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Abstract

This thesis presents an efficient algorithm for finding generalized edge-ranking of series-

parallel graphs. A generalized edge-ranking of a graph G is defined as follows: for a

positive integer c, a c-edge-ranking of G is a labeling (ranking) of the edges of G with

integers such that, for any label i, deletion of all edges with labels> i leaves connected

components, each having at most c edges with label i. A c-edge-ranking is optimal if the

number of labels used is as small as possible. The c-edge-ranking problem is to find an

optimal c-edge-ranking of a given graph. The c-edge-ranking problem has applications in

scheduling the complex multi-parts products from its components; it is equivalent to

finding a c-edge-separator tree of G having the minimum height. The c-edge-separator tree

provides a parallel computation scheme having the minimum computation time. We give

an efficient and simple polynomial-time algorithm for solving the c-edge-ranking problem

of series-parallel graphs.



Chapter 1

Introduction

In this chapter we provide the necessary background and motivation for this study on the

edge-ranking of series-parallel graphs. We start by giving a historical background of the

development of edge-ranking of graphs. We then give the definition of ordinary edge-

ranking and generalized edge-ranking of graphs. Finally, we summarize our new results

togather with known ones.

1.1 Backgrounds

Recent research efforts in algorithm theory have concentrated on designing efficient

algorithms for solving combinatorial problems, particularly graph problems. A graph

Figure 1.1: A graph with eight vertices and eleven edges.
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G = (V, E) with n vertices and m edges consists of a vertex set V= {VI> Vz, v3, ... , vn} and

an edge set E = {el>ez, e3, ... , em}, where an edge in E joins two vertices in V Figure 1.1

depicts a graph of eight vertices and eleven edges, where vertices are drawn by circles,

edges by lines, vertex names next to the circles and edge names next to the lines. Efficient

algorithms have been obtained for various graph problems, such as coloring problems,

planarity testing problem, maximum flow problem.

The vertex-coloring and the edge-coloring problems are two of the fundamental problems

on graph. The vertex-coloring problem is to color the vertices of a given graph with the

minimum number of colors so that no two adjacent vertices are assigned the same color.

The edge-coloring problem is to color the edges of a given graph with the minimum

number of colors so that no two adjacent edges are assigned the same color[24]. The

ordinary vertex-ranking and edge-ranking problems are restrictions of the vertex-coloring

problem and the edge-coloring problem, respectively.

1.2 Generalized Edge-Ranking Problem

An ordinary edge-ranking of a given graph G is a labeling of edges of G with positive

integers such that every path between two edges with the same label i contains an edge.,

with label} > i [10]. Clearly an edge-labeling is an edge-ranking if and only iffor any label

i, deletion of all edges with labels> i leaves connected components, each having at most

one edge with label i. The minimum number of ranks needed for an edge-ranking of G is

3 .,.,
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called the edge-ranking number of G. An edge-ranking of G using the minimum number of

ranks is called an optimal edge-ranking of G. The edge-ranking problem is to find an

optimal edge-ranking of a given graph. The constraints for the ordinary edge-ranking

problem imply that two adjacent edge cannot have the same rank. Thus the ordinary edge-

ranking problem is a restriction of the edge-coloring problem. Figure 1.2 depicts an

optimal edge-ranking of the graph G in Figure 1.1 using seven ranks, where the ranks are

drawn next to the edges.

4

2

3

Figure. 1.2 : An optimal edge-ranking of the graph G of Fig. 1.1

A natural generalization of an ordinary edge-ranking is the c-edge-ranking. For any

positive integer c, a c-edge-ranking of a graph G is a labeling of the edges of G with

positive integers such that, for any label i, deletion of all edges with labels > i leaves

connected components, each having at most c edges with label i [22]. Clearly an ordinary

4 . I,
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Figure 1.3 : An optimaI2-edge-ranking of a graph G.

edge-ranking is a I-edge-ranking. The minimum number of ranks needed for a c-edge-

ranking of G is called the c-edge-ranking number of G and is denoted by rc'(G). A c-edge-

ranking of G using rc'(G) ranks is called an optimal c-edge-ranking of G. The c-edge-

ranking problem is to find an optimal c-edge-ranking of a given graph G. Figure 1.3

depicts an optimal 2-edge-ranking of a graph G using three ranks, where ranks are drawn

next to the edge numbers. Connected components obtained from G by deleting all edges

with labels> i for the 2-edge-ranking ofthe graph in Fig. 1.3 are drawn in ovals in Fig. 1.4.

The problem of finding an optimal c-edge-ranking of a graph has applications in

scheduling the parallel assembly of a complex multipart product from its components,

where the vertices of G corresponds to the basic components and the edges corresponds to

5



assembly operations to be performed between the components [10]. Let us consider a robot

withe + I hands which can connect at most c + 1 connected components at a time. If we

have as many robots as we need, then the problem of minimizing the number of steps

delete 3

delete 2

Figure 1.4 (a): A 2-edge-separator tree of the graph in Fig. 1.3.

required for the parallel assembly of a product using the robots is equivalent to finding an

optimal c-edge-ranking of the graph G.

6
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ranks levels
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2
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Figure 1.4 (b): A 2-edge-separator tree of the graph of Fig. 1.3.

The c-edge-ranking problem of a graph G is also equivalent of finding a c-edge-separator

tree of G having the minimum height. Consider the process of starting with a connected

graph G and partitioning it recursively by deleting at most c edges from each of the

connected components until the graph has no edge. The tree representing the recursive

decomposition is called a c-edge-separator tree of G. Thus a c-edge-separator tree

corresponds to a parallel computation scheme based on the process above and an optimal c-

edge-ranking of G provides a parallel computation scheme having the minimum

computation time [16]. Figure 1.4(a) and 1.4(b) illustrates a 2-edge-separator tree of the

graph G depicted in Fig. 1.3.
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We next review the results on the edge-ranking problem. The problem of finding an

optimal edge-ranking was first studied by Iyer et al. in 1991 as they found that the problem

has an application in scheduling the parallel assembly of multipart products. They gave an

O(n log2 n) time approximation algorithm for an edge-ranking of trees T using at most

twice the minimum number of ranks, where n is the number of vertices in T [10]. Later

Lam and Vue have proved that the edge-ranking problem is NP-hard for graphs in general

[13]. Zhou et al. gave an .O(n2 log2 t1) time algorithm to solve the c-edge-ranking

problems on trees for any positive integer c, where t1 is the maximum degree of the tree T

[22]. Recently Lam and Vue presented a linear-time algorithm to solve the edge-ranking

problem for trees [14]. On the other hand, Kashem et al. have obtained a polynomial-time

algorithm for finding an optimal c-edge-ranking of a given partial k-tree with bounded

maximum degree for any positive integer c [12]. Since the partial 2-trees are series-parallel

graphs [2, 24], their algorithm yields a polynomial-time algorithm for series-parallel

graphs. The time complexity of their algorithm is O(n!86+8 log28 n).

1.3 Summary

This thesis explores the generalized edge-ranking problem of series-parallel graphs. Our

main results can be devided into two parts.

The first part of the results is about the upper bound on the c-edge-ranking number rc'(G)

of series-parallel graph G. We show that rc'(G) = O(logc+! n) for a series-parellel graph G

with bounded maximum degree, where n is the number of vertices in G and c is any

positive integer.

8



l
The second part of the results is to give an efficient polynomial-time sequential algorithm

for finding an optimal c-edge-ranking of series-parallel graphs with bounded maximum

degree for any positive integer c. The time complexity of our algorithm is O(n4M4 IOgC+14n

log210gC+ln). Kashem et al. have given a polynomial-time algorithm for finding an optimal

c-edge-ranking of a given partial k-tree with bounded maximum degree for any positive

integer c. Since the partial 2-trees are series-parallel graphs, their algorithm yields a

polynomial-time algorithm for series-parallel graphs. The time complexity of their

I . hm' O( 18M8 I 8)a gont IS n og2 n .

Our new result togather with known ones are listed in Table 1.1.

Classes of graphs Sequential time Commentonc Reference

Trees O(n2log2 Ll) any positive integer [22]

Trees O(n) c=1 [14]

Partial k-trees with . O(n26.(k+l)2+2(k+I)+2 log;(k+I)+2n) any positive integer [12]
bounded degrees

Series-Parallel O( 18M81 8) any positive integer [12]n og2 n

Graphs with

bounded degrees

Series-Parallel 4M4 4 I ) any positive integer OursO(n 10gc+1n log2 ogc+ln

Graphs with

bounded degrees

Table 1.1: Algorithms of the c-edge-ranking.

.~
.'
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This thesis is organised as follows. Chapter 2 gives preliminaries and characterize the c-

edge-ranking of series-parallel graphs by "visible edges". Chapter 3 presents an efficient

polynomial-time algorithm for finding an optimal c-edge-ranking of a given series-parallel

graph G. Finally, Chapter 4 concludes with a discussion of future works.

