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Abstract

This thesis deals with minimum segment drawings of planar graphs. A minimum

segment drawing of a planar graph G is a planar straight line drawing of G that has

the minimum number of line segments among all possible planar straight line drawings

of G. Computation of minimum segment drawings has recently drawn much attention

among the graph drawing community. The problem is not only important for visualization

applications, but has also given rise to a number of interesting theoretical problems.

Unfortunately, very few significant results regarding this problem are known to date.

For example, although there is an algorithm for computing minimum segment drawings

of trees, no such algorithm is known for biconnected and triconnected planar graphs.

The problem has also been studied for plane graphs. Although most graph drawing

problems are known to be easy for plane graphs, the minimum segment drawing problem

does not exhibit this trait. Even for degree-restricted cases of plane graphs, e.g., for

plane triconnected cubic graphs, it has not been possible yet to give an algorithm for

computing minimum segment drawings. Series-parallel graphs are well-known planar

graphs that often arise in various problems involving scheduling, electrical networks, data-

flow analysis, and database logic programs. In this thesis, we study the minimum segment

drawing problem for biconnected series-parallel graphs with the maximum degree three.

For such a graph G, we give a linear-time algorithm for choosing a suitable embedding of

G that admits a minimum segment drawing, and a linear-time algorithm for computing

a minimum segment drawing of G.

x



Chapter 1

Introduction

Identifying a set of related entities and capturing the structure of their relationship form

the core of a large number of practical prol1lems, Whenever we are working with a net-

work of interconnected computers, an electrical circuit with the components and' their

interconnections, a network of roads and highways or an organic molecule, we first have

to obtain a suitable model of the involved entities and their inherent relationship. Such

relational structures among various entities are also encountered in less tangible applica-

tion domains like ecosystems and sociological relationships, When such problems arising

in different application domains are studied in computer science, the involved entities and

their relationships are modeled by a combinatorial structure known as graph. A graph

consists of two sets, namely the set of vertices and the set of edges. An entity is modeled

as a vertex of the graph and the relationship among two entities is modeled as an edge

of the graph, A graph can also capture various attributes of the vertices and the edges

in a model. These attributes are often used in optimization algorithms applied on the

model. But the most significant information that a graph represents is the relationship

between different entities, Apart from using a graph model as an 'input to some sort of

optimization algorithm, we are often interested to visualize these existing relationships

between the entities, or to make different interpretations of the relationships and produce

1



2 CHAPTER 1. INTRODUCTION

visualizations according to those interpretations.

Graph Drawing is a relatively new area in computer science. The focus of graph draw-

ing is to produce a desired visualization of a graph such that the graph and its contents

(i.e., the entities and their relationships) are easily understandable. More precisely, graph

drawing addresses the problem of constructing geometric representations of graphs, and

in most of the cases, these geometric representations insist on some predefined geometric

or aesthetic properties. There is no unique way of drawing a graph. In Fig. 1.1 we show

four drawings of the same graph. Depending on the application, different drawings of the

(a) (b)

~,jr 2

y

(c) (d)

Figure 1.1: Different drawings of a graph.

same graph may be desirable. Unfortunately, not all drawings of a graph can be produced
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efficiently. Graph drawing researchers have to deal with enormous challenges regarding

both the time complexity of their drawing algorithms and the area requirement of the

drawings that they produce.

Although it is a relatively new area of research, the blend of graph theory and compu-

tational geometry has attracted much attention for graph drawing. Today graph drawing

has become a key component of support tools for complex applications in science and

engineering. In the following we list some interesting applications of graph drawing.

Graphs are often used to model the hierarchical relationship between objects. Such

models are usually visualized by drawing every edge as a simple curve monotone in the

upward (i.e., vertical) direction. In Fig. 1.2 we show such a drawing of a graph that

rooted
tree

Figure 1.2: A drawing of the hierarchy of graph classes.
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models the hierarchy of different graph classes. The model is significant because these are

the classes of graphs that one mostly encounters in graph drawing.

Graph drawing also aids in understanding the working principles of different protocols

and security models in computer systems and networks. For example, the Bell-La Padula

multilevel security model imposes that a process running at security level k can read from

objects at its own level or lower and can write to objects at its own level or higher. Viewed

as a graph drawing problem, we simply need that no edge is drawn downward. The model

can be understood from its drawing in Fig .. 1.3.

Security Level

Legend

Object Process

~

Q.....:.nn.Q
Wnte

4

3

2

3

q:J:...h'n__.@.n.n ...~
. ,

D

.r+, .....
..... h.h.J!y.-- ...

Figure 1.3: The Bell-La Padula multilevel security model.

Another important application of graph drawing algorithms is in designing layouts

of electronic circuits. In Fig. 1.4(a) we show the components and their interconnections

in a circuit. The representation in Fig. 1.4(a) is cumbersome. Moreover, this represen-

tation cannot be converted into a PCB layout because of the existing edge crossings.

Figure 1.4(b) shows the same circuit but contains no edge crossings and is obviously more

easy to trace. Above all, the representation in Fig. 1.4(b) can be easily used for producing

a PCB layout.

Automatic graph drawings have numerous applications other than the above men-

tioned three examples. Graph drawing algorithms have important applications to key

computer technologies such as computer networks (depicting the structure of the physical
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Figure 1.4: (a) An electronic circuit and (b) a possible layout of the circuit in (a).

network), software engineering (data-flow diagrams, subroutine-call graphs, program nest-

ing trees), databases (entity-relationship diagrams), information systems (organization

charts), real-time systems (state transition diagrams), artificial intelligence (knowledge-

representation diagrams) etc. Further applications can be found in other science and

engineering disciplines, such as medical science (concept lattices), chemistry (molecular

drawings), civil engineering (floorplan maps) and cartography (map schematics) [Rah99].

In the rest of this chapter, we provide the necessary background and objectives for

this study on graph drawing. In Section 1.1 we describe some of the most important

graph drawing styles that have drawn much attention in the graph drawing community.

As stated earlier, graph drawing algorithms ate often motivated by different aesthetic

criteria imposed by the application. We discuss some such aesthetics in Section 1.2. In

Section 1.3 we discuss the applications of the problem addressed in this thesis, namely

the minimum segment drawing problem. We give the problem statement in Section 1.4

and detail the objective of this thesis in Section 1.5. Finally, Section 1.6 is a summary of,

this work and Section 1.7 is the description of the organization of this thesis.
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1.1 Drawing Conventions

In this section we introduce some well-known graph drawing conventions. Different draw-

ing conventions are found suitable in different application domains. Depending on the

purpose and objective, the vertices are typically represented with points or boxes and the

edges are represented with simple Jordan curves. Some of the most important drawing

conventions are introduced below. Interested readers are referred to [NR04].

1.1.1 Planar Drawing

In a planar drawing of a graph, the simple curves representing the edges do not intersect

one another. It has been shown empirically in [Pur97] that the presence of edge-crossings

in a drawing of a graph make it more difficult for a person to understand the information

being modeled. In Fig. 1.5(a) and (b) we show a planar and a non-planar drawing of

the same graph. Unfortunately, not all graphs have a planar drawing. Figure 1.5(c) is

(a) (b) (c)

Figure 1.5: (a) A planar drawing of a graph, (b) a non-planar drawing of the graph drawn

in (a), and (c) a graph that does not have a planar drawing.

an example of one such graph. A graph which has a planar drawing is called a planar

graph. A planar graph has a planar embedding, which is a data structure representing

the adjacency lists: in each list, the edges incident to a vertex are ordered, all clockwise

or all counter-clockwise. A plane graph is a planar graph with a given planar embedding.
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If one wants to find a planar drawing of a given graph, hef she first needs to test the

planarity of the graph. Kuratowski [Kur30] gave the first complete characterization of

planar graphs. Unfortunately, his characterization did not yield an efficient algorithm.

Later, linear-time algorithms were presented by Hopcroft and Tarjan [HT74], and Booth

and Lueker [BL76]. Chiba et al. [CNA085] and Mehlhorn and Mutzel [MM96] gave

linear-time algorithms for finding a planar embedding of a planar graph. Shih and Hsu

[SH99] gave a simple linear-time algorithm which performs planarity testing and finds a

planar embedding of a planar graph simultaneously.

1.1.2 Polyline Drawing

In a polyline drawing of a graph each edge is represented by a polygonal chain. An example

of polyline drawing is shown in Fig. 1.6. A point on the polyline where the edge changes

Figure 1.6: A polyline drawing.

direction is called a bend. Although polyline drawing has the flexibility of approximating

a drawing with curved edges, too many bends on the edges (more than two or three) make

it difficult to follow the edges by the eye [NR04].
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1.1.3 Straight Line Drawing

A straight line drawing is a drawing of a graph in which each edge is drawn as a straight

line segment, as illustrated in Fig. 1.7. Clearly, straight line drawing is a special case of

polyline drawing where the edges are drawn without any bend. Wagner [Wag36], Fary

Figure 1.7: A straight line drawing.

[Far48] and Stein [Ste51] independently proved that every planar graph has a straight line

drawing. A significant number of works done on straight line drawings are mentioned in

[DETT94J.

1.1.4 Minimum Segment Drawing

As discussed above, a straight line drawing r of a planar graph G is a planar drawing

where each vertex .u of G is mapped to a point p( u) in the plane and each edge e = (u, v)

of G is drawn as a straight line segment l(e) closed between the points p(u) and p(v).

A line segment L in a straight line drawing r of G is said to be a maximal line segment

in r if L is formed by a maximal set of line segments h, 12, ... ,Ik where each pair of

line segments Ii and IHI have a common end point in r (0 < i < k). Typically, the

term segment is used in the literature [DESW07] to refer to a maximal line segment in a

straight line drawing of a planar graph. A straight line drawing r of a planar graph G is

called a minimum segment drawingof G if r has the minimum number of segments among
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all possible straight line drawings of G. For example, the graph G shown in Fig. 1.8(a)

can be drawn with seven segments as shown in Fig. 1.8(b). Another drawing of G with

five segments is shown in Fig. 1.8(c). One can easily verify that if we do not change

b
a

d c c
(a) (b) (c)

a

b

c

f
d

e
(d) (e)

Figure 1.8: (a) The graph G, (b) a drawing of G on seven segments, (c) a drawing of G

on five segments, (d) another embedding of G, and (e) a minimum segment drawing of G.

the embedding of G in Fig. 1.8(a), then it is not possible to draw G with less than five

segments. However, if we alternate the embedding of G and consider the one shown in

Fig. 1.8(d), then we can draw G with four segments as shown in Fig. 1.8(e). One can also

verify that, it is not possible to draw any embedding of G with less than four segments.

