knowledge
Scarcedata

Figure 1.1: A spectrum of learning tasks
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Chapter One: Introduction

Theory Revision Problem is characterized by imperfect prior knowledge and scarce

training data. It can be viewed as

• An approach of combining inductive (statistical inference) and analytical

(deductive inference) learning.

• A way of examining the influence of prior knowledge on concept acquisition.

1.4 The Theory Revision Problem: A Practical Example

In this section, we provide a practical problem and a pictorial representation of the

theory revision problem.

Training set data format: [X, F(X)]; X = [xl,X2,X3,x4,x5,x6]

Here X is an instance, described by six observable features xl,x2, ... , x6 and F

is the target function value for instance X.

Given, Classification theory C and Training set N.

c: (x2/\x3)v x4

N:
X F

011110 I

110000 0

100101 0 .- False +ve

111011 I

A positive member of the training set which is incorrectly classified as a negative

member by the imperfect domain theory is called a failing positive or a false negative

example. Similarly, a negative member of the training set which is incorrectly

6



Chapter One: Introduction

classified as a positive member by the imperfect domain theory is called a failing

negative or a false positive example.

There can be a number of possible revised theories, such as,

CI: (x2 /\ x3)v (x4 /\ xl)

C2: (x2 /\ x3) v (x4 /\ x6)

C3: (x2 /\ x3) v (x4 /\. (x2 v x3))

7

~~Hc;J
.•. : .•.

................... 1 / .

......t .

c

x
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N

Figure 1.2: The Theory Revision Problem: The choice ofCi

A pictorial representation of the problem of theory revision is shown in figure 1.2. In

this figure, X is the total instance space, of which N is a subset that is given as

training set for theory revision. C" CZ,,,,Ck are revised theory that are consistent with

N. A theory revision system is to choose the best candidate C. from the set of

possible revised theories that are consistent with given training set N.

The problem of theory revision is to find a revised theory Ci so that

o

\
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Chapter One: Introduction

• Ci is consistent with the given training set N

• Ci is the best revision with respect to C and N

1.5 The objective of the Thesis

The objective of the current thesis work is to propose and implement a new theory

revision system with a new objective of best revision. We define the best revision in

the following way: 'The best revision maximizes preservation of already gained

meaningful information '.We construct a new system by incorporating Version Space-

based Incremental Probabilistic Evidence Combination method and Integrated

AnalyticallEmpirical method. To our knowledge, Version Space-based approach has

not been applied for theory revision problem as yet.

1.6 The Organization of the Thesis

The thesis is organized in the following way:

Chapter one provides a brief summary of the problem of current thesis work along

with an overview.

Chapter two describes about the best revision, the existing theory revision systems

and relevant systems from the field of study: Combining Inductive and Analytical

learning. It provides a brief survey of the learning systems that use imperfect domain

theories together with given training set of data.

Chapter three describes the proposed new theory revision system. First, some basic

concepts and notations are presented. Next, we formally define the objective of the

8
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Chapter One: Introduction

proposed new theory revision system. Then, we describe the implementation steps of

the new theory revision system algorithm.

Chapter four. presents the experimental results and comparisons with existing

systems.

Chapterfive provides concluding remarks and future research directions.

9



Chapter Two: Existing Systems

CHAPTER TWO

EXISTING SYSTEMS

In this chapter, we describe about the best revision,. the existing theory revision

systems and relevant systems from the field of study: Combining Inductive and

Analytical learning. It provides a brief survey of the learning systems that use

imperfect domain theories together with given training set of data.

2.1 Definition of Best Revision

The theory revision systems attempt to find a (correct and consistent) revised theory

as faithful as possible with respect to the original theory. Different theory revision

systems define the best revision in different ways and obtain that defined best

revlSlon.

Existing theory revision systems with fairly successful performance include EITHER

[14] and PTR [7].

• EITHER defines the best revision as the revision that results in minimum syntactic

change.

• PTR, first assigns prior probabilities to elements of existing theory, then finds the

most probable theory by updating probabilities depending on the given examples

and revising the elements with lower probabilities. It defines the best revision as

the revision that outputs the most probable theory with respect to initial prior

probabilities and the training set.

2.2 Successful Theory Revision Systems: EITHER and

PTR

10



Chapter Two: Existing Systems

EITHER and PTR are two successful theory revision systems. They are also

representative of learning systems that combine analytical and inductive learning.

2.2.1 EITHER

EITHER (Explanation-based and Inductive THeory Extension and Revision) is a

modular theory revision system that attempts to integrate analytical methods, i.e.,

abduction and deduction and empirical methods, i.e., induction. Its modularity stems

from the independent subsystems for carrying out deduction, abduction and induction.

2.2.1.1 Induction, Deduction and Abduction

Induction, deduction and abduction are three basic inference processes.

Induction: In supervised learning, the learner is given the correct value of the

function for particular input and an example is a pair (x,f(x», where x is the input and

f(x) is the output of the function applied to x. The induction process returns a function

h that approximates f, given a collection of examples of f.