10
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Chapter 2

Preliminaries

In this chapter we define some basic terms and present characterization of c-edge-ranking

of series-parallel graphs by "visible edges". Definitions which are not included in this

chapter will be introduced as they are needed. We start, in Section 2.1, by giving some

definitions of the standard graph theoritical terms used throughout the remainder of the

thesis. In Section 2.2 we give the definition and characteristics of series-parallel graphs. In

Section 2.3 we define some basic terms used for finding optimal c-edge-ranking and

characterize the c-edge-ranking of series-parallel graphs by the number of visible edges.

11
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2.1 Basic Terminology

2.1.1 Graphs and Multigraphs

A graph G = (V, E) is a structure which consists of a finite set of vertices V and a finite set

of edges E; each edge is an unordered pair of distinct vertices (see Figure 1.1). We call

V(G) the vertex-set of the graph G and E(G) the edge-set of G. Throughout this thesis the

number of vertices is denoted by n, that is, n = IVI and the number of edges of G is denoted

by m, that is, m = lEI. If e = (v, w) is an edge, then e is said to join the vertices v and w and

these vertices are then said to be adjacent. In this case we also say that w is a neighbour of

v and that e is incident to v and w. If a graph G has no "multiple edges" or "loops", then G

is said to be a simple graph. Multiple edges join the same pair of vertices, while a loop

joins a vertex to itself. The graph in which loops and multiple edges are allowed is called a

multigraph. Sometimes a simple graph is simply called by a graph.

2.1.2 Degree of a Vertex

The degree of a vertex v in a graph G is the number of edges incident to v and is denoted

by dG(v) or simply by dey). The maximum degree of G is denoted by !leG) or simply by!l.

A vertex of degree 0 is called an isolated vertex.

12



2.1.3 Subgraphs

A subgraph of a graph G = (V, E) is a graph a' =(V: E') such that V'<;; V and E'<;; E; we

write this as G' <;; G. If G' contains all the edges of G' that join two vertices in V', then G'

is said to be the subgraph induced by V' and is denoted by G[V']. V' consist of exactly the

vertices on which edges in E' are incident, then G' is said to be the subgraph induced by

E' and is denoted by G[E']. Figure 2.1(a) depicts a subgraph of G in fig 1.1 induced by

{VI> VS, V6, V7} and fig 2.1(b) depicts a subgraph induced by {e3' e4, es, e6}'

VI 0- .

(a) (b)

Figure 2.1: Subgraph of G in Fig. 1.1. (a) vertex induced subgraph.

(b) edge induced subgraph.

We often construct new graphs from old ones by deleting some vertices or edges. If v is a

vertex.of a given graph G = (V, E), then G - v is the subgraph of G obtained by deleting the

13



vertex v and all the edges incident to v. More generally, if V' is a subset of V, then G - V'

is the sub graph of G obtained by deleting the vertices in V' and all the edges incident to

them. Then G - V' is a subgraph of G induced by V - V~ Similarly, if e is an edge of G,

then G - e is the subgraph of G obtained by deleting the edge, if E' ~ E, then G - E' is the

subgraph of G obtained by deleting the edges in E ~

2.1.4 Paths and Cycles

A Vo- vI walk in G is an alternating sequence of vertices and edges of G, vo, el. VI>e2' ... ,

VI.I>el, vI beginning and ending with a vertex, in which each edge is incident to two vertices

immediately preceding and following it. If the vertices Vo, VI>V2, ... , VI are distinct

(except possibly Vo,VI)' then the walk is called a path and usually denoted by Vo,VI>V2, ... ,

VI' The length of the path is I, one less than the number of vertices on the path. A path or

walk is closed if Vo=VI'A closed path at least one edge is called a cycle.

2.1.5 Connected Components and Separators

A graph is connected if for every pair {u, v} of distinct vertices there is a path between u

and v. A (connected) component of a graph is a maximal connected sub graph. A graph

which is not connected is called a disconnected graph. A separator of a connected graph G

is a set of vertices whose deletion disconnects G.

14
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2.2 Series-Parallel Graphs

A series-parallel graph is defined recursively as follows:

1. A graph G of a single edge is a series-parallel graph. The ends v, and v, of the edge

are called the terminals of G and denoted by v,(G) and v,(G).

(a)

v,(G,)

v,(G)

v,(G2)

(b)

v,(G,)

v,(G)

v,(G2)

Figure 2.2: (a) Series and (b) parallel connections.

2. Let G, be a series-parallel graph with terminals v,(G,) and v,(G,) and let G2 be a series-

parallel graph with terminals v,( G2) and v,(G2).

(a) A graph G obtained from G, and G2 by identifying vertex v,(G,) with vertex v,(G2)

is series-parallel graph whose terminals are v,( G) = v,(G,) and v,(G) = v,(G2). Such

a connection is called a series connection and G is denoted by G = G, • G2. (See

Fig. 2.2)

(b) A graph G obtained from G, and G2 by identifying vertex v,(G1) with vertex v,(G2)

and vertex v,(G,) with vertex v,(G2) is series-parallel graph whose terminals are

vs(G) = vs(G,) = v,(G2) and v,(G) = v,(G,) = v,(G2). Such a connection is called a

parallel connection and G is denoted by G = G] II G2. (See Fig. 2.2)

15 (
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Thus a series-parallel graph (partial 2-tree) is a simple graph without multiple edges or self

loops.

A series-parallel graph G can be represented by a "binary decomposition tree" Tb [24].

Figure 2.3 illustrates a binary decomposition tree Tb of the graph in Figure 1.3. Labels s

and p attached to internal nodes in Tb indicates series and parallel connections,

respectively, and nodes labeled s and p are called s-nodes and p-nodes, respectively. A

node x of tree Tb corresponds to a subgraph of G, which is denoted by Gx. Especially,

every leaf of Tb represents a subgraph of G induced by an edge e E E. Thus the root of Tb

represents the graph G = (V, E).

Gx• a subgraph of G associated with a node x in Tb, is also a series-parallel graph with two

terminals vs(Gx) and v,( GJ. Let Sx be the set of two terminals of the series-parallel graph

GX'i.e., Sx = {viGx), v,(Gx)}' Every leafx of Tb represents a subgraph of G induced by two

vertices connected by an edge ex.We associate a subgraph Gx= (VX' Ex) with each node x of

tree Tb, where

Vx u \Sy I y = y or z is a descendant of x in Tb ); and

if x is a leaf node in Tb, and
if x is an internal node having two childreen y and z.

If x is an internal node in Tb having two children y and z, then the two edge-sets Ey and E,

are disjoint. The subgraph Gx is an edge-disjoint union of two subgraphs Gy and Gz.. If x is

a series node, then Gy and Gz is connected in Gx via the common vertex v of Gy and GZ'

that is, v = Sy n Sz through a series connection. On the otherhand, if x is a parallel node,

16



then Gy and Gz is connected in Gx via both the terminals of Gy and G" that is, v E Sy U Sz

through a parallel connection.

2.3 Visible Edges

Let ljl be an edge-labeling of a graph G = (V, E) with positive integers. The label (rank) of

an edge e E E is represented by ljl(e). The number of ranks used by an edge-labeling ljl is

denoted by #ljl. One may assume without loss of generality that ljl uses consecutive integers

1, 2, 3, ... ,#ljl as the ranks.

Figure 2.3: A binary decomposition tree of the graph G in Figure 1.3.

.," . \.(~
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For a rank i, I :::;i:::;#<p,we denote by E(G, <p,i) the set of edges e in G with <p(e)= i, and

let m( G, <p,i) = I(E, <p,i)l. Then <p is a c-edge-ranking of G if and only if m(D, <p,i) :::;c for

any i, I :::;i :::;#<p and any connected component D of the graph obtained from G by

deleting all edges with ranks> i. For a subgraph G'= (V: E') of G, we denote by <pIG'a

restriction of <pto G. Let TJ = <pIG', then TJ(e) = <p(e) for e E E' We characterize the c-

edge-ranking of a series-parallel graph by the number of "visible" edges. An edge e E E is

said to be visible from a vertex v E V under <p in G if G has a path from e to v every edge

of which has a rank :::;<p(e).The rank <p(e)of e is also said to be visible from v under <pin G

if the edge e is so. We then have the following lemma which characterize the c-edge-

ranking of series-parallel graphs by the number of visible edges.

Lemma 2.1 Let Tb be a binary decomposition tree of a series-parallel graph G, and let x

be a node in Tb. Then an edge-labeling <p of Gx is a c-edge-ranking of Gx if and only if

(a) At most c edges of the same rank are visible from any vertex v E Sy U Sz under <p

(b) Jfx is an internal node in Tb and has two children y and z, then <pIGyand <pIGzare

c-edge-rankings of Gy and G" respectively.

