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ABSTRACT

This thesis presents a new constructive algorithm called multilayered constructive

architecture (MCA) for designing and training multiple hidden layered artificial neural

networks (ANNs). Unlike most previous constructive algorithms, MCA puts emphasis

on both simplicity and generalization ability of designed ANNs. In order to maintain

simplicity, MeA uses a minimum number of user specified parameters in designing

ANNs. The use of both layered and cascaded architecture in MCA increases the

generalization ability of designed ANNs. MCA has been tested extensively on a number

of benchmark problems in machine learning and neural networks, including Australian

credit card assessment, breast cancer, diabetes, glass and heart disease. The experimental

results show that MCA can produce compact ANNs with good generalization ability.
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Chapter 1

INTRODUCTION

1.1 Introduction

An artificial neural network (ANN) is a massively parallel distributed processor made up

of simple processing units, which have a natural propensity of storing experiential

knowledge and making it available for use. These units are generally referred to as

neurons. ANN resembles the brain in two respects- first, knowledge is acquired by it

from the environment through a learning process and second, interneuron connection

strengths, known as synaptic weights, are used to store the acquired knowledge. The

procedure used to perform the learning process is called a learning algorithm. The

function of learning algorithm is to modify the synaptic weights of ANNs in orderly

fashion to solve a given problem. Learning algorithm is also referred to as training

algorithm.

The performance of any ANN is defined mainly in terms of generalization ability and

training time. Training time is referred to as the time required to complete the learning

process. It depends on the ANN architecture, type of data used and the learning

algorithm. Generalization refers to the ANN producing reasonable outputs for inputs not

encountered during training. Both of these performance measures depend greatly on the

architecture of ANN.

ANNs can roughly be categorized into two types depending on architecture. The first

type is single layered ANN that consists of an input layer and an output layer. Another

type is the multilayered ANN that consists of additionallayer(s) referred to as the hidden

layer(s). Multilayered ANNs can be categorized into two types- single hidden layered

ANNs and multiple hidden layered ANNs. Single hidden layered ANNs are generally

referred to as three layered ANNs. In most of,the cases, multiple hidden layered ANNs

consist of two hidden layers, resulting in four layered ANNs. Although three layered

ANNs can solve any real world problems, four layered ANNs perform better. It is still

unsolved if more than four layers of neurons can perform better or not.



~...
Multilayered ANNs with fixed topology trained using standard backpropagation (BP)

algorithm [I] based on gradient descent are the most common use of ANN models.

These ANNs are only useful with the appropriate architecture which is found by trial and

error in BP. The optimal architecture is the one that can generalize well with concise

network size. Moreover, the architecture should be formed in such a manner that the

training time should be as low as possible.

All algorithms that determine the ANN architecture have to start with an initial

architecture. The initial architecture is dete.rminedby the nature of the algorithm used."In

constructive approach, the algorithm starts with a small network and eonstructs the

network by adding neurons and connections [2]. The simplest ANN consists of no

hidden neurons. In problems where prior information exists, the initial state can be

different. In pruning approach [3], in contrast to the constructive approach, the algorithm

starts with a large network and removes the unnecessary neurons and connections. The

search must be terminated when the generalization performance of the ANN begins to

decrease. Some algorithms continue until all training examples are correctly classified

but these algorithms fail to learn noisy data and generate larger ANNs.

1.2 Historical Survey

The modern era of ANN began with the pioneering work of McCulloch and Pitts (1943).

In their classic paper, they describe a logical calculus of neural networks that unitedthe

studies of neurophysiology and mathematical logic. They formed an ANN consisting of

some basic neurons and synaptic connections which can compute any computable

function. The discipline of ANN and artificial intelligence was born with this work.

The next major development was in 1949, when Hebb's book "The Organization of

Behavior" was published. Hebb's approach depends mainly on the simultaneous activity

of two neurons connected at the two ends of any synaptic connection. However, the book

had almost no impact on the engincering community though it was immensely influential

among psychologists. Some major developments of ANN were achieved from 1958 to

1986. Among them, Rosenblatt's perceptron (1958), Widrow's Adaline (1960), Widrows

Madaline (1962) and Hopfield network (1982) were prolific.
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In 1986, the most popular learning algorithm i.e. BP was conceived by Rumelhart, Hilton

and Williams. Up to now, most ANNs are trained using BP learning algorithm or some

form of its variations.

The automated design of ANNs is an important issue for any learning task. There have

been many attempts to design ANNs automatically, such as various evolutionary and

non-evolutionary algorithms. Depending on the architecture, both evolutionary and non-

evolutionary algorithms can be divided into two major types-

• Single hidden layered ANNs

• Multiple hidden layered ANNs

In 2005, Xiang, Ding and Lee published a paper on geometrical interpretation and

architecture selection of MLP [4]. Some general guidelines for selecting the architecture

of the MLP, i.e., the number of the hidden neurons and the hidden layers, are proposed

based upon this interpretation and the controversial issue of whether four-layered MLP is

superior to the three-layered MLP is also carefully examined.

1.2.1 Single Hidden Layered ANNs

Single hidden layered ANNs consist of three layers- one input, one output and one

hidden layer. Hidden layer consists of a certain number hidden neurons. The design

criteria for three layered ANNs are rather simple. Thus, several algorithms for designing

these types of ANNs are proposed. The major algorithms for designing three layered

ANNsare-

a. Constructive Algorithms

b. Pruning Algorithms

c. Evolutionary Algorithms

a. Constructive Algorithms: The concept of constructive algorithm was first proposed

by Ash in 1989 [5]. It was named DNC- Dynamic Node Creation. DNC starts with an

initial ANN and incrementally adds hidden neurons to the network until a satisfactory

solution is found. Hidden neurons are added once at a time to the same hidden layer

when the average error curve begins to flatten too quickly. The whole ANN is retrained

after the addition of each hidden neuron.
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The Upstart algorithm [6] is a constructive algorithm for binary classification problems.

The algorithm starts without hidden neurons and tries to separate the data. If separation is

not possible, then corrector nodes are added. The generated ANN is very much similar to

an ANN with one hidden layer by defining all the corrector nodes as hidden neurons.

The Grow and Learn (GAL) [7] algorithm is a bit modified variation of constructive

algorithm. This algorithm has two phases- active and sleep. In the active phase, the

network grows while learning class definitions. In the sleep phase of the algorithm, the

neurons those are no longer necessary are removed to reduce the complexity.

Constructive algorithm by node splitting was proposed in 1993 by Mike Wynn-Jones [8].

In this method, new neurons are added to the hidden layer not by adding and training, but

by "splitting" an existing neuron. An algorithm that adds, deletes neurons and layers was

proposed by Nabhan and Zomaya [9]. The algorithm applies an intelligent generate and

test procedure, explores different alternatives and selects the most promising one.

A relatively new algorithm, Constructive Algorithm for Real Valued Examples

(CARVE), was proposed by Young and Downs. CARVE [10] uses convex hull methods

for the determination of ANN weights. The algorithm starts with an empty hidden layer

into which thresholds units are added one at a time until the layer is complete.

Construction Using Cross Validation [1I] uses cross validation for adding neurons to a

single hidden layered ANNs. The ANNs with more hidden neurons is only accepted if

the total accuracy on training and cross validation samples is higher than that of the

previous ANN.

Finally in 2005, a new algorithm for variable selection and architecture definition in

multilayer perceptron was published by Eleuteri, Tagliaferri and Milano [12]. In this,
paper, a novel information geometric-based variable selection criterion for multi-layer

perceptron networks is described. It is based onprojections of the Riemannian manifold

defined by a multi-layer perceptron network on sub manifolds defined by multi-layer

pcrceptron networks with reduced input dimension.

b. Pruning Algorithms: Pruning algorithm is another type of architecture optimization

algorithm. As different constructive algorithms became popular in the course of time,
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many researchers became interested in a new strategy, which is deletion of neurons and

connections from an initial large ANN.

Node pruning in backpropagation networks was developed by Chung and Lee and

published in 1992 [13]. In this paper, starting from the viewpoint of pattern

classification theory, a study on the characteristics of hidden neurons in oversized ANNs

is reported. It shows that four categories of excessive hidden neurons can be found in an

oversized ANN. A new node pruning algorithm to attain appropriate sized BP networks

is then proposed by detecting and removing those excessive neurons.

Iterative pruning algorithm for feedforward ANN was proposed in 1997 [14]. In this

method, the key idea is to iteratively eliminate neurons and to adjust the remaining

weights. This is done in such a way that the ANN performance does not worsen over the

entire training set. The algorithm .also provides a simple criterion for choosing the

neurons to be removed, which has proved to work well in practice.

A new pruning algorithm is the bottom-up decision tree pruning algorithm with near

optimal generalization [15]. It was published in 1998. In this work only a single pass

through the tree is required and a strong performance guarantee is proven for the

generalization error of the resulting pruned tree.

e. Evolutionary Algorithms: In 1990, a new algorithm was conceived in the field of

architecture optimization, known as evolutionary algorithm. In this algorithm, any ANN

actually 'evolves' rather than being constructed [16]. After this, the use of evolutionary

algorithm in ANNs is increasing rapidly. However, almost all the evolving ANNs consist

of a single hidden layer.

Yao, in 1993, proposed the idea of evolutionary artificial neural networks (EANNs) [17]

using genetic algorithm. This algorithm distinguishes among three levels of evolution in

EANNs, i.e. the evolution of connection weights, architectures and learning rules.

Interactions between different levels of evolution were consulted in that work. It was

also argued that the evolution of learning rules and its interactions with other levels of

evolution playa vital role in EANNs.
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Yao and Liu developed EPNet for evolving ANNs in 1997 [18]. This paper presents a

new evolutionary system, i.e., EPNet, for evolving ANNs. The evolutionary algorithm

used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most

previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's

behaviors. This is one of the primary reasons why EP is adopted. Five mutation operators

proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral

links between parents and their offspring are maintained by various mutations, such as

partial training and node splitting. EPNet evolves ANN's architectures and connection

weights (including biases) simultaneously in order to reduce the noise in fitness

evaluation. The parsimony of evolved ANN's IS encouraged by preferring

neuron/connection deletion to addition. EPNet can produce very compact ANN's with

good generalization ability in comparison with other algorithms.

1.2.2 Multiple Hidden Layered ANNs

In this type of ANN, the number of hidden layers is more than one. To optimize the

architecture consisting more than three layers some algorithms have already been

proposed. Most of them are constructive in nature, while some of them incorporate

pruning also. There is no such algorithm which uses pruning or evolutionary

programming for designing this type of ANN. Compared to three layered ANN

designing algorithm, very few algorithms exist for designing four or more layered

ANNs. In the previous subsection some three layered ANN designing algorithms are

consulted but there are many more algorithms to design such type of ANNs. Whereas,

cascade correlation learning architecture (19], modified versions of cascade correlation

learning architecture [20-25], CNNDA [26] and MOST [27] are the prolific designing

algorithms for multiple hidden layered ANNs. There are no other important algorithms to

design these types of ANNs. So, the field of designing these types of ANNs is still wide

opened.

The cascade correlation learning architecture (CasCor) was the first algorithm to design

multiple hidden layer ANNs (19]. It was proposed by Fahlman and Lebiere in 1991.

