
,

NP-Completeness of Edge-Ranking

Problem for Series-Parallel Graphs

by

Md. Emdadul Haque

Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology

October, 2002

. ...;:~ ett~llffr.•••...vr")- __-._ I er-~
~r '0:Z'" Zl ~

I:::!' '1\ t.!l./.~.7. l~l~\,,~~06/I/I01C-tli,*" ",- ,/~ -..:
'~~.,~}c';lf.'5'1~\.-

. --- .--
Submitted to

Bangladesh University of Engineering and Technology

in partial fulfillment ofthe re~uirements for

M. Sc. Engineering (Computer Science and Engineering)
1- .~ - -- - --

1111111111111111111111111111111111
#97074#

" .

-'I

".I!/
t' ""'I#,.; It.

NP-COMPLETENESS OF EDGE-RANKING PROBLEM FOR
SERIES-PARALLEL GRAPHS

A Thesis Submitted by

MD. EMDADUL HAQUE
Student No. 9605045F

for the partial fulfillment of the degree of
M. Sc. Engineering (Computer Science and Engineering).

Examination held on October, 2002.

Approved as to style and contents by:

DR. MD. ABUL KASHEM MIA
Associate Professor and Head
Department of Computer Science and Engineering
B.UET, Dhaka-lOOO, Bangladesh.

DR. M. KA YKOBAD
Professor
Department of Computer Science and Engineering
RUE.T., Dhaka-lOOO, Bangladesh.

DR. CHOWDHURY MOFIZUR RAHMAN
Professor
Department of Computer Science and Engineering
B.D.E.T., Dhaka-lOOO, Bangladesh.

DR. SAIFUR RAHMAN
Professor
Department of Electrical and Electronic Engineering
B.UET, Dhaka-lOOO, Bangladesh.

11

Chairman
Supervisor

and
Ex-officio

Member

Member

Member
(External)

Certificate

This is to certify that the work presented in this thesis paper is the outcome of the

investigation carried out by the candidate under the supervision of Dr. Md. Abul Kashem

Mia in the Department of Computer Science and Engineering, Bangladesh University of

Engineering and Technology, Dhaka. It is also declared that neither ofthis thesis nor any part

thereof has been submitted or is being concurrently submitted anywhere else for the award of

any degree or diploma.

Signature of the
Supervisor

111

Signature of the
Author

,,,-
)

Contents

Acknowledgements

Abstract

1 Introduction

1.1 Background

1.2 Edge-Ranking Problem

1.2.1 Application of Edge-Ranking Problem

1.2.2 The c-Edge-Ranking Problem

1.3 Vertex-Ranking Problem

1.4 Summary

2 Preliminary

2.1 Graphs and Multigraphs
~

2.1.1 Directed Graph

2.1.2 Undirected Graph

2.1J Paths and Cycles

2.1.4 Connected Graphs

2.1.5 Subgraph

2.2 Tree

2.2.1 Binary Tree

2.3 Series-Parallel Graph

2.4 Edge-Ranking

2.4.1 Minimal Cut and Primitive Separator

IV

,.-

IX

1

2

2

3

5

6

9

10

12

12

13

14

14

14

15

15

17

17

19

19

(

2.4.2 Terminal Edge and Internal Edge

2.4.3 Edge Multiplicity and Normal Form

2.5 The Theory of NP-Complete ness

2.5.1 Polynomial Time Algorithms and Intractable Problems

2.5.2 Decision Problems

2.5.3 Deterministic and Nondeterministic Algorithms

2.5.4 The Class P

2.5.5 The Class NP

2.5.6 Reducibility

2.5.7 NP-Completeness

2.5.8 NP-Completeness Proof Technique

2.5.9 Relation among P, NP and NPC

2.6 Conclusion

3 The Main Theorem

3. I Introduction

3.2 MINIMUM GRAPH BISECTIONProblem

3.3 The Edge-Ranking Problem is in NP

3.4 The EDGE-RANKING Problem

3.5 Graph Construction

3.6 Conclusion

4 Conclusion

References

Index

v

21

22

22

22

23

23

24
24
24

25
25

27

27

28
28

29
29
30

30

36

37
39

42

(

List of Figures

I. I An optimal edge ranking of a graph and corresponding edge-separator tree 4

1.2 An edge ranking of a graph 5

1.3 An optimal 2-edge-ranking of a graph 6

1.4 An optimal 2-edge ranking of a tree 7

I. 5 An optimal 2-edge-separator tree of a tree in Fig 1.4 8

1.6 An optimal vertex-ranking of a graph G 10

2.1 Directed and undirected graphs. (a) A directed graph, (b) An undirected graph, (c) An induced

subgraph 13

2.2 A tree with seven vertices 16

2.3 Series (a) and parallel (b) connections 18

2.4 A series-parallel graph with detail connection 18

2.5 A series-parallel graph 18

2.6 An edge-ranking of the series-parallel graph 19

2.7 The edge-ranking in (a) satisfies the minimal cut property, but (b) does not satisfy the

minimal cut property 2\

2.8 How most theoretical computer scientist view the relationships among P, NP, and NPC.

Both P and NPC are wholly contained within NP, and P nNPC = 0 27

3.1 An example of MlNlMUMGRAPH BISECTIONproblem 29

3.2 (a) the graph G! and G2 and (b) the connector graph H (c) joining G1 and G2 with H (d)

illustrates total cut of H 31

VI

(

3.3 (a) A binary tree Twith c = 7 leaves and height Ilog cl= 3, and (b) optimal edge-ranking

of Tusing five ranks 32

3.4 A multigraph Gj constructed form T in Fig 3.3 33

3.5 A connector graph H with c = 5 edges 33

3.6 The series-parallel graph G 34

Vll

List of Tables

1.1 Some known results related to edge-ranking problem

viii

II

,

Acknowledgements

Foremost, I would like to express my gratitude to my thesis supervisor Dr. Md. Abul Kashem

Mia, Associate Professor and Head, Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology, Dhaka-IOOO. Keen interest of Dr.

Kashem in graph ranking has influenced me to carry out a research in edge-ranking of series-

parallel graphs. He has always been a great resource for ideas and solution; and his

encouragement and support have made difficult times during my thesis exploration less

frustrating. His valuable advice, constructive criticism and constant supervision at all stages

of this research have made it possible to complete this research.

I would like to sincerely thanks the other menders of my graduate committee Dr. M.

Kaykobad and Dr. Chowdhury Mofizur Rahman, Professors, Department of Computer

Science and Engineering, BUET, and Dr. Saifur Rahman, Professor, Department of Electrical

and Electronic Engineering, BUET for their suggestions.

I would like to thanks the all-out cooperation and services rendered by the faculty

members and staff of the CSE department for many things.

Finally, I would like to thanks my parents for instilling upon me the value of education

at young age, and for always encouraging me to pursuit my aspirations.