Proof:~: Suppose that <pis a c-edge-ranking of GX" Then, for any label i, deletion of

all edges from Gx with labels > i leaves connected components, each having at most c

edges with label i.

18



(a) Let i be any rank. Delete all edges with labels> i from Gr Among the connected

components of the remaining graph, let D be the one containing a vertex v E Sy U Sz. Then

exactly m(D, <p,i) edges with rank i are visible from v under <pin Gx• Since <pis a c-edge-

ranking of Gx> we have m(D, <p,i) ::;c. Therefore, at most c edges of rank i are visible from

v under <pin Gr

(b) Assume that x is an internal node of Tb and has two childreny and z. Let <pIGy and <pIGz

be the restriction of <pto Gy and Gz, respectively. Since <pis a c-edge-ranking of Gx and Gy

is a subgraph of Gx> for any label i, deletion of all edges from Gy with labels> i leaves

connected components, each having at most c edges with label i. Therefore, <pIGyis a c-

edge-ranking of Gy. Similarly <pIGzis a c-edge-ranking of Gz•

<=: Suppose for a contradiction that an edge-labeling <psatisfies (a) and (b), but <pis not

a c-edge-ranking of Gx. Then, there exists a rank i such that deletion of all edges with

labels> i from Gx leaves a connected component D such that m(D, <p,i) > c. Since (a) and

(b) hold, x is an internal node of Tb and D is neither a subgraph of Gy nor a subgraph of Gz.

Furthermore, Gyand Gz have common vertices only in Sy U Sz. Therefore, D has a vertex

V E Sy U Sz. Then all m(D, <p,i) edges with label i in D are visible from v in Gx. Therefore,

more than c edges of rank i are visible from v under <pin Gx, contradictory to (a).

19
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Chapter 3

Genaralized Edge-Ranking of Series-

Parallel Graphs

This chapter deals with the generalized edge-ranking problem on series-parallel graphs.
\)
Lam and Vue have proved that the edge-ranking problem is NP-hard for graphs in general

[13]. The edge-ranking problem is one of the few problems for which no efficient

algorithms have been obtained except for few class of graphs. Zhou et al. gave an O(n2

log26.) time algorithm to solve the c-edge-ranking problem on trees T for any positive

integer c, where 6. is the maximum degree of the tree T [22]. Recently Lam and Vue

presented a linear-time algorithm to solve the edge-ranking problem for trees [14]. On the

other hand, Kashem et al. have obtained a polynomial-time algorithm for finding an

optimal c-edge-ranking of a given partial k-tree with bounded maximum degree for any

positive integer c [12]. Since the partial 2-trees are series-parallel graphs [2, 24], their

algorithm yields a polynomial-time algorithm for series-parallel graphs. The time

I. f h' I . hm' O( 18M8 I 8)comp eXlty 0 t elr a gont IS n og2 n .

In this chapter we give an efficient algorithm to solve the c-edge-ranking problem of

series-parallel graphs. Our algorithm runs in time O(n4M4 IOgC+14n log210gC+1n). We use

dynamic programming and bottom-up tree computation on the binary decomposition tree

20



Tb of the graph G = (V, E) from leaf to the root. For each node x of Tb from leaves to the

root, we construct all (dominance classes of) c-edge-ranking of Gx from those of two

subgraphs Gy and Gz associated with the children y and z of x.

The remainder of this chapter is organized as follows. Section 3.1 gives some definitions

and gives an upper bound on the c-edge-ranking number of a series-parallel graph. Sections

3.2, 3.3 and 3.4 define an equivalence class, a peer class and a dominance class,

respectively to solve the c-edge-ranking problem of series-parallel graphs. Section 3.5

gives an efficient algorithm, verifies the correctness of the algorithm and analyze its time-

complexity. Finally Section 3.6 includes a brief conclusion.

3.1 Preliminaries

3.1.1 Definitions

In this section we give some definitions.

We define the lexicographical order on the set of non-increasing sequences (lists) of

positive integers as follows: Let A = {aJ' ab ... , ap} and B = {bl> bz, ... , bq} be two sets

(lists) of positive integer such that aJ 2: az 2: ... 2:ap and bJ 2:bz 2: ... 2:bq, then A -< B if

there exist an integer i such that

(a) aj = bj, for aliI :5,j < i; and

(b) either ai < bi or p < i:5, q.

21
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WewriteA =' B ifA=B or A-< B.

For a list A and an integer a, we define a sub list [a ::;A] of A as follows:

[a::;A]={XEAI a::;x}.

Similarly we define sublists [a <A], [A::; a] and [A < a] of A. Obviously, if A=, B then

[a < A] =' [a < B] for any a:e: 1. For list L and L' we use L ~ L' and L uL' in their usual

meaning in which we regard L, L' and L uL' as multi-sets.

3.1.2 Upper Bound on the c-Edge-Ranking Number of a Series-

Parallel Graph

In this section we show that the c-edge-ranking number rc' (G) of a series-parallel graph G

is O(logC+1n). We first cite Lemma 3.1 from [23 ].

Lemma 3.1 Let T be a tree oinT (:e: I) nodes, and let a be any positive integer. Then T

has at most a nodes whose removal leaves subtrees each having at most nT/q nodes, where

and q:e: 2.

q = 2lI0g,(a+3)J - 1 > a+3
4

We then have the following lemma on rc' (G).
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Lemma 3.2 Let c be any positive integer which is not always bounded, let G be a series-

parallel graph ofn vertices, and let!J. be the maximum degree ofG. Then

rc'(G) ~ 1 + b loge+1 n, where

r 2: 110g2(C + 1)

b ~ 4 + 2log2!J.

4

if c ~ 2!J.;

if2!J. + 1~c ~l6!J. 2 -1; and

ifc ;::16!J.2.

Proof. Let G = (V, E) be the series-parallel graph. Let I V 1= n. Then IE I ~ 2n - 3. Let Tb

be a binary decomposition tree of G and n T b be the number of nodes in Tb. Then the

number ofleaf nodes are at most 2n -3 and hence n T b ~ 4n - 7 [24]. We first construct

an equivalent tree Tq from the binary decomposition tree Tb of G as follow:

The edge incident to the terminals Vs and v, of the graph associated with every leaf node is

also incident to the terminals of the graph associated with its parent node. To prove this, we

have to consider the following two cases separately.

Case (a): The parent node ofa leaf node in Tb is a series node.

Let x be an internal node having two children y and z. Let y be a leaf node, and z be any

node. Let Vs and v be the terminals of Gy and v and v, be the terminals of Gz• Then Vs and v,

are the terminals of Gx• Since every leaf node in Tb represents an edge e E E, the edge

incident to vertex v in Gy is also incident to vertex Vs in Gy- Since Gy and Gz are connected

at vertex v through a series connection, the edge e is also incident to vertex Vs in GX"
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Case (b): The parent node of a leaf node in Tb is a parallel node.

Let x be an internal node having two children y and z. Let y be a leaf node, and z be any

node. Let Vs and VI be the terminals of Gy• Since Gy and Gz are connected through a parellel

connection at node x, then Vs and VI are also the terminals of Gz' and GX' So the edge

incident to Vs in Gy is also incident to Vs in Gx• Similarly, the edge incident to VI in Gy is also

incident to VI in Gx'

Therefore, we can remove all the leaf nodes from Tb.. We call the tree obtained after

removing all leaf nodes from Tb as "reduced tree" T" Then the reduced tree T, contains at

most 2n - 4 nodes.

Now we construct an equivalent tree Tq from the reduced tree T, by removing both

children nodes of a parallel node and contracting the edges in T,and repeating these for all

parallel nodes in T,. Now we claim that the equivalent tree contains at most n nodes. This

can be proved as follows.

During the construction of the graph G by adding vertices one after another from null, if for

including a new vertex in the graph G, one edge is added in G, then lEI:;; n and the parent

node of the leaf node corresponding to this edge is a series node in Tb. Hence the reduced

tree contains at most n nodes. But if for including one vertex in the graph the number of

edges in the graph is increased by two. then lEI:;; 2n -3 and one series node, one parallel

node and two leaf nodes are added in the binary decomposition tree Tb, where the series

node is the parent node of the two leaf nodes, and the parallel node is the parent node of the
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series node. So the reduced tree Tr contains only one series node and one parallel node,

where the parallel node is the parent of the series node in Tr• Therefore, the reduced tree

contains at most 2n - 4 nodes. Since the terminals of these series node and parallel node in

Tr are the same, we can remove both the children of that parent node and contract the edges

in Tr• We call the tree obtained after removing both the children node of a parallel node and

contracting the edges in Tr as "equivalent tree" Tq. In this case for including one vertex in

the graph G, node in the equivalent tree does not increase (because, two nodes are added in

the reduced tree, and two nodes are removed from the equivalent tree), that is, the

equivalent tree contains at most n nodes in total. Thus we have verified our claim above.