Thus, the drawing of G as shown in Fig. 1.8(e) is a minimum segment drawing of G.

1.1.5 Grid Drawing

A drawing of a graph is called a grid drawing if the vertices and bends are all located at

grid points of an integer grid as illustrated in Fig. 1.9. This drawing approach overcomes
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Figure 1.9: A grid drawing.

the following problems in graph drawing with real number arithmetic [NR04J.

(i) When the embedding has to be drawn on a raster device, real vertex coordinates

have to be mapped to integer grid points, and there is no guarantee that a correct

embedding will be obtained after rounding.

(ii) Many vertices may be concentrated in a small region of the drawing. Thus the

embedding may be messy, and line intersections may not be detected.

(iii) One cannot compare area requirement for two or more different drawings using

real number arithmetic, since any drawing can be fitted in any small area using

magnification.

The size of an integer grid required for a grid drawing is measured by the size of the

smallest rectangle on the grid which encloses the drawing. The width W of the grid is the

wid th of the rectangle and the height H of the grid is the height of the rectangle. The

grid size is usually described as W x H.

It is a very challenging problem to draw a plane graph on a grid of the minimum

size. In recent years, several works are devoted to this field [Cha08, CN98, DF05, FPP90,

KR07, Sch90]; for example, it has been shown that, every plane graph of n vertices has a
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straight line grid drawing on a grid size W x If :'0 (n - 2) x (n - 2) [Sch90]; also, special

graph classes have been identified that admits drawing in O(n) area [DF05, KR07].

1.2 Drawing Aesthetics

Aesthetics specifies graphic properties of the drawing that one wants to be applied as

much as possible to achieve better readability [DETT99]. There have been a number of

studies on some commonly adopted aesthetics [BFN85, DESW07, PCJ96, STT81]. We

describe here some of the most important aesthetics [DETT99, NR04].

Crossings: Minimization of the total number of edge crossings is desired. Ideally, one

expects to obtain a crossing-free drawing, but not every graph admits one.

Area: Minimization of the area of the drawing is desired. In practical visualization ap-

plications it is important to construct area-efficient drawings because saving screen-

space is a major concern.

Segment count: It is often desired that a straight line drawing should use as few number

of segments as possible. This aesthetic has twofold importance in practical applica-

tions. Firstly, it increases the readability of the drawing and secondly, it makes the

rendering of the drawing faster since in this case, the scan conversion algorithm for

raster devices is applied on fewer number of line segments.

Bends: Minimization of the total number of bends along the edges is desired. This

aesthetic is especially important for polyline drawings, while it is trivially satisfied

by straight line drawings.

Angular Resolution: Maximization of the smallest angle between two edges incident

on the same vertex is desired. This aesthetic is especially meaningful for straight

line drawings.



12 CHAPTER 1. INTRODUCTION

Aspect Ratio: Aspect ratio is defined as the ratio of the length of the longest side to the

length of the shortest side of the smallest rectangle with horizontalund vertical sides

covering the drawing. Minimization of uspect ratio is a desired aesthetic because a

drawing with a moderate area but high aspect ratio can still remain problematic.

Symmetry: It is desired to display the symmetries of the graph in the drawing. This aes-

thetic can be further formalized by introducing a mathematical model of symmetries

in graphs and their drawings (see, e.g., [Ead88, LNS85, MACLP95]).

Achieving a drawing with desired aesthetics is often associated with optimization

problems and many of these problems are computationally hard. For example, Garey

and Johnson showed that the minimization of the number of crossings in a graph is NP-

complete [GJ83]. To determine whether a graph can be embedded in a grid of a given

size is also NP-complete [KL84]. Gurg and Tumassia proved the problem of minimizing

the number of bends of orthogonal drawings (a special class of polyline drawings) to be

NP-complete [GT01]. Computing minimum segment drawings has also been found to be

quite challenging [DESW07]. The only known algorithm for computing minimum segment

drawings works for trees [DESW07], but no such algorithm has been given so far for other

important graph classes. For these reasons, finding useful approximation strategies and

heuristics for achieving various aesthetics [DETT99] is also un active area of research.

1.3 Applications of Minimum Segment Drawings

The problem of computing minimum segment drawings has mostly attracted the graph

drawing community due to its theoretical elegance [DSW05, KPPT06, DESW07]. Apart

from theoretical interests, the problem has also seveml practical applications as discussed

below. Although planar straight line drawings ure considered as the best means for visu-

alizing plunar graphs [Pur97J, minimization of the number of segments in these drawings

can greatly enhance the overall readability [DESW07]. On the other hand, fewer number
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of segments in the drawing often implies fewer number of slopes in the drawing [DESW07].

Both these characteristics have important effects on scan conversion algorithms for lines

in raster devices. In raster devices, the grid location of each pixel has to be computed

separately .. Moreover, this computation is largely dependent on the slope of the seg-

ment [FDFH03]. If both the number of segments and the number of slopes in the drawing

are small, then these computations can be performed faster yielding a faster rendering of

the drawing.

1.4 Problem Statement

The problem of computing straight line drawings of planar graphs has been studied for

long with various application specific objectives in the focus [Far48, FPP90, Pur97, Sch90,

Ste51, Wag36]. Recently, Dujmovic et al. have studied this problem with the new ob-

jective of minimizing the number of segments in a drawing [DESW07], and the insightful

results presented in their work have established a new line of research henceforth. How-

ever, as their results suggest, this problem is quite difficult for most of the non-trivial

graph classes. For most of the cases, bounds have been given on the number of segments

in a drawing, but no algorithm is known for computing a minimum segment drawing. For

example, although Dujmovic et al. have provided an algorithm for computing minimum

segment drawings of trees, no such algorithm is known for biconnected and triconnected

planar graphs. The problem has also been studied for plane graphs, i.e., for the case where

one is given a fixed embedding of a graph and is not allowed to change it [DESW07]. Al-

though dealing with plane graphs is typically easier than dealing with planar graphs, no

algorithm is known for computing minimum segment drawings of biconnected and tri-

connected plane graphs as well. Even for degree restricted cases of plane graphs, e.g.,

for plane triconnected cubic graphs, no algorithm has yet been devised for computing

minimum segment drawings.
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1.5 Objective of this thesis

In this thesis, we study the minimum segment drawing problem for series-parallel graphs

with the maximum degree three. Even in this degree restricted setting, the work is quite

challenging due to the following facts. Firstly, we have dealt here with planar graphs,

i. e., the case where one has to choose a suitable embedding among all possible planar

embeddings of the graph. Since we have dealt with planar graphs, the number of possible

planar embeddings of such graphs is exponential in the number of vertices of the graph.

Therefore, the first challenging issue in this thesis is to compute a suitable embedding

of the graph out of the exponential number of possibilities. Secondly, as earlier results

suggest, it is not so easy to compute minimum segment drawings of plane graphs even

in the degree restricted case. After computing a suitable embedding of the graph, our

second challenging issue is to compute a minimum segment drawing of that embedding -

a task which was not possible for the graph classes studied earlier in the literature.

1.6 Summary of Results

In this thesis, we study the minimum segment drawing problem for series-parallel graphs

with the maximum degree three. For a biconnected series-parallel graph G with the

maximum degree three, we give linear-time algorithms for choosing such an embedding of

G that admits a planar straight line drawing on the minimum number of segments, and

for computing a minimum segment drawing of G. We also give a tight lower bound on the

number of segments in planar straight line drawings of G. Our result together with some

previous results are listed in Table 1.1. Meanings of the notations used in this table are

as follows. The symbol 7) denotes the number of odd degree vertices in a tree. The symbol

n denotes the number of vertices in a graph. For a biconnected series-parallel graph G

with the maximum degree 6. = 3, the symbols P and N respectively denote the number

of P-nodes and the number of primitive P-nodes in an SPQ-tree of G, and k E {1,2}
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Graph class Bound on segments Minimum Segment Reference

Lower Upper Drawing Algorithm

Tree '1 '1 Yes2 2

Plane 2-connected ~n - No2

Planar 2-connected 2n - No [DESW07]

Plane 3-connected 2n ~n No2

Planar 3-connected 2n ~n No2

Plane 3-connected cubic - n+2 No

Biconnected

Series-parallel (t:. = 3) P+N+k P+N+k Yes Ours

Table 1.1: Known results for the minimum segment drawing problem

based on a characterization of the SPQ-tree of G. An SPQ-tree is a data structure for

decomposing G. We have given a detail discussion on SPQ-trees in Chapter 2. In short,

an SPQ-tree consists of three types of nodes, namely P-nodes, S-nodes and Q-nodes.

A P-node in an SPQ-tree can be further classified as a "primitive" P-node or a "non-

primitive" P-node. The lower bound presented in this work on the number of segments

in any planar straight line drawing of G is given in terms of the total number of P-nodes

and the total number of primitive P-nodes in an SPQ-tree of G.

1.7 Thesis Organization

The rest of this thesis is organized as follows. In Chapter 2 we discuss the relevant

ideas and necessary definitions from graph theory and algorithm theory. We also give an

overview of the literature on the minimum segment drawing problem in Chapter 2. In

Chapter 3 we present a linear-time algorithm for computing minimum segment drawings

of biconnected series-parallel graphs with the maximum degree three. Finally, Chapter 4
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is a conclusion.

CHAPTER 1. INTRODUCTION



Chapter 2

Preliminaries

In this chapter we define some basic terminology of graph theory and algorithm theory.

Definitions that are not included in this chapter will be introduced as they are needed.

We start, in Section 2.1, by giving some definitions of standard graph-theoretical terms

used throughout the remainder of this thesis. We devote Section 2.2 to define terms

related to planar graphs. In Section 2.3 we discuss a particular class of graphs known as

series-parallel graphs. Our algorithms introduced in Chapter 3 are designed to work on

biconnected series-parallel graphs. Section 2.4 discusses SPQ-trees, the data structure

that we have used for representing a decomposition of a biconnected series-parallel graph.

The notion of time complexity is discussed in Section 2.5. Finally we give a review of the

literature on the minimum segment drawing problem in Section 2.6.

2.1 Basic Terminology

In this section we give some definitions of standard graph-theoretical terms used through-

out this thesis. For readers interested in graph theory we refer to [WesOl].