Instead of just adjusting the weights in an ANN of fixed topology, CasCor begins with a

minimal network, then automatically trains and adds new hidden neurons one by one in

cascade, creating a multilayered architecture. Newly added hidden neurons are trained by

6



maximizing the correlation between it and the overall residual error. Most of the multiple

hidden layered ANN designing algorithms are based on CasCor.

In 1991, Sjogaard and Yeung, separately tried to simplify the CasCor algorithm by

adding the neurons in a single layer rather than in cascade [20, 21]. Both of them became

succeeded with the ANN acting upon very simple problems. But both of their algorithms

failed to solve complex problems.

In 1992, Littman and Ritter designed an algorithm, which constructs the ANN in a

cascaded fashion but uses error minimization rather than maximizing correlation [22).

The performance of the ANN is achieved by making several layers of nonlinear neurons

those are trained in a strictly feedforward manner and adding one after another. The

influence of objective function is also observed in this work.

Simplified CasCor learning was proposed in 1995 by Lehtokangas, et al. [23). In this

work they tried some modifications on the conventional CasCor by removing the

shortcut connections and adding the neurons in layer rather than cascading. It was proven

with simulations that the shortcut connections do not increase the performance of a

CasCor network. The most important feature of CasCor algorithm lies in the training

process.

In 1999, Lehtokangas proposed an algorithm for initializing weights in CasCor learning

[24]. It is based on the concept of stepwise regression. Lehtokangas, again in 2000,

proposed a modification of conventional CasCor [25]. In his paper, he emphasized on the

optimal hyperplane constraints. Using these constraints, he achieved better

generalization, smaller ANN size and faster learning.

One major improvement of CasCor was the cascade neural network design algorithm

(CNNDA) [26]. It was conceived by Islam and Murase in 2000. It has an architecture

consisting of four layers. There are no direct connections from input layer to output layer

in this architecture. In order to improve the generalization ability, CNNDA uses a

combination of constructive and pruning algorithms and bounded fan-ins for hidden

neurons.
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In 2003, Aran and Alpaydin proposed a constructive algorithm with Multiple Operators

using Statistical Test (MOST) for determining the architecture [27]. The ANNs that are

constructed by MOST can have multiple hidden layers with multiple hidden neurons in

each layer. The algorithm uses neuron removal, addition and layer addition and

determines the number of neurons in layers by heuristics. It applies a statistical test to

compare different architectures.

1.3 Objectives

ANNs can be incorporated mainly with two tasks- classification and regression. Our

target is to design a constructive ANN which can perform classification tasks easily.

Although significant number of constructive algorithms and variations have already been

proposed for classification, most of them suffer from one or more of the following

problems-

• Generalization problem

• Complex architecture

• Confined architecture

• Lot of user defined parameters

• Large propagation delay

• Slow convergence

• ANNs designed for complex problems cannot solve easier problems properly

and vice versa.

In [28], it has been proven mathematically that an ANN consisting of four or more layers

is much preferable over a three layer ANN in terms of number of parameters needed for

the training and generalization ability. Besides, cascading the hidden layer causes the

ANN to be too complex to solve the real world problems. On the other hand, ANNs with

strictly layered architecture can show poor performance for complex problems. A

combination of both is necessary. Considering all the above mentioned problems and

findings we have decided our objectives as-

• To develop a new constructive algorithm that automatically creates an ANN

combined of both layered and cascaded architecture.

8



• To reduce the complexity of a general cascaded architecture created by

CasCor and its variants.

• To determine the performance of new algorithm by applying it to real world

data sets.

• To compare the performance of the new algorithm with some existing

algorithms.

1.4 Organization of Chapters

The remaining chapters of this thesis are organized as follows:

• Chapter 2 provides background material for the rest of the thesis. Human brain,

biological basis of the ANNs, model of a neuron is first elaborated. ANN

architectures, learning methods, characteristics of ANNs, and some application

domains of ANNs are discussed next. The BP training algorithm, which is used at

different stages of training, is presented then. A brief discussion on CasCor and

CNNDA is given. Finally, the analysis on the superiority of four layered ANN

over three layered ANN is provided.

• Chapter 3 presents the proposed algorithm MCA: Multilayered Constructive

Architecture, which is the main contribution of this thesis. Algorithm of MCA is

first elaborated; detailed descriptions of different processes and methods used in

MCA are then described. Advantages of MCA over other similar approaches are

enlisted then. This chapter ends with the statements of difference between MCA

and other algorithms.

• Chapter 4 presents a detailed experimental evaluation of MCA. In the reported

experiments, MCA is applied to solve classification problems. This chapter

evaluates MeA's performance on several well-known benchmark classification

problems. Types and sources of data, experimental details, results, analysis and

comparison with other algorithms are described.

• Chapter 5 presents the conclusive remarks on the research and proposed future

research tasks based on MCA.

9



Chapter 2

BACKGROUND
2.1 Introduction

ANNs are simplified models of the biological neuron system. They are massively

parallel distributed processing system made up of highly interconnected computing

elements, neuron, that have the ability to learn and thereby acquire knowledge and make

it available for use.

ANNs are simplified imitations of the central nervous system, and obviously therefore,

have been motivated by the kind of computing performed by the human brain. The

structural constituents of a human brain termed neurons are the entities, which perform

computations such as cognition, logical inference, pattern recognition, and so on. Hence

the technology, which has been built on a simplified imitation of computing by neurons

of a brain, has been termed Artificial Neural Networks (ANNs) or simply Neural

Networks.

2.2 Human Brain

The human nervous system may be viewed as a three-stage system, as depicted in the

block diagram of Fig. 2.1. Central to the system is the brain, represented by the neural

(nerve) net, which continually receives information, perceives it, and makes appropriate

decisions. Two sets of arrows are shown in the figure, pointing from left to right indicate

the forward transmission of information bearing signals through the system. The arrows,

which point from right to left, represent the presence of feedback. The receptors convert

stimuli from the. human body or the external environment into electrical impulses that

convey information to the neural net (brain). The effectors convert electrical impulses

generated by the neural net into discernible responses as system outputs.

Effectors I
Understandable
Response

Fig. 2.1 Block diagram representation of human nervous system.

---II Receptors 1---11 Neural Net I-
Stimulus



The struggle to understand the brain has been made easier because of the pioneering

work of Ramon y Cajal [29), who introduced the idea of neurons as structural

constituents of the brain. Typically neurons are five to six orders of magnitude slower

than silicon logic gates, events in a silicon chip happen in the nanosecond (l0.9S) range,

whereas neural events happen in the millisecond (I 0.3s)range. However, the brain makes

up for the relatively slow rate of operation of a neuron by having a truly staggering

number of neurons (nerve cells) with massive interconnections between them. It is

estimated that there are approximately 10 billion neurons in the human cortex and 60

trillion synapses or connections [30). The net result is that there is an enormously

efficie~t structure. The energetic efficiency of the brain is approximately 10,16Jules per

operation per second, whereas the best computers used today is about 10-6 Jules per

operation per second [31].

2.3 Biological Basis of Neural Networks

The human brain is a very complex system capable of thinking, remembering and

problem solving. A neuron is the fundamental node of the brain's nervous system. It is a

simple processing element that receives and combines signals from other neurons

through input paths called dendrites. If the combined input signal is strong enough, the

neuron 'fires', producing an output signal along the axon that connects to the dendrites of

many other neurons. Fig. 2.2 is a sketch of neuron showing the various components.

Each signal coming into a neuron along dendrites passes through a synapse or synaptic

junction. This junction is an infinitesimal gap in the dendrites that is filled with

neurotransmiller fluid that either accelerates or retards the flow of electrical charges .

.•• PlaItS of •.
Typlc:-.I N • .-- C:.II

~ Don••• to.' Aceopt 'nput.

~

Axon: TUI"n th. P,.oc •••• d inputs
into outputs

~

S",n .•p ••• : Th •• 1.otl"'och.mic .•l
cont .•ot b.tw •• n n.u,.on.

,

Fig. 2.2 Sketch of a biological neuron showing components.
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The fundamental actions of the neurons are chemical in nature, and this neurotransmitter

nuid produces electrical signals that go to the nucleus or soma of the neuron. The

adjustment of the impedance or conductance of the synaptic gap is a critically important

process. Indeed, these adjustments lead to memory and learning. As the synaptic

strengths of the neuron are adjusted, the brain "learns" and stores information.

2.4 Model of a Neuron

A neuron is an information-processing node that is fundamental to the operation of a

ANN. The block diagram of Fig. 2.3 shows the model of a neuron, which forms the basis

for designing artificial ANNs. The three basic elements of the neural model are discussed

below:

Bias, bk

Input
Signals •

•
•
Xm

Synaptic
Weights

Fig. 2.3 Model of a neuron

Output
Yk

A. A sel of synapse or connecting links, each of which is characterized by a weight.

Specifically, a signal Xj at the input of synapse j connected to neuron k is

multiplied by the synaptic weight Wkj. Unlike a synapse in the brain, the synaptic

weight of artificial neuron may lie in the range that includes negative as well as

positive values.

B. An adder for summing the input signals, weighted by the respective synapse of

the neuron; the operations described here constitutes a linear combiner.

C. An activation function for limiting the amplitude of the output of a neuron. The

activation function is also referred to as a squashing function in that it squashes
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(limits) thc pennissible amplitude range of output signal to some finitc value.

Typically, the nonnalized amplitude range of the output of a neuron is wrinen as

the closed node interval [0, I] or alternatively [-I, I].

The neural model of Fig. 2.3 also includes an externally applied bias denoted by bk• The

bias bk has the effect of increasing or lowering the net input of the activation function,

depending on whcnever it is positive or negative, respectively.

In mathematical tenns, a neuron k may describe by writing the following pairs of

equations:

rn

Uk = L WkjXj
j=l

and
Yk = <p(uk +bk)

(2.1)

(2.2)

where x" Xz, •.•. , Xrn are the input signals; Wk!, WkZ, •••• Wkrn are the synaptic wcights of

neuron k; Uk is thc linear combiner due to the input signals; bk is the bias; rp ( . ) is the

activation function; and Yk is the output signal of the neuron. The use of bias bk has the

effect of applying an affine transfonnation to the output Uk of the linear combiner in the

model of Fig. 2.3, as shown by

v,=u,+b, (2.3)

The bias bk is can be considered as an internal parameter of artificial ncuron k.

Considering this, Eqs. (2.1 - 2.3) can be fonnulated as follows:

rn

vk =L WkjXj
)=0

and
Y, =rp(v,)

(2.4)

(2.5)

The activation function, denoted by rp(v), defines the output of a neuron in tenns of the

induccd local field v. Thc three basic types of activation functions are describc bclow:

A. Threshold Function: For this type of activation function, the output of any neuron y is

expressed as -

{
lifv;;:O

y=rp(v)= Oifv <0 (2.6)
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Where, v is the induced local field of the neuron; that is

v= Lwx+b

QJ (v)

------- •...•.------- ..• v

Fig. 2.4 Threshold function.