Let nr be the number of nodes in the equivalent tree Tq. Then nr 5,n.

Recursively applying Lemma 3.1 to Tq, we first construct an a-vertex separator tree Ta(Tq)

of tree Tq, where a = max {I, l2: J}. The height hTa( nr) of tree Ta(Tq) satisfies the

following recurrence relation

where q l J a+32 10,,(0+3) - 1 >
4

(3.1)

Solving the recurence (3.1) with hT,,(l) = 0, we have

25

(3.2)



We next claim that the a-vertex-separator tree To.(Tq) of tree Tq can be transformed to a c-

edge-separator tree Te(G) of G with height

First consider the case in which c ~ 2tl + 1. In this case a = l2: J ' and any node of

To.(Tq) contains at most a nodes of Tq, each corresponding to an edge-separator of G having

at most 2tl edges of G. Thus any node of To.(Tq) correspond to an edge-separator of G

having at most c edges of G, and hence TJTq) immediately yields a c-edge-separator tree

Te(G) whose height hTe(n) is at most hTo.(nT)' Thus by (3.2) we have

(3.3)

. Next consider the case in which c ~ 2tl. Then a = 1, and hence each node x of To.(Tq)

contains at most one node, say x ~ of Tq. Let s = 12: l, and replace each node x of
To.(Tq) with s new node XI' X2, X3, .•• , Xs; node Xj is the father of xj + I> 1 ~ j ~ s-l, in a new

tree. At most 2tl edges of G are incident to vertices in Sx' and these edges form an edge-

separator of G. We assign each node Xj' 1 ~ j ~ s, at most c edges so that each of these

edges is assigned to some Xj, 1~j ~s.

12
C

tl lThen the resulting tree has height I hTo.(nT)' and immediately yields a c-edge-

separator tree Te(G) of G. Thus by (3.2) the height hTe(n) of Te(G) satisfies,
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Thus we have verified the claim above.

We finally obtain a c-edge-ranking of G from the c-edge-separator tree Te(G) of G as

follows: for each i, 0 :s;i :s;hTe(n), label by rank i + I all edges of G corresponding to the

nodes of TcCG) at lavel i. Then the resulting edge-labeling is a c-edge-ranking of G using

1+ hTe(n) ranks. Therefore we have

rc'(G):S; I+ hTln)

where, b= 12: 110gq(c+I).

Depending upon the value of c, we have the following three cases.

Case 1: c :s; 2!l..

In this case, a = I and q = 2. Therefore

b = 12: 110gq(C+1)

12: 1 logic +1).
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Case 2:

In this case, a <': 1, q <': 2, r 2: 1 = 1, and c + 1 ::; 16t,? Therefore

Case 3 :

=

q>

l c J c-26-+1In this case, a = 26- <': --2-6--- . Therefore in this case we have

a+3
4

c-26- + 1
+3

26-
4

= .!.(~+1)
2 46-

1 1

(c + 1)4 .(c + 1)4
2.fiS:
1

<': (C+1)4.
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Therefore,

b = 12: 110~(C+1)

4.

If!l. is a bounded integer, then b = 0(1) and hence rc' (G) :s; I + b 10gc+l n = 0(logc+1 n)

even if c is not a bounded integer.

3.2 Equivalence Class

o

We use a dynamic programming algorithm to find an optimal c-edge-ranking of a series-

parallel graph. Consider a binary decomposition tree Tb of G. On each node of the binary

decomposition tree, a table of all necessary partial solutions of the problem is computed,

where each entry in the table represents a dominance class. The table of our algorithm has a

size O(nb+! IOgc+12n). Before defining the dominance class for the c-edge-ranking problem,

we need to define some terms.

Let a node x of Tb corresponds to a subgraph Gx = (Vx, Ex) of G = (V, E). Let R = {I, 2, 3,

... , I} be the set of ranks and let <p: Ex --7 R be an edge-labeling of the subgraph Gx. Iyer

et al. introduced the idea of a "critical list" to solve the ordinary vertex-ranking problem of

trees, to be a list containing the ranks of all edges visible from the root. We use similar idea
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to define visible list L( qJ, v), to be a list containing the ranks of all edges e E Ex visible

from a vertex v E Sx, i. e.,

L(qJ, v) = {qJ(e) leE Ex is visible from the vertex v under qJ in Gx}.

The ranks in the list L(qJ, v) are sorted in non-increasing order of ranks. The list L(qJ, v)

may contain same ranks with repetition:<:; c. For an integer i, we denote by count(L(qJ, v), i)

the number of i's contained in L(qJ, v), that is, the number of visible edges with rank i. Then

by lemma 2.1 an edge-labeling qJ of the subgraph Gx associated with a node x in Tb

obtained from extension of the c-edge-rankings 11 and 'l' of the subgraphs Gy and Gz

associated with the two children y and z of x in Tb, respectively will be a c-edge-ranking if

and only if for any rank i E R,

count(L( qJ,v), i) $ c for each vertex v E Sy U Sz.

We next define a list-set £(qJ) as follows:

£(qJ) = {L( qJ, vs)' L( qJ, VI)}'

For an edge-labeling qJ of Gx, we define a term (hereinafter called as obstacle) A~ as

follows:

A~= min {AI Gx has a path P from Vs to VI such that qJ(e) $ A for each edge e of P}.

Since Gx is a connected graph with two terminals Vs and VI' so A~ E R. If edge e E Ex IS

visible from VI and qJ(e) ;:: A~,then e is visible from Vs under qJ in Gx• Then clearly,
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We next define a pair R(<p) as follows:

R( <p) = (£(<p), A~).

We call such a pair R( <p) the vector of <p on node x. R( <p) is called a feasible vector if the

edge-labeling <p is a c-edge-ranking of Gr

A c-edge-ranking of Gx is defined to be extensible if it can be extended to a c-edge-ranking

of G without changing the labeling of edges in Gx' We then have the following lemma.

Lemma 3.3 Let <p and" be the two c-edge-ranking ofGx such that R(<p) = R(,,), then <p

is extensible if and only if" is extensible.

Proof: It suffices to prove that if <p is extensible then" is extensible. Suppose that <p is

extensible. Then <p can be extended to a c-edge-ranking <p' of G = (V, E) such that <p(e)=

<p'(e) for any edge eEEx. Let E* = E - Ex, and let G* be the subgraph of G induced by E*

Extend the c-edge-ranking " of Gx to an edge-labeling ,,' of G as follows:

'( )={,,(e),
"e <p'(e),

ife E Ex; and
ife E E*.

Then it suffices to prove that ,,' is a c-edge-ranking of G, that is, m(H~" ,,', i) ~ c for any

connected component H~,= (V~"E~,)of the graph obtained from G by deleting all edges

eEE with ,,'(e) 2: i. There are the following two cases to consider.
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Case 1: H~, has no vertex in Sx'

In this case H~, is a subgraph of either Gx or G*, since Gx is connected with G* only

through the vertices in Sx. Furthermore 11'IGx = 11and 11'IG* = <p'IG* are c-edge-ranking of

Gx and G*, respectively. Therefore, m(H~" 11', i) :<:; c.

Case 2: H~,has a vertex w in Sx.

Since R(<p) = R(11), we have L(<p, w) = L(11, w). Hence, deletion of all eEE with <p'(e) ~ i

from G leaves a connected component H~,= (V~"E~,)containing the vertex w. Since <p' is a

c-edge-ranking of G, m(H~" <p', i) :<:; c. Therefore it suffices to prove that m(H~" 11', i) =

m(H~" <p', i).

Since R(<p) = R(11), we have L(<p, w) = L(11, w) for each vertex VESx and A~ = A~.

Furthermore, 11'IG* = <p'IG*, Therefore one can observe that V~, n Sx = V~, n Sx and

E~, n E* = E~, n E*. Let H~x be the subgraph of H~, induced by E~, n Ex>and H~,* be the

subgraph of H~, induced by E~, n E*. Similarly, let H~x be the subgraph of H~, induced by

E~, n Ex> and H~,* be the subgraph of H~, induced by E~, n E*. Then m(H~" 11', i) =

m(H~x>11, i) + m(H~,*, 11', i) and m(H~" <p', i) = m(H~x> <p,i) + m(H~,*, <p', i). Since E~, n E*

= E~, n E* and 11'IG* = <p'IG*, we have m(H~,*, 11', i) = m(H~,*, <p', i). Therefore it suffice

to prove that m(H~x> 11, i) = m(H~x> <p, i).

