
A HYBRID ADMISSION CONTROL ALGORITHM

for

MULTIMEDIA SERVER

.; "
Dewan Tanvir Ahmed

A Thesis Submitted to the Department of Computer Science and Engineering in the
Partial Fulfillment of the Requirements for the

Degree of
Master of Science in Engineering

(Computer Science and Engineering)

111111/11 1111111111111111111111 III
#99672#

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
BANGLADESH UNIVERSITY OF ENGINEERING AND TECHNOLOGY

DHAKA,BANGLADESH

SEPTEMBER 2004

The thesis' "A Hybrid Admission Control Algorithm for Multimedia Server",

submitted by Dewan Tanvir Ahmed, Roll No. 040205056P, Registration No.

95412, Session April 2002, to the Department of Computer Science and

Engineering, Bangladesh University of Engineering and Technology, has been

accepted as satisfactory for the partial fulfillment of the requirements for the

degree of Master of Science and Engineering (Computer Science and

Engineering) and approved as to its style and contents. The examination was held

on September 26, 2004.

Board of Examiners

1.

2.

3.

4.

5.

Dr. Md. Mostofa Akbar
Assi stant Professor
Departmentof CSE
BUET,Dhaka-IOOO

~Htf7Dr. Md. S arnsul Alam
Professor and Head
Departmentof CSE
BUET,Dhaka-IOOO

~W=:
Dr. M. Kaykobad
Professor
Departmentof CSE
BUET,Dhaka-IOOO

~
Dr. K'tdSaidUfRahttla1
Assistant Professor
Departmentof CSE
BUET,Dhaka-IOOO

~
Dr.Md. Saifur~iPcr. 6~
Professor
Departmentof EEE
BUET,Dhaka-IOOO

Chairman
(Supervisor)

Member
(Ex-officio)

Member

Member

Member
(External)

Declaration

I, hereby, declare that the work presented in this thesis is the outcome of the

investigation performed by me under the supervision of Dr. Md. Mostofa Akbar,

Assistant Professor, Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka. I also declare that

no part of this thesis and thereof has been or is being submitted elsewhere for the

award of any degree or Diploma.

.'

Countersigned

(Dr. Md. Mostofa Akbar)

Sign

(Dewan Tanvir Ahmed)

Acknowledgement

Here I would like to take the opportunity to express my greatest gratitude to the

patrons of this thesis work, without whom I could never have completed this

arduous task.

For me, it has been a big journey from the start to end. Needless to say, that the

only thing that kept me going was the support of a number of people. First and

foremost, Dr Md. Mostofa Akbar, Assistant Professor, Department of Computer

Science and Engineering, Bangladesh University of Engineering and Technology,

"Without your unstinting support, faith in my work, there is just no way that I

could have completed my thesis. You have been always there whenever I needed

your help in any form. I guess no words can adequately describe what you have

done for me and for my work as an advisor, and companion. I thank you for

everything .••

I would also like to express my heartiest gratitude to Abu Wasif, Assistant

Professor, Department of Computer Science and Engineering, Bangladesh

University of Engineering and Technology for his fruitful suggestions whenever I

needed.

I must acknowledge with due respect the constant support and patience .of my

parents for completing the thesis.

i

Abstract

A multimedia server has to serve a large number of clients simultaneously. Given

the real-time requirements of each client and fixed data transfer bandwidth of

disks, a multimedia server must employ admission control algorithms to decide

whether a new client can be admitted without violating the service requirements of

the clients already being served. The main goal of admission control algorithm is

to accept enough traffic to efficiently utilize server resources, while not accepting

clients whose admission may lead to the violations of the service requirements of

clients. In this thesis we are proposing a hybrid admission control algorithm that

can handle a larger number of clients simultaneously. One interesting feature of

this algorithm is different admission techniques for different clients based on their

service requirements.

The performance of hybrid admission control algorithm is dependent on the disk-

scheduling algorithm. Most of the conventional disk-scheduling algorithms have

addressed this problem of optimizing total seek time and they completely ignore

the rotational latency. In this thesis we demonstrate a new disk scheduling

technique named near optimal disk scheduling algorithm that derives a sequence

of accessing media blocks from disks so as to minimize both seek time and

rotational latency incurred during retrieval. In order to .provide continuous

retrieval of each media stream, we have to ensure that service time is less than

minimum duration of a round. Since the service time is a function of the number

of blocks and their relative positions on the disk, it may exceed the minimum

duration of a round. We refer to such rounds as overflow rounds. In hybrid

admission control algorithm we can restrict overflow rounds within the limit by

adjusting some parameters of the algorithm.

The near optimal disk scheduling algorithm as well as the technique for

minimizing overflow of rounds presented in this thesis significantly improves the

performance of the hybrid admission control algorithm. We have demonstrated

the effectiveness of the hybrid admission control algorithm and the near optimal

disk-scheduling algorithm through extensive simulation.

ii

-----------------1

CONTENTS

Acknowledgement•.............................•....................................... i

Abstract ••....•.•....••......•..........•••..••...•...........•••••••••.............••••.•••... i1

List of Figures v

List of Tables•.. vi

CHAPTER 1-------- ----------------1
INTRODUCTION,--------.--. _

I . 1 M ULTIMEDIA-- I

I .2 MOTIVAnON ---,-------------------- 3

1.3 BACKGROUND AND PRESENT STATE OF THE PROBLEM -- 6

1.4 OBJECTIVES AND SCOPE OF THE THESIS -- 7

1.5 ORGANIZATION OFTHE THESIS---------- •• ---------------- -.---------------------- 8

CHAPTER 2---------------------- 9

ADMISSION CONTROL ALGORITHMS: A LITERATURE SURVEY ---.----- 9

2.1 ADMISSION CONTROL ALGORlTHM--- --------------- 9

2./. J Deterministic Approach --.-------------------.-----------------._.----------------- J 0

2./.2 Probabilisli c Approach --_ /0
2. I.3 Observation -Approach -------------___//

2.2 STATISTICAL ADMISSION CONTROL ALGORlTHM-- 11

2.3 OBSERVA nON BASED ADMISSION CONTROL ALGORlTHM--------------------------------------- 13

2.4 ApPLICATION OF ADMISSION CONTROL ALGORITHMS----------------------------------- 14

2.4. J Admission Control in Telephone Network --------------------------------- 14

2.4.2 Resource Reservation in IP Data Networks -------.-----------------.-----------------._. J 5

2.4.3 Admission Control in the Internet ---~~------.-------------------------~-------- J 7

2.5 ADAPTIVE MULTIMEDIA SYSTEM (AMS)----------------------------------- - 18

2.6 ADMISSION CONTROL AND QoS ADAPTATION METHODOLOGY FOR AMS -------------------- 19

2.6 MULTIMEDIA SERVERS -- 20

2. 7 SUMMARY --__________________ 22

CHAPTER 3,------- 24

A NEW DISK SCHEDULING ALGORITHM ------------ 24

3. 1 INTRODUCTION --_____________________________ 24

3.2 DISK HARD WARE--.____________________ 25

iii

3.3 TRADITIONALDISKSCHEOULINGALGORITHMS--- 26

3.3.1 First Come First Serve---~--------------------.------- 27
roO

3.3:2 Shortest Seek Time First-- 27

3.3.3 Scan! Eleva/or --"-------------------- 28

3.4 A NEAROPTIMALDISK SCHEDULINGALGORITHMBYUSINGAHEURISTICApPROACH----- 30

3.5 ANALYSISOFDISKSCHEDULINGALGORITHMS-- 34

CHAPTER 4,------------------.-.-.----------- 36

A HYBRID ADMISSION CONTROL ALGORITHM --------. ----.--. 36

4.1 INTRODUCTION--- 36

4.2 FORMULATINGADMISSIONCONTROLPROBLEM---------- ••---------------------.---------------- 36

4.3 HYBRIDADMISSIONCONTROLALGORITHM-----.- •••••• -----.------------------------------------ 39

4.4 ADMITTINGANEWCLIENT.--.-.--------------------------------- ••••••••• -••--.---- ••-------------- 42

4.4. J Deterministic Crit eri a ---------------- ----- -- 42

4.4.2 Non Determ inisl Ie Criteria ---------------- ----------.-- 43

4.5 ENFORCINGSERVICEGUARANTEES---------------------------.-.-.-.-.----------------------------- 44

4.5. J Overflow Rounds-- ----.---------------------------- ---------------------------------------.------ 44

4.5. 2 Pol icy of Discarding Blocks ------------------------------.------------------------------------- 44

4.5.3 Seleclion of Affordable Clients to Discard Blocks: ------------------------.--- ••----------- 45

4.5.4 Seleclion of Discarding Blocks: --------------.--------------------------------- •••• ----------- 46

4.6 ANALYSISOFHYBRIDADMISSIONCONTROLALGORITHM--------•••--••------------------------ 48

CHAPTER 5----------------- • • 51

SIMULA TlON AND EXPERIMENTAL RESUL TS--~----.--------.- 51

5.1 INTRODUCnON••-------------.-------------------- ••-.-----------------------.-----------------------.- 51

5.2 SIMULATION PARAMETERS -- 52

5.3 EXPERIMENTALRESULTSOFNEAROPTIMALDISKSCHEDULINGALGORITHM•••------------ 53

5.4 EXPERIMENTAL RESULTS OF HYBRID ADMISSION CONTROL ALGORlTHM--------------------- 55

5.5 CONCLUSION------------------.---.-.------------------- ••••••• ------------------------- ••-------------- 61

CHAPTER 6------------.---- ._. •__ 62

CONCLUSION AND RECOMMENDATlONS---------- __ • 62

6. I CONCLUDINGWORDS••--------------.-------------------- ••-•••--------------------.-- .__________62

6.2 RECOMMENDAnONS FORFUTUREWORK -------------------.-.-.--------------------~------------ 63

APPENDIX A ---------- __ -.-------------~-.---- 66

BIBLIOGRAPHY-------- •••_ 89

iv

List of Figures

FIG 3.1 TYPICAL STRUCTUREOF A DISK -.-------------------------------------- •• ----- ••• --.------ •• -.--- 25

FIG 3.2 FIRST.COME, FIRST-SERVED (FCFS) DISK SCHEDULING ALGORlTHM ------------------------ 27

FIG 3.3 SHORTESTSEEKTIME FIRST (SSTF) DISK SCHEDULING ALGORlTHM .• ---.-------------------- 28

FIG 3.4 SCAN/ELEVATOR DISK SCHEDULING ALGORlTHM--------------------------.--------- •• ---.--.-. 29

FIG 3.5 GIVEN A SET OF POINTS, CONSIDERED AS VERTICES IN THE GRID.----------------------------- 32

FIG 3.6 MINIMUM SPANNING TREET OFTHESEPOINTS. ------------ ••••• -.------------------------------- 32

FIG 3.7 A WALK OF T, STARTING AT 'A' ------ ••• -••• --- ••• ---- •••• 33

FIG 3.8 NEAR OPTIMAL TOUR .-----------------------------------.--- 33

FIG 3.9 AN OPTIMAL TOUR.--------------------------------------.--- •••• -••• -------------------------------- 34

FIG 4.1 DURATION OF A ROUND --------------------- •• --.37

FIG 4.2 FLOW CHART OF HYBRlD ADMISSION CONTROL ALGORlTHM ----------------------------------- 42

FIG 4.3 DUAL PROCESSORSARCHITECTURE --.--------- 50

FIe 5.1 SERVICE TIME COMPARISON OF DISK SCHEDULING ALGORITHMS WHEN RETRIEVING 100

BLOCKS ---------------------- •• ----.------------------------------.--------------------------------------- 54

FIG 5.2 COMPARlSON OF SCAN AND NEAR OPTIMAL DISK SCHEDULING ALGORlTHMS ------------- 54

FIG 5.3 TIME ANALYSIS OF V ARlOUS DISK SCHEDULING ALGORlTHMS ------------------------------- 55

FIG 5.4 INFLUENCE OF SAFE GUARD ON THE NUMBER OFCLIENTS AND OVERFLOW ROUNDS •••• - 57

FIG 5.5 INFLUENCE OF EpSILON ON THE NUMBER OFCLIENTS AND OVERFLOW ROUNDS ----------- 58
FIG 5.6 EVALUATION OF HYBRID ADMISSION CONTROL ALGORITHM ------------- ••••••••••••• ---- •• -- 59

FIG 5.7 INFLUENCE OF THE SEEKTIME ON CLIENTS AND OVERFLOW ROUNDS----------------.---- ••• - 59

FIe 5.8 INFLUENCE OF THE MAXIMUM ROTATIONAL LATENCY ON CLIENTS AND OVERFLOW ROUNDS

--------.---.------------------.-----------------.--- •. --.----- 60

v

List of Tables

TABLE 5.1 DISK PARAMETERS ASSUMED IN THE SIMULATION --- 52

TABLE 5.2 SIMULA nON PARAMETERS OF ADMISSION CONTROL ALGORITHM ------------------------- 53

TABLE 5.3 COMPARISON OF DIFFERENT ADMISSION CONTROL ALGORITHMS, ----------.--.-.--------- 56

TABLE 5.4 INFLUENCE OF SAFE GUARD ON NUMBER OF CLIENTS AND OVERFLOW ROUNDS FOR E =0.

----------------------------------:--- 56

TABLE 5.5 INFLUENCE OF SAFE GUARD ON NUMBER OF CLIENTS AND OVERFLOW ROUNDS FOR E = 1.

----- ••••• -••••••• -••••••••••.••••.••• - •••.•••• -••.••••.•••••••••••••••••.••••••••••••• -••••• -.............. 57

\

vi

•

Chapter 1

Introduction

1.1 Multimedia

Multimedia means, from the user's perspective, that computer information can be

represented through audio and/or video, in addition to text, image, graphics and

animation. For example, using audio and video, a variety of dynamic situations in

different areas, such as sport or ornithology lexicon, can often be presented well

than just using text and image alone.

If we derive a multimedia system from the meaning of the words in the American

Heritage Dictionary, then a multimedia system is any system, which supports

more than a single kind of media. This characterization is insufficient because it

only deals with a quantitative evaluation of the system. We understand a

multimedia more in a qualitative rather than a quantitative way.

The integration of these media into the computer provides additional possibilities

for the use of computational power currently available. Furthermore, these data

can be transmitted through computer and telecommunication networks, which

imply applications in the areas of information distribution and cooperative work.

Multimedia provides the possibility for spectrum of new applications, many of

which are in place today. On the other hand, one also has keep in mind the

problems of global communication, with its social and legal implications.

A multimedia system is characterized by computer-controlled, integrated

production, manipulation, presentation, storage and communication of

independent information, which is encoded at least through a continuous (time-

dependent) and a discrete (time-independent) media.

1

Chapter 1 Introduction

From the networking perspective, all media types can be classified as either Real-

time (RT) or Non-real time (NRT) depending on their end-to-end delay

requirements. For example, text and image files do not have any delay constraints

and hence classified as NRT media types. The RT media types are further

classified as Discrete Media (DM) or Continuous Media (CM), depending on

whether the RT data is transmitted in discrete quantum (as a file or message) or

continuously (as a stream of messages with inter-message dependency). The real

time discrete type of media has recently gained high popularity because of

ubiquitous applications like MSN/Yahoo messengers (which are error-intolerant)

and instant messaging services like stock quotes (which are error tolerant). The

RT continuous type of media can further be classified as delay tolerant or delay

intolerant. The term 'delay intolerant' only signifies that such media type can

tolerate higher amounts of delay than the delay tolerant types, without significant

performance degradation. Examples of RT, continuous media delay intolerant

media are audio/video media used in audio/video conferencing systems, and

remote desktop applications. Streaming audio/video media used in applications

like Internet web cast are also the examples of delay-intolerantmedia types.

Recently there has been an interesting growth in the demand for distributed

multimedia applications operating over the Internet. Such applications have shown

their value as a powerful technology that can allow people to remotely share

resources or work collaboratively, thus saving time and money. Typical

applications of distributed multimedia systems include video conferencing, video

telephony, collaborative work, multimedia mail, and distance leaming. Some

recent applications include on-demand multimedia services, such as in

entertainment, video news distribution services, and distribution of video rental

services, interactive television, and digital multimedia libraries.

These applications demand certain constraints or service guarantees from the

communication network, which must be satisfied to deliver an acceptable

performance. The performance guarantee that a multimedia network can provide

its applications is often referred to as Quality of Service (QoS). This may include

guarantees on the throughput, network delays, delay jitter, and error rate. The

2

Chapter I Introduction

current best -effort Internet, however, has been found to be inadequate to satisfy

such requirements and enhancements are required to this basic Internet model to

overcome this shortcoming.