(2.7)

B. Piece-wise Linear Function: The piece-wise linear function described in Fig. 2.5 is as

follows -

1
1,

rp (v) = v,

0,

v;:: + L.,
+t>v>

v ~ - t
_L, (2.8)

-Yz 0 +y,

Fig. 2.5 Piece-wise linear function.
I

C. Sigmoid Function: The sigmoid function, whose graph is s-shaped, is by far the most

common for activation function used in the construction of artificial ANNs. It is defined

as a strictly increasing function that exhibits a graceful balance between linear and

nonlinear behavior. An example of sigmoid function is logistic function, defined by-

I
rp(v) = ---- (2.9)

l+exp(-av)

Where a is the slope parameter of the sigmoid function. The sigmoid function is

continuous and differentiable.
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Fig. 2.6 Sigmoid function.

The activation functions defined by Eqs. (2.6), (2.8) and (2.9) range from 0 to +I. It is
sometimes desirable to have the activation function range from -1 to +1. In that case, the

activation function assumes an antisymmetric form with respect io the origin. For the

corresponding form of a sigmoid function, hyperbolic tangent function described in Fig.

2.7 is defined by

ebv...;.e-bv

q;>(v)=atanh(bv)=a b, -b
e +e '

(2.10)

" "

Fig. 2.7 Hyperbolic tangent function

2.5 Learning Methods

In the context of ANNs, learning can be defined as:

"Learning is a process by which the free parameters of a neural network are adapted

through a process of stimulation by the environment in which the network is embedded.

The type of learning is determined by the manner in which the parameter changes takes

place." [32].
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This definition of learning process implies the following sequence of events:

• The ANN is stimulated by the environment.

• The ANN undergoes changes in its free parameters as a result of this stimulation.

• The ANN responds ;n a new way to the environment because of the changes that

have occurred in its internal structure.

Learning methods in ANNs can be broadly classified into three basic types: supervised,

unsupervised, and reinforced.

2.5.1 Supervised Learning

In supervised learning both inputs and outputs are provided. The ANN then processes the

inputs and compares the outputs against the desired outputs. Errors are then propagated

through the system, causing the system to adjust the weights, which control the ANN.

This process occurs over and over as the weights are continually tweaked. The set of data

which enables the training is called the "training set". During the training of an ANN, the

same'set of data is processed many times as the connection weights are ever refined. A

very popular example of supervised learning is the BP algorithm,

2.5.2 Unsupervised Learning

The other tYPeof training is called unsupervised learning. In unsupervised learning, the

ANN is provided with inputs but not with desired outputs. The system itself must then

decide what features it will use to group the input data, This is often referred to as self-

organization. At the present time unsupervised learning is not well understood. This

adoption to the environment is the promise, which would enable science fiction types of

robots to continually learn on their own as they encounter new situations and new

environments.

2.5.3 Reinforced Learning

In this method, a teacher though available, does not present the expected answer but only

indicates if the computed output is correct or incorrect. The information provided helps

the ANN in its learning process. A reward is given for a correct answer computed and a

penalty for a wrong answer. But, reinforced learning is not one of the popular forms of

learning,
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2.6 Characteristics of ANNs

ANNs have profound strengths and weaknesses, and these must be reeognized if they are

to be used properly. The characteristics of ANNs are described below:

• ANNs exhibit mapping capabilities, that is, they can map input patterns to their

associated output patterns .

• ANNs learn by examples. Thus, ANN architectures can be 'trained' with known

examples of a problem before they are tested for their 'inference' capability on

unknown instances of the problem. They can, therefore, identify new objects

previously untrained.

• ANNs process the capability to generalize. Thus, they can predict new outcomes

from past trends.

• ANNs are robust systems and are fault tolerant. They can, therefore, recall full

patterns from incomplete, partial or noisy patterns.

• ANNs can process information in partial, at high speed, and in a distributed

manner.

2.7 Backpropagation Learning Algorithm

There are some algorithms for training multilayered ANNs. Among them the

backpropagation (BP) algorithm is the most prolific one. In MeA, BP algorithm is used

in a modified manner. So, this algorithm is described in detail in this section.

The BP learning algorithm involves two phases. During the first phase the input is

presented and propagated forwarder through the ANN to compute the output value for

each node. This output is then compared with the targets to generate an error signal 0' for

each of the output node. The second phase involves a backward pass through the ANN

during which the error signal 0' is passed to each node in the ANN and the appropriate

weight changes are made. This second backward pass allows the recursive computation

of a as indicated above. The first step is to compute 0 for each of the output nodes. This

simply the difference between the actual and desired output values times the derivative

of the squashing function. Then the weight changes for all connections that feed into the

final layer can be computed. After this is. done, then compute o's for all nodes in the
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penultimate layer. This propagates error baek one layer and same process can be repeated

for every layer.

Let us consider an input vector Xp = (Xl, X2.•. xn), is applied to the input layer of the

ANN. The up" subscript refers to the pth training vector. The input nodes distribute the

values to the hidden layer nodes. The net input to the j'h hidden node is,

N

, '" e'net pJ = L. wjlxpi + J

i-'
(2.11 )

Where, W;i is the weight of the connection from ith input node to jlh hidden node and e;
is the bias term. The u"" subscript refers to the quantity on the hidden layer. Assuming

that activation of the node is equal to the net input; then the output of the node is,

The equations of the output nodes are,

/.
n "0 . eonet fl1I. = ~ WkjlpJ + 11.

J-'

• Update of Output-Layer Weights

(2.12)

(2.13)

(2.14)

The error at a single output node is defined asop, = Yp' -0", where the subscript up"

refers to the pi' training vector, and uk" refers to the I!' output node. In this case Ypk is the

desired output and Opk is the actual output of the k" node. The error to be minimized is

the sum of the squares of the errors for all output nodes:

1M2£p=-2)Pk
2 k=1

(2.15)

To determine the direction in which the change of weights, the negative of the gradient

of Ep• aEp• with respect to weights, w~ is calculated. Then the values of the weights can

be adjusted such that the total error can be reduced. It is often usual to think of Ep as a

surface in the weight space.

From Eq. (2.15) and the definition of r5p'

(2.16)
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(2.17)

Where, Equation (2.16) is used for the output value, Opk, and the ehain rule for partial

derivatives. The last factor of Equation (2.17) is,

(2.18)

Combining Equations (2.17) and (2.18), the negative gradient,

(2.19)

As far the magnitude of the weight change is concerned, it has been taken to be

proportional to the negative gradient. Thus the weights on the output layer are updated

according to

w~(t + I) = w~(t) + 6.p w~(t)

Where,

(2.20)

(2.21)

The factor rJ is called the learning rate parameter, If the sigmoid function is used then the

weight update equation for output node is, .

(2.22)

By defining output layer error term,

(2.23)

By combining equations (2.22) and (2.23) the weight update equation becomes,

(2.24)

• Update of Hidden-Layer Weights

The error of the hidden layer is given by,
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= .!..L (Y,.. - I: (net;" »'
2 •

(2.25)

The gradient of Ep with respect to hidden layer weights,

(2.26)

Each of the factors of Equation (2.26) can be calculated explicitly from previous

equations. The result is,

The hidden layer weights update in proportion to negative of the Equation (2.27):
, ,

c,pwJ, = rtf/ (net;j)xp, L(YP' -op.)/.' (net;.)w~
•

By using Equation (2.23),
,

C,PWJi= rtf/ (net;j)xpi LO;.w~
•

(2.27)

(2.28)

(2.29)

Every weight update on the hidden layer depends on all error terms, 6;. , on the output

layer. The known errors on the output layers are propagated back to the hidden layer to

determine the appropriate weight changes on that layer. By defining hidden layer error

term,

,
r5;j= 1/ (net;) L r5;.wij

•
So the weight update equation becomes analogous to those for the output layer:

(2.30)

(2.31 )

The value of" is commonly chosen between 0.25 and 0.75 by the ANN user, and usually

reflects the rate ollearning to ensure that the ANN will settle to a solution.
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2.8 Constructive Algorithms

Although BP algorithm is the most widely used learning algorithm, it has a severe

drawback, that is, the number of hidden layers and the number of nodes in cach hidden

layer should be predefined. To overcome this difficulty, many algorithms that construct a

ANN dynamically have been proposed. Constructive (or generative) algorithms offer an

attractive framework for the incremental construction of near-minimal ANN

architectures. These algorithms start with a small network (usually a single hidden node)

and dynamically grow the network by adding and training nodes as needed until a

satisfactory solution is found. The most well known constructive algorithms arc dynamic

node creation (DNC), the cascade correlati'on (CasCor) algorithm and the cascade neural

network design algorithm (CNNDA). The last two involves training of multiple hidden

layered ANNs and has some similarities with the MCA. The following sections consist

of short description of these algorithms.

2.9 Cascade Correlation Learning Architecture (CasCor)

Cascade-Correlation is a new architecture and supervised learning algorithm for artificial

neural networks. Instead of just adjusting the weights in a ANN of fixed topology,

Cascade-Correlation begins with a minimal network, then automatically trains and adds

new hidden units one by one, creating a multi-layer structure. Once a new hidden unit

has been added to the ANN, its input-side weights are frozen. This unit then becomes a

permanent feature-detector in the ANN, available for producing outputs or for creating

other, more complex feature detectors.

2.9.1 Reasons behind the development of CasCor

The Cascade-Correlation learning algorithm was developed in an attempt to overcome

certain problems and limitations of the popular back-propagation (BP) learning

algorithm. The most important of these limitations is the slow pace at which BP learns

from examples. Even on simple benchmark problems, a back-propagation network may

require many thousands of epochs to learn the desired behavior from examples. There are

two major problems that contribute to the slowness. These are called the step-size

problem and the moving target problem.
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• Tile step-size problem

The step-size problem occurs because the standard back-propagation method

computes only BE / Ow, the partial first derivative of the overall -error function with

respect to each weight in the ANN. Given these derivatives, one can perform a

gradient descent in weight space, reducing the error with each step. In a practical

learning system, however, taking infinitesimal steps is not feasible; for fast learning,

possible largest steps should be taken. Unfortunately, if the step size is too large; the

ANN will not reliably converge to a good solution.

To overcome this problem one can incorporate "momentum" term in the learning or

can use the "Quickprop" algorithm [33]. The CasCor algorithm uses the latter.

• Tile moving target problem

Asccond source of inefficiency in back-propagation learning is called the moving

target problem. Briefly stated, the problem is that each unit in the interior of the ANN

is trying to evolve into a feature detector that will play some useful role in the ANN's

overall computation, but its task is greatly complicated by the fact that all the other

units are changing at the same time. The hidden units in a given layer of the net

cannot communicate with one another directly; each unit sees only its inputs and the

error signal propagated back to it from the ANN's outputs. The error signal defines

the problem that the unit is trying to solve, but this problem changes constantly.

Instead of a situation in which each unit moves quickly and directly to assume some

useful role, a complex dance among all the units is seen that takes a long time to

settle down.

One way to combat the moving-target problem is to allow only a few of the weights

or units in the ANN to change at once, holding the rest constant. The cascade-

correlation algorithm uses an extreme version of this technique, allowing only one

hidden unit to evolve at any given time.

2.9.2 CasCor

Cascade-Correlation combines two key ideas: The first is the cascade architecture, in

which hidden units are added to the ANN one at a time and do not change after they have

been added. The second is the learning algorithm, which creates and installs the new
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hidden units. For each new hidden unit, the magnitude of the correlation between the

new unit's output and the residual error signal is maximized.