17
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2.1.1 Graphs and Multigraphs

A graph G is a structure (V, E) which consists of a finite set of vertices V and a finite

set of edges E; each edge is an unordered pair of vertices. The sets of vertices and edges

of G are denoted by V(G) and E(G) respectively. Fig. 2.1 depicts a graph G where

v, e, v,

v. e12 Vg

e, eg

e v, e'0 v,

v, e, v,

Figure 2.1: A graph with nine vertices and thirteen edges.

each vertex in V(G) = {Vj,V2, ... ,Vg} is drawn as a small dark circle and each edge in

E( G) = {ej, e2, ... , e13} is drawn by a line segment.

)f a graph G has no "multiple edges" or "loops", then G is said to be a simple graph.

Multiple edges join the same pair of vertices, while a loop joins a vertex with itself. A

graph in which loops and multiple edges are allowed is called a multigraph. Often it is

clear from the context that the graph is simple. In such cases, a simple graph is called a

graph. In the remainder of thesis we assume that G has no loop.

We denote an edge between two vertices u and v of G by (u, v). If (u, v) E E then two

vertices u and v of graph G are said to be adjacent; edge (u, v) is then said to be incident

to vertices u and v; u is a neighbor of v. The degree of a vertex v in G, denoted by d( v)

is the number of edges incident to v. In the graph shown in Fig. 2.1 vertices Vj and V2

are adjacent, and d(v5) = 4, since four of the edges, namely e4, e5, e6 and es are incident
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2.1.2 Subgraphs

A subgraph of a graph G = (V, E) is a graph G' = (V', E') such that V' <;;; V and E' <;;; Ej

we then write G' <;;; G. If G' contains all the edge~ of G that join two vertices in V', then

G' is said to be the subgraph induced by V', and is denoted by G[V']. Fig. 2.2 depicts a

subgraph of G in Fig. 2.1 induced by {V3, V4, VS, V6, VB, Vg}.

Vs

Figure 2.2: A vertex-induced subgraph.

We often construct new graphs from old ones by deleting some vertices or edges. If

V is a vertex of a given graph G = (V, E), then G - V is the subgraph of G obtained by

deleting the vertex v and all the edges incident to v. More generally, if V' is a subset of

V, then G - V' is the subgraph of G obtained by deleting the vertices in V' and all the

edges incident to them. Then G - V' is a subgraph of G induced by V - V'. Similarly,

if e is an edge of a G, then G - e is the subgraph of G obtained by deleting the edge e.

More generally, if E' <;;; E, then G - E' is the subgraph of G obtained by deleting the

edges in E'.

2.1.3 Connectivity

A graph G is a connected graph if for every pair {u, v} of distinct vertices there is a

path between u and v. A graph which is not connected is called a disconnected graph.

A (connected) component of a graph is a maximal connected subgraph. The graph in
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Fig. 2.3(a) is a connected graph since there is a path for every pair of distinct vertices of

the graph. On the other hand the graph in Fig. 2.3(b) is a disconnected graph since there

. is no path between VI and VIO' The graph in Fig. 2.3(b) has three connected components

G I, G2 and G3 indicated by dotted lines.

o
(a)

VB

•.••v.-- .. '.
\'"

(b)

Figure 2.3: (a) A connected graph and (b) a disconnected graph with three connected

components.

The connectivity K:(G) of a graph G is the minimum number of vertices whose removal

results in a disconnected graph or a single-vertex graph KI. We say that G is k-connected

if K:(0) 2:: k. We call a set of vertices in a connected graph 0 a separator or a vertex cut

if the removal of the vertices in the set results in a disconnected or single-vertex graph.

If a vertex-cut contains exactly one vertex then we call the vertex a cut vertex. A block is

a maximal biconnected subgraph of G.

2.1.4 Paths and Cycles

A Vo, VI walk, Vo, el ,Vl, ... , Vl-l, el, VI, in G is an alternating sequence of vertices and edges

of G, beginning and ending with a vertex, in which each edge is incident to the two vertices

immediately preceding and following it. If the vertices Vo, VI, ... , VI are distinct (except

possibly Vo, VI), then the walk is called a path and usually denoted either by the sequence

of vertices Vo, Vl,"', VI or by the sequence of edges el, e2, ... , el. The length of the path
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is l, one less than the number of vertices on the path. A path or walk is closed if Va = VI.

A closed path containing at least one edge is called a cycle.

2.1.5 Trees

A tree is a connected graph without any cycle. Fig. 2.4 is an example of a tree. The

vertices in a tree are usually called nodes. A rooted tree is a tree in which one of the nodes

is distinguished from the other nodes. The distinguished node is called the root of the

tree. The root of a tree is generally drawn at the top. In Fig. 2.4, the root is VI' Every

node U other than the root is connected by an edge to some other node p called the parent

VI

V,

Figure 2.4: Example of a tree.

of u. We also call u a child of p. We draw the parent of a node above that node. For

example, in Fig. 2.4, VI is the parent of V2, while V4 is the parent of V6, V7 and VB; V4 and

V5 are children of V3' A leaf is a node of a tree that has no children. An internal node

is a node that has one or more children. Thus every node of a tree is either a leaf or an

internal node. In Fig. 2.4, the leaves are V5, V6, V7 and VB, and the nodes VI, V2, V3 and V4

are internal nodes.

The parent-child relationship can be extended naturally to ancestors and descendants.

Suppose that UI, U2, ... , Ul is a sequence of nodes in a tree such that UI is the parent of
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Uz, which is a parent of U3, and so on. Then node UI is called an ancestor of Ul and node

Ul a descendant of UI' The root is an ancestor of every node in a tree and every node is

a descendant of the root. In Fig. 2.4, all eight nodes are descendants of VI, and VI is an

ancestor of all nodes. The height of a node U in a tree is the length of a longest path from

U to a leaf. The height of a tree is the height of the root.

2.2 Planar Graphs and Plane Graphs

In this section we give some definitions related to planar graphs used in the remainder of

the thesis. For readers interested in planar graphs we refer to [NeSS].

A graph is a planar graph if it can be embedded in the plane so that no two edges

intersect geometrically except at a vertex to which they are both incident. Note that a

planar graph may have an exponential number of embeddings. Fig. 2.5 shows four planar

embeddings of the same planar graph.

(a)

(c)

VB V,

VI V,
VlO

V3

V9

VlO
(d)

Figure 2.5: Four planar embeddings of the same planar graph.
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A plane graph is a planar graph with a fixed embedding. A plane graph divides the

plane into connected regions called faces. We regard the contour of a face as a clockwise

cycle formed by the edges on the boundary of the face. We denote the contour of the

outer face of graph G by Co(G). A cycle of a plane graph is called a facial cycle if it is

the boundary of a face f and denoted by Cf.

2.3 Series-Parallel Graphs

A graph G = (V, E) is called a series-parallel graph (with source s and sink t) if either

G consist of a pair of vertices connected by a single edge as illustrated in Fig. 2.6(a), or

there exist two series-parallel graphs Gi = (Vi, Ei), i = 1,2, with source Si and sink ti such

that V = VI U V2, E = EI U E2, and either s = Sl, tl = S2 and t = t2 as illustrated in

Fig. 2.6(b) or s = Sl = S2 and t = tl = t2 as illustrated in Fig. 2.6(c) [REN05]. Fig.2.6(d)

illustrates a series-parallel graph.

s 0..------<0 t

(a)
(b)

(c)

s

(d)

t

Figure 2.6: (a) A basic series-parallel graph, (b) series connection, (c) parallel connection,

and (d) a series-parallel graph.

A pair {u, v} of vertices of a connected graph G is a split pair if there exist two

subgraphs GI = (VI, EI) and G2 = (V2, E2) satisfying the following two conditions:
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Thus every pair of adjacent vertices is a split pair. For the graph in Fig. 2.7, the split

pairs are {c, J}, {c, g}, {d, J}, {d, g} and the pairs of adjacent vertices. A split component

of a split pair {u, v} is either an edge (u, v) or a maximal connected subgraph H of G

such that {u, v} is not a split pair of H. There are two split components of split pair

{c, g} for the graph G in Fig. 2.7; one is the subgraph of G induced by vertices a, b, c, g, h

and i; and the other by c, d, e, f, 9 and j. A split pair {u, v} of G is called a maximal

split pair with respect to a reference split pair {s, t} if, for any other split pair {u', v'},

vertices 8,t,u and v are in the same split component of {u',v'}. In Fig. 2.7, the maximal

split pairs with respect to reference edge (a,b) are the pair {c,g} and the pairs {a,i},

{a,g}, {b,i}, {b,c}, {c,h}, {h,i}, {g,h} of adjacent vertices. The split pair {d,J} is not

a maximal split pair, because vertices a, b, d and f are not in the same split component

of {c, g}. Similarly neither the split pair {c, f} nor the split pair {d, g} is a maximal split

pair.

a

e

Figure 2.7: A biconnected planar graph G.

2.4 SPQ-tree

Let G be a biconnected series-parallel graph. Let (s, t) be an edge of G. The SPQ-tree

T of G with respect to a reference edge e = (8, t) describes a recursive decomposition of
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e'

t Q
s~t•

e e

(a) (b) (c)

Figure 2.8: (a) G = skeleton(x), (b) T, and (c) G(x) for trivial case.

G induced by its split pairs [GL99]. The SPQ-tree T defined below is the one used in

[REND5]and is a special case of an "SPQR-tree" [DT96, GL99] with the exception that

an SPQ-tree contains no R-node and the root of the tree is a Q-node corresponding to

the reference edge e.

2.4.1 Nodes in an SPQ-tree

An SPQ tree T is a rooted ordered tree whose nodes are of three types: S, P and Q. Each

node x of T corresponds to a subgraph of G, called its pertinent graph G(x). Each node

x of T has an associated biconnected multigraph, called the skeleton of x and denoted by

skeleton(x). Tree T is recursively defined as follows.

• Trivial Case: In this case, G consists of exactly two parallel edges e and e' joining

sand t as illustrated in Fig. 2.8(a). T consists of a single Q-node x as illustrated in

Fig. 2.8(b) where a Q-node is drawn by a black square. The skeleton of x is G itself,

as illustrated in Fig. 2.8(a). The pertinent graph G(x) consists of only the edge e' as
illustrated in Fig. 2.8(c).

• Parallel Case: In this case, the split pair {s, t} has three or more split components

Go, GI,'" ,Gk, k :::: 2, and Go consists of only a reference edge e = (s, t), as illustrated

in Fig. 2.9(a). The root of T is a P-node x, as illustrated in Fig. 2.9(b). The skeleton(x)

consists of k + 1 parallel edges eo, el,' .. , ek joining sand t, as illustrated in Fig. 2.9(c),

where eo = e = (s, t) and ei, 1 SiS k, corresponds to Gi. The pertinent graph G(x) =
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s

e Go
.-.'---'- - -".