1.2 Motivation

Most traditional applications (e.g. word processors, spreadsheets, graphical

editors, file transfer, web servers) often execute, store and retrieve data

aperiodically or asynchronously and are not required to have some CPU time or

access to disks at regular intervals of time. Additionally, they are loss intolerant

but are typically insensitive to variance in delay (jitter). As a result, general-

purpose operating systems were geared to provide best-effort (throughput-

oriented) service to this random-access, often I/O intense applications. In the

context of operating systems, best-effort Service means that there is no guarantee

about the timing of execution or delivery of data to the applications, but simply

that the underlying framework (particularly consisting of the process scheduler,

disk scheduler, disk layout and recovery mechanism etc.) tries to do the best it can

to meet the service requirements of the applications. While a considerable delay in

meeting their requirements can cause severe degradation in performance,

relatively minor variations in service do not visibly affect performance.

TIrroughput and response times are the primary measures of performance for these

applications.

With the recent advances in computer capabilities, compression technologies and

broadband networking audio and vitleo applications have become an integral part

of our everyday computational life. It has become necessary for us to provide an

integrated environment for the execution of these multimedia applications. It

becomes especially relevant in content servers that can serve different kinds of

data to various clients. Multimedia applications have quite different resource and

performance constraints than do traditional applications [I]. They require time-

constrained, fair execution environments and periodic access to disks. Execution

and retrieval of data for these applications have deadlines by which the application

must get all the resources (data, CPU time etc.) to render video or audio. Most

3

Chapter 1 Introduction

multimedia applications are soft real time applications, which mean that some loss

is tolerable while delay and jitter can greatly reduce performance [2J[3]. Although

it is important that a certain amount of data be supplied to the application within a

given period of time, it is not necessary that all the requests be satisfied in order to

provide reasonable application performance. Omission of a few disk requests does

not proportionally translate into degradation of quality. This is especially

important in order to cater to the information-access needs of a large number of

users.

With the explosive growth of the Internet, there has been a huge increase in the

amount of content accessed from other computer systems (content providing

servers). In order to meet their service requirements of local and remote

applications efficiently, the operating system needs to be aware of many different

kinds of service patterns that the applications might have. For example, an FTP

application requires that data get transferred as fast as possible. So throughput

would be used to measure the performance of such an application. Interactive

applications require a portion of the CPU or fetch data every now and then but do

not necessarily complete their task quickly. Continuous media applications, on the

other hand, require a guaranteed rate of delivery of data from the disk when

playing back files. Service patterns for these. applications are different and the

operating system needs to have this knowledge incorporated in it to efficiently

serve requests from these applications.

Another bottleneck that can be experienced in multimedia applications is from the

network. The network delay (propagation, serialization, switch, and packetization)

playa significant role in the quality of service of the multimedia applications. The

technological development for hard disk seems to be slower than networking

components. The invention of fiber optic networks provides higher transfer rate

(terabit per second instead of megabit per second). Although the latency of

network can not be overcome fully, recent technologies provide higher

transmission rate through the network, but it can not be ignored totally while we

consider multimedia transmission over the network. In this thesis, we considered

4

Chapter 1 Introduction

I/O bandwidth of the disk only for the admission control algorithm. Consideration

of the network bandwidth is out of scope of this thesis.

One of the most ubiquitous components of a computer system is the hard disk,

which is used for storage and retrieval of programs and data (both application and

system dependent) etc, as well as for essential operating system functions like

virtual memory management and more. Therefore, one of major factors impacting

application performance is how fast data can be stored and retrieved from the hard

disk. More importantly, disk access is orders of magnitude slower than memory

access, and it is a bottleneck to overcome in order to provide good application

performance by retrieving data quickly and efficiently. In order to speed up disk

accesses efficient algorithms sequence disk requests in a way that would minimize

time spent in retrieving data, The gap in the operating speeds of hard disks and

memory has only widened with increase in computing power and faster memory

access, making the problem of optimizing disk access even more critical.

Compounding this problem is the fact that the applications developed for present

day systems have significantly different service requirements [I].

Since a media stream consists of a sequence of media quanta, such as video

frames or audio samples, which convey meaning only when presented

continuously in time, a multimedia server must ensure that recording and retrieval

of media stream to and from disks proceed at their real-time rate. Whereas

designing a dedicated, single-client multimedia server does not offer many design

choices and is relatively straightforward, the design of a multimedia sever that is

capable of serving multiple clients simultaneously. poses interesting research

challenges. This is because, given the maximum rate of data transfer from disks, a

multimedia server can only serve a limited number of clients. Hence, before

admitting a new client, a multimedia server must employ admission control

algorithms to decide whether a new client can be admitted without violating the

continuity requirements of any of the clients already being served. Development

of such algorithms together with a new disk-scheduling algorithm is the subject

matter of this thesis.

5

Chapter I Introduction

1.3 Background and Present State of the Problem

Recent advances in computing and communication technologies have made it

feasible as well as economically viable to provide on-line access to a wide variety

of information sources such as reference books, journals, newspapers, images,

video clips, scientific data, etc, over high speed networks. The realization of such

information management systems of the future, however, will require the

development of high performance, scalable multimedia servers which can provide

a wide range of services to a large number of clients [4]. The fundamental

problem in developing such multimedia servers is that images, audio, video and

other similar forms of data differ from numeric data and text in their

characteristics, and hence requires totally different techniques for their

organization and management.

A large-scale multimedia server has to serve a large number of clients, .

simultaneously. Given the real-time requirements of each client, a multimedia

server must employ admission control algorithms to decide whether a new client

can be admitted for service without violating the requirements of the clients

already being served. Two types of new services have been proposed in the

literature to support real-time multimedia applications: guaranteed service [5] and

predicted service [6]. In a guaranteed service model, client-specified a priori

performance bounds are guaranteed to each connection regardless of the behaviors

of other connections. In a predicted service model, a network dictated post facto

delay bound and the service may be disrupted due to the network load fluctuation.

In [7], two types of guaranteed services are proposed: deterministic service and

statistical service. In deterministic service, performance bounds are guaranteed for

all packets on a connection eveii in the worst case. In statistical service,

probabilistic performance bounds are guaranteed [8]. Although ihe quality of

deterministic service is better, statistical service allows the network to achieve a

higher utilization by exploiting statistical multiplexing. In the predictive service

model the admission control criterion is defined using the measured characteristics

of the current load on the server, rather than theoretical worst-case bounds. Most

6

Chapter 1 Introduction

of the existing work on admission control algorithms for multimedia servers has

been focused on developing techniques for providing deterministic service

guarantees to clients (i.e., playback requirements are strictly met for the entire

service duration) [9][10][11][12][13][14]. However, since human perception is

tolerant to brief distortions in audio and video, providing deterministic guarantees

to each client is superfluous. Furthermore, the worst-case assumptions that

characterize most of these techniques may needlessly constrain the number of

clients that are served simultaneously, and hence, may lead to severe under-

utilization of server resources. This is because, the average time spent in accessing

a media block from disk, in practice, and is significantly smaller than the

corresponding worst-case times. Hence, in order to improve the utilization of

server resources, a multimedia server must employ an admission control

algorithm, which exploits the statistical variation in the access times of media

blocks from disk.

1.4 Objectives and Focus of the Thesis

Typically, disk-scheduling mechanisms for multimedia applications reduce disk

access times by only trying to minimize movement to subsequent blocks after

sequencing based on Earliest Deadline First. We propose to implement a disk-

scheduling algorithm that minimizes not only seek time but also rotational latency.

We compared the results with various well-known disk-scheduling algorithms and

found that near optimal approach is better than its counter parts in terms of service

time when retrieving a large number of blocks from the disk. We find that our

approach results in improved performance for multimedia and non-multimedia

applications. The main focus of this thesis is a hybrid admission control algorithm

that will increase number of clients for multimedia server as well as provide

guaranteed service for the clients who have made request for guaranteed service.

The thesis will focus on the following objectives:

• Define a new admission control algorithm using the previously mentioned

hybrid approach that will decide whether a new client can be admitted for

service without violating the requirements of the clients already being

served.

7

Chapter I Introduction

• Formulation and implementation a disk-scheduling algorithm that will

consider both seek and rotational latency.

• Analysis of the disk-scheduling algorithm.

• Comparison of performance with purely deterministic and purely statistical

admission control algorithm.

1.5 Organization of the Thesis

Provides a literature review of the different strategies that

have been proposed in the context of admission control

algorithm for multimedia server.

A new disk scheduling algorithm considering both the seek

time and rotational latency.

A detail discussion and formulation of anew admission

control algorithm for multimedia server.

Simulation outcomes and analysis of new disk scheduling

algorithm and admission control algorithm for multimedia

Chapter 4:

Chapter 3:

ChapterS:

The thesis has been organized in different chapters, with each chapter discussing

different aspects of the study. The areas covered by different chapters are briefly

as follows:

Chapter 2:

server.

Chapter 6: Concluding remarks and suggestion for future research

work.

8

, Chapter 2

Admission Control Algorithms:

A Literature Survey

2.1 Admission Control Algorithm

A multimedia server has to serve a large number of clients simultaneously. Given

the real-time requirements of each client and fixed data transfer bandwidth of

disks, a multimedia server must employ admission control algorithm to decide

whether a new client can be admitted for service without violating the

requirements of the clients already being served. Admission control is a

mechanism that multimedia servers use to restrict service to limited number of

clients while either having a mechanism to allow re-negotiation with session

requesting clients or deny service to the other clients till such time that there is

enough bandwidth available to serve them.

From the client's perspective, it is important that the server guarantee a certain

rate of delivery for multimedia content before starting the transmission.

Multimedia clients typically negotiate using what are called Quality of Service

(QoS) parameters to obtain a certain amount of service in terms of periodicity of

data delivery. These QoS parameters are commonly expressed as bit rate, block

rate and frame rate [15]. The server uses these performance parameters supplied

by the clients for admission control and subsequent service. The server processes

a client request based on QoS parameters and decides whether or not the

performance guarantees for the client request can be met. This is essential to

ensure acceptable deterioration in performance perceived by clients already being

served [6][8][16][17]. There are three major approaches to carrying out admission
control.

9

Chapter 2 Admission Control Algorithms

A Literature Survey

2.1.1 Deterministic Approach

The first approach is to provide deterministic guarantees to the clients [9], the

strictest form of admission control, since it uses worst-case values for retrieving

media blocks from the disk. The advantage of this approach is that all admitted

clients receive all the blocks and no service agreements are violated. The obvious

disadvantage is that it is overkill for soft real-time applications like continuous

media applications. This approach admits far fewer clients than can be served by

the disk resulting in the under-utilization of the disk bandwidth. This is because

algorithms like SCAN, C-SCAN (widely used scheduling algorithms) tend to re-

sequence requests so as to serve all of those which are in the direction of the arm

movement, which results in seek and rotational latency times being far less than

the worst case ones (maximum possible values for seek times and rotational

latencies) (disk scheduling algorithms are explain in chapter 3). Additionally,

owing to the sequential nature of access of multimedia files, a number of serially

laid out blocks are cached by the disk controller and operating system for future

service. When the actual disk requests arrive for those blocks, they are served

from the cache and hardly incur any service time in comparison to a disk access.

2.1.2 Probabilistic Approach

The second approach is probabilistic in nature [8]. This only provides a statistical

guarantee that the deadlines for all the admitted clients will be met. This means

that at least a fixed percentage of the blocks are retrieved for each client but not

necessarily all of them. One of the biggest advantages of this approach is that it

results in an increase in the number of clients that are admitted 'compared to the

deterministic approach, since it is not important that all the blocks are retrieved for

all the clients. The obvious problem with this approach is that applications that

have very strict deadline and loss requirements cannot be accommodated. In the

event that deadlines are violated, there must be a mechanism to determine the

blocks that can be dropped and to distribute the violation of service guarantees

among as many ofthe admitted clients as possible. Therefore, this approach works

very closely with the disk-scheduling algorithm.

10

Chapter 2 Admission Control Algorithms

A Literature Survey

2.1.3 Observation Approach

The third approach is one based on observation [16]. In this approach, the times

taken for retrieving various media blocks are recorded. When there is a request for

admission, an extrapolation is made from current values for access times to obtain

the time taken for the new client. This estimated time is used to either accept or

decline a client's request for admission. Although this does not provide very strict

service guarantees like the deterministic approach, it still provides a fair amount

of improvement over the deterministic approach. This algorithm also works very

closely with the disk-scheduling algorithm in order to spread the effects of

deadline violations among as many clients as possible. As we are proposing

hybrid admission control algorithm, in the following sections we will describe

different admission control algorithms in detail.

2.2 Statistical Admission Control Algorithm

Consider a multimedia server that is servicing n clients, each retrieving a

different media strand (say, S"S" ... ,S" respectively). Let service requirements

of Client i be specified as percentage p, of the total number of frames that must

be retrieved on time. A multimedia server can serve these clients by proceeding in

periodic rounds, retrieving a fixed number of frames for each client during each

round. Let j, J" ...f, denote the number of frames of strands

S"S" ... ,S"respective!y during each round. Then assuming that R~,denotes the

playback rate (expressed in terms of frames/sec) of Strand S" the duration of a

round, defined as the minimum of the playback durations of the frames accessed

during a round, is given by,

R = min(.h..-)
1e{I,n) R~J

(2.1)

In such a scenario, ensuring continuous playback of each media strand requires

that the total time spent in retrieving media blocks from the disk during each

round (referred as service time '1') should not exceed R . That is:

'1':5: R (2.2)

11

Chapter 2 Admission Control Algorithms

A Literature Survey

The' service time, however, is dependent on the number of media blocks being

accessed as well as their relative placement on the disk. Since each media strand

may be encoded using variable bit rate compression technique, the number of

media blocks that contain f, frames of S, strands may vary from one round to

another. This difference when coupled with the variation in the relative separation

between blocks yields different service times across rounds. In fact, while serving

a large number of clients, the service time may occasionally exceed the round

duration (i.e., r > R). We refer to such rounds as overflow rounds. Given that

each client may have requested a different quality of service (i.e., different values

of P,), meeting all of their service requirements will require the server to delay the

retrieval of or discard media blocks of some of the more tolerant clients during

overflow rounds. Consequently, to ensure that the statistical quality of service

requirements .of clients are not violated, multimedia server must employ

admission control algorithms that restrict the occurrence of such overflow rounds

by limiting the number of clients admitted for service.

To precisely derive an admission control criterion that meets the above

requirement, observe that for rounds in which r ~ R, none of the media blocks

need to be discarded. Therefore, the total number of frames retrieved .during such

rounds is given byI ;=] I, . During overflow rounds, however, since a few

media blocks may have to be discarded or delayed to yield r ~ R , 'the total number

of frames retrieve will be smaller than I;=] f, .Given P" denotes the percentage

of frames of strand S, that must be retrieve on time to satisfY the service

requirements of Client i, the average number of frames that must be retrieve

during each round is given by P, * f,. Hence assuming q denotes the overflow

probability (i.e., P(r > R) = q), the service requirements of the clients will be

satisfied if:

(2.3)

Here, Fa denotes the number of frames that are guaranteed to be retrieved during a

overflow round. The left hand side of the equation 2.3 represents the lower bound

on the expected number of frames retrieved during a round and the right hand side

12

Chapter 2 Admission .control Algorithms

A Literature Survey

denotes the average number of frames that must be accessed during each round so

as to meet the service. requirements of all clients. Clearly, the effectiveness of this

admission control criteria, measured in terms of the number of clients that can be

admitted, is dependent on the values of q and Fa [8].

Statistical admission control algorithm improves the utilization of server resources

by exploiting the variation in the access times of media blocks from the disk. The

main goals of this admission control algorithm are as follows:

I. Allowing enough traffic to efficiently utilize server resources, while not

accepting clients whose admission may lead to the violations of the service

requirements of the clients.

2. Providing statistical service guarantees to each client.

2.3 Observation Based Admission Control Algorithm

In observation based admission control algorithm a client is admitted for service

only if the predicted extrapolation from the status quo measurements of the

storage server utilization indicates that the service requirements of all the clients

can be met satisfactorily. An observation-based admission control algorithm is

based on the assumption that the amount of time spent in serving each of the

clients already being served will continue to exhibit the same behavior, even after

a new client is added into the system. Therefore, a new client will be admitted for

service only if the prediction from the status quo measurements of the server

performance characteristics indicates that the service requirements of all the

clients can be met satisfactorily. A multimedia server that employs such an

observation-based approach is referred to as providing predictive service

guarantees to clients (A similar technique was presented by Clark et al. [6][18] for

optimizing the utilization of network resource).