Deduction: Deduction is a process that implements the entailment relation. For

examples, if there is rule 'if there is smoke, there is fire' and given the fact 'Smoke is

true', by deduction, we have, 'Fire is true'.

Abduction: Abduction is a process of reasoning to an explanation according to a

known rule. For examples, if we have 'if the morning is hot, humid and cloudy, then it

11
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Chapter Two: Existing Systems

rains in the afternoon', then by abduction from a rainy afternoon, we reason that the

morning was hot, humid and cloudy.

2.2.1.2 EITHER Architecture

EITHER architecture is illustrated in figure 2.1. EITHER have abductive, deductive

and inductive systems. Each of these reasoning components makes important

contributions to the overall goal of the system. EITHER first uses abduction and

deduction. Only if these methods fail, EITHER resorts to inductive component to

learn new rules.

12

Initial Theory Training Examples

DEDUCE

ABDUCE
Minimal cover and Rule

retraction

Deleted rules
Minimal cover and
Antecedent retraction

Generalized rules New
rules

INDUCE

Specialized
rules

Figure 2.1: EITHER Architecture

Horn-clause deduction is the basic inference engine used to classify examples.

EITHER initially uses deduction to identify failing positives and negatives among the

(



Chapter Two: Existing Systems

training examples. Deduction is also used to assess proposed changes to the theory as

part of the generalization and specialization process.

EITHER uses abduction to initially find the incorrect part of an overly specific theory.

Abduction identifies sets of assumptions, which would allow a failing positive to

become provable. These assumptions identify conflicting antecedents that, if deleted,

would properly generalize the theory and correct the failing positive.

EITHER uses its inductive subsystem to learn new rules or to determine which

additional antecedents to add to an existing rule. EITHER uses a version ofID3 [16]

as its inductive component. An appropriate subset is passed as input to ID3 and the

outcome is a decision tree. The output decision tree is then translated to equivalent

Hom-Clause rules.

The remaining components of the EITHER constitute generalization and

specialization control algorithms, which identify and specify the types of corrections

to be made to the theory.

2.2.2 PTR

PTR (Probabilistic Theory Revision) is a theory revision system, which uses a set of

training examples to incrementally adjust probabilities, associated with the elements

of an imperfect domain theory in order to find the most-probable set of revisions to

the theory, which will make it consistent with the provided training set.

PTR is inspired by EITHER [14] and KBANN (18]. Like KBANN, PTR

incrementally adjust weights associated with domain theory elements. Like EITHER,

all stages of PTR are carried out within the propositional logic framework and the

obtained theories are not probabilistic.

13
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Chapter Two: Existing Systems

PTR requires each element of the given classifier theory to be assigned some a priori

probability that it is not flawed and does not require revision. These probabilities

might be assigned by an expert or simply chosen by default.

PTR produces a revised theory in the following way. First, PTR translates the given

theory into some NAND equations. PTR represents a domain theory as a weighted

digraph. The nodes correspond to clause heads or literals representing observable

features. The edges correspond to NAND equations of the transformed domain

theory. Each edge e is associated with a probability pee) which corresponds to the

expert's confidence that e need not be revised.

Next, faulty edges are determined by processing one training example at a time. The

flow of proof through the edges of the digraph is measured. The more an edge

contributes to the correct classification of an example, the more its weight is

increased, i.e., pee) is updated to be incremented. The more an edge contributes to the

misclassification of an example, the more its weight is decreased, i.e., pee) is updated

to be decremented. If the weight of an edge falls below a predefined revision

threshold, then it is marked for revision.

In the next step, a decision is made if a deletion of the edge that has been marked for

revision is possible by finding out the set of training examples dependent on the

existence of this edge for correct classification. If deletion is found to be impossible, a

subtree is computed by an inductive component ID3 [16] and this subtree is added to

the ehild node to whieh the edge under revision leads.

The steps corresponding to finding faulty edges and revlsmg marked edges are

performed repeatedly, by processing training examples one at a time in random order.

PTR is proved to converge to a theory that correctly classifies all examples, under

certain conditions.

14
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Chapter Two: Existing Systems

2.3 Other Relevant Systems

Learning Systems like KBANN [18], TANGENTPROP[19] and EBNN [22] combine

inductive and analytical learning. They are representative of the Inductive-Analytical

approaches to learning. However, these systems are not built for the purpose of

producing a revised theory.

Generally, the systems are neural network based systems. From the viewpoint of

combining analytical and inductive learning, they are very much successful, but their

dependence on the neural network architecture makes them inferior candidates for

theory revision systems. This stems from the following general considerations about

neural network: Neural networks are distributed representations. Units in neural

networks do not typically represent specific propositions. Even if they did, the

calculations carried by the network do not treat propositions in any semantically

meaningful way. In practical terms, this means that humans can neither construct nor

understand neural network representations.

These systems usc domain theories to influence the hypothesis space search. More

specifically, they use imperfect domain theories either to create the initial hypothesis

in the search, or alter the objective of the search.