Outputs
o 0

Initial St<ltc

No Hidden Units

Inputs

+1

Add

Hidden Un it 1

..r
Inputs

+1

: Outputs
o 0

Add
Hidden Unit 2

Inputs

+1

Fig. 2.8 The Cascade architecture of CasCor, initial state and after adding two hidden

units. The vertical lines sum all incoming activation. Boxed connections are frozen, X

connections are trained repeatedly.
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The cascade architecture is illustrated in Fig. 2.8. It begins with some inputs and one or

more output units, but with no hidden units. The number of inputs and outputs is dictated

by the problem and by the I/O representation the experimenter has chosen. Every input is

connected to every output unit by a connection with an adjustable weight. There is also a

bias input, permanently set to +1.

Hidden units are added to the ANN one by one. Each new hidden unit receives a

connection from each of the ANN's original inputs and also from every pre-existing

hidden unit. The hidden unit's input weights are frozen at the time the unit is added to

the net; only the output connections are trained repeatedly. Each new unit therefore adds

a new one-unit "layer" to the ANN, unless some of its incoming weights happen to be

zero.

The learning algorithm begins with no hidden units. The direct input-output connections

are trained as well as possible over the. entire training set. With no need to back-

propagate through hidden units, one can use the Widrow-Hoff or "delta" rule, the

perceptron learning algorithm, or any of the other well-known learning algorithms for

single-layer networks. Here, the quickprop algorithm is used to train the output weights.

With no hidden units, quickprop acts essentially like the delta rule, except that it

converges much faster.

At some point, this training will approach an asymptote. When no significant error

reduction has occurred after a certain number of training cycles, the ANN is run one last

time over the entire training set to measure the error. If the ANN's performance is

satisfactory, training is stopped; if not, there must be some residual error that can be

reduced further. This is achieved by adding a new hidden unit to the ANN, using the

unit-creation algorithm described below. The new unit is added to the net, its input

weights are frozen, and all the output weights are once again trained using quickprop.
!

This cycle repeats until the error is acceptably small.

To create a new hidden unit, begin with a candidate unit that receives trainable input

connections from all of the ANN's external inputs and from all pre-existing hidden units.

The output of this candidate unit is not yet connected to the active ANN. A number of

passes is run over the examples of the training set, adjusting the candidate unit's input

weights after each pass. The goal of this adjustment is to maximize S, the sum over all
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(Fig. 2.9). In such architecture, the first hidden (HI) layer receives only ANN inputs (1),

while the second hidden (H2) layer receives I plus the outputs (X) of the HI layer. The

output layer receives signals from the HI and H2 layers.

The major steps ofCNNDA are as follows:

Step 1. Create an initial ANN architecture. The initial architecture has three

layers, i.e. an input, an output, and a hidden layer. The number of nodes in the

input and output layers is the same the number of inputs and outputs of the

problem. Initially, the hidden layer contains only one node. Randomly initialize

connection weights between input layer to hidden layer and hidden layer to

output layer within a certain range.

Step 2. Train the ANN using the BP. Stop the training process if the training

error E does not significantly reduce in the next few iterations. The assumption is

that the ANN has inappropriate architecture. The training error E is calculated

according to the following equation:

(2.36)

I,
I,
1,•

Output Layer

SeC<!nd Hidden
(Hl) Layer

First Hidden
(HI) Layer

Input Layer

Fig: 2.9 A two hidden layer multilayer perceptron (MLP)
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where Om•• and 0min are the maximum and minimum values of the target outputs

in the problem representation, N is the number of output nodes, S is the total

number of examples in the training set, Jj(s) and Z,(s) are, respectively, the actual

and desired outputs of node i for training data s. The advantage of the above error

equation is that it is less dependent on the size of the training set and the number

of output nodes.

Step 3. If the value of E is acceptable, go to step 12. Otherwise, continue.

Step 4. Compute the number of hidden layers in the ANN. If this number is two

(i.e. the user-defined maximum-hidden-Iayer number), go to step 6. Otherwise,

continue.

Step S. Create a new hidden layer, i.e. a second hidden (m) layer, with only one

node. Initialize connection weights of that node in the same way as described in
step I. Go to step 2.

Step 6. Compute the contribution C and the number of fan in connections f of
each node in the m layer. The C;(n) of the i-th node at any iteration II is Ej IE.

Here E; is the error of the ANN excluding node i and computed according to Eq.

(2.39).

Step 7. Compare the values of C;(II) andf;(II) with their previous values Ci(lI -TJJ

andf;(II-rJJ, respectively. If C;(II) ::: c.(l1 - TJJandf;(II) -fi(1I - TI) = M, continue.

Otherwise, go to step 9. Here TI and M are user-defined positive integer numbers.

Step 8. Freeze the fan-in capacity of the i-th node. That means the i-th node will

not receive any new input signals in the future when new nodes are added in the

HI layer. Notice that generally the i-th node and all other nodes in them layer

receive signals from all nodes in the HI layer. Mark the i-th node with F.

Step 9. Compare the output X(II) of each node in the HI layer and F marked

nodes in the m layer 'with their previous values X(II - TV. Here T] is the

user-defined positive integer number. If X(II) '" X(II - TV. continue. Otherwise, go
to step 11.
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Step 10. Temporarily freeze input connection weights, keeping weight values

fixed for some time, for any nodes in the HI layer and F marked nodes in them
layer whose X(II) '" X(II - .<J.

Step 11. Add one node in the HI orm layer. If adding a node in the HI layer

produces a larger size ANN (in tenns of connections) than does adding a node in

. them layer, then add one node in the HI layer. Otherwise, add one node in the

m layer. In the CNNDA, the addition of a node in any layer is done by splitting

an existing node in that layer. Go to step 2.

Step 12. According to contribution C. delete the least contributory node from the

ANN and unfreeze the input connections (if any connections are frozen) of one

hidden node. Train the pruned ANN by the BP. If the ANN converges again,

delete one node and unfreeze the input connections of one node. Continue this

process until the ANN no longer converges.

Step 13. Decide the number of connections to be deleted by generating a random

number between I and the user-defined maximum number. Calculate the

approximate importance of each connection in the ANN by the nonconvergent

method. According to calculated importance, delete a certain number of connec-

tions and unfreeze the same number of connections (if any connections are

frozen) from the ANN. Train the pruned ANN by the BP. Continue this process

until the ANN no longer converges. The last ANN before converge ends is the
final ANN.

As a constructive algorithm, CNNDA offers some advantages over previous constructive

algorithms. They are -

• Lower connections than CasCor architecture

• Four-layered ANN

• Greater generalization ability

The disadvantages are-

• Complex design procedure

• Layer size is restricted to four

• May create unnecessary complex structure for simple problems
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2.11 Four Layered versus Three Layered ANNs

Most of the constructive algorithms designed consist of a single hidden layer. Very few

algorithms involve multiple hidden layers. It has been a controversial issue over time if

multiple hidden layered ANNs require less parameter and if they work faster than single

hidden layered ANNs. In this section, a mathematical proof is given to justify the

superiority of four layered ANNs (two hidden layers) over three layered ANNs (single

hidden layer).

It has already been proven in [34) that a three-layered feed forward ANN with N-I hidden

units can give any N input-target relations exactly. Based on this a four-layered ANN is

constructed and is found to give any N input-target relations with a negligibly small error

using only (N12) +3 hidden units.

2.11.1 Construction of a Four Layered ANN

For any N input-target pairs (x (kJ, t (k»); x (k) E RM• l(k) E R, it will be shown that, using

significantly fewer hidden units than a three-layered ANN, a four-layered ANN can give

the input-target relations with an arbitrarily small error. For simplicity, N is taken as

Outputs

2 o~tput units

(N!2)-1
hidden units

•• M input units

X(k) 1 ik)M Inputs

even.

Fig: 2.10 Three-layered subnetwork

Let us first consider the subnetwork shown in Fig. 2.10 and the following subtargets:
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,"kl =, (kiIC + 0.5 E (0, I) (Ie= 1. 2 N) (2.32)

Where C is a positive constant and is determ,ined so that t'(k) E (0, I).

The subnetwork has M linear input units, (N12) - I hidden units and two output units:

The output units, in this ease, are nonlinear units (i.e., eaeh output unit has a sigmoid

function). The output units are numbered one and two. The link weights between the

input layer and the hidden layer are set using random numbers.

It is obvious that the finite N input veetors can be separated into two groups consisting of

NI2 input vectors with a hyperplane in the input space, Let us denote these two input

veetor groups as VI and V2 and assume that the index; k for the subtargets is reindexed so

that t,(k)(k = I, 2, ... ,NI2) E V2. By adjusting the bias values of the hidden units in the

subnetwork, it is possible for an NI2x NI2 matrix, 0, formed by the hidden layer outputs

with all of the vectors of VI being inputs to the subnetwork, to be made full-rank. Thus,

one of the output units, for example, unit 1, ean assign each input vector of V, to the

corresponding subtarget value. The bias value of output unit I and the link weights

between the hidden layer and output unit 1 are determined by solving the following

equation:

(k = 1, 2, ... , NI2) (2.33 )

Where, s -I is the inverse function of a sigmoid funciion, WI (I) is the bias value of output

unit 1, and Wj(l) (i = 2, 3, ..... , N/2) are the link weights from the (i - l)th hidden unit to

output unit I.

Let us consider the V2 inputs. Since the bias values of the hidden units are adjusted for V,

inputs, there is no guarantee that another NI2 x NI2 matrix, 0: which is formed by the

hidden layer outputs with all of the vectors of V2 being inputs to the subnetwork, will be

full-rank, or invertible.

Let us write the bias values tuned for the VI inputs as follows:

B = (bl. b2•...... b (NI2). 1) t (2.34)

Assume that 0' is not full-rank. In order to make 0' full-rank, each bias value of the

hidden units should be chosen from any interval of R. Hence, for an arbitrarily small

e > 0, one can ehoose B', which makes 0' full-rank.
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B'= (b',. b'; ..... biNI2l-I)'.

b; E [bi - e. bi + e], (i = 1, 2, 3, .....• (NI2) - 1)

Outouts

(2.35)

I'x M

Fig: 2.11 Units A and B

Inputs

Since the determinant of 0 is a continuous function of the bias values and is not zero at

B. if e is set sufficiently small. the determinant of 0 at B' does not become zero. Thus. it

has been shown that one can always choose bias values that make both 0 and 0'

full-rank at the same time. Hence. output unit 2 can also assign each input vector of V] to

the corresponding subtarget value. The bias as value of output unit 2 and the link weights

between the hidden layer and output unit 2 are determined in the same way. At this stage.

output units 1 and 2 produce. incorrect outputs for the V] inputs and the VI inputs,

respectively.

Now let us add two hidden units to this subnetwork and denote these units as unit A and

unit B. which are shown in Fig. 2.11. Like the other, hidden units. these units are fully

connected from the input units. However. unit A is connected only to output unit \ and

unit B is connected only to output unit 2.
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I

Hyperplane

Fig: 2.12 Input space and separating hyperplane (two-dimensional case)

Let us consider unit A. By setting the link weight vector, WA, which is the link weights

from the input layer to unit A, to be equal to Tn, where n is a normal vector of the

hyperplane described above and T is a large positive constant and by adjusting the bias

value of Unit A so that outputs of unit A become 0.5 with vectors on the hyperplane

being inputs to the subnetwork (Fig. 2.12), unit A can be made a detector for VI and V2

(Le., unit A produces almost zero and almost one for the VI inputs and the V2 inputs,

respectively). Here the direction of the normal vector should be interpreted appropriately.