Notice that the observation-based admission control algorithm offers fairly

reliable service, but no absolute guarantees. The admission control decisions are

based on the measured characteristics of the current load on the server, rather than

13

Chapter 2 Admission Control Algorithms

A Literature Survey

theoretical worst-case behavior. Hence, the key function of the admission control

algorithm is to accept enough traffic to efficiently utilize the server resources,

while not accepting clients whose admission may lead to the violation of the

service requirements. The performance of the admission control algorithm, and

hence, the number. of clients admitted and served simultaneously are maximized

by employing a disk scheduling algorithm that minimizes both seek and rotational

latency incurred while accessing a sequence of media blocks from disk.

Finally, since the observation-based admission control algorithm provides fairly

reliable service but no absolute guarantees, simultaneous serving of multiple

clients may lead to occasional violation of the continuity requirements (i.e., media

unit losses) of some of the clients. In order to enable a multimedia server to meet

the requirements of as many clients as possible, observation based admission

control algorithm proposed a technique for minimizing as well as distributing the

media unit losses among multiple clients [16].

2.4 Application of Admission Control Algorithms

Applications of admission control algorithm in some fields are presented in this

section.

2.4.1 Admission Control in Telephone Network

The telephone network, carries audio between a source (the caller tenninal) and a

destination (the called tenninal), is the best example of a circuit switched network.

When a user dials a number, the telephone switch finds a free end-to-end voice

circuit to carry the audio transmission. If such a path is available then the call is

set up, otherwise the user gets the busy tone. All users are guaranteed to receive

uninterrupted service if a call is set up. Throughput maximization in a telephone

network depends on the algorithm used for selecting particular paths for new

circuits. Plotkin [19] presented online competitive routing and admission control

strategies for both throughput maximization and congestion minimization models,

motivated by competitive analysis [20]. In both models each link in the network is

defined by a length Ceo which is defined exponentially with regard to the current

14

Chapter 2 Admission Control Algorithms

A Literature Survey

congestion of the link. Let there be a request for bandwidth between nodes sand t.

In the throughput maximization model, the flow is routed if there exists a path

P(s,t) such that the flow is profitable with respect to this length Ceo If it is not, the

flow is rejected. In the congestion minimization model, a rejection edge rej is

created and a flow is routed along the shortest path with respect to the length Ceo

The flow is then considered rejected if it is routed along rej, or if the path selected

has insufficient capacity. Otherwise, it is considered accepted.

Because of only one QoS level in telecommunication networks, there is no

opportunity for downgrading or upgrading the QoS level by changing the

allocated bandwidth or the already selected path. Therefore, there is no way to

optimize operating conditions dynamically. This is true for the sessions with

almost invariable length or for the permanent calls. When the session lengths are

unknown, it is important to admit a set of sessions that give maximum throughput

for the system. This would require future prediction of the length of the sessions.

Statistical distributions can be used to estimate the duration of a particular call.

Admission decision with a risk factor [20] is also a good technique for prediction.

2.4.2 Resource Reservation in IP Data Networks

Currently, the Internet is based on a best-effort datagram service model: this

model does not require (and generally does not permit) resource reservation prior

to data transmission. When a packet arrives at a router, and sufficient resources

(such as time and buffer-space on the outgoing link) are available, the packet is

forwarded to the next router. However, if the necessary resources are not

available, the incoming packet may be delayed, or even dropped. It is therefore

difficult to predict, let alone guarantee, the bandwidth or latency experienced by a

stream of packets under best-effort datagram services. And since each packet of a

session is forwarded through the network independently, packets may experience

variable and unpredictable delays, and may arrive at the destination out of order.

This service has many advantages, but it is unworkable for real-time multimedia

applications requiring absolute standards of performance such as continuous

bandwidth during a Video on Demand session with maximum delay and jitter

constraints. Hence a best-effort datagram service model is not considered suitable

15

Chapter 2 Admission Control Algorithms

A Literature Survey

for the Intemet2 [21), which propose to offer the end-to-end quality-of-service

guarantees similar to that of the telephone network.

Class-based forwarding proposals such as DiffServ [22), where the packets of

applications requiring guaranteed QoS are assigned higher priority classes than the

best-effort traffic, are at best partial solutions: they provide superior service to the

QoS-sensitive application in the relative sense, i.e., relative to the best-effort

traffic, but they cannot guarantee absolute standards of QoS to applications,

including telephony and interactive video communication, which require such

standards.

RSVP [23) is a protocol used to reserve resources i.e., link bandwidth over the

Internet. It requires reservation in each switch from the source to the destination,

which clearly requires the determination of a fixed path on which all datagram of

the flow are carried. This protocol works for real-time audio and video

transmission, and in that sense could provide a basis for guaranteed QoS, but

scalability is a problem.

MPLS [24) provides a mechanism for sending data independent of the IF routing

tables in the routers. In this mechanism each packet is routed through a predefined

path, which is determined before data transmission. A label is added to the packet,

and this label is used for table look up in the router for forwarding packets to the

next router with another label. The label-forwarding table is created at the time of

fixing the path and it contains additional information such as Class-of-Service

(CoS) values that can be used to prioritize packet forwarding. As MPLS is a lower

layer protocol than IP and UDP, real-time multimedia transmission using IP or

UDP over MPLS is considered plausible.

Gerla [25) proposed DiffServ architecture for the support of real-time traffic (e.g.,

video) with QoS constraints without requiring per flow processing in the core

routers and which are thus scalable. Paths are computed by means of a QoS

routing algorithm, Q-OSPF, and MPLS is used to handle explicit routing and class

separation.

16

Chapter 2 Admission Control Algorithms

A Literature Survey

Feedback control theory as developed in control engineering provides another

approach to control the Internet data traffic. Imer [30] presented a control

theoretic approach to designing Available Bit Rate (ABR) congestion control

algorithms. Only ABR traffic such as email and web browsing is regulated. This

traffic gets feedback from the end user and the feedback is used to control the

admission rate of the service. This is extremely useful for volatile networks, where

the number of sessions and the delay of metrics are not exactly known to the

switches.

Greenberg [31] proposed an admission control strategy where book-ahead calls

and instantaneous calls are admitted when the probability of interrupting a call in

progress is less than a threshold. Calls are downgraded by bit dropping in real

time data transmission, or by coarser video encoding to maximize the sharing of

resources among the calls. Srikant [32] proposed the central limit theorem for the

approximation of probability of service interruption.

Scheduling algorithms are used to do admission control in optical and wireless

networks where the users of the network share bandwidth. Dasylva [33] presents a

17

Chapter 2 Ai/mission Control Algorithms

A Literature Survey

polynomial algorithm to produce optimal schedules under certain conditions of

traffic metrics. Shakkottai discusses the problem of real-time streams with

deadlines over a shared channel using different scheduling algorithms.

Asynchronous Transfer Mode (ATM) is a packet switch technique where the data

is divided into 53 bytes cells and multiplexed on time slotted channels [34]. ATM

switches use Virtual Circuits (VCs) and all the packets of a call follow the same

route. When a celI arrives at a switch, the switch determines an outgoing link

looking at the VC number in the header of the ATM cell. Courcoubetis [35]

designed an admission control algorithm for call acceptance that guarantees a

bound of cell loss because of buffer overflow.

In the smart market scheme introduced by Varian [36], the actual price for each

packet is determined based on the current state of network congestion. Users offer

a bid for their packets. The packets whose bids are more than a threshold will be

admitted and the rest are dropped or buffered. Singh [37] proposed a dynamic

capacity-contracting model, which is implementable in the differentiated services

architecture of the Internet.

2.5 Adaptive Multimedia System (AMS)

We define a multimedia service provider, which provides multimedia service to

users with guaranteed QoS levels and supports QoS adaptation an Adaptive

Multimedia System (AMS) [38]. Each user submits its session 'request together

with a set of QoS levels such as Gold (colour video and CD quality audio), Silver

(BfW Video with telephone quality audio), or Bronze (phone quality audio).

Depending on the availability of the resources of the AMS such as CPU cycles,

I/O bandwidth and memory, a session can be admitted to enjoy a particular QoS

level, or rejected. There must be an engine working as an admission and QoS

adaptation controller in the AMS. For brevity we call it an Admission Controller.

It keeps track of all the allocated resources of the system. When a new user places

a request for a multimedia service, or when a session leaves, the controller can

dynamically adapt the QoS level of any running session to allocate some resource

18

Chapter 2 Admission Control Algorithms

A Literature Survey

or to re-allocate newly- released resources. Considering multiple QoS level makes

the problem of admission control and QoS adaptation more complex. But this also

gives the opportunity to upgrade to a higher level and earn more revenue when

some resources are released from the system.

Operating QoS
level

Preferred QoS
levels

AMS
• Admission Control

• QoS Adaptation
• Resource Allocation

Resource allocation
and relclSe

Resource
Status

•

\ Fig 2.1 Adaptive Multimedia System

2.6 Admission Control and QoS Adaptation

Methodology for AMS

There has been lots of interesting work in recent years on reservation-based

management of resources, like CPU cycles and network bandwidth for multimedia

service providers [39][40][41][42][43].

The Benefit Model for adaptation of quality attributes of a single user multimedia

application has been proposed by Schreier and Davis [44]. The quality of the

service is expressed by the video frame rate, audio/video quality and audio/video

synchronization. Each of these quality parameters has an associated benefit

function. The objective is to maximize the benefit of the service by adjusting the

quality parameters. Chatterjee [45] proposed a Logical Application Stream Model

(LASM) to capture the structure of a distributed multimedia application, with

relevant resource requirement as well as end-to-end QoS parameters. Moser [46]

presented an Optimally GracefUl QoS Degradation Model (OGQD) where a single

session's quality is gracefully degraded to meet resource constraints. For a

19

Chapter 2 Admission Control Algorithms

A Literature Survey

multimedia session the system calculates the set of services for maximum utility

subject to resource constraints using a heuristic for solving the MMKP [47].

However, the Benefit Model, LASM and OGQD discuss the adaptation of QoS for

a single multimedia session. They do not address the problem of adaptation in a

multi session environment with a predefined objective like revenue or utility

maximization.

Venkatasubramanian [48] proposed an economic framework for a multi-user

multimedia service provider with different objectives for the users and for the

service provider. In this framework a user's objective is to maximize QoS with

respect to paid price but the service provider's objective is to maximize revenue

with respect to resource usage of the system. This principle does not ensure the

maximum utilization of resources of the service provider.

Lee [49] applied the concept of convex hull to solve the QoS management of a

MRMD (Multiple Resource Multiple QoS Dimension) system. Each QoS of a

multimedia session request is transformed to a point in a two dimensional space.

A convex hull frontier is constructed with the points representing the QoS levels

of each requested session. Admission or rejection, as well as QoS adaptation of a

session, is based on the list of all the segments of the convex hull frontiers sorted

in ascending order according to their slopes.

2.7 Multimedia Servers

Advances in storage technology have made it possible for a single commodity

server to supply soft real-time multimedia streams to clients across a network.

Such servers, however, exhibit poor scalability and availability [50]. One solution

is to "clone" the servers, mirroring available data on each node. This approach

increases the bandwidth capacity and availability of the service and is common in

web server clusters, where the volume of data stored on the server is small.

Cloned servers can be grouped to form a network load-balancing cluster and client

requests are distributed among cluster nodes according to their capabilities and

20

Chapter 2 Admission Control Algorithms

A Literature Survey

current workload. However, the volume of data that is typically stored on a

multimedia server usually prohibits this form of complete server replication. In

addition, since clients rarely request the majority of multimedia files, replication

oflow-demand files is wasteful.

Server striping has been used in the past to share workload between multimedia

servers. The concept is similar to RAID-O [51] - multimedia files are divided into

equal size blocks, which are distributed among server nodes in a predefined order

[50]. Implicit load balancing across server nodes is achieved, while only storing a

single copy of each file. The degree of node interdependence caused by server

striping is high, however, because each server node is used in parallel to supply

each individual multimedia stream. Node interdependence has several

disadvantages. First, the process of stream reconstruction is expensive. Secondly,

as nodes are added to a server, existing content must be redistributed. Many

architectures also require that each sever node has an identical hardware

configuration [52]. Finally, the failure of any single node will lead to the loss of

all streams, unless redundant data is stored [53].

In a clustered multimedia server, by periodically evaluating client demand for

each file and performing selective replication of those files with the highest

demand, the files can be distributed among server nodes to achieve load

balancing. This technique is referred to as dynamic replication [54].

GPFS (General Parallel File System) is a parallel file system for cluster computers

that provides, as closely as possible, the behavior of a general-purpose POSIX

(portable Operating System Interface) file system running on a single machine.

GPFS evolved from the Tiger Shark multimedia file system [55]. GPFS

successfully satisfies the needs for throughput, storage capacity, and reliability of

the largest and most demanding problems.

Traditional supercomputing applications, when run on a cluster, require parallel

access from multiple nodes within a file shared across the cluster. Other

applications, including scalable file and Web servers and large digital libraries, are

21

Chapter 2 Admission Control Algorithms

A Literature Survey

characterized by interfile parallel access. In the latter class of applications, data in

individual files is not necessarily accessed in parallel, but since the files reside in

common directories and allocate space on the same disks, file system data

structures (metadata) are still accessed in parallel. GPFS supports fully parallel

access both to file data and metadata. In truly large systems, even administrative

actions such as adding or removing disks from a file system or rebalancing files

across disks, involve a great amount of work. GPFS performs its administrative

functions in parallel as well. GPFS achieves its extreme scalaoility through its

shared-disk architecture [56]. A GPFS system consists of the cluster nodes, on

which the GPFS file system and the applications that use it run, connected to the

disks or disk subsystems over a switching fabric. All nodes in the cluster have

equal access to all disks. Files are striped across all disks in the file system -

several thousand disks in the largest GPFS installations. In addition to balancing

load on the disks, striping achieves the full throughput of which the disk

subsystem is capable.

C. Wu and R. Burns [57] developed a system for load management in shared-disk

file systems built on clusters of heterogeneous computers. The system generalizes

load balancing and server provisioning. It balances file metadata workload by

moving file sets among cluster server nodes. It also responds to changing server

resources that arise from failure and recovery and dynamically adding or

removing servers. The system is adaptive and self-managing. It operates without

any a-priori knowledge of workload properties or the capabilities of the servers.

2.8 Summary

The objective of admission control algorithm is to control the usage and allocation

of disk resources for various applications requiring service. Admission control is a

key component in multimedia servers, which need to allow the resources to be

used by the clients only when they are available. This assumes great significance

when the server needs to maintain a certain promised level of service for all the

clients being served. If the admission control admits too few clients, it results in

wastage of system resources. On the other hand, if too many clients are allowed to

22

Chapter 2 Admission Control Algorithms

A Literature Survey

contend for resources, then the perfonnance of clients already degrades rapidly in

the presence of new clients. Therefore, judicious decision making mechanisms for

allocating resources disk bandwidth to clients are needed.

23

Chapter 3

ANew Disk Scheduling Algorithm

3.1 Introduction

The file system is said to be the most sequential part of an operating system. Most

programs write or read files. Their program codes, as well as user data, are stored

in files. The organization of the file system is an important factor for the usability

and convenience of the operating system. A file is a sequence of information held

as a unit for storage and use in a computer system.

Files are stored In secondary storage, so they can be used by different

applications. The life span of files is usually longer than the execution of a

program. In traditional file systems, the information types stored in files are

sources, objects, libraries and executable programs, numeric data, text, payroll

records, etc. In multimedia systems, the stored inforination also covers digitized

video and audio with their real time "read" and "write" demands. Therefore,

additional requirements in the design and implementation of file systems must be

considered.

The file system provides access and control functions for the storage and retrieval

of files. From the user's point of view, it is important how the file system allows

file organization and structure. The internals, which are more important in our

context, i.e., the organization of the file system, deal with the representation of

information in files, their structure and organization in secondary storage. Thus

disk scheduling is also important in this context.

The next section starts with a brief characterization of traditional file systems and

disk scheduling algorithms. Subsequently, different approaches to organize

24

Chapter 3 A New Disk Scheduling Algorithm

multimedia files and disk scheduling algorithms for multimedia systems are

discussed. Finally, a new disk scheduling algorithm will be presented.

3.2 Disk Hardware

Nearly all computers have disks for storing information. Disks have three major

advantages over using main memory for storage:

I. The storage capacity available is much larger.

2. The price per bit is much lower.

3. Information is not lost when the power is turned off.

All real disks are organized into cylinders, each one containing as many as tracks

as there are heads stacked vertically (Fig 3.1). The tracks are divided into sectors,

with the number of sectors around the circumference being 8 to 32. All sectors

contain the same number of bytes, although a little thought will make it clear that

sectors close to the outer rim of the disk will be physically longer than those close

to the hub. The extra space is not used [58].