2.3.1 KBANN

KBANN (Knowledge-Based Artificial Neural Network) is an example of a system

that uses the domain theory to initialize the hypothesis. It uses prior knowledge to

initialize the hypothesis to perfectly fit the domain theory, then inductively refine this

initial hypothesis as needed to fit the training data.

15
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Chapter Two: Existing Systems

The input to KBANN is a set of training examples and a domain theory consisting of

nonrecursive, propositional Hom clauses. It produces a neural network that fits the

training examples, biased by the domain theory.

The two stages of the KBANN algorithm are first to create an artificial neural network

that perfectly fits the domain theory and second to use the BaekPropagation algorithm

to refine this initial network to fit the training examples. Although, the initial theory

fails to classify all training examples, it forms a useful approximation to the target

concept. KBANN uses the domain theory and training examples together to learn the

target concept more accurately than it could done from either alone.

In the first stage of the KBANN algorithm, an initial network is constructed that is

consistent with the domain theory. In general, the network is constructed by creating a

sigmoid threshold unit for each Hom clause in the domain theory. KBANN follows

the convention that a sigmoid output value greater than 0.5 is interpreted as True and

a value below 0.5 as False. Each unit is therefore constructed so that its output will be

greater than 0.5 just in those cases where the corresponding Hom clause applies. For

each antecedent to the Hom clause, an input is created to the corresponding sigmoid

unit. The weights of the sigmoid unit are then set so that it computes the logical AND

of its inputs. In particular, for each input corresponding to a non-negated antecedent,

the weight is set to some positive constant W. For each input corresponding to a

negated antecedent, the weight is set to -W. The threshold weight of the unit, Wo is

then set to -(n-.5)W, where n is the number of non-negated antecedents. Each sigmoid

unit input is connected to the appropriate network input or to the output of another

sigmoid unit, to mirror the graph of dependencies among the corresponding attributes

in the domain theory.

16
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Chapter Two: Existing Systems 17

The second stage of KBANN uses the training examples and the BackPropagation

algorithm to refine the initial network weights. Since the domain theory and training

data are inconsistent, this step alters the initial network weights. The result is a

network biased by the original domain theory, whose weights are refined inductively

based on training data.

There is significant difference between the hypothesis search of KBANN and

BackPropagation. KBANN uses the prior knowledge to initialize the weights of the

neural network. It is likely to converge to a hypothesis that generalizes beyond the

data in a way that is more similar to domain theory predictions. KBANN uses a

Hypothesis Space

KBANN

BACKPROPAGATION

Figure 2.2 : KBANN Hypothesis space search

domain-specific theory to bias generalization, whereas BACKPROPAGATIONuses a

domain independent syntactic bias toward small weight values.

KBANN illustrates the initialize-the-hypothesis approach to combining analytical and

inductive learning. Other examples of this approach include Fu [2], Gallant [4],

Bradshaw [I], Lacher [8].
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2.3.2 TANGENTPROP:

TANGENTPROPaccommodates prior knowledge expressed as derivatives of the target

function with respect to transfornlations of its inputs. In some domains, such as image

processing, this is a natural way to express prior knowledge. TANGENTPROPuses this

knowledge by altering the objective function minimized by gradient descent search

through the space of possible hypotheses.

Let us consider a learning task involving an instance space X and target function f.

Generally, each training example consists of a pair (Xi,f(Xi)) that describes some

instance Xiand its training value f(Xi). The TangentProp algorithm assumes various

training derivatives of the target function are also provided. For example, if each

instance Xi is described by a single real value, then each training example may be of

18
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Figure 2.3 illustrates the benefits of providing training derivatives as well as training

values during learning. BACKPROPAGATIONcan be expected to hypothesize a smooth

function. However, by learning from both the training values and the training

derivatives, TANGENTPROPhas a better chance to correctly generalize from the sparse

data.

TANGENTPROPincorporates prior knowledge to influence the hypothesis search by

altering the objective function to be minimized by gradient descent. This corresponds

to altering the goal of the hypothesis search. Alternatively, as it tries to fit the training

derivatives of the target function, it can be viewed as a way of synthesizing additional

training data in the neighborhood of the observed training data.

2.3.3 EBNN

EBNN (Explanation-Based Neural Network Learning) uses the domain theory to alter

the objective in searching the hypothesis space of possible weights for an artificial

neural network. It uses a domain theory consisting of previously learned neural

networks to perform a neural network analogous to symbolic explanation-based

learning.

As in symbolic explanation-based learning, the domain theory is used to explain

individual examples, yielding information about the relevance of different example

features. With this neural network representation, however, information about the

relevance is expressed in the form of derivatives of the target function value with

respect to instance features. The network hypothesis is trained using a variant of the

TANGENTPROPalgorithm, in which the error to be minimized includes both the error

in network output values and the error in network derivatives obtained from

explanations.

19
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Chapter Three: Proposed New Theory Revision System

CHAPTER THREE

PROPOSED NEW THEORY REVISION SYSTEM

In this chapter, we describe the proposed new theory revision system. First, some

basic concepts and notations are presented. Next, we formally define the objective of

the proposed new theory revision system. Then, we describe the implementation steps

of the new theory revision system. We conclude the chapter by presenting the
algorithm of the new system.