IX

I~~ •••••••

(

Abstract

The general goal of this thesis is to prove that the edge-ranking problem is NP-complete for

series-parallel graphs. An edge-ranking of a graph G is a labeling of its edges with positive

integers such that every path between two edges with the same label i contains an

intermediate edge with label j > i. An edge-ranking is optimal if it uses the least number of

labels among all possible edge-rankings. Many combinatorial problems on general graphs are

NP-Complete, but when restricted to series-parallel graphs, many of these problems can be

solved in polynomial time. On the other hand, very few problems are known to be NP-

complete for series-parallel graphs. These include the subgraph isomorphism problem and

the bandwidth problem. Moreover, the subgraph isomorphism problem and the bandwidth

problem are NP-complete even for trees. In this thesis, we show that the edge-ranking

problem is NP-complete for series-parallel graphs, although the problem can be solved in

linear-time for trees.

t

Chapter 1

Introduction

In this chapter we provide the necessary background and motivation for the study on the

edge-ranking of graphs. In Section 1.1 we give the background of the study of NP-complete

theory and the edge-ranking problem. We define edge-ranking problem and c-edge-ranking

problem in Section 1.2. In Section 1.3 we define the vertex-ranking problem. We conclude

by summarizing the new result and known result in Section 1.4.

1.1 Background

NP-completeness theory is one of the most important theoretical developments of algorithm

research since its introduction in the early 1970. Its importance arises from the fact that the

results have meaning for all researchers who are developing computer algorithms, not only

computer scientist but also the electrical engineers, operation researchers etc. A wide variety

of common encountered problems from mathematics, computer science, and operations

Chapter 1. Introduction 3

research are known to be NP-complete, and the collection of such problems continuously to

grow almost daily. Indeed, the NP-complete problems are now so pervasive that it is

important for anyone concentrated with the computational aspect of these fields to be

familiar with the meaning and implementations of this concept. This thesis shows that the

edge-ranking problem is NP-complete even for series-parallel graphs.

1.2 Edge-Ranking Problem

An edge-ranking of a graph G is a labeling of its edges with positive integers such that every

path between two edges with the same label i contains an intermediate edge with label j > i

[13]. An edge-ranking is optimal if it uses the least number of distinct labels among all

possible edge-rankings. The edge-ranking problem is to find an optimal edge-ranking of a

given graph. Figurel.1 depicts an example of an optimal edge-ranking of a graph using six

ranks, where ranks are drawn next to the edges. Such a ranking corresponds to a minimum

height edge-separator tree ofG. Iyer et al. [13] first studied the edge-ranking problem as they

found the problem has an application in scheduling the assembly of multipart products,

where vertices of G correspond to the basic parts and the edges correspond to assembly

operation or subprocess. They gave an approximate algorithm for solving the edge-ranking

problem on trees, and they closed their paper with an open question: whether the edge-

ranking problem on trees or graphs is in P or NP-hard. Later, Lam and Vue [17] proved that

the edge-ranking problem is NP-hard for general graphs, although de la Torre et al. [5] gave

an algorithm of O(n3 log n) time for finding an optimal edge-ranking of a tree T, where n is

the number of vertices in T. Later, Zhou et al. [25] gave a better algorithm running in O(n2

log 1'» time, where I'> is the maximum degree of the tree. Recently, Lam and Vue [18]

presented a linear-time algorithm to solve the edge-ranking problem on trees.

Chapter I. Introduction 4

I
3 V3

VsVI

(a)

(v"v,)

I
(V3, vs)

I
(v" v,)

I
(V"v,)

~

(b)

(V"V7)

Figure 1.1: (a) An optimal edge ranking ofa graph, and (b) corresponding
edge-separator tree.

On the other hand, Kashem et al. [14] have given a polynomial-time algorithm to solve the

generalized edge-ranking problem on partial k-trees with bounded maximum degree. Since a

series-parallel graph is a partial 2-tree, their algorithm immediately yields a polynomial-time

algorithm for series-parallel graphs with bounded maximum degree. Note that their algorithm

I
\

Chapter 1. Introduction 5

solves the edge-ranking problem for a series-parallel graph G, where the maximum degree of

G is constant. In this thesis, we show that the edge-ranking problem is NP-complete for any

series-parallel graph.

1.2.1 Application of Edge-Ranking Problem

Edge-ranking of a graph has an important and interesting use in assembly of multipart

product. Suppose each edge of the graph shown in Fig 1.2 indicates the sub process in the

assembly. And each vertex of the graph indicates the component in the assembly process and

the edges corresponds to assembly operations to be performed between the components. How

many numbers of steps are needed in the process? The answer of this question can be given

by optimally ranking of the edge of the graph. Less number of steps in the process reduces

the production cost as well as increases the benefit of the industry. Note that two sub

processors cannot share a component at a time. This is why rank of every edge adjacent to a

vertex is different. The edges of the following graph shown in Figure 1.2 can optimally rank

using five ranks. The optimal edge-ranking of a graph indicates the optimal steps in the

assembly process. The edge-ranking problem can also be used in VLSI floor planning and

many others processing plants.

Figure 1.2: An cdge ranking of a graph.

Chapter I. Introduction

1.2.2 The c-Edge-Ranking Problem

6

A natural generalization of an ordinary edge-ranking is the c-edge-ranking [25]. For a

positive integer c, a c-edge-ranking of graph G is a labeling of the edges of G with positive

integers such that, for any label i, deletion of all edges with labels > i leaves connected

components, each having at most c edges with label i. Clearly an ordinary edge-ranking is a

I-edge-ranking. The minimum number of ranks needed for a c-edge-ranking of G is called

the c-edge-ranking number, and is denoted by r' c(G). A c-edges-ranking of G using r'c(G)

ranks is called an optimal c-edge-ranking of G. The c-edge-ranking problem is to find an

optimal c-edge-ranking of a given graph G. Figure 1.3 depicts an optimal 2-edge-ranking of a

graph G using three ranks, where the ranks are drawn next to the edges.

1

Figure 1.3: An optimal 2-edge-rankingof a graph.

The problem of finding an optimal c-edge-ranking of a graph G has applications in

scheduling the parallel assembly of a complex multipart product from its components, where

the vertices of G correspond to the basic components and the edges correspond to assembly,
operations to be performed between the components [8, 12, 13]. Let us consider a robot with

c + 1 hands which can connect at most c + 1 connected components at a time. If we have as

many robots as we need, then the problem of minimizing the number of steps required for the

parallel assembly of a product using the robots is equivalent to finding an optimal c-edge-

ranking of the graph G. One can assemble in parallel a product of Fig. 1.3 in four steps using

(

Chapter 1. Introduction 7

robots of two hands. Similarly we can find the 2-edge-ranking for a tree as shown in Figure

1.4.

Figure 1.4: An optimal2-edge ranking ofa tree.

The c-edge-ranking problem for a graph G is also equivalent to finding a c-edge-

separator tree of G having the minimum height. Consider the process of starting with a

connected graph G and partitioning it recursively by deleting at most c edges from each of

the remaining connected components until the graph has no edge. The tree representing the

recursive decomposition is called a c-edge-separator tree of G. Thus a c-edge-separator tree

corresponds to a parallel computation scheme based on the process above, and an optimal c-

edge-ranking of G provides a parallel computation scheme having the minimum computation

time [21]. Figure 1.5 illustrates a 2-edge-separator tree of the tree depicted in Fig 14.

,
,
c

Chapter 1. Introduction

Step 4

Step 3

Step 2

Step 1

Figure 1.5: An optima12-edge-separatortree ofa tree in Fig lA.