Sector

Fig 3.1 Typical structure of a disk

Consider the process of accessing one byte of information. A disk may be able to

transfer information at a very large rate but before commencing this transfer, two

processes are necessary. The head has first to be positioned over the required

track. This is called seeking and the time it takes is the seek time. Although there

25

Chapter 3 A New Disk Scheduling Algorithm

has been lots of improvement in the seek time, it is still large compared to the

transfer rate. The disk unit must then wait for the required sector of that track to

appear under the head. On the average half of the revolution of the surface will

occur here. The time lag it creates is called latency. The combined time of seeking

and latency is several orders of magnitude larger than the time to transfer one byte

and dominates the actual transfer rate achievable. If more than one byte is

transferred than the effective transfer rate is increased in proportion. That is, given

that the dominant time involved is for seeking and latency, a unit of 512 bytes can

be effectively read/write in the same time as the a unit of one byte.

This unit of transfer - one sector of one track - is often called a block although it

is also often confusingly referred to as a sector. A large block size increases the

effective efficiency of the surface. However, given that it is the minimum sized

unit, space will be wasted when a smaller size is actually required. A file on the

disk will occupy a whole number of blocks and the last block of a file, in general,

be only partially used. On average, therefore, the last block will be half used. To

summarize, a compromise is made when choosing a block size. A large size

makes disk access more efficient, but a small size wastes less space. The equation

is not quite simple.

3.3 Traditional Disk Scheduling Algorithms

The main goals of traditional disk scheduling algorithms are to reduce the cost of

seek operations, to achieve a high throughput and to provide fair disk access for

every process. The additional real-time requirements introduced by multimedia

systems make traditional disk scheduling algorithms inconvenient for multimedia

systems. Systems without any optimized disk layout for storage of continuous

media depend far more on reliable and efficient disk scheduling than others. In the

case of contiguous storage, scheduling is only needed to serve requests from

multiple streams concurrently. In [59], a round-robin scheduler is employed that is

able to serve hard real-time tasks. Here, additional optimization is provided

through the close physical placement of streams that are likely to be accessed

together. The time to read or write a disk block is determined by three factors: the

26

Chapter 3 A New Disk Scheduling Algorithm

seek time, the rotational delay, and the actual transfer time. For most disks, the

seek time dominates, so reducing the mean seek time can improve system

performance substantially.

3.3.1 First Come First Serve

If the disk driver accepts requests one at a time and carries them put in that order,

that is, First-Come, First-Served (FCFS), little can be done to optimize seek time.

However, another strategy is possible when the disk is heavily loaded. It is likely

that while the arm is seeking on behalf of one request, other processes may

generate other disk requests. Many disk drivers maintain a table, indexed by

cylinder number, with all the pending requests for each cylinder chained together

in a linked list headed by the table entries. Fig. 3.2 depicts the policy of First-

Come, First-Served (FCFS).

queue = 98, 183,37, 122, 14, 124, 65, 67

head starts at 53

o 14
I

37 53 6567
I !

98 122124
I I

Cylinder number

183 199
I

Fig 3.2 First-Come, First-Served (FCFS) disk scheduling algorithm

3.3.2 Shortest Seek Time First

Shortest seek time first always handles the closest request next, to minimize seek

time. Given the requests of Fig. 3.3, the sequence is 65, 67, 37, 14,98, 122, 124,

and 183, as shown with jagged line in the Fig. 3.3.

27

Chapter 3 A New Disk Scheduling Algorithm

Unfortunately, SSTF has a problem. With a heavily loaded disk, .the arm will tend

to stay in the middle of the disk most of the time, so requests at the either extreme

will have to wait until a statistical fluctuation in the load causes there to be no

requests near the middle. Requests far from the middle may get poor service. The

goals of minimum response time and fairness are in conflict here.

queue = 98,183,37,122,14,124,65,67
head starts at 53

o 14
I

37
I

53 6567
I I I

98
t

122 124
I I

183 199

I

Cylinder number I

Fig 3.3 Shortest seek time first (SSTF) disk scheduling algorithm.

3.3.3 ScanlElevator

The problem of scheduling an elevator in a tall building is similar to that of a disk

arm. Requests come in continuously calling the elevator to floors (cylinder) at

random. The microprocessor running the elevator algorithm could easily keep the

track of the sequence in which customers pushed the call button, and service them

using FCFS. It could also use SSTF.

However, most elevators use different algorithm to reconcile the conflicting goals

of efficiency and fairness. They keep moving in the same direction until there are

no more outstanding requests in that direction, and then they switch directions.

This algorithm, known both in the disk world and the elevator world, as the

elevator algorithm requires the software to maintain I bit: the current direction bit,

28

Chapter 3 A New Disk Scheduling Algorithm

UP or DOWN. When a request finishes, the disk or elevator driver checks the bit.

If it is UP, the arm is moved to the next highest pending request, if any. If no

requests are pending at higher positions, the direction bit is reversed. When the bit

is set DOWN, the move is to the next lowest requested position, if any.

queue = 98,183,37,122,14,124,65,67
head starts at 53

o 14 37 53 6567

I I

98 122 124
I I

183 199

Cylinder number _

Fig 3.4 SCAN/Elevator disk scheduling algorithm

Fig. 3.4 shows the elevator algorithm using the same requests as Fig. 3.2,

assuming the direction bit was initially DOWN. The order in which the cylinders

are served is 53, 37, 14, 65, 67, 98, 122, 124, and 183. In this case elevator is

slightly better than SSTF with respect to fairness, although it is usually worse.

One nice property that the elevator algorithm has is that given any collection of

requests, the upper bound on the total motion is fixed: it is just twice the number

of cylinders.

29

Chapter 3 A New Disk Scheduling Algorithm

3.4 A Near Optimal Disk Scheduling Algorithm by

using a Heuristic Approach

Consider a multimedia server that is expected to retrieve N blocks during each

round. Let the position of each media block on disk be denoted as

z, = (x,. ,y,) where Xj and y, denote the track number and the block number on that

track, respectively. The goal of the disk-scheduling algorithm is to find the

optimal access sequence for blocks ZI>z, ,...,Z N' assuming that the head is initial1y

positioned at locationzo = (xo,Yo). Formal1y, if f(z"zj)denotes the cost

function characterizing the overhead in positioning the disk head at location Zj

starting from location Z. then a sequence for retrieving N media blocks can be

considered optimal if it minimizes the sum:

F=f(zo'w,)+ f(w"w,)+ ... + f(wN_I>WN) (3.1)

Here sequence w, ,w, ,...,wN represents sequence order of retrieval. Most of the

disk scheduling algorithms consider only seek time but we are considering both

seek and rotational latency incurred during retrieval of disk blocks. So our cost

function be:

(3.2)

Consider a fully connected directed graph G = ry, E), where V = {zl>z,,, ..,zNj.

Let each edge (z" Zj)' i", j in G be labeled with weight (z" Zj). Notice that since

the rotational latency incurred while moving the disk head from node Zj to Zj, in

general, is not equal to that incurred while moving the disk head from Zj to Zj, the

graph G contains both the edges (z,. Zj) and (zj. z,), each with a different weight.

Having constructed this graph, the problem of minimizing the total cost of

retrieving media blocks during a round starting from node Zo can be reduced to the

traveling salesman problem, a classical graph theory problem known to be NP-

complete [60]. In the constructed graph, G, for al1 pair of vertices there are two

edges between any two vertices with different weights. As the exact solution

requires lots of time we are looking for a heuristic. By using triangle inequality

method we approximate the order of blocks to be retrieved.

30

Chapter 3 A New Disk Scheduling Algorithm

The following algorithm computes a near-optimal tour of Graph G, using the

minimum spanning tree algorithm MST -PRIM. Graph G is constructed by using

the vertices where each vertex is a block request. The cost function c is

constructed from the weights among the blocks. Here cost function is considered

in terms time. Minimum spanning tree is discovered by MST -PRIM algorithm. A

preorder tree walk recursively visits every vertex in the tree, listing a vertex when

it is first encountered, before any of its children are visited. The operations of near

optimal disk scheduling algorithm are illustrated by using figures in the following

paragraphs. Fig. 3.5 shows the given set of vertices where the ordinary Euclidean

distance is used as the cost function between two points, and Fig. 3.6 shows the

minimum spanning tree T grown from root a by MST-PRIM. A greedy method to

obtain a minimum cost spanning tree would build this tree edge by edge. The next

edge to include is chosen according to some optimization criterion. The simplest

such criterion would be to choose an edge that results in a minimum increase in

the sum of the costs of the edges so far included. In one approach, the set of edges

so far selected form a tree. Thus, if A is the set of edges selected so far, then A

forms a tree. The next edge (u. v) to be included in A is a minimum cost edge not

in A with the property that A u {(u. v)} is also a tree. This selection criterion

results in a minimum cost spanning tree. The corresponding algorithm is known as

Prim's algorithm.

Near-,-Optimal_Disk_Scheduling""Algorithm (G)

[Say c is a cost function]

begin

1. Construct a graph by considering each block as a vertex and add edges among them
by using cost function.

2. Select a vertex rEV [GJ to be a."root" vertex

3. Grow a minimum spanning tree Tfor G from rusing MST-PRIM (G, c, r)

Let L be the list ofvemces visited in a preorder tree walk of T.

4. Return the Hamiltonian cycle H that visits the vertices in the order of L [it is order of

blocks to be retrieved].

end

31

Chapter 3 A New Disk Scheduling Algorithm

--~i-----.I -)--- I __ ~I- __ I
: I----1---- ..----j-------._.--I------ -- ----- --

i I! I
- 11-1.

1.-l-- -e---I---- --------j-- ..-.--.- -----

...Je .- 1

- i--.-+--,----I-.--11

-- .. ---- --_.-

I 1 ,

Fig 3.5 Given a set of points, considered as vertices in the grid.

The vertex 'a' is the root vertex. A full walk of the tree visits the vertices in the

order a, b, c, b. h, b, a, d, e. f, e, g. e, d, and a (Fig. 3.7). A preorder walk of T lists

a vertex just when it is first encountered, yielding the ordering a, b, c, h, d, e. f, g

(Fig 3.8).

'~ ... ,,\
Ie
i

I,
i,

1
............. 1

I

Fig 3.6 Minimum spanning tree T of these points.

32

Chapter 3 A New Disk Scheduling Algorithm

Fig 3.7 A walk ofT, starting at 'a'

This is the order H returned by near optimal disk scheduling algorithm. Its total

cost is approximately 19.074. An optimal tour H' (Fig 3.9) costs approximately

14.715 (By observation).

'-1----' ---~----
..... j .. ,.•.

,

I
I

Fig 3.8 Near Optimal tour

33

Chapter 3

I,
I

A New Disk Scheduling Algorithm

Fig 3.9 An optimal tour

In this case optimal tour is 23% shorter. The Near-Optimal-Disk-Scheduling

algorithm is an approximation algorithm with a ratio bound of 2 with triangular

inequality [60].

3.5 Analysis of Disk Scheduling Algorithms

The computational complexity of different disk scheduling algorithms is analyzed

in this section.

• First Come First Server (FCFS) does its operation in constant time, as

there is nothing to be done for preprocessing.

• The computational time of both Shortest Seek Time First (SSTF) and

SCAN isD(n 19n), where n is the number of blocks in the queue to be

retrieved.

• But the computational complexity of near optimal disk scheduling

algorithm is 8(n'), as this method uses a complete graph and construct

minimum spanning tree by using MST_PRIM algorithm (section 3.4).

The computational complexity of near optimal disk scheduling is higher than the

other disk scheduling algorithms, but the order of blocks to be retrieved it

34

Chapter 3 A New Disk Scheduling Algorithm

generates makes it lucrative in terms of effectiveness, i.e. lower service time. As

this algorithm has a higher complexity, we can do the processing in advance by a

parallel processor. Thus one processor is involved in generating the blocks order

to be retrieved and other would satisfY clients demand. Threading would be

another option to do the processing.

35

Chapter 4

A Hybrid Admission Control Algorithm

4.1 Introduction

Digitization of audio yields a sequence of samples, and that of video yields a

sequence of frames. A continuously recorded sequence of audio samples or video

frames is called a strand. A multimedia server must organize the storage of such

media strands on disk (in terms of media blocks). Due to the periodic nature of

media playback, a multimedia server can serve multiple clients simultaneously by

proceeding in rounds. During each round, the multimedia server retrieves a

sequence of media blocks for each strand. The number of blocks of each media

strand retrieved during a round is dependent on its playback rate requirement, as

well as the available buffer space at the client. Consequently, ensuring continuous

retrieval of each strand requires that the service time (i.e., the total time spent in

retrieving media blocks during a round) does not exceed the minimum of the

playback durations of the sequences of blocks for each strand retrieved during the

round. Since service time is a function of the number of blocks retrieved during a

round, a server can serve only a limited number of clients simultaneously. Hence,

before admitting a new client, a multimedia server must employ admission control

algorithms to decide whether a new client can be admitted without violating the

continuity requirements of any of the clients already being served [8].

4.2 Formulating Admission Control Problem

Consider a multimedia server that is serving n clients, each retrieving a different

media strand (let, 8"8" ...,8,, respectively). We refer to a continuously recorded

sequence of audio samples or video frames as a strand. Let R" R" ... ,R, , denote

the playback rates (in terms of bytes/sec) of strands 8"8" ...,8,, respectively.

36

Chapter 4 A Hybrid Admission Control Algorithm

Furthermore, let k, ,k" ... ,k" denote the number of blocks of strands

S"S" ... ,S"retrieved during each round. The total service time in serving n

requests during a round is dependent on the total seek time and rotational latencies

incurred while accessing (k, + k, + ... +k,) media blocks from the disk. In the

worst case, all the media blocks may be stored on separate tracks/cylinders; the

disk head may have to be repositioned onto new track at most (k, + k, + ... + k,)

times during each round.

Suppose,

T =Number of tracks/cylinders on disk

M =Disk block size, in bytes

a,b = Seek time parameters, they are constants

I,,,,(t"t,) = Seek time (a + b * It, - 1,1), in sec

1~;X=Maximum rotational latency, in sec

R =Minimum playback rate

T = Service time

It is quite clear in figA.! how to determine the minimum duration of a round. Say,

multimedia server is serving n clients. Server provides a number frames to each

client and client consumes these frames. In order to ensure continuous playback

condition server must provide a new set of frames before the client consumes

earlier set of frames.

P
L
A
Y

T
1
M
E

Fumes for Client 3

DuratioJl ofa round

Fig 4.1 Duration of a Round

_ Clio •••

37

Chapter 4 A Hybrid Admission Control Algorithm

Duration of a round is the minimum time to consume a set of frames among the all

clients. To ensure continuous playback of a media stream for each client,

multimedia server must serve new set of frames before the minimum duration of a

round. The equation r ~ R ensures that the playback requirements of all the

clients are strictly met for the entire service duration.

So, total seek time incurred during a round be, a *I:,k, +b * T. Again,

maximum rotational latency incurred during a round is, l;:'~* I:.,k, .Hence total

service time for each round is bounded by:

r=a*'" k. +b*T+lm", *'" k~icl I rot ~j ••l i

=(a+lm",)*,,' k +b*T
rot L.../.,1 i (4.1)

Consequently, ensuring continuous retrieval of each strand requires that the total

service time per round do not exceed the minimum of the playback durations of

k"k" ... ,k" blocks. So the admission control criteria can be formally stated as:

I' (k.*M)r=(a+l;:'~)* k,+b*T~min -'--,., '«'.'1 R, (4.2)

Equation 4.2 indicates that service time should be less than or equal to the'

minimum duration of a round and ensures that the playback requirements of all

the clients are strictly met for the entire service duration. Hence, a multimedia

server that employs such an admission control criteria is said to provide

deterministic service guarantees to each client.

The worst-case assumptions that characterize most of the deterministic techniques

may needlessly constrain the number of clients that are serviced simultaneously,

and hence, may lead to severe under-utilization of server resources. This is

because, the average time spent in accessing a media block from disk, in practice,

and is significantly smaller than the corresponding worst-case times. Hence, in

order to improve the utilization of server resources, a multimedia server must

employ an admission control algorithm, which exploits the statistical variation in

the access times of media blocks from disk. Our hybrid admission control

38

Chapter 4 A Hybrid Admission Control Algorithm

algorithm is a combination of deterministic and observation based admission

control technique.

4.3 Hybrid Admission Control Algorithm

Consider a multimedia server that is serving n clients, each retrieving a media

strand (say 8"8" ...,8,, respectively). Let n, and n,denote the number of

clients that require deterministic and non-deterministic service, we call them super

user and normal user respectively (i.e., n = n, + n,). Without loss of generality,

let us assume that clients retrieving strands 8"8,, ...,8, require deterministic,
service guarantees, and those retrieving 8, , S, ,...S, are tolerant to brief

J+l d+Z

distortions or loss of information.