3.1 Preliminaries

In this section, we present some basic terms and concepts. Subsection 3.1.1 and 3.1.2

present concepts of instance space and hypothesis space. Subsection 3.1.3 and 3.1.4

present concepts of inductive bias and version space.

3.1.1 A Concept Learning Task

Much of learning involves acquiring general concepts from specific training

examples. Each such concept can be viewed as describing some subset of objects or

events defined. over a larger set. A practical example, we may consider acquisition of

concept of a bird from a subset of animals that constitute the taxonomic category

Birds. In this way, a concept-learning task is considered as the acquisition of

definition of a general category given a sample of positive and negative training

examples of a category.

Let us consider the task of learning the target concept "Days on which a person M

enjoys his favorite sport". Table 3.1 describes a set of example days, each represented

by a set of attributes. The attribute EnjoySporl indicates whether or not person M

20
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Chapter Three: Proposed New Theory Revision System 21

Example Sky AirTemp Humidity Wind Water Forecast EnjoySport

I Sunny Warm Normal Strong Warm Same Yes

2 Sunny Warm High Strong Warm Same Yes

3 Rainy Cold High Strong Warm Change No

4 Sunny Warm High Strong COol Change Yes

Table 3.1: Positive and negative examples for the target concept E'!ioySport

If some instance x satisfies all the constraints of hypothesis h, then h classifies x as a

positive example (h(x)=l). To illustrate, the hypothesis that M enjoys his favorite

sport only on cold days with high humidity (independent of the values of the other

attributes) is represented by the expression

(
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(7, Cold, High, 7, 7, 7)

The most general hypothesis that 'everyday is a positive example' is represented by

(7,7,7,7,7,7)

and the most specific possible hypothesis that 'no day is a positive example' is

represented by

(0,0,0,0,0)

3.1.2 Notation for Concept Learning Problems

In general, any concept learning task can be described by the set of instances over

which the target function is defined, the target function, the set of candidate

hypotheses considered by the leamer, and the set of available training examples.

Instance Space: The Instance space is constituted by the set of items over which the

concept is defined. It is generally denoted by X. In the current example, X consists of

the members of the set of all possible days, each represented by the attributes Sky,

AirTemp, Humidity, Wind, Water and Forecast.

Target Concept: The concept or function to be learned is called the target concept,

which is generally denoted by c. c can be any Boolean-valued function defined over

the instances X; that is, c:X ~ {D, I}. In the current example, the target concept

corresponds to the value of the attribute EnjoySport (i.e., c(x) = I if EnjoySport =

Yes, and c(x) = D if EnjoySport =No).

22
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Hypothesis Space: Given a set of training examples of the target concept c, the

problem faced by the learner is to hypothesize, or estimate c. The hypothesis space is

constituted by the set of all possible hypotheses that the learner may consider

regarding the identity of the target concept. It is generally denoted by H and it is

determined by the human designer's choice of hypothesis representation. In general,

each hypothesis h in hypothesis space H represents a Boolean-valued function defined

over X; that is, h: X -7 {O,I}. The goal of the learner is to find a hypothesis h such

that hex) = c(x) for all x in X.

3.1.3 Inductive Bias and Version Space

Concept learning can be viewed as the task of searching through a large space of

hypotheses implicitly defined by the hypothesis representation. The goal ofthis search

performed by the learner is to find the hypothesis that best fits the training examples.

Inductive Bias: Let us considcr a concept learning algorithm L for the set of

instances X. Let c be an arbitrary concept defined over X, and let Dc= {(x, c(x))} be

an arbitrary set of training examples of c. Let L(x;, Dc) denote the classification

assigned to the instance Xi by L after training on the data Dc. The inductive bias of Lis

any minimal set of assertions B such that for any target concept c and corresponding

training examples Dc, the following holds,

('<Ix, E X)[(B /\ D,,", Xi) H L(Xi,De)]

Inductive Bias can be alternatively defined as basis for choosing one generalization

over another. Biases improve the predictive power of the induced theory [10] and

make induction tractable [II].
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Version Space: The version space VSH•D, with respect to hypothesis space Hand

training examples D, is the subset of hypotheses from H consistent with the training

examples in D,

VSH•D", (heH IConsistent(h, D)}
Version space is characterized by two boundary sets Sand G. The specific boundary

S is the set of maximally specific members of H consistent with D, and the general

boundary G is the set of maximally general members of H consistent with D. Recent

researches on boundary set characterization and representation enable efficient

instance retraction [20, 21J.

"7: '-.-; _~, r ".'."";;:-,;~ .~ •••• - .,.~ "

'", . ...THisregiooalhncomiStent. ;./
~~-.,---~,.-:.-~-l~__.~.. /

More general

t
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5, 5,
More specific

Figure 3.1: Version Space and two boundary sets Sand G

Version spaces are viewed as

• Provider of a good deal of insight into the logical Structure of hypothesis space.

• Non-practical in most real-world learning because of assumption of consistent
training data and being noise-sensitive.