(a) (b) (c)

s

(d)

Figure 2.9: (a) G, (b) T, (c) skeleton(x) and (d) G(x) for parallel case.

e

(a) (b)

eo= e

e,
.' 'Ck_l

C,

(c)

s~ tG, . @
G .'Cl _ 2 • Cl_l

C,

(d)

Figure 2.10: (a) G, (b) T, (c) skeleton(x) and (d) G(x) for series case.

GI U Gz u ... U Gk is a union of GI, Gz,'" ,Gk as illustrated in Fig. 2.9(d). (The

skeleton of P-node Pz in Fig. 2.11 consists of three parallel edges joining vertices a and c.

Figure 2.11(d) depicts the pertinent graph of Pz.)

• Series Case: In this case the split pair {s, t} has exactly two split components,

and one of them consists of the reference edge e. One may assume that the other split

component has cut-vertices CI, Cz,' .. , Ck-I, k 2: 2, that partition the component into

its blocks GI, G2, ••• , Gk in this order from s to t, as illustrated in Fig. 2.1O(d). Then

the root of T is an S-node x, as illustrated in Fig. 2.10(b). The skeleton of x is a cycle

eo, el,"', ek where eo = e, Co= S, Ck = t, and ei joins C;-I and Ci, 1 :s i :s k, as illustrated
in Fig. 2.10(c). The pertinent graph G(x) of node x is a union of GI, Gz,'" ,Gk as

illustrated in Fig. 2.1O(d). (The skeleton of S-node 53 in Fig. 2.11 is the cycle a, i, I, c, a.

Figure 2.11(c) depicts the pertinent graph G(53) of 53.)
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G

(a)

:d, rI
I

,,04
cU,

r/
:d

(g)

27

(g,h) (d,h) (d,d (j,t) (f.g)

(b)

(d) (e)

0-
d

(f)

Figure 2.11: (a)A biconnected series-parallel graph G withLl = 3, (b) SPQ-tree T of G

with respect to reference edge (i, n), and skeletons of P- and S-nodes, (c) the pertinent

graph G(83) of S-node 83, (d) the pertinent graph G(P2) of P-node P2, (e) the pertinent

graph G(85) of S-node 85, (f) the pertinent graph G(P3) of P-node P3, and (g) 8PQ-tree

T of G with P-node Pj as the root.
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2.4.2 Reference edge and Pole

In all the cases discussed above, we call the edge e the reference edge of node x. Except

.) for the trivial case, node x of T has children Xl, X2, ..• , Xk in this order; Xi is the root of the

SPQ-tree of graph GiUei with respect to the reference edge ei, 1::; i::; k. We call edge ei

the reference edge of node Xi, and call the endpoints of edge ei the poles of node Xi' The

tree obtained so far has a Q-node associated with each edge of G, except the reference

edge e. We complete the SPQ-tree T by adding a Q-node, representing the reference

edge e, and making it the parent of X so that it becomes the root of T. An example

of the SPQ-tree of a biconnected series-parallel graph in Fig. 2.11(a) is illustrated in

Fig. 2.11(b), where the edge drawn by a thick line in each skeleton is the reference edge

of the skeleton. One can easily modify T to an SPQ-tree T' with an arbitrary P-node as

the root as illustrated in Fig. 2.11(f).

2.5 Algorithms and Complexity

In this section we briefly introduce some terminologies related to complexity of algorithms.

For interested readers, we refer the book of Garey and Johnson [GJ79].
o

The most widely accepted complexity measure for an algorithm is the running time

which is expressed by the number of operations it performs before producing the final

answer. The number of operations required by an algorithm is not the same for all

problem instances. Thus, we consider all inputs of a given size together, and we define

the complexity of the algorithm for that input size to be the worst case behavior of the

algorithm on any of these inputs. Then the running time is a function of size n of the

input.
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The Notation O(n)

29

In analyzing the complexity of an algorithm, we are often interested only in the "asymp-

totic behavior" , that is, the behavior of the algorithm when applied to very large inputs.

To deal with such a property of functions we shall use the following notations for asymp-

totic running time. Let f (n) and g( n) are the functions from the positive integers to the

positive reals, then we write f(n) = O(g(n)) if there exists positive constants Cl and C2

such that f(n) ::; clg(n) + C2 for all n. Thus the running time of an algorithm may be

bounded from above by phrasing like "takes time O(n2)".

Polynomial Algorithms

An algorithm is said to be polynomially bounded (or simply polynomial) if its complexity is

bounded by a polynomial of the size of a problem instance. Examples of such complexities

are O(n), O(nlogn), O(n100
), etc. The remaining algorithms are usually referred as

exponential or nonpolynomial. Examples of such complexity are O(2n), O(n!), etc. When

the running time of an algorithm is bounded by O(n), we call it a linear-time algorithm

or simply a linear algorithm.

NP-complete

There are a number of interesting computational problems for which it has not been proved

whether there is a polynomial time algorithm or not. Most of them are "NP-complete",

which we will briefly explain in this section.

The state of algorithms consists of the current values of all the variables and the

location of the current instruction to be executed. A deterministic algorithm is one for

which each state, upon execution of the instruction, uniquely determines at most one of

the following state (next state). All computers, which exist now, run deterministically.

A problem Q is in the class P if there exists a deterministic polynomial-time algorithm
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which solves Q. In contrast, a nondeterministic algorithm is one for which a state may

determine many next states simultaneously. We may regard a nondeterministic algorithm

as having the capability of branching off into many copies of itself, one for the each next

state. Thus, while a deterministic algorithm must explore a set of alternatives one at a

time, a nondeterministic algorithm examines all alternatives at the same time. A problem

Q is in the class NP if there exists a nondeterministic polynomial-time algorithm which

solves Q. Clearly P ~ N P.

Among the problems in NP are those that are hardest in the sense that if one can be

solved in polynomial-time then so can every problem in NP. These are called NP-complete

problems. The class of NP-complete problems has the following interesting properties.

(a) No NP-complete problem can be solved by any known polynomial algorithm.

(b) If there is a polynomial algorithm for any NP-complete problem, then there are

polynomial algorithms for all NP-complete problems.

Sometimes we may be able to show that, if problem Q is solvable in polynomial time, all .

problems in NP are so, but we are unable to argue that Q E N P. So Q does not qualify

to be called NP-complete. Yet, undoubtedly Q is as hard as any problem in NP. Such a

problem Q is called NP-hard.

2.6 Drawing Graphs with Few Segments

The problem of computing minimum segment drawings of planar graphs is a relatively

new one, and was originated from the seminal work of Dujmovic et al. [DESW07]. In this

section we give an overview of some of the most important results presented in [DESW07].

It is worth mentioning that, although Dujmovic et al. have given both lower bounds

and upper bounds on the number of segments in drawings of several important graph

classes, algorithm for computing minimum segment drawings was given only for trees.
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More interestingly, for some non-trivial graph classes, like plane biconnected and planar

biconnected graphs, even no upper bound was given. Similarly, for plane triconnected

cubic graphs, no lower bound was given. Nevertheless, each of these results is quite

insightful and is necessary for subsequent research on this problem.

2.6.1 Trees

Let T be a tree. Let"TJdenote the number of odd degree vertices of T. It was shown

in [DESW07] that any planar straight-line drawing r of T requires at least ~ number of

segments. The claim holds since each odd degree vertex u of T is an endpoint of some

segment in r. It is notable that, the number of odd degree vertices in a graph is even and

hence, ~ is an integer.

(a) (b)

Figure 2.12: (a) A tree T and (b) a minimum segment drawing of T.

It has also been proved in [DESW07] that T admits a planar straight-line drawing

on exactly ~ number of segments. The proof of this claim is constructive. To prove this

claim, a drawing r of T has been computed in [DESW07] such that every odd degree

vertex of T is an endpoint of exactly one segment in r and no even degree vertex is an

endpoint of a segment in f. Such a drawing of a tree T in Fig. 2.12(a) is illustrated in

Fig. 2.12(b).
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2.6.2 2-Connected Graphs

(a)

Figure 2.13: (a) A 2-connected plane graph G that requires ~n- 4 segments in any

drawing and (b) a drawing of G on 2n - 1 segments.

It was shown in [DESW07] that there is an n-vertex 2-connected plane graph G with

~n- 4 edges such that any straight line drawing of G requires ~n- 4 number of segments.

Such a graph G is shown in Fig. 2.13(a). However, it was also shown in [DESW07] that

the same graph requires at least 2n - 1 segments in every planar drawing as shown in

Fig. 2.13(b). In summary, the known result on minimum segment drawing problem states

that there is an n-vertex plane 2-connected graph that can be drawn using at most ~n

number of segments, and an n-vertex planar 2-connected graph that requires at least

2n + 0(1) number of segments in any planar drawing.

2.6.3 3-Connected Graphs

Let G be a 3-connected graph. Based on a canonical decomposition [Kan96] of G, it was

shown in [DESW07] that every 3-connected graph G has a plane drawing with at most

~nline segments. Although it was not shown whether ~nline segments are necessary for

every drawing of G, it was shown that there is a 3-connected plane graph G with n = 3k

(k E N) vertices that requires at least 2n number of segments in any planar straight-line

drawing. Such a graph G with 12 vertices is shown in Fig. 2.14.
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Figure 2.14: A 3-connected graph G that requires at least 2n segments in any drawing.

2.6.4 3-Connected Cubic Plane Graph

Let G be a 3-connected cubic plane graph. Based on a canonical decomposition of G,

it was shown in [DESW07] that G can always be drawn using at most n + 2 number of

segments. Although this establishes an upper bound of the number of segments required

for any drawing of G, no lower bound of the number of segments required for any drawing

of G is known as yet. An example of a drawing of a 3-connected cubic plane graph G

using exactly n + 2 segments is shown in Fig. 2.15.

Figure 2.15: Drawing of a 3-connected cubic graph G using n + 2 segments.



Chapter 3

Minimum Segment Drawings

In this chapter we give an algorithm for computing a minimum segment drawing of a

biconnected series-parallel graph G with the maximum degree three. We first present

some relevant definitions and our preliminary results in Section 3.1. In Section 3.2 we

give a lower bound on the number of segments in any planar straight-line drawing of G.

We give our linear-time algorithm for computing a minimum segment drawing of G in

Section 3.3. Finally Section 3.5 is a conclusion.

3.1 Preliminaries

Let G be a biconnected series-parallel graph with ~(G) = 3. Let T be an SPQ-tree of G.