Setting the link weight from unit A to output unit 1 to be -U, where U is also a large

positive constant, output unit 1 receives from unit A:

1. Small negative values, -e; (ej > 0) for the VI inputs
(i = I. 2•... , N(2);

2. Large negative values, -E; (E; > 0) for the V2 inputs

(i = (N/2) + I, (N/2) + 2, .... , N).

One can make E; and ej arbitrarily large and small, respectively, by setting T and U

sufficiently large. E; goes to infinity and e; goes to zero. Thus, for an input vector of V2,

unit A is able to send an arbitrarily large negative value to output unit I, and all the other

hidden units send fixed constant values. Since output unit 1 has a sigmoid function. the

outputs of output unit 1 can be arbitrarily close to zero for the V2 inputs. However, for

the VI inputs, since unit A is able to send a value that is arbitrarily close to zero to output

unit 1, the outputs of output unit 1 can be arbitrarily close to the corresponding subtarget

values. In the same way, unit B can be tuned for output unit 2. A ANN is constructed

whose performanee is as follows.
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I. For Ihe VI inp"ls: The outputs of output unit I arc arbitrarily close to the

corresponding subtarget values and the outputs of output unit 2 arc arbitrarily

close to zero.

2. For Ihe V] iI/pills: The outputs of output unit I arc arbitrarily close to zero and

the outputs of output unit 2 are arbitrarily close to the corresponding subtarget

values.

Output

Output unit 2
of the subnet

Unil13

xlk) AI Inputs

Fig: 2.13 Complete four-layered feed forward ANN

To complete the construction, let us add one more linear unit, i.e., the final output unit.

The complete four-layered ANN is shown in Fig. 2.13. This output unit is fully

connected from output units I and 2.of the subnetwork. The link weights from output

units I and 2 to the output unit are set to C of (2.32), and the bias value of the output unit

is set to D.SC in order to restore the original target values. Accordingly, the four-layered

ANN can produce almost the same corresponding target value for each of the N input

vectors. The error between the target value and the actual ANN output can be made

arbitrarily small. Hence, it has been shown that a four-layered feed forward ANN with

(N12) + 3 hidden units can give any N input-target relations with an arbitrarily small

error.

A four-layered feed forward ANN is constructed with (N12) + 3 hidden units and shown

that such an ANN can give any N input-target relations with an arbitrarily small error.
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This clearly shows the difference in capabilities between a four-layered feedforward

ANN and a three-layered feedforward ANN and indicates the superiority of the

four-layered ANN for the training of input-target pairs. As a result, it is always better to

use an ANN consists of multiple hidden layer to optimize the performance. After this

finding, the cascade correlation algorithm, which was proposed in 1991, became very

famous and many variants of cascade correlation algorithm were developed.

2.12 Conclusion

In the above sections, some discussions were made about some prolific constructive

algorithms and a mathematical proof on capabilities of four layered ANNs over three

layered ANNs. All or many of them suffer from some problems, such as- ANN designed .

for highly nonlinear problems cannot solve less nonlinear problems accurately and vice

versa, most of them are difficult for VLSI implementation, generalization abilities of

most of them arc not very convincing, designing algorithms are complicated in most of

the cases and in several algorithms, many user define parameters are necessary.

Considering the above mentioned problems, the proposed algorithm (MCA) ought to be

simple but efficient enough.
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Chapter 3

MULTILAYERED CONSTRUCTIVE ARCHITECTURE

3.1 Introduction

In the modem era of ANNs, finding the optimum architecture is an important issue.

Different constructive algorithms have been developed during the last two decades to

optimize the architecture of ANNs. Most of the algorithms were used to determine the

optimum architecture for a three layered ANNs. Man¥ of them are complex in nature and

require a large number of user defined parameters. This chapter proposes a new

constructive algorithm called multilayered constructive architecture (MCA) for

designing and training single and multiple hidden layered ANNs. MCA uses incremental

training, in association with negative correlation criterion, to design ANN architectures

for classification tasks. It is the first algorithm, to our best knowledge, that creates ANNs

combined of both layered and cascaded architcctures. A unique hidden layer stopping

criterion named negative correlation criterion is used in MCA to stop the growth of the

first hidden layer. The following sections elaborately describe MCA, its advantages and

difference with other existing algorithms.

3.2 MeA

MCA uses incremental training III association with negative correlation criterion to

determine ANN architectures for classification tasks. Individual neurons are added to the

hidden layer(s) one by one in a constructive fashion. MCA first tries to solve given the

problem with a three layered i.e. single hidden layered ANN architecture by adding

neurons in this layer by a strictly layered fashion. If necessary, then more neurons are

added above the first hidden layer in a cascaded manner, creating a multiple hidden

layered architecture.

The major steps of MCA are summarized in Fig. 3.1, which are explained further as

follows.

Step 1. Create an initial ANN architecture. The initial architecture has three layers, i.e.

an input layer, an output layer, and a hidden layer HI. The number of neurons in the

input and output layers is the same as the number of inputs and outputs of the problem,



respectively. Initially, the hidden layer contains only one neuron. Randomly initialize

connection weights between input layer to hidden layer and hidden layer to output layer

within a certain range.

Create an
initial ANN
architecture

Yes

No

Add new
neuron to the

cascaded second
hidden layer

Correlation
maximization

and output layer
training

ANN completed

Fig 3.1 Flowchart ofMCA
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Outputs

HI

Inputs

Fig 3.2 Initial ANN

Step 2. Train the network by using BP algorithm as described in Section 2.7. Stop the

training process if the residual error E does not significantly reduce in the next few

iterations. Freeze the fan-in capacity of the hidden neuron(s). This means that the

ncuron(s) will not receive any new input signals when new neurons are added in the

future. In this work, the residual error E is calculated according to the following

equation.

(3.1)

Where, Yk and Ok are the desired output and the actual output of output neuron k,

respectively. The total number of output neurons is denoted by m. If the value of E is

acceptable, go to step 10. Otherwise, continue.

Step 3. Insert a neuron in parallel to the first hidden neuron in the HI layer as shown in

Fig. 3.3. The hidden neuron receives a connection from each of the input layer neurons

but its output side remains floating, Le. not connected to the output layer neurons.

Step 4. Train the input side weights of the newly added neuron in a gradient ascent

manner to maximize the correlation between its output and the overall difference error d

calculated according to the following equation for the kth output neuron.

dk=Yk-Ok (3.2)

Stop the training of the newly added neuron when correlation is almost flattened Le. does

not increase significantly for some epochs. The correlation between any neuron's output

and d is defined by
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m "

S = LLI(Vr -V)(dr• -d.)1
A.I r-I

(3.3)

Where, P denotes the total number of patterns in the training set. Vp is the output of the

newly added hidden neuron and dpk is the difference error of output neuron k for pattcrn

p, Vand d. are thc pattern averaged value of Vp and dpk respectively.

HI

Outputs

Inputs

Fig 3.3 Add new neuron in the HI layer (Black box indicates frozen' connections)

Step 5. Connect the output of the neuron with all the output layer neurons. Freeze the

fan-in capacity of the neuron. Train all the output weights using modified single layer BP

rule, as described in Section 3.2.1 to minimize the residual error E.

Step 6. If the added neuron does not reside in HI, go to step 8. Otherwise, continue.

HI

Outputs

Inputs

Fig. 3.4 ANN with HI layer completed
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Step 7. Test the growth of HI layer by using the negative correlation criterion as per

Section 3.2.3. If the criterion is met, the layer is completed (Fig. 3.4), go to step 8.

Otherwise, go to step 3.

HI

Outputs

Inputs

Fig. 3.5 First neuron in cascade above HI layer

Step 8, If the value of E is acceptable, go to step 10. Otherwise, continue.

Outputs

Inputs

Fig. 3.6 Final ANN with HI hidden layer and two neurons in cascade above it

Step 9. Construct a new hidden layer by adding a new neuron above the existing hidden.

layer(s) as per Fig. 3.5 and go to step 4. This neuron gets input connections from all of

the previous hidden neurons whether they reside on the HI or any other hidden layer.
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'This will create a cascaded hidden layer with a single neuron above the existing hidden

layers. The output of the added neuron will be floating.

Step 10. The ANN obtained is the final ANN for a given problem (Fig. 3.6).

It is seen that the construction process of MCA is little bit complex than existing

constructive algorithms in designing ANNs. However, the essence of MCA is that it can

construct ANNs with both single and multiple hidden layers depending on the problem

complexity. There are some processes and criteria those are incorporated in MCA at

different stages. A modified single layer version of BP algorithm is used to update the

output layer weights. MeA uses a unique layer stopping criterion to stop the growth of

the first hidden layer. Correlation maximization process is used to add new hidden

neurons. All these processes are described briefly in the following subsections.

3.2.1 Modified Single Layer BP Algorithm

In MCA, for updating all the output layer weights, a little modified version of this

conventional BP rule is used. The conventional BP rule is described in Section 2.7. Some

modifications like 'batch' processing in lieu of 'sequential' processing and use of a

'momentum' term are done to the single layer BP learning algorithm.

The output layer weight update equations (Eqns. 2.20, 2.21) of the BP learning algorithm

is as follows-

Weight update factor-

t>pw~= 'l(y p' - 0p,)f: (net;,)i pj

Updated weight-

w~(t + I) = w~(t).+ t>p w~(t)

Where, the symbols indicate their usual meanings as per Section 2.7.

(3.4)

(3.5)

To modify the learning process, (3.4) is divided into two terms according to the

following-

Weight update factor-
,

~ItWZ, ;; L(YPk -o,>1I)ft {IJet;Jk)ipj
f'

(3.6)
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In this equation (3.6), summation of all the weight updates for eaeh pattern is taken. This

cumulative weight update refers to as 'batch' processing.

Modi fied weight update factor-

(3.7)

Where, a is the momentum term, typically greater than unity. The equation for modified

weight remains unchanged (3.5). It is therefore clear that a 'copy' of previous weight

change is kept in memory in order to 'accelerate' the learning.

3.2.2 The Correlation Maximization Process

The correlation S between any neuron's output and overall d is defined by Eqn. (3.3).

The input side weights of any newly added neuron is trained using the correlation

maximization process. In order to maximize S, the partial derivative of S with respect to

each of the candidate unit's incoming weights (from neuron i to neuron j) ")i must be

computed. Similar to the derivation of the BP algorithm, the derivative of Sis

as - .'
-= 'L>,(dp, -d)jp Xpi (3.8)
Ow)' P.'
Where, a, is the sign of correlation between the candidate neuron and the kth output

neuron, !; is the derivative of activation function! of the candidate neuron for pattern p.

A gradient ascent is performed to maximize S, after the computation of as law" .
Consequently, each weight of all the added hidden neuron is updated according to the

following equation-

as
Wp(t + I) = wji(t) +1,--

Owji

Where, I, is the learning rate.