(
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3.1.4 Version Space Update

As concept learning is viewed as a search problem, it is natural that learning

algorithms employ different strategies for searching the hypothesis space. Many

algorithms for concept learning, organize the search by relying on a very useful

structure that exists for any concept-learning problem: a general-to~specific ordering

of hypothesis. A hypothesis h; is more general than hj, if and only if all positive

examples satisfied by hj are also satisfied by h; and there is at least one positive

example satisfied by h; that is not satisfied by hj.

To find all sets of hypotheses consistent with a given set of training examples, it is

possible to carry out a version space computation process in the following way. First,

we initialize S boundary set to be the most specific or least general hypothesis, i.e. SO

is (0, 0, 0, 0, 0). The G boundary set is initialized to be the most general

h h" GO' (? ? ? ? ? ?) N . . I .ypot eSlS,I.e. IS., ., ., ., ., .. ext, we process one trammg examp e at a hme

and update the boundary sets Sand G so that any hypothesis found to be inconsistent

with the training example under consideration is eliminated from version space. In

this way, we process all training examples one at a time from the provided training

set.

For example, if we consider the four examples from table 3.1, then we have the

following computation of the version space:

StepO:SO:(0, 0, 0, 0, 0) and GO:(7,7,7,7,7,7)

Step!: Sl: (Sunny, Warm, Normal, Strong, Warm, Same) and

G!: (7,7,7,7,7,7)

Step2: S2: (Sunny, Warm, 7, Strong, Warm, Same) and

G2: (7, 7, 7, 7, 7, 7)

25
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Step3: S3: (Sunny, Warm, 7, Strong, Warm, Same) and

G3: {(Sunny, 7, 7, 7, 7, 7), (7, Warm, 7, 7, 7, 7), (7, 7, 7, 7, 7, Same)}

Step4: S4: ( Sunny, Warm, 7, Strong, 7, 7 ) and

G4: {(Sunny, 7, 7, 7, 7, 7), (7, Warm, 7, 7, 7, 7) }

At step i, the i-th example from the table 3.1 is processed, and Sand G sets are

updated. Finally, the version space is characterized by the final boundary sets

S: (Sunny, Warm, 7, Strong, 7, 7 )

and G: {(Sunny, 7, 7, 7, 7, 7), (7, Warm, 7, 7, 7, 7) }

3.2 New Theory Revision System Approach

We propose and implement a new theory revision system that incorporates Version

Space-based Incremental Probabilistic Evidence Combination method and Integrated

Analytical/Empirical method. The Incremental Probabilistic Evidence Combination

method is used for guidance in the choice of the best revised theory. The Integrated

Analytical/Empirical method is used for minimization of syntactic changes.

3.2.1 New Theory Revision System Description

The Goal: To develop a new Theory Revision system.

Given: Classifier theory C and a set ofN training examples.

Assumptions: In this regard, we make the following assumptions,

• The theory revision problem is considered as a case of knowledge base

evolution.

• The target concept is contained in the hypothesis space.
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The significance of the first assumption is that the given training set N is considered

to be unseen until now. If we consider, the total instance space X and M =X - N, then

the first assumption states that during the knowledge base construction phase, a subset

A of M is used.

The significance of the second assumption is that the chosen representation formalism

is considered powerful enough to completely express the target concept.

Strategy: We define the best revision in the following statement:

The best revision maximizes preservation of already gained meaningful information.

Let A be the already seen portion of the instance space X. The significance of this

strategy is to produce a revised theory that is consistent with A and N, by determining

A. In other words, the focus is to preserve the meaningful information gained during

construction phase.

Steps: The steps of the new theory revision system is as follows,

Given C and N,

I. Compute a classifier Cn based on given classifier theory C and set of training

data N.

2. Compute A = Intersection (Cn, C) - N.

3. Compute a minimum syntactic revision of C so that the given set N IS

covered correctly and coverage ofthe computed set A is unchanged.

The implementation of these three steps is described in the following section. The

implementation of the step I is described in section 3.3 and the step 3 is described in

subsection 3.4. The implementation of step 2 does not require elaboration. However,

instead of a classifier Cn, we compute a VS (Version Space), characterized by
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boundary sets Sand G in step I. The corresponding change in step 2 is provided in

section 3.5.

3.3 Implementation of step 1

Step I requires that a classifier Cn based on given classifier theory C and set of

training data N, is to be computed. By incremental probabilistic evidence

combination method, we compute a VS (Version Space), characterized by Sand G.

3.3.1 VS computation by Probabilistic Evidence Combination

Method

We first introduce the use of a noise model that provides the conditional probabilities

to be used by the probabilistic evidence combination method.

The motivation for this lies in the observation that the inability of the given

hypothesis C to be consistent with given training set N indicates faulty bias. This fault

can be characterized by noise. From practical viewpoint, the faulty bias is responsible

for C to be inconsistent with members of N. However, from viewpoint of C, the bias

is not noisy or faulty but the members ofN seem to be corrupted by noise.