As defined in Chapter 2, the root of T is a Q-node corresponding to the reference edge

e of T. One can easily modify T to an SPQ-tree T' with an arbitrary P-node as the

root as illustrated in Fig. 3.1(e). In the remainder of this chapter, we thus consider an

SPQ-tree T of a biconnected series-parallel graph G with a P-node as the root. Based

on the assumption that ~(G) = 3, the following facts were mentioned in [REN05].

Fact 1. Let (s, t) be the reference edge of an S-node x of T, and let x), X2,'" ,Xk be the

children of x in this order from s to t. Then the following (i)-(iii) hold. (i) Each child

34
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(d,e)(f,e) (f,g)(g, h)(d, h)

(c)

(d, e) (f, e) (f,g)(g, h)(d, h)

(b)

e

(a)

(d)

P2(Z,)g~d

P,(z,) ;p----oe---o f

Figure 3.1: (a) A biconnected series-parallel graph G with Ll(G) = 3, (b) SPQ-tree T of

G with respect to reference edge (i, n), (c) SPQ-tree T of G with P-node Zl as the root,

(d) the three core paths of node Z3, and (e) the four core paths of node Z2.

Xi of x is either a P-node or a Q-node; (ii) both Xl and Xk are Q-nodes; and (iii) Xi-l

and Xi+! must be Q-nodes if Xi is a P -node where 2 :'0 i :'0 k - 1.

Fact 2. The root P-node ofT has exactly three children and each non-root P-node ofT

has exactly two children. For a non-root P-.node X in T, either both the children of x are

S-nodes in T, or one child of x is an S-node and the other child of x is a Q-node in T.

A node X in T is primitive if x does not have any descendant P-node in T. We define

the height of a primitive P-node to be zero. The height of any other P-node is (i + 1) if

the maximum of the heights of its descendant P-nodes is i. For two given P-nodes x and

Z in T, we say that Z is a child P-node of x if there is an S-node y in T such that y is a

child of x and z is a child of y in T.

Let r be a planar straight line drawing of G and G' be the plane graph corresponding

to r. Let T' be an SPQ-tree of G'. Let l' be such a P-node in T' that the poles of l'

appear on the outerface of r. An SPQ-tree of G corresponding to r is the SPQ-tree

obtained by considering T' rooted at r. We use the notation Tr to denote an SPQ-tree



36 CHAPTER 3. MINIMUM SEGMENT DRAWINGS

of G corresponding to a drawing r of G. For a node x in Tr, let Px and Nx denote the

number of P-nodes and primitive P-nodes in the subtree of Tr rooted at x. If x is a

non-root P-node, then let y and y' denote the two children of x in Tr. Let p and q denote

the number of child P- and Q-nodes respectively of the node y in Tr. Similarly, let p'

andq' denote the number of child P- and Q-nodes respectively of y' in Tr. Let Zi denote

the i-th child P-node of y in Tr and ei denote the edge corresponding to the i-th child

Q-node of y in Tr. Similarly, let z: denote the i- th child P -node of y' in Tr and e: denote

the edge corresponding to the i- th child Q-node of y' in Tr.

For each non-root P-node x of Tr, we now define the core paths of G(x) as follows. If x

is a primitive P-node, then let q ::::q'. We then define three core paths Pi(x) (1 ::; i ::;3)

of G(x) as P1(x) = e1, P2(x) = G(y') and P3(x) = U;=2ei, as shown in Fig. 3.1(d).

Otherwise, x is not primitive. In this case, we assume that y has at least two child

P-nodes in T. If y does not have at least two child P-nodes in T, but y' has at least

two child P-nodes in T, then we rename y as y', y' as y and proceed as follows. On

the other hand, if neither y nor y' has at least two child P-nodes in T, then we assume

. that p ::::p' and proceed as follows. Let ej and ek denote the edges corresponding to the

Q-nodes immediately preceding Zl and zP' respectively in Tr. We then define four core

pathsPi(x) (1::; i::; 4) ofG(x) as P1(x) = P1(Zl)UU;~lei, P2(x) = U;~lP2(zDUUL e:,

P3(x) = P3(zp) U U;=k+l ei, and P4(x) = U;=l P2(Zi) U U7=H1 ei, as shown in Fig. 3.1(e).

We define a straight line drawing r of G to be a canonical drawing of G if the following

(a) and (b) hold for r. (aJ For each non-root P-node x in Tr, each core path P;(x) of

G(x) is drawn on a different line segment Li(x) closed between the points corresponding

to the two end vertices of Pi(x); and (b) there is a primitive P-node w in Tr such that

the poles of w appear on the outerface of r.

Let L(r) denote the number of segments in the drawing r of G. We call a line segment

11in r to be collinear with another line segment b in r if hand 12have the same slope,

and the perpendicular distance between hand 12is zero. For a node x in Tr, we use the
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notation f(x) to denote the drawing of G(x) in r, and the notation r\f(x) to denote the

drawing obtained by deleting f(x) from r. If r is a canonical drawing of G, then we say

that f(x) is a canonical drawing of G(x). We say that r(x) shares a line segment with

r \ f(x) if there is a line segment 11 in r(x) and a line segment 12 in r \ f(x) such that 11

and 12 are collinear and have a common end point. We now have the following lemma.

Lemma 3.1.1 Let G be a biconnected series-parallel graph with .6.(G) = 3. Then for any

planar straight-line drawing r of G, a canonical drawing re of G can be computed such

that L(r e) ::; L(r).

Proof. Let x be a non-root P-node having poles u and v in Tr. By Fact 1, there

is a sibling Q-node of x preceding it and a sibling Q-node of x following it in Tr. Let

e(x) = (u', u) and e'(x) = (v', v) denote the two edges corresponding to these two Q-nodes

respectively. Let h(x) denote the height of x in Tr. Using induction on h(x) we now prove

that for each non-root P-node x of Tr, we can compute a canonical drawing re(x) of G(x)

such that replacing f(x) with re(x) in r does not increase L(r).

" "
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Figure 3.2: All possible cases for computing re(x) when x is a primitive P-node ..

We take h(x) = a as the basis. In this case, x is a primitive P-node.We compute

re(x) by first drawing a triangle with three segments Li(x) (1 ::; i ::;3), and then drawing

the core path P;(x) on Li(x) (1::; i ::;3). Considering all possible orientations of l(e(x))

and I(e'(x)), computation of the drawing re(x) is shown in Fig. 3.2. In each of the cases,
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we choose the line segment closed between a and (3 as L) (x), the one closed between (3

and I as L2(x), and the one closed between a and I as L3(x). We now show that, L(r)

will not increase if we replace the drawing r(x) with re(x) in r. Since G(x) is a simple

cycle, any straight line drawing of G(x) would require at least three line segments. Again,

in any straight line drawing of G, r(x) may share at most two line segments with r\r(x).

Except for the case where l(e(x)) and l(e'(x)) are parallel (as in Fig. 3.2(g) and (i)) or

diverging (as in Fig. 3.2(e)), we have not reduced the number of line segments that might

have been shared between r(x) and r \ r(x) as shown in Fig. 3.2(a)-(d). If l(e(x)) and

l(e'(x)) are parallel or diverging as illustrated in Fig. 3.2(e)-(j), our drawing might have

reduced this number by at most one if r(x) had shared both the line-segments l(e(x))

and l(e'(x)). On the other hand, if r(x) had shared both the line segments l(e(x)) and

l(e'(x)), then in each of these cases, any straight line drawing of G(x) would require at

least four segments, and we have reduced this number by at least one. Hence, replacing

r(x) with re(x) in r would not increase L(r) in any of the cases.

We now assume that h(x) > 0 and for all the descendant P-nodes w of x, a canonical

drawing re(w) has been computed such that replacing r(w) with re(w) in r does not

increase L(r). We now compute the drawing re(x) as follows. We first draw a quadrangle

with four line segments Li(x) (1 ::; i ::;4), in such a way that L2(x) is the line segment

closed between p(u) and p(v). Based on different orientation of l(e(x))) and l(e'(x)), the

drawing of the quadrangle is illustrated in Fig. 3.3. In each of the cases, we choose the

line segment closed between a and (3 as L) (x), the one closed between (3 and I as L2 (x),

the one between I and 0 as L3 and the one between a and 0 as L4(x). We then draw the

core path Pi(x) along Li(x) (1 ::; i ::;4). Finally, for each child P-node w of y, we add

re(w) .by making L2(w) and L4(x) collinear. Similarly, for each child P-node w of y', we

draw re(w) by making L2(w) and L2(x) collinear.

The fact that replacing r(x) with re(x) does not increase L(r) can be understood

as follows. Let r'(x) denote the drawing obtained by considering re(x) and the two
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Figure 3.3: All possible cases for computing fe(x) when h(x) > O.

line segments l(e(x)) and l(e'(x)). Let G'(x) denote the underlying graph of f'(x). Hence

G'(x) = G(x)Ue(x)Ue'(x). If l(e(x)) and l(e'(x)) are s:ollinear or converging as illustrated

in Fig. 3.3(a)-(d), then for each degree two vertex v' of G'(x), the two incident edges of

v' are c;llinear in f'(x) with the exception that for each primitive P-node, the incident

edges of exactly one degree two vertex are non-collinear. Again for each degree three

vertex v' of G'(x), exactly two of the three incident edges are collinear in f'(x). Thus,

f'(x) has the maximum possible sharing between the drawings of the edges of G'(x), and

replacing r(x) with fe(x) in f will not cause L(r) to increase. Similarly, if l(e(x)) and

l(e'(x)) are parallel with the angle between them being 0° as shown in Fig. 3.3(h)-0), and

if x has a child S-node with at least two child P-nodes, then r'(x) will have the maximum

possible sharing between the drawings of the edges of G(x), and replacing r(x) with fe(x)

in f will not cause L(f) to increase. On the other hand, if each child S-node of x has

at most one child P-node, then the three incident edges of v are pairwise non-collinear

in f'(x) as shown in Fig. 3.30) and Fig. 3.4(c). However, L(r) will not increase even in

this case. If both the line segments l(e(x)) and l(e'(x)) were shared by some line-segment
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in r(x), then either of the following (a) and (b) will hold. (aj There is at least one

descendant non-primitive P-node x' of x such that at either of the two poles of x', all the

three incident edges are pairwise non-collinear as shown in Fig. 3.4(a); and (bj there is

at least one primitive P-node x" of x such that r(x") uses four line-segments as shown

in Fig. 3.4(b). In both the cases, replacing r(x) with fe(x) does not increase L(f). The

reasoning for the cases where line segments l(e(x)) and l(e'(x)) are parallel with the angle

between them being 1800 (as shown in Fig. 3.3(k) and (I)) or where l(e(x)) and l(e'(x))

are diverging (as shown in Fig. 3.3( e)-(g)) follows from similar arguments.