3.2.3 The Negative Correlation Criterion

(3.9)

An automatic stopping criterion is used in MCA to stop the growth of the first hidden

layer. It is named negative correlation' criterion and is based on the interneuron

correlations among the outputs of the neurons in the same hidden layer. When a new

neuron is installed in the hidden layer, its correlation with existing neuron(s) in same

layer is measured and summed. It is then observed whether this summed value crosses
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zero. i.e. changes the initial sign after the addition of new neurons in the same layer. The

criterion can be clarified mathematically in the following way.

Correlation between two neuron's outputs is defined by the following equation.

Njl = L:U-:p - v, )(Rjp - R)
p

(3.10)

Where v,p is the output of any existing neuron t and R
Jp

is the output of newly added
- -

neuron j in the layer for pattern p. V, and Rj are the pattern averaged value of v,p and

RJp respectively.

Outputs

Inputs

Fig. 3.7 Initial ANN

The summation of correlations SN between neuron I and all other neurons in the first

hidden layer neuron is defined by-

(3.11 )

To explain the mechanism of this criterion, initial ANN with only a single hidden neuron

nl is considered (Fig 3.7). Theoretically, if any neuron n2 is added in the same (HI)

layer (Fig. 3.8), the neuron should correlate negatively with nI. But in practical, two

cases may occur.

fL. Check N .•~

Inputs

HI 2

Fig. 3.8 Only first hidden layer neurons are considered after adding n2
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• Case 1.' Neuron n2 correlales positively wilh neuronnl. Calculate the correlation

bctween these neurons according to (3.10) and consider this value to be cl. At

this instant, SN is calculated according to (3.11) and its value equals to cl, which

is positive. Now, more neurons are added one by one in this layer as per Fig. 3.9

until SN crosses zero i.e. SN :;;O.

~ Check N., -----..,

Inputs

HI 2

Fig. 3.9 More neurons (3 ... J) are added until SN crosses zero

• Case 2: Neuron n2 correlales negalively wilh neuron ,nl. Calculate the

correlation between these neurons according to (3.10) and consider this value to

be -c I. At this instant, SN is calculated according to (3.11) and its value equals to

-c I, which is negative. Now, more neurons are added one by one in this layer as

per Fig. 3.9 until SN crosses zero Le. SN :2: O.

The growth of the first hidden layer is stopped if the condition described in Case I or

Case 2 is met. This means that the given problem can not be solved by single hidden

layer. MCA therefore creates one or more cascaded hidden layer to solve the problem. In

this manner, the layer stopping criterion can be used to stop the growth of the first hidden

layer.

3,3 Advantages of MeA

MCA is an efficient algorithm to design multiple hidden layered ANN which offers the

following advantages over other constructive or pruning or combined algorithms.

Combincd algorithms arc those which involve both construction and pruning of network.

• MCA exhibits lower propagation delay than CasCor and most of its variants.

Propagation delay is defined as the longest path that a signal must cross while,
passing through any ANN. CasCor and its variants like aCasper, modified CasCor,

simplified CasCor create a completely cascaded architecture resulting in a long
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propagation path, i.e. large propagation delay. On the other hand, MCA creates a

combination of layered and cascaded architecture which creates less number of layers

and lower propagation delay. Th,c fact can be clarified with Fig. 3.10.

Inputs

Outputs

In uts

Fig. 3.10 Comparison of propagation delay (bold lines) between CasCor and MCA with

4 hidden neurons. (a) CasCor architecture with al14 hidden neurons in cascade creating

propagation delay path of length 5. (b) MCA with 3 hidden neurons in the same layer

and I in cascade creating propagation delay path of length 3.

It can be logically proved that MCA exhibits lower propagation delay than CasCor. Let

us consider an ANN with II hidden neurons. If the ANN is created by CasCor, these II

neurons will create II hidden layers. Now, if the ANN is created by MCA, then the first

hidden layer must contain at least 2 hidden neurons, leaving 11-2 hidden neurons to form

cascaded layers. These 11-2 hidden neurons form 11-2 hidden layers above the initial

hidden layer. So, the resultant hidden layer number will be 11-2+ I, i.e. II-I. As the

number of hidden layers in MCA is lower than the number of hidden layers in CasCor.

the propagation delay is also lower.

• In most of the constructive algorithms, hidden neurons are added either in strictly

layered or in strictly cascaded manner. As a result, the created ANN may cause

underfitting or overfitting of data. MCA is independent of these problems due to its

architecture combined oflayered and cascaded hidden neurons.

• MCA is preferred to the pruning approach because specifying the initial network is

easier in it. In pruning methods, one has to decide how big the initial network must

be. Whereas, it is easy to found an initially small network. Since MCA starts with
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smaller networks, the computation time is less and they arc likely to find smaller
networks.

• MCA uses the negative correlation criterion for stopping the first hidden layer which

is very effective and very easy to implement. In other algorithms the architecture is

either predefined or found by trial and error method.

• ANNs created by MCA are easier to implement in VLSI than CasCor and its variants

because of lower number of cross connections.

3.4 Differences with Existing Algorithms

There are several algorithms for architecture determination in the realm of ANN. Most of

them are constructive, pruning or combination of construction and pruning of network.

However, most of these algorithms are used to design three layered ANNs. Very few

algorithms are used to design four or more layered ANNs. MCA has some significant

differences with these existing algorithms, such as-

• MCA is an algorithm that can design single or multiple hidden layered ANNs

depending on a problem complexity. MCA first tries to solve a given problem

with a single hidden layered ANN by adding a number of neurons in the hidden

layer. If the problem remains unsolved, MCA then stops the growth of the first

hidden layer and creates more hidden layers for solving the problem. Most

existing algorithms can design either single or multiple hidden layered ANNs but
not the both.

• The number of hidden layer is one in the case of most of the existing algorithms.

The algorithms, which create ANN architecture consisting of two or more hidden

layers, require the layer size, i.e. the number of neurons in each hidden layer to be

predetermined. On the contrary, MCA neither need to predetermine the number

of existing layers nor need to restrict the number of hidden neurons per layer.

• There is no effective way of stopping the hidden layer growth in the existing

algorithms. As a result, either the number of hidden layers or the number of

neurons in each hidden layer needno be restricted. MeA involves a unique layer

stopping criterion, named the negative correlation to restrict the number of

neurons in the hidden layer.
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• MCA uses 'batch' processing rather than the conventional 'sequential' processing

in thc single layer BP learning. In sequential processing, every timc a pattcrn is

passed through the ANN, the output error is calculated and the weight is updated.

But in batch processing, all the patterns are passed through the ANN to calculate

the cumulative output error. Although this process slows down the learning, but it

can get rid of the 'herd effect' described in [19). A 'momentum' factor is used to

accelerate the batch processing.

3.5 Conclusion

This chapter mainly describes about the algorithm and analyzes the details of the

algorithms. The advantages of MCA over existing algorithms, difference with existing

algorithms are also stated in this chapter. Simulation and results of MCA on different

datasets, comparison with other algorithms and analysis are described in the next

chapter.
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Chapter 4

SIMULATION RESULTS

4.1 Introduction

This chaptcr evaluates the performance of MCA on several well-known benchmark

problems. These problems have been subject of many studies in ANNs and machine

learning. Six benchmark classification problems were used to evaluate the performance

of MCA. These are the Breast Cancer problem, the Australian Credit Card problem, the

Diabetes problem, the Glass problem and two sets of the Heart Disease problems.

The following section contains descnption of used datasets. Their origin and

characteristics are also consulted in this section. Experimental setup and experimcntal

rcsults are discussed in the next section. The subsequent sections involve the analysis of

experimcntal results, comparisons with other similar works, and discussion on

comparative results.

4.2 Description of Datasets

The data sets representing all the problems were real world data and obtained from the

UCI machine learning benchmark repository. The characteristics of the data sets arc

summarized in Table 4.1. The detailed descriptions of the data sets are available 'at

ftp//ics.uci.edu (128.195.11) in directory/pub/machine-Iearning-databases [36].

4.2.1 The Breast Cancer Problem

This is a classification problem based on the diagnosis of breast cancer. It tries to classify

a tumor as either benign or malignant based on cell descriptions gathered by microscopic

examination. Input attributes are for instance the clump thickness, the uniformity of cell

size and cell shape, the amount of marginal adhesion, and the frequency of bare nuclci.

This dataset consists of 9 inputs, 2 outputs and 699 examples. All inputs are continuous;

65.5% of the examples are benign. This makes for an entropy of 0.93 bits per example.

This dataset was created based on the "breast cancer Wisconsin" problem dataset from

the UCI repository of machine learning databases.



4.2.2 The Australian Credit Card Problem

This datasct prcdict thc approval or non-approval of a credit card to a customcr. Each

example represents a real credit card application and the output describes whether the

bank (or similar institution) granted the credit card or not. The meaning of the individual
attributes is unexplained for confidence reasons.

There are 51 inputs, 2 outputs, 690 examples in the problem. This dataset has a good mix

of attributes: continuous, nominal with small numbers of values, and nominal with larger

numbers of values. There are also a few missing values in 5% of the examples. 44% of

the examples are positive; entropy 0.99 bits per example. This dataset was created based

on the "crx" data of the "Credit screening" problem dataset from the UCI repository of
machine learning databases.

4.2.3 The Diabetes Problem

This is one of the most challenging dataset in the realm of classification problems. It

deals with diagnosis of diabetes of Pima Indians. Based on personal data (age, number of

times pregnant) and the results of medical examinations (e.g. blood pressure, body mass

index, result of glucose tolerance test, etc.), try to decide whether a Pima Indian
individual is diabetes positive or not.

The dataset contains 8 inputs, 2 outputs, 768 examples. All inputs are continuous. 65.1%

of the examples are diabetes negative; entropy .0.93 bits per example. Although there are

no missing values in this dataset according to its documentation, there are several

senseless 0 values. These most probably indicate missing data. Nevertheless, this data is

handled as if it was real, thereby introducing some errors into the dataset. This dataset

was created based on the "Pima hi.dians diabetes" problem dataset from the UCI repos-
itory of machine learning databases.

4.2.4 The Glass IJroblem

The dataset describes of classification of glass types. The results of a chemical analysis
of glass splinters (percent content of 8 different elements) plus the refractive index are

used to classify the sample to be either float processed or non float processed building

windows, vehicle windows, containers, tableware, or head lamps. This task is motivated

by forensic needs in criminal investigation.
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There arc 9 inputs, 6 outputs, 214 examples in the problem. All inputs arc continuous;

two of them have hardly any correlation with the result. As the number of examples is

quite small, the problem is sensitive to algorithms that waste information. The sizes of

the 6 classes arc 70, 76, 17, 13, 9, and 29 instances, respectively; entropy 2.18 bits per

example. This dataset was created based on the "glass" problem dataset from the VCI

repository of machine learning databases.

4.2.5 The Heart Disease Problem (General Dataset)

Prediction of heart disease is the goal of the dataset. It decides whether at least one of

four major vessels is reduced in diameter by more than 50%. The binary decision is

made based on personal data such as age; sex, smoking habits, subjective patient pain

descriptions, and results of various medical examinations such as blood pressure and

electro cardiogram results.