8

Chapter I. Introduction

1.3 Vertex-Ranking Problem

9

An ordinary vertex-ranking of a graph G is a labeling (ranking) of the vertices of G with

positive integers such that every path between any two vertices with the same label i contains

a vertex with label) > i [II]. Clearly a vertex-labeling is a vertex-ranking if and only if, for

any label i, deletion of all vertices with labels> i leaves connected components, each having

at most one vertex with label i. The integer label of a vertex is called the rank of the vertex.

The minimum number of ranks needed for a vertex-ranking of G is called the vertex-ranking

number of G. A vertex-ranking of G using the minimum number of ranks is called an

optimal-vertex ranking of G. The vertex-ranking problem is to find an optimal vertex-ranking

of a given graph. The constraints for the vertex-ranking problem imply that two adjacent

vertices cannot have the same rank. Thus the vertex-ranking problem is a restriction of the

vertex-coloring problem. Figure 1.6 depicts an optimal vertex-ranking of a graph G using

four ranks, where ranks are drawn next to the vertices.

The vertex-ranking problem has received much attention because of the growing

number of applications. The problem of finding an optimal vertex-ranking of a graph G is

equivalent to the problem of finding a minimum-height vertex-separator tree of G. The

vertex-ranking problem plays an important role for the parallel Cholesky factorization of

matrices [7, 20]. Yet other applications of the vertex-ranking problem lie in the field of

VLSI-layout [II, 19, 24].

We then review the results on the vertex-ranking problem. The vertex-ranking problem

was posed in 1988 by Iyer et al. in relation with the applications in VLSI layout and in

manufacturing systems [II]. Pothen proved that the vertex-ranking problem is NP-hard in

general [2, 22], and hence it is very unlikely that there is a polynomial-time algorithm for

solving the problem for general graphs [I]. Hence an approximation algorithm would be

useful. An approximation algorithm for graphs in general was given by Bodlaender et aI.,

whose approximation ratio is O(log2n) for the vertex-ranking number [3], where n is the

\

\ "

Chapter 1. Introduction 10

number of vertices of the input tree. Although the vertex-ranking problem is NP-hard, Iyer el

at. presented an 0(1/ log 1/) time sequential algorithm to solve the vertex-ranking problem for

trees [1 I]. Then Schaffer obtained a linear-time sequential algorithm by refining their

algorithm and its analysis [23]. Recently Deogun el at. gave sequential algorithms to solve

the vertex-ranking problem for interval graphs in 0(1/3) time for permutation graphs in 0(1/6)

time [6]. Bodlaender el at. presented a polynomial-time sequential algorithm to solve the

vertex-ranking problem for partial k-trees, that is, graphs of treewidth bounded a fixed

integer k [2]. Kashem el at. presented a polynomial time algorithm to solve the c-vertex-

ranking problem for partial k-trees, that is, graphs of treewidth bounded a fixed integer k

[15]. Very recently Kloks el at. have presented a sequential algorithm for computing the

vertex-ranking number of an asteroidal triple-free graph in time polynomial in the number of

vertices and the number of minimal separators [16]. On the other hand de la Torre el al.

presented a parallel algorithm to solve the vertex-ranking problem for trees in O(log 1/) time

using 0(1/2/ log 1/) processors on the CREW PRAM [4].

I

3

2

I 2

Figure 1.6: An optimal vertex-ranking of a graph G.

1.4 Summary

This thesis gives an important proof of NP-complete ness of edge-ranking problem for series-

parallel graphs. In this section we summarize our main result. The following table shows the'

known result about the edge-ranking problem.

Chapter I. Introduction 11

J

Table 1.1 shows that there exists a linear-time algorithm for solving the edge-ranking

problem on trees. The complexity of an algorithm for solving the edge-ranking problem on

partial k-trees with constant maximum degree is polynomial. The complexity of algorithm of

edge-ranking problem on series-parallel (k = 2) graphs with constant maximum degree is also

polynomial. But there exists no polynomial time algorithm for solving the edge-ranking

problem of general series-parallel graphs.

Class of Graph Time Reference
Tree O(n) Lam and Yue f181

Partial k-tree with . O(n 121\(k+l)+2) Kashem el at. [14]
constant max. del!ree

Series-parallel graph with O(n 361\+2) Kashem el at. [14]
constant max. del!ree
Series-parallell!raphs NP-Complete Ours

Table 1.1: Some known results related to edge-ranking problem.

This thesis is organized as follows. In Chapter 2 we give preliminary definitions. We

prove the main theorem in Chapter 3 with the help of some lemmas that are also discussed in

Chapter 3. Finally, Chapter 4 concludes with discussion of the result and future works.

Chapter 2

Preliminary

In this chapter we present some basic terms and necessary observations. Definitions that are

not included in this chapter will be introduced, as they are needed. We start, in Section 2.1 by

giving the definition of graph and multigraph. We also define directed and undirected graph

and other graph theoretic terms in this section. The thesis deals with series-parallel graphs,

which are special kinds of graphs. We define the series-parallel graph in Section 2.3. Then

we define some terminologies related to our thesis in Section 2.4. At last in Section 2.5 we

describe the theory of NP-complete ness.

2.1 Graphs and Multigraphs

A graph is a structure (V, E), which consists of a finite set of vertices V and a finite set of

edges £: each edge is an unordered pair of distinct vertices (see Figure 2.1). We call V(G) the

vertex set of the graph G, and £(G) the edge set of G. Through this thesis the number of

(

Chapter 2. Preliminary 13

vertices ofG is denoted by n that is n = I vi. If e = (v, w) is an edge, then e is said to join the

vertices v and w, and these vertices are then said to be adjacent. In this case we also say that

w is neighbor of v and that e is incident to v and w. If a graph G has no "multiple edges" or

"loops", then G is said to be a simple graph. Multiple edges join the same pair of vertices,

while a loop joins a vertex to itself The graph in which loops and multiple edges are allowed

is called multigraph. Sometimes a simple graph is simply called a graph only if there is no

danger of confusion.

2.1.1 Directed Graph

A directed graph (or digraph) G is a pair (V, E), where V is a finite set and E is a binary

relation on V. The set V is called the vertex set of G, and its elements are called vertices. The

set E is called the edge set of G, and it elements are called edges. Figure 2.\ (a) is a pictorial

representation ofa directed graph on the vertex set {I, 2, 3, 4, 5, 6). Vertices are represented

(a)

~

(c)

3

6

3

6

(b)

3

6

Figure 2.1: Directed and undirected graphs. (a) A directed graph. (b) An undirected
graph, (c) An induced subgraph.

Chapter 2. Preliminary 14

by circles in the figure, and edges are represented by arrows. Note that self-loops are edges

froni a vertex to itself-are possible.

2.1.2 Undirected Graph

In an undirected graph G = (V, E), the edge set E consists of unordered pairs of vertices,

rather than ordered pairs. That is, an edge is a set (u, v}, where u, v E V and u ~ v. By

convention, we use the notation (u, v) for an edge, rather than the set notation (u, v}, and (u,

v) and (v, u) are considered to be the same edge. In an undirected graph, self-loops are

forbidden, and so every edge consists of exactly two distinct vertices. Figure 2.1 (b) is a

pictorial representation of an undirected graph on the vertex set {I, 2, 3,4, S, 6}.