Classifier learning from noisy data can be viewed as problem of reasoning under

uncertainty and knowledge of the noise process can be applied.to compute a posteriori

probabilities over the hypothesis space [13].

28
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The computation is done in the following way. Let an individual member Oi

(observed data from N) be corrupted and the supposed data for it be SJ,S2,... ,Sj . The

initial probabilities P(OiISj)is provided by the selected noise model appropriate for the

problem domain. Let us consider the case that a corruption up to k-bits is possible due

to noise. We initially determine a set M that consists of supposed data for each

members of the provided training set of examples. Next, we compute the maximum a

posteriori hypothesis with respect to M.

The calculation of maximum a posteriori (MAP) hypothesis is found from the

following derivation:

Maximize,

P(HilO)

= {P(OIHi)P(Hi) }/ {P(O)}

'" P(OIHi)

= 2:: P(OSjIHi)

= 2:: P(O[SjHi)P(Sj[Hi)

= 2:: P(OISj)P(Sj)

'" 2:: P(OISj), Hi EVS(Sj)

1. Maintain III parallel all VSs consistent with at least one supposed

example from set M.

2. Initialize VSo to the VS with the maximum probability.
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3. Incrementally update the VSj by merging it with the next most probable

VS. Compute the a posteriori probability of the new VS by summing the

probabilities of the supposed examples it is consistent with.

Carry out step 3 repeatedly while it does not resuit in a collapse of the

VS.

4. Finally, return the VS with maximum a posteriori probability.

Figure 3.3: Version Space Merging

The computation for step 3 is illustrated by figure 3.3. We compute boundary sets of

the new version space by merging two version spaces and the a posteriori probability

of it is also computed. The boundary sets are computed by applying the intersection

operator and the a posteriori probability is computed by applying the summation

operator.
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3.4 Implementation of step 3

Implementation of Step 3 is carried out by Integrated Analytical/Empirical method.

3.4.1 Integrated Analytical/Empirical Method

The objective is to produce a minimum syntactic revision of given classification

theory C so that the resultant theory is consistent with the given training set Nand

also the coverage of the computed set A remains intact.

Two non-interfering correction steps are taken to accomplish this goal, viz. theory

generalization and theory specialization. They are described in the next two

subsections.

3.4.1.1 Theory Generalization

First, we use a greedy covering algorithm [5] to find the minimum antecedent cover.

Next, for each rule in the cover, the following three operators are used for

generalization of a rule:

• Antecedent retraction

• Antecedent generalization

• Inductive rule addition

They are tried successively in the order given.

Antecedent retraction: For each rule, the first step IS to remove its conflicting

antecedents. This deletion is permanent, unless it creates false positives.

Antecedent generalization: If the first operator results in an over-generalization,

then we attempt to generalize the conflicting antecedents just enough to cover the

failing positive examples of the rule. For discrete antecedents, disjuncts are added for

31
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the values present in the failing positive examples. For binary antecedents, the

antecedent is removed.

Inductive Rule Addition: If both the first and second operator results in an over-

. generalization, then the inductive component is used to learn entirely new rules for the

consequent of the given rule. The set of positive and negative examples is determined

in the following way. The positive examples are simply the failing positives for the

rule. The negative examples are obtained by removing all the antecedents from the

rule and collecting any new failing negative examples that are created by this action.

As the inductive component, C4.5 [17] is used.

3.4.1.2 Theory Specialization

First, we use a greedy covering algorithm [5] to find the minimum rule cover.

Next, for each rule in the cover the following two operators are used for specialization

of a rule.

32

• Rule retraction

• Inductive antecedent addition

They are tried successively in the order given. •
Rule retraction: For each rule, the first step is to remove it. If it does not create false

negatives, this deletion is permanent.

Inductive Rule Addition: If the first operator fails, then the inductive component is

used to add new antecedents to the rule. The set of positive and negative examples is

detcrmined in the following way. The positivc cxamples arc those that become failing

positives when the rule is removed. The negative examples are the failing negative

examples that use the rule in an erroneous proof. As the inductive component, C4.5

[17] is used.
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3.5 The New Theory Revision System Algorithm

We conclude the chapter by presenting the algorithm of the new theory revision

system:

Given: The Classifier C and the training set N

Steps:

1. Compute the VS (S and G) for a classifier Cn, based on the given classifier C

and given set of data N (n+ and n~).

2. Compute A= Intersection (Cn, C) - N

{

a+ = mtersectlOn (c+, s+) - n+

a- = mtersectlOn (c-, g-) - n-

3. Compute a minimum syntactic revision of C so that N is covered correctly

and coverage of A is unchanged.

Here, n+ and n- denote the positive and negative members of N respectively.

Similarly, a+ and a- denote the positive and negative members of A respectively.
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CHAPTER FOUR

EXPRIMENTAL RESULTS

The new theory revision system is tested on four domain theories to determine its

ability to revise expert rule bases using training data. We show that our system is

workable and also establish that the new system is comparable with other fairly
successful systems like EITHER [14] and PTR [7].

4.1 Balloon Database Results

We tested the new theory revision system on the four data sets of Balloon database to

show that the system is workable. The Balloon database has been used in [15] to

investigate the influence of prior knowledge on concept acquisition.