We next show that each of the connected component H~ and H~xcontains at least one

vertex in SX' Suppose for a contradiction that a connected component D of H~x or H~x>say

H~x>contains no vertex in Sx. Since H~, is a connected graph containing a vertex WE SX>w is



connected to a vertex of D by a path H~,.However it is impossible because D has no vertex

in Sx and H~x is connected with H~,* only through the vertices in Sx.

Let Vsbe any vertex in V(H~x) (1 Sx = V(H~x) (1 Sx' Let D~ be the connected component of

H~x that contains vertex w = vs' and let D~ be the connected component of H~x that contains

vertex vs'We now claim that V(D~) (1 Sx= V(D~) (1 Sx and m(D~, T], i) =m(D~, q>,i).

Let v, E V(D~), then obviously A.~:<:;i. Since R(q» = R(T]), we have A.~= A.~ :<:; i. Therefore,

v, E V(D~). Hence we have prove that V(D~) (1 Sx = V(D~) (1 Sx' Clearly m(D~, q>,i) =

count(L(q>, vs)' i) and m(D~, T], i) = count(L(T], vs)' i). Since L(q>, vs) = L(T], vs)' we have

count(L(q>, vs)' i) = count(L(T], vs), i) and hence m(D~, q>,i) = m(D~, T], i). Thus we have

verified the claim above.

The claim above implies that H~x and H~x have the same number of connected components

and there can be at most two connected component of H~x and H~X'respectively. These can

be recognized by H~s and H~, in H~x and H~s and H~, in H~x' Furthermore m(H~s' T], i) =

m(H~" q>,i) and m(H~" T], i) = m(H~" q>,i). Since m(H~X'T], i) = m(H~" T], i) + m(H~" T], i)

and m(H~x' q>,i) = m(H~" q>,i) + m(H~" q>,i), we have m(H~X'T], i) = m(H~X'q>,i). 0

Thus a feasible vector R( q» of q>on node x can be seen as an equivalence class of

extensible c-edge-ranking of Gx.
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3.3 Peer Class

Since at parallel connection of two graphs Gy and Gz, ranks in the visible list at one

terminal v E Sx, of one graph, say Gy, may become visible to the other terminal of

combined graph Gx via the path between' Vs and VI of Gz when 1..'1'''; A~ and vice versa, we

consider this condition in advance by assuming an imaginary path between v, and VI of Gz

and Gy having different possible obstacle. We call the lists so obtain at the terminals as the

peer-lists.

Let x be a node in Tb and has two children y and z. Let 1'] and IjI be the two c-edge-rankings

of Gy and Gz, respectively. If x is a leaf node in Tb, then Gy and Gz are null graphs. Let q>be

an edge-labeling of Gx extended from 1'] and 1jI. Let r, I ,.; r"; I, be a positive integer. Let r~

be a positive integer defined as follows:

if I,.;r"; A~ -I, and
ifA. ";r,.;l.

We define a peer-list Lp(q>, V, r) and a pear-list-set £p(q» for a series-parallel graph as

follows:

For an edge-labeling q> of Gx, the introduction of the concept of peer-list actually

incorporates ranks in the list [L(q>, v) < A~]visible at one terminal v, V E Sx, is made visible
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to the other terminal via an imaginary path between Vs and v, of Gx having r as the obstacle.

Since in parallel connection of two graphs Gy and G" the ranks visible only at one terminal

of Gy may become visible at the other terminal of Gy via the path of Gz having obstacle AIjI

and vice versa, consideration of peer-list actually means to keep in advance the projected

list as if another graph having a path with obstacle r is connected in parallel with the graph

GX" So, this extra component in the peer-list will be called the look-ahead component.

we next define a pair Rp( <p),called peer-vector, as follows:

We call such a pair RpC<p)the vector of <pon node x. Rp( <p)is called a feasible vector if the

edge-labeling <p is a c-edge-ranking ofGx and count(Lp(<p,v, r), i)::; c for all V E Sx and all i

E R.

Now we give the following two Lemmas for computing the peer-lists Lp(<p,v" r) and

Lp( <p,v,, r) of Gx extended from Gy and Gz•

Lemma 3.4 Let x be a series node and has two children y and z in Tb. Let Gx, Gy and Gz be

the subgraphs of G associated with the nodes x, y and z, respectively. Then Gx = Gy • Gz.

Let Vs and v be the terminal vertices of Gy, and v and v, be the terminals of Gz• Let 11 and

'P be the c-edge-rankings of Gy and G" respectively. Let <p be the edge-labeling of Gx

extended from 11and 'P. Let r, I ::; r::; I, be a positive integer. Let I~ = max{r, A'!'} and let

I,!,= max{r, A~}. Then,
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Proof: We provide proof for the first part. The second part can be prove analogously. Let i

be any rank in Lp( qJ, v" r). Then i is visible from v, under labeling qJ in Gx with an

imaginary path between the two terminals of Gx having obstacle r.

Since Gx = Gy• Gz, l~denotes the obstacle for look-ahead component of11. All ranks in [A.~

~ Lp('fI, v, 1..'1')] = [A.~ ~ L('fI, v)] will be visible from v, through the path of 11having

obstacle A.~.All ranks ;:0: r in the list Lp('fI, v" 1..'1') i.e. [r ~ L('fI, v,)] will be visible through

the imaginary path having obstacle r. Since [1..'1' ~ L('fI, v)] = [1..'1' ~ L('fI, v,)] and the ranks

in the list [A.~~ L('fI, v)] are already visible from v, through the path in 11,so which of the

rest ranks in the list [r ~ L('fI, v,)] are visible through the imaginary path having obstacle r

depends upon the relative value of A.~and 1..'1' as follows:

Case a: A.~;:0: 1..'1"

In this case, [A.~~ L('fI, vJ] = [A.~~ L('fI, v)] as [1..'1' ~ L('fI, vJ] = [1..'1' ~ L('fI, v)]; and

then, [r ~ L('fI, v,)] = [r ~ L('fI, v,) < A.~]u [A.~~ L('fI, v,)]

= [r ~ L('fI, v,) < A.~]u [A.~~ L('fI, v)]

but ranks in the list [A.~~ L('fI, v)] are already visible from Vsthrough the path in 11.So only'

ranks in the list [r ~ L('fI, v,) < A.~] are sufficient for the look -ahead component and since

A.~ ;:0: 1..'1"so A.~ =max {A.~,A.'I'} = A.~ and [r ~ L('fI, v,) < A.~]= [r ~ L('fI, v,) < A.~].
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Case b: A~< 1..'1'.

In this case, [A'I'~L('!',v,)] = [A'I'~L('!',v)]. Then,

But since A~<1..'1" so [1..'1' ~ L('!', v)] c;;; [A~~ L('!', v)] and all ranks in list [1..'1' ~ L('!', v)] are

already visible from Vs through the path in 11.So only ranks in list [r ~ L('!', v,) < 1..'1']are

sufficient for the look-ahead component and since A~< 1..'1" so Ar max{A~. A'I'}= A~and

[r ~ L('!', v,) < 1..'1']= [r ~ L('!', v,) < A~].Thus we have either i E Lill, vs' l~)or i E [A~~

through the path in 11having obstacle A~,If i Ii! [A~~ Li'!', v, 1..'1')] then i E [r ~ Lp('!', v,,

1..'1') < A~]and i will be visible from Vs through the imaginary path having obstacle r. Hence

i E Lp( <P,v" r). Thus we obtain,

Therefore from equation (I) and (2), we have

o
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Lemma 3.5 Let x be a parallel node with two children y and z in Tb• Let Gx, Gy and G, be

the subgraphs of G associated with the nodes x, y and z, respectively. Then Gx = Gy II Gz•

Let v, and v, be the terminal vertices of Gy and Gz. Let 11 and'l' be the c-edge-rankings of

Gy and G" respectively. Let <p be the edge-labeling ofGx extendedfrom 11 and 'l'. Let r, I $

r $ I be a positive integer. Then,

Proof: We provide proof for the first part. The second part can be prove analogously. Let i

be any rank in LA<p,v" r). Then i is visible from v, under labeling <pin Gx with an

imaginary path between the two terminals of Gx having obstacle r for the look-ahead

component. Since Gx = Gy II G"we have either i E Lp(ll, v" r) or i E Lp('l', v" r). Thus,

(3)

Assume that i E Lp(ll, v" r) U Lp('l', v" r). Then either i E LAll, v" r) or i E Lp('l', v" r).

Then clearly i E Lp(<p,v" r) since Gx = Gy II Gz. Hence i E Lp(<p,v" r). Thus we obtain,

From equation (3) and (4), we have,

In the following lemma we define the peer class.