The dataset consists of 35 inputs, 2 outputs, and 9~0 examples. Most of the attributes

have missing values, some quite many. For attributes 10, 12, and II, there arc 309,486,

and 611 values missing, respectively. Most other attributes have around 60 missing

values. Additional boolean inputs are used to represent the "lIlissillgllesS" of these values.

The data is the union of four datasets: from Cleveland Clinic Foundation, Hungarian

Institute of Cardiology, V.A. Medical Center Long Beach, and University Hospital

Zurich. The "heart" dataset has 45% patients with "no vessel is reduced" (entropy 0.99

bits per example).

4.2.6 The Heart Disease Problem (Cleveland Dataset)

This is an alternate version of the dataset heart, called hearlc, which contains only the

Cleveland data. This dataset represents the cleanest part of the heart data; it has only two

missing attribute values overall, which makes the "value is missing" inputs of the ANN

input representation almost redundant.

This dataset has same number of input and output as hearl but it has only 303 examples.

The hearlc datasets have 54% patients with "no vessel is reduced" (entropy 1.00 bits per

example). These two datasets were created based on the "heart disease" problem datasets

from the VCI repository of machine learning databases.
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TABLE 4.1
CHARACTERISTICS OF DATASETS

Dataset Total number NumberoC NumberoC
oC Patters inputs outputs

Callcer 699 9 2
Card 690 51 2

Diabetes 768 8 2

Glass 214 9 6

Heart 920 35 2

Heartc 203 35 2

4.3 Experimental Setup

In the past, there were some criticisms toward the neural networks benchmarking

methodology [36]-[38]. Suggestions for improvement have been put forward [36]-[38].

These suggestions arc followed in this literature. All datasets arc partitioned into three

sets: a training set, a validation set, and a testing set. The validation set is used to stop the

training when the overall residual error reaches a flatter region. The test set is used to

evaluate the generalization performance of the trained ANN and is not seen by the ANN

during the whole training process. It is known that the experimental results may vary

significantly for different partitions of the same data collection, even when the number of

examples in each set is the same [36]. It is necessary to know precise specification of the

partition in order to accomplish an experiment or conduct fair comparisons. In the

following experiments, each dataset are partitioned as follows:

• For the breast cancer dataset, the first 350 examples were used for the training

set, the following 175 examples for the validation set, and the final 174 examples
for the testing set.

• For the credit card dataset, the first 345 examples were used for the training set,

the following 173 examples for the validation set, and the final 172 examples for
the testing set.
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• For the diabetes dataset, the first 384 examples were used for the training set, the

following 192 examples for the validation set, and the final 192 examples for the

testing set.

• For the glass dataset, the first 107 examples were used for the training set, the

following 54 examples for the validation set, and the final 53 examples for the

testing set.

• For the heart dataset, the first 460 examples were used for the training set, the

following 230 examples for the validation set, and the final 230 examples for the

testing set.

• For the heartc dataset, the first 152 examples were used for the training set, the

following 76 examples for the validation set, and the final 75 examples for the

testing set.

In all experiments, one bias node with a fixed input +1 is connected only to the first

hidden layer. The learning rate 1J is set between [0.0 I, 0.6] and the weights were

initialized to random values between [-0.5, +0.5]. The momentum a is ranged between

[004, 0.6] depending on the characteristics of datasets. A hyperbolic tangent function is

taken as the activation funetion- f = a tanh(bv), where, v is the output of the summing

junction, a = 1.7159, b = 2/3. The output neurons act in "winner takes alf' manner.

4.4 Results and Analysis

Table 4.2 shows the results of MeA over 20 independent runs on six different

classification problems. Total training epochs can be divided into two parts. One is the

number of epochs required for maximization of correlation and the other is the number

of epochs required for minimization of residual error. Residual error column contains the

value of error E when the training is stopped. E is measured according to Eqn. (3.1). The

training error rate and the test error rate in the tables refer to the percentage of wrong

classification produced by the trained ANN on the training patterns and test patterns

respectively. The standard deviations (StDev) of different error rates are given next to the

corresponding columns.
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TABLE 4.2

RESULTS OF MCA ON DIFFERENT CLASSIFICATION PROBLEMS
THE RESULTS WERE AVERAGED ON 20 INDEPENDENT RUNS

A. THE BREAST CANCER PROBLEM

Total No. of Residual StDev Training StDev Test StDev
Epochs Hidden Error (Residual Error (Training Error (Test

Neurons Error) Rate Error) Rate Error)

Mean 90 2 0.05244 0.04 0.0057

Min 84 2 0.0523 0.000126 0.04 0 0.0057 0

Max 96 2 0.0526 0.04 0.0057

B. THE AUSTRALIAN CREDIT CARD PROBLEM

Total No. of Residual StDev Training StDev Test StDev
Epochs Hidden Error (Residual Error (Training Error (Tesl

Neurons Error) Rate Error) Rate Error)

Mean 106.8 2.1 0.09994 0.11706 0.12384

Min 82 2 0.0984 0.000608 0.1101 0.004967 0.1221 0.002802

Max 153 3 0.1004 0.1246 0.1279

C. THE DIABETES PROBLEM

Total No. of Residual StDev Training StDev Test StDev
Epochs Hidden Error (Residual Error (Training Error (Test

Neurons Error) Rate Error) Rate Error)

Mean 289.9 3.9 0.15277 0.22608 0.2099

Min 186 3 0.1527 0.000067 0.224 0.0029518 0.1979 0.009231

Max 383 5 0.1529 0.2318 0.2188
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D. THE GLASS PROBLEM

Total No. of Residual StDev Training StDev Test StDev
Epochs Hidden

Error (Residual Error (Training Error (Test
Neurons Error) Rate Error) Rate Error)

Meall 474.7 4 0.28064 0.3742 0.31699

Mill 347 4 0.2775 0.003605 0.3551 0.015341 0.3019 0.017324

Max 591 4 0.2898 0.4019 0.3396

E. THE HEART DISEASE PROBLEM (GENERAL DATASET)

Total No. of Residual StDev Training StDev Test StDev
Epochs Hidden Error (Residual Error (Training Error (Test

Neurons Error) Rate Error) Rate Error)

Meall 235.1 3 0.10666 0.13609 0.18913

Mill 134 2 0.1014 0.002736 0.1261 0.058053 0.1783 0.004686

Max 307 4 0.1097 0.1435 0.1913

F. THE HEART DISEASE PROBLEM (CLEVELAND DATASET)

Total No. of Residual StDev Training StDev Test StDev
Epochs Hidden Error (Residual Error (Training Error (Test

Neurons Error) Rate Error) Rate Error)

Mean 215.9 3.4 0.10007 0.13815 0.1867

Min 171 3 0.0985 0.000678 0.1118 0.018874 0.1867 0

Max 284 4 0.1005 0.1579 0.1867

It is seen that MCA can produce compact ANN architecture with good generalization

ability i.e. small test error rate. It also requires a small number of epochs in designing

ANNs. For example, MCA performs very well on the diabetes problem (Table 4.2(C»,

which is the most difficult problem in the realm of machine learning. In this case, the

average number of epochs required for error minimization is arou~d 171. The average

number of epochs required to maximize the correlation in order to train the input side

weights of the added hidden neurons is around 118. Three neurons are added on average
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In the hidden layer(s). So, average number of epochs per hidden neuron is 39.33.

Average residual error of 0.15277, training error rate of 0.2261 and test error rate of

0.2099 exhibits error minimizing capability of this ANN. These results also indicate the
I

good generalization ability of MCA which is the inverse of the test error rate. Average

test error rate of 0.2099 indicates that out of 192 test patterns, 40 patterns are incorrectly

classified. This is a good result in the context of the critical diabetes problem. Moreover,

it has standard deviations in the order 10"'1,10') and 10') for residual error, training error

rate and test error rate. These low standard deviations imply high robustness of MCA.

Robustness is the consistency of the ANN under different initial conditions.

MCA exhibits very good results for not only for the diabetes problem, but also for the

other benchmark problems. For the cancer problem (Table 4.2(A)), it shows the lowest

test error rate (highest generalization), which is as low as 0.0057 on average. It means,

among 174 test patterns, it incorrectly classifies only I pattern. On the other hand, it

shows the highest error rate (lowest generalization) for the glass problem (Table 4.2(0))

which is 0.31699 on average. This is also good for the 'tiny' glass problem with the

lowest pattern size. The lowest value of standard deviation for training patterns is 0 and

it is achieved for the cancer problem. The highest standard deviation value for training

patterns is 0.058053, produced by the heart problem. For the test patterns, the lowest

standard deviation (0) is observed in two datasets, cancer and heartc. The highest

standard deviation in this case is for the glass problem and it is only 0.017324. From

table 4.2 one can figure out that for other classification problems, MCA exhibits

excellent robustness as it has very low standard deviations.

In order to show how the training process of MCA progresses, Figs. 4.1 -4.6 show the

training process for six different classification problems. The training process of MCA

can be thoroughly explained by taking into account the diabetes (Fig. 4.3) and the glass

(Fig. 4.4) problems. Several observations can be made from these figures.

First, the correlation between a neuron and the residual error increases as the training

process progresses, as shown in Figs. (4.3(a) & 4.4(a)). It is seen from these figures that

the correlation does increase too much after some training epochs i.e. 40. MCA therefore

stops the correlation maximization process after 40 epochs and add the neuron to the
network.
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Second, it is observed from Figs. 4.3(b) and 4.4(b) that the error is minimized in very

smooth manner except that there is a 'spike' when a new neuron is added. This happens

due to two reasons. One is the initial random output weights of the added neuron and the

other is the usc of batch processing rather than sequential processing. Whenever a neuron

is added to the ANN, its input side weights are already trained and frozen but the initial

random weights of its output side are to be trained by using Eqns. (3.4 -3.6). These

random weights may create a little spike on the curve. However, the spikes are quite

large as seen from Figs. 3(b) and 4(b). This is because the weights are updated in MCA

by using batch processing where the cUlllulative error for all the patterns is calculated. As

a result, the error becomes too large before training.

Third, the training is stopped before the residual error comes to a flat region (Fig. 4.4(b)).

This is due to the use of validation patterns. In MCA, the validation patterns were passed

through the ANN and the error rate is calculated after every 30 epochs. When the error

rate of the validation set reaches minimum, the training was stopped and the weights at

that point were saved to evaluate different error rates.

Fourth, the negative correlation criterion can be observed from Figs. (4.3(c) & 4.4(c)). In

Fig.(4.3(c)), newly added hidden neuron correlates negatively with the existing initial

hidden neuron (see COIUIIIII 2-1) in the first hidden layer. So, the summation of

correlations SN starts with a negative value i.e. SN<O. When another neuron is added,

although it correlates positively (see COIUIIIII 3-1) with the first neuron, SN remains

negative. But no more neurons are added afterwards to meet the negative correlation

criterion. This is due to the fact that the overall training is stopped at this point by

validating the ANN with the validation patterns. Fig. 4.4(c) shows the perfect example of

the negative correlation criterion. Here, SN starts with a positive value, but after the

addition of the third hidden neuron, SN crosses zero, i.e. SN<=O. The growth of the first

hidden layer is stopped then but the overall training is stopped after adding one neuron in

cascade (third spike 011Fig. 4.4(b)). As glass is a complex problem with a small number

of training patterns, so the presence of cascaded layer is very necessary.