Results: We tested the new theory revision system on the Balloon database to show

that the system is workable.

~ Four data sets of Balloon database were used. There are four data sets

representing different conditions of an experiment. There are four binary

attributes in this domain and the number of instances in each data set is 16.

~ The number of training examples was varied from 8 to 12, with the training

and test examples drawn at random with no overlap. In each test, the

classification accuracy is measured using 4 disjoint test examples.

~ We report 100% success with the new system in this domain. In all cases, the

new system outputs the correct concept. For example, for the fourth data set of
the database,

The initial theory: (yellow and large) or (adult and child)

The target theory: (yellow and small) or (adult and stretched).

The target theory is correctly found from the initial theory.

We establish the workability ofthe new system by this result.
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4.2 Lens Daill set Results

We tested the new theory revision system on the Lens data set to show that the system

is workable.

» There are four attributes in this domain and the number of instances in the data

set is 24.

» The number of training examples was 6 to I 0, with the training and test

examples drawn at random with no overlap.

» The initial theory is described in figure 4.1 and its accuracy is 3/24

>- The final theory is described in figure 4.2 and its accuracy is 2/24

We establish the workability of the new system by this result. .

none:-tear-rate= l.
hard:-tear-rate=2, astigmatic=2.
soft-tear-rate=2, astigmatic=l.

Figure 4.1: Initial theory (Lens data set)

none:-tear-rate= I.
none:-tear-rate=2, astigmatic=2, spectacle=2.
hard:-tear-rate=2, astigmatic=2, spectacle=l.
soft-tear7rate=2, astigmatic=l.

Figure 4.2: Final theory (Lens data set)

4.3 Post-Operative Data set Results

We tested the new theory revision system on the Post-operative data set to show that

the system is workable.
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>- There are nine attributes in this domain and the number of instances in the data

set is 47.

>- The number of training examples was 6 to 15, with the training and test

examples drawn at random with no overlap.

>- The initial theory is described in figure 4.3 and its accuracy is 10/47

>- The final theory is described in figure 4.4 and its accuracy is 6/47

We establish the workability of the new system by this result.

S:-COMFORT=low.
S:-BP-STBL=stable, CORE-STBL=unstable.
S:-BP-STBL=stable, CORE-STBL=stable.
S:-BP-STBL=stable, L-SURF=mid, L-CORE=low.
S:-BP-STBL=unstable, COMFORT=mid-low.

A:-BP-STBL=mod-stable.
A:-BP-STBL=stable, CORE-STBL=stable, L-SURF=low.
A:-BP-STBL=stable, CORE-STBL=stable, L-CORE=mid.
A:-BP-STBL=unstable, (L-SURF=high; L-SURF=low).
A:-BP-STBL=unstable, COMFORT=mid-high.

Figure 4.3: Initial theory (Post-operative data set)

S:-COMFORT=low.
S:-BP-STBL=stable, CORE-STBL=unstable.
S:-BP-STBL=stable, CORE-STBL=stable, L-SURF=high.
S:-BP-STBL=stable, CORE-STBL=stable, L-SURF=mid ,L-CORE=low.
S:-BP-STBL=unstable, L-SURF=low.
S:-BP-STBL=unstable, L-SURF=mid, COMFORT=mid-low.

A:- BP-STBL=mod-stable.
A:-BP-STBL=stable, CORE-STBL=stable, L-SURF=low.
A:-BP-STBL=stable, CORE-STBL=stable, L-SURF=mid, L-CORE=mid.
A:-BP-STBL=unstable, L-SURF=high.
A:-BP-STBL=unstable, L-SURF=mid, COMFORT=mid-high.

Figure 4.4: Final theory (Post-operative data set)

36



Chapter Four: Experimental Results

4.4 DNA Promoter Recognition Data set Results

The new theory revision system is tested on a theory for recognizing biological

concepts in DNA sequences. The original theory is described in [12]. It contains 11

rules with a total of 76 propositional symbols. The purpose of the theory is to

recognize promoters in strings of nucleotides. A promoter is a genetic region, which

initiates the first step in the expression of an adjacent gene.

The input features are 57 sequential DNA nucleotides. There are 106 examples in the

data set, consisting of 53 positive and 53 negative examples. The initial imperfect

theory classified none of the positive examples and all of the negative examples.