Let, minimum duration of a round, R = min(k, *M J sec. General rule of
IE[I,"] R;

admission control is r $; R .. We are defining a new term safe guard; it is the

reduced percentage of minimum duration of a round. Say, if the admission control

technique uses 90% of R in the admission control equation we called it 10% safe

guard. On the other hand, the total time spent in retrieving the media blocks from

disk during each round (referred to as service time r) is dependent on their relative

placement on disk as well as the disk-scheduling algorithm. Since the relative

placement of blocks can vary from one round to another, the service times may

also vary across rounds. Consequently, in some rounds, ~ could be greater than R.

Such rounds are called overflow rounds. Since maintaining continuity of playback

for intolerant clients requires the service time to be smaller than the duration of a

round, blocks of some of the tolerant clients may have to be discarded (i.e., not

retrieved) during such overflow rounds.

Let, K denotes number of media blocks accessed during a round. So, K $; "': k ...Lot, .•l I

Hence, average time of retrieving a media block is:

r
1] = K (4.3)

39

Chapter 4 A Hybrid Admission Control Algorithm

The admission control algorithm that we are presenting is based on the assumption

that the average amount of time spent for the retrieval of each media block (i.e.,

the value of 7]) does not change significantly even after the server admits a new

client. In fact, to enable the multimedia server to accurately predict the amount of

time expected to be spent while retrieving media blocks during a future round, we

will maintain a history of the values of 7] observed during the most recent W

rounds. If 7],,,, and cr, respectively, denote the average and the standard deviation

of T[over the last W rounds, then the time required to retrieve ~ block in future

rounds can be estimated as:

(4.4)

Here E is a constant. We will show, how this constant play an important role in

admission policy in the next chapter.

In hybrid admission control technique, we form two groups according to the

service requirement. The clients who demand guaranteed service is fall in super

user group and other clients are in normal user group. We apply different

admission polices based on the service requirement of the clients. Say

r, = Service time of the super user group

r, = Service time of the normal user group

When a new client requests for accessing the resources of a multimedia server,

according to the group we may need either to calculate the new service time r' or

to estimate the new service time r,. If the summation of these two service times is

less than or equal to the minimum duration of a round, request is accepted

otherwise it is declined. A flow chart of the hybrid admission control algorithm is

given below. In the following paragraphs, hybrid admission policy explained in

detail.

40

Chapter 4 A Hybrid Admission Control Algorithm

Set Global Parameters
Create File Systems

Ves

Super user Nonnal user

No No

Ves Ves

Add the client for service

Detennine the blocks to be
retrieve in the next round

41

Chapter 4

Yes

A Hybrid Admission Control Algorithm

Apply near optimal disk
scheduling algorithm

No

Discards blocks of normal user to ensure
service guarantee

Fig 4.2 Flaw chart a/hybrid admission control algorithm

4.4 Admitting a New Client

In order to precisely fonnulate the admission control criteria, consider a scenario

in which a multimedia server receives a new client request for the retrieval of

strand Sn+l. Let, Rn+J denotes the playback rate requirement for the new client, and

kn+J denotes the number of blocks of strand Sn+1 that need to be retrieved during

each round.

4.4.1 Deterministic Criteria

If the new client desires deterministic service guarantees, then before admitting

the client, the multimedia server must ensure that neither super user nor nonna!

users are being suffered after the new client is admitted. The admission control

42

Chapter 4 A Hybrid Admission Control Algorithm

criterion has the following structure. Here by considering the worst-case

assumption, we are trying to satisfy the following admission control criterion in

order to admit a new client for getting multimedia service.

Say, n,=Number of super users

n,=Number of normal users

p, = Percentage of blocks that must be retrieved on time for Client i.

New service time of super users, f;~= (a+1:::;")*L;~~'k, +b*T
A

Service time of normal users, f, = 1]*L;~,k,* p,
Thus admission control criterion be,

(k *M)rnew + 7: < min -'--, ,-
le[l,n+l] R,

4.4.2 Non Deterministic Criteria

(4.5)

Consider, on the other hand, the scenario in which the new client requires non-

deterministic service. Let 0 < P,,+I :S:I denotes the percentage of media blocks of

strand 8,+} that must be retrieved on time from the multimedia server so as to

satisfy the service requirements of the new client. Since admitting a normal client

cannot violate the requirements of super users (since in the case of an overflow,

media blocks of only normal users are discarded), the multimedia server can admit

the new client if its admission will not violate the service being provided to any

client. Hence, the multimedia server will admit the new client requiring this type

of service only if equation 4.6 is satisfied.

Service time of super users, f, = (a+I:::;")*L;~1 k, +b*T

New service time of normal users, t'=ew =~*,,11,,+1 k. *p,
" LJ''''l j

Thus admission control criterion be,

"~< . (k, *M)7:s +Tn _ mm ---
ie[l,Il+1J R, (4.6)

43

Chapter 4 A Hybrid Admission Control Algorithm

The admission control algorithm, presented for the normal user, will increase the

number of clients for multimedia server that can be served simultaneously. The

performance of such an approach is dependent on the following parameters.

I. The values of 1],,,< and (T: smaller the values of 1]"g and (T , greater is the

number of clients that can be served simultaneously by the server. Hence,

the multimedia server must employ disk-scheduling algorithms that

minimize the total time spent in retrieving media blocks during each

round.

2. The ability of the hybrid algorithm to meet the requirements of as many

clients as possible. This requires that the multimedi,a server employ

policies for determining the minimum number of media blocks, which

when discarded will yield sufficient reduction in service time so as to

ensure that service time is less than or equal to the duration of a round (i.e.

r:>;R).

4.5 Enforcing Service Guarantees

In this section we describe some policies to ensure service guarantee for the

multimedia clients. This technique of ensuring service guarantees was first used

by A. Goyal [8][18].

4.5.1 Overflow Rounds

Recall that the admission control algorithm presented in Section 4.4 admits a new

client if the client is able to meet the admission control criteria in which it

belongs. Due to the aggressive nature of this admission control criteria in case of

normal user, the total time spent in retrieving media blocks during a round (i.e.,

service time r) may occasionally exceed the duration ofa round R, yielding an

overflow.

4.5.2 Policy of Discarding Blocks

Observe, however, that since the retrieval sequence for Round i is pre-computed

during Round (i -I) an overflow can be detected before actually initiating

44

Chapter 4 A Hybrid Admission Control Algorithm

Round i. Hence, in order to ensure that the deterministic service guarantees

provided to clients are not violated, a multimedia server must discard (i.e., not

retrieve) sufficient number of media blocks of normal clients so as to maintain the

service time within the duration of the round (i.e., r " R). However, in doing so,

the multimedia server must minimize the number of blocks discarded, as well as

distribute the set of discarded blocks among the normal clients so as not to violate

any of their requirements. In what follows, we present a technique for addressing

this problem [8].

4.5.3 Selection of Affordable Clients to Discard Blocks

Consider a multimedia server that is serving n clients sinmltaneously. Let

\;j, E [I, n] : p, denotes the percentage of media blocks of strand S, that must be

retrieved on time from the multimedia server so as to meet the service

requirements of the clients. Assuming that n,clients require deterministic service

guarantees, we get \;j, E [I,n] : p, = 1.

Let,

I= Average length of service of normal clients, in terms of time unit,

R =Duration of a round,

Thus,

r = Number of rounds in this service interval,

I
=-rounds.
R

Suppose, for each Client i,

k, = Number of blocks of strand S, to be retrieved during each round

I, = Number of media blocks of strand S, that have already been

discarded.

%, = Loss affordability

Say, L, is the number of media blocks of strand S, which can be discarded without

violating the service requirements of Client i. So, L, is bounded by:

L, =L(I-p')*k,*r J (4.7)

45

Chapter 4 A Hybrid Admission Control Algorithm

(4.8)

Consider, now, an overflow round j , 0 ~ j ~ r . Thus, the number of

media blocks of strand 8, that can be discarded during Round j is bounded by

(L, -I,), based on which we define the loss affordability for Client i as:

X. = L, -Ii = l_lL
I L

i
L

1

Clearly, as the number of blocks of strand 8, discarded during an interval I

increase, the loss affordability of Client i decreases. In the limit, if I, = L, then X,

= O. That is, if the .number of media blocks of strand 8, discarded during interval I

have already reached its upper limit; no more blocks of 8, should be discarded

during Round j . A multimedia server will discard blocks of only those clients

with X,> O.

4.5.4 Selection of Discarding Blocks

Given the set of clients with X, > 0, a multimedia server may employ various

techniques to select the precise set of media blocks, which can be discarded.

4.5.4.1 Technique Based simply on the Loss Affordahility

In the simplest case, media blocks of a strand with the highest loss affordability

can be discarded until no more blocks of that strand can be discarded during the

round. If the resulting round continues to yield an overflow (i.e., 1:> R), then

discard blocks of the strand with the second largest loss affordability, and so on. A

multimedia server can address this problem by distributing the number of media

blocks that need to be discarded during Round j among all the clients with Xi >

o.

4.5.4.2 Effectiveness

Once a media block to be discarded is determined, the multimedia server can re-

compute the service time 1:"'W (by determining a new retrieval sequence using the

disk scheduling algorithm). If 1:"<w > R, then the number of media blocks

discarded can be progressively increased until the new retrieval sequence

yields1:"<w~ R. However, the high computational complexity of the disk-

46

Chapter 4 A Hybrid Admission Control Algorithm

scheduling algorithm renders this straightforward approach prohibitively

expensive to implement.

To avert the re-computations, a multimedia server may just approximate the

reduction in service time yielded by discarding a media block located at Wi as

f(w,_"wi)+ f(Wi,Wi+,)-f(wi_i> Wi+l), where wi_land Wi+, denote the predecessor

and successor nodes of Wi in the original retrieval sequence. Conceptually, this is

equivalent to replacing edges (Wi_I' Wi) and (Wi' Wi+!) from the graph by edge

Whereas such an approximation technique significantly reduces the computational

complexity of the algorithm, it is not suitable for either one of the schemes

(namely, discarding as much for one client before switching to the next client, or

distributing the discarded blocks among all the clients with non-zero loss

affordability). This is because, both of these schemes determine the set of blocks

to be discarded based on the loss affordability of the strands, and not on the

relative placement of the chosen blocks on disk. Since the near optimal disk

schedule algorithm derives a retrieval sequence which minimizes the seek time as

well as the rotational latency, discarding an isolated block from the sequence may

not yield any significant reduction in the service time (i.e., the difference

f(wi-I'wi)+ f(Wi,Wi+,)-f(wi_i>w,+,» may not be significant. For instance, if

blocks W,-I' Wiand Wi+1happen to be located on the same track/cylinder, then

discarding block Wi does not yield any reduction in the service time at all. In fact,

the average reduction in service time yielded for each discarded media block is

higher if a sequence of n media blocks, rather than n isolated media blocks, are

discarded during a round. Consequently, any scheme that is based solely on the

loss affordability of clients may discard a larger number of media blocks, than are

necessary, during an overflow round.

4.5.4.3 Technique Based on Loss Affordability and Block Position

To address this limitation, we present an algorithm that selects a set of media

blocks to be discarded during a round based on both the loss affordability of the

47

Chapter 4 A Hybrid Admission Control Algorithm

clients as well as the relative placement of the selected blocks on the disk [!6]. To

clarify the exposition of the algorithm, let us assume that wo' wi>" .,wN denotes

the retrieval sequence derived by the near optimal disk-scheduling algorithm.

Based on the loss affordability of each strand, the algorithm first labels each

media block (i.e., WI'S) to be retrieved during the round as either can-be-discarded

or can-not-be-discarded, and then determines maximal length subsequences of

can-be-discarded blocks. For each such subsequence, the server computes the

average reduction in service time per node yielded by discarding the entire

subsequence. The algorithm then discards as many complete subsequences as

needed, in the decreasing order of the average reduction, so as to make r';; R ,

with possibly the last subsequence discarded partially.

If, even after discarding all the subsequences, the service time continues to be

greater than the duration of the round, then the subsequence determination

algorithm is repeated with all the blocks of normal clients marked as can-be-

discarded. Whereas this would violate the requirements of some of the normal

clients, proper choice of E in the admission control criteria (Equation 4.4)

virtually eliminates the possibility of such an event.

The labeling operations as well as the processing of deriving subsequences of can-

be-discarded blocks are relatively straightforward. Hence, the algorithm not only

reduces the number of media blocks that are discarded during Round j ,but also

does so efficiently.

4.6 Analysis of Hybrid Admission Control Algorithm

In hybrid admission control algorithm there are two types of user. We classify

them into two groups; super user group and normal user group. Each group has an

average rate of inter-arrival times. In simulation, client requests were generated

using poisson process.

• After classifying client request, multimedia server tests this request to

admit it for accessing server resources by using hybrid admission contro!

48

Chapter 4 A Hybrid Admission Control Algorithm

algorithm. The computational time to test admission condition, i.e.

whether the request is accepted or declined, is linear. So computational

complexity of hybrid admission control algorithm isO(n), where n, is the

number of clients that are currently accessing server resources.

• Next step of the multimedia server is to determine the blocks that are

needed to retrieve in the next round. After determining the blocks, disk-

scheduling algorithm is responsible to generate the order of blocks to be

retrieved. Our near optimal disk-scheduling algorithm does a good job and

it takes a running time ofE>(n'), where n is the number of blocks to be

retrieved in a round.

• The computation complexity of deterministic admission control algorithm

is constant. But block retrieval time depends on the disk-scheduling

algorithm it uses. In contrast, the computation complexity of statistical

admission con.trol algorithm isO(n), where, n is the number of clients that

are currently accessing server resources.

• Hybrid admission control algorithm uses near optimal disk scheduling

algorithm and this algorithm has a higher running time than other

conventional disk scheduling algorithms, but it benefits lies in the

generation of the near optimal block order sequence.

• Now, we propose system architecture (fig 4.2) to get better performance

from the hybrid admission control algorithm. This architecture has two

processors. One processor (PI) is used to do all the preprocessing works

such as to determine the blocks to be retrieved in the next round as well as

actual retrieval sequence of blocks by using near optimal disk scheduling

algorithm. Other processor (P2) does the actual data transfer. This

architecture also indicates that processor P2 is one round behind the

processor PI. The extra overhead of near optimal disk scheduling

algorithm is pulverized by this architecture.

49

Chapter 4 A Hybrid Admission Control Algorithm

block retrieval data
order generation transfer

Processor 1 Processor 2

ROUND, ROUND'+1 1 ROUND'+2 .1

P1~P1~P1~

P2

Fig 4.3 Dual processors architecture

50

Chapter 5

Simulation and Experimental Results

5.1 Introduction

So far, we have presented an admission control algorithm and a disk scheduling

technique for multimedia server. In this chapter, we demonstrate their viability by

analyzing the performance of both disk scheduling scheme and admission control

algorithm through simulations. The performance measurement of disk scheduling

algorithm is achieved by comparing the results with various well-known disk-

scheduling techniques. The performance measures of different admission control

schemes may help us to understand how various systems can be better utilized to

serve multimedia clients. The following metrics were used to evaluate our hybrid

admission controllers and compare their performance with deterministic and

statistical admission control schemes.

1. Number of Clients Admitted: The total number of clients that were

admitted for a multimedia session out. of a large number of requesting

clients.

2. Number of Overflow Rounds: In serving the multimedia clients, there

could be a number of rounds that may exceed the duration of a round.

To evaluate the performance of the near optimal disk-scheduling algorithm we use

following metrics:

1. Service Time: How much time it takes when retrieving large number of

blocks from the disk.

2. Rotational Latency: Influence of rotation latency in different disk

scheduling algorithms.

51

Chapter 5

5.2 Simulation Parameters

Simulation and Experimental Results

The simulations were carried out in an environment consisting of a synchronous

disk array (access arrns/heads move in unison) with 16 disks. The characteristics

of disk are shown in Table 5. I. The unit of each parameter is also attached in the

table.

Parameter Relevant Information Unit

Disk Capacity 4 GB

Number of disks in the array 16

Number of tracks per disk 1024

Disk block size 32 KB

Rate of disk rotation 3600 RPM

Seek formula 4+O.02*IC1 - C21 rns.

Max seek time 24.48 rns

Max rotational latency 16.66 rns

Number of blocks per track 128

Table 5.1 Disk parameters assumed in the simulation

For our simulations, we assume client requests received by multimedia server are

categorized into two groups: Super user and Normal user. Normal user has a

tolerance level. Client requests of each group were generated using a poisson

process, with average inter-arrival times of 3 seconds and I second, respectively.