The degree of a vertex in an undirected graph is the number of edges incident on it. For

example, vertex 2 in Figure 2. I(b) has degree 2.

2.1.3 Paths and Cycles

A Vo- VI walk in G is an alternating sequence of vertices and edges of G, Vo, el, VI, ... , v(/_t),

el, VI beginning and ending with a vertex, in which each edge incident to two vertices

immediately preceding and following it. If the vertices Vo, VI, ... , Vi are distinct (except,

possibly vo, Vi), then the walk is called a path and is usually denoted by Vo,VI ... Vi.The length

of the path is I, one less than the number of vertices on the path. A path is closed if Vo= VI.A

closed path containing alleast one edge is called a cycle. A cycle of length 3, 4, S,..., is called

a triangle, quadrilateral, pentagon, etc. One example of a walk in G depicted in Fig 2.I(b) is

VI, el, V2,e2, Vj which is not closed. One example of cycle is VI, el, V2,e2, Vj, e3, VI a triangle

2.1.4 Connected Graphs

An undirected graph is connected if every pair of vertices is connected by a path. The

connected components of a graph are the equivalence classes of vertices under the "is

Chapter 2. Preliminary 15

reachable from" relation. The graph in Figure 2.I(b) has three connected components: (I, 2,

5), (3, 6}, and (4}. Every vertex in {I, 2, 5} is reachable from every other vertex in (1,2,

5}. An undirected graph is connected if it has exactly one connected component, that is, if

every vertex is reachable from every other vertex.

2.1.5 Subgraph

We say that a graph G' = (V', E') is a subgraph of G = (V, E) if V' ~ Vand E' ~ E. Given a

set V' ~ V, the subgraph of G induced by V' is the graph G' = (V', E'), where E' = (u, v) E E

: II, v E V'}. The subgraph induced by the vertex set {I, 2, 3, 6} in Figure 2.I(a) appears in

Figure 2.I(c) and the edge set {(1,2), (2, 2), (6, 3)}

2.2 Tree

A lfree) tree is a connected graph without any cycle. We often omit the adjective "free" when

we say that a graph is a tree. Figure 2.2 is an example of a tree. The vertices in a tree are
-

usually called nodes. A rooted tree is a free tree in which one of the nodes is distinguished

from the others. The distinguished node is called the root of the tree. The root of a tree is

generally drawn at the top. In Fig. 2.2, the root is VI. Every node II other than the root is

connected by an edge to some one other node p called the parent of u. We also call II a child

of p. We draw the parent of a node above that node. For example, in Fig. 2.2, VI is the parent

of V2, VJ, and V4, while V2 is the parent of Vs and V6; V2, VJ, and V4 are children of VI, while Vs

and V6 are children of V2. A leaf or terminal is node of a tree that has no children. Thus every

node of a tree is either a leaf or an internal node, but not both. In Fig. 2.2, the leaves are vs,

V6, VJ, and V7, and the nodes VI, V2, and V4 are internal nodes or non/erminals.

Chapter 2. Preliminary 16

The parent-child relationship can be extended naturally to ancestors and descendants.

Suppose III, 112,.... , III is a sequence of nodes in a tree such that III is the parent of 112, which is

a parent of 113, and so on. Then node III is called an ancestor of III and node 1I{ is called the

descendant of III. The root is the ancestor of every node in a tree and every node is a

descendant of the root. In Fig. 2.2 all nodes other than VI are descendants of VI, and VI is an

ancestor of all other nodes.

In a tree T, a node II together with all of its descendants, if any, is called a sllbtree of T.

Node 11 is the root of this subtree. Referring again to Fig. 2.2, node V3 by itself is a subtree,

since V3 has no descendants other than itself As another example, nodes V2, Vj and "6 form a

subtree, with root V2. Finally, the entire tree of Fig. 2.2 is a subtree of itself, with root VI. The

maximal subtree of T rooted at a vertex II E Vis denoted by T(II). Let e = (II, v) be an edge in

Vj

Figure 2.2: A tree with seven vertices.

T such that II is a child of v. Then the tree obtained from T(II) by adding.e is denoted by T(e).

We denote by T - Ire) the tree obtain from T by deleting all edges and all vertices of 7{e)

except v.

The height of a node II in a tree is the length of the longest path from II to a leaf The

height of a tree is the height of the root. The depth of a node II in a tree is the length of a path

from the root to II. The level of a node u in a tree is the height of the tree minus the depth of

Chapter 2. Preliminary 17

u. In Fig.2.2, for example, node 1'3 is of height 0, depth 1 and level!. The tree in Fig. 2.2 has

height 2.

2.2.1 Binary Tree

A binary tree can be defined recursively as follows:

A binary tree T is a structure defined on a finite set of nodes that either

1. Contains no nodes, or

2. Is comprised of three disjoint sets of nodes: a root node, a binary tree called its

left subtree, and a binary tree called its right subtree.

The Figure 2.2 is a binary tree.

2.3 Series-Parallel Graph

A series-parallel graph is defined recursively as follows.

1. A graph G of a single edge is a series-parallel graph. The end points v, and v, of the edge

are called the terminals ofG and is denoted by v,(G) and v,(G).

2. Let G1 be a series-parallel graph with terminals v,(G1) and v,(G,), and let G2 be another

series-parallel graph with terminals v,(G2) and v,(G2).

a)A graph G obtained from G, and G2 by identifying vertex v,(G1) with vertex v.,(G1) is a

series-parallel graph whose terminals are v,(G) = v,(G,) and v,(G) = v,(G2). Such a

connection is called a series connection, and G is denoted by G = G,"G1 (See Figure

2.3)

b) A graph G obtained from G, and G2 by identifying v,(G1) with v,(G2) and l',(G,) with

v,(G2) is a series-parallel graph whose terminals are v,(G) = v,(Gj) = v,(G2) and v,(G) =

v,(G,) = v,(G2). Such a connection is called a parallel connection, and G is denoted by G

= G,IIG2 (See Figure 2.3).

Chapter 2. Preliminary
18

v,(G,)et:M~,
v,(G,)

(a)
v,(G)
= v,(G,)
= v,(G,)

(b)

v!O)
= v,(G,)
= v,(G,)

Figure 2.3: Series (a) and parallel (b) connections.

Figure 2.4: A series-parallelgraph with detail connection.

•

After connecting them we get the final series-parallel graph G is shown bellow. The graph G
can be ranked optimally using six ranks.

Figure 2.5: A series-parallelgraph.

Chapter 2. Preliminary 19

2

23

5

4

Figure 2.6: An edge-ranking of the series-parallel graph.

2.4 Edge-Ranking

The symbol '1/ is used to denote an edge-ranking of a graph. We denote rank('1/) to be the

number of distinct labels used by an edge-ranking If/. and rank(G) to be the number of

distinct labels used by an optimal ranking of G.

2.4.1 Minimal Cut and Primitive Separator

Let G = (V, E) be a series-parallel graph. For any C <;;;; E, C is an edge cut ofG if the removal

of C from G disconnects G. An edge cut C,of G is said to be minimal if the removal of any

subset C' of C does not disconnect G. For any minimal cut C of a graph G, the removal of C

disconnects G into exactly two connected components.