Figure 4.5 shows a subset of the promoter data set and figure 4.6 describes the given
initial promoter theory.
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D t,a,c,t,a,g,c,a,a,ta,c,g,c,tt,g,c,g,~t,c,g,g,t,g,g,t,ta,8,g,ta,
t, g, t, 3, t, 3, 8, t, g, c, g, C, g, g, g, C, t, t, g, t, C, g, t, positive.

ii) tc,g,a,t,a,a,t,t,a,a,c,ta,tt,g,a,C,&~,a,a,a,g,c,tg,a,a,a,8,C,C,
8, C, t, 3, g, 8, 3, t, g, c, g, C, c, t, C.' c, g, t, g, g, t, 8, g, positive

iii) 3, 8, C, t, C, 8, 3, g, g, C, t, g, 8, t, 3, C, g, g, C, g, 8, g, 8, C, t, t, g, c, g, 3, g, C, C,
t, t, g, t, C, C, t, t, g, c, g, g, t, 8, C, 8, C, 8, g, C, 8, g, C, g, negative

iv) t, t, 8, C, J, g, t, g, 8, 8, C, 8, t, t, 8, t, t, C, g, t, C, t, C, C, g, C, g, 8, C, t, 8, C, g, 8,
t, g, 8, g, 8, t, g, C, C, t, g, 8, g, t, g, C, t, t, C, C, g, t, t, negative

Figure 4.5: A subset of the promoter data set.

positive:- (X;Y), Z.
X :- p-37=c, p-36=t, p-35=t, p-34=g, p-33=a, p-32=c.
X :- p-36=t, p-35=t, p-34=g, p-32=c, p-3l =a.
X :- p-36=t, p-35=t, p-34=g, p-33=a, p-32=c, p-3l =a.
X :- p-36=t, p-35=t, p-34=g, p-33=a, p-32=c.

Y:- p-14=t, p-13=a, p-12=t, p-ll=a, p-lO=a, p-9=t.
Y:- p-13=t, p-12=a, p-lO=a, p-8=t.
Y:- p-13=t, p-12=a, p-ll=t, p-lO=a, p-9=a, p-8=t.
Y:- p-l2=t, p-ll=a, p-7=t.

Z :- p-47=c, p-46=a, p-45=a, p-43=t, p-42=t, p-40=a, p-39=c,
p-22=g, p-18=t, p-16=c, p-8=g, p-7=c, p-6=g, p-5=c, p-4=c, p-2=c, p-l =c.

Z:- p-45=a, p-44=a, p-4l=a.
Z :- p-49=a, p-44=t, p-27=t, p-22=a, p-18=t, p-16=t, p-15=g, p_1=a.
Z:- p-45=a, p-41=a, p-28=t, p-27=t, p-23=t, p-2l=a, p-20=a, p-17=t, p-15=t, p-4=t.

Figure 4.6: Initial Promoter Theory
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Positive;- p-35=t, p-34 =g
Positive;- p-35=t, p-34=t, p-45 = a
Positive;- (p-36=t; p-36=g), p-34=g
Positive:- p-35=t, p-34=c, p-47=g
Positive:- p-36=t, p-34=t, (p-33=a; p-33=c)
Positive:- p-36=c, p-33=a, p-31 = a

Figure 4.7: Final Promoter theory
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Figure 4.8 shows the learning curves for the new theory revision system, EITHER

[14], PTR [7] and ID3 [16]. For the new system, the number of training examples was

varied from I to 90, with the training and test examples drawn at random with no

overlap. In each test, the classification accuracy is measured using 16 disjoint test

examples. The results were averaged over 20 training/test division.

It is found that the performance of the new system is comparable with the existing

successful theory revision system like EITHER and PTR. As the size of the training

set increases, the performance of the new system also grows and it is better than

EITHER for large training set. The performance of ID3, which is a purely inductive

system, shows that the performances of systems using prior knowledge, like EITHER

and the new system, are superior. Additional examples are required by ID3 to match
the performance of EITHER.

It is found that PTR performs better than the new system in this domain. PTR is

inspired by KBANN [18], which is especially successful for this promoter domain.

The performance of KBANN in the domain is reported to be better than EITHER,
PTR, ID3 and the new system.

There is a set of 13 out of the 106 examples, each of which contain information

substantially different than that in the rest of the examples. It is reported in [7] that

training on all 93 of these examples and testing on the 13 special examples results in

less than 40% accuracy, but using ten-way cross-validation on the 93 examples results

in more than 99% accuracy. This explains the dip in the performance for a training set

of size 60 for EITHER and the new system in figure 4. The similar performance fall
for ID3 takes place for a training set of size 80.
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CHAPTER FIVE

CONCLUSION

We have developed a new theory revision system. Experimental results show that the

new system is comparable with other fairly successful systems like EITHER and

PTR.

The new system IS built by incorporating Version Space-based Incremental

Probabilistic Evidence Combination method and Integrated AnalyticallEmpirical

method. To our knowledge, Version Space-based approach has not been applied for

theory revision problem before.

There is similarity between TANGENTPROP[19], PTR [7] and bur system. Each of

these systems utilize the provided classification information of the training set to

predict classification information of a part of instance space, which is not given. We

claim our system to be more robust. TANGENTPROPcannot characterize those

neighbors that do not coincide with the training derivative of the given function. On

the other hand, the performance of PTR is dependent on the initial probabilities

assigned, presumably from a human expert.

There are several ways of extending the current system. The current system is built

for Propositional logic system. A future direction of research'is to extend the strategy

incorporated in the current system to a Theory Revision system for First-Order logic

domain. Another way of extension will be to provide a degree of belief measure for

the actual observance of the determined subset A, out of the total instance space X,

during the construction phase of the given theory.
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