During each round, exactly one block from each of the disks. was retrieved for

each client. Since the block size is assumed to be 32 KB, the total amount of

media information retrieved during each round is 512 KB. Assuming that the

playback rate of each strand is 512 KB/second yields R = I second (R is the

minimum duration of a round). The simulation parameters for admission control

algorithm are given in Table 5.2.

52

Chapter 5 Simulation and Experimental Results

5.3 Experimental Results of Near Optimal Disk

Scheduling Algorithm

The near optimal disk scheduling algorithm derives a sequence of accessing

blocks from the disk so as to simultaneously minimize seek time and rotational

latency. In contrast, conventional disk scheduling algorithms such as SCAN

optimizes the total seek time only. Fig. 5.1 shows time requirements of various

algorithms when retrieving 100 blocks. Here it is quite clear that near optimal disk

scheduling algorithm is better than the other disk scheduling algorithms when

retrieving a large number of blocks.

Parameter

Playback rate

Frame Size

Average inter-arrival times of Super user

Average inter-arrival times of Normal user

Average no of frames retrieve on time, P

No of previous rounds used to determine average block

retrieval time

Epsilon! Overflow control parameter

Safe Guard

Values

30 frames/sec

16.25 KB

3

95%

20

0.0 - 1.0

0%-10%

Table 5.2 Simulation parameters of admission control algorithm

Fig. 5.2 shows the variation in the ratio of service times derived for SCAN and the

near optimal algorithms with the increase in the number of blocks, n, retrieved

during each round. Observed that the performance of the near optimal scheduling

technique improves with increase in n. This is because, at smaller values of n ,

the total seek time incurred during their retrieval dominates the performance and

hence, SCAN performs as well as the near optimal. However, as the value of n

increases, the cumulative rotational latency starts dominating the service time,

thereby enabling the near optimal to outperform SCAN. Fig. 5.2 also indicates

53

Chapter 5 Simulation and Experimental Results

that even at higher values of rotational rate, the gain in performance yielded by the

near optimal algorithm is significant.

2000
UDFCFS

ffilSCAN

EI FCFS-Exact

mSSTF

!ill SSTF-Exact

!ill SCAN-Exact

1::11Near Optimal600

400

200

1400

U' 1200
"~
5 1000
"E
i= 800.

1800.

1600

O.
Fig 5.1 Sen,ice lillie cOlllparison of disk scheduling algorithms when retrieving

100 blocks

1.6 ..r-~-------------------,

1.2
,-:.,.",.. .._ ..-.,.",.. •._ ..~.._ ..

1.1.-:..••....;-_..,.•..-..k ~.-'.1 .10 .. -';;

"~ 1.5
"".f 1.4
"~;;
.5 1.3
c-
"~
""c
£
c
""~...
"~" 0.9 -
'"

500400300200100
0.8+. ---,----,----,----,----l

o
number of blocks

1-.._..- RPM.540D - - RPM-36DD - RPM.18DD I
Fig 5.2 COlllparison of SCAN and Near Optimal disk scheduling algorithms

54

Chapter 5 Simulation and Experimental Results

Finally in fig. 5.3, we compare various disk-scheduling algorithms, where x-axis

represents number of blocks and y-axis represents service time in millisecond. It is

quite clear that near optimal disk scheduling algorithm is better than its counter

parts for higher number of blocks.

2500

2000

u
11500
~j::
••~ 1000
ell

500

o
o
"- Blocks

oo~

:! ..

1-- FCFS-E -- SCAN-E --'IE- Near Optimal I
Fig 5.3 Time Analysis of Various Disk Scheduling Algorithms

5.4 Experimental Results of Hybrid Admission

Control Algorithm

We have compared the performance of our hybrid admission control algorithm

with conventional deterministic and statistical admission control algorithm. The

results of this experiment show that hybrid admission control mechanism admits

. quite a reasonable number of clients. This number is higher than deterministic

admission control algorithm but lower than statistical admission control

mechanism. But average overflow round is lower in hybrid admission control

55

Chapter 5 Simulation and Experimental Results

algorithm than that of. statistical admission control technique. Table 5.3

summarizes the information in this regard.

Deterministic Statistical Hybrid

Admission Admission Admission

Control Control Control

Algorithm Algorithm Algorithm
.

No of clients served 47 135 97

No of clients
- 187% 106%

increased

Overflow rounds No Very high Very low

Table 5.3 Comparison of different admission control algorithms.

In our algorithm, we 'are also proposing two approaches to control overflow round.

These are safe guard (Section 4.3) and epsilon (Section 4.3). We varied safe guard

from 0% to 10% and epsilon from 0.0 to 1.0. The percentages of overflow rounds

were determined and some of these results are shown in the table 5.4 and table

5.5.

% Of
Safe Guard Max Clients

Overflow

0% 96 63

2.5% 96 43

5% 94 17

7.5% 92 4

10% 89 I

Table 5,4 Influence of safe guard on number of clients and overflow rounds for

E ~o.

56

Chapter 5 Simulation and Experimental Results

% Of
Safe Guard Max Clients

Overflow

0% 97 53

2.5% 96 41

5% 94 14

7.5% 92 3

10% 89 0.15

Table 5.5 llljlueuce of safe guard on number of clients and overflow rounds for

E=l.

1

0% 2.50% 5.00%
Safe Guard Level

7.50% 10.00%

f?M?x Clients 1::1% of Overflow I
Fig 5.4 Influence of Safe Guard on the Number of Clients and Overflow Rounds

57

Chapter 5 Simulation and Experimental Results

From the fig 5.4 it is clear that if we increase the value of safe guard, overflow

rounds decrease with the slight expense of clients. This nature of decrease is
almost exponential.

By controlling safe guard we can restrict the overflow of rounds but it reduces the

number of clients that may be served by the multimedia server. But when safe

guard is fixed we can control the overflow of rounds by adjusting the value of

epsilon (Fig 5.5). Here we observed an interesting result. Epsilon has no influence

on the number of clients but it reduces the overflow of rounds' slightly when safe

guard is fixed. This is because epsilon has little influence in admission policy; it

only adjusts the average block retrieval time for the next round. For example,

when safe guard is 5%, total number of clients that may be served by the server is

92. This value is same for any epsilon 0 to 1. But variation of epsilon changes

2.50% 5.00%
Safe Guard

7.50% 10.00%

@ii£C-EO ElMC-E1 IZl%Overflow-EO IlII%Overflow-E11

Fig 5.5 Injlnc/1cc af EpsilOll 0/1the Number of Clients and Overjlow Rounds

(MC-EO: Maximum /lumber of clients when E =0, MC-E1: Maximum number of

clients when E =1, % Overflow-EO: Percentage of overflow when E =0,

% Ovcljiow-EO: Percentage of overflow when E =1)

58

Chapter 5 Simulation and Experimental Results

120

100
'''<''''NNNN''

"''''''''N'''","N;,W,',;",

~ 80
"NNN"NN,,"

iiili!ii!!ii!l!

.~ ""'''N/N'''Nn
NNN"","''''

(] N/NNN"'''''''

60 ''',''','',''''''~
0 ""n"""'",,,',
0
Z 40 """""'n",,,,,

NN''''''''''''''"
""'''''''''''''"uN'''''''''''''

20 ""'''uN,,,,,,""""N,,;,, ',','.',',',',',
""'''''N/'''N ',',',',',',',',
"N"""NNN' :::::::::::;:';,,,''''N'''N,,'''' :':':':';':'::::"UN''''''''''''"

0
"N""n""",,, ':':':':';':.:';

I[J Near Optimal IIIFCFS IIISSTF l!l SCAN I

Fig 5.6 EmlllatiOll of Hybrid Admission control algorithm

Fig 5.6 also illustrates that multimedia server employing near optimal disk

scheduling algorithm can serve a larger number of clients simultaneously as

compared to the other disk scheduling algorithms. In fact, for E= 0, a multimedia

server with hybrid admission control algorithm can serve almost 96 clients

simultaneously by using ncar optimal disk scheduling algorithm whereas SCAN

reduces this number to 81.

~ 120 1 1--Clients -- % OfOverflowI0
0::~~

100 i ~" lIE~ ~IE
0 80 31e

'lK><•-
60 1~

.~
(]
~ 40 -1

0~~ 20 -""E=~ 0-,

0.02 0.04 0.06 0.08 0.1

Seek Time

Fig 5.7111)lIlCIlCCof the seek time on clients and overflow rounds

59

Chapter 5 Simulation and Experimental Results

In fig 5.7 we demonstrate the influence of seek time on the maximum number of

clients that can be served simultaneously and on the percentage of overflow

rounds. Here we vary seek time and found that with the increase in seek time

number of admitted clients decrease slightly but percentage of overflow rounds

decrease significantly.

~Clients
-)(- %01 Overflow

160

140
~= 120=~~
>
0- 100=~•
~ 80=~:=
U 60-=~~
""a 40=Z

20

0
8.33 11.11 12.5 16.66 25

Maximum rotational latency

Fig 5.8 Influence of the maximum rotational latency on clients and overflow

rounds

In fig 5.8 we illustrate the influence of maximum rotational latency on the

maximum number of clients that can be served simultaneously and on the

percentage of overflow rounds. Here we change disk rotation, Le. rotational .

latency, and found that with the increased rotational latency percentage of

overflow rounds increase and the maximum number of clients that can be served

simultaneously decrease. From the above two figures we may conclude that both

the seek time and the rotational latency are very important parameters for

admission control mechanism. As the performance of hybrid admission control

algorithm is dependent on disk scheduling algorithm very closely and so seek time

and rotational latency.

60

Chapter 5 Simulation and Experimental Results

Finally in the fig 5.9 we present the performance of hybrid admission control

algorithm by varying disk capacity. Here we found that the number of clients

admitted by the multimedia server does not change significantly with the disk

capacity but it is slightly decreasing. This is because a large disk has more tracks

than a small disk and in large disk, media blocks request are distributed in a wider

range of tracks.

I-<>-Clients I
100

96

~ 92
1il••0 88

84

80
50 70 90 110 130 150

DiskSi"" (GB)

Fig 5.9 Relationship between clients and disk capacity

5.5 Conclusion

Experimental results indicate that hybrid admission control algorithm can serve

more clients than the deterministic admission control algorithm but less than the

statistical admission policy. But, hybrid admission technique has a very good

control over the overflow rounds. In this chapter we also illustrated two

techniques, sage guard and epsilon (E), to control the overflow of rounds. We

presented that disk parameters are very important over the performance of

multimedia server. Disk scheduling algorithm that we presented in this thesis is

better than the most of the conventional disk scheduling algorithms. Moreover, by

using new disk scheduling algorithm we can serve more clients simultaneously

than others.

61

Chapter 6

Conclusion and Recommendations

6.1 Concluding Words

In this thesis we derive a new admission control algorithm for multimedia server

to accept enough traffic to efficiently utilize the server resources, while not

accepting clients whose admission may lead to the violations of the service

requirements of clients. The near optimal disk scheduling algorithm as well as the

technique for minimizing overflow of rounds presented in this thesis significantly

improve the performance of the admission control algorithm. We have

demonstrated the effectiveness of the hybrid admission control algorithm and the

near optimal disk-scheduling algorithm through simulations.

To summarize, the main contributions presented in this research are as follows:

I. Providing deterministic service guarantees to each client may needlessly

constrain the number of clients that are served by a multimedia server, and

hence, may lead to severe under-utilization of server resources. To address

this limitation, we have presented a hybrid admission control algorithm, in

which a multimedia server admits, a client only if it satisfies admission

criteria of the hybrid admission control algorithm and the service

requirements of all the clients can be met satisfactorily.

2. The effectiveness of this admission criterion is illustrated through

extensive simulations. By using hybrid admission control algorithm

multimedia server can serve more clients than deterministic admission

control algorithm simultaneously. In comparison, the deterministic

admission control algorithm only serves 47 clients, thereby demonstrating

that the hybrid admission control algorithm increases the number of clients

served simultaneously by about 106%.

62

Chapter 6 Conclusion and Recommendations

3. In this thesis we demonstrate two terms, safe guard and epsilon, by

adjusting their values we can control the overflow of rounds. Safe guard

mechanism reduces overflow of rounds exponentially with the slight

expense of the number of clients served simultaneously. When safe guard

is fixed, we can limit the overflow of rounds slightly again by adjusting the

value of epsilon without reducing the number of clients.

4. The performance of our hybrid admission control algorithm is critically

dependent on the disk-scheduling algorithm. Most of the conventional disk

scheduling algorithms (such as, SCAN, Shortest Seek Time First (SSTF),

etc.) has addressed the problem of optimizing total seek time incurred

while accessing a sequence of blocks from disk. The fundamental

limitation of these algorithms, however, is that they optimize only the seek

time, and completely ignore the rotational latency. In this thesis, we

present a new disk-scheduling algorithm, i.e., near optimal disk scheduling

algorithm, that derives a sequence for accessing media blocks from disk so

as to simultaneously minimize both seek and rotational latency incurred

during retrieval.

5. The performance of near optimal disk scheduling is better than the other

disk scheduling algorithms. The effectiveness of this algorithm is

. demonstrated through simulations. We have shown that as the number of

blocks retrieved in each round increases near optimal disk scheduling

starts to dominant other disk scheduling algorithms.

6.2 Recommendations for Future Work

In order to understand the requirements for handling various kinds of audio and

video applications within the framework of existing operating systems and for

building new ones, we believe that there are a number of areas that requires

furthertesearch. This section essentially provides some pointers to pursue further

investigation for building better video/audio servers.

63

Chapter 6 Conclusion and Recommendations

I. One of the most important aspects of data storage that affects disk retrieval

speed is the manner in which data has been organized on the disk (in short

the file system). Typically, if the data belonging to a file are spread out in

the disk, then a typical access to the disk is more likely to look like a

random seek rather than a sequential seek. Random seeks not only increase

retrieval times but also can result in little or no utilization of any caching

policy the operating system might employ to reduce subsequent accesses

to the same data. The greater the sequential storage of files, the lower the

times for retrieval, since subsequent accesses to the data in a file has a

greater chance of being served from the cache. Therefore, a direction for

further research could be the design of a file system that is multimedia

friendly and works well in conjunction with the way disk and operating

system. Such a file system could be used to employ various schemes for

storage. For example, since some blocks of data could be more important

than others, this information can be stored in the file system and can be

used to group more important blocks together. Also, it can help the disk

scheduler to make decision easily and quickly about how it can drop disk

requests in over-loaded round with minimal impact to the quality of the

playback.

2. In this thesis we demonstrated a new disk-scheduling algorithm, i.e. near

optimal disk scheduling algorithm that uses a heuristic approach to

determine the order of blocks retrieval. This is an approximation algorithm

with a ratio bound of 2 for the traveling salesman problem with triangular

inequality [60]. The running time of this algorithm is 8(E) = 8(V'),

since the input is a complete graph. Some potential research topics would

be the determination of the order of block sequences by using a heuristic

with a better running time.

3. Hybrid admission control algorithm that we presented in this thesis can

serve more clients than that of deterministic approach. Hybrid technique

has a very good control over the overflow of rounds. Some research still

64

Chapter 6 Conclusion and Recommendations

can be done to increase the number of clients that can be served by the

multimedia server simultaneously as well as reduce the overflow of

rounds. The performance of admission control algorithms is dependent on

admission policy and disk scheduling algorithm. If admission policy is

strict few clients get chance for accessing server resources but definitely it

reduces overflows of rounds. On the other hand, simple admission policy

may admit large number of clients but it introduces high overflow of

rounds. So, we need to find an optimal situation where overflow of rounds

does not hamper the performance of the multimedia server.

4. Network delay can be classified as end-to-end delay and delay at resource.

The delay "at the resource" is the maximum time span for the completion

of a certain task at the resource. The end-to-end is the total delay for a data

unit to be transmitted from the source to its destination. It is quite difficult

to determine their percentage. This depends on the multimedia server and

the networks in which server and clients are running. As end-lo-end delay

. is reducing due to fast advancing networking technologies, it is now the

time to speed up the processing at server as well.

5. One of the most interesting research topics would be to design system

architecture for multimedia server with parallel processors and multiple

disks with their own file system. How well this hybrid admission policy

performs in this environment? What adjustments are needed to achieve

high performance?