Let '1/ be an edge-ranking of G. Consider the process of removing edges from G in tht.
, '~"f"

~ 1decreasing order of rank. It should be noted that the edge with highest rank is unique in the':::
,

graph. If we delete the edge with the highest rank, the resultant graph may be connected or

disconnected. If the graph is connected the second highest label in the remaining graph is

also unique. Let I be the label of the last edge deleted from G to disconnect the graph. We

define the primitive separator of '1/ to be the set of edges that have labels ~ I under '1/. The

Chapter 2, Preliminary 20

removal of primitive separator from G disconnects it into exactly two components, The

remaining edges of the graph other than the primitive separator have labels less than I.

Fact: Let IIfbe an optimal edge-ranking of a graph G, Let S be the primitive separator of

1If,and let G1 and G2 be the connected components after removing S from G, Then both G1

and G2 can be ranked using at most rank(G) - lSi distinct labels,

We say that IIfsatisfies the minimal cut property if its primitive separator S forms a

minimal cut C in G and the restrictions of IIfto the two connected components resulted from

the removal of C from G also satisfy the minimal cut property, We then have the following

lemma [17].

Lemma 2.1 Any graph G has an optimal edge-ranking satisfYing the minimal cut property.

Proof: Given an edge-ranking IIfof G we can rearrange the labels of edges such that the

resultant arrangement of ranking satisfies the minimal cut property.

Let S be the primitive separator of IIfand S' ~ S be the minimal cut of G, We can

rearrange the labels on S such that S' receives the biggest labels, Note that such

rearrangement still satisfies the property of ranking, Removing S' from G disconnects it and

separates into two connected components G'1 and G 2, If G 'I and G 2 consist of one or more

edges, we can again and again rearrange the labels on their edges recursively, Let 1If'be the

resultant ranking of G, As the process above never introduces new labels, rank(1If}=

rank(1If), If IIfis an optimal then lIf'is optimal too, 0

The following Figure 2,7 shows an example of two different edge-ranking of a graph,

one (a) satisfies the minimal cut properties whose primitive separator (of two edges) S forms

a minimal cut and the other (b) does not satisfies, whose primitive separator (of three edges)

S does not forms a minimal cut.

r
\

Chapter 2. Preliminary

(a)

21

Figure 2.7 The edge-ranking in (a) satisfies the minimal cut property,
but (b) does not satisfy the minimal cut property.

2.4.2 Terminal Edge and Internal Edge

In a series-parallel graph G, if any end of any edge has the degree one, then the edge is a

terminal edge. On the other hand, an edge with both ends having degree more than one is an

internal edge. The following lemma [17] shows that the existence of an optimal ranking does

not include terminal edge in its primitive separator.

Lemma 2.2 For any graph G containing at least one internal edge, G has an optimal edge-

ranking'll satisfying the minimal cut property such that the primitive separator of 'IIcontains

no terminal edge.

Proof: Let 'II be an optimal edge-ranking of G satisfying the minimal cut property. Suppose

the primitive separator S of 'II contains a terminal edge e. Since the removal of e disconnects
its unit degree endpoint from G, S contains e as its only edge and e gets the biggest label in
'II. In this case we can contract another optimal edge-ranking 'II' for G from 'II such that e gets
a label I as follows:

'II'(e) ={ 1
lIf{e) + 1

if e = e

otherwise

."

Chapter 2. Preliminary 22

'1"uses the same number of distinct label as 'I' and e no longer lies in the primitive separator.

Also, '1" satisfy the minimal cut property. If the primitive separator of '1" does not contains

any terminal edge then we are done. Otherwise we can repeat the process until we get an

optimal edge-ranking for G with an internal edge getting the maximal label. 0

2.4.3 Edge Multiplicity and Normal Form

A multigraph is a graph in which a pair of vertices can be connected by one or more parallel

edges. Given a multi graph G, the edge multiplicity of an edge e = (u, v) is the number of

parallel edges connecting u and v in G. If the edge multiplicity of all edges in Gis r, then we

say that the edge multiplicity of G is r. An optimal edge-ranking 'I' is said to be in normal
form if it satisfies the minimal cut property and its primitive separator contains no terminal

edge.

2.5 The Theory of NP-Completeness

The theory of NP-completeness which we present here does not provide a method of

obtaining polynomial time algorithms for problems. Nor does it say that algorithms of this

complexity do not exist. Instead, what we shall do is to show that many of the problems for

which there is no known polynomial time algorithm are computationaly related.

2.5.1 Polynomial Time Algorithms and Intractable Problems

Let us say that a function fin) is O(g(n)) whenever there exists a constant c such that lfin) I $
c.1 g(n) I for all n ~ O. A polynomial time algorithm is defined to be one whose time

complexity function is O(p(n)) for some polynomial function p, where 11 is used to denote the

i

I:

Chapter 2. Preliminary 23

input length. Any algorithm whose time complexity function cannot be so bounded is called

exponential time algorithm.

There is wide agreement that a problem has not been "well-solved" until a polynomial

time algorithm is known for it. A problem is intractable if it is not well-solved that is so hard

that no polynomial time algorithm is not known for the problem.

2.5.2 Decision Problems

As a matter of convenience, the theory of NP-complete ness is designed to be applied only to

decision problems. Such problems have only two possible solutions, either the answer is

"yes" or the answer "no". As for example the MINIMUM GRAPHBISECTION problem is a

decision problem defined as follows: Given an undirected graph F with 2n vertices and a

positive integers c, does there exist a partition V(F) = U u W with IUJ = IW1 = nand

IEP(U. w)1 ~ c? This problem was shown to be NP-complete by Garey, Johnson and

Stockmeyer [9].

2.5.3 Deterministic and Nondeterministic Algorithms

The algorithms so far we know have the property that the result of every operation is

uniquely defined. Algorithms with this property are termed deterministic algorithms. Such

algorithms agree with the way programs are executed on a computer. In a theoretical

framework we can remove this restriction on the outcome of every operation. We can allow

algorithms to contain operations whose outcomes are not uniquely defined but are limited to

a specified set of possibilities. The machine executing such operations is allowed to choose

anyone of these outcomes subject to a termination condition. This leads to the concepts of a

nondeterministic algorithm. The computer so far been invented cannot execute

nondeterministic algorithm. '.~.

Chapter 2. Preliminary
24

Example: Consider the problem of searching for an element x in a given set of elements A(I

: n) n ~ 1.We are required to determine an index} such that A(j) = x or} = 0 if x is not in A. A

nondeterministic algorithm for this is

} = choice(l : n)

if A(j) = x then print(j); success endif
printf("O"); failure

The above algorithm is a nondeterministic polynomial time algorithm and it is not

possible to implement by a computer. The reason is that, it is not possible to determine the

existence of a number in an array by a single operation.

2.5.4 The Class P

The class P is the type of problems that can be solved by polynomial time algorithm. For the

problem of class P, polynomial time algorithm already exists. For example matrix

multiplication algorithm, Prim's minimum spanning tree algorithm, graph traversal algorithm

etc. are polynomial time algorithms.