(4)

o

Lemma 3.6 Let Gx be a series-parallel graph. Let <p be a c-edge-ranking ofG •. Then
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Proof: Let A.~be the obstacle ofthe c-edge-ranking q>. Then it suffices to show that for any

list-set £(q» E R(q», there is a peer-list-set £p(q» E Rp(q» such that

L(q>, v) = Lp(q>, v, r), where v E SX"

Let us choose, r = A.~and v = v" then we have r~= A.~,and

Since [A.~~ L( q>, v,) < A.~]=~.So,

Lp( q>, v,, A.~)= L( q>, v,). Similarly we can show that,

o

Thus a feasible vector Rp( q» of q> on node x can be seen as apeer class which is a super set

of the equivalence class and hence q> is an extensible c-edge-ranking of GX"

3.4 Dominance Class

We define our dominance class as follows.

Let Rp(x) be the set of feasible vectors for G" Then we apply the following elimination rule

on Rp(x). Let q> and q>' be any two labeling of G" we say that q> dominates q>' if any of the

following conditions is true:

Then the set of feasible vectors obtained from Rp(x) applying the above elimination rule is

called dominance class Rix).
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(5)

(6)

In the following lemma we show that the dominance class RJ.x) on node x can be seen as a

set of vectors of extensible c-edge-ranking of Gx•

Lemma 3.7 Let R/(x), RiY) and Riz) be the dominance classes obtained from RP'(x),

Rp(y) and Rp(z), respectively. Let RJ.x) be the dominance classes extended from RJ.y) and

Riz). Then R/(x) = RJ.x).

Proof: We prove the lemma by induction.

Basis: Let x be a leaf node in Tb. Then Gx corresponds to an edge ex = (v" VI) in G. Let <p

and <p' be the two c-edge-ranking of Gx. Then <p(e)= <p'(e) and A.~= A.~'= <p(e)= <p'(e). <p(e)

is visible from both the terminals of Gx and so any imaginary path is meaningless. Then

Lp(<p, v" r) = Lp( <p', v" r) and Lp( <p, VI' r) = Lp(<p', VI' r) for r = A.~= A.~'.Note that the only

possible value of r is A.~.Then Clearly RJ.x) =Rp(x).

Induction: Let x be an internal node in Tb having two children y and z. Now consider the

following two cases, depending on the connection in node x.

Let v, and V be the terminal vertices of Gy and v and VI be the terminal of Gz. Then Gx has

", and VI as terminals. We show that Rd'(x) = RJ.x). Suppose that, there exists a feasible

vector Rp(<p') in Rp'(x), obtained from T]'(y) and ,¥'(z). Now from lemma 3.4 we have,

Lp(<p', v" r) = Lp(T]', v" l~) u [A.'~:5 Lp('¥', v, A.''1')] U [r :5 Lp('¥', v,, A.''1')< A.'~]

Lp(<p', v,, r) = Lp('¥', v,, 1'1')U [A.'I" :5 LiT]', v, A.'~)] U [r :5 Lp(T]', v" A.'~) < A.'~]
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(10)

Let T)(y) and '!'(z) be the two rankings in Rd(y)and RJz) such that,

(1) Lp(T),v" I~)= LAT)', v" I~), Lp(T),v, I~) =' Lp(T),, v, I~), and A~= A'w

(2) Lp('!', vI>1..'1')= Lp('!", v,, 1..''1')'LA'!', v, 1..'1')=' LA'!", v, 1..''1'),and 1..'1'= A''1'.

(3) LA'!', v,, 1'1') =LA'!", v,, 1'1')' Lp('!', v, 1'1') =' LA'!", v, 1'1')' 1..'1'= A''1'.

(4) Lp(T),v,, A~) = Lp(T)',v,, A'~),Lp(T),v, A~) =' Lp(T)',v, A'~), and A~= A'~.

Solving equations (5) and (6) applying the above equations, we get the following result:

A'~ =max{A'~, A''¥} =max{A~, A'¥} = A~.

LA 'fJ', v" r) = Lp(T),, v" I~)u [A'~:$ Lp('!", v, 1..''1')]U [r :$LA'!", v,, 1..''1')< A'~]

= LAT), v" I~)u [A~:$LA'!", v, 1..'1')]U [r:$ LA'!', v,, 1..'1')< A~] (7)

Lp('fJ', v,, r) = LA'!", v,, 1'1') U [1..'1/:$Lp(T)', v, A'~)] u [r:$ Lp(T)', v,, A'~) < A'~]

= Lp('!', v,, 1'1') U [1..'1':$LA T)', v, A~)]u [r :$Lp(T), v" A~) < A~] (8)

We have, Lp('!', v, 1..'1')=' Lp('!", v, 1..'1')'so [1..'1':$Lp('!', v, 1..'1')]= [1..'1':$Lp('!", v, 1..'1')].Now

we consider the following two cases separately:

Case a: A~~ 1..'1'.

In this case [1..'1':$LA'!', v, 1..'1')]= [1..'1':$Lp('!", v, 1..'1')]as LA'!', v, 1..'1')=,Lp('!", v, 1..''1').So,

[A~ :$ Lp('!', v, 1..'1')]= [A~ :$ Lp('!", v, 1..'1')] (9)

We have, from equation (7) and (9),

LA'fJ', v" r) = LAT), v" I~)u [A~:$Lp('!", v, 1..'1')]u [r :$Lp('!', v,, 1..'1')< A~]

= Lp(T),v,, I~)u [A~:$ Lp('!', v, 1..'1')]U [r:$ Lp('!', v,, 1..'1')< A~]

Lp('fJ', v,, r) = LA 'fJ, v" r)
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(12)

Since Lp(rl',v,A:~)::: LiT],v,A~),andA~= A'~,then[A~$LiT]',v,A'~)]=[A~ $ LiT], v,

A~)]. Since A~~ A'I"So, [A'I'$ Lp( T]',v, A'~)] ::: [A'I'$ Lp( T],v, A~)] (11)

We have from equation (8) and (11),

Lp(cp', V" r) = Lp('!', V" 1'1')U [A'I'$ Lp(T],, v, A~)]U [r $ LiT], v" A~)< A~]

::: Lp('!', v,, 1'1')U [A'I'$ Lp(T], v, A~)]U [r $ Lp(T], v" A~)< A~]

Li cp', v,, r) ::: Lp(cp, v,, r)

Case b: A~< A'I"

We have Lp('!", v, A''I')::: Li'!', v, A'I') and A''I'= A'I" then [A'I'$ Li'!", v, A'I')] = [A'I'$

Li'!', V, A'I')]' Since A~< A'I"so

[A~$Lp('!", v, A'I')] ::: [A~$Lp('!', v, A'I')]

We have from equation (7) and (13),

Licp', v,, r) = Lp(T], v" I~)U [A~$ Lp('!", v, A'I')]U [r $ Li'!', v,, A'I')< A~]

::: Lp(T], v" I~)U [A~$ Lp('!', v, A'I')]U [r $ Lp('!', v,, A'I')< A~]

(13)

(14)

Again we have Lp(T], v, A~) =' LiT]', v,, A'~), and A~= A'Wso [A~$ Lp(T]', v, A~)]= [A~$

Lp(T],v, A~)]. Since A~< A'I" so

[A'I'$LiT]', v, A~)]= [A'I'$Lp(T], v, A~)]

We have from equation (8) and (15),

Licp', v,, r) = Lp('!', v,, 1'1')U [A'I'$ Lp(T]', v, A~)]U [r $ Lp(T], v" A~)< A~]

= Lp('!', v,, 1'1') U [A'I'$ LiT], v, A~)]U [r $ LiT], v" A~)< A~]

Lp( cp', v,, r) = Lp( cp, v,, r)
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Therefore, from the c-edge-rankings T](y)and '¥(z), we get an edge-labeling <P(x) such that

(a) if A~~ A'I' then, Lp( <p, v" r) = Lp( <p', v" r), Lp( <p, V" r) :0 Lp( <p', V" r), and A~= A'~; and

(b) if A~< A'I' then, Lp( <p, v" r):o Lp( <p', v" r), Lp( <p, V" r) = Lp( <p', V" r), and A~= A'~.

Since <p' is a feasible vector, so if <p is not a feasible vector, then it is always possible to

convert <p to a feasible vector by relabeling some edges as follows:

Case I: Lp( <p, v" r) = Lp( <p', v" r), Lp( <p, v,, r):o Lp( <p', v" r), and A~= A'~.