65

File Name: Parameter.h

#include <stdio.h>

#include <vector>

I I Disk Parameters

#define NoOfDisks 16 II No of Disk array

#defme TPD 1024

#define BPT 128

#define BSize 32

#defmeMST 24.48 II ms

#define MRL 16.66 Ilms

#define a 4

#defme b 0.02

II Admission Control Parameters

Appendix A

#define PBR 30

#defme FrameSize 16.25

#define RD 1000

#defme ClassA 0

#defme ClassB I

#defme P 0.95

#define ROUND 20

#define INFINITE 99999

#defme NIL -I

#defme UP I

#define DOWN -I

I I frame per second

1116.25 KB or 130000

I I Round duration in msec

66

#define MAX 400

struct BLOCK {

int track;

int block;

};

struct Graph {

BLOCKbl;

double key;

iot pi;

iot inQueue;

double wt[MAX];

};

struct Directory {

int filename;

int fileSizelnMB;

BLOCK startBlock;

};

struct DirectoryMap{

bool notfree;

int nextTrack;

int nextBlock;

};

struct Client{

int reqFile;

int Class;

int curT;

iot curB;

unsigned int blockForFile;

};

using namespace std;

void DiskSimO;

void random_block JenO;

double ServiceTimeO;

double FCFSO;

double SSFO;

Appendix A

67

void SortReq(BLOCK 'r);

double ExactTime(BLOCK 'r);

double MST]RIM(int r);

void InitializeGraph(Graph 'graph, int r);

int Extract_MIN(Graph 'graph);

void NodeOrderGen(int list[MAX][MAXl,int r);

double ELEVA TORO;

int CreateFile(int fileName,int sizelnMB);

void ShowFileSystemO;

void SetGlobalParametersO;

void AdjustFat(unsigned int nBlock);

int Class_AO;

int Class _BO;

void GenerateFilesO;

double SrvTimeSuperO;

double SrvTimeOtherO;

int DetAdmissionCAO;

int HybridAdmissionCA(int el);

void UpdateClientO;

void CalAvgBTimeO;

double genrandO;

void sgenrand(unsigned long seed);

Appendix A

68

File Name: block requesl.cpp

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#include <math.h>

#include "parameter.h"

extern BLOCK bl[MAX];

int cur,constDir=UP;;

int preorder[2'MAX];

extern unsigned int REQUEST;

extern double blockReadTime[ROUND];

extern double avgBTime,tlag,epsilon;

extern int en,QosFail;

II Random block generation

void random_blockllenO

{

int i;

srand((unsigned)time(NULL));

for(i = 0; i < REQUEST; i++)(
bl[i].track = rand() % TPD;

bl[i].block = randO % BPT;

II printf("\n<%4d, %3d>",bl[i].track,bl[ij.block);

}

cur = bl[O].track;

}

II calculating service time for a sequence of block request

double ServiceTime(BLOCK 'bl)

{

int i;

doublet~O;

Appendix A

69

for(i=l; i< REQUEST; i++){

t += abs(bl[i-Il.track - bl[ij.track);

}

t = a'REQUEST + 0.02 ' t;

return t;

}

II First Come First Serve Strategy

double FCFSO

.{

double srvTime ~ ServiceTime(bl);

II printf(" %6.1", srvTime);

srvTime = ExactTime(bI);

II printf("lt%6.f",srvTime);

return srvTime;

}

II Sorting the block request according to track number

void SortReq(BLOCK Or)

{

int ij;

BLOCK temp;

for(i~O; i<REQUEST-I; i++)

for(j~i+ I; j<REQUEST; j++){

if(r[il.track> r[j].track){

temp = r[il;

r[il ~ r[j];

r[j] = temp;

}

for(i = 0; i < REQUEST; i++)

if(r[i].track =~ cur) cur = i;

}

Appendix A

70

II Shortest Seek First Strategy

double SSFO

(

BLOCK'ssf;

ssf= new BLOCK[REQUEST];

int i,x,y,z;

int left=O,right=O;

double srvTime,movement=O;

for(i=O; i<REQUEST; i++)

ssf[i] = bl[i];

SortReq(ssf);

for(i= I; i<REQUEST; i++){

x = ssf[cur-Ieft-l].track;

y = ssf[cur+right+ I]. track;

z = ssf[cur].track;

if(abs(z-x) < abs(z-y» (

movement += abs(z-x);

cur = cur-left-I;

right = i;

left = 0;

}

else (

movement += abs(z-y);

cur = cur+right+ 1;

left = i;

right = 0;

}

srvTime = a'REQUEST + b'movement;

II printf("\t%6.f',srvTime);

II printf("\t%6.f',ExactTime(ssf);

srvTime = ExactTime(ssf);

delete [] ssf;

return srvTime;

}

Appendix A

71

double ExactTime(BLOCK Or)

(

double perST, perRL, SrvTime;

int i, curT, curB, waitB;

curT = r[Oj.track;

curB = r[Oj.block;

SrvTime= 0;

for(i=l; i<REQUEST; i++){

perST = a + b " abs(r[i-l].track - r[ij.track);

curB = (int) ceil«BPTIMRL)"perST);

curB = (curB + r[i-l].block) % BPT;

if(r[i).block> curB)

waitB ~ r[i]'block - curB;

else

waitB = r[ij.block - curB + BPT;

perRL = (MRL " waitB) / BPT;

SrvTime += perST + perRL;

}

return SrvTime;

void InitializeGraph(Graph "graph, int r)

{

int i, j, curB, waitB;

double perST, perRL;

fori i=O; i<REQUEST; i++){

graph[ij.bl = bI[ij; .

graph[i].key = INFINITE;

graph[ij.pi ~ NIL;

graph[ij.inQueue = I;

}

graph[r].key = 0;

for(i=O;i<REQUEST; i++)

fori j=O; j<REQUEST; j++){

if (i-~j) { graph[ij.wt[j] = 0; continue; }

Appendix A

72

Appendix A

perST = a + b ' abs(graph[i].bl.track. graph(j].bl.track);

curB ~ (int) ceil«BPT/MRL)'perST);

curB = (curB + graph[i].bl.block) % BPT;

if(graph(j].bl.block> curB)

waitB ~ graph[j].bl.block - curB;

else

waitB = graph[j].bl.block - curB + BPT;

perRL = (MRL ' waitB) I BPT;

graph[i].wt(j] = perST + perRL;

}

}

int Extract_MIN(Graph 'graph)

{

int i,min;

double minVal;

for(i=O, minVal = INFINITE+l; i<REQUEST; i++){

if(graph[i].inQueue == 0) continue;

if(graph[i].key < minVal){

minVal = graph[i].key;

min=i;

}

}

graph[min].inQueue = 0;

return min;

}

void NodeOrderGen(int list[MAX][MAX],int r)

{

int i;

preorder[en++] = r;

II printf("%4d",preorder[n-1]);

for(i=O;i<REQUEST;i++){

if(list[r][i]. NIL) return;

NodeOrderGen(list,list[r][i]);

}

}

73

Appendix A

double MST]RIM(int r)

(

Graph 'graph;

int ij,u,v,list[MAX][MAX];

int parent;

BLOCK'mst;

double srvTime;

mst = new BLOCK[REQUEST];

graph = new Graph[REQUEST];

forI i~O;i<REQUEST;i++)

forI j=O; j<REQUEST; j++)

list[i][j]= NIL;

I I initializing the graph

InitializeGraph(graph, r);

II applying the MST-PRIM algorithm

for(i=O;i<REQUEST; i++){

u = Extract_ MIN(graph);

II adjacent nodes

forI v=O; v<REQUEST; v++){

if«graph[v].inQueue = 1)&& (graph[u].wt[v]<graph[v].key)){

graph[v].pi ~ u;

graph[v].key = graph[u].wt[v];

}

II Constructing the tree

for(i=O;i<REQUEST; i++){

parent = graph[i].pi;

if(parent != NIL){

forI j=O; j<REQUEST; j++){

if(list[parent][j] != -1) continue;

list[parentJU] = i;

break;

}

}

74

}

1* printing the child

for(i=O;i<REQUEST; i++){

printf\'\nParent: %4d\t",i);

for(j~O; j<REQUEST; j++){

if(list[i][j] = NIL) break;

printf("%4d", list[i][j]);

}

}

*1
II Node order generation

en=O;

NodeOrderGen(list,r);

for(i=O; i<REQUEST; i++){

mst[i] = graph[preorder[i]].bl;

srvTime = ExactTime(mst);

II printf(''\t''106.f',srvTime);

delete [J mst;

delete [J graph;

return srvTime;
}

double ELEVA TORO

{

BLOCK *elevator, *temp;

double srvTime;

int i;

elevator = new BLOCK[REQUESll;

temp = new BLOCK[REQUEST];

for(i=O; i<REQUEST; i++)

temp[i] = bl[i];

SortReq(temp);

for(i=O; i<REQUEST; i++){

elevator[i] = temp[cur];

Appendix A

75

cur = (cur+ I)%REQUEST;

}

srvTime = ServiceTime(elevator);

II printf(''\t''106.f',srvTime);

srvTime = ExactTime(elevator);

II printf("\t%6.f', srvTime);

delete [] temp;

delete [] elevator;

return srvTime;

}

void CalAvgBTimeO

(

intj;

double curBReadTime,term,stddev;

static int i=O;

curBReadTime = MST]RIM(O);

II curBReadTime = FCFSO;

II curBReadTime = SSF();

II curBReadTime = ELEV ATOR();

if(curBReadTime> I000) {

QosFail++;

II printf("lnQoS Fail: %3d",QosFail);

}

curBReadTime 1=REQUEST;

if(curBReadTime<~O) { printf("lnNegln");retum;}

blockReadTime[i%ROUND] = curBReadTime;

i = (i+l) % ROUND;

avgBTime = 0;

stddev'= 0;

if(flag=O){

forG~Oj<ij++)

avgBTime += blockReadTime[j];

avgBTime = avgBTime/i;

forG=Oj<ij++)(

Appendix A

76

}

lenn = avgBTime - blockReadTimeOl;

stddev += tenn"tenn;

}

stddev = sqrt(stddev)/i;

}

else {

forQ=OJ<ROUNDJ++)

avgBTime += blockReadTimeOl;

avgBTime = avgBTimeJROUND;

forQ=OJ<iJ++)(

tenn = avgBTime - blockReadTimeOl;

stddev += term*tenn;

}

stddev = sqrt(stddev)/ROUND;

flag = I;

}

avgBTime = avgBTime + epsilon"stddev;

Appendix A

77

File Name: /ilesystem. cpp

#include "parameter.h"

#include <math.h>

#include <time.h>

extern DirectoryMap fat[TPD][BPT];

extern vector<Directory> FileSystem;

extern BLOCK nextFreeBlock;

extern unsigned int noOfBlock;

extern int REQUEST;

extern int noOfFiles;

void AdjustFat(unsigned int nBlock)

(

int i,track,block;

track = nextFreeBlock.track;

block = nextFreeBlock.block;

for(i=O; i<nBlock; iH){

fat[track][blockj.notfree = I;

block = (block+ I) % BPT;

if (block==O) trackH;
}

nextFreeBlock.track ~ track;

nextFreeBlock.block = block;
}

int CreateFile(int fileName, int sizelnMB)

{

Directory tempFile;

unsigned int usedBlock,requiredBlock,availableBlock,sizelnKB; .
sizelnKB = sizelnMB * 1024;

usedBlock = nextFreeBlock.track*BPT + nextFreeBlock.block;

requiredBlock = ceil«LO*sizelnKB)/BSize);

availableBlock = noOfBlock-usedBlock;

Appendix A

78

Appendix A

if(availableBlock >= requiredBlock){

tempFile.fiIename = fileName;

tempFile.fiIeSizelnMB = sizelnMB;

. tempFile.startBlock = nextFreeBlock;

FileSystem. push_ back(tempFile);

AdjustFat(requiredBlock);

return I;

}

else return 0;

}

void ShowFileSystemO

{

int i,fileName;

for(i=O; i<FileSystem.size(); i++){

fileName = FileSystem.at(i).fiIename;

printf(''\nFileName; %d",fiIeName);

printf('~tSize: %d" ,FileSystem.at(i).fiIeSizeInMB);

printf("\tStart at <Track,Block>: <%4d, %4d>

",FileSystem.at(i).startBlock.track,FileSystem.at(i).startBlock. block);
}

}

double term,sum,vaI;

int n;

II sgenrand«unsigned)time(NULL));

val = genrand();

term = -0.33*log(val);

sum = term;

n = I;

while(sum < l){

val = genrand();

term = -0.33*log(val);

sum +=term;

79

n++;

}

return n;

}

double term,sum, val;

int n;

II sgenrand«unsigned)time(NULL »;
val = genrandO;

term = -log(val);

sum = term;

n = I;

while(sum < l){

val = genrandO;

term = -log(val);

sum += term;

n++;

}

return n;

void GenerateFilesO

(

int i;

i= 0;

while(l){

if (CreateFile(i++, l+randO% 15)==0) break;

}

noOfFiles = FileSystem.sizeO;

II ShowFileSystemO;