Figure 3.4: (a) and (b) Two drawings of G(x) that shares both the line segments l(e(x))

and l(e'(x)) with the rest of the drawing, and (c) a canonical drawing fe(x) of G(x).

It now remains for us to show that we can obtain a primitive P-node w in Yr such

that the poles of w appear on the outerface of fe. One can observe that for each non-root

P-node x of Yr, there is a primitive P-node w in the subtree of Yr rooted at x such that

the poles of w appear on the outerface of fe(x). Let r denote the root of T. Let Yl, yz

and Y3 denote the three children of r in T. We first consider the nodes Yl and Yz as the

two children of a temporary P-node x' and compute fe(x') in the same way as described

in the inductive step above. We then replace f(x') with fe(x'), and this does not increase

L(f). We next redraw G(Y3) as follows. We first take a single line segment and draw on

it all the edges corresponding to the child Q-nodes of Y3 along with all the paths Pz(z) for

each child P-node z of Y3' Let f'(Y3) denote this drawing of G(Y3)' We then compute fe

by merging fe(x') with f'(Y3)' As shown in the induction step above, this merging can be
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performed by sharing two line segments between fe(x') and f'(Y3) if there is an S-node in

Tr with at least two child P-nodes. Otherwise, this merging can be performed by sharing

one line segment between fe(x') and f'(Y3), and by drawing the three edges incident on u

on three different line segments. The details of the proof that the merging of fe(x') and

f'(Y3) does not increase L(f) is omitted in this extended abstract since the arguments

are similar to those given in the induction step above. One can also observe that after

performing the merging of fe(x') and r'(Y3), we will obtain the poles of a primitive P-

node in the outerface of f e. Thus we have transformed f into a canonical drawing f e of

G without increasing the number of segments in f and this completes our proof. 0

3.2 Lower Bound

Let G be a biconnected series-parallel graph with 6.( G) = 3. Let f be a planar straight

line drawing of G. In this section, we give a lower bound of L(f). Lemma 3.1.1 implies that

any planar straight line drawing f of G requires at least L(f c) number of line segments

where fe is a canonical drawing of G obtained by transforming f. In this section, we

therefore focus on giving a lower bound of L(fe). For the clarity of notations, we use T

instead of Tro to denote an SPQ-tree corresponding to the drawing fe. Since there is

always a primitive P-node w in T such that the poles of w appear on the outerface of

fe, we assume that the root of T has two child S-nodes that are primitive in T. We first

have the following lemma.

Lemma 3.2.1 Let G be a biconnected series-parallel graph with t.(G) = 3. Let fe be a

canonical drawing oj G. Let T be an SPQ-tTee oj G corresponding to fe. Then JOT a

non-TOot P-node x in T, L(fe(x)) ~ Px + Nx + 1.

PToof. We use induction on Px. In the basis case we take Px = 1, i.e., x is a primitive

P-node in T. Hence Nx = 1 and Px + Nx + 1 = 3. Since G(x) is a simple cycle when x is
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primitive and any planar straight line drawing of a cycle requires at least three segments,

the claim holds.

We now assume that Px > 0 and the claim holds for every P-node w in T having

Pw < Px. Hence L(fe(w)) ::::Pw + Nw + 1 for every descendant P-node w of x in T. We

now take a child P-node w of x and delete the drawing fe(w) from fe. Let G' denote the

underlying graph of this drawing f c \ f c(w). The graph G' is not necessarily a biconnected

series-parallel graph. Let u and v be the two poles of w in T. In order to ensure that

we are working with a biconnected series-parallel graph, we now add an edge (u, v) to G',

and a new line segment between the points p( u) and p( v) in f c. We then replace the node

(b)

(e)

Figure 3.5: (a)-(l) Cases in the induction step of the proof of Lemma 3.2.1. fe(w) shown

highlighted in each case.

win T with a Q-node representing the edge (u,v), and rename the node x as x'. Let f'

denote this newly computed drawing of G(x'). Since Px' < Px, by induction hypothesis

we have L(fc(x') ::::Px' + Nx' + 1. We now have the following two cases to consider.
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Case 1. f' is canonical. This case may occur in either of the following two subcases. (i)

p> 2 and W = Zi (2 :s: i :s: p -1), as illustrated in Fig. 3.5(a) and (b); and (ii) p' 2: 1and

W = z; (1 :s: i :s: p'), as illustrated in Fig. 3.5(a) and (c). In both of these sub cases, fe(w)

had exactly one line segment shared with fe(x). Thus, L(f') = L(fe(x)) - L(fe(w)) + 1.

Again, since f' is canonical, L(f')) = L(fe(x')). By induction hypothesis we then have

L(fe(x)) 2: Px' + Nx' + 1 + Pw + Nw + 1 - 1 = Px + Nx + 1.

Case 2. f' is not canonical. Here we have the following three sub cases.

(i) p > 2 and either w = Z1 or W = zP' as illustrated in Fig. 3.5(d) and (e). In this sub case,

fe(w) had exactly two line segments shared with fe(x). Thus, L(r') = L(fe(x)) _

L(f~(w)) + 2. Since f' is not canonical, we now make it canonical by making L1 (Z2)

collinear with L1(x') if w = Z1 or, by making L3(zp-1) collinear with L3(x') if w = zp

as illustrated in Fig. 3.5(f). One can observe that, in both the cases, the number of line

segments decreases by exactly one in fe(x'). Thus, L(fe(x')) = L(r') -, 1. By induction

hypothesis we then have L(fe(x)) 2: Px' + Nx' + 1 + Pw + Nw + 1 - 1 = Px + Nx + 1.

(ii) p = p' = 1 and w = Z1, as illustrated in Fig. 3.5(g) and (h). In this subcase, fe(w) had

three line segments shared with fe(x). Thus L(f') = L(fe(x)) - L(fe(w)) + 3. Since f' is

not canonical, we now make it canonical by renaming y as y', y' as y and then by computing

the canonical drawing of G(x') as illustrated in Fig. 3.5(i). One can observe that the

number of line segments decreases by exactly two in fe(x'). Thus, L(fe(x')) = L(r') - 2.

By induction hypothesis we then have L(fe(x)) 2: Px' + Nx' + 1 + Pw + Nw + 1 - 1 =
Px +Nx + 1.

(iii) P = l,p' = 0 and w = Z1, as illustrated in Fig. 3.5(j) and (k). In this subcase, fe(w)

had three line segments shared with fe(x). Thus L(f') = L(fe(x)) - L(fe(w)) + 3. Since

x' has become a primitive P-node a canonical drawing of G(x') would be drawn on three

line segments. Since r' is not canonical, we now make it canonical by drawing it on three

line segments as illustrated in Fig. 3.5(1). We observe that the number of line segments

decreases by exactly one in fe(x'). Thus, L(fe(x')) = L(f') -1. By induction hypothesis
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we then have L(fe(x)) ::::Px' +Nx' + 1+ Pw +Nw + 1- 2 = Px' + Nx' + Pw + Nw• Since
x' is primitive, Nx' = 1. Hence L(fe(x)) ::::Px + Nx + 1. D

We now have the following theorem.

Theorem 3.2.2 Let G be a biconnected series-parallel graph with tJ.(G) = 3. Let fe be

a canonical drawing of G. Let T be an SPQ-tree of G corresponding to fe. Let PT and

NT denote the number of P -nodes and the number of primitive P -nodes respectively in T.

Then the following (a) and (b) hold. (aj L(fe) ::::PT + NT + 2, if every S-node in T has

at most one child P-node; and (bj L(fe) ::::PT + NT + 1, otherwise.

Proof. Let r be the root of T. Let Yl, Y2 and Y3 be the three children of r in T. Since fe

is a canonical drawing, we assume that Yl and Y2 are primitive in T. Since G is a simple

graph, exactly one of Yl, Y2 and Y3 can be a Q-node in T. Thus, if there is a Q-node

among Yl, Y2 and Y3, then we assume that Y2 is the Q-node. The proofs of the claims (a)

and (b) are given below.

(a) We have the following two cases to consider here.

Case 1. Y3 is primitive in T. Since G(Yl) U G(Y2) is a cycle, at least three line segments

are required to draw G(Yl) U G(Y2) in fe as illustrated in Fig. 3.6(a). Since G(Y3) is a

path, at least one new line segment is required to draw G(Y3) along with G(Yl) U G(Y2) .

in fe as illustrated through the thick line segment in Fig. 3.6(b). Since Pr = 1, Nr = 1,

and Pr + Nr + 2 = 4, we thus have L(fe) = 4 ::::Pr + Nr + 2.
Case 2. Y3 is not primitive in T. Let Z denote the child P-node of Y3 in T. By

Lemma 3.2.1, L(fe(z)) ::::Pz + Nz + 1. One can observe that G(Yl) U G(Y2) is con-

nected with G(Y3) through exactly two edges, namely the two edges incident to the two

poles bf G(Y3)' Hence, any drawing of G(Yl) U G(Y2) can share at most two segments

with the drawing fe(z). However, as shown in the proof of Lemma 3.1.1, since each S-

node in T has at most one child P-node, we cannot draw the line segments L1(z) and

L3(z) as converging in the exterior of fe(z) without increasing L(fe(z)). Since L1(z)
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(a) (b)

Figure 3.6: (a) The drawing of G(Yl) U G(Y2), (b) re if Y3 is primitive, (c) re if Y3has

exactly one child P-node, and (d) re if Y3 has at least two child P-nodes.

and L3 (z) are converging in the interior of re (z), at least two new segments are required

to draw G(Yl) U G(Y2) along with G(Y3) as shown through the thick line segments in

Fig. 3.6(c). Thus, L(re) ~ Pz +Nz + 1 + 2. Since Pr = Pz + 1, Nr = N., we thus have

L(re) ~ Pr + Nr + 1 in this case.

(b) In this case Y3 has at least two child P-nodes in T. We first consider Y2 and Y3 as the

two S-nodes of a temporary P-node x' in T. Then we compute re(x') without increasing

L(re) in the same way as described in the proof of Lemma 3.1.1. By Lemma 3.2.1,

L(re(x')) ~ Px' + Nx' + 1. As shown in the proof of Lemma 3.1.1, since at least one

S-node in T has two child P-nodes, we can draw the line segments L1(x') and L3(x') as

converging in the exterior of re(x') as illustrated in Fig. 3.6(d). Let a denote the point

where L1(x') and L3(x') converges. Let u and v denote the poles of r. Since Y3 is not a Q_

node, we can now complete the drawing of G(Y3) on the two line segments closed between

p(u),a and a,p(v) without requiring any new line segment. Since Px' = Pr,Nx' = Nr,

we finally have L(re) ~ Pz' +Nx' + 1 = Pr + Nr + 1. 0

3.3 Drawings of Biconnected Graphs

We now present the main result of this chapter in the following theorem.