Since <p' is a feasible vector and <p is not a feasible vector, so there is a rank A'I' ::; i < A~

such that count(Lp( <p, v,, r), i) > c. Let a be the largest one among all such rank i. Then

there is a rankj, a <j < A~such that, count(Lp(<p, v,, r),j) < count(Lp(<p', v,, r),j) and hence

count(Lp(<p, v,, r),j) < c. Let ~ be the smallest rank among all such rankj. We also observe

that the rank a in the list Lp(<p, v,, r) comes from the list [A'I'::;Lp(T] , v, A~)] i,e. from theT]

ranking. Now we know the edge incident to V of the graph Gy through which rank a is

visible at terminal V under T]and hence at terminal v, under <p, we can hide this rank a from

being visible at v, of Gx by relabeling the edge incident to V under T]by the rank ~. After

this relabeling we update the list L(T], v) and Lp(<p, v,, r). If after this relabeling and

updating, we have again any rank a < A~such that count(Lp(<p, v,, r), a) > c then we repeat

the process of relabeling and updating list L(T], v) and Lp(<p, v,, r) as described above until

count(Lp( <p, v,, r), i) ::;c for all rank i E R and we must reach such a situation because Lp( <p,

v,, r):o Lp( <P: v,, r) and count(Lp( <P: v,, r), i) ::;c for all rank i E R ..

43



Case II: Lp( qJ,Vs> r) =' Lp( qJ', Vs> r), Lp( qJ,V" r) =Lp( qJ', V" r), and A~= A'~.

Since qJ'is a feasible vector and qJ is not a feasible vector, so there is a rank A~S; i< A~such

that count(Lp( qJ,Vs> r), i) > c. Let a be the largest one among all such rank i. Then there is a

rank j, a < j < A~ such that, count(Lp( qJ, Vs> r), j) < count(Lp( qJ', Vs> r), j) and hence

count(Lp(qJ, VS' r),j) < c. Let ~ be the smallest rank among all such rank). We also observe

that the rank a in the list Lp(qJ, Vs> r) comes from the list [A~ S; Lp("P, V, A'P)] i,e. from the "P

ranking. Now we know the edge incident to V of the graph Gz through which rank a is

visible at terminal V under "P and hence at terminal Vs under qJ, we can hide this rank a

from being visible at Vs of Gx by relabeling the edge incident to V under "P by the rank ~.

After this relabeling we update the list L("P, v) and Lp(qJ, Vs> r). If after this relabeling and

updating, we have again any rank a < A~such that count(Lp(qJ, Vs> r), a) > c then we repeat

the process of relabeling and updating list L("P, v) and Lp( qJ,Vs> r) as described above until

count(Lp( qJ,Vs> r), i) S; c for all rank i E R and we must reach such a situation because Lp( qJ,

Vs> r) =' Lp(qJ', Vs> r) and count(Lp(qJ: Vs> r), i) S; c for all rank i E R ..

Now in R d(X) obtained from R ~(x),we keep only one pair ({Lp( qJ: VS' r), Lp( qJ" v,, r)}, A'~)

after applying the elimination rule mentioned above for each individual list Lp( qJ: vS' r) and

Lp( qJ" v,, r). Also we get a feasible vector ({Lp( qJ, Vs> r), Lp( qJ,v,, r)}, A~) in RJx), where

either Lp( qJ,VS' r) = Lp( qJ: Vs> r) and Lp( qJ,v,, r) =' Lp( qJ: v,, r)} or Lp( qJ,v,, r) = Lp( qJ: v,, r)

and Lp( qJ, VS' r) =' Lp( qJ" Vs> r) in RJx) extended from RJy) and RJz). Hence we can

conclude that, RJx) =R d(x)

44



Case 2 : Gx=Gyll Gz.

Let v, and v, be the terminals of Gy and Gz. Then Gx has v, and v, as terminals. We show

that Rd'(x) = RdCx).Suppose that, there exists a feasible vector Ri<p') in Rp'(x), obtained

from ll'(y) and 'f"(z). Now from lemma 3.5 we have,

Lp(<p',v" r) =Lill', v" r) U Li'f", v" r); and

Lp(<p',v,, r) =Lill', v,, r) U Lp('f", v,, r).

Let ll(y)and 'f'(z) be the two rankings in Rh) and RdCz)such that,

(I) Lp(ll, v,, r) = Lill', v" r), Lp(ll, v,, r) ~ Lill', v,, r), and A~= A'w

(2) Lp('f', v" r) =Li'f", v" r), Li'f', v,, r) ~ Lp('f", v,, r), and 1..'1'=A''1'.

Then according to our choice,

Lp(<p',v" r) = Lp(ll', v" r) ULp('f", v" r)

= Lp(ll, v,, r) ULp('f', v" r)

Li <p', v" r) = Li <p, v" r)

Lp(<p',v,, r) = Lp(ll', v,, r) uLp('f", v,, r)

(17)

(18)

Since <p' is a feasible vector, so if <p is not a feasible vector, then it is always possible to

convert <p to a feasible vector by relabeling some edges as follows:

Since <p' is a feasible vector and <p is not a feasible vector, so there is a rank i < min {r, A~}

such that count(Lp( <p, v,, r), i) > c. Let a be the largest one among all such rank i. Then
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there is a rank), a <) < min{r, A~} such that, count(Lirp, v,, r),))< count(Lp(rp', v" r),))

and hence count(Lp(rp, v" r),)) < c. Let p be the smallest rank among all such rank). We

also observe that the rank a in the list Lirp, v" r) comes from both the lists Lp(ll, v" r) and

LiIV, v" r). Now we know the edge incident to v,ofthe graph G, through which rank a is

visible at terminal v, under 'P and hence at terminal v, under rp, we can hide this rank a

from being visible at v, of Gx by relabeling the edge incident to v, under 'I' by the rank p.

After this relabeling we update the lists Lp(IV, v" r) and Lp(rp, v" r). If after this relabeling

and updating, we have again any rank a < min{r, A~} such that count(Lirp, v" r), a) > c

then we repeat the process of relabeling and updating the lists Lp(IV, v" r) and Lp(rp, v" r) as

described above until count(Lp( rp, v" r), i) ~ c for all rank i E R and we must reach such a

situation because Lp( rp, v" r) =' Lp( rp: v" r) and count(Lp( rp: v" r), i) ~ c for all rank i E R ..

Now in Rd(x) obtained fromR~(x), we keep only one pair ({Lp(rp: vs' r),Lp(rp: v" r)}, A'~)

after aplying the elemination rule mentioned above for each individual list Lp( rp: v" r) and

Lp( rp: v" r). Also we get a feasible vector ({Lp( rp, vs' r), Lp( rp, v" r)}, A~)in R,Ax), where

either Li rp, vs' r) = Li rp: v" r) and Lp( rp, v" r) =' Li rp: v" r)} or Lp( rp, v" r) = Lp( rp: v" r)

and Li rp, v" r) =' Lp( rp: vs' r) in R,Ax) extended from Rj.,y) and R,Az). So we can conclude

that, R,Ax) = R d(x). o

Thus the dominance class R,Ax) on node x can be seen as a set of vectors of extensible c-

edge-ranking of Gx•
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3.5 An efficient Algorithm

The main result of this section is the following theorem.

Theorem 3.1 For any positive integer c, an optimal c-edge-ranking of a series-parallel

graph G with n vertices can be found in time O(nZb+4 IOgC+14n logz 10gC+ln).

Proof. Let Tb be a binary decomposition tree of G. We first give an algorithm to decide, for

a given positive integer I, whether G has a c-edge-ranking <p with #<p ~ I. We use dynamic

programming and bottom-up tree computation on the binary tree Tb : for each node x of Tb

rom leaves to the root, we construct all (dominance classes of) c-edge-ranking of Gx from

those of two subgraphs Gy and Gz associated with the children y and z of x. Then using

binary search over the range of I, 1 ~ I ~ (I + b 10gC+ln), we determine the minimum value

of I such that G has a c-edge-ranking <p with I = #<p and find an optimal c-edge-ranking of

G.

By Lemmas 3.3 and 3.7 the dominance class Rl..x) on x can be seen as a set of vectors of

extensible c-edge-ranking of Gx• Since IRI = I, I ~ r ~ I, and 0 ~ count(Lp( q>,v, r), i) ~ c for

a c-edge-ranking <p and a rank i E R, the number of distinct peer-lists Lp( <p, v, r) is at most

I.(c+li for each terminal v E Sx ofGX" On the otherhand, the number of distinct obstacles

A~is at most I. Then by the definition of Rl..x) the number of different dominant vectors on

node x is at most 12 2(c+1i, since ISxl= 2. One may assume that c ~ lEI ~ 2n - 3 [24] and

I ~ 1 + b 10gC+ln = O(lOgc+ln) by Lemma 3.2. Therefore the total number of dominant

. b+l Zvectors on node x IS O(n 10gC+ln).
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The main step of our algorithm is to compute a table of all dominant vectors on the root of

Tb by means of dynamic programming and bottom-up tree computation on Tb• If the table

is non empty, then the series-parallel graph G corresponding to the root of Tb has a c-edge-

ranking qJsuch that #qJ~ l.