2.5.5 The Class NP

The name NP stands for nondeterministic polynomial. The class NP is the set of problems

that can be solved by nondeterministic algorithm in polynomial time or the set of problems

whose solution can be verified by a polynomial time algorithm. No deterministic polynomial

time algorithm exists for the problems ofNP class. ,c.

2.5.6 Reducibility

Let L
1
and L2 be two problems. LI reduces to L2 (also written L1 ~ P L2) if and only if there is

a way to solve L
1
by a deterministic polynomial time using a deterministic algorithm that

solves L2 in polynomial time.

.. --,

Chapter 2. Preliminary

2.5.7 NP-Completeness

25

Polynomial-time reductions provide a formal means for showing that one problem is at least

as hard as another, to within a polynomial-time factor. That is, if [1 $; p [2, then [I is not

more than a polynomial factor harder than [2, which is why the "less than or equal to"

notation for reduction is mnemonic. We can now define the set of NP-complete problems,

which are the hardest problems in NP. A problem [is NP-complete if

I. [E NP, and

2. [1 $;p[for [1 ENPC.

That is, in word we can say

A problem is NP-complete if and only if

I. The problem is in NP, and

2.The problem is polynomially reducible from another problem that is already in NP-

complete.

If a problem [satisfies property 2, but not necessarily property 1, then we say that [is NP-

hard.

2.5.8 NP-Completeness Proof Technique

A salesman wants to visit n cities starting form a city. Visiting each city exactly once he

wants to return the starting city so that the total cost of the tour is minimum over all possible

tours. This is a traveling salesman problem (TSP).

The TSP can be also be defined as a decision problem as follows: Given a graph G =

(V,E) that indicate the network of the city (where V indicates cities and E indicates the

connection of i to j city). The function e(iJ) indicate the cost from city i to city j, M is a

positive number. Does there exist a tour such that total cost of the tour ~M!

\

Chapter 2. Preliminary

Theorem: Traveling salesman problem (TSP) is NP-complete.

26

Proof: We first show that TSP belongs to NP. For an instance of the problem, we show that

we can verify the solution ofTSP problem in polynomial tine. Given a solution sequence of a

TSP problem, the verification algorithm checks that this sequence contains each vertex

exactly once, sums up the edge costs, and checks weather the sum is at most M. This process

can certainly be done in polynomial time.

To prove TSP is NP-hard, we show that HAM-CYCLE 50p TSP (Hamiltonian cycle

problem (HAM-CYCLE) already proved as a NP-complete problem). Let G = (V, E) be an

instance of HAM-CYCLE. We construct an instance of TSP as follows. We form the

complete graph G'= (V, E'), where E'= {(i,)): iJ E V}, and we defined the cost function c

by

.. {O if (i,O E E .
C(IJ) =

lif(iJ)i"E.

The instance ofTSP is then (G: c, 0), which is easily formed in polynomial time. So TSP is

polynomialy reducible from HAM-CYCLE.

We now show that graph G has a hamiltonian cycle if and only if graph G' has a tour of

cost at most O. Suppose that graph G has a hamiltonian cycle h. Each edge in h belong to E

and thus cost 0 in G ~ Thus, h is a tour in G' with cost O. Conversely, suppose that graph G'

has a tour h ' of cost at most o. Since the costs of the edges in E' are 0 and 1, the cost of the
tour h' is exactly o. Therefore, h' contains only edges in E. We conclude that h is a

hamiltonian cycle in graph G.

~.

\

Chapter 2. Preliminary

2.5.9 Relation among P, NP and NPC

27

Most theoretical computer scientists believe that P *NP which leads to the relation among P,
NP and NPC shown in the figure. Most scientists also believe NP-complete problems are

intractable. The reason is that if any single NP-complete problem can be solved in

polynomial time, then every NP-complete has a polynomial time algorithm.

Figure 2.8 How most theoretical computer scientist view the relationships among P, NP,
and NPC. Both P and NPC are wholly contained within NP, and P nNPC = 0.

2.6 Conclusion

In this chapter we present some terminologies like graphs, multigraphs, trees, series-parallel

graphs, edge-ranking etc. that are related to our thesis. We introduce some preliminary

lemmas in this chapter. At last we present some terminologies related to the NP-Complete

theory.

1

l

Chapter 3

The Main Theorem

This chapter contains the main theory related to prove the NP-completeness of the edge-

ranking problem for series-parallel graphs. In Section 3.2 we define the MINIMUM GRAPH

BISECTION problem that is already proved as an NP-complete problem. We define EDGE-

RANKING problem as a decision problem in Section 3.4. In Section 3.5 we describe the

construction of our graph. Finally we prove that the edge-ranking problem as an NP-

complete problem.

3.1 Introduction

This thesis deals with undirected graphs without self-loops. For two disjoint subsets U and W

of V (G), we denoted by EG (U, W) the set of edges e in G such that one end of e is in U and

other end is in W.Our main result of this thesis is the following theorem.

(

Chapter 3. The Main Theorem

Theorem 3.1: The edge-ranking problem isNP-Complete for series-parallel graphs.

In the remainder of this chapter we will give a proof of Theorem 3.1.

3.2 MINIMUM GRAPH BISECTION Problem

29

The MINIMUMGRAPHBISECTIONproblem is defined as follows: Given an undirected graph F

with 2n vertices and a positive integers c, does there exist a partition V(F) = UuWwith lUi
= IWl = nand IEF{U, W)15: c?

n=5 cut 5: 3 n=5

Figure 3.1 An example of MINIMUMGRAPHBISECTIONproblem.

The above example is an instance of MINIMUMGRAPHBISECTIONproblem. For c = 3

the example is a yes instance of the problem, where n = 5. This problem was shown to be

NP-complete by Garey, Johnson and Stockmeyer [9].

3.3 The Edge-Ranking Problem is in NP

For a given edge-ranking of a graph, we can verify the correctness of the ranking in

polynomial time as follows: We delete all edge of rank> 1, if we get at most one edge of

Chapter 3. The Main Theorem 30

rank 1 in each connected component then we say the graph is valid ranking of rank 1.

Similarly, we delete all edge of rank> 2, if we get at most one edge of rank 2 in each

connected component then we say the graph is valid ranking of rank 2. Similarly we check

for all rank 'If of the graph. If all are valid the we say the graph is valid edge-ranking. It can

be done in polynomial time, so the edge-ranking problem is in NP.

Therefore, it is sufficient to show that the MINIMUMGRAPHBISECTIONproblem can be

transformed in polynomial time to the edge-ranking problem for series-parallel graphs.

3.4 The EDGE-RANKING Problem

The EDGE-RANKINGproblem can also be defined as a decision problem as follows: Given a

graph G and a positive integer I, does there exist an edge-ranking 'If of G such that rank('If) 5:

l? Given a graph F with 2n vertices and a positive integer c (i.e., an instance of MINIMUM

GRAPHBISECTIONproblem), we construct an instance of the edge-ranking problem on a

series-parallel graph G. We shall prove that the series-parallel graph G will have a natural

upper bound on its ranks if and only if the instance (F, c) of MINIMUMGRAPHBISECTIONis a

yes instance, i.e., F has a bisection with at most c edges.

3.5 Graph Construction

In this section we describe the constructions of several graph. To describe our construction,

we describe the composition of several graphs. The most interesting property of such graphs

is that if the resultant graph can be ranked tightly (meeting its lower bound), the individual

constituent graphs can also be ranked tightly.