Theorem 3.3.1 Let G be a biconnected series-parallel graph with L:l.(G) = 3. Then a

minimum segment drawing of G can be computed in linear time.
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Proof. We give our proof of the above claim in the following three steps. (a) We first

compute a straight line drawing r of G, (b) we then show that r can be computed in

linear time, and (c) we finally show that r is a minimum segment drawing of G.

(a) Let T be an SPQ-tree of G rooted at an arbitrary P-node r. Let Yl,Y2 and Y3

denote the three children of r in T. Since G is a simple graph, at most one of Yl, Y2 and

Y3 can be a Q-node. Thus, if there is a Q-node among Yl, Y2 and Y3, then we assume that

Y2 is the Q-node. In order to compute a minimum segment drawing of G, we want the

following two conditions to hold for Yl, Y2 and Y3 in T. (a) Yl and Y2 are primitive in T;

and (b) Y3 has at least two child P-nodes in T. We have illustrated these two conditions

Q

(a) (b)

Figure 3.7: (a) A desired root r of T and (b) an alternate scenario where r can be found

by traversing T. Primitive nodes are shown shaded.

for the root r of the SPQ-tree shown in Fig. 3.7(a). If these conditions hold for the three

children of our arbitrarily chosen root r, then we are done. Otherwise, we search for such

a P-node r in T. If there is such a P-node r in T, then there is an S-node x in T such

that x has at least two child P-nodes, one of which is primitive. We can search for such an

S-node x in T in linear time. If we find such an S-node x in T, then the child primitive

P-node r of x will be our desired root of T. If we fail to find any such S-node x in T,

then each S-node in T has at most one child P-node in T. We then choose any primitive

P-node r in T as the root of T.

We now compute r in a bottom up traversal of T. At first, in each non-root p_

node x of T, we compute a canonical drawing r(x) of G(x) from the previously computed
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canonical drawings r( w) of G(w) for each child P-node w of x. Then we compute r = r(r)

for the root r of T. We describe this construction inductively. For a primitive P-node x

in T, we draw the three core paths Pi(x) (1 ~ i ~3) of G(x) on three line segments Li(x)

(1 ~ i ~3) such that each line segment Li(x) is closed between the end vertices of P;(x)

(1 :::;.i :::;3), as illustrated in Fig. 3.8(a). Now let x be a non-root and non-primitive p_

node in T. We assume inductively that for each descendant child P-node w of x, we have

computed a canonical drawing r(w) of G(w). We then draw the four core paths P;(x)

(d)(c)

p~)\U1V P\' p(u)

a
(g)

.Figure 3.8: (a) Drawing of G(x) for a primitive P-node x, (b) the quadrangle for a non-

root and non-primitive P-node x, (c)-(f) completing the drawing r(x) for a non-root and

non-primitive P-node x, (g) r when there is a suitable root in T, and (h) r when there

is no suitable root in T.

(1 :::;i :::;4) on four line segments Li (x) (1 :::;i :::;4) such that each line segment Li (x)

is closed between the end vertices of Pi(x) (1 :::;i :::;4), as illustrated in Fig. 3.8(b). For

each child P-node w of x, we now add r(w) to this quadrangle and complete the drawing

r(x) as follows. At first, we draw r(ZI) by making L1(ZI) collinear with L1(x), and

L2(ZI) collinear with L4(x) as shown in Fig. 3.8(c). Next we draw r(zp) by making L3(zp)

collinear with L3(x) and L2(zp) collinear with L4(x) as shown in Fig. 3.8(d). Finally, for

each W = Zi (2 ~ i ~P - 1), we draw r(w) by making L2(w) collinear with L4(x) as

shown in Fig. 3.8(e), and for each w = z; (1 :::;i :::;p'), we draw r(w) by making L2(w)



48 CHAPTER 3. MINIMUM SEGMENT DRAWINGS

collinear with L2(x) as shown in Fig. 3.8(f).

We finally assume that x is the root P-node of T. Let u and v denote the poles of x

in T. To compute r = r(x), we first consider Y2 and Y3 as the children of a temporary

P-node x' and compute the canonical drawing r(x') in the same way as described in the

inductive case above. We now have the following two cases to consider. We first consider

the case where T has a suitable root as described earlier. By construction, we will have

two line segments in r(x') in this case, namely L1 (x') and L3(X') that can be drawn

as converging in the exterior of r(x'). Let Do denote the point where L1(X') and L3(X')

converge. We then draw the graph G(Y3) on the two line segments closed between p(u), Do

and Do,p(V), as shown in Fig. 3.8(g). We next consider the case where T does not have

a suitable root r as described earlier. In this case, we take a point Do in the exterior of

r(x') such that the points p(u),p(v) and Do form a triangle as shown in Fig. 3.8(h).' We

then draw the graph G(Y3) on the two line segments closed between p(u), Do and Do,p(V).

(b) We now prove that the drawing r obtained above can be computed in linear time.

For each primitive P-node x in T, we merely compute a triangle' with arbitrary apices.

For each non-root P-node x in T, including the temporary P-node x', we perform the

following operations.

1. At first we compute the lengths of the line segments L1(x) and L4(x) from the

lengths L2 (w) for each child P -node w of x.

2. We next compute a quadrangle with four line segments Li(x) (1 SiS 4).

3. Finally, for each child P-node w of x, we make the slope of L2(w) equal to the slope

of L2(x) if w = Zi (1 SiS p) and to the slope of L4(x) if w = z: (1 SiS p'). We

also make the slope of L1 (ZI) equal to L1 (x) and the slope of L3 (zp) equal to L3 (x).

Finally, at the root r of T, we merely compute two line segments for drawing the graph

G(Y3)' Clearly, each of the above steps in computing r can be performed in time linear in



3.3. DRAWINGS OF BICONNECTED GRAPHS 49

the number of P-nodes in T. Since the number of P-nodes in T is linear in the number

of vertices of G [DT96], the drawing r can be computed in linear time.

(c) We now prove that r has the minimum number of segments. We first prove that

for each non-root P-node x of T, we draw G(x) on Px+Nx + 1 segments, We give here an
inductive proof by taking induction on the height h(x) of x. For the base case, h(x) = O.

Here Px + Nx + 1 = 3. We have drawn G(x) on three line segments. Thus our claim

holds for the basis case. We now consider h(x) > 0 and x is a non-root and non-primitive

P-node. We inductively assume that, for each child P-node w of x, G(w) has been drawn

on Pw +Nw + 1 segments. While computing r(x), we have drawn G(y') in such a way that

all the edges corresponding to the childQ-nodes of y' were drawn on a single segment, and

L2(z;) for each G(z;) was drawn on the same segment. Thus the number of segments in this

drawing of G(y') is P~+N~+p' - (p' -1) = P~+N~+ 1. Similarly, G(y) was first drawn on

Py+ Ny + 1 segments and then the path U;=l ei was drawn on the same segment as L1(Zl)
and the path Ui=k+l ei was drawn on the same segment as L3(zp). Here ej and ek are the

two edges corresponding to the two Q-nodes immediately preceding Zl and zp respectively

in T. Since we had reused an already drawn segment, this last operation did not increase

the number of segments. We finally had merged these drawings of G(y) and G(y') together

to get a drawing of G(x) on Py+Ny+1+P~+N~+1 = (Py+P~+l)+Nx+ 1 = Px+Nx+1

segments. Finally, in the root node, .wedid not draw any new line segment if a suitable

root r was found for T, otherwise we had drawn exactly one new line segment. Thus we

had drawn r on P~+N~+ 1 segments in the first case, and on P~+N~+ 2 segments in
the second case. Since PI' = Px', NI' = Nx', we have ultimately drawn r on PI' + NI' + 2
segments if each S-node inT had at most one child P-node,and on PI'+NI' + 1 segments
otherwise. Both these quantities matches the bound given on L(r) in Theorem 3.2.2.

This completes our proof that we have computed a minimum segment drawing of G in

linear time. o
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3.4 Drawing of Connected Graphs

So far in this chapter we have dealt with biconnected series-parallel graphs with the max-

imum degree three. However, the same approach can be adopted to compute minimum

segment drawings of series-parallel graphs that are not biconnected. Let G be a series-

(a)

(b)

Figure 3.9: (a) Canonical drawings of the blocks of G, and (b) a minimum segment

drawing of G.

parallel graph with the maximum degree three. In this section we assume that G is not

biconnected and illustrate the computation of a minimum segment drawing of G. In this

case, we first compute the blocks of G. Each block of G is either an edge or a series-parallel

graph G(x) whose SPQ-tree can be rooted at a P-node x having exactly two children.

For each such graph G(x), we then compute a canonical drawing of G(x) as illustrated in

Fig. 3.9(a). Next we add a single line segment aligned with the path P2(x) of each block

G(x) and complete the drawing of G as illustrated in Fig. 3.9(b).
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3.5 Summary
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In this chapter we have given a linear-time algorithm for computing minimum segment

drawings of series-parallel graphs with the maximum degree three. We have also given a

lower bound on the number of segments required for any planar straight line drawing of

such graphs. We have first shown in Lemma 3.1.1 that any planar straight line drawing

r of a series-parallel graph G can be transformed into a canonical drawing re of G such

that L(re) ::; L(f). We have next given a lower bound on L(r) in Theorem 3.2.2; and

finally, have shown in Theorem 3.3.1 that a minimum segment drawing r of G can be

computed in linear time.

To the best of our knowledge, ours is the first such result in the minimum segment

drawing problem focusing on an important subclass of planar graphs. It remains as our

future work to achieve similar results for wider subclasses of planar graphs.



Chapter 4

Conclusion

In this thesis we have dealt with minimum segment drawings of series-parallel graphs.

We have started with an introductory overview on graph drawing in Chapter 1. In that

chapter we have discussed different graph drawing conventions relevant to the minimum

segment drawing problem and have established our objective in this thesis.

In Chapter 2 we have introduced the preliminary ideas on graph theory and on mini-

mum segment drawings. We have also discussed series-parallel graphs and SPQ-trees in

detail in this chapter.