We first show how to find the table of all dominant vectors Rcf..x) on a leaf x of Tb• This can

be done as follows:

(I) enumerate all edge-labelings qJ :Ex ~ R of Gx; and

(2) compute the table of all dominant vectors Rcf..x) on x from the edge-labelings qJof Gx.

Since every leaf of Tb represents a subgraph of G induced by an edge e E E, and I R I = l,

the number of edge-labelings qJ:Ex ~ R is at most l. For each labeling, A.~can be computed

in time 0(1). Furthermore, the list Lp( qJ,v, r), v E Sx can be computed in time O(l). Then

checking whether an edge-labeling <p is a c-edge-ranking of Gx can be done by Lemma 2.1

in time 0(1), and if so computing RiqJ) can be done in time 0(1). Therefore steps (1) and

(2) can be executed for the leaf in time O(l) = 0 (logC+1n), and hence the table on x can be

found in time O(logc+\ n).

We next show how to compute all dominant vectors on an internal node x of Tb from those

on two children y and z of x. The dominant vector on an internal node x can be obtained

from the cross product of the dominant vectors of the two children y and z of x. The

cardinality of the resultant vector table is 0(n2b
+
2 IOgC+14n). Then A.~for each dominant

vector can be computed in time 0(1). The peer-list can be computed by Lemmas 3.4 and

3.5 in time O(l). The checking whether an edge-labeling <p is a c-edge-ranking of Gx can be
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done by Lemma 2.1 in time 0(1). If an edge-labeling corresponding to a dominant vector is

not a c-edge-ranking, then the edge-labeling can be converted to a c-edge-ranking by

algorithm UPDATE (given later) in time O(n). Therefore, the table of all dominant vectors

on an internal node can be computed in time 0(n2b+310gC+14n), since l = O(logc+!n).

We thus have the following algorithm CHECK to determine whether G has a c-edge-

ranking <pwith #<p";; l for a positive integer l.

Algorithm CHECK;

begin

1 obtain a binary decomposition tree Tb of a series-parallel graph G;

2 compute a table of all dominant vectors on each leaf node x of Tb;

3 for each internal node x of Tb, compute a table of all vectors from the dominant vectors on

the two children y and z of x;

4 if possible then

convert these vectors to feasible vectors by calling the algorithm UPDATE [Algorithm

UPDATE will be given later];

5 from the table of all feasible vectors, construct a table of dominant vectors by applying the

elimination rule described in section 3.4;

6 repeat Line 3 to 5 for all internal nodes of Tb upto the root;

7 check whether there exists a dominant vector in the table with r = A~at the root;

end.

Line I can be done in time O(n) [2]. Line 2 can be done for each leaf in O(logc+! n) time.

Since there are O(n) leaves, Line I cane be done in O(n logc+!n) time in total for all leaves.

As mentioned above, Lines 3, 4 and 5 can be done in 0(n2b+3 logc+!4n) time per node.

Since Lines 3, 4 and 5 are executed for O(n) nodes in total in Line 6, Line 6 can be done in
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O(n
2b
+
4 IOgC+14n) time in total. Line 7 can be done in O(nb+l logc+/ n) time. Thus

checking whether a series-parallel graph G has a c-edge-ranking <p such that #<p $ l can be

d . . . O( 2b+4I 4). . Ione III tIme III n ogC+l n tIme III tota.

Using binary search technique over the range of l, I $ l $ l+b logc+1 n = O(logc+1 n), one

can find the smallest integer r ~(G) such that G has a c-edge-ranking <p such that #<p = r ~(G)

by calling CHECK O(lOg2 IOgC+ln) times. Therefore an optimal c-edge-ranking of a series-

parallel G ofn vertices can be found in time O(n2b+4Iogc+14 n IOg2logC+ln) for any positive

integer c. o

We now present the algorithm UPDATE which converts infeasible peer-vectors to feasible

peer-vectors if some exists as described in Lemma 3.7.

Algorithm UPDATE(Rp(<p));

begin

8 do while (trne)

9 if Rp( <p) is a feasible vector then

10 begin

II keep Rp( <p) in the table of feasible vectors on node x;

12 retnrn;

13 end

14 else

IS begin

16 if x is a series node in Tb then

17 begin

18 if there is a rank i, Aw $ i < A~, such that count(Lp( <p, V" r), i) > c then

19 begin

20 let a be the largest one among all such ranks i;

21 if there is no rankj, a <j < A~,such that count(Lp(<p, V" r),j) < c then

22 return; [Rp(<p) is not a feasible vector]
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23 else

24 begin

25 let 13 be the smallest integer among all ranks};

26 find an edge incident to v of the graph Gy through which rank a is

visible at terminal v under ll;

27 relabel the edge by the rank 13;[thus hide all ranks < 13including a

from being visible at terminal v under ll]

28 update list Lp(ll, v, A.,,) and the vector Rp(f{J);

29 end

30 end

31 if there is a rank i, A.,," i < A., such that count(Lp( f{J, v" r), i) > c then

32 begin

33 let a be the largest one among all such ranks i;

34 ifthere is no rank}, a <} < A., such that count(Lp( f{J, v" r),}) < c then

35 retnrn; [Rp(f{J) is not a feasible vector]

36 else

37 begin

38 let 13 be the smallest integer among all ranks};

39 find an edge incident to v of the graph Gz through which rank a is

visible at terminal v under '¥;

40 relabel the edge by the rank 13;[thus hide all ranks < 13including a

from being visible at terminal v under '¥]

41 update list Lp('¥, v, 1.'1') and the vector Rp(f{J);

42 end

43 end

44 end

45 else [x is a parellel node]

46 begin

47 if there is a rank i, i <min{r, A.} such that count(Lp(f{J, v" r), i) > c then

48 begin

49 let a be the largest one among such rank i;

50 ifthere is no rank}, a <} <min{r, A.}, such that count(Lp(f{J, v" r),}) < c then
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51

61

65

58

54

56

57

52

64

62

53

55

66

67

59

return; [RP(cp)is not a feasible vector]

else

begin

let [3be the smallest integer among all ranks};

find the edge incident to v, of the graph G, through which rank a is

visible at terminal v, under 1jI;

relabel the edge by the rank [3;[thus hide all ranks < [3including a

from being visible at terminal v, under 1jI]

update list Lp(IjI, v" r) and the vector Rp(cp);

end

end

if there is a rank i, i < min{r, A~} such that count(Lp(cp, v" r), i) > c then

begin

let a be the largest one among such ranks i;

if there is no rank}, a <} <min{r, A.}, such that count(Lp(cp, v,, r),}) < c then

return; [RP(cp)is not a feasible vector]

else

begin

let [3be the smallest integer among all rank};

find the edge incident to v, of the graph Gz through which rank a is

visible at terminal Vs under \.V;

relabel the edge by the rank [3;[thus hide all ranks < [3including a

from being visible at terminal v, under 1jI]

70 update list Lp(IjI, v" r) and the vector Rp(cp);

71 end

63

60

68

69

72 end

73 end

74 end

75 enddo

end.

.(~'-.
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3.6 conclusion

We have presented an efficient algorithm for the c-edge-ranking of series-parallel graphs.

We introduced some new definitions and reduced the table size of dynamic programming

by using the concept of dominance class. This enables us to find an optimal c-edge-ranking

of series-parallel graphs in O(nZb+4 logc+!4n logz logc+!n) time.
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Chapter 4

Conclusion

This thesis deals with the generalized edge-ranking problem for series-parallel graphs.

Since series-parallel graphs arises in many practical cases in VLSI and in electrical circuits,

so an efficient algorithm for this particular class of graphs will have many applications in

real world.

In Chapter 1 we have introduced the ranking problem and its significance. In Chapter 2, we

have characterized the c-edge-ranking of series-parallel graphs by the number of visible

edges. This characterization helps us to find an optimal c-edge-ranking of series parallel

graphs.

In Chapter 3, at first we have given an upper bound on the c-edge-ranking number of

series-parallel graphs. We next present an efficient polynomial-time algorithm for finding

an optimal c-edge-ranking of a given series-parallel graph with bounded maximum degree

!l. for any positive integer c. We have improved the time complexity of our algorithm by

using the concept of dominance class.

Our algorithm can be used forf-edge-ranking using some modifications. Anf-edge-ranking

of a graph G is a labeling of the edges of G with integers such that, for any label i, deletion

of all edges with labels> i leaves connected components, each having at most j(i) edges
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with label i. Clearly a c-edge-ranking is a special case of anj-edge-ranking in whichfi:i) = c

for every rank i.

In this thesis, we have given an efficient sequential algorithm to solve the c-edge-ranking

problem of series-parallel graphs. However, the parallel algorithm for solving the c-edge-

ranking problem of series-parallel graphs is yet to be explored.
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