Chapter 3. The Main Theorem 31

Let GI and G2 be two connected multigraphs. We construct a series-parallel graph G by

connecting the graphs G! and G2 with another graph H, where V(H) = UI U U2 for some U1

~ V(GI) and U2 ~ V(G2), and E(H) ~ (UI x U2). For any C ~ E(H), C is said to be a lolal cui

of H if the removal of C from H disconnects all the vertices in UI from all the vertices in U2.

LetfH denote the size of the smallest total cut of H. Then clearly fH = IE(H)I.

(a)

H

(b)

C

(c)
(d)

Figure 3.2: (a) the graph G1 and G2 and (b) the connector graph H (c)
joining GI and G2 with H (d) illustrates total cut of H.

The graphs GI, G2 and H are chosen such a way that a lower bound on the ranks of GI

and G2, and their edge multiplicities are big enough to exceed the value of fH. Lemma 3.2

shows that with such assumptions the graph G also has a non-trivial lower bound on its

ranks.

Chapter 3. The Main Theorem 32

First we show how to construct the multigraphs G1 and G2. Consider a binary tree Twith

c leaves and height r log clas shown in Figure 3.3. The binary tree T is constructed such a

way that the left subtrees are always complete binary trees. Let CI. be the number of ranks

used by an optimal edge-ranking of T, i.e., rank(T) = CI.

(a)

(b)

Figure 3.3: (a) A binary tree Twith c = 7 leaves and height rlog cl
= 3, and (b) optimal edge-ranking of T using five ranks.

Let m be the minimum integer such that mn ~ c. If we replace each edge of the binary

tree with mn edges, then we get a multigraph, and we call the multigraph as G1. (See Figure

3.4). It should be noted that the edge-multiplicity of all edges in G1 is mn. Since the parallel

edges between two vertices can form a path themselves, all parallel edges between two

Chapter 3. The Main Theorem 33

vertices must be labeled with distinct ranks. Then the multigraph G) can be ranked optimally

using mna distinct ranks. The multigraph G2 is a copy of the multigraph G1.

Figure 3.4: A multigraph G1 constructed form T in Fig. 3.3.

We then construct a connector graph H to connect G1 and G2 for the formation of the

final series-parallel graph G. The connector H is a disconnected graph of c components each

of which is an edge with two vertices as shown in Figure 3.5 .

•
•
•
•
•

•
•
•
•
•

Figure 3.5: A connector graph H with c = 5 edges.

Chapter 3. The Main Theorem

Finally, after connecting two multi graphs G1 and G2 by connector graph H we get the

series-parallel graph G as shown in Figure 3.6.

Figure 3.6: The series-parallel graph G.

34

The number of vertices in the series-parallel graph G is ~ 2(c + rc/2l + rc/4l + ... + 1) ~

4c + 210g c _ 2, and the number of edges is ~ (4c + 210g c - 4)mn + c. Thus G can be

constructed from F in polynomial time. We then have the following lemma.

Lemma 3.2 Let G be a series-parallel graphjormed by connecting two multigraphs G1 and

G
2
with the connector H, let rank(G]) = rank(G2) = k, and let the edge multiplicity oj both G1

and G2 is at least jH' Then rank(G) = jH + k.

Chapter 3. The Main Theorem 35

Proof: Let If/ be an optimal edge-ranking of G in a normal form. So, its primitive separator S

cannot contain any terminal edge and satisfY the minimal cut property. Since the edge

multiplicity of both G, and G2 is ~fH, S cannot contain an edge ofG, or G2. Thus S = E(H).

Since there are/H distinct paths between each edge ofG, to each edge ofG2 and rank(G1) =

rank(G2) = k, the number of ranks needed for an optimal edge-ranking ofG is

rank(G) = lSi+k = /H +k. 0

We next show an useful observation when G actually been ranked usingfH + k distinct

labels.

Lemma 3.3 Let G be a series-parallel graph formed by connecting two multigraphs G1

and G2 with the connector H, and let rank(G) = /H + k. Then there exists an optimal edge-

ranking If/ of G such that the primitive separator of If/ is a minimal total cut of H.

Proof: By Lemma 2.2, there exists an optimal edge-ranking If/ of G in a normal form. Since

the edge multiplicity of both G, and G2 is ? fH, its primitive separator S cannot contain an

edge ofG, or G2. So S =E(H). SincefH = IE(H)I, S is the minimal total cut of H. 0

We then have the following lemma.

Lemma 3.4 Let G be the series-parallel graph as constructed above. Then rank(G) = k + c

if and only if the MINIMUM GRAPHBISECTION problem has a yes instance.

Proof: Let the M!NIMuMGRAPH BISECTIONproblem has a yes instance. Then we show that

rank(G) = k + c. A ranking If/ of G using k + c distinct ranks are constructed as follows: the

primitive separator S of If/ consists of the c edges from H. The removal of S from G

disconnects it into two connected components G1 and G2. Each G, and G2 can be ranked

Chapter 3. The Main Theorem 36

using k distinct ranks. Edge multiplicity of each graph G1 and G2 are mn ;?: c. Then, by

Lemma 3.2, the number of ranks needed for an optimal edge-ranking of G is

rank(G) = rank(G1)+!H = k+c.

Conversely, let rank(G) = k + c. Then we show that the MINIMUMGRAPHBISECTION

problem has a yes instance. By Lemma 3.3, there exists an optimal edge-ranking If! of G such

that the primitive separator of If! is a minimal total cut of H. Since!H = c, by deleting this

minimal total cut, we have a partition of V(G) such that V(G) = V(G1) U V(G2) with V(G1) =

V(G2) and IEo(V(G1), V(G2)) ISfH = c. 0

Thus we have proved Theorem 3.1.

3.6 Conclusion

This chapter is the most important of our thesis work. First of all we show that the edge-

ranking problem is in NP. Then we define the EDGE-RANKINGproblem as a decision

problem. We construct a series-parallel graph that is reducible from MINIMUMGRAPH

BISECTIONproblem in polynomial time. Last of all we prove the NP-completeness of edge-

ranking problem for series-parallel graphs with the help of some lemmas.

Chapter 4

Conclusion

The subject of this thesis is an important class of problems, whose status is unknown. No

polynomial-time algorithm has yet been discovered for an NP-complete problem, nor has yet

been able to prove a superpolynomial-time lower bound for any of them. This so-called P 7'

NP question has been one of the deepest, most perplexing open research problems in

theoretical computer science since it was posed in 1971 [10).

Most theoretical computer scientist believes that the NP-complete problems are

intractable. The reason is that if any single NP-complete problem can be solved In

polynomial time, then every NP-complete problem has a polynomial-time algorithm.

In this thesis, we show that the edge-tanking problem is NP-complete even for series-

parallel graphs. This is a very interesting problem that is NP-complete for series-parallel

graphs, but linear-time solvable for trees.

Then the c-edge-ranking problem is also NP-complete for series-parallel graphs. Many

problems on series-parallel graphs exist like ordinary graph. Some of the open problems are

as follows:

Chapter 4. Conclusion 38

1. What is the complexity of approximate sequential algorithm for c-edge-ranking of

series-parallel graph?