In Chapter 3 we have started with a discussion on the terminology pertinent to min-

imum segment drawings of biconnected series-parallel graphs with the maximum degree

three. Next we have established a lower bound on the number of segments in any planar

straight line drawing of a biconnected series-parallel graph G with the maximum degree

three. Finally, we have presented a linear-time algorithm for computing a minimum seg-

ment drawing of G. To the best of our knowledge this has been the first such result in

the minimum segment drawing problem for an important subclass of biconnected planar

graphs. However, the following problems remained as future works ..

1. To study the minimum segment drawing problem in conjunction with other aesthetic

criteria like area requirement and symmetry of the drawing.
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2. To obtain minimum segment drawing algorithm for any biconnected planar graph

with the maximum degree three.

3. To obtain minimum segment drawing algorithm for series-parallel graphs without

any restriction on the degree.

4. To obtain minimum segment drawing algorithms for larger subclass of planar graphs.



Bibliography

[BFN85] C. Batini, L. Furlani and E. Nardelli, What is a good diagram? A parametric

approach, Proc. of 4th Internat. Conf. on Entity Relationship Approach, pp. 312-319,

1985.

[BL76] K. S. Booth and G. S. Lueker, Testing the consecutive ones property, interval

graphs, and graph planarity using PQ-tree algorithms, J. Comput. Syst. Sci., 13 (3),

pp. 335-379, 1976.

[Cha08] T. Chan, A near-linear area bound for drawing binary trees, Algorithmica, 34

(1), pp. 1-13, 2008.

[CN98] M. Chrobak and S. Nakano, Minimum-width grid drawings of plane graphs, Compo

Geom. Theory and App!., 11, pp. 29-54, 1998.

[CNA085] N. Chiba, T. Nishizeki, S. Abe and T. Ozawa, A linear algorithm for embedding

planar graphs using PQ-trees, J. Comput. Syst. Sci., 30, pp. 54-76, 1985.

[DESW07] V. Dujmovic, D. Eppstein, M. Suderman, and D. R. Wood, Drawings of planar

graphs with few slopes and segments, Computational Geometry, 38, pp. 194-212,

2007.

[DETT94] G. Di Battista, P. Eades, R. Tamassia and 1. G. Tollis, Algorithms for drawing

graphs: an annotated bibliography, Compo Geom. Theory and App!., 4,pp. 235-282,

1994.

54



BIBLIOGRAPHY 55

[DETT99] G. Di Battista, P. Eades, R. Tamassia and 1. G. Tollis, Graph Drawing: Algo-

rithms for the Visualization of Graphs, Prentice-Hall Inc., Upper Saddle River, New

Jersey, 1999.

[DF05] G. Di Battista and F. Frati, Small area drawings of outerplanar graphs, Froc. of

GD'05, Lecture Notes in Computer Science, 3843, pp. 89-100, 2005.

[DSW05] V. Dujmovic, M. Suderman, and D. R. Wood, Really straight graph drawings,

Proc. of GD'05, Lecture Notes in Computer Science, 3843, pp. 122-132; 2005.

[DT96] G. Di Battista and R. Tamassia (editors), Special Issue on Graph Drawing, Algo-

rithmica, 16 (1), 1996.

[Ead88] P. Eades, Symmetry finding algorithms, Computational Morphology, pp. 41-51,

North-Holland, Amsterdam, Netherlands, 1988.

[Far48] 1. Fary, On straight line representations of planar graphs, Acta Sci. Math. Szeged.

11, pp. 229-233, 1948.

[FDFH03] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics

Principles and Practice, Pearson Education Pte. Ltd., 2003.

[FPP90] H. de Fraysseix, J. Pach and R. Pollack, How to draw a planar graph on a grid,

Combinatorica, 10, pp. 41-51, 1990.

[GJ79] M. R. Garey and D. S. Johnson, Computers and Intractability a Guide to Theory

of NP-Completeness, W. H. Freeman and Company, New York, 1979.

[GJ83] M. R. Garey and D. S. Johnson, Crossing number is NP-complete, SIAM J. Alg.

Disc. Methods, 4 (3), pp. 312-316, 1983.

[GL99] A. Garg and G. Liotta, Almost bend-optimal planar orthogonal drawings of bicon-

nected degTee-3 planar graphs in quadratic time, Proc. of GD'99, Lecture Notes in

Computer Science, 1731, pp. 38-48, Springer, 1999.



56 BIBLIOGRAPHY

[GT01] A. Garg and R. Tamassia, On the computational complexity of upward and recti-

linear planarity testing, SIAM Journal on Computing, 31 (2), pp. 601-625, 2001.

[HT74] J. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. ACM, 21 (4), pp.

549-568, 1974.

[Kan96] G. Kant, Drawing planar graphs using the canonical ordering, Algorithmica, 16,

pp. 4-32, 1996.

[KL84] M. R. Kramer and J. van Leeuwen, The complexity of wire routing and finding

minimum area layouts for VLSI circuits, (Editors) R. P. Preparata, Advances in

Computing Research, 2, VLSI Theory, JAI press, Reading, MA, pp. 129-146, 1984.

[KPPT06] B. Keszegh, J. Pach, D. Palvolgyi, and G. T6th, Drawing cubic graphs with

at most five slopes, Proc. of GD'06, Lecture Notes in Computer Science, 4372, pp.

114-125, 2006.

[KR07] M. R. Karim and M. S. Rahman, Straight line grid drawings of planar graphs with

linear area, Proc. of APVIS07, pp. 109-112, 2007.

[Kur30] C. Kuratowski, Sur Ie probleme des courbes gauches en topologie, Fundamenta

Math., 15, pp. 271-283, 1930

[LNS85] R. J. Lipton, S. C. North and J. S. Sandberg, A method for drawing graphs,

Proc. of 1st Annu. ACM Sympos. Comput. Geom., pp. 153-160, 1985.

[MACLP95] J. Manning, M. Atallah, K. Cudjoe, J. Lozito and R. Pacheco, A system for

drawing graphs with geometric symmetry, Proc. of GD'94, Lecture Notes in Computer

Science, 894, pp. 262-265, Springer, 1995.

[MM96] K. Mehlhorn and P. Mutzel, On the embedding phase of the Hopcroft and Tarjan

planarity testing algorithm, Algorithmica, 16, pp. 233-242, 1996.



BIBLIOGRAPHY 57

[NC88] T. Nishizeki and N. Chiba, Planar graphs: theory and algorithms, North-Holland,

Amsterdam, 1988.

[NR04] T. Nishizeki and M. S. Rahman, Planar Graph Drawing, Lecture Notes Series on

Computing, 12, World Scientific Publishing Company, 2004.

[PCJ96] H. C. Purchase, R. F. Cohen and M. James, Validating graph drawing aesthetics,

Proc. of GD'95, Lecture Notes in Computer Science, 1027, pp. 435-446, Springer,

1996.

[Pur97] H. C. Purchase, Which aesthetic has the greatest effect on human understanding?

Proc. of GD'97, Lecture notes in computer science, 1353, pp. 248-261, Springer, 1997.

[Rah99J M. S. Rahman, Efficient Algorithms for Drawing Planar Graphs, Ph. D. Thesis,

Graduate School of Information Sciences,

[REN05] M. S. Rahman, N. Egi, and T. Nishizeki, No-bend orthogonal drawings of series-

parallel graphs, Proc. of GD'05, Lecture Notes in Computer Science, 3843, pp. 409-

420. Springer, 2006.

[Sch90l W. Schnyder, Embedding planar tJraphs on the grid, Proc. First ACM-SIAM

Symp. on Discrete Algorithms, San Francisco, pp. 138-148, 1990.

[SH99] W. K. Shih and W.-L. Hsu, A new planarity test, Theoretical Computer Science,

223, pp. 179-191, 1999.

[Ste51] K. S. Stein, Convex maps, Proc. Amer. Math. Soc., 2, pp. 464-466, 1951.

[STT81] K. Sugiyama, S. Tagawa and M. Toda, Methods for visual understanding of

hierarchical systems, IEEE Trans. Syst.Man Cybern., SMC-ll, 2, pp. 102-125, 1981.

[Wag36] K. Wagner, Bemerkungen zum vierfarbenproblem, Jahresber. Deutsch. Math-

Verien., 46, pp. 26-32, 1936.



58 BIBLIOGRAPHY

[WesOl] D. B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River,

New Jersey, 2001.



Index

Of, 23
Oo(G),23

E(G), 18

G(x), 25

G[V'J, 19

Nx,36

Px, 36
SPQ-tree, 24

SPQR-tree, 25

V(G), 18

K( G), 20

I, 24

Yr,35

d(v), 18

k-connected, 20

adjacency lists, 6

adjacent, 18

aesthetics, 11

ancestor, 22

angular resolution, 11

approximation strategies, 12

area, 11

aspect ratio, 12

asymptotic behavior, 29

Bell-La Padula multilevel security model, 4

bend, 7, 11

block, 20

canonical drawing, 36, 37

child, 21

child P-node, 35

class NP, 30

class P, 29

collinear, 36

complexity, 28

component, 19

computational geometry, 3

connected graph, 19

connectivity, 20

core paths, 35, 36

crossings, 11

cut vertex, 20

cycle, 21

degree, 18

59



j
J

60

descendant, 22

deterministic algorithm, 29

disconnected graph, 19

drawing conventions, 6

edges, 1

electronic circuits, 4

exponential, 29

face, 23

facial cycle, 23

geometric representations, 2

graph, 1, 18

graph classes, 4

graph drawing, 2, 4

graph theory, 3

grid drawing, 9

height, 22, 35

heuristics, 12

hierarchical relationship, 3

incident, 18

internal node, 21

leaf, 21

linear-time, 29

loop, 18

lower bound, 34, 41

maximal split pair, 24

minimum segment drawing, 8, 34

multigraph, 18

nodes, 21

nondeterministic algorithm, 30

nonpolynomial, 29

NP-complete, 12, 29, 30

NP-hard,30

optimization algorithms, 1

parent, 21

path, 20

pertinent graph, 25

planar drawing, 6

planar embedding, 6

planar graph, 6, 22

planarity testing, 7

plane graph, 6, 23

poles, 28

polyline drawing, 7

polynomial, 29

polynomially bounded, 29

primitive, 35

reference edge, 28

reference split pair, 24

root, 21

rooted tree, 21

INDEX



INDEX

segment count, 11

separator, 20

series-parallel graph, 23

simple graph, 18

sink, 23

skeleton, 25

source, 23

split component, 24

split pair, 23

straight line drawing, 8

subgraph, 19

symmetry, 12

tree, 21

vertex cut, 20

vertices, 1

walk, 20

61


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071