4.5 Comparison

The obtained results of MCA on six benchmark problems are compared with the results

of different constructive and/or pruning algorithms in designing multiple hidden layered
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ANNs. Three very well-known algorithms- the original cascade correlation (CasCor)

[19]. CNNDA [26] and aCaspcr [39] are taken into account. CasCor is the mother of all

the constructive algorithms for designing multiple hidden layered ANNs. Very few

algorithms could show better result than CasCor. One of these algorithms is the

CNNDA. It uses both addition and deletion of neurons and connections. aCaspcr was

approached in 1999 which is a modified regularized version of CasCor to obtain better

generalization. The algorithm uplifted the performance of CasCor by a small degree.

Tables 4.3 - 4.5 show the comparisons among MCA and other algorithms on the basis of

hidden neurons. classification error and training epochs.

TABLE 4.3
COMPARISON AMONG MCA, CASCOR. ACASPER ANDCNNDA IN TERMS OF

AVERAGE NUMBER OF HIDDEN NEURONS REQUIRED

DATASET MeA CasCor aCasper CNNDA
Callcer 2 5.18 4.86 3.4
Card 2.1 1.07 0.12 -

Diabetes 3.9 9.78 3.02 4.3
Glass 4 8.07 4.18 -
Heart 3 2.64 0.1 -
Hearte 3.4 1.38 0.1 -

TABLE 4.4
COMPARISON AMONG MCA, CASCOR, ACASPER ANDCNNDA INTERMS OF

CLASSIFICATIONERRORS

DATASET MCA CasCor aCasper CNNDA

Mean 0.0057 0.0195 0.0189 0.0116
Cancer StDEv 0 0.0038 0.008 -

Mean 0.12384 0.1358 0.1372 -
Card StDEv 0.0028 0.0043 0.0059 -

Mean 0.2099 0.2453 0.2314 0.2087
Diabetes StDEv 0.00923 0.0144 0.0126 -

Mean 0.31699 0.3476 0.3068 -
Glass StDEv 0.017324 0.0588 0.0261 -

Mean 0.18913 0.1989 0.1921 -
Heart StDEv 0.00468 0.0158 0.0044 -

Mean 0.1867 0.1947 0.1885 -
Heartc StDEv 0 0.0128 0.0114 -
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TABLE 4.5
COMPARISONBETWEENMCA ANDCNNDA INTERMSOFTRAININGEPOCHS

ALGORITHM>
MCA CNNDA

DATASET
Cancer 90 499.1
Card 106.8 -

Diabetes 289.9 335.4
Glass 474.7 -
Heart 235.1 -
Heartc 215.9 -

Observing tables 4.3 to 4.5, the comparative analysis for six cla~sification problems

among MCA and other eight algorithms are slated below-

• The breast cancer problem: For the callcer problem, MCA outperforms almost

all the algorithms in each event. Number of hidden neurons required is lower than

all of the algorithms. MCA shows the lowest classification error on average. The

nearest low average classification error is offered by CNNDA which is 2.03 times

larger than MCA. Even in the case of number of training epochs required, MCA

outperforms CNNDA.

• The Australian credit card problem: For the card problem, number of hidden

neurons required in MCA is higher than the algorithms CasCor and aCaspcr.

These two algorithms have short-cut connections, making the architecture much

more complex than MCA. In case of classification error, MCA shows the lowest

error on average. The nearest low average classification error is offered by

RPROP (LC) which is 1.07 times larger than MCA.

• The Diabetes problem: The diabetes problem is considered as one of the most

challenging problems in the benchmarking realm. For the diabetes problem,

number of hidden neurons required in MCA is lower than almost all the

algorithms except the aCasper. In case of classification error, MCA shows lower

error than all of the algorithms except CNNDA on average. CNNDA has a

complex and strictly four layered architecture with lot of user defined parameters

that helps it to generalize well in the case of diabetes problem. But MCA exhibits

only 1.0057 time larger error rate, which is considerable with lower number of
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hidden neurons. In the case of number of training epochs required, MCA

outperforms CNNDA.

• The Glass problem: The glass problem has the lowest number of patterns. So it is

difficult to solve without multiple hidden lay~r. For the glass problem, number of

hidden neurons required in MCA is the lowest among all the algorithms. In case

of classification error, MCA shows lower error than all of the algorithms except

aCasper on average. aCasper has a complex architecture with shortcut

connections that helps it to generalize well in glass problem by increasing the

feature space.

• The Heart disease problem (Gelleral Dataset): For the heart problem, number of

hidden neurons required in MCA is higher than the algorithms CasCor and

aCasper. In case of classification error, MCA shows lower error than all of the

algorithms on average. The nearest low average classification error is offered by

aCasper which is 1.0157 times larger than MCA.

• The Heart disease problem (Clevelalld Dataset): For the hearlc problem,

number of hidden neurons required in MCA is higher than the algorithms CasCor

and aCasper. In case of classification error, MCA shows lower error than all of

the algorithms on average. The nearest low average classification error is offered

by aCasper which is 1.0096 times larger than MCA.

4.6 Discussion

This section briefly explains why the performance of MCA is better than other

constructive algorithms i.e. CasCor [I9], CNNDA [26] and aCasper [39] for most

classification problems we tested. There are three major differences that might contribute

to better performance by MCA in 'comparison with other similar algorithms.

• The first is that MCA is an algorithm which designs an ANN consisting of single

or more hidden layers, depending on the complexity of the problem. MCA starts

with a minimal architecture, and then tries an ANN with single hidden layer to

solve the problem. If the problem remains unsolved, then the hidden layer growth

is stopped and more layers, consisting of a single neuron per layer, are

constructed above it in cascade. This results in a compact ANN. Moreover, as
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there is no need to define the initial layer number or layer size, chance of

underfitting or overfitting is less. Other algorithms like CasCor or aCasper docs

not also need to define the initial architecture but they may create a very complex

cascadcd architecture for simple problems. In the case of CNNDA hidden layer

numbers are to be predefined.

• The second is that there is no effective way of stopping the hidden layer growth

in the existing algorithms. As a result, either the number of hidden layers or the

number of neurons in each hidden layer needs to be restricted. MCA involves a

unique layer stopping criterion, named the negative correlation criterion to

restrict the number of neurons in the first hidden layer. This process increases the

classification ability. Although CasCor and aCasper does not need the hidden

layer to be stopped until the problem is solved but again the problcm of

ovcrfitting may occur due to the cascaded architecture.

• The third is the use of 'batch' processing rather than the conventional 'sequential'

processing in the single layer BP learning. This results in excellent robustness of

the ANN. In sequential processing, every time a pattern is passed through the

ANN, the output error is calculated and the weight is updated. But in batch

processing, all the patterns are passed through the ANN to calculate the

cumulative output error. Although this process slows down the learning, but it

can get rid of the 'herd effect' described in [14] and results in better

generalization. An acceleration factor is used to speed up the batch processing.

The design process of MCA is observed and analyzed in every step. Some non-

conventional approaches are used in MCA those are proven commendable. Use of

momentum term became much easier when batch processing is used. In most of the cases

the ANN need not run into the cascaded layer resulting in a strictly layered ANN. This is

because every neuron is used up to its maximum capacity. When cascaded layer is

formed (i.e. glass problem), only one or two neurons are required to solve the problem.

MCA shows a great stability as the standard deviation for classification error for MCA is

lower than almost all the cornpared algorithms. So, MCA can be a very good alternative

for CasCor and its variants for its simplicity and performance.

65



4.7 Conclusion

MCA is a very efficient but simple constructive algorithm. Although it is developed

based on the concept of CasCor, it performs much better than CasCor in every media of

performance measurement. ANN created by MCA not only generalizes well but also

creates less complex architectures than existing constructive and/or pruning algorithms.

As performance of any ANN is determined by its architecture and generalization ability,

so it can be concluded that MCA is a high performance constructive algorithm.
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Chapter 5

CONCLUSION

5.1 Concluding Remarks

ANNs are one of the most widely used approaches to inductive learning. They have been

applied to classification, regression, and reinforcement learning tasks and they have

demonstrated good predictive performance in a wide variety of interesting problem

domains. They suffer from some significant limitations. Most important of them is the

prediction of ANN architecture before training. To address this limitation, a number of

research groups have developed constructive architectures. The focus of this thesis has

been the development of a constructive algorithm, called MCA, which overcomes the,
significant limitations of previous algorithms.

Constructive algorithms have bcen introduced to the ANN community for nearly 27

years. However, most constructive algorithms can only add neurons in the same layer,

resulting in a single hidden layered architecture. Few algorithms exist that design

automatically multiple hidden layered ANNs, e.g., the number of neurons in a hidden

layer and the number of hidden layers. This paper proposes a new constructive algorithm

to design as well as train multiple hidden layered ANNs. Neither the number of neurons

in a hidden layer nor the number of hidden layers needs to be predefined and fixed. They

are determined automatically in the learning process.

The approached algorithm, i.e. MCA uses both the layered and cascaded constructive

approach to grow the neurons and hidden layers incrementally until the ANN

performance reaches a satisfactory level. It starts with a simple ANN and then tries to

solve the problem by increasing the number of hidden neurons in the same hidden layer.

If the problem is too nonlinear to be solved with a single hidden layer, then MCA creates

cascaded layer abovc the first hidden layer until the problem is solved. In MCA, a ncw

method, the negative correlation criterion (NCe) is developed to determine the stopping

point of the first hidden layer growth. Generalization is encouraged through the use of a

validation set. MCA uses the correlation maximization process for training the input

side weights of any neuron. According to [23] this is the reason behind accurate and fast

performance of MCA. The short-cut connections from input to output are omitted for



simplicity and it is found that these connections contribute a little in the training of the

ANN.

Extensive experiments have been carried out in this paper to evaluate how well MCA

performed on different problems in comparison with other BP, constructive, pruning and

evolutionary algorithms. In almost all cases, MCA outperformed the others. The low

standard deviation of the classification error shows the great stability of this algorithm.

Although MCA has performed very well for almost all problems, experimental study

appeared to have revealed a weakness of MCA in dealing with the glass problem. This is

because the fact that MCA creates fewer connections as the input layer is connected only

to the first hidden layer, resulting in a smaller feature space. There occurs a connectivity

and performance tradeoff as described in [35]. ANNs, who outperform MCA at any

problem, must have much more connections in their architecture, become difficult for

VLSI implementation.

MCA with was compared with other similar algorithms but it is impossible to compare

them fairly without re-implementing all the algorithms under the same experimental

setup.

5.2 Future Scopes

MCA has some limitations which keeps open the field to study and improve the design

methods of MCA. Speeding up the training can be good future work. Speeding up can be

done by using any fast converging algorithm like 'quickprop' [33]. In MCA, the layer

stopping criterion is used to stop the growth of the first hidden layer, but it can be used in

any layers. It can also be used for training new hidden neurons. The cascaded hidden

layers consist of only one neuron per layer, but multiple neurons can be added in the

cascaded layers. Only classification problems were solved with MCA. With minor

alterations, MCA can be used as a good predictor in regression tasks. When any new

ncuron is to be added to the hidden layer, one single candidate is chosen and trained; but

one can also try the same thing with a 'pool' of candidates and select the one with

highest correlation value.
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