2. What is the complexity of approximate parallel algorithm for c-edge-ranking of

series-parallel graph?

.\

References

[I] A. V. Aho, J. E. Hopcroft, and 1. D. Ullman, The Design and Analysis of Computer

Algorithms, Addison-Wesley, Reading, MA, 1974.

[2] H. Bodlaender, 1. S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Muller, and Zs. Tuza,

Ranking of graphs, SIAM Journal of Discrete Math, 21 (1998), pp. 168-181.

[3] H. Bodlaender, 1. R. Gilbert, H. Hafsteinsson, T. Kloks, Appriximating treewidth, path

width and minimum elimination tree height, Journal of Algorithms, 18 (1995), pp. 238-

155.

[4] P. de la Torre, R. Greenlaw, and T. M. Przytycka, Optimal tree ranking is NP, Parallel

Processing Letters, 2 (1992), pp. 31-41.

[5] P. de la Torre, R. Greenlaw, and A.A. Schffer, Optimal edge-ranking of trees in

polynomial time, Algorithmica, 13 (1995) pp. 592-618.

[6] 1. S. Deogun, T. Kloks, D. Kratsch, and H. Muller, On vertex ranking for permutation

and other graphs, Proc. Of the 11the Annual Symposium on Theoretical Aspect of

computer Science, Lecture Notes in Computer Science, Spring-Verlag, 775 (1994), pp.

747-758.

[7] 1. S. Deogun and Y. Peng, Edge ranking of trees, Congressus Numerantium, 79 (1990)

pp. 19-28.

[8] 1. S. Duff and 1. K. Reid, The multi/rontal solution space symmetric linear equations,

ACM Transaction on Mathematical Software, 9(1983), pp. 302-325.

[9] M.R. Garey, D.S. Johnson, and L. Stockmeyer, Some simplified NP-complete graph

problems, Theoretical Computer Science, I, 1996, pp. 237-267 .

References
40

[10] M.R. Garey, and D.S. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness, W.H Freeman Co., New York, 1979.

[11] V. Iyer, HD. Ratliff, and G. Vijayan, Optimal vertex ranking of trees, Processing

Letters, 28(1988), pp. 225-229.

[12] V. Iyer, HD. Ratliff, and G. Vijayan, Parallel assembly of modular products - an

analysis, Technical report PDRC 88-06, Georgia Institute of Technology, 1988.

[13] V. Iyer, H.D. Ratliff, and G. Vijayan, On an edge-rankingproblem of trees and graphs,

Discrete Applied Mathematics, 30 (1991), pp. 43-52.

[14] M.A. Kashem, X. Zhou, and T. Nishizeki, Generalized edge-rankings of partial k-trees

with bounded maximum degree, Proc. of International Conference on Computer and

Information Technology, 1998, pp. 45-51.

[15] M.A. Kashem, X. Zhou, and 1. Nishizeki, Algorithms for generalized vertex-rankings of

partial k-trees, Theoretical Computer Science, 240(2000), pp. 407-427.

[16] 1. Kolks, H Muller, and C. K. Wong, Vertex ranking of asteroidaltriple-free graphs,

Proc. of the 77th International Symposium on Algorithms and Computation (ISAA'96)

Lecture notes in Computer Science, Spring -Verlag, 1178 (1996), pp. 174-182.

[17] T.W. Lam and F.L. Yue, Edge-ranking of graphs is hard, Discrete Applied

Mathematics, 85 (1998), pp. 71-86.

[18] 1.w. Lam and FL. Yue, Optimal edge-ranking of trees in linear time, Proc. of the Ninth

ACM-SIAM Symposium on Discrete Algorithms, 1998, pp. 436-445.

[19] C. E. Leiserson, Area-efficient graph layoutsfor VLS!, Proc. of the 21st Annual IEEE

Symposiam on Foundations of Computer Science, 1980, pp. 270-281.

[20] 1. W. H Liu, The role of elimination trees in space factorization, SIAM Journal of

Matrix Analysis and Applications, 11 (1990), pp. 134-172.

[21] N. Megiddo, Applying parallel computation algorithms in the design of series

algorithms, 28.References 29 Journal of the ACM, 30 (1983), pp. 852-862.

[22] A. Pothen, The complexity of optimal elimination trees, Technical Report CS-88-13,

Pennsylvania State University, U.S.A., 1988.

References 41

[23] A. A. Schaffer, Optimal vertex ranking of trees in linear time, Information Processing

Letters, 33 (1989, pp. 91-99.

[24] A. Sen, H Deng, and S. Guha, On a graph partition problem with application to VLS!

layout, Information Processing Letters, 2 (1992), pp. 31-41.

[25] X. Zhou, MA Kashem, and T. Nishizeki, Generalized edge-rankings of trees, !EICE

Trans. on Fundamentals of Electronics, Communications and Computer Science, E81-A,

2 (1998), pp. 310-320.

Index

~,4, 11,20,22,32

adjacent, 5, 9, 13

ancestor, 17

c-edge-ranking, 2, 6, 7, 8

class NP, 26

Class P, 26

connected component, 16, 32

connected graph, 7, 16

cycle, 15

decision problem, 24

degree, 4, 5, 11, 12, 15,22,23

depth, 18

descendant, 17

deterministic algorithms, 25

deterministic Algorithms, 25

digraph, 14

E(G),13

edge, 1,2,3,5,6,7,11,12,13,14,15,16,

17,18,20,21,22,23,28,29,30,31,32,

34, 35, 37, 38, 39,40

edge-eanking, 3, 5,6,20,30,31,32,39

edge-ranking problem, 1, 2, 3, 5, 6, 7, 11,

12, 30, 32, 39, 40

exponential, 24

/H,3

G1,3

graph, 1,3,5,6,7,9, 10, 12, 13, 14, 15,

16, 18, 19,20,21,22,23,25,26,27,28,

30,31,32,33,34,35,36,37,38,39,40

directed graph, 13, 14

multi graph, 13

subgraph, 16

undirected graph, 15, 25

H,33

height, 3, 7, 10, 17, 34

induced by, 16

intractable, 24, 28, 40

leaf, 16, 17

level, 18

minimal cut property, 21, 23, 37

MINIMUM GRAPH BISECTION, 25, 30, 31,

32, 38, 39

neighbor, 13

node, 16, 17, 18

nonterminal 16,

normal form, 23, 37

Index

NP-complete, 1, 2, 3, 5,25, 26, 27, 28, 30,

31,40

NP-hard, 3, 10,27,28

parallel connection, 19

parent, 16, 17

path, 1,3,9,15,17,35

polynomial, 1,5, 10, 11,24,26,27,28,

29,31,32,37,39,40

priniitive separator, 21, 22, 23, 24, 37, 38

r'c(G),6

rank, 5, 9, 20, 21, 22, 32, 34, 37, 38

reducibility, 26

root, 16, 17, 18

series connection, 18

43

simple graph, 13

terminal, 16,22,23,24,37

tree, 3, 5, 7, 10, 11, 16, 17, 18,26,34,35

binary tree, 18

rooted tree, 16

subtree, 17, 18

V(G),33

vertex, 2, 5, 9,10,13,14,15,16,17,18,

28
vertex-ranking, 9

walk, 15

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052