}

•

Appendix A

80

Appendix A

File Name: mt19937.cpp

1*A C-program for MTl9937: Real number version *1

1* genrandO generates one pseudorandom real number (double) *1

1* which is uniformly distributed on [O,lj-interval, for each *1

1* call. sgenrand(seed) set initial values to the working area *1

1* of 624 words. Before genrandO, sgenrand(seed) must be *1

1* called once. (seed is any 32-bit integer except for 0). *1

1* Integer generator is obtained by modifying two lines. *1

1* Coded by Takuji Nishimura, considering the suggestions by *1

1* Topher Cooper and Marc Rieffel in July-Aug. 1997. *1

1* This library is free software; you can redistribute it and/or *1

1*modify it under the terms of the GNU Library General Public *1

1* License as published by the Free Software Foundation; either *1

1* version 2 of the License, or (at your option) any later *1

~~~ ~

1* This library is distributed in the hope that it will be useful, *1

f* but WITHOUT ANY WARRANTY; without even the implied warranty of *f

1*MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. *1

1* See the GNU Library General Public License for more details. *1

1* You should have received a copy of the GNU Library General *1
1* Public License along with this library; if not, write to the *1

1* Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA *1
1* 02111-1307 USA *1

1* Copyright (C) 1997 Makoto Matsumoto and Takuji Nishimura. *1

1*Any feedback is very welcome. For any question, comments, *1

1* see http://www.math.keio.ac.jp/matumoto/emt.htrnl or email *1
1* matumoto@math.keio.ac.jp *1

#include "parameter.h"

1* Period parameters *1

#define N 624

#define M 397

#define MATRIX A Ox9908bOdf 1* constant vector a *1

81

http://www.math.keio.ac.jp/matumoto/emt.htrnl
mailto:matumoto@math.keio.ac.jp


#define UPPER_MASK OxSOOOOOOOfO most significant w-r bits of

#define LOWER_MASK Ox7fffffff fO least significant r bits Of

fO Tempering parameters of

#defme TEMPERING_MASK_B Ox9d2c56S0

#define TEMPERING_MASK_C Oxefc60000

#defme TEMPERING_SHIFT_U(y) (y» I I)

#define TEMPERING_SHIFT_S(y) (y« 7)

#define TEMPERING_SHIFT_T(y) (y« 15)

#define TEMPERING_SHIFT_L(y) (y» IS)

static unsigned long mt[N]; fO the array for the state vector of

static int mti=N+ I; fO mti==N+ 1 means mt[N] is not initialized °f

fO initializing the array with a NONZERO seed Of

void sgenrand(unsigned long seed)

{

fO setting initial seeds to mt[N] using of

fO the generator Line 25 of Table I in of

fO [KNUTH 19SI, The Art of Computer Programming of

fO Vol. 2 (2nd Ed.), ppl02] Of

mt[O]= seed & Oxfff[ffff;

for (mti=l; mti<N; mti++)

mt[mti] = (69069 ° mt[mti-I]) & Oxffffff[f;

}

fO generating reals of

fO unsigned long of fO for integer generation of

double genrandO

unsigned long y;

static unsigned long magO1[2]={OxO,MATRIX_A};

fO magOI[x] =x °MATRIX_A for x=O,I of

if (mti >= N) {fO generate N words at one time of

int kk;

Appendix A

82



}

if (mti = N+ 1) f* if sgenrandO has not been called, *f

sgenrand(4357); f* a default initial seed is used *f

for (kk=O;kk<N-M;kk++) (

y = (mt[kk)&UPPER_MASK)I(mt[kk+I)&LOWER_MASK);

mt[kk) = mt[kk+M] A (y» I) A magOI[y & Oxl];

}

for (;kk<N-I;kk++){

y = (mt(kk]&UPPER_MASK)I(mt[kk+1)&LOWER_MASK);

mt[kk) = mt[kk+(M-N)] A (y» I) A magOI[y & Oxl);

}

y = (mt[N-I)&UPPER _ MASK)I(mt[O)&LOWER _MASK);

mt[N-I) = mt[M-I] A (y» I) A magOI[y & Oxl);

mti =0;

}

y = mt[mti++);

y ~ TEMPERlNG_SHIFT_U(y);

Y ~ TEMPERlNG_SHIFT_S(y) & TEMPERlNG_MASK_B;

y ~ TEMPERlNG_SHIFT_T(y) & TEMPERlNG_MASK_C;

y ~ TEMPERlNG_SHIFT_L(y);

return «double)y f (unsigned long)Oxffffffff); f* reals *f

f* return y; *f f* for integer generation *f

Appendix A

83



File Name: Disk Schedule Simulalion.cpp

#include "parameter.h"

void DiskSimO

{

random_block ~en();

FCFSO;

SSFO;

ELEVATORO;

MST]RIM(O);

printf("In");

}

Appendix A

84



File Name: thesis. cpp

#include "parameter.h II

#include <math.h>

#include <time.h>

vector<Directory> FileSystem;

vector<Client> client;

DirectoryMap fat[TPD][BPT];

unsigned int noOtBlock,superUser,norUser;

BLOCK nextFreeBlock;

unsigned int REQUEST;

int noOfFiles,en;

double avgBTime,flag;

BLOCK bl[MAX];

double blockReadTime[ROUND];

double epsilon;

int QosFail;

II Set the global parameters of the program

void SetGlobalParametersO
{

noOtBlock = TPD • BPT;

nextFreeBlock.track = 0;

nextFreeBlock.block = 0;

superUsee = 0;

norUser= 0;

noOfFiles = 0;

avgBTime = a + b +MRL;

REQUEST = 0;

flag = 0;

epsilon = 0;

QosFail = 0;

}

Appendix A

85



int DetAdmissionCAO

{

double srvTime;

srvTime = TPD * b + (a + MRL) * (client.size() + I);
if ( s'rvTime <= RD ) return I;

return 0;

}

int HybridAdmissionCA(int cI)

{

double srvTime;

int i;

srvTime = 0;

fore i=O;i<client.sizeO;i++){

if(cl=ClassA)

srvTime += a + MRL;

else

srvTime += avgBTime*P;
}

srvTime += b*TPD;

if(srvTime <= RD) return 1;
return 0;

}

void UpdateClientO

{

int i;

REQUEST = 0;

for( i=O; i<client.sizeO; i++){

bl[REQUESTj.track = client.at(i).curT;

bl[REQUEST++].block = c1ient.at(i).curB;
client. atei).b10ckForFHe--;

if(client.at(i).blockForFHe = O){

if(client.at(i).Class == ClassA) superUser--;

else norUser--;

II printf("'nReleasing client %d.",i);

Appendix A

86



Appendix A

client.erase(client.beginO + i);

}

}

}

II Analysis of Hybrid Admission Control Algorithm

voidmainO

(

int fileno,ca,cb,maxClient;

Client tempC;

II clock_t start, finish;

II double duration;

II Set Global Parameters

SetGlobalPararnetersO;

II Generating Files for our file system

GenerateFilesO;

maxClient = 0;

ca= cb = 0;

long int r = 0;

while(l){

if(client.sizeO>maxClient) (

maxClient = client.sizeO;

II printf("\n%d Clients",maxClient);

}

if (ca=O && HybridAdmissionCA(ClassA)=l) {

I I serve lbe client

fileno = randO % noOtFiles;

tempC.reqFile = fileno;

tempC.Class = ClassA;

tempC.curT = FileSystem.at(fileno ).startBlock.track;

tempC.curB = FileSystem.at(fileno).startBlock.block;

87



Appendix A

tempC.blockForFile =

fileSystem.at(fileno).fileSizelnMB * 1024/32;

c1ient.push _ back(tempC);

superUser++;

ca ~ Class _ AO;

}

if (cb==O && HybridAdmissionCA(ClassB)==I) (

// serve the client

fileno = randO % noOfFiles;

tempC.reqFile = fileno;

tempC.Class ~ ClassB;

tempC.curT ~ FileSystem.at(fileno).startBlock.track;

tempC.curB ~ FileSystem.at(fileno ).startBlock.block;

tempC.blockForFile =

FileSystem.at(fileno).fileSizelnMB * 1024/32;

client.push _ back(tempC);

norUser++;

cb = Class _ BO;

}

ca = «ca-I )<O)?O:( ca-I);

cb ~ «cb-I)<O)?O:(cb-I);

UpdateClient();

CalAvgBTime();

r++;

// printf("lnlnSuper: %dltNormal: %d",superUser,norUser);

}

/* printf("lnRounds: %dlnMax Client: %d InOverflow: %dln",

r,maxClient,QosFail); */

88



Bibliography

[I] P. R. Barham, "A Fresh Approach to File System Quality of Service", in

Proceedings ofNOSSDAV'97, (St. Louis, Missouri), pp. 119-128, May 1997.

[2] M. L. Claypool and J. Reidl, "End-to-End Quality in Multimedia

Applications", in Handbook on Multimedia Computing, ch. 40, Boca Raton,

Florida: CRC Press, 1999.

[3] M. L. Claypool.and J. Tanner, "The Effects of Jitter on the Perceptual Quality

of Video", ACM Multimedia Conference, October 1999.

[4] G. Miller, G Baber, and G. Gilliland, "News on-Demand for Multimedia

Networks", In Proceedings of ACM Multimedia '93, Anaheim, CA, pages 383-

392, August 1993.

[5] D. Ferrari and D.Verma, "Aschemefor real-time channel establishment in

wide-area networks", IEEE Journal on Selected Areas in Communications, 8(3):

368-379, April 1990.

[6] D. Clark, S. Shenker, and L. Zhang, "Supporting real-time applications in an

integrated services packet network: Architecture and mechanism", In Proceedings

of ACMSIGCOMM'92, pages 14-26, Baltimore, Maryland, August 1992.

[7] D. Ferrari, "Client requirements for real-time communication .services", IEEE

Communications Magazine, 28(11): 65-72, November 1990.

[8] H. Yin, P. Goyal, A. Goyal, "A statistical admission control algorithm for

multimedia servers", Proceedings of the second ACM international conference on

89



Bibliography

Multimedia, p.33-40, October 15-20, 1994, San Francisco, California, United

States.

[9] D. Anderson, Y. Osawa, and R. Govindan, "A File System for Continuous

Media", ACM Transactions on Computer Systems, 10(4): 311-337, November

1992.

[10] J. Gemmell and S. Christodoulakis, "Principles of Delay Sensitive

Multimedia Data Storage and Retrieval", ACM Transactions on Information

Systems, 10(1): 51-90,1992.

[II] P. Venkat Rangan and Harrick M. Vin, "Designing File Systems for Digital

Video and Audio", In Proceedings of the 13th Symposium on Operating Systems

Principles (SOSP'91), Operating Systems Review, Vol. 25, No.5, pages 81-94,

October 1991.

[12] F.A. Tobagi, J. Pang, R. Baird, and M. Gang, "Streaming RAID: A Disk

Storage System for Video and Audio Files", In Proceedings of ACM

Multimedia'93, Anaheim, CA, pages 393--400, August 1993.

[13] Harrick M. Vin and P. Venkat Rangan, "Designing a Multi-User HDTV

Storage Server", IEEE Journal on Selected Areas in Communications, 11(1): 153-

164, January 1993.

[14] P. Yu, M.S. Chen, and D.D. Kandlur, "Design and Analysis of a Grouped-

Sweeping Scheme for Multimedia Storage Management", Proceedings of Third

International Workshop on Network and Operating System Support for Digital

Audio and Video, San Diego, pages 38--49, November 1992.

[IS] S. Childs, "Portable and Adaptive Specification of Disk Bandwidth Quality

of Service", Workshop on Network and Operating System Support for Digital

Audio and Video (NOSSDAV '99), June 1999.

90



Bibliography

[16] H. M. Vin, A. Goyal, A. Goyal, and P. Goyal, "An Observation-Based

Admission Control Algorithm for Multimedia Servers", in Proceedings of the

First IEEE Inter-135 national Conference on Multimedia Computing and Systems

(ICMCS'94), (Boston), pp. 234-243, May 1994.

[17] P. Mohapatra and X. Jiang, "An Aggresive Admission Control Scheme for

Multimedia Servers", in Proceedings of IEEE International Conference on

Multimedia Computing and Systems, pp. 620-621, 1997.

[18] S. Jamin, S. Shenker, L. Zhang, and D.D. Clark, "An Admission Control

Algorithm for Predictive Real-Time Service (extended abstract)", In Proceedings

of Third International Workshop on Network and Operating Systems Support for

Digital Audio and Video, San Diego, CA, pages 308-315, November 1992.

[19] S. Plotkin, B. Awerbuch, Y. Azar, "Throughput Competitive On-line

Routing", 34'h Annual Symposium on Foundations Computer Science, Los

Alamitos, CA, Nov 1993.

[20] Borodin & R. EI-Yaniv, "Online Computation & Competitive Analysis."

Cambridge University Press, 1998.

[21] B. Teitelbaum, "Future Priorities for Internet2 QoS", Working Group:

Papers, http://www.internet2.edu/qoslwg/documents.shtml, October 2,2001.

[22] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, "An

Architecture for Differentiated Services" RFC 2475, December 1998.

[23] R Braden, L. Zhang, S. Berson, S. Herzog, S. Jamin, "Resource ReSerVation

Protocol (RSVP) Version I Functional Specification", RFC 2205, September

1997, Proposed Standard.

91

http://www.internet2.edu/qoslwg/documents.shtml,


Bibliographv

[24] D. Awduche, J. Malcolm, J. Agogbua, M. O'Dell, and J. McManus,

"Requirements for Traffic Engineering over MPLS", Draft-ietf-mpls-traffic-eng-

OI.txt, June 1999.

[25] M. Gerla, C. Casetti, S. S. Lee, and G. Reali, "Resource Allocation and

Admission Control Styles in QoS DiffServ Networks", QoS-IP 2001, Rome, Italy,

Jan 2001.

[26] R. J. Gibbens and F. P. Kelly, "Distributed Connection Acceptance Control

for a Connectionless Network", ITCI6, Edinburgh, 1999.

[27] F. Kelly, P. Key and S. Zachary, "Distributed Admission Control", IEEE

Journal on Selected Areas in Communications, pp. 2617-2628, Volume 18,2000.

[28] T. Kelly, "An ECN Probe-Based Connection Acceptance Control", Computer

Communication Review, Volume 31(3), July 2001.

[29] L. Breslau, E. Knightly, S. Shenker, 1. Stoica, H. Zhang, "Endpoint

Admission Control: Architectural Issues and Performance", SIGCOMM 2000.

[30] O. C. lmer, S. Compans, T. Basar and R. Srikant, "ABR Congestion Control

in ATM Networks", IEEE Control Systems Magazine, Feb 2001.

[31] A. Greenberg, R. Srikant and W. Whitt, "Resource Sharing for Book-ahead

and Instantaneous-request Calls", IEEE/ACM Transactions on Networking, pp 10-

22, Volume 7(1), Feb 1999.

[32] R. Srikant and W. Whitt, "Resource Sharing with Book-Ahead and

Instantaneous-Request Calls Using a CLT Approximation", Telecommunication

Systems. pp. 235-255, Volume 16(3), March/April 2001.

[33] A. Dasylva and R. Srikant, "Optimal WDM Schedules for Optical Star

Networks", IEEE/ACM Transactions on Networking, pp 446-456, June 1999.

92



Bibliography

[34] A. S. Tanenbaum, "Computer Networks", pages 147-155, Prentice Hall.

1996.

[35] C. Courcoubetis, G. Kesidis, A. Ridder, J. Walrand and R. Weber,

"Admission Control and Routing in ATM Networks using Inferences from

Measured Buffer Occupancy", IEEE Transaction on Communication.

Feb./March/AprilI995.

[36] J. K. MacKie-Mason, H. R. Varian. Pricing, "Congestible Network

Resources",IEEE J. Selected Areas Camm. Vol 13, pp 1141-1149, 1995.

[37] R. Singh, M. Yuksel, S. Kalyanaraman and T. Ravichandran, "A comparative

evaluation of Internet Pricing models: Smart market and Dynamic Capacity

Contracting", Workshop 011 Illformation Technologies and Systems (WITS).

Queensland, Australia, 2000.

[38] S. Khan, "Quality Adaptation in a Multi-Session Adaptive Multimedia

System: Model and Architecture", PhD Dissertation, Department of Electrical and

Computer Engineering, University of Victoria, 1998.

[39] G. Campbell, D. Coulson, "A Quality of Service Architecture", ACM

Operating Systems Review, Volume 24. April 1994.

[40] L. Chen, S. Khan, K. F. Li and E. Manning, "Building an Adaptive

Multimedia System using the Utility Model", International Workshop on Parallel

and Distributed Realtime Systems, San Juan, Puerto Rico, April, 1999.

[41] K. Kawachiya and H. Tokuda, "QOS-Ticket: A New Resource-Management

Mechanism for Dynamic QOS Control of Multimedia," Proceedings of

Multimedia Japan 1996, pp 14.21, April 1996.

93



Bibliography

[42) R. K. Watson, "Applying the Utility Model to IP Networks: Optimal

Admission & Upgrade of Service Level Agreements", MASc Thesis, Dept of

ECE, University of Victoria, April 2001.

[43) N. Nishio and H. Tokuda, "QOS Translation and Session Coordination

Techniques for Multimedia Systems", Sixth International Workshop on Network

and Operating System Support for Digital Audio and Video, Jushi, Japan, April
23-26,1996.

[44) 1. C. Schreier, B. Davis, "System-Level Resource Management for Network-

based Multimedia Applications", Fifth International Workshop on Network and

Operating System Support for Digital Audio and Video, NOSSDAV 95, Durham,

NH,1995.

[45) S. Chatterjee, J. Sydir and B. Sabata and T Lawrence, "Modeling

Applications for Adaptive QoS - based Resource Management", 2nd IEEE High

Assurance Systems Engineering Workshop, August, 1997.

[46) M. Moser, "Declarative Scheduling for Optimally Graceful QoS

Degradation", IEEE Multimedia Systems, June 1996, Hiroshima, Japan.

[47) M. Moser, D. P. Jokanovic and N. Shiratori, "An Algorithm for the

Multidimensional Multiple-Choice Knapsack Problem", IEICE Transactions on

Fundamentals of Electronics, pp 582-589, Volume 80(3),1997.

[48) N. Venkatasubramanian, K. Nahrstedt, "An Integrated Metric for Video

QoS", Fifth ACM International Multimedia Conference, Seattle, USA.

[49) C. Lee, "On QoS Management", PhD Dissertation. School of Computer

Science, Carnegie Mellon University, August 1999.

[50) Lee lY.B. "Parallel Vidco Servers: A Tutorial", IEEE Multimedia, 5, no. 2,
2(}--28,1998.

94



/

Bibliogrophv

[51] Patterson D.A., Gibson G. and Katz R.H., "A Case for Redundant Arrays of

Inexpensive Disks (RAID)", In Proceedings of the 1988 ACM SIGMOD

International Conference on Management of Data, Chicago, Illinois, USA, 109-

116,1998.

[52] Bolosky W.J., Fitzgerald R.P. and Douceur J.R., "Distributed Schedule

Management in the Tiger Video Fileserver", In Proceedings of the Sixteenth ACM

Symposium on Operating System Principles, Saint-Malo, France, 212-223, 1997.

[53] Wong P.e. and Lee Y.B., "Redundant Arrays ofInexpensive Servers(RAIS)

for On-Demand Multimedia Services", In Proceedings ICC 97, Monr'eal,

Qu'ebec, Canada, 787-792,1997.

[54] Jonathan Dukes and Jeremy Jones, "Dynamic Replication of Content in the

HammerHead Multimedia Server", In Proceedings of EUROMEDIA 2003,

Plymouth, UK.

[55] Roger L. Haskin, "Tiger Shark - a scalable file system for multimedia", IBM

Journal of Research and Development, Volume 42, Number 2, March 1998, pp.

185-197,

[56] e. Mohan, Inderpal Narang, "Recovery and Coherency-Control Protocols for

Fast Intersystem Page Transfer and Fine-Granularity Locking in a Shared Disks

Transaction Environment", VLDB 1991: 193-207.

[57] C. Wu and R. Bums, "Handling Heterogeneity in Shared-Disk File Systems",

Proceedings of the ACMJIEEE SC2003 Conference, November 15 - 21, 2003,

Phoenix, Arizona.

[58] A. S. Tanenbaum, "Modern Operating Systems", pages 217-220, Prentice

Hall,2000.

95



Bibliography

[59] P. Lougher and D. Shepherd, "The Design of a Storage Service for

Continuous Media", the Computer Journal, 36(1): 32-42, 1993:

[60] Thomas H. Cormen, Charles E. Leiserson, Ronald 1.Rivest, "Introduction to

Algorithms", pages 969-973, Prentice Hail, 1998.

96

•


	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000089
	00000090
	00000091
	00000092
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000103
	00000104
	00000105

